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Abstract

Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some
plants. The precise mechanisms underlying transmission of functions of these associations are often
difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the
case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems.
Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea
sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary
symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary
symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of
bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial
cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf
forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but
microscopic differences between symbiotic and aposymbiotic glands highlight the influence of
bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the
first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont

can be genetically altered and reintroduced to the host.
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Introduction

Heritable symbioses are permanent associations between two or more partners where at least one
partner is directly (or vertically) transmitted to the next generation (1). Often, species involved in
heritable symbioses evolve a form of co-dependency, a phenomenon known as Muller’s ratchet, that
can result in hosts and symbionts becoming inseparable (1). Heritable symbioses can be found
throughout the tree of life, and are especially common in invertebrates (2—4). Plants commonly
engage in horizontally-transmitted symbioses, with established model systems such as the
Sinorhizobium—Medicago symbiosis contributing to a better understanding of the mechanisms
underlying nitrogen-fixing root nodule symbiosis (5). However, there are few well-characterized
hereditary associations between plants and bacteria, and the mechanisms enabling transmission
and/or partner specificity are mostly unknown. In angiosperms, phyllosphere symbioses have been
identified or suspected in the Rubiaceae, Primulaceae, Styracaceae and Dioscoreaceae families (6). In
particular, symbioses in Ardisia (Primulaceae), Psychotria (Rubiaceae) and Pavetta (Rubiaceae) have
been relatively well-studied (7-10). The function and transmission of leaf symbiosis are not well
understood, but the shoot tip has long been suspected to be an important structure in leaf symbiosis.
In leaf-nodulated Rubiaceae and Primulaceae species, a colony of obligate symbiotic bacteria residing
near the apical meristem may serve as the source of infection for every new developing leaf and
ovary, and thus the seeds (11-13). Removal of bacterial symbionts from host plants in heritable leaf
symbiosis has been studied extensively, and often leads to a stunted phenotype and death (14—

16). More recently, Sinnesael et al. showed that it was possible to grow the leaf-nodulated Psychotria
umbellata without its Candidatus Caballeronia sp. symbiont in vitro, but aposymbiotic plants did not
survive in soil (17). Despite a sizeable body of work on leaf symbiosis in the Primulaceae and
Rubiaceae families, plants are difficult to maintain due to long generation times, and bacterial
symbionts are usually unculturable and genetically intractable (7-9,17-22). Because symbiotic
bacteria of Psychotria and Ardisia cannot be cultured and host development is dependent on
symbiotic status, many questions about transmission, function and the mechanisms underlying the
specificity of leaf symbiosis remain unanswered. In contrast, Orrella dioscoreae, the bacterial
symbiont of Dioscorea sansibarensis, has been isolated from leaves and is a notable exception

(23,24).

D. sansibarensis is the only monocotyledonous plant known so far to engage in leaf symbiosis,
although related species may host similar epiphytes (25,26). The species likely originates from
Madagascar and continental Africa and is invasive in parts of the US and South-East Asia (27). In D.

sansibarensis, The perennial vine thrives in hot and humid conditions and reproduces dominantly via
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bulbils (round, vegetative structures 2-3 cm in diameter) and tubers (28). A single leaf gland forms at
the acumen of the leaf and contains a dense mass of bacteria (29). The D. sansibarensis leaf gland,
also called forerunner tip, forms by folding of the lamina, resulting in hollow channels which
subsequently fill with bacteria (30,31). Trichomes emerging from the epidermis protrude into the
lumen of the glands and seem to be an important site for the symbiotic interaction. The function of
the symbiosis remains unknown, although nitrogen fixation has been ruled out (30). The bacterial
symbiont was recently identified as Orrella dioscoreae (O. dioscoreae) and in contrast to most leaf
symbionts, can be isolated and cultivated outside its host (23,24). Furthermore, the ease of culture,
lack of resistance to antibiotics, and amenability to transformation by electroporation or conjugation
make O. dioscoreae an attractive model system to understand the functions required for the

endophytic lifestyle of leaf symbiotic bacteria (23,24).

Establishing the D. sansibarensis/O. dioscoreae as an experimental model requires manipulating the
symbiotic status of the plant. Because pathogen-free plants are of high interest for the horticulture
industry, several methods have been developed to control fungal and bacterial contaminants in
plants or tissue culture (32). Seed surface sterilization is a popular technique used in crops and
Arabidopsis thaliana to remove pathogens from seeds (33-36). This is done by treating seeds with
solutions of sodium hypochlorite and/or ethanol, but surface treatment is often insufficient to rid the
seeds of endophytic microorganisms, which are presumably embedded in plant tissue out of reach of
disinfectants (37—40). To remove recalcitrant contaminants, more effective methods make use of
tissue culture followed by regeneration of whole plants. For example, plant structures containing
meristematic cells (e.g. buds or embryos) may be isolated and grown under sterile conditions with
auxins and/or cytokinins to promote cellular growth and differentiation (41-44). This type of
vegetative propagation combined with heat treatment is effective for clearing some viruses from
germplasms (45-47), but may lack efficacy against fungal or bacterial endophytes. Antibiotics are an
effective mean of clearing bacteria and fungi, but plant tissue cultures are often susceptible to
damage from some commonly used antibiotics (48). However, 3-lactam antibiotics such as
cefotaxime or carbenicillin are well tolerated by wheat tissue culture (49) and fungal contamination
may be controlled using carbendazim, fenbendazole and imazalil (50). In this study, we tested and
developed an effective series of protocols to obtain aposymbiotic D. sansibarensis. Aposymbiotic
plants developed normally under controlled conditions, and could be inoculated by exogenous O.
dioscoreae strains using simple methods. Altogether, these properties make the Dioscorea-Orrella

symbiosis an appealing candidate for a heritable leaf symbiosis model system.
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96 Material and methods

97  Plant culture and propagation

98  Original plant material was obtained from the greenhouse of the Botanical Garden at the University

99  of Ghent (LM-UGent) in Ghent, Belgium. Chemicals and reagents were purchased from Merck unless
100  otherwise indicated. Plants used throughout in experiments were maintained in the greenhouse of
101 the Laboratory of Plants Microbes and Environment Interactions (LIPME) in Castanet-Tolosan, France.
102 Unless otherwise indicated, plants were grown in climate chambers at 28°C, 70% humidity and a light

103  cycle of 16h light (210 pmol/m?/s), 8h dark.

104  Surface sterilization and inoculation of bulbils

105 Inoculation of bulbils by bacterial submersion was done as follows: bulbils were peeled and sterilized
106 in 0.15% carbendazim for 2 hours, washed 3 times with sterile water, submerged in ethanol (70%
107  v/v) for 5 minutes, transferred to sodium hypochlorite (1.4% v/v) + 0.4% v/v Tween 20 for 15 minutes
108  and washed 3 times with sterile distilled water. Bulbils were incubated in % MS + gelzan (4 g/L) at
109  28°Cin sterile Microbox containers (SacO2, Belgium) with a 16h light/8h dark period. Bulbils were
110 inoculated with O. dioscoreae R-71416 (Table S1) as follows: bacterial cultures were grown in Tryptic
111 Soy Broth (TSB) to exponential phase, centrifuged (7500 rpm, 10 min) and washed twice with sterile
112 0.5x Phosphate buffered saline (0.5x PBS: 4 g/L NaCl, 0.1 g/L KCl, 0.72 g/L Na;HPQg, 0.12 g/L KH,PO,,
113 pH 7.4). Cell suspensions were normalized to ODggonm = 0.2 and bulbils were submerged in 50 ml
114  bacterial suspension for three hours while shaking (100 rpm) at room temperature. Bulbils were then
115  placed in sterile Microbox containers (SacO,, Belgium) with 50 ml half-strength Murashige and Skoog
116 (MS) medium + Gelzan 4g/L and incubated at 28°C, in a 16h/8h routine. Alternatively, O. dioscoreae
117  cell suspensions prepared as above were injected directly into surface-sterilized bulbils with a 26G

118 needle. Bulbils were incubated in Microboxes as stated above.

119  Direct inoculation of shoot tips

120 Plants were grown from sterilized bulbils in sterile conditions until emergence of the shoot. The
121 shoot tip was sprayed with gentamycin dissolved in water (20 mg/ml, Méridis France). Plants were
122 inoculated with bacteria as follows: bacterial cultures grown in TSB to about ODggonm = 0.5 were
123  centrifuged (7500 rpm, 10 min) and washed twice with sterile 0.5x PBS. Cell suspensions were

124  normalized to ODgsoonm = 0.2. Different methods were used to inoculate the shoot tip. Dipping: the
125  biggest leaf at the apical bud was gently pushed aside and a small scratch was made on the apical
126  bud with a 27 G needle. The apical shoot tip was dipped in the bacterial suspension (ODggonm = 0.2)

127  for 15 seconds. Stabbing: the apical bud was stabbed with a tuberculin needle dipped in the bacterial

5
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128  suspension. Sonicating: dissected apical buds were submerged in a bacterial suspension in an 2 mL
129  microfuge tube and placed in a Branson Ultrasonic 2800 sonication bath using a floating device for 2
130  minutes. Vacuum infiltration: Dipping the apical bud in a liquid bacterial suspension of strain R-71416
131 followed by vacuum infiltration (51) in a dessicator maintained at 0.53 bar for two minutes. All plants

132  were put in sterile microboxes in a 1:1 (v/v) pumice/perlite mixture at 28°C, 16h/8h light/dark cycle.

133 Propagation through node cuttings

134 Micropropagation of D. sansibarensis was done using a protocol adapted from (52). Node cuttings
135  were collected from greenhouse-grown plants 2-4 months after emergence. In the ‘bleach + ethanol’
136  protocol, explants were first washed with tap water, surface sterilized by submerging for 2 hours in a
137 sterile solution of 0.15% w/v carbendazim + 0.4% v/v Tween 20, washed 3 times with sterile distilled
138 water, then soaked in 70% v/v ethanol for 5 minutes, and finally 1.4% w/v sodium hypochlorite +
139  0.4% v/v Tween 20 for 15 minutes. Explants were then washed 3 times in sterile distilled water).

140  Alternatively, fresh explants were soaked in 3 x concentrated MS medium supplemented with 5%
141 (v/v) solution of Plant Preservative Mixture (PPM, Plant Cell Technology, USA) with shaking at 100
142 rpm for 8 hours at 28°C (‘PPM protocol’). After 8 hours, the bleached extremities of the explants

143  were cut off with a sterile scalpel. Explants were placed in sterilized growth medium (MS: 4.4g/L, 2%
144 sucrose, vitamins: glycine (2mg/L), myo-inositol (100 mg/L), nicotinic acid (0.5mg/L), pyridoxine-HCl
145  (0.5mg/L), thiamine-HCI (0.1mg/L) and L-cystein (20mg/L), pH=5.7), supplemented with the

146  antibiotics carbenicillin (200 pg/ml), cefotaxime (200 pg/ml) and PPM (0.2% v/v) and incubated at
147  28°C, 16h of light for 10 days. Medium was refreshed after 10 days, including supplements and

148  antibiotics. After 21 days of incubation, the medium was replaced with growth medium containing
149 MS, sucrose, PPM and vitamins as described above but without the antibiotics. Cuttings were

150  transferred in sterile Magenta boxes (model GA7, Merck) incubated at 28°C, 16h of light until

151 rooting.
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152  Bacterial strains and culture conditions

153  O. dioscoreae strains were grown in tryptic soy agar (TSA) or broth (TSB) aerobically at 28°C unless
154 specified otherwise. Media were supplemented with gentamicin (20 pg/mL) and/or nalidixic acid (30
155 pug/mL) as appropriate. O. dioscoreae strain R-71412 is a spontaneous nalidixic acid-resistant strain
156 derived from O. dioscoreae LMG 29303" (24). O. dioscoreae strains R-71416 and R-71417 are

157  derivatives of strain R-71412 with a chromosomally-encoded gfp or mCherry reporter genes,

158  respectively (31). O. dioscoreae strains R-67173, R-67584, R-67088 and R-67090 are natural isolates

159  described in a previous publication (23).
160

161 Minimal inhibitory concentrations assay on O. dioscoreae

162 Liquid cultures grown in TSB (R-67173, R-67584, R-67088, R-67090 and LMG 29303") in exponential
163  phase were diluted to ODsponm = 0.001 (~10° CFU/ml). Serial dilutions of antibiotics were prepared in
164 sterile water (1024-512-256-128-64-32-16-8 pg/ml) and liquid cultures were added in a 1:1 ratio to

165  the antibiotic solution. Samples were well mixed and incubated at 28°C for 48 hours.

166  Transmission electron microscopy (TEM)

167  Samples were fixed in 2% w/v glutaraldehyde + 0.5% w/v paraformaldehyde (v/v) in a 50 mM sodium
168 cacodylate buffer, pH 7.2 at room temperature and under vacuum. After 4 hours, the fixative

169  solution was refreshed and samples were kept at 4°C for 26 days. Samples were rinsed twice in 50
170  mM sodium cacodylate buffer (pH 7.2) and postfixed in 2% w/v osmium tetroxide in water for 1.5
171 hours at room temperature. Samples were rinsed three times in demineralized water and

172 dehydrated using a graded water/ethanol series (10, 20, 30, 40, 50, 60, 70, 80, 90, 96% (v/v)).

173  Samples were first incubated in propylene oxide (PO) (EMS) twice for 1 hour, then in a PO/Epon

174  series over several days at 4°C, positioned in their silicone embedding molds and polymerized for 48
175  hours at 60°C. Thin sections were cut using a Reichert Ultracut E (Leica Microsystems) and contrasted
176  using Uranyless and lead citrate (Delta Microscopies, France). Samples were observed using a Hitachi

177 HT7700 instrument.

178  Scanning electron microscopy (SEM)

179  Samples were fixed in 2.5% v/v glutaraldehyde in 50 mM cacodylate sodium buffer (pH 7.2) for 3
180  hours at room temperature (RT) and transferred to 4°C for 2 days. They were dehydrated using a
181  graded water/ethanol series (10, 20, 30, 40, 50, 60, 70, 80% (v/v)). The samples were completely
182  dehydrated using a critical point drying apparatus (Leica EM CPD 300) using CO; as transitional
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183 medium, and a platinum coating was applied. Samples were examined using a FEG FEI Quanta 250

184  instrument.

185  Light microscopy

186 Samples were fixed in 4 % v/v formaldehyde in PEM buffer (100 mM 1,4-piperazinediethanesulfonic
187  acid, 10 mM MgS04, and 10 mM ethylene glycol tetra-acetic acid, pH 6.9) for 4h, thoroughly washed
188 in PBS and dehydrated using a graded ethanol series (30, 50, 70, 85, 100 % v/v). After gradual

189 infiltration with LR White acrylic resin (medium grade, London Resin Company, UK), samples were
190 embedded in polypropylene flat bottom molds at 37 °C for three days. Semi-thin sections of 300 nm,
191  cut using a Leica UC6 ultramicrotome equipped with a diamond knife, were dried onto polysine-
192 coated slides, stained with 1% w/v toluidine blue in 0.5% w/v sodium tetraborate for 5 seconds and
193  mounted in DePeX (VWR, Belgium). For vibratome sectioning, samples were embedded in 8 % w/v
194 agarose, glued upon the specimen stage using Roti coll 1 glue (Carl Roth, Karlsruhe, Germany) and
195  cutinto 30 um thick sections with a vibrating microtome (HM650V, Thermo Fisher Scientific,

196  Waltham, MA, USA). Sections were in 0.5% w/v astra blue, 0.5% w/v chrysoidine and 0.5% w/v

197  acridine red for 3 min, rinsed with demineralized water, dehydrated with isopropyl alcohol and

198  mounted in Euparal (Carl Roth, Karlsruhe, Germany). Vibratome and LR White sections were

199 observed using a Nikon Eclipse Ni-U bright field microscope equipped with a Nikon DS-Filc camera.
200 To visualize mCherry tagged O. dioscoreae (R71417) in the shoot tips, fresh plant samples were hand
201  cut and directly observed by confocal microscopy (Leica TCS SP2) using excitation wavelength of 552
202 nm and emission collection between 584-651 nm. GFP-tagged bacteria were visualized using

203  excitation at 488 nm and emitted light from 500 to 550 nm. Leica LAS X software was used to process

204  theimages.

205 Detection and identification of bacteria

206  The tip of the leaf was dissected with tweezers and a scalpel, and the tissue was homogenized using
207 100 pl 0.4% w/v NaCl and 3 sterile glass beads for 1 minute at 30 Hz in a ball mill (Retsch MM 400).

208 The homogenized suspension was centrifuged briefly to pellet debris. One hundred pL of supernatant
209  was directly plated out on Tryptic Soy Agar (TSA) plates and incubated for 2 days at 28°C. If the plate
210 showed growth, one isolate per colony type was picked and identified using colony PCR with primers
211 specific for O. dioscoreae (nrdA-01-F: GAACTGGATTCCCGACCTGTTC, nrdA-02-R:

212  TTCGATTTGACGTACAAGTTCTGG), or with universal 16S rRNA primers (pA:

213  AGAGTTTGATCCTGGCTCAG and pH: AAGGAGGTGATCCAGCCGCA) followed by Sanger sequencing.
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214 Inoculation of aposymbiotic D. sansibarensis with bacteria

215 Node cuttings were grown in axenic conditions (25ml MS + 2% w/v sucrose + 0.2% v/v PPM in

216 Magenta vessel, 28°C, 16h/8h light cycle) until a new shoot appeared (after 6 weeks approximately).
217  Verified aposymbiotic plants (tested as above) were inoculated with a strain of interest as follows:
218 bacterial cultures in the exponential phase of growth were centrifuged (5000 rpm, 10 min) and

219  washed twice with sterile 0.4% w/v NaCl. Cell suspensions were normalized to ODgoonm = 0.2. The
220 biggest leaf at the apical bud was gently pushed aside and 2 pl of a bacterial suspension

221  (corresponding to approximately 5 x 10° CFU) was deposited onto the apical bud (Figure S1). Plants
222 were transferred to sterile Microbox containers (50ml MS + 2% w/v sucrose + 0.2% v/v PPM) at 28°C,
223 16h of light until new leaves emerged. Colonization was evaluated by dissecting a leaf tip and

224  spreading the contents on suitable microbiological medium as described above (Detection and

225  identification of bacteria).

226 Plant phenotyping

227 Plants were grown from node cuttings in axenic conditions in Magenta boxes containing and

228 inoculated with O. dioscoreae strain R-71412 or a sterile solution of 0.4% w/v NaCl as described
229 above. Plants were kept in gnotobiotic conditions in Microbox containers containing (50ml MS + 2%
230  w/v sucrose + vitamins + 0.2% w/v PPM) at 25°C, with a 16h/8h day/night cycle. Pots were randomly
231  distributed and shuffled once a week during the experiment. Plants were collected 4 weeks post-
232  inoculation. Leaves were separated from the stem by cutting the petioles with a scalpel, and

233 photographed using a ruler for scale. Chlorophyll content, nitrogen balance index, anthocyanins
234 index and epidermal flavonols were measured on the leaf lamina at 2 different spots immediately
235  after detaching, using a Dualex optical leafclip meter (Force-A, Orsay, France). Stem length was

236  measured with a ruler from crown to tip. Leaf length, width, area and acumen length were

237  determined from photographs using the Fiji software (53). To control for developmental stage, the
238 position of each leaf relative to the shoot tip was recorded for each plant, with leaf n°1 being the
239 closest from the shoot tip, excluding currently emerging leaves. The experiment was repeated twice

240 independently in the same growth chamber. All statistical analyses were done in R (54).

241  Automated plant phenotyping in greenhouse conditions

242  Twenty-five plants obtained from node cuttings and grown for 6 weeks in gnotobiotic conditions
243  were transferred to soil in 3L pots in a climate-controlled greenhouse at 25°C, 60% humidity and a
244 light cycle of 16h light (179 pmol/m2/s), 8h dark. A blue foam disc was placed on top of the pot to
245  increase contrast for image segmentation, and a blue-colored plastic cage was placed in the pots to

246  guide plant development. The symbiotic status of the plants was checked as described above and
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247  aposymbiotic plants were inoculated with a Mock solution (0.4% (m/v) NaCl) or a liquid culture (LMG
248  29303") as described above, after 2 leaves had emerged. As plants grew at different paces, plants
249  were inoculated on different dates at the 2 leaf stage. To monitor the symbiotic status of the plants,
250  samples from leaf glands were taken at three different timepoints during the experiment. Plants

251  grown from node cuttings were tested for the presence of O. dioscoreae in mature leaf glands, with 7
252  out of 25 plants still harboring O. dioscoreae (Table S3). Of the 18 aposymbiotic plants remaining, half
253  were inoculated with strain LMG 29303" and half with a mock solution. After 30 days, the height of
254  the stem and the number of leaves were measured and counted. Plant development was monitored
255 automatically for at least 30 days after inoculation in the Phenoserre facility of the Toulouse Plant-
256 Microbe Phenotyping platform (TPMP) and their symbiotic status was checked 3 times by isolation of
257  bacteria from leaf glands and PCR as described above. Each plant was imaged once a day using and
258 RGB camera and a blue background, rotating the plant at 6 angles (0° to 300° in 60° increments).

259 Image analysis was done using the IPSO Phen software v1.20.3.17 (https://github.com/tpmp-

260 inra/ipso _phen) (56), resulting in a total of 56 parameters measured, including 37 measures of

261  morphology, e.g. total area, hull, width, height. Additional parameters linked to colorimetry,

262  including mean and standard deviation for all channels in various color spaces (RGB, LAB and HSV)
263  were also recorded. As D. sansibarensis vines tended to grow in irregular patterns, no morphological
264  parameters could be reliably analyzed except for total leaf area, which was calculated as the median
265  of leaf area extracted of images from all 6 angles. Chlorophyll content was estimated through RGB
266  values of plant images as described by Liang and colleagues (55). Plants were automatically watered
267  daily and fertilized at the beginning and once mid-experiment. 30 days after of the last inoculation,
268  the length of the stem and the number of leaves were measured by hand. All statistical analyses

269 were donein R (54).

10
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270  Results

271 Symbiotic D. sansibarensis are recalcitrant to inoculation with exogenously applied O.

272  dioscoreae

273  To investigate if symbiotic structures remained open to colonization, we first attempted to introduce
274  fluorescent-tagged O. dioscoreae in wild-type symbiotic D. sansibarensis. Because D. sansibarensis
275  rarely flowers in cultivation (28), we attempted to inoculate aerial bulbils with suspensions of Orrella
276 dioscoreae. Submerging whole bulbils in a suspension of O. dioscoreae R-71416 did not result in

277  colonization of germinated seedlings by GFP-tagged bacteria (data not shown). Bulbils have a

278  suberized outer tissue layer, which might prevent exogenous bacteria from reaching the vegetative
279  growth center. To test this, we peeled and surface-sterilized six bulbils, which we submerged in a
280  suspension of GFP-tagged O. dioscoreae R-71416. As control, three bulbils were submerged in sterile
281  saline solution and left to germinate. Every bulbil deteriorated and failed to yield new plants. We also
282  attempted to deliver a bacterial inoculum in five surface-sterilized, unpeeled bulbils by injection with
283 a needle. The bulbils germinated, but only wild-type O. dioscoreae were recovered from the leaf

284  glands of the plantlets (data not shown).

285  We hypothesized that inoculating the shoot tip with bacteria would result in colonization of all shoot
286  tissue growing from the apical meristem. We dipped shoot tips in a suspension of O. dioscoreae R-
287 71416 and macerated the newly emerged leaves. Leaf glands always contained only wild-type non-
288  fluorescent O. dioscoreae. Stabbing the apical shoot tip with a needle dipped in a bacterial

289  suspension resulted in 4 out of 4 shoot tips turning necrotic within days. Vacuum infiltration of a
290 liquid bacterial suspension of strain R-71416 into shoot tips resulted in growth arrest of the 4 plants
201  tested. Two plants formed bulbils, but we could not detect growth of O. dioscoreae R-71416 in

202  macerates. Finally, we attempted to inoculate the plants by adapting a protocol designed for

293  agroinfiltration using sonication (57). The sonication regime did not affect the viability of cultures of
204  strain R-71416, as measured by serial dilution and plating on TSA medium (data not shown). Of the
295  three plants tested, one plant went into growth arrest, but O. dioscoreae R-71416 could not be

296  detected in leaves of any of the remaining plants.

297  Treatment of node cuttings with an antibiotic cocktail results in aposymbiotic plants

298  We reasoned that processes such as competition and niche exclusion might contribute to preventing
299 exogenous GFP-tagged O. dioscoreae from infecting already symbiotic plants. Miller and Reporter
300  previously described the generation of aposymbiotic plants from surface-sterilized bulbils of D.

301  sansibarensis (30) . We attempted to reproduce these results by surface-sterilizing bulbils and
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302 incubating in sterile Microbox containers containing sterile medium. All bulbils germinated, but leaf
303  glands of 18/18 plants contained O. dioscoreae, showing that surface sterilization alone was not
304  sufficient to create aposymbiotic plants. Next, we adapted a protocol used to micropropagate the
305  yam species Dioscorea composita, to which we added an antibiotic treatment (52). We first tested
306  the susceptibility of O. dioscoreae strains to antibiotics commonly used in plant tissue culture. All O.
307  dioscoreae strains were sensitive to tetracyclin and rifampicin (MIC < 16 pg/ml); and moderately
308 resistant to the B-lactam antibiotics carbenicillin and cefotaxime (Table S2). All strains were also
309 sensitive to the commercial broad-range biocide Plant Preservation Mixture (PPM). All antibiotics
310 tested inhibited growth of the O. dioscoreae in planta, but tetracycline and rifampicin also impaired
311 plant growth at the concentrations tested (Table 1). Only carbenicillin and cefotaxime at
312  concentrations of up to 200 pug/mL were effective against O. dioscoreae and were well tolerated by
313  plant tissue (Table 1). Although incubation with antibiotics was effective to remove O. dioscoreae
314  from node cuttings, over 50% of our in vitro cultures were lost to contamination of the tissue and
315  media with fungi and bacteria (data not shown). We reasoned that incomplete surface-sterilization of
316  bulbils may be a source of contaminants and we tested treatment with PPM to control microbial
317  contamination in in vitro cultures of D. sansibarensis. PPM is a commercial biocide containing the
318 active ingredients 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyl-3(2H)-isothiazolone, which
319 can be supplemented directly to the culture medium (58). According to the manufacturer, PPM may
320 also be used as a mild antiseptic for surface sterilization of plant tissue. Surface sterilization with a
321 solution of 5% v/v PPM in 3x MS medium for 8h at 28°C in darkness with shaking was sufficient to
322  prevent contamination while preserving tissue viability (n= 18). Using the PPM protocol, 0/105
323  cuttings were lost to death of the explant, while 5/89 cuttings were lost using the bleach + ethanol
324  protocol (Table 2). In the first three weeks of incubation with antibiotics, 34 plants were lost due to
325  contamination with the bleach + ethanol protocol (38.3%), while only 12 plants (10%), were lost
326  using the PPM protocol. After 3 weeks, only 31% of resulting plantlets were aposymbiotic using the
327  bleach + ethanol protocol, while 49.3% of node cuttings were aposymbiotic when sterilized with the

328  PPM protocol.

329

330

331

332
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333 Table 1: Effect of different antibiotics on the growth of D. sansibarensis and its bacterial symbiont O.
334 dioscoreae in vitro.

Antibiotic Concentration Contact Time Effect on plant O. dioscoreae
growth cfu/explant

Carbenicillin + 100 pg/ml 1 week No effect <102
cefotaxime

3 weeks No effect <100

200 pg/ml 1 week No effect <103

3 weeks No effect 0

Tetracycline 50 pg/ml 1 week Explant ends turn <103

brown. No growth.

3 weeks Explant ends turn 0

brown. No growth.

Rifampicin 200 pg/ml 1 week Explant ends turn <10?

brown. No growth.

3 weeks Explant ends turn 0
black. Few emerging

leaves are chlorotic.

335

336 Table 2: Efficiency comparison between node cutting sterilization protocols.

BLEACH + ETHANOL PPM protocol
PROTOCOL
Number of plants treated 89 105
Number of visibly 34 (38.29%) 12 (10.17%)
contaminated cultures
Number of dead explants 5(5.62%) 0 (0%)
Aposymbiotic plants 18 (31.12%) 47 (49.33%)

337
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338  Microscopic differences between aposymbiotic and symbiotic D. sansibarensis

339 Toinvestigate whether the loss of the symbiotic bacteria induces phenotypic or developmental

340  changes, we generated plants through node cuttings using the “PPM” protocol as described above.
341 Leaves of plants were tested after 6 weeks for the presence of O. dioscoreae in leaf glands.

342  Aposymbiotic, as well as plants which remained symbiotic despite antibiotic treatment, were

343  transferred to sterile containers and kept in sterile conditions without antibiotics. Leaves of

344 aposymbiotic plants displayed fully-formed leaf glands, visually indistinguishable from those of the
345  symbiotic plants (Figure 1A-B). Neither symbiotic nor aposymbiotic plantlets showed chlorosis or
346 developmental abnormalities (Figure 1E-F). Microscopically, leaf glands of symbiotic plants were
347 filled with bacteria embedded in extracellular matrix or mucus, with numerous trichomes projecting
348 from the epithelium to the inside of the gland (Figure 1C). In contrast, aposymbiotic glands appeared
349 somewhat flat, with no visible bacteria and fewer trichomes (Figure 1D). Cross-sections of leaf

350 acumens imaged by scanning electron microscopy looked undistinguishable at low magnification
351  (Figure 1G-H), but the lack of bacteria and mucus in aposymbiotic leaf glands became clear at higher
352  magnification (Figure 11-J). Trichomes were visible in both sample types, but only symbiotic samples
353  contained bacteria (Figure 1K-L). Trichomes in aposymbiotic acumens appeared less electron-dense
354  under the transmission electron microscope, with large vacuoles and sometimes visible loss of

355 membrane integrity (Figure 1K-L). Golgi, vesicles and endoplasmic reticula (ER), components that
356  suggest interaction between the host and the symbiont, were less abundant in aposymbiotic glands

357  (Figure 1M-N).
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358

359  Figure 1: Phenotypic differences between symbiotic (left) and aposymbiotic (right) D.

360  sansibarensis. A. Plants inoculated with O. dioscoreae or B. with a mock solution. C. Cross-section of
361  D. sansibarensis gland with triple A staining shows glands with trichomes, mucus and bacteria

362  (orange) in symbiotic glands, and D. glands of aposymbiotic plants; E. Leaves of symbiotic; F.

363  aposymbiotic plants kept in gnotobiotic conditions. G. SEM cross-section picture of symbiotic and H.
364  of aposymbiotic acumen. I. SEM detail picture of trichomes in the acumen being colonized by

365  bacteria or J. aposymbiotic. K. TEM pictures of trichomes in the acumen, surrounded by bacteria in
366  symbiotic glands or L. deteriorating in aposymbiotic glands (L). M. Close-ups TEM picture showing ER,
367  Golgi, and plastids in the trichomes; and N. being mostly empty and containing plastids.

368

369  Symbiont replacement by drop-infection on aposymbiotic plants

370  We reasoned that aposymbiotic plants may be more amenable to colonization with exogenously
371  applied bacteria. To test this, we inoculated 10 aposymbiotic D. sansibarensis kept in sterile
372  containers with a 2 pL drop of a cell suspension of O. dioscoreae strain R-71417, which was deposited

373  directly on the shoot apical bud (Figure S1). All plants were successfully colonized, and nine out of
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ten plants had grown new leaves three weeks after inoculation (Figure 2). Up to 95% of our plants
were successfully inoculated and the method rarely induced growth arrest in subsequent

experiments. No bacteria could be found in leaf glands under the point of inoculation.

Figure 2: Fluorescence microscopy of the symbiotic gland at the acumen A. Overview of a TBO—
stained transverse section viewed under brightfield, showing one gland in the leaf drip-tip. B. Close-
up of the gland showing masses of mCherry-tagged bacteria (R-71417) in the leaf gland of D.
sansibarensis. C. Close up showing bacteria (B) surrounding the trichomes (T).

Aposymbiotic D. sansibarensis develop normally under gnotobiotic conditions

To determine if the loss of symbiotic bacteria affected seedling growth and development, we
inoculated aposymbiotic plants with cell suspensions of O. dioscoreae R-71412 or a sterile mock
solution. After 4 weeks of growth in gnotobiotic conditions, we did not detect significant differences
between aposymbiotic and re-inoculated plants for any of the morphological and physiological
parameters we measured, including leaf area, length of the forerunner tip, stem length (Figure S2) as

well as chlorophyll, anthocyanins, flavonoids content and nitrogen nutritional status (Figure S3).

No phenotypic difference between aposymbiotic and symbiotic D. sansibarensis in the

greenhouse

To follow development of aposymbiotic and symbiotic plants further in semi-natural conditions, we
planted 24 PPM-treated plantlets into open pots filled with soil. These plants were tested after a
short period of recovery, and 14 plants were certified aposymbiotic, while 10 still tested positive for
bacteria in the leaf glands. Aposymbiotic plants were inoculated in the greenhouse in non-sterile

conditions by shoot tip inoculation of a saline solution or a bacterial suspension as described above
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397  and continuously monitored for 52 days in a high-throughput plant phenotyping facility. Inoculation
398 by dripping suspensions of O. dioscoreae on aposymbiotic shoot tips in the greenhouse was

399 inefficient, with only 4/7 plants successfully inoculated (Table S3). Unexpectedly, 4 plants which

400  started out as aposymbiotic tested positive to O. dioscoreae and/or other bacteria in later stages of
401  the experiment. In addition, 5 plants that tested positive for O. dioscoreae at the beginning of the
402  experiment also produced bacteria-free leaf glands. Because of their uncertain status, these plants
403  were labeled as “unknown status” in our analyses and treated as a third category. Although highly
404  variable between individuals, the number of leaves and length of the stems did not differ significantly
405 between aposymbiotic, symbiotic and “unknown status” plants (Figure 3 B and C). Similarly, we did
406 not detect differences between symbiotic or aposymbiotic plants with regards to chlorophyll

407  fluorescence (Figure 3A).
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408

409 Figure 3. Macroscopic phenotypes of aposymbiotic and symbiotic D. sansibarensis. A. Daily mean
410 chlorophyll content of individual plants tracked over a period of 30 days post inoculation estimated
411 through RGB values of plant images. Trajectories of aposymbiotic plants are shown in yellow,

412  symbiotic plants in green and plants with unknown status (see text for details) in blue. B. Total leaf
413 area of individual plants tracked over a period of 30 days post inoculation. Color scheme is identical
414  as above. C. Stem length (in cm) of plants measured at the end of the experiment. Data from

415  aposymbiotic plants are shown in yellow, symbiotic plants in green and plants of unknown status in
416  blue (see main text for details). The distributions of values between the 3 categories of plants are
417  identical for each of the 3 parameters (Wilcoxon rank sum test p > 0.05).
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418

419 Discussion

420  We explore in this work the experimental tractability of the D. sansibarensis/O. dioscoreae

421 association to answer fundamental questions about heritable symbiosis in plants. The ability to

422 culture both partners separately and to manipulate infections is essential for the association to serve
423  asan experimental model system for leaf symbiosis. Our initial attempts to introduce exogenous O.
424  dioscoreae into symbiotic D. sansibarensis shoot apical buds or bulbils without first clearing the

425 native symbionts were unsuccessful, and harsh inoculation techniques such as submerging, stabbing,
426  orvacuum infiltration resulted in death or growth arrest of the plant. This indicates that

427  exogenously-applied bacteria may be unable to reach the inside of the shoot tip, either due to host-
428  derived barriers or spatial exclusion by resident O. dioscoreae. In contrast, aposymbiotic plants

429  obtained from explants treated with an antimicrobial cocktail and kept in sterile conditions were
430  amenable to inoculation with exogenous O. dioscoreae, with high infection rates (>95%) from simply
431  applying a bacterial suspension on shoot tips. Together, these results suggest that prior infection
432  with O. dioscoreae precludes other bacteria from colonizing leaf glands. Whether this is due to

433 bacteria-bacteria competition, antagonistic interactions, or a host response remains to be elucidated.

434  Aposymbiotic plants were also macroscopically indistinguishable from symbiotic plants. Both types of
435  plants seemed healthy with no signs of chlorosis, with normal growth and development (Figure 1,
436 Figure 3 and Figure S2). Leaf glands that host bacteria in symbiotic plants were fully formed in

437  aposymbiotic plants although they appeared somewhat thinner and less turgid than symbiotic glands
438 (Figure 1). This is in contrast to leaf nodule symbiosis in the Psychotria genus, where leaf nodules
439  scattered in the lamina seem to form in response to the presence of the bacterial symbiont (17).
440  Microscopically, glands of aposymbiotic leaves did not contain visible bacteria or copious amounts of
441  mucus as with symbiotic plants. Whether this mucus is plant-produced, bacteria-produced or both is
442  not known. Leaf glands differed in appearance from symbiotic ones. Overall, they showed fewer

443  Golgi, ER and vesicles (Figure 1 K-N). Some aposymbiotic trichomes seemed atrophied, a phenotype
444  also described in earlier work (30). The fact that bacteria-free leaf glands formed normally in

445 aposymbiotic D. sansibarensis offers attractive opportunities to investigate the host response to a

446 symbiotic partner in this specialized organ.

447 Interestingly, symbiotic and aposymbiotic plants were phenotypically indistinguishable. We did not
448 detect significant defects in plant development or photosynthetic functions between plants

449  harboring O. dioscoreae or aposymbiotic controls. This is in stark contrast to leaf nodule symbiosis in
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450  Ardisia crenata, Psychotria kirkii and Psychotria umbellata, where loss of symbiotic bacteria is

451  invariably linked to severe developmental defects and eventually death (13,17,20,59). This is also
452  contrary to previous observations on the Dioscorea leaf symbiosis by Miller and Reporter. These
453  authors reported that the association between the plant and the (then unidentified) leaf gland

454  bacteria was facultative, but bacteria-free plants were small and appeared chlorotic (30). This

455  difference with our observations may be explained by the fact that Miller and Reporter grew plants
456  from sterilized bulbils in sterile glass jars with seals that may affect gas exchange. These same

457  authors also claim to have obtained bacteria-free plants by surface sterilization of bulbils with bleach
458 and ethanol. Despite our best attempts to replicate their protocols, surface sterilization of bulbils
459  never resulted in aposymbiotic plants in our hands. Our results suggest instead that O. dioscoreae
460 does not play a major role in plant development. Previous analysis of the O. dioscoreae genome also
461 ruled out a role in mineral nutrition, such as nitrogen fixation (23). The association with O. dioscoreae
462 is ubiquitous throughout the geographic range of D. sansibarensis and to our knowledge

463  aposymbiotic D. sansibarensis are not found in nature (26), indicating a strong mutualistic

464 interaction. Together, this indicates that the fitness benefit provided to the partners of the D.

465  sansibarensis/O. dioscoreae may be contingent on environmental factors, such as biotic or abiotic
466  stresses. Remarkably, the leaf glands of aposymbiotic plants left in non-sterile conditions may

467  become colonized by bacteria other than O. dioscoreae (Table S3). This indicates that the association
468  may not be strictly controlled, or least that the mechanisms which control colonization of leaf glands
469  are not sufficient to prevent opportunistic infections in the absence of O. dioscoreae. Whether

470  opportunistic associations with bacteria other than O. dioscoreae are stable in a single host or across

471  generations remains to be tested.

472 In conclusion, the ability to generate aposymbiotic D. sansibarensis, coupled with the ability to

473 culture and genetically manipulate O. dioscoreae, provides an interesting opportunity to investigate
474  vertically-transmitted symbioses in plants. To our knowledge, this is the only heritable plant

475  symbiosis known where both host and symbiont can be grown separately and where the symbiont
476  can be easily manipulated. Further exploiting this system could provide new insights into the

477  evolution of heritable leaf symbiosis and vertically-transmitted symbioses in general.
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640  SUPPORTING INFORMATION

641 Figure S1: Method developed to make aposymbiotic plants and re-introduce a
642 bacterium of interest. (A) Node cuttings were taken from adult plants and incubated for
643 8 hoursin 5% PPM for initial sterilization. (B) Node cuttings were incubated in a mixture of
644 liquid MS, antibiotics and PPM for 3 weeks. (C) After 3-4 weeks, a bulbil (b) with its root

645  system became apparent. Multiple leaves have formed from the node and are providing

646  sugars to the plant. (D) The bulbil grows its own stem (S) that uses gravitropism to grow up
647 and after the emergence of two leaves, the apical bud becomes visible. (E) After confirmation
648  of being aposymbiotic by crushing and plating out the newly developed acumen(s), the plant
649  was re-inoculated with a bacterium of interest by dropping 2 ul of the bacterial suspension on
650  the apical bud.

651

652 Figure S2: Morphological parameters of aposymbiotic vs. symbiotic D.

653 sansibarensis in gnotobiotic conditions.

654  Wild-type colonized D. sansibarensis were inoculated by a O. dioscoreae R-71412 cell

655 suspension (Orrella) or a sterile 0.4% NaCl solution (MOCK) and grown for 4 weeks in

656  gnotobiotic conditions. Leaf surface area (A) and length of the forerunner tip containing the
657  bacterial glands (B) were measured for 3 leaves per plant, starting with the leaf closest to the

658  shoot tip (leaf 1, not shown). C. Total stem length measured from the crown to the shoot tip.
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659 Data from 2 independent experiments are shown separately. Data from mock-inoculated
660  plants are shown in orange, and in blue for O. dioscoreae-inoculated plants. The
661  distributions of values between the O. dioscoreae— or mock-inoculated plants are identical

662 for each of the 3 parameters (Wilcoxon rank sum test p > 0.05).

663

664 Figure S3: Physiological parameters of aposymbiotic vs. symbiotic D.

665 sansibarensis in gnotobiotic conditions.

666  Wild-type colonized D. sansibarensis were inoculated by a O. dioscoreae R-71412 cell

667  suspension (Orrella) or a sterile 0.4% NaCl solution (MOCK). Physiological parameters were
668  measured using a hand-held optical meter after 4 weeks of growth in gnotobiotic conditions.
669  Parameters measured include A. Chlorophyl content (Chl); B. Anthocyanins index, measured
670 as a function of green light absorbed by the sample; C. Flavonoids index (Flav), measured as
671 afunction of UV light absorbed by the sample and D. Nitrogen Balance Index (NBI) is

672  measured as the ratio of Chl and Flav and is an indicator of C/N allocation changes due to N-
673  deficiency. Data from 2 independent experiments are shown separately. Data from mock-
674  inoculated plants are shown in orange, and in blue for O. dioscoreae-inoculated plants. The
675  distributions of values between the O. dioscoreae— or mock-inoculated plants are identical

676  for each of the 4 parameters (Wilcoxon rank sum test p > 0.05).

677
678 Table S1. Bacterial species used in this study

679 Table S2. Minimum inhibitory concentrations of biocidal products on different
680 O. dioscoreae strains

681  Table S3. Symbiotic status of plants used in phenotyping experiment. APO=

682  aposymbiotic status, SYM= symbiotic status, check-ups quantified the amount of O.

683  dioscoreae found in new leaf acumens. Not= Majority isolates not identified as O. dioscoreae.
684  Last column gives the eventual identity given to the sample for further analysis: APO=

685  aposymbiotic plant, unknown= colonized by bacteria other than O. dioscoreae, Orrella

686  dioscoreae = colonized by Orrella dioscoreae
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