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25  Abstract

26  Themolecular clock hypothesis assumes that mutations accumulate on an organism’s genome
27  at aconstant rate over time, but this assumption does not aways hold true. While modelling
28  approaches exist to accommodate deviations from a strict molecular clock, assumptions about
29 rate variation may not fully represent the underlying evolutionary processes. Thereis

30 considerable variability in rabies virus (RABV) incubation periods, ranging from days to over
31 ayear, during which viral replication may be reduced. This prompts the question of whether
32 modelling RABV on a per infection generation basis might be more appropriate. We

33  investigate how variable incubation periods affect root-to-tip divergence under per-unit time
34  and per-generation models of mutation. Additionally, we assess how well these models

35  represent root-to-tip divergence in time-stamped RABV sequences. We find that at low

36  substitution rates (<1 substitution per genome per generation) divergence patterns between

37  these models are difficult to distinguish, while above this threshold differences become

38  apparent across arange of sampling rates. Using a Tanzanian RABV dataset, we calculate the
39  mean substitution rate to be 0.17 substitutions per genome per generation. At RABV'’s

40  substitution rate, the per-generation substitution model is unlikely to represent rabies

41  evolution substantially differently than the molecular clock model when examining

42 contemporary outbreaks; over enough generations for any divergence to accumulate, extreme
43 incubation periods average out. However, measuring substitution rates per-generation holds
44  potential in applications such as inferring transmission trees and predicting lineage

45 emergence.
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47  Author Summary

48  Rabiesisaneglected disease that kills around 60,000 people each year. After entering the

49  body, the incubation period of the virusis usualy less than one month, but can sometimes

50  span months to years. While we normally assume a virus accumulates mutations at a constant
51 rate, itispossible that rabies’ occasional long incubation periods mean that mutations

52  accumulate at varying ratesif the virus replicates (and thus mutates) more slowly during the
53  incubation period. We compared how the rabies virus evolves over time using two simulation
54  models where mutations either occur per unit time or per infection generation. We also

55  calculated the mean substitution rate per infection generation, which can be useful for

56 inferring linkage between related rabies cases. We found that at realistic substitution rates for
57  therabies virus, we could not distinguish between the two models. Our calculations show that
58  inmost generations no mutations are expected to occur. Thus, over atime period long enough
59  to observe genetic divergence, occasional long incubation periods would be “cancelled out”
60 by shorter than average incubation periods, meaning that the two models are almost

61  equivaent. However our work suggests that modelling substitution rates per generation may

62  beuseful for epidemiological inference.
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63 Introduction

64  Themolecular clock hypothesis assumes that the genomes of organisms accumulate neutral
65 mutations at a constant rate over time, either across all lineages (the “strict molecular clock”)
66  or within each individual lineage but with some degree of variation between them (clock

67  models with this assumption include the relaxed and multirate clock models) (1-3). The

68  ability to sample viral sequences through time, and the application of the molecular clock

69  hypothesis to these sequences, has led to massive advances in using viral genetic datato

70  investigate disease outbreaks (4). The clock rate, measured in substitutions per site per unit
71 time, can be used to estimate how long ago pathogens diverged (5), and the date of infection
72 of individual infected hosts (6). Combining the analysis of epidemiological and genetic data
73 hasalowed further insights into the history of outbreaks (7), and the introduction of

74  geographic data provides estimates as to rates of spread and the frequency and source of

75  introductions (8,9). However, in order to conduct these phylogenetic analyses, genetic

76  divergence must increase appreciably over timein the dataset under investigation (10).

77 Whether or not the viral population is measurably evolving, and thus whether it contains

78  sufficient temporal signal for phylogenetic analysis, depends mainly on the evolutionary rate,
79  the sequence length and the length of time sequences are sampled over being sufficiently

80  high. Various methods exist to assess temporal signal, the most commonly used being root-to-
81 tip divergence plots (11,12) implemented in tools such as TempEst (13) , but these also

82 include Bayesian evaluation of temporal signal (BETS) (14) and the date-randomisation test

83  (15).

84  Therabiesvirus (RABV) is a negative-strand RNA virus, with a genome size of
85  approximately 12 kilobases. While RNA viruses generally have high mutation rates dueto a
86 lack of proofreading by RNA polymerases, RABV has a substitution rate at the lower end of

87  normal for single-stranded RNA viruses of between 1 x 10 and 5 x 10™ substitutions per site
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88  per year (16-18). Thismay be dueto strong purifying selection (16), or due to peculiarities of
89 RABV. For example, the RABV genome is longer than average for RNA viruses, and genome
90 length and evolutionary rate are negatively correlated (19), although this relationship appears
91  to beweaker in single-stranded RNA viruses (20). A more unusual feature of RABV is that
92 infections can exhibit extended incubation periods within the host. The median generation
93 interval (the time between one individual becoming infected and then infecting another) is
94  estimated to be 17.3 days in domestic dogs (21), with other studies estimating mean serial
95 intervalsof 26.3 days (22) and 45.0 days (23). Symptoms, infectivity, and death from rabies,
96  however, can occasionally occur years after theinitial infection event (24). The length of the
97 incubation period isinfluenced by the route of exposure, with bites to the head and neck
98 leading to more rapid disease progression than bites to lower extremities (25). RABV can
99 remaininthe muscle at the bite site for prolonged lengths of time before invading the host’s
100  motor neurons and progressing through the nervous system, with limited, if any, infection of
101  other muscle fibres (26). While some replication in the muscle cells has been observed (27),
102 RABV replication at the inoculation site is not necessary for neural invasion (28). It is
103 currently unknown precisely how the RABYV replication rate in the host muscle cells and
104  periphera nervous system compares to the massive replication rate within the cells of the
105  central nervous system and brain. However, work suggests that RABV replication in muscle
106  cells may be reduced (29), and RABYV replication in cultured rat sensory neurons may be 10-
107  to 100-fold lower than replication rates in rat and mouse CNS neurons (30). Rabies infections
108 that involve long incubation periods may, therefore, not lead to more accumulated mutations
109  than those with shorter incubation periods, as viral mutation is strongly influenced by the

110  replication process (31).

111 Changesin mutation rates through time due to long incubation periods may affect how we

112 analyse RABYV sequence data and interpret these analyses. A relaxed molecular clock is
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113 usually required to carry out phylogenetic analyses on rabies datasets, and it is not

114 uncommon for there to be difficultiesin applying these analyses due to “insufficient temporal
115 signal”; usualy referring to either no or a negative relationship between genetic divergence
116  andtime, or this relationship having alot of noise and avery low R* (32-36). RABV shows
117  variation in substitution rate between lineages (18,37,38) which may be driven in part by

118  differencesin incubation periods. If the variable incubation period of rabiesinfections does
119  cause deviation from the molecular clock model (exceeding the variation captured by relaxed
120  or multirate clock models), this may negatively affect the accuracy of time-scaled

121 phylogenetic trees and emergence date predictions. Conversely, if mutation does continue a a
122 consistent rate during the incubation period, attention should be paid to extremely long

123 incubators which could drive the emergence of new variants, as seen recently in chronic

124  SARS-CoV-2 infections (39,40).

125  We hypothesised that reduced replication (and thus mutation) during the incubation period
126  could cause rabies evolution to be better represented by a per-generation model of mutation
127  than by the molecular clock model. We aim to clarify the nature of contemporary RABV
128  evolution using in silico methods, comparing the root-to-tip divergence of sequences

129  generated from synthetic outbreaks under per-unit time or per-generation mutation models,
130  and comparing these to RABV genomic data from Tanzania. We also aim to calculate a per-
131  generation substitution rate for RABYV for future use as a parameter in transmission tree

132 reconstruction algorithms.
133
134  Methods

135  Weinvestigate two contrasting mutational models for RABV —i.e., substitutions occurring on

136  aper-generation vs. per-unit-time basis — using a simulation approach. We first generated
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synthetic RABV outbreaks using a branching process model (21) and then simulated these
two mutation processes over the resulting transmission trees. From the synthetic sequences
generated, we examined root-to-tip divergence and calculated variance explained (R?) from
linear regressions, and compared these to the root-to-tip divergence of a set of RABV whole
genome sequences from Tanzania. Finally, we developed a method to estimate the per-
generation substitution rate for RABV and tested this on synthetic data before applying it to

the Tanzanian RABYV dataset.

Rabies outbreak simulation

We simulated RABYV mutation on branching-process simulations of rabies outbreaks.
Outbreaks were simulated 100 times over a spatially explicit representation of Mara Region
in northern Tanzania. In Serengeti District, where contact tracing data were available, the
model was initialised with the three cases that occurred in the mean generation interval (g=27
days, based on contact tracing data) prior to 2017 (smulations were run over a dog
population representing that in Mara region between 2017 and 2024). In the rest of Mara
region, where there were no data to guide initialisation, we seeded with (0.01Dg)/365 cases,
where D istheinitial dog population in that area. If Re=1 (endemic transmission), this results
in roughly 1% of the population becoming rabid over a year; contact tracing data suggest that
incidence typically does not exceed that level (41). Thisled to atotal of 273 initial casesin
the region. Each case was assigned a number of offspring cases drawn from a negative
binomial distribution (41) with mean (Ro)=1.05 and dispersion parameter=1.33. The R, value
was chosen to result in a median number of cases each month that was roughly constant over
time (over the 100 simulations), mimicking endemic disease. Movement of rabid dogs from

their home locations to and between transmission locations followed a random walk with step
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161  lengths drawn from aWeibull distribution (shape=0.41, scale=0.13). We simulated occasiona
162  long-distance transport of dogs to a random location prior to their first transmission in 2% of
163  cases (21). At each of arabid dog's transmission locations, another dog was randomly

164  selected within thelocal 1km2 grid cell. If this dog was susceptible (i.e., not vaccinated or
165  aready incubating infection from a prior transmission event), rabies was transmitted. A

166  generation interval was drawn for each new infection from alognormal distribution

167  (meanlog=2.96, sdlog=0.82), describing the time delay before it also became rabid and made
168  itsassigned transmissions. The step-length and generation-interval distributions were fitted
169  using contact tracing data from Serengeti District, Tanzania (21). Branching process

170  simulations were continued until 7 years had passed or rabies went extinct. Each synthetic
171  casewas assigned an individual ID, and for every case (except initial seed cases) we recorded
172 the D of the associated progenitor case. Dates of infection and transmission were recorded

173 for each case.

174  Weisolated complete transmission trees descending from each of the 273 initial cases from
175  within one randomly selected synthetic outbreak. Transmission trees that contained over 100
176  cases (9 out of 273 treesin total, that ranged in size from 533 - 19,382 cases) were then used
177  to generate synthetic sequence data. Across these trees, we see a mean generation interval of
178  26.6 days, and 2.5 and 97.5 percentiles of 3.90 and 94.11 days (Supplementary Figure S1).
179  For each of the 9 trees the index case was assigned an initial 12kb genome sequence. Under
180  the per-unit time mutation model, we determined the expected number of mutations by

181  multiplying the substitution rate, the genome length and the length of the generation interval,
182  for each case aong the resulting transmission tree (because we assume mutations are neutral,
183  theindividual-level mutation rate is the same as the population-level substitution rate). The
184  realised number of mutations was then drawn from a Poisson distribution, with this mean. We

185  then randomly chose positions to change and new nucleotides to change them to. The
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186  resulting synthetic sequence datais referred to as the “time-based sequence data’. The
187  generation-based model of mutation works as above, with the exception that the expected
188  number of substitutionsin a generation is constant and produces the synthetic “generation-

189  based sequence data”.

190

191  Divergence rate analysis

192  Toinvestigate patterns of tempora divergence under the mutation models described above,
193  we generated synthetic data with values of substitution rates ranging from 0.05 to 3

194  substitutions per genome per generation (or the per unit time substitution rate equivalent) and
195 4 population sampling regimes (from 1% of cases to 20%, informed by a previous study that
196  estimated that routine surveillance for rabies rarely confirms more than 10% of circulating
197  cases (42)). We calculated the genetic divergence as the number of nucleotide differences

198  from the index case to each sampled case. For each of the nine transmission trees, we then
199  compared genetic divergence with time under each scenario (substitution rate and sampling

200  regime combination), using linear regression through the origin.

201  Inorder to compare our synthetic patterns of divergence over timeto real rabies data, a root-
202 to-tip divergence plot was also generated for a dataset of real RABV sequences (data from
203  (43); Figure 1A) using TempEst (v1.5.3 (13)), with the best-fit root located (Figure 1B).

204  Theserabies cases occurred between 2001 and 2017 and were primarily from the Serengeti
205  district and Pemba Island, with the remaining sequences from elsewhere in Tanzania (Figure

206 1A inset). Sequence acquisition and tree building methods are detailed in (43).

207
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209  Fig 1. Phylogeny of real rabies viruswhole genome sequences from Tanzania and root-

210 to-tip divergence. (A) Thetime-scaled tree (43) used to generate the root-to-tip divergence

211 plot and to calculate the per-generation substitution rate. The inset map shows the

212 approximate locations that the samples were collected from, and the lineages present in each
213 location. Map point size represents the number of sequences in this dataset from district

214  centroid locations. Base map datais from Natural Earth (natural earthdata.com), via

215  the maps R package. (B) The corresponding root-to-tip divergence plot. Point colours

216 represent RABV lineage.

217

218  Cadlculating the per-generation substitution rate
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219  We updated a method of calculating the per-generation substitution rate previously used in
220 eukaryotes (44) by using Bayesian posterior estimates of the clock rate and the generation
221 interval. We assessed this method'’s accuracy using the synthetic outbreak sequence data,

222 before applying it to the aforementioned set of RABV whole genome sequences.

223 To estimate the mean per-generation substitution rate, we analysed sequence data with

224  BEAST, and multiplied the posterior rate estimate for each MCM C sample (excluding the
225  burn-in period) by the generation-interval lengths sampled from the posterior of a simple
226  Bayesian analysis and then multiplied again by the genome length. The mean and 95%

227  credibleinterval of the estimate of the per-generation substitution rate for the RABV dataset
228  was calculated by taking the mean and the 2.5% and 97.5% percentiles of the resulting

229  multiplied posteriors.

230  To evaluate the accuracy of this method in estimating the mean per-generation substitution
231  rate, we also applied it to synthetic sequence data generated from outbreaks using the per-

232 generation mutation model as described above, under different substitution rates (11 values
233 ranging from 0.05 substitutions per generation to 3 substitutions per generation) and case

234 sampling rates (1%, 5%, 10% or 20% of cases sampled) across the 9 transmission trees that
235  contained at least 100 cases. Subsampled synthetic datasets containing more than 2000

236 sequences were not analysed as this number exceeds the total whole-genome RABV

237  sequences currently available on the RABV-GLUE database (45), and isunrealistic in the

238  context of examining individual rabies outbreaks. BEAST log files were generated from these
239  sequences using BEASTGen version 1.0.2 and BEAST version 1.10.4 (46). We chose to use a
240  JC substitution model with astrict clock, no site heterogeneity due to our per-generation

241  mutation model used in the simulations having equal probability of any site or base being

242  chosen and assumed constant population size. We used a tracel og frequency of 1000 and a

243  sufficiently long chain length for the effective sample size (ESS) of each parameter to exceed
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244 200 when analysed using Tracer (47), and a 10% burn-in period. We applied the substitution
245  rate calculation method to these phylogenetic trees, and assessed the accuracy of the resulting
246  mean per-generation substitution rates by comparing them to the parameter values used to
247  generate the synthetic sequences, using the natural log of the ratio:

Deviation =1 —Me
eviation = In
(Ma)

248  where M¢is the mean estimated per-generation substitution rate and M7 is the actual

249  substitution rate, where adeviation of zero means perfect accuracy.
250

251  The same method was applied to the dataset of 153 RABYV sequences sampled from across
252 Tanzania (data from (43); Figure 1A). The mean per-generation substitution rate was

253  calculated, and distributions were fitted from the multiplied generation interval and clock rate
254  posteriors (generation interval posteriors based on values from (21) for the Tanzanian dataset,
255  extracted directly from the lognormal distribution used in simulations, and clock rate

256  posteriorstaken from the BEAST log file of the time-scaled tree from Lushas et a. (43)) and
257  genome length as described above. We compared different distributions (Gamma and

258  Lognormal) for estimating substitution rates and selected the best fitting distribution by AIC.
259  Wealso calculated the probabilities of between 0 and 10 SNP differences occurring across 1,
260 5 or 10 infection generations. For this calculation we simulated mutations arising at a Poisson
261  rate with lambda drawn from the fitted substitution rate distribution. The means and 95%

262  confidence intervals were calculated from the 10,000 simulations.
263

264  Dataand code availability
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265 All codeisavailable at https://github.com/RowanDurrant/Rabies-M utation. Analyses were
266  conducted using the R programming language (48). The beta regression curve and prediction
267  interval in Figure 2C was generated using the ‘betareg’ R package (49). RABV lineages were

268  assigned using MADDOG (45).

269

270  Results

271  Root-to-tip divergence analysis

272 At higher per-generation substitution rates (1 substitution per genome per generation and

273 above), distinct differences can be seen between root-to-tip divergence plots from the two

274  models of mutation (Figure 2A). The synthetic data generated from the per-generation

275  mutation model shows “stray” clusters or ridges of points both above and below the main

276  funnel of points, illustrated in the examplein Figure 2A. Divergence plots from synthetic data
277  generated from the time-based model of mutation have less variance and do not exhibit this
278  pattern. At lower substitution rates (below 1 substitution per generation), no such pattern is
279  clearly distinguishable (Figure 2B). When the cases represented by the high-divergence

280  points from the per-generation model in Fig. 2A arevisualised in atransmission tree, they are

281  mainly confined to asingle chain (Supplementary Figure S1).
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283  Fig. 2: Temporal genetic divergence varies under two models of mutation. (A) Root-to-
284  tip divergence plots for synthetic sequences produced using time-based and generation-based
285  mutation models, equivalent to 2 substitutions per genome per generation and (B) equivalent
286  to 0.2 substitutions per genome per generation. Note that the y-axis scales differ by an order
287  of magnitude between A and B. These data are from running mutation models over the same
288  singletransmission tree and have a case sampling rate of 5% (i.e., 621 cases sampled of

289 12,434 total). (C) The R? values obtained from regression through the origin of root-to-tip
290  divergence of synthetic data from the time-based and generation-based models. Point colour
291 indicates the mutation model used to generate the data. Lines represent beta regressions with

292 logit links fit to data points, and shading represents the 95% prediction interval. The X axisis
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293 log scaled. 5% of cases were sampled here; sampling rate had little effect on R

294  (Supplementary Figure S2).
295

296  Root-to-tip divergence plots derived from synthetic transmission trees using the time-based
297  mutation model had, on average, higher R? values than those from synthetic transmission
298  treesusing the per-generation mutation model, although this is more difficult to distinguish
299  below asubstitution rate of 0.5 substitutions per genome per generation (Figure 2C). As the
300  substitution rate increases, the R* values across both mutation models increase. The case

301 sampling rate appears to have little effect on R* (Supplementary Figure S2).

302  Theroot-to-tip divergence plot of the Tanzanian RABV dataset more closely resembles those
303  of lower substitution rate simulations, where it is difficult to determine any difference

304  between the models of mutation (Figure 1). While most lineages surround the regression line,
305 some (for example, Cosmopolitan AF1b_B1) group below the line, but without forming a

306 distinguishable“ridge’.
307

308  Substitution rate calculation

309 The accuracy of our method used to calculate per-generation substitution rate remains similar
310 at all but the lowest values of substitution rate (Figure 3), with atendency to underestimate
311  the substitution rate (meaning that the estimated substitution rate is below the substitution
312 rate parameter used to generate the synthetic data; mean natural log of the ratio of -0.18 and
313  root-mean-square of 0.54, where values of O indicate perfect estimates). Accuracy appears to
314  bemoreinfluenced by the number of sequences used in the BEAST analysis than by the case
315  sampling rate itself; the mean natural log of the ratio falls to -0.36 when fewer than 50

316  sequences are used (root-square-mean of 0.95).
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The Tanzanian RABV dataset from which we estimated the per-generation substitution rate

contains 153 sequences in total, and the accompanying time-scaled phylogenetic tree has a

root-to-tip height of approximately 65 years, although the sequences spanned just 16 years as

they were sampled from 2001 to 2017 (with 46.7% from years 2011-2012). These sequences

were largely complete; 98% of sequences were >95% complete (>11,327 kb in length). The
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328  mean per generation substitution rate of RABV in this dataset was estimated to be 0.171
329  (95% credibleinterval: 0.127 - 0.219). The best fitting distribution by AIC to the output of
330 the multiplied Bayesian posteriors was a Gamma distribution with the parameters shape =

331 51.69 and rate = 301.8.

332

333  Using the calculated per generation per genome substitution rates, we calculated the

334  probability of different numbers of substitutions occurring over 1, 5 and 10 generations,

335 drawing the per-generation substitution rate (\) from the above distribution (Figure 4). Over
336 many generationsitis still quite likely for zero substitutions to occur; after 10 generations,

337  the probability of zero substitutions having occurred is 0.19.
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339 Fig. 4: Probability distributions of the mean per-generation substitution rate and

340  substitutions occurring over generations. (A) estimated probability distribution of the per
341  genome per generation substitution rate from Tanzanian RABV sequences, with underlying
342 histogram of multiplied Bayesian posteriors of clock rate and generation interval. (B)

343  probability distribution of SNPs occurring over 1, 5 and 10 generations. The A value for a
344  Poisson rate of SNP occurrenceis drawn from the SNPs per generation distribution fitted in

345  Figure 4A. Black bars represent the 95% confidence intervals (which are very tight).
346
347 Discussion

348 It can be difficult to get sufficient temporal signal for RABV sequence datasets, which we
349  hypothesised could be due in part to its variable incubation periods. We hypothesised that a
350  per-generation model of mutation may be more representative of RABV evolution than a
351 purely time-based model. We found that substantial differences in root-to-tip divergence

352  patterns between synthetic outbreaks using generation-based and time-based models of

353  mutation could be observed only at high underlying substitution rates. The substitution rate
354  for the Tanzanian RABYV sequences examined (~0.17 substitutions per genome per

355  generation) was in the range where divergence patterns in the two models were extremely
356  similar. We can thus assume that the two models will give extremely similar results on the
357  relevant time scale. As we observed increasing divergence over time with reasonable R?

358  vaues within this substitution rate range, it implies that variable incubation periods alone do
359  not fully account for the challenge in obtaining temporal signal. Therefore, other factors such
360 asinsufficiently long sampling windows for the substitution rate are likely to be responsible
361 (50). Thisis an important consideration for analysing RABV sequences from new outbreaks,

362  or from endemic areas where sampling is opportunistic. As RABV has a substitution rate
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363  lower than many other RNA viruses, longer sampling windows are required to achieve a

364  sufficient temporal signal.

365  The observation of little difference between root-to-tip divergence plots derived from the two
366  mutation models at substitution rates below 1 substitution per genome per generation is likely
367  because of averaging; multiple generations of infection are expected to have occurred per

368  substitution that arises on the viral genome. Over the many generations needed before

369  dignificant levels of viral genetic diversity are reached, the influence of any unusually long
370  incubation periods will be damped by the opposite influence of unusually short incubation
371 periods, eventually becoming indistinguishable from clock-like behaviour. On the other hand,
372 at higher substitution rates ridges form on the root-to-tip divergence plots under the per-

373  generation model of mutation but not under the per unit time model. While not affecting the
374  overall clock rate, these ridges reduce the overall R?, and may be better analysed using a

375  separate local clock (51). The casesin these ridges almost all descend from a common

376  ancestor (Supplementary Figure S1), suggesting that a single unusually long or short

377  incubation period can affect which phylogenetic analyses we perform. Ridges caused by these
378  incubation periods can be distinguished from ridges caused by rate variation between lineages
379  asthey will be parallel to the main cluster of pointsin the plot, whereas points belonging to
380 lineages with a different substitution rate will have a different slope. Studies examining the
381  number of substitutions occurring between successive sequenced cases, and whether this

382  increases when the secondary case’s incubation period is unusually long, could clarify the

383  exact relationship between substitutions, generations, and time. More detailed datawill be

384  required to investigate this further.

385  We calculated RABV’s mean per-generation substitution rate to be approximately 0.17
386  substitutions per genome per transmission generation. This estimate is lower than those for

387  other RNA viruses, such as SARS (2 substitutions per genome per human passage (52)),
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388 SARS-CoV-2 (0.52 substitutions per genome per 5.8-day generation interval (53)) and Ebola
389  virus (0.875 substitutions per genome per 14-day generation interval (54)). RNA viruses that
390  undergo periods of reduced replication or complete latency often show reduced substitution
391  rates, with one extreme example being HTLV-1/2 (55,56). However, we would not expect this
392  to affect the per-generation rate. The low per-generation substitution rate seenin rabiesis

393 therefore likely due to mutation being constrained by other factors, such as strong purifying
394  selection (16), and likely contributes to the difficulties in obtaining sufficient temporal signal
395 for phylogenetic analyses. Previous studies suggest that for virusesin this substitution rate
396  range, sampling windows of up to 30 years may be required to overcome the phylodynamic
397 threshold (15); for comparison, SARS-CoV-2 achieved sufficient temporal signal within two

398  months of the start of the pandemic (50).

399  Wecan predict from the estimated per-generation substitution rate that identical sequences
400 arelikely to havelessthan 5 intermediate generations between them (probability of fewer
401  than five generations occurring before a mutation occurs > 0.49 by repeated sampling of a
402  Poisson distribution with alambda of 0.17), but still have a non-negligible probability of

403  being more distantly related. While the low substitution rate means that comparing the

404  number of SNPs between sequences alone may not be an effective method of determining
405  infector-infectee relationships, it could be used in conjunction with tempora and location
406  datato make more accurate predictions of transmission events by ruling out relationships

407  between more distantly related transmission chains co-circulating in the same area, asin (57).
408  Notably, our Poisson distribution of the number of substitutions occurring in one generation
409  isvisualy very similar to the genetic signature distribution reported in Cori et al. ((57), Fig
410  Sl), despite different methods and RABYV datasets being used in their calculations. It is likely,
411  however, that our estimate of the per-generation substitution rate is lower than the mean

412  number of SNPs expected between sequences from a primary and secondary case, due to the
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413  time-based substitution rate being affected by purifying selection (58). Further analysis
414  comparing the estimated per-generation substitution rate to realised SNP distances between

415  primary-secondary case pairs could quantify this difference.

416  While the Jukes-Cantor model was the most appropriate to use on our synthetic data due to
417  thesimplicity of the mutation models, phylogenetic analyses on real RABV genomes usually
418  use amore complex model, such asthe GTR + G substitution model used to generate the
419  Tanzanian tree shown in this study (43). This, along with the simplicity of our mutation

420 model aswell as sampling biases in the real dataset, may affect how comparable synthetic

421  root-to-tip divergence plots are to the real data.

422

423 While the molecular clock has proven critical for gaining insights into the history and

424  dynamics of disease outbreaks, the epidemiological characteristics of a virus should be

425  considered when choosing how to measure viral evolution. In this study, we determine that
426  the per-generation model is not likely to produce substantially different results from the

427  molecular clock model when analysing contemporary RABV evolution. We a so estimate the
428  mean per-generation substitution rate of RABV for future use in transmission tree

429  reconstruction and efforts to estimate outbreak sizes and lineage emergence rates. Given that
430  many different lineages circulating simultaneously is seemingly a common occurrence in

431  areas with endemic rabies, it isimportant to investigate whether these lineages vary in

432 evolutionary rate and generation interval length, and ascertain the potential effects on

433  phylogenetic analyses.

434
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584  Supp. Fig. S1: histogram of generation intervals from the ssmulated outbreaks. Vertical

585  dashed lines represent the median (blue) and mean (red) generation interval.

586  Supp. Fig. S2: pointsin the offshoot ridge predominantly occur in one transmission tree.
587  (A) root-to-tip divergence plot (2 SNPs/genome/generation, 5% of cases sequenced) with

588  offshoot ridge points highlighted in red. Offshoot ridge points are defined in this plot as

589  having adivergence rate above 8x10°® substitutions/day and occurring after day 750. (B)

590 transmission tree of the simulated outbreak with offshoot ridge cases highlighted in red.

591  Graph edge length is not proportional to time or divergence.

592 Supp. Fig. S3: Sampling rate does not impact the R? of root-to-tip diver gence plots from
593  synthetic data. Plot is faceted by the proportion of the total number of casesin the outbreak

594  sequenced, point colour represents mutation model.
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