

1 **Examining the molecular clock hypothesis for the contemporary evolution of the rabies**
2 **virus**

3 **Authors:** Rowan Durrant^{1*}, Christina A. Cobbold^{1,2}, Kirstyn Brunker¹, Kathryn Campbell¹,
4 Jonathan Dushoff^{3,4,5}, Elaine A. Ferguson¹, Gurdeep Jaswant^{1,6,7,8}, Ahmed Lugelo^{1,8,9},
5 Kennedy Lushasi⁸, Lwitiko Sikana⁸, and Katie Hampson¹

6 **Affiliations:**

- 7 1. Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One
8 Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences,
9 University of Glasgow, Glasgow, UK
- 10 2. School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- 11 3. Department of Biology, McMaster University, Hamilton, Ontario, Canada
- 12 4. Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario,
13 Canada
- 14 5. M. G. DeGroote Institute for Infectious Disease Research, McMaster University,
15 Hamilton, Ontario, Canada
- 16 6. University of Nairobi Institute of Tropical and Infectious Diseases (UNITID),
17 Nairobi, Kenya.
- 18 7. Tanzania Industrial Research Development Organisation (TIRDO), Dar es salaam,
19 Tanzania
- 20 8. Environmental Health and Ecological Sciences Department, Ifakara Health Institute,
21 Ifakara, Tanzania
- 22 9. Global Animal Health Tanzania, Arusha, Tanzania

23 ***Corresponding author:** Rowan Durrant: r.durrant.1@research.gla.ac.uk.

24

25 **Abstract**

26 The molecular clock hypothesis assumes that mutations accumulate on an organism's genome
27 at a constant rate over time, but this assumption does not always hold true. While modelling
28 approaches exist to accommodate deviations from a strict molecular clock, assumptions about
29 rate variation may not fully represent the underlying evolutionary processes. There is
30 considerable variability in rabies virus (RABV) incubation periods, ranging from days to over
31 a year, during which viral replication may be reduced. This prompts the question of whether
32 modelling RABV on a per infection generation basis might be more appropriate. We
33 investigate how variable incubation periods affect root-to-tip divergence under per-unit time
34 and per-generation models of mutation. Additionally, we assess how well these models
35 represent root-to-tip divergence in time-stamped RABV sequences. We find that at low
36 substitution rates (<1 substitution per genome per generation) divergence patterns between
37 these models are difficult to distinguish, while above this threshold differences become
38 apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the
39 mean substitution rate to be 0.17 substitutions per genome per generation. At RABV's
40 substitution rate, the per-generation substitution model is unlikely to represent rabies
41 evolution substantially differently than the molecular clock model when examining
42 contemporary outbreaks; over enough generations for any divergence to accumulate, extreme
43 incubation periods average out. However, measuring substitution rates per-generation holds
44 potential in applications such as inferring transmission trees and predicting lineage
45 emergence.

46

47 **Author Summary**

48 Rabies is a neglected disease that kills around 60,000 people each year. After entering the
49 body, the incubation period of the virus is usually less than one month, but can sometimes
50 span months to years. While we normally assume a virus accumulates mutations at a constant
51 rate, it is possible that rabies' occasional long incubation periods mean that mutations
52 accumulate at varying rates if the virus replicates (and thus mutates) more slowly during the
53 incubation period. We compared how the rabies virus evolves over time using two simulation
54 models where mutations either occur per unit time or per infection generation. We also
55 calculated the mean substitution rate per infection generation, which can be useful for
56 inferring linkage between related rabies cases. We found that at realistic substitution rates for
57 the rabies virus, we could not distinguish between the two models. Our calculations show that
58 in most generations no mutations are expected to occur. Thus, over a time period long enough
59 to observe genetic divergence, occasional long incubation periods would be “cancelled out”
60 by shorter than average incubation periods, meaning that the two models are almost
61 equivalent. However our work suggests that modelling substitution rates per generation may
62 be useful for epidemiological inference.

63 **Introduction**

64 The molecular clock hypothesis assumes that the genomes of organisms accumulate neutral
65 mutations at a constant rate over time, either across all lineages (the “strict molecular clock”)
66 or within each individual lineage but with some degree of variation between them (clock
67 models with this assumption include the relaxed and multirate clock models) (1–3). The
68 ability to sample viral sequences through time, and the application of the molecular clock
69 hypothesis to these sequences, has led to massive advances in using viral genetic data to
70 investigate disease outbreaks (4). The clock rate, measured in substitutions per site per unit
71 time, can be used to estimate how long ago pathogens diverged (5), and the date of infection
72 of individual infected hosts (6). Combining the analysis of epidemiological and genetic data
73 has allowed further insights into the history of outbreaks (7), and the introduction of
74 geographic data provides estimates as to rates of spread and the frequency and source of
75 introductions (8,9). However, in order to conduct these phylogenetic analyses, genetic
76 divergence must increase appreciably over time in the dataset under investigation (10).
77 Whether or not the viral population is measurably evolving, and thus whether it contains
78 sufficient temporal signal for phylogenetic analysis, depends mainly on the evolutionary rate,
79 the sequence length and the length of time sequences are sampled over being sufficiently
80 high. Various methods exist to assess temporal signal, the most commonly used being root-to-
81 tip divergence plots (11,12) implemented in tools such as TempEst (13), but these also
82 include Bayesian evaluation of temporal signal (BETS) (14) and the date-randomisation test
83 (15).

84 The rabies virus (RABV) is a negative-strand RNA virus, with a genome size of
85 approximately 12 kilobases. While RNA viruses generally have high mutation rates due to a
86 lack of proofreading by RNA polymerases, RABV has a substitution rate at the lower end of
87 normal for single-stranded RNA viruses of between 1×10^{-4} and 5×10^{-4} substitutions per site

88 per year (16–18). This may be due to strong purifying selection (16), or due to peculiarities of
89 RABV. For example, the RABV genome is longer than average for RNA viruses, and genome
90 length and evolutionary rate are negatively correlated (19), although this relationship appears
91 to be weaker in single-stranded RNA viruses (20). A more unusual feature of RABV is that
92 infections can exhibit extended incubation periods within the host. The median generation
93 interval (the time between one individual becoming infected and then infecting another) is
94 estimated to be 17.3 days in domestic dogs (21), with other studies estimating mean serial
95 intervals of 26.3 days (22) and 45.0 days (23). Symptoms, infectivity, and death from rabies,
96 however, can occasionally occur years after the initial infection event (24). The length of the
97 incubation period is influenced by the route of exposure, with bites to the head and neck
98 leading to more rapid disease progression than bites to lower extremities (25). RABV can
99 remain in the muscle at the bite site for prolonged lengths of time before invading the host's
100 motor neurons and progressing through the nervous system, with limited, if any, infection of
101 other muscle fibres (26). While some replication in the muscle cells has been observed (27),
102 RABV replication at the inoculation site is not necessary for neural invasion (28). It is
103 currently unknown precisely how the RABV replication rate in the host muscle cells and
104 peripheral nervous system compares to the massive replication rate within the cells of the
105 central nervous system and brain. However, work suggests that RABV replication in muscle
106 cells may be reduced (29), and RABV replication in cultured rat sensory neurons may be 10-
107 to 100-fold lower than replication rates in rat and mouse CNS neurons (30). Rabies infections
108 that involve long incubation periods may, therefore, not lead to more accumulated mutations
109 than those with shorter incubation periods, as viral mutation is strongly influenced by the
110 replication process (31).

111 Changes in mutation rates through time due to long incubation periods may affect how we
112 analyse RABV sequence data and interpret these analyses. A relaxed molecular clock is

113 usually required to carry out phylogenetic analyses on rabies datasets, and it is not
114 uncommon for there to be difficulties in applying these analyses due to “insufficient temporal
115 signal”; usually referring to either no or a negative relationship between genetic divergence
116 and time, or this relationship having a lot of noise and a very low R^2 (32–36). RABV shows
117 variation in substitution rate between lineages (18,37,38) which may be driven in part by
118 differences in incubation periods. If the variable incubation period of rabies infections does
119 cause deviation from the molecular clock model (exceeding the variation captured by relaxed
120 or multirate clock models), this may negatively affect the accuracy of time-scaled
121 phylogenetic trees and emergence date predictions. Conversely, if mutation does continue at a
122 consistent rate during the incubation period, attention should be paid to extremely long
123 incubators which could drive the emergence of new variants, as seen recently in chronic
124 SARS-CoV-2 infections (39,40).

125 We hypothesised that reduced replication (and thus mutation) during the incubation period
126 could cause rabies evolution to be better represented by a per-generation model of mutation
127 than by the molecular clock model. We aim to clarify the nature of contemporary RABV
128 evolution using in silico methods, comparing the root-to-tip divergence of sequences
129 generated from synthetic outbreaks under per-unit time or per-generation mutation models,
130 and comparing these to RABV genomic data from Tanzania. We also aim to calculate a per-
131 generation substitution rate for RABV for future use as a parameter in transmission tree
132 reconstruction algorithms.

133

134 **Methods**

135 We investigate two contrasting mutational models for RABV – i.e., substitutions occurring on
136 a per-generation vs. per-unit-time basis – using a simulation approach. We first generated

137 synthetic RABV outbreaks using a branching process model (21) and then simulated these
138 two mutation processes over the resulting transmission trees. From the synthetic sequences
139 generated, we examined root-to-tip divergence and calculated variance explained (R^2) from
140 linear regressions, and compared these to the root-to-tip divergence of a set of RABV whole
141 genome sequences from Tanzania. Finally, we developed a method to estimate the per-
142 generation substitution rate for RABV and tested this on synthetic data before applying it to
143 the Tanzanian RABV dataset.

144

145 Rabies outbreak simulation

146 We simulated RABV mutation on branching-process simulations of rabies outbreaks.
147 Outbreaks were simulated 100 times over a spatially explicit representation of Mara Region
148 in northern Tanzania. In Serengeti District, where contact tracing data were available, the
149 model was initialised with the three cases that occurred in the mean generation interval ($g=27$
150 days, based on contact tracing data) prior to 2017 (simulations were run over a dog
151 population representing that in Mara region between 2017 and 2024). In the rest of Mara
152 region, where there were no data to guide initialisation, we seeded with $(0.01Dg)/365$ cases,
153 where D is the initial dog population in that area. If $R_0=1$ (endemic transmission), this results
154 in roughly 1% of the population becoming rabid over a year; contact tracing data suggest that
155 incidence typically does not exceed that level (41). This led to a total of 273 initial cases in
156 the region. Each case was assigned a number of offspring cases drawn from a negative
157 binomial distribution (41) with mean $(R_0)=1.05$ and dispersion parameter=1.33. The R_0 value
158 was chosen to result in a median number of cases each month that was roughly constant over
159 time (over the 100 simulations), mimicking endemic disease. Movement of rabid dogs from
160 their home locations to and between transmission locations followed a random walk with step

161 lengths drawn from a Weibull distribution (shape=0.41, scale=0.13). We simulated occasional
162 long-distance transport of dogs to a random location prior to their first transmission in 2% of
163 cases (21). At each of a rabid dog's transmission locations, another dog was randomly
164 selected within the local 1km² grid cell. If this dog was susceptible (i.e., not vaccinated or
165 already incubating infection from a prior transmission event), rabies was transmitted. A
166 generation interval was drawn for each new infection from a lognormal distribution
167 (meanlog=2.96, sdlog=0.82), describing the time delay before it also became rabid and made
168 its assigned transmissions. The step-length and generation-interval distributions were fitted
169 using contact tracing data from Serengeti District, Tanzania (21). Branching process
170 simulations were continued until 7 years had passed or rabies went extinct. Each synthetic
171 case was assigned an individual ID, and for every case (except initial seed cases) we recorded
172 the ID of the associated progenitor case. Dates of infection and transmission were recorded
173 for each case.

174 We isolated complete transmission trees descending from each of the 273 initial cases from
175 within one randomly selected synthetic outbreak. Transmission trees that contained over 100
176 cases (9 out of 273 trees in total, that ranged in size from 533 - 19,382 cases) were then used
177 to generate synthetic sequence data. Across these trees, we see a mean generation interval of
178 26.6 days, and 2.5 and 97.5 percentiles of 3.90 and 94.11 days (Supplementary Figure S1).
179 For each of the 9 trees the index case was assigned an initial 12kb genome sequence. Under
180 the per-unit time mutation model, we determined the expected number of mutations by
181 multiplying the substitution rate, the genome length and the length of the generation interval,
182 for each case along the resulting transmission tree (because we assume mutations are neutral,
183 the individual-level mutation rate is the same as the population-level substitution rate). The
184 realised number of mutations was then drawn from a Poisson distribution, with this mean. We
185 then randomly chose positions to change and new nucleotides to change them to. The

186 resulting synthetic sequence data is referred to as the “time-based sequence data”. The
187 generation-based model of mutation works as above, with the exception that the expected
188 number of substitutions in a generation is constant and produces the synthetic “generation-
189 based sequence data”.

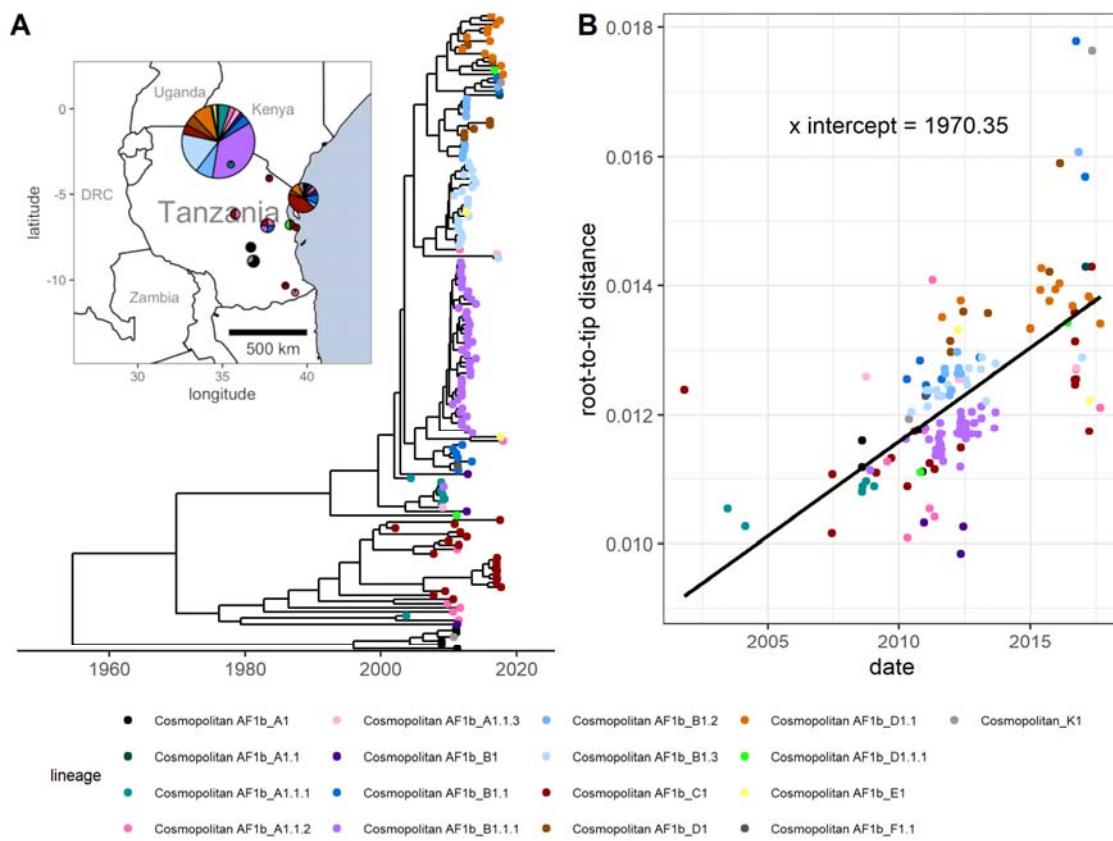
190

191 Divergence rate analysis

192 To investigate patterns of temporal divergence under the mutation models described above,
193 we generated synthetic data with values of substitution rates ranging from 0.05 to 3
194 substitutions per genome per generation (or the per unit time substitution rate equivalent) and
195 4 population sampling regimes (from 1% of cases to 20%, informed by a previous study that
196 estimated that routine surveillance for rabies rarely confirms more than 10% of circulating
197 cases (42)). We calculated the genetic divergence as the number of nucleotide differences
198 from the index case to each sampled case. For each of the nine transmission trees, we then
199 compared genetic divergence with time under each scenario (substitution rate and sampling
200 regime combination), using linear regression through the origin.

201 In order to compare our synthetic patterns of divergence over time to real rabies data, a root-
202 to-tip divergence plot was also generated for a dataset of real RABV sequences (data from
203 (43); Figure 1A) using TempEst (v1.5.3 (13)), with the best-fit root located (Figure 1B).
204 These rabies cases occurred between 2001 and 2017 and were primarily from the Serengeti
205 district and Pemba Island, with the remaining sequences from elsewhere in Tanzania (Figure
206 1A inset). Sequence acquisition and tree building methods are detailed in (43).

207



208

209 **Fig 1. Phylogeny of real rabies virus whole genome sequences from Tanzania and root-**
210 **to-tip divergence. (A)** The time-scaled tree (43) used to generate the root-to-tip divergence
211 plot and to calculate the per-generation substitution rate. The inset map shows the
212 approximate locations that the samples were collected from, and the lineages present in each
213 location. Map point size represents the number of sequences in this dataset from district
214 centroid locations. Base map data is from Natural Earth (naturalearthdata.com), via
215 the *maps* R package. **(B)** The corresponding root-to-tip divergence plot. Point colours
216 represent RABV lineage.

217

218 Calculating the per-generation substitution rate

219 We updated a method of calculating the per-generation substitution rate previously used in
220 eukaryotes (44) by using Bayesian posterior estimates of the clock rate and the generation
221 interval. We assessed this method's accuracy using the synthetic outbreak sequence data,
222 before applying it to the aforementioned set of RABV whole genome sequences.

223 To estimate the mean per-generation substitution rate, we analysed sequence data with
224 BEAST, and multiplied the posterior rate estimate for each MCMC sample (excluding the
225 burn-in period) by the generation-interval lengths sampled from the posterior of a simple
226 Bayesian analysis and then multiplied again by the genome length. The mean and 95%
227 credible interval of the estimate of the per-generation substitution rate for the RABV dataset
228 was calculated by taking the mean and the 2.5% and 97.5% percentiles of the resulting
229 multiplied posteriors.

230 To evaluate the accuracy of this method in estimating the mean per-generation substitution
231 rate, we also applied it to synthetic sequence data generated from outbreaks using the per-
232 generation mutation model as described above, under different substitution rates (11 values
233 ranging from 0.05 substitutions per generation to 3 substitutions per generation) and case
234 sampling rates (1%, 5%, 10% or 20% of cases sampled) across the 9 transmission trees that
235 contained at least 100 cases. Subsampled synthetic datasets containing more than 2000
236 sequences were not analysed as this number exceeds the total whole-genome RABV
237 sequences currently available on the RABV-GLUE database (45), and is unrealistic in the
238 context of examining individual rabies outbreaks. BEAST log files were generated from these
239 sequences using BEASTGen version 1.0.2 and BEAST version 1.10.4 (46). We chose to use a
240 JC substitution model with a strict clock, no site heterogeneity due to our per-generation
241 mutation model used in the simulations having equal probability of any site or base being
242 chosen and assumed constant population size. We used a tracelog frequency of 1000 and a
243 sufficiently long chain length for the effective sample size (ESS) of each parameter to exceed

244 200 when analysed using Tracer (47), and a 10% burn-in period. We applied the substitution
245 rate calculation method to these phylogenetic trees, and assessed the accuracy of the resulting
246 mean per-generation substitution rates by comparing them to the parameter values used to
247 generate the synthetic sequences, using the natural log of the ratio:

$$Deviation = \ln \left(\frac{M_e}{M_a} \right)$$

248 where M_e is the mean estimated per-generation substitution rate and M_a is the actual
249 substitution rate, where a deviation of zero means perfect accuracy.

250

251 The same method was applied to the dataset of 153 RABV sequences sampled from across
252 Tanzania (data from (43); Figure 1A). The mean per-generation substitution rate was
253 calculated, and distributions were fitted from the multiplied generation interval and clock rate
254 posteriors (generation interval posteriors based on values from (21) for the Tanzanian dataset,
255 extracted directly from the lognormal distribution used in simulations, and clock rate
256 posteriors taken from the BEAST log file of the time-scaled tree from Lushasi et al. (43)) and
257 genome length as described above. We compared different distributions (Gamma and
258 Lognormal) for estimating substitution rates and selected the best fitting distribution by AIC.
259 We also calculated the probabilities of between 0 and 10 SNP differences occurring across 1,
260 5 or 10 infection generations. For this calculation we simulated mutations arising at a Poisson
261 rate with lambda drawn from the fitted substitution rate distribution. The means and 95%
262 confidence intervals were calculated from the 10,000 simulations.

263

264 Data and code availability

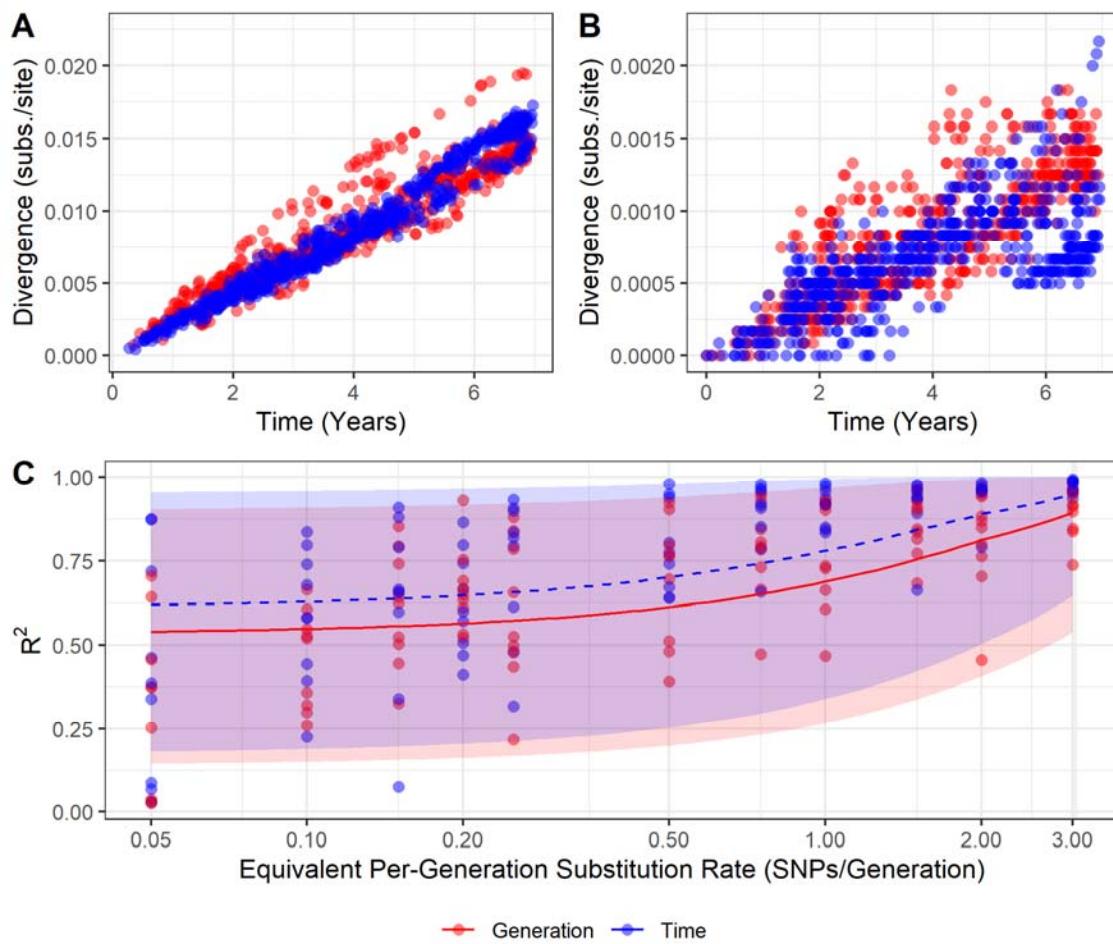
265 All code is available at <https://github.com/RowanDurrant/Rabies-Mutation>. Analyses were
266 conducted using the R programming language (48). The beta regression curve and prediction
267 interval in Figure 2C was generated using the ‘betareg’ R package (49). RABV lineages were
268 assigned using MADDOG (45).

269

270 **Results**

271 Root-to-tip divergence analysis

272 At higher per-generation substitution rates (1 substitution per genome per generation and
273 above), distinct differences can be seen between root-to-tip divergence plots from the two
274 models of mutation (Figure 2A). The synthetic data generated from the per-generation
275 mutation model shows “stray” clusters or ridges of points both above and below the main
276 funnel of points, illustrated in the example in Figure 2A. Divergence plots from synthetic data
277 generated from the time-based model of mutation have less variance and do not exhibit this
278 pattern. At lower substitution rates (below 1 substitution per generation), no such pattern is
279 clearly distinguishable (Figure 2B). When the cases represented by the high-divergence
280 points from the per-generation model in Fig. 2A are visualised in a transmission tree, they are
281 mainly confined to a single chain (Supplementary Figure S1).



282

283 **Fig. 2: Temporal genetic divergence varies under two models of mutation.** (A) Root-to-
284 tip divergence plots for synthetic sequences produced using time-based and generation-based
285 mutation models, equivalent to 2 substitutions per genome per generation and (B) equivalent
286 to 0.2 substitutions per genome per generation. Note that the y-axis scales differ by an order
287 of magnitude between A and B. These data are from running mutation models over the same
288 single transmission tree and have a case sampling rate of 5% (i.e., 621 cases sampled of
289 12,434 total). (C) The R^2 values obtained from regression through the origin of root-to-tip
290 divergence of synthetic data from the time-based and generation-based models. Point colour
291 indicates the mutation model used to generate the data. Lines represent beta regressions with
292 logit links fit to data points, and shading represents the 95% prediction interval. The X axis is

293 log scaled. 5% of cases were sampled here; sampling rate had little effect on R^2
294 (Supplementary Figure S2).

295

296 Root-to-tip divergence plots derived from synthetic transmission trees using the time-based
297 mutation model had, on average, higher R^2 values than those from synthetic transmission
298 trees using the per-generation mutation model, although this is more difficult to distinguish
299 below a substitution rate of 0.5 substitutions per genome per generation (Figure 2C). As the
300 substitution rate increases, the R^2 values across both mutation models increase. The case
301 sampling rate appears to have little effect on R^2 (Supplementary Figure S2).

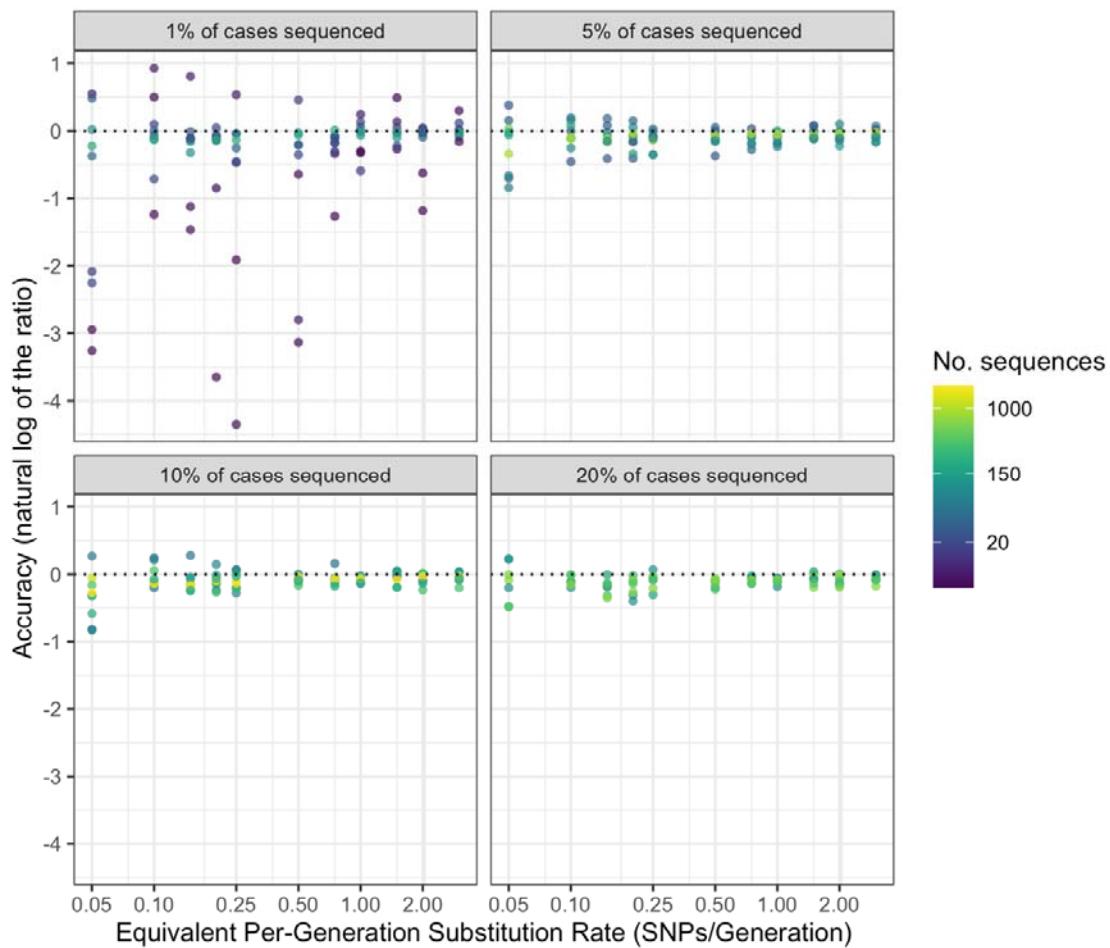
302 The root-to-tip divergence plot of the Tanzanian RABV dataset more closely resembles those
303 of lower substitution rate simulations, where it is difficult to determine any difference
304 between the models of mutation (Figure 1). While most lineages surround the regression line,
305 some (for example, Cosmopolitan AF1b_B1) group below the line, but without forming a
306 distinguishable “ridge”.

307

308 Substitution rate calculation

309 The accuracy of our method used to calculate per-generation substitution rate remains similar
310 at all but the lowest values of substitution rate (Figure 3), with a tendency to underestimate
311 the substitution rate (meaning that the estimated substitution rate is below the substitution
312 rate parameter used to generate the synthetic data; mean natural log of the ratio of -0.18 and
313 root-mean-square of 0.54, where values of 0 indicate perfect estimates). Accuracy appears to
314 be more influenced by the number of sequences used in the BEAST analysis than by the case
315 sampling rate itself; the mean natural log of the ratio falls to -0.36 when fewer than 50
316 sequences are used (root-square-mean of 0.95).

317



318

319 **Fig. 3: Accuracy of per-generation substitution rate predictions for different numbers of**
320 **sequences, substitution rates and sampling rates.** Facets indicate case sampling rate. The
321 dotted line represents perfect accuracy. X axis and colour scale are log transformed.

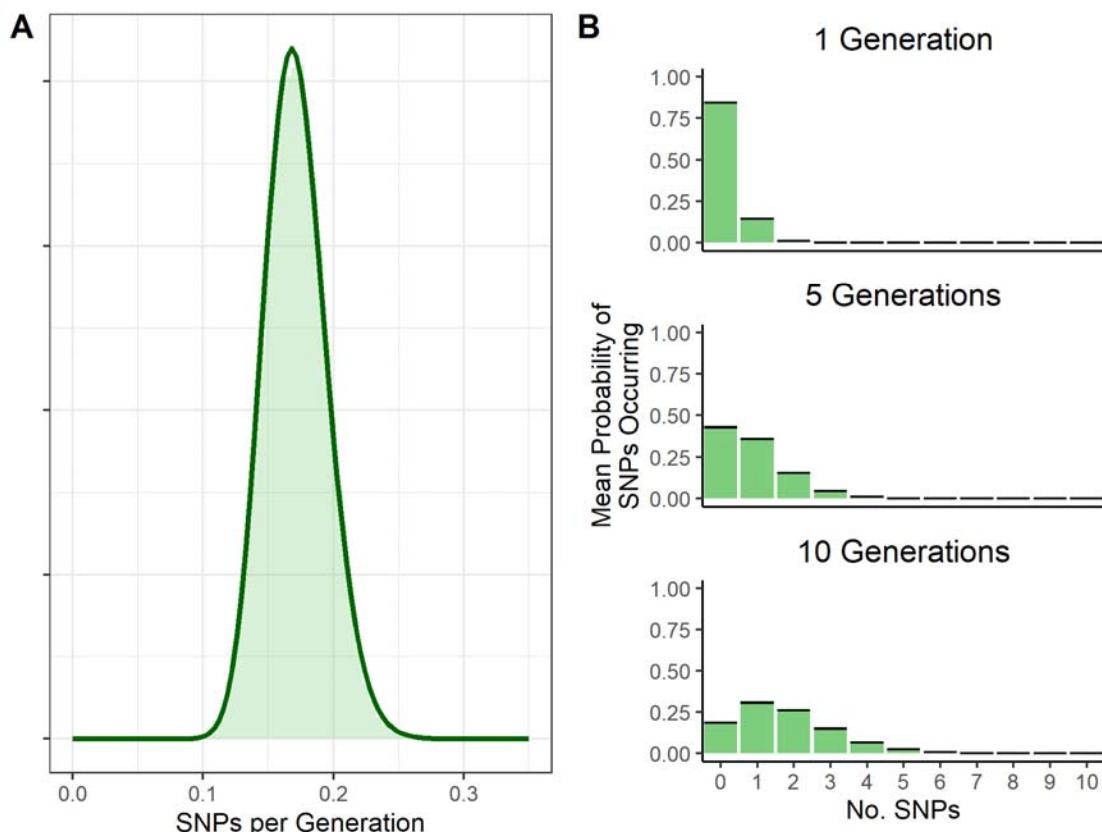
322

323 The Tanzanian RABV dataset from which we estimated the per-generation substitution rate
324 contains 153 sequences in total, and the accompanying time-scaled phylogenetic tree has a
325 root-to-tip height of approximately 65 years, although the sequences spanned just 16 years as
326 they were sampled from 2001 to 2017 (with 46.7% from years 2011-2012). These sequences
327 were largely complete; 98% of sequences were >95% complete (>11,327 kb in length). The

328 mean per generation substitution rate of RABV in this dataset was estimated to be 0.171
329 (95% credible interval: 0.127 - 0.219). The best fitting distribution by AIC to the output of
330 the multiplied Bayesian posteriors was a Gamma distribution with the parameters shape =
331 51.69 and rate = 301.8.

332

333 Using the calculated per generation per genome substitution rates, we calculated the
334 probability of different numbers of substitutions occurring over 1, 5 and 10 generations,
335 drawing the per-generation substitution rate (λ) from the above distribution (Figure 4). Over
336 many generations it is still quite likely for zero substitutions to occur; after 10 generations,
337 the probability of zero substitutions having occurred is 0.19.



338

339 **Fig. 4: Probability distributions of the mean per-generation substitution rate and**
340 **substitutions occurring over generations. (A)** estimated probability distribution of the per
341 genome per generation substitution rate from Tanzanian RABV sequences, with underlying
342 histogram of multiplied Bayesian posteriors of clock rate and generation interval. **(B)**
343 probability distribution of SNPs occurring over 1, 5 and 10 generations. The λ value for a
344 Poisson rate of SNP occurrence is drawn from the SNPs per generation distribution fitted in
345 Figure 4A. Black bars represent the 95% confidence intervals (which are very tight).

346

347 **Discussion**

348 It can be difficult to get sufficient temporal signal for RABV sequence datasets, which we
349 hypothesised could be due in part to its variable incubation periods. We hypothesised that a
350 per-generation model of mutation may be more representative of RABV evolution than a
351 purely time-based model. We found that substantial differences in root-to-tip divergence
352 patterns between synthetic outbreaks using generation-based and time-based models of
353 mutation could be observed only at high underlying substitution rates. The substitution rate
354 for the Tanzanian RABV sequences examined (~0.17 substitutions per genome per
355 generation) was in the range where divergence patterns in the two models were extremely
356 similar. We can thus assume that the two models will give extremely similar results on the
357 relevant time scale. As we observed increasing divergence over time with reasonable R^2
358 values within this substitution rate range, it implies that variable incubation periods alone do
359 not fully account for the challenge in obtaining temporal signal. Therefore, other factors such
360 as insufficiently long sampling windows for the substitution rate are likely to be responsible
361 (50). This is an important consideration for analysing RABV sequences from new outbreaks,
362 or from endemic areas where sampling is opportunistic. As RABV has a substitution rate

363 lower than many other RNA viruses, longer sampling windows are required to achieve a
364 sufficient temporal signal.

365 The observation of little difference between root-to-tip divergence plots derived from the two
366 mutation models at substitution rates below 1 substitution per genome per generation is likely
367 because of averaging; multiple generations of infection are expected to have occurred per
368 substitution that arises on the viral genome. Over the many generations needed before
369 significant levels of viral genetic diversity are reached, the influence of any unusually long
370 incubation periods will be damped by the opposite influence of unusually short incubation
371 periods, eventually becoming indistinguishable from clock-like behaviour. On the other hand,
372 at higher substitution rates ridges form on the root-to-tip divergence plots under the per-
373 generation model of mutation but not under the per unit time model. While not affecting the
374 overall clock rate, these ridges reduce the overall R^2 , and may be better analysed using a
375 separate local clock (51). The cases in these ridges almost all descend from a common
376 ancestor (Supplementary Figure S1), suggesting that a single unusually long or short
377 incubation period can affect which phylogenetic analyses we perform. Ridges caused by these
378 incubation periods can be distinguished from ridges caused by rate variation between lineages
379 as they will be parallel to the main cluster of points in the plot, whereas points belonging to
380 lineages with a different substitution rate will have a different slope. Studies examining the
381 number of substitutions occurring between successive sequenced cases, and whether this
382 increases when the secondary case's incubation period is unusually long, could clarify the
383 exact relationship between substitutions, generations, and time. More detailed data will be
384 required to investigate this further.

385 We calculated RABV's mean per-generation substitution rate to be approximately 0.17
386 substitutions per genome per transmission generation. This estimate is lower than those for
387 other RNA viruses, such as SARS (2 substitutions per genome per human passage (52)),

388 SARS-CoV-2 (0.52 substitutions per genome per 5.8-day generation interval (53)) and Ebola
389 virus (0.875 substitutions per genome per 14-day generation interval (54)). RNA viruses that
390 undergo periods of reduced replication or complete latency often show reduced substitution
391 rates, with one extreme example being HTLV-1/2 (55,56). However, we would not expect this
392 to affect the per-generation rate. The low per-generation substitution rate seen in rabies is
393 therefore likely due to mutation being constrained by other factors, such as strong purifying
394 selection (16), and likely contributes to the difficulties in obtaining sufficient temporal signal
395 for phylogenetic analyses. Previous studies suggest that for viruses in this substitution rate
396 range, sampling windows of up to 30 years may be required to overcome the phylodynamic
397 threshold (15); for comparison, SARS-CoV-2 achieved sufficient temporal signal within two
398 months of the start of the pandemic (50).

399 We can predict from the estimated per-generation substitution rate that identical sequences
400 are likely to have less than 5 intermediate generations between them (probability of fewer
401 than five generations occurring before a mutation occurs > 0.49 by repeated sampling of a
402 Poisson distribution with a lambda of 0.17), but still have a non-negligible probability of
403 being more distantly related. While the low substitution rate means that comparing the
404 number of SNPs between sequences alone may not be an effective method of determining
405 infector-infectee relationships, it could be used in conjunction with temporal and location
406 data to make more accurate predictions of transmission events by ruling out relationships
407 between more distantly related transmission chains co-circulating in the same area, as in (57).
408 Notably, our Poisson distribution of the number of substitutions occurring in one generation
409 is visually very similar to the genetic signature distribution reported in Cori *et al.* ((57), Fig
410 S1), despite different methods and RABV datasets being used in their calculations. It is likely,
411 however, that our estimate of the per-generation substitution rate is lower than the mean
412 number of SNPs expected between sequences from a primary and secondary case, due to the

413 time-based substitution rate being affected by purifying selection (58). Further analysis
414 comparing the estimated per-generation substitution rate to realised SNP distances between
415 primary-secondary case pairs could quantify this difference.

416 While the Jukes-Cantor model was the most appropriate to use on our synthetic data due to
417 the simplicity of the mutation models, phylogenetic analyses on real RABV genomes usually
418 use a more complex model, such as the GTR + G substitution model used to generate the
419 Tanzanian tree shown in this study (43). This, along with the simplicity of our mutation
420 model as well as sampling biases in the real dataset, may affect how comparable synthetic
421 root-to-tip divergence plots are to the real data.

422

423 While the molecular clock has proven critical for gaining insights into the history and
424 dynamics of disease outbreaks, the epidemiological characteristics of a virus should be
425 considered when choosing how to measure viral evolution. In this study, we determine that
426 the per-generation model is not likely to produce substantially different results from the
427 molecular clock model when analysing contemporary RABV evolution. We also estimate the
428 mean per-generation substitution rate of RABV for future use in transmission tree
429 reconstruction and efforts to estimate outbreak sizes and lineage emergence rates. Given that
430 many different lineages circulating simultaneously is seemingly a common occurrence in
431 areas with endemic rabies, it is important to investigate whether these lineages vary in
432 evolutionary rate and generation interval length, and ascertain the potential effects on
433 phylogenetic analyses.

434

435 **References**

- 436 1. Gojobori T, Moriyama EN, Kimura M. Molecular clock of viral evolution, and the neutral theory.
437 *Proc Natl Acad Sci.* 1990 Dec;87(24):10015–8.
- 438 2. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed Phylogenetics and Dating with
439 Confidence. *PLOS Biol.* 2006 Mar 14;4(5):e88.
- 440 3. Ho SYW, Duchêne S. Molecular-clock methods for estimating evolutionary rates and timescales.
441 *Mol Ecol.* 2014;23(24):5947–65.
- 442 4. Drummond A, Oliver G. P, Rambaut A. Inference of Viral Evolutionary Rates from Molecular
443 Sequences. *Adv Parasitol.* 2003 Jan 1;54:331–58.
- 444 5. Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. *Nat Rev
445 Genet.* 2009 Aug;10(8):540–50.
- 446 6. Wróbel B, Torres-Puente M, Jiménez N, Bracho MA, García-Robles I, Moya A, et al. Analysis of the
447 Overdispersed Clock in the Short-Term Evolution of Hepatitis C Virus: Using the E1/E2 Gene
448 Sequences to Infer Infection Dates in a Single Source Outbreak. *Mol Biol Evol.* 2006 Jun
449 1;23(6):1242–53.
- 450 7. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. Unifying the
451 Epidemiological and Evolutionary Dynamics of Pathogens. *Science.* 2004 Jan 16;303(5656):327–
452 32.
- 453 8. Gire SK, Goba A, Andersen KG, Sealton RSG, Park DJ, Kanneh L, et al. Genomic surveillance
454 elucidates Ebola virus origin and transmission during the 2014 outbreak. *Science.* 2014 Sep
455 12;345(6202):1369–72.
- 456 9. Kamath PL, Foster JT, Drees KP, Luikart G, Quance C, Anderson NJ, et al. Genomics reveals historic
457 and contemporary transmission dynamics of a bacterial disease among wildlife and livestock.
458 *Nat Commun.* 2016 May 11;7(1):11448.
- 459 10. Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG. Measurably evolving populations.
460 *Trends Ecol Evol.* 2003 Sep 1;18(9):481–8.
- 461 11. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, et al. Timing the Ancestor of the HIV-
462 1 Pandemic Strains. *Science.* 2000 Jun 9;288(5472):1789–96.
- 463 12. Buonagurio DA, Nakada S, Parvin JD, Krystal M, Palese P, Fitch WM. Evolution of Human Influenza
464 A Viruses Over 50 Years: Rapid, Uniform Rate of Change in NS Gene. *Science.* 1986 May
465 23;232(4753):980–2.
- 466 13. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of
467 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol.* 2016
468 Jan;2(1):vew007.
- 469 14. Duchene S, Lemey P, Stadler T, Ho SYW, Duchene DA, Dhanasekaran V, et al. Bayesian Evaluation
470 of Temporal Signal in Measurably Evolving Populations. *Mol Biol Evol.* 2020 Nov 1;37(11):3363–
471 79.
- 472 15. Duchêne S, Duchêne D, Holmes EC, Ho SYW. The Performance of the Date-Randomization Test in
473 Phylogenetic Analyses of Time-Structured Virus Data. *Mol Biol Evol.* 2015 Jul 1;32(7):1895–906.

474 16. Holmes EC, Woelk CH, Kassis R, Bourhy H. Genetic Constraints and the Adaptive Evolution of
475 Rabies Virus in Nature. *Virology*. 2002 Jan 20;292(2):247–57.

476 17. Biek R, Pybus OG, Lloyd-Smith JO, Didelot X. Measurably evolving pathogens in the genomic era.
477 *Trends Ecol Evol*. 2015 Jun 1;30(6):306–13.

478 18. Layan M, Dellicour S, Baele G, Cauchemez S, Bourhy H. Mathematical modelling and
479 phylodynamics for the study of dog rabies dynamics and control: A scoping review. *PLoS Negl
480 Trop Dis*. 2021 May 27;15(5):e0009449.

481 19. Duchêne S, Holmes EC. Estimating evolutionary rates in giant viruses using ancient genomes.
482 *Virus Evol*. 2018 Feb 27;4(1):vey006.

483 20. Sanjuán R. From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation
484 Rates Across Viruses. *PLoS Pathog*. 2012 May 3;8(5):e1002685.

485 21. Mancy R, Rajeev M, Lugelo A, Brunker K, Cleaveland S, Ferguson EA, et al. Rabies shows how
486 scale of transmission can enable acute infections to persist at low prevalence. *Science*. 2022 Apr
487 29;376(6592):512–6.

488 22. Hayes S, Lushasi K, Sambo M, Changalucha J, Ferguson EA, Sikana L, et al. Understanding the
489 incidence and timing of rabies cases in domestic animals and wildlife in south-east Tanzania in
490 the presence of widespread domestic dog vaccination campaigns. *Vet Res*. 2022 Dec
491 12;53(1):106.

492 23. Kurosawa A, Tojinbara K, Kadowaki H, Hampson K, Yamada A, Makita K. The rise and fall of rabies
493 in Japan: A quantitative history of rabies epidemics in Osaka Prefecture, 1914–1933. *PLoS Negl
494 Trop Dis*. 2017 Mar 23;11(3):e0005435.

495 24. Boland TA, McGuone D, Jindal J, Rocha M, Cumming M, Rupprecht CE, et al. Phylogenetic and
496 epidemiologic evidence of multiyear incubation in human rabies. *Ann Neurol*. 2014;75(1):155–
497 60.

498 25. Dimaano EM, Scholand SJ, Alera MTP, Belandres DB. Clinical and epidemiological features of
499 human rabies cases in the Philippines: a review from 1987 to 2006. *Int J Infect Dis*. 2011 Jul
500 1;15(7):e495–9.

501 26. Charlton KM, Nadin-Davis S, Casey GA, Wandeler AI. The long incubation period in rabies:
502 delayed progression of infection in muscle at the site of exposure. *Acta Neuropathol (Berl)*. 1997
503 Jun 1;94(1):73–7.

504 27. Yamaoka S, Ito N, Ohka S, Kaneda S, Nakamura H, Agari T, et al. Involvement of the Rabies Virus
505 Phosphoprotein Gene in Neuroinvasiveness. *J Virol*. 2013 Nov 15;87(22):12327–38.

506 28. Shankar V, Dietzschold B, Koprowski H. Direct entry of rabies virus into the central nervous
507 system without prior local replication. *J Virol*. 1991 May;65(5):2736–8.

508 29. Schnell MJ, McGettigan JP, Wirblich C, Papaneri A. The cell biology of rabies virus: using stealth
509 to reach the brain. *Nat Rev Microbiol*. 2010 Jan;8(1):51–61.

510 30. Lycke E, Tsang H. Rabies virus infection of cultured rat sensory neurons. *J Virol*. 1987
511 Sep;61(9):2733–41.

512 31. Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses.
513 Trends Ecol Evol. 2008 Apr 1;23(4):188–93.

514 32. Fusaro A, Monne I, Salomoni A, Angot A, Trolese M, Ferrè N, et al. The introduction of fox rabies
515 into Italy (2008–2011) was due to two viral genetic groups with distinct phylogeographic
516 patterns. Infect Genet Evol. 2013 Jul 1;17:202–9.

517 33. Wang L, Wu X, Bao J, Song C, Du J. Phylodynamic and transmission pattern of rabies virus in
518 China and its neighboring countries. Arch Virol. 2019 Aug 1;164(8):2119–29.

519 34. Zhang Y, Vrancken B, Feng Y, Dellicour S, Yang Q, Yang W, et al. Cross-border spread, lineage
520 displacement and evolutionary rate estimation of rabies virus in Yunnan Province, China. Virol J.
521 2017 Jun 3;14(1):102.

522 35. Faye M, Faye O, Paola ND, Ndione MHD, Diagne MM, Diagne CT, et al. Rabies surveillance in
523 Senegal 2001 to 2015 uncovers first infection of a honey-badger. Transbound Emerg Dis.
524 2022;69(5):e1350–64.

525 36. Caraballo DA, Lema C, Novaro L, Gury-Dohmen F, Russo S, Beltrán FI, et al. A Novel Terrestrial
526 Rabies Virus Lineage Occurring in South America: Origin, Diversification, and Evidence of Contact
527 between Wild and Domestic Cycles. Viruses. 2021 Dec;13(12):2484.

528 37. Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, et al. Large-Scale Phylogenomic
529 Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.
530 PLOS Pathog. 2016 Dec 15;12(12):e1006041.

531 38. Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE. Rates of Viral Evolution Are Linked to Host
532 Geography in Bat Rabies. PLOS Pathog. 2012 May 17;8(5):e1002720.

533 39. Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A, et al. SARS-CoV-2 evolution
534 during treatment of chronic infection. Nature. 2021 Apr;592(7853):277–82.

535 40. Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X, et al. Persistence and Evolution of
536 SARS-CoV-2 in an Immunocompromised Host. N Engl J Med. 2020 Dec 3;383(23):2291–3.

537 41. Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C, et al. Transmission Dynamics
538 and Prospects for the Elimination of Canine Rabies. PLOS Biol. 2009 Mar 10;7(3):e1000053.

539 42. Townsend SE, Lembo T, Cleaveland S, Meslin FX, Miranda ME, Putra AAG, et al. Surveillance
540 guidelines for disease elimination: A case study of canine rabies. Comp Immunol Microbiol Infect
541 Dis. 2013 May;36(3):249–61.

542 43. Lushasi K, Brunker K, Rajeev M, Ferguson EA, Jaswant G, Baker LL, et al. Integrating contact
543 tracing and whole-genome sequencing to track the elimination of dog-mediated rabies: an
544 observational and genomic study. Flegg J, editor. eLife. 2023 May 25;12:e85262.

545 44. Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable and
546 exponentially growing populations. Genetics. 1991 Oct 1;129(2):555–62.

547 45. Campbell K, Gifford RJ, Singer J, Hill V, O'Toole A, Rambaut A, et al. Making genomic surveillance
548 deliver: A lineage classification and nomenclature system to inform rabies elimination. PLOS
549 Pathog. 2022 May 2;18(5):e1010023.

550 46. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and
551 phylodynamic data integration using BEAST 1.10. *Virus Evol.* 2018 Jan 1;4(1):vey016.

552 47. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian
553 Phylogenetics Using Tracer 1.7. *Syst Biol.* 2018 Sep 1;67(5):901–4.

554 48. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna,
555 Austria; 2020. Available from: <https://www.R-project.org/>

556 49. Cribari-Neto F, Zeileis A. Beta Regression in R. *J Stat Softw.* 2010 Apr 5;34(1):1–24.

557 50. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G. Temporal
558 signal and the phylodynamic threshold of SARS-CoV-2. *Virus Evol.* 2020 Jul 1;6(2):veaa061.

559 51. Featherstone LA, Rambaut A, Duchene S, Wirth W. Clockor2: Inferring global and local strict
560 molecular clocks using root-to-tip regression [Internet]. bioRxiv; 2023 [cited 2023 Aug 17]. p.
561 2023.07.13.548947. Available from:
562 <https://www.biorxiv.org/content/10.1101/2023.07.13.548947v1>

563 52. Vega VB, Ruan Y, Liu J, Lee WH, Wei CL, Se-Thoe SY, et al. Mutational dynamics of the SARS
564 coronavirus in cell culture and human populations isolated in 2003. *BMC Infect Dis.* 2004 Sep
565 6;4:32.

566 53. Braun K, Moreno G, Wagner C, Accola MA, Rehrauer WM, Baker D, et al. Limited within-host
567 diversity and tight transmission bottlenecks limit SARS-CoV-2 evolution in acutely infected
568 individuals [Internet]. bioRxiv; 2021 [cited 2023 Feb 9]. p. 2021.04.30.440988. Available from:
569 <https://www.biorxiv.org/content/10.1101/2021.04.30.440988v1>

570 54. Kinganda-Lusamaki E, Black A, Mukadi D, Hadfield J, Mbala-Kingebeni P, Pratt CB, et al.
571 Operationalizing genomic epidemiology during the Nord-Kivu Ebola outbreak, Democratic
572 Republic of the Congo [Internet]. medRxiv; 2020 [cited 2023 Feb 9]. p. 2020.06.08.20125567.
573 Available from: <https://www.medrxiv.org/content/10.1101/2020.06.08.20125567v1>

574 55. Holmes EC. Molecular Clocks and the Puzzle of RNA Virus Origins. *J Virol.* 2003 Apr;77(7):3893–7.

575 56. Van Dooren S, Salemi M, Vandamme AM. Dating the Origin of the African Human T-Cell
576 Lymphotropic Virus Type-I (HTLV-I) Subtypes. *Mol Biol Evol.* 2001 Apr 1;18(4):661–71.

577 57. Cori A, Nouvellet P, Garske T, Bourhy H, Nakouné E, Jombart T. A graph-based evidence synthesis
578 approach to detecting outbreak clusters: An application to dog rabies. *PLOS Comput Biol.* 2018
579 Dec 17;14(12):e1006554.

580 58. Duchêne S, Holmes EC, Ho SYW. Analyses of evolutionary dynamics in viruses are hindered by a
581 time-dependent bias in rate estimates. *Proc R Soc B Biol Sci.* 2014 Jul 7;281(1786):20140732.

582

583 **Supporting information captions**

584 **Supp. Fig. S1: histogram of generation intervals from the simulated outbreaks.** Vertical
585 dashed lines represent the median (blue) and mean (red) generation interval.

586 **Supp. Fig. S2: points in the offshoot ridge predominantly occur in one transmission tree.**

587 **(A)** root-to-tip divergence plot (2 SNPs/genome/generation, 5% of cases sequenced) with
588 offshoot ridge points highlighted in red. Offshoot ridge points are defined in this plot as
589 having a divergence rate above 8×10^{-6} substitutions/day and occurring after day 750. **(B)**
590 transmission tree of the simulated outbreak with offshoot ridge cases highlighted in red.
591 Graph edge length is not proportional to time or divergence.

592 **Supp. Fig. S3: Sampling rate does not impact the R^2 of root-to-tip divergence plots from**
593 **synthetic data.** Plot is faceted by the proportion of the total number of cases in the outbreak
594 sequenced, point colour represents mutation model.

595