

1 **TITLE:** The association between *Dioscorea sansibarensis* and *Orrella*
2 *dioscoreae* as a model for hereditary leaf symbiosis

3 AUTHORS

4 Tessa Acar^{1,2}, Sandra Moreau¹, Marie-Françoise Jardinaud¹, Gabriella Houdinet¹, Felicia Maviane-
5 Macia¹, Frédéric De Meyer², Bart Hoste², Olivier Leroux³, Olivier Coen¹, Aurélie le Ru⁴, Nemo Peeters¹
6 and Aurelien Carlier^{1,2*}

7 AUTHOR Affiliations

8 ¹ LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France

9 ² Laboratory of Microbiology, Ghent University, 9000 Ghent, Belgium

10 ³ Ghent University, Department of Biology, K. L. Ledeganckstraat 35, 9000 Gent, Belgium

11 ⁴ Plateforme Imagerie TRI-FRAIB, Université de Toulouse, CNRS, 31326, Castanet-Tolosan, France

12

13 *Correspondence and lead contact: aurelien.carlier@inrae.fr

14

15 Abstract

16 Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some
17 plants. The precise mechanisms underlying transmission of functions of these associations are often
18 difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the
19 case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems.
20 Here, we demonstrate the potential of the leaf symbiosis between the wild yam *Dioscorea*
21 *sansibarensis* and the bacterium *Orrella dioscoreae* (*O. dioscoreae*) as a model system for hereditary
22 symbiosis. *O. dioscoreae* is easy to grow and genetically manipulate, which is unusual for hereditary
23 symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of
24 bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial
25 cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf
26 forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but
27 microscopic differences between symbiotic and aposymbiotic glands highlight the influence of
28 bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the
29 first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont
30 can be genetically altered and reintroduced to the host.

31 Introduction

32 Heritable symbioses are permanent associations between two or more partners where at least one
33 partner is directly (or vertically) transmitted to the next generation (1). Often, species involved in
34 heritable symbioses evolve a form of co-dependency, a phenomenon known as Muller's ratchet, that
35 can result in hosts and symbionts becoming inseparable (1). Heritable symbioses can be found
36 throughout the tree of life, and are especially common in invertebrates (2–4). Plants commonly
37 engage in horizontally-transmitted symbioses, with established model systems such as the
38 *Sinorhizobium–Medicago* symbiosis contributing to a better understanding of the mechanisms
39 underlying nitrogen-fixing root nodule symbiosis (5). However, there are few well-characterized
40 hereditary associations between plants and bacteria, and the mechanisms enabling transmission
41 and/or partner specificity are mostly unknown. In angiosperms, phyllosphere symbioses have been
42 identified or suspected in the Rubiaceae, Primulaceae, Styracaceae and Dioscoreaceae families (6). In
43 particular, symbioses in *Ardisia* (Primulaceae), *Psychotria* (Rubiaceae) and *Pavetta* (Rubiaceae) have
44 been relatively well-studied (7–10). The function and transmission of leaf symbiosis are not well
45 understood, but the shoot tip has long been suspected to be an important structure in leaf symbiosis.
46 In leaf-nodulated Rubiaceae and Primulaceae species, a colony of obligate symbiotic bacteria residing
47 near the apical meristem may serve as the source of infection for every new developing leaf and
48 ovary, and thus the seeds (11–13). Removal of bacterial symbionts from host plants in heritable leaf
49 symbiosis has been studied extensively, and often leads to a stunted phenotype and death (14–
50 16). More recently, Sinnesael *et al.* showed that it was possible to grow the leaf-nodulated *Psychotria*
51 *umbellata* without its *Candidatus Caballeronia* sp. symbiont *in vitro*, but aposymbiotic plants did not
52 survive in soil (17). Despite a sizeable body of work on leaf symbiosis in the Primulaceae and
53 Rubiaceae families, plants are difficult to maintain due to long generation times, and bacterial
54 symbionts are usually unculturable and genetically intractable (7–9,17–22). Because symbiotic
55 bacteria of *Psychotria* and *Ardisia* cannot be cultured and host development is dependent on
56 symbiotic status, many questions about transmission, function and the mechanisms underlying the
57 specificity of leaf symbiosis remain unanswered. In contrast, *Orrella dioscoreae*, the bacterial
58 symbiont of *Dioscorea sansibarensis*, has been isolated from leaves and is a notable exception
59 (23,24).

60 *D. sansibarensis* is the only monocotyledonous plant known so far to engage in leaf symbiosis,
61 although related species may host similar epiphytes (25,26). The species likely originates from
62 Madagascar and continental Africa and is invasive in parts of the US and South-East Asia (27). In *D.*
63 *sansibarensis*, The perennial vine thrives in hot and humid conditions and reproduces dominantly via

64 bulbils (round, vegetative structures 2-3 cm in diameter) and tubers (28). A single leaf gland forms at
65 the acumen of the leaf and contains a dense mass of bacteria (29). The *D. sansibarensis* leaf gland,
66 also called forerunner tip, forms by folding of the lamina, resulting in hollow channels which
67 subsequently fill with bacteria (30,31). Trichomes emerging from the epidermis protrude into the
68 lumen of the glands and seem to be an important site for the symbiotic interaction. The function of
69 the symbiosis remains unknown, although nitrogen fixation has been ruled out (30). The bacterial
70 symbiont was recently identified as *Orrella dioscoreae* (*O. dioscoreae*) and in contrast to most leaf
71 symbionts, can be isolated and cultivated outside its host (23,24). Furthermore, the ease of culture,
72 lack of resistance to antibiotics, and amenability to transformation by electroporation or conjugation
73 make *O. dioscoreae* an attractive model system to understand the functions required for the
74 endophytic lifestyle of leaf symbiotic bacteria (23,24).

75 Establishing the *D. sansibarensis*/*O. dioscoreae* as an experimental model requires manipulating the
76 symbiotic status of the plant. Because pathogen-free plants are of high interest for the horticulture
77 industry, several methods have been developed to control fungal and bacterial contaminants in
78 plants or tissue culture (32). Seed surface sterilization is a popular technique used in crops and
79 *Arabidopsis thaliana* to remove pathogens from seeds (33–36). This is done by treating seeds with
80 solutions of sodium hypochlorite and/or ethanol, but surface treatment is often insufficient to rid the
81 seeds of endophytic microorganisms, which are presumably embedded in plant tissue out of reach of
82 disinfectants (37–40). To remove recalcitrant contaminants, more effective methods make use of
83 tissue culture followed by regeneration of whole plants. For example, plant structures containing
84 meristematic cells (e.g. buds or embryos) may be isolated and grown under sterile conditions with
85 auxins and/or cytokinins to promote cellular growth and differentiation (41–44). This type of
86 vegetative propagation combined with heat treatment is effective for clearing some viruses from
87 germplasms (45–47), but may lack efficacy against fungal or bacterial endophytes. Antibiotics are an
88 effective mean of clearing bacteria and fungi, but plant tissue cultures are often susceptible to
89 damage from some commonly used antibiotics (48). However, β -lactam antibiotics such as
90 cefotaxime or carbenicillin are well tolerated by wheat tissue culture (49) and fungal contamination
91 may be controlled using carbendazim, fenbendazole and imazalil (50). In this study, we tested and
92 developed an effective series of protocols to obtain aposymbiotic *D. sansibarensis*. Aposymbiotic
93 plants developed normally under controlled conditions, and could be inoculated by exogenous *O.*
94 *dioscoreae* strains using simple methods. Altogether, these properties make the *Dioscorea-Orrella*
95 symbiosis an appealing candidate for a heritable leaf symbiosis model system.

96 **Material and methods**

97 **Plant culture and propagation**

98 Original plant material was obtained from the greenhouse of the Botanical Garden at the University
99 of Ghent (LM-UGent) in Ghent, Belgium. Chemicals and reagents were purchased from Merck unless
100 otherwise indicated. Plants used throughout in experiments were maintained in the greenhouse of
101 the Laboratory of Plants Microbes and Environment Interactions (LIPME) in Castanet-Tolosan, France.
102 Unless otherwise indicated, plants were grown in climate chambers at 28°C, 70% humidity and a light
103 cycle of 16h light (210 $\mu\text{mol}/\text{m}^2/\text{s}$), 8h dark.

104 **Surface sterilization and inoculation of bulbils**

105 Inoculation of bulbils by bacterial submersion was done as follows: bulbils were peeled and sterilized
106 in 0.15% carbendazim for 2 hours, washed 3 times with sterile water, submerged in ethanol (70%
107 v/v) for 5 minutes, transferred to sodium hypochlorite (1.4% v/v) + 0.4% v/v Tween 20 for 15 minutes
108 and washed 3 times with sterile distilled water. Bulbils were incubated in $\frac{1}{2}$ MS + gelzan (4 g/L) at
109 28°C in sterile Microbox containers (SacO₂, Belgium) with a 16h light/8h dark period. Bulbils were
110 inoculated with *O. dioscoreae* R-71416 (Table S1) as follows: bacterial cultures were grown in Tryptic
111 Soy Broth (TSB) to exponential phase, centrifuged (7500 rpm, 10 min) and washed twice with sterile
112 0.5x Phosphate buffered saline (0.5x PBS: 4 g/L NaCl, 0.1 g/L KCl, 0.72 g/L Na₂HPO₄, 0.12 g/L KH₂PO₄,
113 pH 7.4). Cell suspensions were normalized to OD_{600nm} = 0.2 and bulbils were submerged in 50 ml
114 bacterial suspension for three hours while shaking (100 rpm) at room temperature. Bulbils were then
115 placed in sterile Microbox containers (SacO₂, Belgium) with 50 ml half-strength Murashige and Skoog
116 (MS) medium + Gelzan 4g/L and incubated at 28°C, in a 16h/8h routine. Alternatively, *O. dioscoreae*
117 cell suspensions prepared as above were injected directly into surface-sterilized bulbils with a 26G
118 needle. Bulbils were incubated in Microboxes as stated above.

119 **Direct inoculation of shoot tips**

120 Plants were grown from sterilized bulbils in sterile conditions until emergence of the shoot. The
121 shoot tip was sprayed with gentamycin dissolved in water (20 mg/ml, Méridis France). Plants were
122 inoculated with bacteria as follows: bacterial cultures grown in TSB to about OD_{600nm} = 0.5 were
123 centrifuged (7500 rpm, 10 min) and washed twice with sterile 0.5x PBS. Cell suspensions were
124 normalized to OD_{600nm} = 0.2. Different methods were used to inoculate the shoot tip. Dipping: the
125 biggest leaf at the apical bud was gently pushed aside and a small scratch was made on the apical
126 bud with a 27 G needle. The apical shoot tip was dipped in the bacterial suspension (OD_{600nm} = 0.2)
127 for 15 seconds. Stabbing: the apical bud was stabbed with a tuberculin needle dipped in the bacterial

128 suspension. Sonicating: dissected apical buds were submerged in a bacterial suspension in an 2 mL
129 microfuge tube and placed in a Branson Ultrasonic 2800 sonication bath using a floating device for 2
130 minutes. Vacuum infiltration: Dipping the apical bud in a liquid bacterial suspension of strain R-71416
131 followed by vacuum infiltration (51) in a dessicator maintained at 0.53 bar for two minutes. All plants
132 were put in sterile microboxes in a 1:1 (v/v) pumice/perlite mixture at 28°C, 16h/8h light/dark cycle.

133 **Propagation through node cuttings**

134 Micropropagation of *D. sansibarensis* was done using a protocol adapted from (52). Node cuttings
135 were collected from greenhouse-grown plants 2-4 months after emergence. In the ‘bleach + ethanol’
136 protocol, explants were first washed with tap water, surface sterilized by submerging for 2 hours in a
137 sterile solution of 0.15% w/v carbendazim + 0.4% v/v Tween 20, washed 3 times with sterile distilled
138 water, then soaked in 70% v/v ethanol for 5 minutes, and finally 1.4% w/v sodium hypochlorite +
139 0.4% v/v Tween 20 for 15 minutes. Explants were then washed 3 times in sterile distilled water).
140 Alternatively, fresh explants were soaked in 3 x concentrated MS medium supplemented with 5%
141 (v/v) solution of Plant Preservative Mixture (PPM, Plant Cell Technology, USA) with shaking at 100
142 rpm for 8 hours at 28°C (‘PPM protocol’). After 8 hours, the bleached extremities of the explants
143 were cut off with a sterile scalpel. Explants were placed in sterilized growth medium (MS: 4.4g/L, 2%
144 sucrose, vitamins: glycine (2mg/L), myo-inositol (100 mg/L), nicotinic acid (0.5mg/L), pyridoxine-HCl
145 (0.5mg/L), thiamine-HCl (0.1mg/L) and L-cystein (20mg/L), pH=5.7), supplemented with the
146 antibiotics carbenicillin (200 µg/ml), cefotaxime (200 µg/ml) and PPM (0.2% v/v) and incubated at
147 28°C, 16h of light for 10 days. Medium was refreshed after 10 days, including supplements and
148 antibiotics. After 21 days of incubation, the medium was replaced with growth medium containing
149 MS, sucrose, PPM and vitamins as described above but without the antibiotics. Cuttings were
150 transferred in sterile Magenta boxes (model GA7, Merck) incubated at 28°C, 16h of light until
151 rooting.

152 **Bacterial strains and culture conditions**

153 *O. dioscoreae* strains were grown in tryptic soy agar (TSA) or broth (TSB) aerobically at 28°C unless
154 specified otherwise. Media were supplemented with gentamicin (20 µg/mL) and/or nalidixic acid (30
155 µg/mL) as appropriate. *O. dioscoreae* strain R-71412 is a spontaneous nalidixic acid-resistant strain
156 derived from *O. dioscoreae* LMG 29303^T (24). *O. dioscoreae* strains R-71416 and R-71417 are
157 derivatives of strain R-71412 with a chromosomally-encoded *gfp* or *mCherry* reporter genes,
158 respectively (31). *O. dioscoreae* strains R-67173, R-67584, R-67088 and R-67090 are natural isolates
159 described in a previous publication (23).

160

161 **Minimal inhibitory concentrations assay on *O. dioscoreae***

162 Liquid cultures grown in TSB (R-67173, R-67584, R-67088, R-67090 and LMG 29303^T) in exponential
163 phase were diluted to OD_{600nm} = 0.001 (~10⁶ CFU/ml). Serial dilutions of antibiotics were prepared in
164 sterile water (1024-512-256-128-64-32-16-8 µg/ml) and liquid cultures were added in a 1:1 ratio to
165 the antibiotic solution. Samples were well mixed and incubated at 28°C for 48 hours.

166 **Transmission electron microscopy (TEM)**

167 Samples were fixed in 2% w/v glutaraldehyde + 0.5% w/v paraformaldehyde (v/v) in a 50 mM sodium
168 cacodylate buffer, pH 7.2 at room temperature and under vacuum. After 4 hours, the fixative
169 solution was refreshed and samples were kept at 4°C for 26 days. Samples were rinsed twice in 50
170 mM sodium cacodylate buffer (pH 7.2) and postfixed in 2% w/v osmium tetroxide in water for 1.5
171 hours at room temperature. Samples were rinsed three times in demineralized water and
172 dehydrated using a graded water/ethanol series (10, 20, 30, 40, 50, 60, 70, 80, 90, 96% (v/v)).
173 Samples were first incubated in propylene oxide (PO) (EMS) twice for 1 hour, then in a PO/Epon
174 series over several days at 4°C, positioned in their silicone embedding molds and polymerized for 48
175 hours at 60°C. Thin sections were cut using a Reichert Ultracut E (Leica Microsystems) and contrasted
176 using Uranyless and lead citrate (Delta Microscopies, France). Samples were observed using a Hitachi
177 HT7700 instrument.

178 **Scanning electron microscopy (SEM)**

179 Samples were fixed in 2.5% v/v glutaraldehyde in 50 mM cacodylate sodium buffer (pH 7.2) for 3
180 hours at room temperature (RT) and transferred to 4°C for 2 days. They were dehydrated using a
181 graded water/ethanol series (10, 20, 30, 40, 50, 60, 70, 80% (v/v)). The samples were completely
182 dehydrated using a critical point drying apparatus (Leica EM CPD 300) using CO₂ as transitional

183 medium, and a platinum coating was applied. Samples were examined using a FEG FEI Quanta 250
184 instrument.

185 **Light microscopy**

186 Samples were fixed in 4 % v/v formaldehyde in PEM buffer (100 mM 1,4-piperazinediethanesulfonic
187 acid, 10 mM MgSO₄, and 10 mM ethylene glycol tetra-acetic acid, pH 6.9) for 4h, thoroughly washed
188 in PBS and dehydrated using a graded ethanol series (30, 50, 70, 85, 100 % v/v). After gradual
189 infiltration with LR White acrylic resin (medium grade, London Resin Company, UK), samples were
190 embedded in polypropylene flat bottom molds at 37 °C for three days. Semi-thin sections of 300 nm,
191 cut using a Leica UC6 ultramicrotome equipped with a diamond knife, were dried onto polysine-
192 coated slides, stained with 1% w/v toluidine blue in 0.5% w/v sodium tetraborate for 5 seconds and
193 mounted in DePeX (VWR, Belgium). For vibratome sectioning, samples were embedded in 8 % w/v
194 agarose, glued upon the specimen stage using Roti coll 1 glue (Carl Roth, Karlsruhe, Germany) and
195 cut into 30 µm thick sections with a vibrating microtome (HM650V, Thermo Fisher Scientific,
196 Waltham, MA, USA). Sections were in 0.5% w/v astra blue, 0.5% w/v chrysoidine and 0.5% w/v
197 acridine red for 3 min, rinsed with demineralized water, dehydrated with isopropyl alcohol and
198 mounted in Euparal (Carl Roth, Karlsruhe, Germany). Vibratome and LR White sections were
199 observed using a Nikon Eclipse Ni-U bright field microscope equipped with a Nikon DS-Fi1c camera.
200 To visualize mCherry tagged *O. dioscoreae* (R71417) in the shoot tips, fresh plant samples were hand
201 cut and directly observed by confocal microscopy (Leica TCS SP2) using excitation wavelength of 552
202 nm and emission collection between 584-651 nm. GFP-tagged bacteria were visualized using
203 excitation at 488 nm and emitted light from 500 to 550 nm. Leica LAS X software was used to process
204 the images.

205 **Detection and identification of bacteria**

206 The tip of the leaf was dissected with tweezers and a scalpel, and the tissue was homogenized using
207 100 µl 0.4% w/v NaCl and 3 sterile glass beads for 1 minute at 30 Hz in a ball mill (Retsch MM 400).
208 The homogenized suspension was centrifuged briefly to pellet debris. One hundred µL of supernatant
209 was directly plated out on Tryptic Soy Agar (TSA) plates and incubated for 2 days at 28°C. If the plate
210 showed growth, one isolate per colony type was picked and identified using colony PCR with primers
211 specific for *O. dioscoreae* (nrdA-01-F: GAACTGGATTCCCGACCTGTTC, nrdA-02-R:
212 TTGATTGACGTACAAGTTCTGG), or with universal 16S rRNA primers (pA:
213 AGAGTTGATCCTGGCTCAG and pH: AAGGAGGTGATCCAGCCGCA) followed by Sanger sequencing.

214 **Inoculation of aposymbiotic *D. sansibarensis* with bacteria**

215 Node cuttings were grown in axenic conditions (25ml MS + 2% w/v sucrose + 0.2% v/v PPM in
216 Magenta vessel, 28°C, 16h/8h light cycle) until a new shoot appeared (after 6 weeks approximately).
217 Verified aposymbiotic plants (tested as above) were inoculated with a strain of interest as follows:
218 bacterial cultures in the exponential phase of growth were centrifuged (5000 rpm, 10 min) and
219 washed twice with sterile 0.4% w/v NaCl. Cell suspensions were normalized to OD_{600nm} = 0.2. The
220 biggest leaf at the apical bud was gently pushed aside and 2 µl of a bacterial suspension
221 (corresponding to approximately 5 x 10⁶ CFU) was deposited onto the apical bud (Figure S1). Plants
222 were transferred to sterile Microbox containers (50ml MS + 2% w/v sucrose + 0.2% v/v PPM) at 28°C,
223 16h of light until new leaves emerged. Colonization was evaluated by dissecting a leaf tip and
224 spreading the contents on suitable microbiological medium as described above (Detection and
225 identification of bacteria).

226 **Plant phenotyping**

227 Plants were grown from node cuttings in axenic conditions in Magenta boxes containing and
228 inoculated with *O. dioscoreae* strain R-71412 or a sterile solution of 0.4% w/v NaCl as described
229 above. Plants were kept in gnotobiotic conditions in Microbox containers containing (50ml MS + 2%
230 w/v sucrose + vitamins + 0.2% w/v PPM) at 25°C, with a 16h/8h day/night cycle. Pots were randomly
231 distributed and shuffled once a week during the experiment. Plants were collected 4 weeks post-
232 inoculation. Leaves were separated from the stem by cutting the petioles with a scalpel, and
233 photographed using a ruler for scale. Chlorophyll content, nitrogen balance index, anthocyanins
234 index and epidermal flavonols were measured on the leaf lamina at 2 different spots immediately
235 after detaching, using a Dualex optical leafclip meter (Force-A, Orsay, France). Stem length was
236 measured with a ruler from crown to tip. Leaf length, width, area and acumen length were
237 determined from photographs using the Fiji software (53). To control for developmental stage, the
238 position of each leaf relative to the shoot tip was recorded for each plant, with leaf n°1 being the
239 closest from the shoot tip, excluding currently emerging leaves. The experiment was repeated twice
240 independently in the same growth chamber. All statistical analyses were done in R (54).

241 **Automated plant phenotyping in greenhouse conditions**

242 Twenty-five plants obtained from node cuttings and grown for 6 weeks in gnotobiotic conditions
243 were transferred to soil in 3L pots in a climate-controlled greenhouse at 25°C, 60% humidity and a
244 light cycle of 16h light (179 µmol/m²/s), 8h dark. A blue foam disc was placed on top of the pot to
245 increase contrast for image segmentation, and a blue-colored plastic cage was placed in the pots to
246 guide plant development. The symbiotic status of the plants was checked as described above and

247 aposymbiotic plants were inoculated with a Mock solution (0.4% (m/v) NaCl) or a liquid culture (LMG
248 29303^T) as described above, after 2 leaves had emerged. As plants grew at different paces, plants
249 were inoculated on different dates at the 2 leaf stage. To monitor the symbiotic status of the plants,
250 samples from leaf glands were taken at three different timepoints during the experiment. Plants
251 grown from node cuttings were tested for the presence of *O. dioscoreae* in mature leaf glands, with 7
252 out of 25 plants still harboring *O. dioscoreae* (Table S3). Of the 18 aposymbiotic plants remaining, half
253 were inoculated with strain LMG 29303^T and half with a mock solution. After 30 days, the height of
254 the stem and the number of leaves were measured and counted. Plant development was monitored
255 automatically for at least 30 days after inoculation in the Phenoserre facility of the Toulouse Plant-
256 Microbe Phenotyping platform (TPMP) and their symbiotic status was checked 3 times by isolation of
257 bacteria from leaf glands and PCR as described above. Each plant was imaged once a day using and
258 RGB camera and a blue background, rotating the plant at 6 angles (0° to 300° in 60° increments).
259 Image analysis was done using the IPSO Phen software v1.20.3.17 ([https://github.com/tpmp-
260 inra/ipso_phen](https://github.com/tpmp-inra/ipso_phen)) (56), resulting in a total of 56 parameters measured, including 37 measures of
261 morphology, e.g. total area, hull, width, height. Additional parameters linked to colorimetry,
262 including mean and standard deviation for all channels in various color spaces (RGB, LAB and HSV)
263 were also recorded. As *D. sansibarensis* vines tended to grow in irregular patterns, no morphological
264 parameters could be reliably analyzed except for total leaf area, which was calculated as the median
265 of leaf area extracted of images from all 6 angles. Chlorophyll content was estimated through RGB
266 values of plant images as described by Liang and colleagues (55). Plants were automatically watered
267 daily and fertilized at the beginning and once mid-experiment. 30 days after of the last inoculation,
268 the length of the stem and the number of leaves were measured by hand. All statistical analyses
269 were done in R (54).

270 **Results**

271 **Symbiotic *D. sansibarensis* are recalcitrant to inoculation with exogenously applied *O. dioscoreae***

273 To investigate if symbiotic structures remained open to colonization, we first attempted to introduce
274 fluorescent-tagged *O. dioscoreae* in wild-type symbiotic *D. sansibarensis*. Because *D. sansibarensis*
275 rarely flowers in cultivation (28), we attempted to inoculate aerial bulbils with suspensions of *Orrella*
276 *dioscoreae*. Submerging whole bulbils in a suspension of *O. dioscoreae* R-71416 did not result in
277 colonization of germinated seedlings by GFP-tagged bacteria (data not shown). Bulbils have a
278 suberized outer tissue layer, which might prevent exogenous bacteria from reaching the vegetative
279 growth center. To test this, we peeled and surface-sterilized six bulbils, which we submerged in a
280 suspension of GFP-tagged *O. dioscoreae* R-71416. As control, three bulbils were submerged in sterile
281 saline solution and left to germinate. Every bulbil deteriorated and failed to yield new plants. We also
282 attempted to deliver a bacterial inoculum in five surface-sterilized, unpeeled bulbils by injection with
283 a needle. The bulbils germinated, but only wild-type *O. dioscoreae* were recovered from the leaf
284 glands of the plantlets (data not shown).

285 We hypothesized that inoculating the shoot tip with bacteria would result in colonization of all shoot
286 tissue growing from the apical meristem. We dipped shoot tips in a suspension of *O. dioscoreae* R-
287 71416 and macerated the newly emerged leaves. Leaf glands always contained only wild-type non-
288 fluorescent *O. dioscoreae*. Stabbing the apical shoot tip with a needle dipped in a bacterial
289 suspension resulted in 4 out of 4 shoot tips turning necrotic within days. Vacuum infiltration of a
290 liquid bacterial suspension of strain R-71416 into shoot tips resulted in growth arrest of the 4 plants
291 tested. Two plants formed bulbils, but we could not detect growth of *O. dioscoreae* R-71416 in
292 macerates. Finally, we attempted to inoculate the plants by adapting a protocol designed for
293 agroinfiltration using sonication (57). The sonication regime did not affect the viability of cultures of
294 strain R-71416, as measured by serial dilution and plating on TSA medium (data not shown). Of the
295 three plants tested, one plant went into growth arrest, but *O. dioscoreae* R-71416 could not be
296 detected in leaves of any of the remaining plants.

297 **Treatment of node cuttings with an antibiotic cocktail results in aposymbiotic plants**

298 We reasoned that processes such as competition and niche exclusion might contribute to preventing
299 exogenous GFP-tagged *O. dioscoreae* from infecting already symbiotic plants. Miller and Reporter
300 previously described the generation of aposymbiotic plants from surface-sterilized bulbils of *D.*
301 *sansibarensis* (30). We attempted to reproduce these results by surface-sterilizing bulbils and

302 incubating in sterile Microbox containers containing sterile medium. All bulbils germinated, but leaf
303 glands of 18/18 plants contained *O. dioscoreae*, showing that surface sterilization alone was not
304 sufficient to create aposymbiotic plants. Next, we adapted a protocol used to micropropagate the
305 yam species *Dioscorea composita*, to which we added an antibiotic treatment (52). We first tested
306 the susceptibility of *O. dioscoreae* strains to antibiotics commonly used in plant tissue culture. All *O.*
307 *dioscoreae* strains were sensitive to tetracyclin and rifampicin (MIC < 16 µg/ml); and moderately
308 resistant to the β-lactam antibiotics carbenicillin and cefotaxime (Table S2). All strains were also
309 sensitive to the commercial broad-range biocide Plant Preservation Mixture (PPM). All antibiotics
310 tested inhibited growth of the *O. dioscoreae in planta*, but tetracycline and rifampicin also impaired
311 plant growth at the concentrations tested (Table 1). Only carbenicillin and cefotaxime at
312 concentrations of up to 200 µg/mL were effective against *O. dioscoreae* and were well tolerated by
313 plant tissue (Table 1). Although incubation with antibiotics was effective to remove *O. dioscoreae*
314 from node cuttings, over 50% of our *in vitro* cultures were lost to contamination of the tissue and
315 media with fungi and bacteria (data not shown). We reasoned that incomplete surface-sterilization of
316 bulbils may be a source of contaminants and we tested treatment with PPM to control microbial
317 contamination in *in vitro* cultures of *D. sansibarensis*. PPM is a commercial biocide containing the
318 active ingredients 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyl-3(2H)-isothiazolone, which
319 can be supplemented directly to the culture medium (58). According to the manufacturer, PPM may
320 also be used as a mild antiseptic for surface sterilization of plant tissue. Surface sterilization with a
321 solution of 5% v/v PPM in 3x MS medium for 8h at 28°C in darkness with shaking was sufficient to
322 prevent contamination while preserving tissue viability (n= 18). Using the PPM protocol, 0/105
323 cuttings were lost to death of the explant, while 5/89 cuttings were lost using the bleach + ethanol
324 protocol (Table 2). In the first three weeks of incubation with antibiotics, 34 plants were lost due to
325 contamination with the bleach + ethanol protocol (38.3%), while only 12 plants (10%), were lost
326 using the PPM protocol. After 3 weeks, only 31% of resulting plantlets were aposymbiotic using the
327 bleach + ethanol protocol, while 49.3% of node cuttings were aposymbiotic when sterilized with the
328 PPM protocol.

329

330

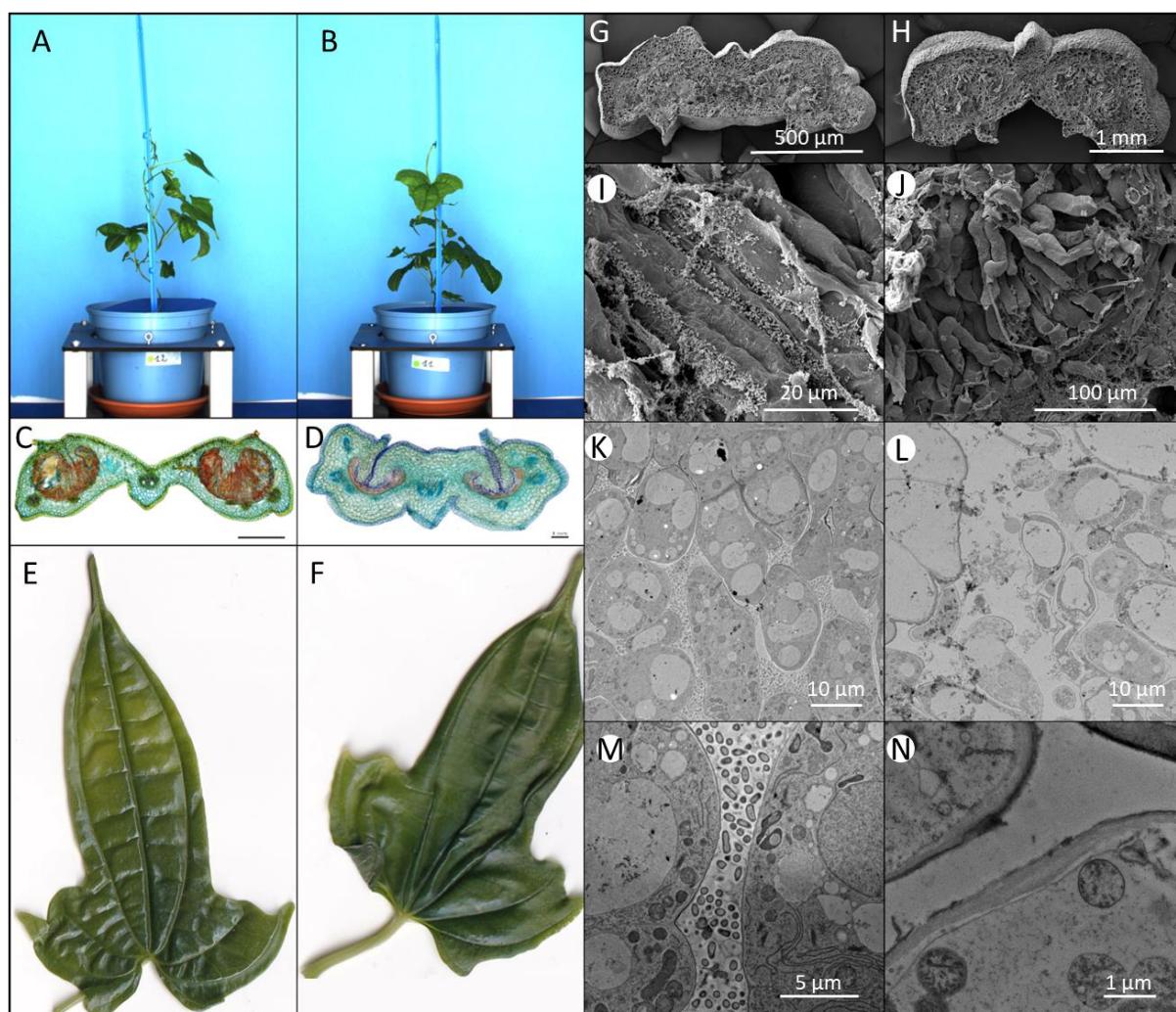
331

332

333 **Table 1: Effect of different antibiotics on the growth of *D. sansibarensis* and its bacterial symbiont *O.***
 334 ***dioscoreae* in vitro.**

Antibiotic	Concentration	Contact Time	Effect on plant growth	<i>O. dioscoreae</i> cfu/explant
Carbenicillin + cefotaxime	100 µg/ml	1 week	No effect	< 10 ²
		3 weeks	No effect	< 10 ⁰
	200 µg/ml	1 week	No effect	<10 ³
		3 weeks	No effect	0
Tetracycline	50 µg/ml	1 week	Explant ends turn brown. No growth.	<10 ³
		3 weeks	Explant ends turn brown. No growth.	0
Rifampicin	200 µg/ml	1 week	Explant ends turn brown. No growth.	<10 ²
		3 weeks	Explant ends turn black. Few emerging leaves are chlorotic.	0

335


336 **Table 2: Efficiency comparison between node cutting sterilization protocols.**

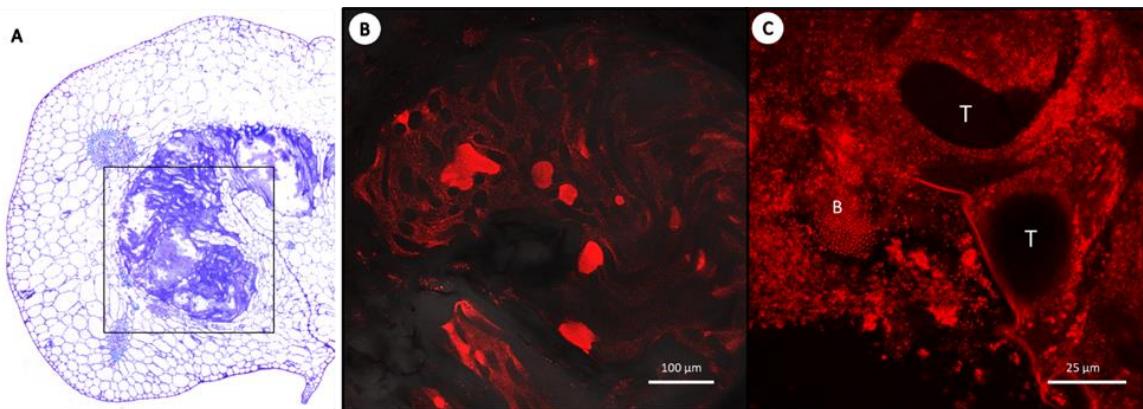
	BLEACH + ETHANOL PROTOCOL	PPM protocol
Number of plants treated	89	105
Number of visibly contaminated cultures	34 (38.29%)	12 (10.17%)
Number of dead explants	5 (5.62%)	0 (0%)
Aposymbiotic plants	18 (31.12%)	47 (49.33%)

337

338 **Microscopic differences between aposymbiotic and symbiotic *D. sansibarensis***

339 To investigate whether the loss of the symbiotic bacteria induces phenotypic or developmental
340 changes, we generated plants through node cuttings using the “PPM” protocol as described above.
341 Leaves of plants were tested after 6 weeks for the presence of *O. dioscoreae* in leaf glands.
342 Aposymbiotic, as well as plants which remained symbiotic despite antibiotic treatment, were
343 transferred to sterile containers and kept in sterile conditions without antibiotics. Leaves of
344 aposymbiotic plants displayed fully-formed leaf glands, visually indistinguishable from those of the
345 symbiotic plants (Figure 1A-B). Neither symbiotic nor aposymbiotic plantlets showed chlorosis or
346 developmental abnormalities (Figure 1E-F). Microscopically, leaf glands of symbiotic plants were
347 filled with bacteria embedded in extracellular matrix or mucus, with numerous trichomes projecting
348 from the epithelium to the inside of the gland (Figure 1C). In contrast, aposymbiotic glands appeared
349 somewhat flat, with no visible bacteria and fewer trichomes (Figure 1D). Cross-sections of leaf
350 acumens imaged by scanning electron microscopy looked undistinguishable at low magnification
351 (Figure 1G-H), but the lack of bacteria and mucus in aposymbiotic leaf glands became clear at higher
352 magnification (Figure 1I-J). Trichomes were visible in both sample types, but only symbiotic samples
353 contained bacteria (Figure 1K-L). Trichomes in aposymbiotic acumens appeared less electron-dense
354 under the transmission electron microscope, with large vacuoles and sometimes visible loss of
355 membrane integrity (Figure 1K-L). Golgi, vesicles and endoplasmic reticula (ER), components that
356 suggest interaction between the host and the symbiont, were less abundant in aposymbiotic glands
357 (Figure 1M-N).

358


359 **Figure 1: Phenotypic differences between symbiotic (left) and aposymbiotic (right) *D. 360
361
362
363
364
365
366
367* *sansibarensis*.** **A.** Plants inoculated with *O. dioscoreae* or **B.** with a mock solution. **C.** Cross-section of *D. sansibarensis* gland with triple A staining shows glands with trichomes, mucus and bacteria (orange) in symbiotic glands , and **D.** glands of aposymbiotic plants; **E.** Leaves of symbiotic; **F.** aposymbiotic plants kept in gnotobiotic conditions. **G.** SEM cross-section picture of symbiotic and **H.** of aposymbiotic acumen. **I.** SEM detail picture of trichomes in the acumen being colonized by bacteria or **J.** aposymbiotic. **K.** TEM pictures of trichomes in the acumen, surrounded by bacteria in symbiotic glands or **L.** deteriorating in aposymbiotic glands (L). **M.** Close-ups TEM picture showing ER, Golgi, and plastids in the trichomes; and **N.** being mostly empty and containing plastids.

368

369 **Symbiont replacement by drop-infection on aposymbiotic plants**

370 We reasoned that aposymbiotic plants may be more amenable to colonization with exogenously 371 applied bacteria. To test this, we inoculated 10 aposymbiotic *D. sansibarensis* kept in sterile 372 containers with a 2 μ L drop of a cell suspension of *O. dioscoreae* strain R-71417, which was deposited 373 directly on the shoot apical bud (Figure S1). All plants were successfully colonized, and nine out of

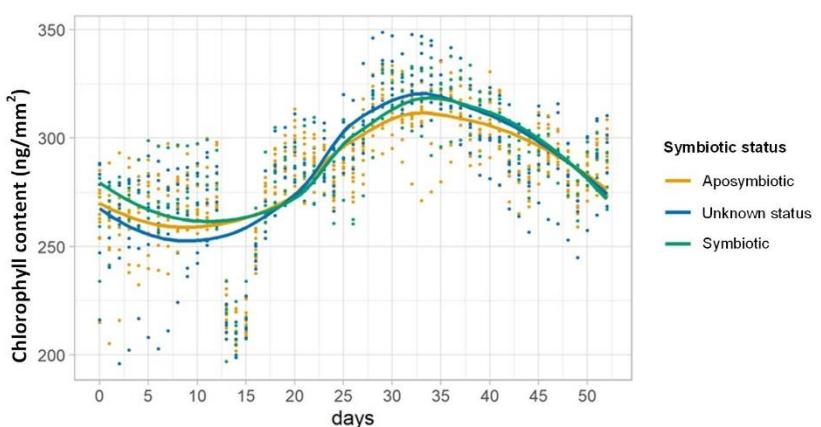
374 ten plants had grown new leaves three weeks after inoculation (Figure 2). Up to 95% of our plants
375 were successfully inoculated and the method rarely induced growth arrest in subsequent
376 experiments. No bacteria could be found in leaf glands under the point of inoculation.

377

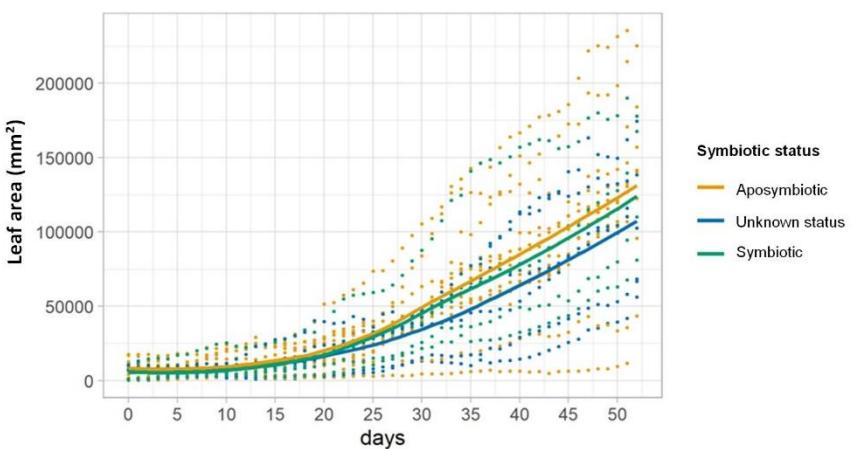
378 **Figure 2: Fluorescence microscopy of the symbiotic gland at the acumen** **A.** Overview of a TBO–
379 stained transverse section viewed under brightfield, showing one gland in the leaf drip-tip. **B.** Close–
380 up of the gland showing masses of *mCherry*-tagged bacteria (R-71417) in the leaf gland of *D.*
381 *sansibarensis*. **C.** Close up showing bacteria (B) surrounding the trichomes (T).

382

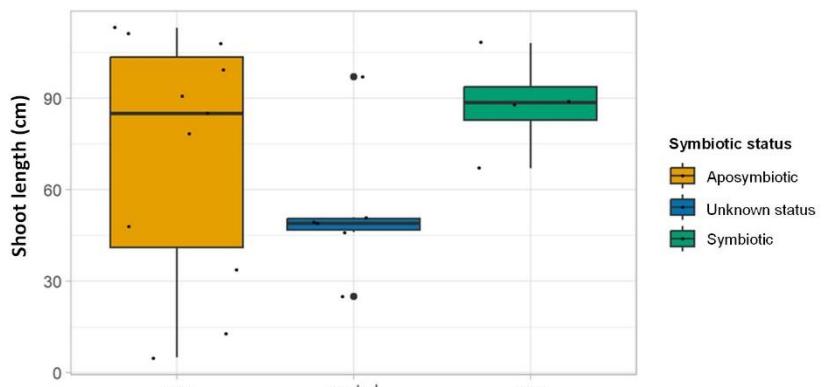
383 **Aposymbiotic *D. sansibarensis* develop normally under gnotobiotic conditions**


384 To determine if the loss of symbiotic bacteria affected seedling growth and development, we
385 inoculated aposymbiotic plants with cell suspensions of *O. dioscoreae* R-71412 or a sterile mock
386 solution. After 4 weeks of growth in gnotobiotic conditions, we did not detect significant differences
387 between aposymbiotic and re-inoculated plants for any of the morphological and physiological
388 parameters we measured, including leaf area, length of the forerunner tip, stem length (Figure S2) as
389 well as chlorophyll, anthocyanins, flavonoids content and nitrogen nutritional status (Figure S3).

390 **No phenotypic difference between aposymbiotic and symbiotic *D. sansibarensis* in the**
391 **greenhouse**


392 To follow development of aposymbiotic and symbiotic plants further in semi-natural conditions, we
393 planted 24 PPM-treated plantlets into open pots filled with soil. These plants were tested after a
394 short period of recovery, and 14 plants were certified aposymbiotic, while 10 still tested positive for
395 bacteria in the leaf glands. Aposymbiotic plants were inoculated in the greenhouse in non-sterile
396 conditions by shoot tip inoculation of a saline solution or a bacterial suspension as described above

397 and continuously monitored for 52 days in a high-throughput plant phenotyping facility. Inoculation
398 by dripping suspensions of *O. dioscoreae* on aposymbiotic shoot tips in the greenhouse was
399 inefficient, with only 4/7 plants successfully inoculated (Table S3). Unexpectedly, 4 plants which
400 started out as aposymbiotic tested positive to *O. dioscoreae* and/or other bacteria in later stages of
401 the experiment. In addition, 5 plants that tested positive for *O. dioscoreae* at the beginning of the
402 experiment also produced bacteria-free leaf glands. Because of their uncertain status, these plants
403 were labeled as “unknown status” in our analyses and treated as a third category. Although highly
404 variable between individuals, the number of leaves and length of the stems did not differ significantly
405 between aposymbiotic, symbiotic and “unknown status” plants (Figure 3 B and C). Similarly, we did
406 not detect differences between symbiotic or aposymbiotic plants with regards to chlorophyll
407 fluorescence (Figure 3A).


A

B

C

408

409 **Figure 3. Macroscopic phenotypes of aposymbiotic and symbiotic *D. sansibarensis*.** A. Daily mean
410 chlorophyll content of individual plants tracked over a period of 30 days post inoculation estimated
411 through RGB values of plant images. Trajectories of aposymbiotic plants are shown in yellow,
412 symbiotic plants in green and plants with unknown status (see text for details) in blue. B. Total leaf
413 area of individual plants tracked over a period of 30 days post inoculation. Color scheme is identical
414 as above. C. Stem length (in cm) of plants measured at the end of the experiment. Data from
415 aposymbiotic plants are shown in yellow, symbiotic plants in green and plants of unknown status in
416 blue (see main text for details). The distributions of values between the 3 categories of plants are
417 identical for each of the 3 parameters (Wilcoxon rank sum test $p > 0.05$).

418

419 **Discussion**

420 We explore in this work the experimental tractability of the *D. sansibarensis/O. dioscoreae* association to answer fundamental questions about heritable symbiosis in plants. The ability to culture both partners separately and to manipulate infections is essential for the association to serve as an experimental model system for leaf symbiosis. Our initial attempts to introduce exogenous *O. dioscoreae* into symbiotic *D. sansibarensis* shoot apical buds or bulbils without first clearing the native symbionts were unsuccessful, and harsh inoculation techniques such as submerging, stabbing, or vacuum infiltration resulted in death or growth arrest of the plant. This indicates that exogenously-applied bacteria may be unable to reach the inside of the shoot tip, either due to host-derived barriers or spatial exclusion by resident *O. dioscoreae*. In contrast, aposymbiotic plants obtained from explants treated with an antimicrobial cocktail and kept in sterile conditions were amenable to inoculation with exogenous *O. dioscoreae*, with high infection rates (>95%) from simply applying a bacterial suspension on shoot tips. Together, these results suggest that prior infection with *O. dioscoreae* precludes other bacteria from colonizing leaf glands. Whether this is due to bacteria-bacteria competition, antagonistic interactions, or a host response remains to be elucidated.

434 Aposymbiotic plants were also macroscopically indistinguishable from symbiotic plants. Both types of plants seemed healthy with no signs of chlorosis, with normal growth and development (Figure 1, Figure 3 and Figure S2). Leaf glands that host bacteria in symbiotic plants were fully formed in aposymbiotic plants although they appeared somewhat thinner and less turgid than symbiotic glands (Figure 1). This is in contrast to leaf nodule symbiosis in the *Psychotria* genus, where leaf nodules scattered in the lamina seem to form in response to the presence of the bacterial symbiont (17). Microscopically, glands of aposymbiotic leaves did not contain visible bacteria or copious amounts of mucus as with symbiotic plants. Whether this mucus is plant-produced, bacteria-produced or both is not known. Leaf glands differed in appearance from symbiotic ones. Overall, they showed fewer Golgi, ER and vesicles (Figure 1 K-N). Some aposymbiotic trichomes seemed atrophied, a phenotype also described in earlier work (30). The fact that bacteria-free leaf glands formed normally in aposymbiotic *D. sansibarensis* offers attractive opportunities to investigate the host response to a symbiotic partner in this specialized organ.

447 Interestingly, symbiotic and aposymbiotic plants were phenotypically indistinguishable. We did not 448 detect significant defects in plant development or photosynthetic functions between plants 449 harboring *O. dioscoreae* or aposymbiotic controls. This is in stark contrast to leaf nodule symbiosis in

450 *Ardisia crenata*, *Psychotria kirkii* and *Psychotria umbellata*, where loss of symbiotic bacteria is
451 invariably linked to severe developmental defects and eventually death (13,17,20,59). This is also
452 contrary to previous observations on the *Dioscorea* leaf symbiosis by Miller and Reporter. These
453 authors reported that the association between the plant and the (then unidentified) leaf gland
454 bacteria was facultative, but bacteria-free plants were small and appeared chlorotic (30). This
455 difference with our observations may be explained by the fact that Miller and Reporter grew plants
456 from sterilized bulbils in sterile glass jars with seals that may affect gas exchange. These same
457 authors also claim to have obtained bacteria-free plants by surface sterilization of bulbils with bleach
458 and ethanol. Despite our best attempts to replicate their protocols, surface sterilization of bulbils
459 never resulted in aposymbiotic plants in our hands. Our results suggest instead that *O. dioscoreae*
460 does not play a major role in plant development. Previous analysis of the *O. dioscoreae* genome also
461 ruled out a role in mineral nutrition, such as nitrogen fixation (23). The association with *O. dioscoreae*
462 is ubiquitous throughout the geographic range of *D. sansibarensis* and to our knowledge
463 aposymbiotic *D. sansibarensis* are not found in nature (26), indicating a strong mutualistic
464 interaction. Together, this indicates that the fitness benefit provided to the partners of the *D.*
465 *sansibarensis/O. dioscoreae* may be contingent on environmental factors, such as biotic or abiotic
466 stresses. Remarkably, the leaf glands of aposymbiotic plants left in non-sterile conditions may
467 become colonized by bacteria other than *O. dioscoreae* (Table S3). This indicates that the association
468 may not be strictly controlled, or least that the mechanisms which control colonization of leaf glands
469 are not sufficient to prevent opportunistic infections in the absence of *O. dioscoreae*. Whether
470 opportunistic associations with bacteria other than *O. dioscoreae* are stable in a single host or across
471 generations remains to be tested.

472 In conclusion, the ability to generate aposymbiotic *D. sansibarensis*, coupled with the ability to
473 culture and genetically manipulate *O. dioscoreae*, provides an interesting opportunity to investigate
474 vertically-transmitted symbioses in plants. To our knowledge, this is the only heritable plant
475 symbiosis known where both host and symbiont can be grown separately and where the symbiont
476 can be easily manipulated. Further exploiting this system could provide new insights into the
477 evolution of heritable leaf symbiosis and vertically-transmitted symbioses in general.

478 ACKNOWLEDGMENTS

479 We are grateful to the TRI-FRAIB imaging platform facilities, FR AIB 3450 CNRS-UTIII member of the
480 national infrastructure France-BioImaging supported by the French National Research Agency (ANR-
481 10-INBS-04). This work was supported by the UGent Special Research Fund under grant

482 BOFSTA2017002001 to AC. AC also acknowledges support from the French National Research Agency
483 under grant agreement ANR-19-TERC-0004-01 and from the French Laboratory of Excellence project
484 "TULIP" (ANR-10-LABX-41; ANR-11-IDEX-0002-02). The funders had no role in study design, data
485 collection and analysis, decision to publish, or preparation of the manuscript.

486 AUTHOR CONTRIBUTIONS

487 TA and AC designed the research; TA, FDM, SM, BH, OL, OC, M-FJ, GH and AIR carried out the
488 experiments. TA, AC, OL, M-FJ, GH, FMM and NP analyzed data; TA and AC wrote the manuscript
489 with input from all authors.

490 CONFLICTS OF INTEREST

491 The authors declare no conflict of interest.

492 DATA AVAILABILITY

493 The datasets generated and/or analyzed during the current study are available in the
494 recherche.data.gouv.fr public archive under <https://doi.org/10.57745/R0VPGY> (Phenotyping data of
495 plants used to generate Figure 3, Figure S2 and Figure S3).

496 REFERENCES

- 497 1. Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit
498 hole. *Proceedings of the National Academy of Sciences of the United States of America*. 2015
499 Aug 18;112(33):10169–76.
- 500 2. Douglas AE. Mycetocyte symbiosis in insects. *Biological reviews of the Cambridge Philosophical
501 Society*. 1989 Dec;64(4):409–34.
- 502 3. Lund MB, Kjeldsen KU, Schramm A. The earthworm-*Verminephrobacter* symbiosis: an emerging
503 experimental system to study extracellular symbiosis. *Frontiers in microbiology*. 2014 Jan
504 28;5:128.
- 505 4. Hosokawa T, Fukatsu T. Relevance of microbial symbiosis to insect behavior. *Current Opinion in
506 Insect Science*. 2020 Jun;39:91–100.
- 507 5. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants:
508 the *Sinorhizobium*–*Medicago* model. *Nature reviews Microbiology*. 2007 Aug;5(8):619.
- 509 6. Yang CJ, Hu JM. Bacterial Leaf Nodule Symbiosis in Flowering Plants. In: *Symbiosis* [Internet].
510 Everlon Cid Rigobelo. IntechOpen; 2018 [cited 2023 Jul 24]. Available from:
511 <https://www.intechopen.com/chapters/58848>

512 7. Lemaire B, Smets E, Dessein S. Bacterial leaf symbiosis in *Ardisia* (Myrsinoideae, Primulaceae):
513 molecular evidence for host specificity. *Res Microbiol.* 2011 Jun;162(5):528–34.

514 8. Carlier A, Fehr L, Pinto-Carbó M, Schäberle T, Reher R, Dessein S, et al. The genome analysis of
515 *Candidatus Burkholderia crenata* reveals that secondary metabolism may be a key function of
516 the *Ardisia crenata* leaf nodule symbiosis. *Environmental microbiology.* 2016 Sep 10;18(8):2507–
517 22.

518 9. Pinto-Carbó M, Gademann K, Eberl L, Carlier A. Leaf nodule symbiosis: function and transmission
519 of obligate bacterial endophytes. *Current Opinion in Plant Biology.* 2018 Aug;44:23–31.

520 10. Sinnesael A, Eeckhout S, Janssens SB, Smets E, Panis B, Leroux O, et al. Detection of *Burkholderia*
521 in the seeds of *Psychotria punctata* (Rubiaceae) – Microscopic evidence for vertical transmission
522 in the leaf nodule symbiosis. Kothe E, editor. *PLOS ONE.* 2018 Dec 14;13(12):e0209091.

523 11. Lersten NR, Horner HT. Development and structure of bacterial leaf nodules in *Psychotria*
524 *bacteriophila* Val. (Rubiaceae). *Journal of Bacteriology.* 1967;94(6):2027–36.

525 12. Lersten NR, Horner HT. Bacterial leaf nodule symbiosis in angiosperms with emphasis on
526 Rubiaceae and Myrsinaceae. *The Botanical Review.* 1976 Apr;42(2):145–214.

527 13. Miller IM, Scott A, Gardner IC. Leaf Nodule Development in *Psychotria kirkii* Hiern. (Rubiaceae).
528 *Annals of Botany.* 1983;791–802.

529 14. Yamada T. Studies on the leaf nodules: 1. On the historical researches of the leaf nodules. *Bulletin*
530 of the Faculty of Education of Chiba University. 1954;3(3):77–103.

531 15. Gordon JF. The nature and distribution within the plant of the bacteria associated with certain
532 leaf-nodulated species of the families Myrsinaceae and Rubiaceae. Thesis, Imperial Collee,
533 London. 1963.

534 16. Van Oevelen S, De Wachter R, Robbrecht E, Prinsen E. Induction of a crippled phenotype in
535 *Psychotria* (Rubiaceae) upon loss of the bacterial endophyte. *Bulg J Plant Physiol.* 2003;24:2–247.

536 17. Sinnesael A, Leroux O, Janssens SB, Smets E, Panis B, Verstraete B. Is the bacterial leaf nodule
537 symbiosis obligate for *Psychotria umbellata*? The development of a Burkholderia-free host plant.
538 Mergaert P, editor. *PLOS ONE.* 2019 Jul 16;14(7):e0219863.

539 18. Silver WS, Centifanto YM, Nicholas DJD. Nitrogen fixation by the leaf-nodule endophyte of
540 *psychotria bacteriophila*. *Nature.* 1963;199(4891):396–7.

541 19. Lemaire B, Vandamme P, Merckx V, Smets E, Dessein S. Bacterial Leaf Symbiosis in Angiosperms:
542 Host Specificity without Co-Speciation. Bereswill S, editor. *PLoS One.* 2011 Sep 7;6(9):e24430.

543 20. Carlier AL, Eberl L. The eroded genome of a *Psychotria* leaf symbiont: hypotheses about lifestyle
544 and interactions with its plant host. *Environmental Microbiology.* 2012 Oct;14(10):2757–69.

545 21. Sieber S, Carlier A, Neuburger M, Grabenweger G, Eberl L, Gademann K. Isolation and Total
546 Synthesis of Kirkamide, an Aminocyclitol from an Obligate Leaf Nodule Symbiont. *Angewandte*
547 *Chemie International Edition.* 2015 Jun 26;54(27):7968–70.

548 22. Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, et al. Evidence of
549 horizontal gene transfer between obligate leaf nodule symbionts. *The ISME Journal*. 2016 Sep
550 15;10(9):2092–105.

551 23. Carlier A, Cnockaert M, Fehr L, Vandamme P, Eberl L. Draft genome and description of *Orrella*
552 *dioscoreae* gen. nov. sp. nov., a new species of *Alcaligenaceae* isolated from leaf acumens of
553 *Dioscorea sansibarensis*. *Systematic and Applied Microbiology*. 2017 Jan;40(1):11–21.

554 24. De Meyer F, Danneels B, Acar T, Rasolomampianina R, Rajaonah MT, Jeannoda V, et al.
555 Adaptations and evolution of a heritable leaf nodule symbiosis between *Dioscorea sansibarensis*
556 and *Orrella dioscoreae*. *The ISME Journal*. 2019 Jul 15;13(7):1831–44.

557 25. Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B, Bellaire A, et al. The Potato Yam
558 Phyllosphere Ectosymbiont *Paraburkholderia* sp. Msb3 Is a Potent Growth Promotor in Tomato.
559 *Frontiers in Microbiology*. 2020 Apr;11:581.

560 26. Danneels B, Viruel J, McGrath K, Janssens SB, Wales N, Wilkin P, et al. Patterns of transmission
561 and horizontal gene transfer in the *Dioscorea sansibarensis* leaf symbiosis revealed by whole-
562 genome sequencing. *Current Biology*. 2021 Jun;31(12):2666–2673.e4.

563 27. Viruel J, Segarra-Moragues JG, Raz L, Forest F, Wilkin P, Sanmartín I, et al. Late Cretaceous–Early
564 Eocene origin of yams (*Dioscorea*, *Dioscoreaceae*) in the Laurasian Palaearctic and their
565 subsequent Oligocene–Miocene diversification. *Journal of Biogeography*. 2016 Apr;43(4):750–62.

566 28. Rao AN, Tan AS. Shoot apex and bulbil development in *Dioscorea sansibarensis* Pax. *Botanical*
567 *Journal of the Linnean Society*. 1976;72(4):285–98.

568 29. Young Orr M. The leaf glands of *Dioscorea macroura* Harms. *Notes from the Royal Botanical*
569 *Garden, Edinburgh*. 1923;XIV:57–72.

570 30. Miller IM, Reporter M. Bacterial leaf symbiosis in *Dioscorea sansibarensis*: morphology and
571 ultrastructure of the acuminate leaf glands. *Plant, Cell and Environment*. 1987 Jul;10(5):413–24.

572 31. Acar T, Moreau S, Coen O, De Meyer F, Leroux O, Beaumel M, et al. Motility-Independent
573 Vertical Transmission of Bacteria in Leaf Symbiosis. *mBio*. 2022 Aug 30;0(0):e01033-22.

574 32. Thorpe TA. History of plant tissue culture. Vol. 37, *Molecular Biotechnology*. Mol Biotechnol;
575 2007. p. 169–80.

576 33. Sauer DB. Disinfection of Seed Surfaces with Sodium Hypochlorite. *Phytopathology*.
577 1986;76(7):745.

578 34. Davoudpour Y, Schmidt M, Calabrese F, Richnow HH, Musat N. High resolution microscopy to
579 evaluate the efficiency of surface sterilization of *Zea Mays* seeds. *PLOS ONE*. 2020
580 Nov;15(11):e0242247.

581 35. Miché L, Balandreau J. Effects of Rice Seed Surface Sterilization with Hypochlorite on Inoculated
582 *Burkholderia vietnamiensis*. *Applied and Environmental Microbiology*. 2001 Jul;67(7):3046–52.

583 36. Lindsey BE, Rivero L, Calhoun CS, Grotewold E, Brkljacic J. Standardized method for high-
584 throughput sterilization of *Arabidopsis* seeds. *Journal of Visualized Experiments*. 2017
585 Oct;2017(128):e56587.

586 37. Ganley RJ, Newcombe G. Fungal endophytes in seeds and needles of *Pinus monticola*.
587 Mycological Research. 2006 Mar;110(3):318–27.

588 38. Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL. Diversity of endophytic
589 bacteria from *Eucalyptus* species seeds and colonization of seedlings by *Pantoea agglomerans*.
590 FEMS Microbiology Letters. 2008 Oct;287(1):8–14.

591 39. Díaz Herrera S, Grossi C, Zawoznik M, Groppa MD. Wheat seeds harbour bacterial endophytes
592 with potential as plant growth promoters and biocontrol agents of *Fusarium graminearum*.
593 Microbiological Research. 2016 May;186–187:37–43.

594 40. Li H, Parmar S, Sharma VK, White JF. Seed Endophytes and Their Potential Applications. Seed
595 Endophytes: Biology and Biotechnology. 2019 Apr;35–54.

596 41. Robbins WJ. Cultivation of Excised Root Tips and Stem Tips Under Sterile Conditions. Botanical
597 Gazette. 1922 May;73(5):376–90.

598 42. White PR. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant
599 Physiology. 1934 Jul;9(3):585–600.

600 43. White PR. Controlled Differentiation in a Plant Tissue Culture. Bulletin of the Torrey Botanical
601 Club. 1939;66(8):507–13.

602 44. Bhojwani SS, Razdan MK. Plant Tissue Culture: Theory and Practice. Elsevier; 1996. 767 p.

603 45. Campbell AI. Apple virus inactivation by heat therapy and tip propagation. Nature.
604 1962;195:529–529.

605 46. Hendrina Brants D, Vermeulen H. Production of virus-free freesia's by means of meristem
606 culture. Netherlands Journal of Plant Pathology. 1965 Jan 1;71(1):25–7.

607 47. ten Houten JG, Quak F, van der Meer FA. Heat treatment and meristem culture for the
608 production of virus-free plant material. Netherlands Journal of Plant Pathology 1968 74:1. 1968
609 Jan;74(1):17–24.

610 48. Pollock K, Barfield DG, Shields R. The toxicity of antibiotics to plant cell cultures. Plant Cell
611 Reports. 1983 Feb;2(1):36–9.

612 49. Mathias RJ, Boyd LA. Cefotaxime stimulates callus growth, embryogenesis and regeneration in
613 hexaploid bread wheat (*Triticum aestivum* L em. thell). Plant Science. 1986;46(3):217–23.

614 50. Shields R, Robinson SJ, Anslow PA. Use of fungicides in plant tissue culture. Plant Cell Reports.
615 1984 Feb;3(1):33–6.

616 51. Simmons CW, Vandergheynst JS, Upadhyaya SK. A model of *Agrobacterium tumefaciens* vacuum
617 infiltration into harvested leaf tissue and subsequent in planta transgene transient expression.
618 Biotechnology and bioengineering. 2009 Feb;102(3):965–70.

619 52. Alizadeh S, Mantell SH, MariaViana A. In vitro shoot culture and microtuber induction in the
620 steroid yam *Dioscorea composita* Hemsl. Plant Cell, Tissue and Organ Culture. 1998;53(2):107–
621 12.

622 53. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-
623 source platform for biological-image analysis. *Nat Methods*. 2012 Jul;9(7):676–82.

624 54. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna,
625 Austria: R Foundation for Statistical Computing; 2014. Available from: <http://www.r-project.org/>

626 55. Liang Y, Urano D, Liao KL, Hedrick TL, Gao Y, Jones AM. A nondestructive method to estimate the
627 chlorophyll content of *Arabidopsis* seedlings. *Plant Methods*. 2017;13:26.

628 56. Maviane-Macia F, Ribeyre C, Buendia L, Gaston M, Khafif M, Devoilles F, et al. Experimental
629 system and image analysis software for high throughput phenotyping of mycorrhizal growth
630 response in *Brachypodium distachyon*. *bioRxiv*; 2019. p. 779330. Available from:
631 <https://www.biorxiv.org/content/10.1101/779330v1>

632 57. King JL, Finer JJ, McHale LK. Development and optimization of agroinfiltration for soybean. *Plant*
633 *cell reports*. 2015 Jan;34(1):133–40.

634 58. Compton ME, Koch JM. Influence of plant preservative mixture (PPM)TM on adventitious
635 organogenesis in melon, petunia, and tobacco. In *Vitro Cellular & Developmental Biology - Plant*
636 2001 37:2. 2001;37(2):259–61.

637 59. Miller IM. Bacterial leaf nodule symbiosis. *Advances in Botanical Research Incorporating*
638 *Advances in Plant Pathology*. 1990;17:163–234.

639

640 **SUPPORTING INFORMATION**

641 **Figure S1: Method developed to make aposymbiotic plants and re-introduce a**
642 **bacterium of interest. (A)** Node cuttings were taken from adult plants and incubated for
643 8 hours in 5% PPM for initial sterilization. **(B)** Node cuttings were incubated in a mixture of
644 liquid MS, antibiotics and PPM for 3 weeks. **(C)** After 3-4 weeks, a bulbil (b) with its root
645 system became apparent. Multiple leaves have formed from the node and are providing
646 sugars to the plant. **(D)** The bulbil grows its own stem (S) that uses gravitropism to grow up
647 and after the emergence of two leaves, the apical bud becomes visible. **(E)** After confirmation
648 of being aposymbiotic by crushing and plating out the newly developed acumen(s), the plant
649 was re-inoculated with a bacterium of interest by dropping 2 μ l of the bacterial suspension on
650 the apical bud.

651

652 **Figure S2: Morphological parameters of aposymbiotic vs. symbiotic *D.***
653 ***sansibarensis* in gnotobiotic conditions.**

654 Wild-type colonized *D. sansibarensis* were inoculated by a *O. dioscoreae* R-71412 cell
655 suspension (Orrella) or a sterile 0.4% NaCl solution (MOCK) and grown for 4 weeks in
656 gnotobiotic conditions. Leaf surface area (A) and length of the forerunner tip containing the
657 bacterial glands (B) were measured for 3 leaves per plant, starting with the leaf closest to the
658 shoot tip (leaf 1, not shown). C. Total stem length measured from the crown to the shoot tip.

659 Data from 2 independent experiments are shown separately. Data from mock-inoculated
660 plants are shown in orange, and in blue for *O. dioscoreae*-inoculated plants. The
661 distributions of values between the *O. dioscoreae*- or mock-inoculated plants are identical
662 for each of the 3 parameters (Wilcoxon rank sum test $p > 0.05$).
663

664 **Figure S3: Physiological parameters of aposymbiotic vs. symbiotic *D.*
665 *sansibarensis* in gnotobiotic conditions.**

666 Wild-type colonized *D. sansibarensis* were inoculated by a *O. dioscoreae* R-71412 cell
667 suspension (Orrella) or a sterile 0.4% NaCl solution (MOCK). Physiological parameters were
668 measured using a hand-held optical meter after 4 weeks of growth in gnotobiotic conditions.
669 Parameters measured include **A**. Chlorophyl content (Chl); **B**. Anthocyanins index, measured
670 as a function of green light absorbed by the sample; **C**. Flavonoids index (Flav), measured as
671 a function of UV light absorbed by the sample and **D**. Nitrogen Balance Index (NBI) is
672 measured as the ratio of Chl and Flav and is an indicator of C/N allocation changes due to N-
673 deficiency. Data from 2 independent experiments are shown separately. Data from mock-
674 inoculated plants are shown in orange, and in blue for *O. dioscoreae*-inoculated plants. The
675 distributions of values between the *O. dioscoreae*- or mock-inoculated plants are identical
676 for each of the 4 parameters (Wilcoxon rank sum test $p > 0.05$).
677

678 **Table S1. Bacterial species used in this study**

679 **Table S2. Minimum inhibitory concentrations of biocidal products on different**
680 ***O. dioscoreae* strains**

681 **Table S3. Symbiotic status of plants used in phenotyping experiment.** APO=
682 aposymbiotic status, SYM= symbiotic status, check-ups quantified the amount of *O.*
683 *dioscoreae* found in new leaf acumens. Not= Majority isolates not identified as *O. dioscoreae*.
684 Last column gives the eventual identity given to the sample for further analysis: APO=
685 aposymbiotic plant, unknown= colonized by bacteria other than *O. dioscoreae*, Orrella
686 *dioscoreae* = colonized by *Orrella dioscoreae*