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Abstract 25 

The molecular clock hypothesis assumes that mutations accumulate on an organism’s genome 26 

at a constant rate over time, but this assumption does not always hold true. While modelling 27 

approaches exist to accommodate deviations from a strict molecular clock, assumptions about 28 

rate variation may not fully represent the underlying evolutionary processes. There is 29 

considerable variability in rabies virus (RABV) incubation periods, ranging from days to over 30 

a year, during which viral replication may be reduced. This prompts the question of whether 31 

modelling RABV on a per infection generation basis might be more appropriate. We 32 

investigate how variable incubation periods affect root-to-tip divergence under per-unit time 33 

and per-generation models of mutation. Additionally, we assess how well these models 34 

represent root-to-tip divergence in time-stamped RABV sequences. We find that at low 35 

substitution rates (<1 substitution per genome per generation) divergence patterns between 36 

these models are difficult to distinguish, while above this threshold differences become 37 

apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the 38 

mean substitution rate to be 0.17 substitutions per genome per generation. At RABV’s 39 

substitution rate, the per-generation substitution model is unlikely to represent rabies 40 

evolution substantially differently than the molecular clock model when examining 41 

contemporary outbreaks; over enough generations for any divergence to accumulate, extreme 42 

incubation periods average out. However, measuring substitution rates per-generation holds 43 

potential in applications such as inferring transmission trees and predicting lineage 44 

emergence. 45 
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Author Summary 47 

Rabies is a neglected disease that kills around 60,000 people each year. After entering the 48 

body, the incubation period of the virus is usually less than one month, but can sometimes 49 

span months to years. While we normally assume a virus accumulates mutations at a constant 50 

rate, it is possible that rabies’ occasional long incubation periods mean that mutations 51 

accumulate at varying rates if the virus replicates (and thus mutates) more slowly during the 52 

incubation period. We compared how the rabies virus evolves over time using two simulation 53 

models where mutations either occur per unit time or per infection generation. We also 54 

calculated the mean substitution rate per infection generation, which can be useful for 55 

inferring linkage between related rabies cases. We found that at realistic substitution rates for 56 

the rabies virus, we could not distinguish between the two models. Our calculations show that 57 

in most generations no mutations are expected to occur. Thus, over a time period long enough 58 

to observe genetic divergence, occasional long incubation periods would be “cancelled out” 59 

by shorter than average incubation periods, meaning that the two models are almost 60 

equivalent. However our work suggests that modelling substitution rates per generation may 61 

be useful for epidemiological inference.  62 
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Introduction 63 

The molecular clock hypothesis assumes that the genomes of organisms accumulate neutral 64 

mutations at a constant rate over time, either across all lineages (the “strict molecular clock”) 65 

or within each individual lineage but with some degree of variation between them (clock 66 

models with this assumption include the relaxed and multirate clock models) (1–3). The 67 

ability to sample viral sequences through time, and the application of the molecular clock 68 

hypothesis to these sequences, has led to massive advances in using viral genetic data to 69 

investigate disease outbreaks (4). The clock rate, measured in substitutions per site per unit 70 

time, can be used to estimate how long ago pathogens diverged (5), and the date of infection 71 

of individual infected hosts (6). Combining the analysis of epidemiological and genetic data 72 

has allowed further insights into the history of outbreaks (7), and the introduction of 73 

geographic data provides estimates as to rates of spread and the frequency and source of 74 

introductions (8,9). However, in order to conduct these phylogenetic analyses, genetic 75 

divergence must increase appreciably over time in the dataset under investigation (10). 76 

Whether or not the viral population is measurably evolving, and thus whether it contains 77 

sufficient temporal signal for phylogenetic analysis, depends mainly on the evolutionary rate, 78 

the sequence length and the length of time sequences are sampled over being sufficiently 79 

high. Various methods exist to assess temporal signal, the most commonly used being root-to-80 

tip divergence plots (11,12) implemented in tools such as TempEst (13) , but these also 81 

include Bayesian evaluation of temporal signal (BETS) (14)  and the date-randomisation test 82 

(15). 83 

The rabies virus (RABV) is a negative-strand RNA virus, with a genome size of 84 

approximately 12 kilobases. While RNA viruses generally have high mutation rates due to a 85 

lack of proofreading by RNA polymerases, RABV has a substitution rate at the lower end of 86 

normal for single-stranded RNA viruses of between 1 x 10-4 and 5 x 10-4 substitutions per site 87 
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per year (16–18). This may be due to strong purifying selection (16), or due to peculiarities of 88 

RABV. For example, the RABV genome is longer than average for RNA viruses, and genome 89 

length and evolutionary rate are negatively correlated (19), although this relationship appears 90 

to be weaker in single-stranded RNA viruses (20). A more unusual feature of RABV is that 91 

infections can exhibit extended incubation periods within the host. The median generation 92 

interval (the time between one individual becoming infected and then infecting another) is 93 

estimated to be 17.3 days in domestic dogs (21), with other studies estimating mean serial 94 

intervals of 26.3 days (22) and 45.0 days (23). Symptoms, infectivity, and death from rabies, 95 

however, can occasionally occur years after the initial infection event (24). The length of the 96 

incubation period is influenced by the route of exposure, with bites to the head and neck 97 

leading to more rapid disease progression than bites to lower extremities (25). RABV can 98 

remain in the muscle at the bite site for prolonged lengths of time before invading the host’s 99 

motor neurons and progressing through the nervous system, with limited, if any, infection of 100 

other muscle fibres (26). While some replication in the muscle cells has been observed (27), 101 

RABV replication at the inoculation site is not necessary for neural invasion (28). It is 102 

currently unknown precisely how the RABV replication rate in the host muscle cells and 103 

peripheral nervous system compares to the massive replication rate within the cells of the 104 

central nervous system and brain. However, work suggests that RABV replication in muscle 105 

cells may be reduced (29), and RABV replication in cultured rat sensory neurons may be 10- 106 

to 100-fold lower than replication rates in rat and mouse CNS neurons (30). Rabies infections 107 

that involve long incubation periods may, therefore, not lead to more accumulated mutations 108 

than those with shorter incubation periods, as viral mutation is strongly influenced by the 109 

replication process (31).  110 

Changes in mutation rates through time due to long incubation periods may affect how we 111 

analyse RABV sequence data and interpret these analyses. A relaxed molecular clock is 112 
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usually required to carry out phylogenetic analyses on rabies datasets, and it is not 113 

uncommon for there to be difficulties in applying these analyses due to “insufficient temporal 114 

signal”; usually referring to either no or a negative relationship between genetic divergence 115 

and time, or this relationship having a lot of noise and a very low R2 (32–36). RABV shows 116 

variation in substitution rate between lineages (18,37,38) which may be driven in part by 117 

differences in incubation periods. If the variable incubation period of rabies infections does 118 

cause deviation from the molecular clock model (exceeding the variation captured by relaxed 119 

or multirate clock models), this may negatively affect the accuracy of time-scaled 120 

phylogenetic trees and emergence date predictions. Conversely, if mutation does continue at a 121 

consistent rate during the incubation period, attention should be paid to extremely long 122 

incubators which could drive the emergence of new variants, as seen recently in chronic 123 

SARS-CoV-2 infections (39,40). 124 

We hypothesised that reduced replication (and thus mutation) during the incubation period 125 

could cause rabies evolution to be better represented by a per-generation model of mutation 126 

than by the molecular clock model. We aim to clarify the nature of contemporary RABV 127 

evolution using in silico methods, comparing the root-to-tip divergence of sequences 128 

generated from synthetic outbreaks under per-unit time or per-generation mutation models, 129 

and comparing these to RABV genomic data from Tanzania. We also aim to calculate a per-130 

generation substitution rate for RABV for future use as a parameter in transmission tree 131 

reconstruction algorithms. 132 

 133 

Methods 134 

We investigate two contrasting mutational models for RABV – i.e., substitutions occurring on 135 

a per-generation vs. per-unit-time basis – using a simulation approach. We first generated 136 
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synthetic RABV outbreaks using a branching process model (21) and then simulated these 137 

two mutation processes over the resulting transmission trees. From the synthetic sequences 138 

generated, we examined root-to-tip divergence and calculated variance explained (R2) from 139 

linear regressions, and compared these to the root-to-tip divergence of a set of RABV whole 140 

genome sequences from Tanzania. Finally, we developed a method to estimate the per-141 

generation substitution rate for RABV and tested this on synthetic data before applying it to 142 

the Tanzanian RABV dataset. 143 

 144 

Rabies outbreak simulation 145 

We simulated RABV mutation on branching-process simulations of rabies outbreaks. 146 

Outbreaks were simulated 100 times over a spatially explicit representation of Mara Region 147 

in northern Tanzania. In Serengeti District, where contact tracing data were available, the 148 

model was initialised with the three cases that occurred in the mean generation interval (g=27 149 

days, based on contact tracing data) prior to 2017 (simulations were run over a dog 150 

population representing that in Mara region between 2017 and 2024). In the rest of Mara 151 

region, where there were no data to guide initialisation, we seeded with (0.01Dg)/365 cases, 152 

where D is the initial dog population in that area. If Re=1 (endemic transmission), this results 153 

in roughly 1% of the population becoming rabid over a year; contact tracing data suggest that 154 

incidence typically does not exceed that level (41). This led to a total of 273 initial cases in 155 

the region. Each case was assigned a number of offspring cases drawn from a negative 156 

binomial distribution (41) with mean (R0)=1.05 and dispersion parameter=1.33. The R0 value 157 

was chosen to result in a median number of cases each month that was roughly constant over 158 

time (over the 100 simulations), mimicking endemic disease. Movement of rabid dogs from 159 

their home locations to and between transmission locations followed a random walk with step 160 
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lengths drawn from a Weibull distribution (shape=0.41, scale=0.13). We simulated occasional 161 

long-distance transport of dogs to a random location prior to their first transmission in 2% of 162 

cases (21). At each of a rabid dog’s transmission locations, another dog was randomly 163 

selected within the local 1km2 grid cell. If this dog was susceptible (i.e., not vaccinated or 164 

already incubating infection from a prior transmission event), rabies was transmitted. A 165 

generation interval was drawn for each new infection from a lognormal distribution 166 

(meanlog=2.96, sdlog=0.82), describing the time delay before it also became rabid and made 167 

its assigned transmissions. The step-length and generation-interval distributions were fitted 168 

using contact tracing data from Serengeti District, Tanzania (21). Branching process 169 

simulations were continued until 7 years had passed or rabies went extinct. Each synthetic 170 

case was assigned an individual ID, and for every case (except initial seed cases) we recorded 171 

the ID of the associated progenitor case. Dates of infection and transmission were recorded 172 

for each case. 173 

We isolated complete transmission trees descending from each of the 273 initial cases from 174 

within one randomly selected synthetic outbreak. Transmission trees that contained over 100 175 

cases (9 out of 273 trees in total, that ranged in size from 533 - 19,382 cases) were then used 176 

to generate synthetic sequence data. Across these trees, we see a mean generation interval of 177 

26.6 days, and 2.5 and 97.5 percentiles of 3.90 and 94.11 days (Supplementary Figure S1). 178 

For each of the 9 trees the index case was assigned an initial 12kb genome sequence. Under 179 

the per-unit time mutation model, we determined the expected number of mutations by 180 

multiplying the substitution rate, the genome length and the length of the generation interval, 181 

for each case along the resulting transmission tree (because we assume mutations are neutral, 182 

the individual-level mutation rate is the same as the population-level substitution rate). The 183 

realised number of mutations was then drawn from a Poisson distribution, with this mean. We 184 

then randomly chose positions to change and new nucleotides to change them to. The 185 
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resulting synthetic sequence data is referred to as the “time-based sequence data”. The 186 

generation-based model of mutation works as above, with the exception that the expected 187 

number of substitutions in a generation is constant and produces the synthetic “generation-188 

based sequence data”. 189 

 190 

Divergence rate analysis 191 

To investigate patterns of temporal divergence under the mutation models described above, 192 

we generated synthetic data with values of substitution rates ranging from 0.05 to 3 193 

substitutions per genome per generation (or the per unit time substitution rate equivalent) and 194 

4 population sampling regimes (from 1% of cases to 20%, informed by a previous study that 195 

estimated that routine surveillance for rabies rarely confirms more than 10% of circulating 196 

cases (42)). We calculated the genetic divergence as the number of nucleotide differences 197 

from the index case to each sampled case. For each of the nine transmission trees, we then 198 

compared genetic divergence with time under each scenario (substitution rate and sampling 199 

regime combination), using linear regression through the origin. 200 

In order to compare our synthetic patterns of divergence over time to real rabies data, a root-201 

to-tip divergence plot was also generated for a dataset of real RABV sequences (data from 202 

(43); Figure 1A) using TempEst (v1.5.3 (13)), with the best-fit root located (Figure 1B). 203 

These rabies cases occurred between 2001 and 2017 and were primarily from the Serengeti 204 

district and Pemba Island, with the remaining sequences from elsewhere in Tanzania (Figure 205 

1A inset). Sequence acquisition and tree building methods are detailed in (43). 206 

 207 
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 208 

Fig 1. Phylogeny of real rabies virus whole genome sequences from Tanzania and root-209 

to-tip divergence. (A) The time-scaled tree (43) used to generate the root-to-tip divergence 210 

plot and to calculate the per-generation substitution rate. The inset map shows the 211 

approximate locations that the samples were collected from, and the lineages present in each 212 

location. Map point size represents the number of sequences in this dataset from district 213 

centroid locations. Base map data is from Natural Earth (naturalearthdata.com), via 214 

the maps R package. (B) The corresponding root-to-tip divergence plot. Point colours 215 

represent RABV lineage. 216 

 217 

Calculating the per-generation substitution rate 218 
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We updated a method of calculating the per-generation substitution rate previously used in 219 

eukaryotes (44) by using Bayesian posterior estimates of the clock rate and the generation 220 

interval. We assessed this method’s accuracy using the synthetic outbreak sequence data, 221 

before applying it to the aforementioned set of RABV whole genome sequences. 222 

To estimate the mean per-generation substitution rate, we analysed sequence data with 223 

BEAST, and multiplied the posterior rate estimate for each MCMC sample (excluding the 224 

burn-in period) by the generation-interval lengths sampled from the posterior of a simple 225 

Bayesian analysis and then multiplied again by the genome length. The mean and 95% 226 

credible interval of the estimate of the per-generation substitution rate for the RABV dataset 227 

was calculated by taking the mean and the 2.5% and 97.5% percentiles of the resulting 228 

multiplied posteriors. 229 

To evaluate the accuracy of this method in estimating the mean per-generation substitution 230 

rate, we also applied it to synthetic sequence data generated from outbreaks using the per-231 

generation mutation model as described above, under different substitution rates (11 values 232 

ranging from 0.05 substitutions per generation to 3 substitutions per generation) and case 233 

sampling rates (1%, 5%, 10% or 20% of cases sampled) across the 9 transmission trees that 234 

contained at least 100 cases. Subsampled synthetic datasets containing more than 2000 235 

sequences were not analysed as this number exceeds the total whole-genome RABV 236 

sequences currently available on the RABV-GLUE database (45), and is unrealistic in the 237 

context of examining individual rabies outbreaks. BEAST log files were generated from these 238 

sequences using BEASTGen version 1.0.2 and BEAST version 1.10.4 (46). We chose to use a 239 

JC substitution model with a strict clock, no site heterogeneity due to our per-generation 240 

mutation model used in the simulations having equal probability of any site or base being 241 

chosen and assumed constant population size. We used a tracelog frequency of 1000 and a 242 

sufficiently long chain length for the effective sample size (ESS) of each parameter to exceed 243 
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200 when analysed using Tracer (47), and a 10% burn-in period. We applied the substitution 244 

rate calculation method to these phylogenetic trees, and assessed the accuracy of the resulting 245 

mean per-generation substitution rates by comparing them to the parameter values used to 246 

generate the synthetic sequences, using the natural log of the ratio:  247 

��������� 	 ln 

�
�

�
�

� 

where Me is the mean estimated per-generation substitution rate and M� is the actual 248 

substitution rate, where a deviation of zero means perfect accuracy. 249 

 250 

The same method was applied to the dataset of 153 RABV sequences sampled from across 251 

Tanzania (data from (43); Figure 1A). The mean per-generation substitution rate was 252 

calculated, and distributions were fitted from the multiplied generation interval and clock rate 253 

posteriors (generation interval posteriors based on values from (21) for the Tanzanian dataset, 254 

extracted directly from the lognormal distribution used in simulations, and clock rate 255 

posteriors taken from the BEAST log file of the time-scaled tree from Lushasi et al. (43)) and 256 

genome length as described above. We compared different distributions (Gamma and 257 

Lognormal) for estimating substitution rates and selected the best fitting distribution by AIC. 258 

We also calculated the probabilities of between 0 and 10 SNP differences occurring across 1, 259 

5 or 10 infection generations. For this calculation we simulated mutations arising at a Poisson 260 

rate with lambda drawn from the fitted substitution rate distribution. The means and 95% 261 

confidence intervals were calculated from the 10,000 simulations. 262 

 263 

Data and code availability 264 
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All code is available at https://github.com/RowanDurrant/Rabies-Mutation. Analyses were 265 

conducted using the R programming language (48). The beta regression curve and prediction 266 

interval in Figure 2C was generated using the ‘betareg’ R package (49). RABV lineages were 267 

assigned using MADDOG (45). 268 

 269 

Results 270 

Root-to-tip divergence analysis 271 

At higher per-generation substitution rates (1 substitution per genome per generation and 272 

above), distinct differences can be seen between root-to-tip divergence plots from the two 273 

models of mutation (Figure 2A). The synthetic data generated from the per-generation 274 

mutation model shows “stray” clusters or ridges of points both above and below the main 275 

funnel of points, illustrated in the example in Figure 2A. Divergence plots from synthetic data 276 

generated from the time-based model of mutation have less variance and do not exhibit this 277 

pattern. At lower substitution rates (below 1 substitution per generation), no such pattern is 278 

clearly distinguishable (Figure 2B). When the cases represented by the high-divergence 279 

points from the per-generation model in Fig. 2A are visualised in a transmission tree, they are 280 

mainly confined to a single chain (Supplementary Figure S1). 281 
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 282 

Fig. 2: Temporal genetic divergence varies under two models of mutation. (A) Root-to-283 

tip divergence plots for synthetic sequences produced using time-based and generation-based 284 

mutation models, equivalent to 2 substitutions per genome per generation and (B) equivalent 285 

to 0.2 substitutions per genome per generation. Note that the y-axis scales differ by an order 286 

of magnitude between A and B. These data are from running mutation models over the same 287 

single transmission tree and have a case sampling rate of 5% (i.e., 621 cases sampled of 288 

12,434 total). (C) The R2 values obtained from regression through the origin of root-to-tip 289 

divergence of synthetic data from the time-based and generation-based models. Point colour 290 

indicates the mutation model used to generate the data. Lines represent beta regressions with 291 

logit links fit to data points, and shading represents the 95% prediction interval. The X axis is 292 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2023.09.04.556169doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.04.556169
http://creativecommons.org/licenses/by/4.0/


15 

 

log scaled. 5% of cases were sampled here; sampling rate had little effect on R2 293 

(Supplementary Figure S2). 294 

 295 

Root-to-tip divergence plots derived from synthetic transmission trees using the time-based 296 

mutation model had, on average, higher R2 values than those from synthetic transmission 297 

trees using the per-generation mutation model, although this is more difficult to distinguish 298 

below a substitution rate of 0.5 substitutions per genome per generation (Figure 2C). As the 299 

substitution rate increases, the R2 values across both mutation models increase. The case 300 

sampling rate appears to have little effect on R2 (Supplementary Figure S2). 301 

The root-to-tip divergence plot of the Tanzanian RABV dataset more closely resembles those 302 

of lower substitution rate simulations, where it is difficult to determine any difference 303 

between the models of mutation (Figure 1). While most lineages surround the regression line, 304 

some (for example, Cosmopolitan AF1b_B1) group below the line, but without forming a 305 

distinguishable “ridge”. 306 

 307 

Substitution rate calculation 308 

The accuracy of our method used to calculate per-generation substitution rate remains similar 309 

at all but the lowest values of substitution rate (Figure 3), with a tendency to underestimate 310 

the substitution rate (meaning that the estimated substitution rate is below the substitution 311 

rate parameter used to generate the synthetic data; mean natural log of the ratio of -0.18 and 312 

root-mean-square of 0.54, where values of 0 indicate perfect estimates). Accuracy appears to 313 

be more influenced by the number of sequences used in the BEAST analysis than by the case 314 

sampling rate itself; the mean natural log of the ratio falls to -0.36 when fewer than 50 315 

sequences are used (root-square-mean of 0.95).  316 
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 317 

 318 

Fig. 3: Accuracy of per-generation substitution rate predictions for different numbers of 319 

sequences, substitution rates and sampling rates. Facets indicate case sampling rate. The 320 

dotted line represents perfect accuracy. X axis and colour scale are log transformed. 321 

 322 

The Tanzanian RABV dataset from which we estimated the per-generation substitution rate 323 

contains 153 sequences in total, and the accompanying time-scaled phylogenetic tree has a 324 

root-to-tip height of approximately 65 years, although the sequences spanned just 16 years as 325 

they were sampled from 2001 to 2017 (with 46.7% from years 2011-2012). These sequences 326 

were largely complete; 98% of sequences were >95% complete (>11,327 kb in length). The 327 
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mean per generation substitution rate of RABV in this dataset was estimated to be 0.171 328 

(95% credible interval: 0.127 - 0.219). The best fitting distribution by AIC to the output of 329 

the multiplied Bayesian posteriors was a Gamma distribution with the parameters shape = 330 

51.69 and rate = 301.8. 331 

 332 

Using the calculated per generation per genome substitution rates, we calculated the 333 

probability of different numbers of substitutions occurring over 1, 5 and 10 generations, 334 

drawing the per-generation substitution rate (λ) from the above distribution (Figure 4). Over 335 

many generations it is still quite likely for zero substitutions to occur; after 10 generations, 336 

the probability of zero substitutions having occurred is 0.19. 337 

 338 
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Fig. 4: Probability distributions of the mean per-generation substitution rate and 339 

substitutions occurring over generations. (A) estimated probability distribution of the per 340 

genome per generation substitution rate from Tanzanian RABV sequences, with underlying 341 

histogram of multiplied Bayesian posteriors of clock rate and generation interval. (B) 342 

probability distribution of SNPs occurring over 1, 5 and 10 generations. The λ value for a 343 

Poisson rate of SNP occurrence is drawn from the SNPs per generation distribution fitted in 344 

Figure 4A. Black bars represent the 95% confidence intervals (which are very tight). 345 

 346 

Discussion 347 

It can be difficult to get sufficient temporal signal for RABV sequence datasets, which we 348 

hypothesised could be due in part to its variable incubation periods. We hypothesised that a 349 

per-generation model of mutation may be more representative of RABV evolution than a 350 

purely time-based model. We found that substantial differences in root-to-tip divergence 351 

patterns between synthetic outbreaks using generation-based and time-based models of 352 

mutation could be observed only at high underlying substitution rates. The substitution rate 353 

for the Tanzanian RABV sequences examined (~0.17 substitutions per genome per 354 

generation) was in the range where divergence patterns in the two models were extremely 355 

similar. We can thus assume that the two models will give extremely similar results on the 356 

relevant time scale. As we observed increasing divergence over time with reasonable R2 357 

values within this substitution rate range, it implies that variable incubation periods alone do 358 

not fully account for the challenge in obtaining temporal signal. Therefore, other factors such 359 

as insufficiently long sampling windows for the substitution rate are likely to be responsible 360 

(50). This is an important consideration for analysing RABV sequences from new outbreaks, 361 

or from endemic areas where sampling is opportunistic. As RABV has a substitution rate 362 
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lower than many other RNA viruses, longer sampling windows are required to achieve a 363 

sufficient temporal signal. 364 

The observation of little difference between root-to-tip divergence plots derived from the two 365 

mutation models at substitution rates below 1 substitution per genome per generation is likely 366 

because of averaging; multiple generations of infection are expected to have occurred per 367 

substitution that arises on the viral genome. Over the many generations needed before 368 

significant levels of viral genetic diversity are reached, the influence of any unusually long 369 

incubation periods will be damped by the opposite influence of unusually short incubation 370 

periods, eventually becoming indistinguishable from clock-like behaviour. On the other hand, 371 

at higher substitution rates ridges form on the root-to-tip divergence plots under the per-372 

generation model of mutation but not under the per unit time model. While not affecting the 373 

overall clock rate, these ridges reduce the overall R2, and may be better analysed using a 374 

separate local clock (51). The cases in these ridges almost all descend from a common 375 

ancestor (Supplementary Figure S1), suggesting that a single unusually long or short 376 

incubation period can affect which phylogenetic analyses we perform. Ridges caused by these 377 

incubation periods can be distinguished from ridges caused by rate variation between lineages 378 

as they will be parallel to the main cluster of points in the plot, whereas points belonging to 379 

lineages with a different substitution rate will have a different slope. Studies examining the 380 

number of substitutions occurring between successive sequenced cases, and whether this 381 

increases when the secondary case’s incubation period is unusually long, could clarify the 382 

exact relationship between substitutions, generations, and time. More detailed data will be 383 

required to investigate this further.  384 

We calculated RABV’s mean per-generation substitution rate to be approximately 0.17 385 

substitutions per genome per transmission generation. This estimate is lower than those for 386 

other RNA viruses, such as SARS (2 substitutions per genome per human passage (52)), 387 
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SARS-CoV-2 (0.52 substitutions per genome per 5.8-day generation interval (53)) and Ebola 388 

virus (0.875 substitutions per genome per 14-day generation interval (54)). RNA viruses that 389 

undergo periods of reduced replication or complete latency often show reduced substitution 390 

rates, with one extreme example being HTLV-1/2 (55,56). However, we would not expect this 391 

to affect the per-generation rate. The low per-generation substitution rate seen in rabies is 392 

therefore likely due to mutation being constrained by other factors, such as strong purifying 393 

selection (16), and likely contributes to the difficulties in obtaining sufficient temporal signal 394 

for phylogenetic analyses. Previous studies suggest that for viruses in this substitution rate 395 

range, sampling windows of up to 30 years may be required to overcome the phylodynamic 396 

threshold (15); for comparison, SARS-CoV-2 achieved sufficient temporal signal within two 397 

months of the start of the pandemic (50). 398 

We can predict from the estimated per-generation substitution rate that identical sequences 399 

are likely to have less than 5 intermediate generations between them (probability of fewer 400 

than five generations occurring before a mutation occurs > 0.49 by repeated sampling of a 401 

Poisson distribution with a lambda of 0.17), but still have a non-negligible probability of 402 

being more distantly related. While the low substitution rate means that comparing the 403 

number of SNPs between sequences alone may not be an effective method of determining 404 

infector-infectee relationships, it could be used in conjunction with temporal and location 405 

data to make more accurate predictions of transmission events by ruling out relationships 406 

between more distantly related transmission chains co-circulating in the same area, as in (57). 407 

Notably, our Poisson distribution of the number of substitutions occurring in one generation 408 

is visually very similar to the genetic signature distribution reported in Cori et al. ((57), Fig 409 

S1), despite different methods and RABV datasets being used in their calculations. It is likely, 410 

however, that our estimate of the per-generation substitution rate is lower than the mean 411 

number of SNPs expected between sequences from a primary and secondary case, due to the 412 
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time-based substitution rate being affected by purifying selection (58). Further analysis 413 

comparing the estimated per-generation substitution rate to realised SNP distances between 414 

primary-secondary case pairs could quantify this difference. 415 

While the Jukes-Cantor model was the most appropriate to use on our synthetic data due to 416 

the simplicity of the mutation models, phylogenetic analyses on real RABV genomes usually 417 

use a more complex model, such as the GTR + G substitution model used to generate the 418 

Tanzanian tree shown in this study (43). This, along with the simplicity of our mutation 419 

model as well as sampling biases in the real dataset, may affect how comparable synthetic 420 

root-to-tip divergence plots are to the real data.  421 

 422 

While the molecular clock has proven critical for gaining insights into the history and 423 

dynamics of disease outbreaks, the epidemiological characteristics of a virus should be 424 

considered when choosing how to measure viral evolution. In this study, we determine that 425 

the per-generation model is not likely to produce substantially different results from the 426 

molecular clock model when analysing contemporary RABV evolution. We also estimate the 427 

mean per-generation substitution rate of RABV for future use in transmission tree 428 

reconstruction and efforts to estimate outbreak sizes and lineage emergence rates. Given that 429 

many different lineages circulating simultaneously is seemingly a common occurrence in 430 

areas with endemic rabies, it is important to investigate whether these lineages vary in 431 

evolutionary rate and generation interval length, and ascertain the potential effects on 432 

phylogenetic analyses. 433 

 434 
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Supp. Fig. S1: histogram of generation intervals from the simulated outbreaks. Vertical 584 

dashed lines represent the median (blue) and mean (red) generation interval. 585 

Supp. Fig. S2: points in the offshoot ridge predominantly occur in one transmission tree. 586 

(A) root-to-tip divergence plot (2 SNPs/genome/generation, 5% of cases sequenced) with 587 

offshoot ridge points highlighted in red.  Offshoot ridge points are defined in this plot as 588 

having a divergence rate above 8x10-6 substitutions/day and occurring after day 750. (B) 589 

transmission tree of the simulated outbreak with offshoot ridge cases highlighted in red. 590 

Graph edge length is not proportional to time or divergence. 591 

Supp. Fig. S3: Sampling rate does not impact the R2 of root-to-tip divergence plots from 592 

synthetic data. Plot is faceted by the proportion of the total number of cases in the outbreak 593 

sequenced, point colour represents mutation model. 594 
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