

Whole mitogenome analysis highlights demographic history and shared connections among distal Indigenous groups of Mexico

Complete mitogenome sequencing from 60 Mexican Native American groups

Marlen Flores-Huacuja¹, Meradeth Snow², Jazmín Ramos-Madrigal³, Cecilia Contreras-Cubas¹, Francisco Barajas-Olmos¹, Angélica González-Oliver⁴, Elvia Mendoza-Caamal¹, Isabel Cicerón-Arellano¹, Federico Centeno-Cruz¹, Emilio J. Córdova¹, Paulina Baca¹, Silvia Esperanza Flores-Martínez⁵, Rocío Ortiz-López^{6,7}, Austin W. Reynolds⁸, Aleksandar David Kostic⁹, José Rafael Villafan-Bernal¹, Carlos Galaviz-Hernández¹⁰, Alejandra Guadalupe García-Zapién¹¹, Haydee Miranda-Ortíz¹, Blanca Patricia Lazalde-Ramos¹², Francisco Loeza-Becerra¹³, Alessandra Carnevale¹, Héctor Rangel-Villalobos¹⁴, Martha Sosa-Macías¹⁰, Augusto Rojas-Martinez^{6,7}, Angélica Martínez-Hernández¹, Humberto García-Ortiz^{1*} & Lorena Orozco^{1*}

1. Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico.
2. Department of Anthropology, University of Montana, Missoula, MT, USA.
3. Center for Evolutionary Hologenomics. Section for HoloGenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark.
4. Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
5. División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.
6. Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud and Institute for Obesity Research. Monterrey, Mexico.
7. Universidad Autónoma de Nuevo Leon, Centro de Investigacion y Desarrollo en Ciencias de la Salud. Monterrey, Mexico.
8. Department of Anthropology, Baylor University, Waco, TX, USA.
9. Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA.
10. Instituto Politécnico Nacional, CIDIIR-Durango, Durango, Mexico.
11. Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico.
12. Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
13. Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico.
14. Instituto de Investigación en Genética Molecular, Universidad de Guadalajara Ocotlán, Jalisco, Mexico.

*Corresponding authors

E-mail: hgarcia@inmegen.gob.mx (HGO) & lorozco@inmegen.gob.mx (LO)

46 Abstract

47

48 The study of mitochondrial DNA is a valuable tool to delve into the demographic
49 history of human populations. Particularly in the Americas, five widespread Native
50 American specific mitochondrial lineages have been identified. Here we included the
51 complete mitogenome sequencing of 572 Indigenous individuals belonging to 60
52 populations spanning the Mexican territory. Our results show a great diversity of
53 matrilineages widespread across the country, revealing shared mtDNA haplogroups in
54 populations from distant regions. We identified all the five main Native American
55 haplogroups clades, including 83 different subhaplogroups, from which nine are novel. The
56 most frequent of the novel haplogroups was A2+64. A phylogenetic inference suggests that
57 A2+64 comes from an ancestral maternal lineage that spread into the Caribbean islands.
58 Additionally, a demographic reconstruction from whole mitogenomes showed an
59 exponential increase in female N_e around 10 Ka ago in all the tested regions. All these
60 findings suggest a genetic persistence through Mexico and possibly the Americas, in
61 agreement with the model of the Mesoamerican-related expansion into the Caribbean and
62 South America.

63

64

65

66

67

68

69

70

71

72 Introduction

73 Mitochondrial DNA (mtDNA) is an extranuclear 16.6 kb double-stranded DNA
74 encoding for 37 genes. It is maternally inherited without recombination, possesses a higher
75 mutational rate in comparison with the nuclear genome and it has a high copy number per
76 cell [1]. Due to a process of random genetic drift and selection, several specific mtDNA
77 lineages are widespread and fixed among human populations, making it a valuable tool to
78 elucidate migration routes, human populations distribution patterns and evolutionary
79 reconstructions [1,2].

80 The study of Native American mitochondrial lineages has contributed to elucidate
81 how the complex demographic history, repeated and rapid populations movements
82 throughout the continent, bottlenecks, and social conflicts have shaped the genetic
83 structure of past and present day Native American populations [3]. To date, six specific
84 Native American mitochondrial haplogroups (A2, B2, C1, D1, D4h3a and X2a) distributed in
85 the American continent have been described. It has been suggested that these
86 matrilineages come from a founding population that split from Northern Eurasian lineages
87 around 25 ka ago and remained stranded in Beringia for ~6 ka before they moved into the
88 Americas ~16 ka ago [4–7]. The distribution and frequency of these lineages varies across
89 the continent and within local populations [8].

90 To better understand the distribution of these mitochondrial haplogroups, most
91 investigations have focused on studying mtDNA hypervariable I & II regions, or RFLP
92 haplogroups [9–18]. These studies have also identified specific regional admixture patterns
93 and high overall haplogroup/haplotype diversity between populations, mainly between

94 those from the North (Aridoamerica), and those from the Center and South (Mesoamerica)
95 of Mexico [15,17,19].

96 Recently, to deepen our understanding in the peopling of the Americas, whole
97 ancient and modern mitogenomes have been utilized [6]. These studies have demonstrated
98 that the demographic bottleneck that the first settlers experienced, along with their rapid
99 expansion through the continent and limited intracontinental geneflow, have resulted in a
100 marked phylogeographic populations structure, which has persisted through time [3–6]. It
101 has been suggested that the first wave of people entering into the current Mexican territory
102 brought with them the A2 and B2 haplogroups around 15-18 ka ago, followed by a series of
103 expansions that brought additional diversity with the haplogroups C1 and D1 [20]. Previous
104 studies analyzing whole mitogenomes from Mayans, Mazahuas, and Zapotecs, all of them
105 Mexican Native Americans, suggested two main paleo-groupings: i) Centro-Mesoamerican
106 which remained within Mesoamerica, and ii) Pan-American, which moved to South America
107 [19,21].

108 Although mtDNA studies have addressed the genetic structure and migration of Mexican
109 Native Americans, most of them have often been limited in scope and sampling [3]. The
110 Mexican territory encompasses 68 Native American populations with unique cultural and
111 demographic histories, such as the establishment of sedentary agriculture in Mesoamerica,
112 or the European contact [22,23]. To gain insights into the evolutionary history of the mtDNA
113 lineages in Mexican population, we analyzed the complete mitogenomes of 572 Native
114 American individuals representing 60 populations spanning the country. The significant
115 increase in the number of whole mitogenomes sequenced and number of Native American

116 groups presented here, along with ancient mitogenomes from the Americas make it
117 possible to look in greater detail at the regional variation present in Mexico and too deep
118 in the genetic relationships of these groups, identifying novel mitochondrial
119 subhaplogroups as well as shared matrilineages that span the entire country, helping to
120 delve into the genetic differences between populations that belong to the same linguistic
121 family. These findings are indicative of either shared ancestral maternal lineages or
122 potentially population movements due to different demographic phenomena. The current
123 data also brings insights into the genetic and cultural exchange that have taken place in the
124 Americas through time. This is the first study that incorporates a large proportion of
125 mitogenomes in a great diversity of Native American populations.

126

127 **Results**

128

129 **Variants Call and Haplogroup Identification**

130 To minimize the impact of admixture, especially with Europeans, we only included
131 individuals with a Native American ancestry greater than or equal to 90%, estimated with
132 ADMIXTURE v1.30 [24] (S1 Fig). Mitogenome sequencing was carried out in a total of 572
133 Mexican Native Americans encompassing 60 populations from 75 indigenous communities
134 belonging to the Metabolic Analysis in an Indigenous Sample (MAIS) cohort (S1 Table). Raw
135 reads were mapped to the Cambridge reference sequence for human mitochondrial DNA
136 [25] and variant discovery was performed using HaplotypeCaller from GATK v3.7, setting

137 the ploidy parameter to 1 [26,27]. Based on this analysis, 952 variants passed the quality
138 filters: 923 SNVs and 29 indels.

139

140 **Distribution and frequency of mitochondrial haplogroups**

141 Subsequently, the identification of haplogroups was carried out using Haplogrep2
142 v2.1.18 [28,29]. Three non-Native American haplogroups were identified in four individuals,
143 which were excluded from the subsequent analyses (S2 Table). In the final data set of 568
144 mitogenomes, we identified five Native American haplogroups A2, B2, C1, D1 and D4h3a,
145 where the most prevalent was A2 (53.9%), followed by B2 (24.0%), C1 (17.6%), D1 (4.3%)
146 and D4h3a (0.2%). This general pattern follows previous findings of haplogroup frequencies
147 in Mexico [15,16,30].

148 To get a deeper insight into the haplogroups distribution, we compared their
149 geographic distribution using only those population with a sample size greater than or equal
150 to 5 individuals (532 mitogenomes distributed in 52 indigenous populations). Although the
151 distribution of the four main haplogroups (A2, B2, C1, D1) was highly heterogeneous
152 throughout the Mexican territory, they were present in all regions of the country, with
153 different frequencies among regions and populations (Fig 1). For example, we observed the
154 highest frequency of A2 haplogroup in populations from the Southeast, Center and South
155 of Mexico (Table 1) and notably, Huave (South, n = 10), Lacandon (Southeast, n = 11) and
156 Kaqchikel individuals (Southeast, n = 10) only carried this haplogroup (Fig 1 and S3 Table).
157 Moreover, the B2 and D1 haplogroups were more frequent in the Northwest (40.5% and
158 13.5%, respectively), while the C1 in the North (36.6 %) (Table 1). We also identified that

159 haplogroup B2 exhibits higher frequency than A2 in eight populations from four linguistic
160 families (Wixarika, Mexicanero, Tepehuano, Mazahua, Mazateco Puebla, Totonaco Puebla,
161 Zapoteco and Mocho). While, the haplogroup C1 exhibits higher frequency than A2 in Seri,
162 Purepecha and Raramuri (Fig 1 and S3 Table).

163

164 **Table 1.- Haplogroups count and frequencies by geographic region (n and %).**

Region	n	A2		B2		C1		D1		D4h3	
North	101	32	31.7	27	26.7	37	36.6	5	5.0	0	0.0
Northwest	37	10	27.0	15	40.5	7	18.9	5	13.5	0	0.0
Center	185	112	60.5	38	20.5	31	16.8	4	2.2	0	0.0
South	92	53	57.6	25	27.2	9	9.8	4	4.3	1	1.1
Southeast	153	103	67.3	29	19.0	15	9.8	6	3.9	0	0.0

165

166

167

168 **Fig 1.- Haplogroup distribution in 52 indigenous populations.** The points in the graph show
169 the approximate location and the pie charts show the proportion of the main haplogroups
170 in each studied population.

171

172 On the other hand, 82 mitochondrial subhaplogroups were identified, 34 related to
173 A2, 29 to B2, 12 to C1, 7 to D1, all of them with a variable frequency ranging from 0.2-5.6 %
174 for all branches (Table 2). Notably, we found nine subhaplogroups non-Previously reported
175 in the present-day Native American populations, five related to the A2 haplogroup, three
176 derived from B2 haplogroup, and one from the C1 haplogroup (Table 2, bold text).
177 Moreover, 50 additional subhaplogroups, previously reported in other Native American
178 populations across the continent, were also identified for the first time in the examined
179 Mexican Native American individuals. All of them had a low frequency, ranging from 0.2%

180 to 5.6%, among them A2+64 showed the highest frequency (5.6%), mainly in those
181 populations related to Mixe-Zoque (19.5%, n = 41) and Mayan linguistic families (18.9%,
182 n=132), both from the Southeast region (S4 Table). To investigate the A2+64 divergence
183 time, we analyzed 50 Mexican Native American individuals and seven ancient samples from
184 Puerto Rico previously reported as carrying the A2+64 haplogroup [31]. To calibrate the
185 tree, we included eight ancient samples and five present-day individuals harboring other
186 haplogroups. The Bayesian species calibrated tree inferred under a strict molecular clock
187 showed that the ancient and modern A2+64 lineages fall in the same clade, suggesting the
188 same origin for both samples (Fig 2, S2 Fig). Moreover, tip dating estimation showed that
189 the origin of A2+64 mitochondrial lineage is between 20 and 10 ka (mean = 14,100 years).
190 These times broadly overlap with the estimated entrance of modern humans into the
191 Americas, suggesting that this lineage was originated with the entrance of the first settlers
192 to the continent.

193

194

195

196

197

198

199

200

201

202 **Table 2. Haplogroup diversity in the data set (Haplogroup, global frequency).**

203

204

A2	B2	C1	D1	D4h3a
A2	4.8	B2	4.8	C1
A2+(64)	5.6	B2+16278	1.4	C1b10
A2+(64)+@153	1.6	B2+16279	0.2	C1b5a
A2+(64)+@16111	1.4	B2a	0.5	C1c
A2+(64)+@16112	0.2	B2a1	0.4	C1c1a
A2ae	0.4	B2a1a1	0.2	C1c1b
A2af1b	0.7	B2a4	0.4	C1c2
A2ak	0.2	B2a4a	0.2	C1c4
A2ao	0.4	B2a4a1	1.1	C1c5
A2c	3.2	B2a5	0.4	C1c6
A2d	3.0	B2b	0.9	C1d+194
A2f2	0.4	B2b+152	0.2	C1d1
A2g	3.0	B2b2	0.4	
A2h1	1.1	B2c	0.7	
A2j	3.0	B2c1	1.6	
A2j1	0.2	B2c2	1.2	
A2l	0.2	B2c2a	0.9	
A2m	4.0	B2c2b	0.2	
A2o	0.9	B2f	0.7	
A2p	1.6	B2g1	0.5	
A2q	1.8	B2g2	0.2	
A2q1	0.5	B2k	0.4	
A2r	2.0	B2l	0.7	
A2r1	1.1	B2o	0.9	
A2s	0.5	B2s	0.2	
A2t	1.6	B2t	2.5	
A2u	2.3	B2w	0.5	
A2u1	0.5	B2x	1.2	
A2u2	0.2	B2y1	0.5	
A2v1	0.4			
A2v1+152	2.1			
A2v1a	0.5			
A2w	4.1			
A2x	0.4			

205

206 **Fig 2.- A2+64 haplogroup tip dating tree.** A phylogenetic tree was constructed with the
207 whole mitogenome sequences of modern A2+64 carriers using a Bayesian approach under
208 a strict clock model. We included ancient genomes as calibrating information for the tree.
209 Purple bar plots illustrate the 95% HPD values of estimated mean ages for the diversification
210 of A2+64 mitogenomes.

211

212 **Inferring Evolutionary Relationships**

213 The evolutionary relationship was explored in the 52 populations data set. A Nei's
214 genetic distances matrix was constructed based on complete mitogenome sequences (S5
215 Table) and a PCoA projection was used to investigate if the populations grouped according
216 to the North, Northwest, Center, South, and Southeast regions from Mexico as previously
217 described [22,32] or linguistic filiation according to INALI classification [33]. These results
218 showed that the populations do not group by region or linguistic affiliation. In contrast,
219 some northern populations are more similar to those from the Southeast. For example, the
220 Wixarika (Northwest) population is close to the Mocho (Southeast) population, and Guarajio
221 (North) is closest to Tojolabal (Southeast). Otherwise, at regional level, a specific linguistic
222 group as Otomi-Pame from the Oto-mangue family, shows a clear subdivision between the
223 closely related Matlatzinca and Mazahua and the Otomi and Pame. Altogether, suggest that
224 they share a common ancestor or high levels of gene flow have shaped this genetic structure
225 (Fig 3 and S6 Table).

226

227

228 **Fig 3. Principal Coordinate Analysis.** Graph depicting the matrix of Nei's genetic distances
229 based on the variable sites of the mitochondrial genome. 52 indigenous populations from
230 Mexico are shown divided by region. Colors indicate the linguistic family and shapes the
231 geographic region in which the populations were classified: North (squares), Northwest
232 (circles), Center (Up-pointing Triangles) South (diamonds) and Southeast (Down-pointing
233 Triangles).

234

235 Furthermore, we constructed Median Joining Haplotype Networks for each
236 haplogroup included in the 568 mitogenome data set using PopArt v1.7.2 [34]. These
237 networks showed that samples clustered according to their haplogroup regardless of the
238 geographic region. In general, this pattern is consistent with a prior lineage expansion
239 followed by a local differentiation of the derived haplotypes and pursued by gene flow
240 between different regions (Fig 4). Moreover, a Mantel test showed no correlation between
241 matrilineal population relationships and geographic distance ($r^2 = 0.0167$ and $p = 0.081$; S3
242 Fig, S5 and S7 Tables).

243

244

245 **Fig 4.- Median Joining Haplotype Networks of whole sequenced mtDNA.** (A) A2
246 haplogroup (B) B2 Haplotype (C) C1 Haplotype (D) D1 Haplotype.

247

248

249

250 **Estimating Past Population Dynamics**

251 We estimated the past population dynamics and the effective population size (Ne)
252 through time in the set of 568 individuals, using Bayesian Skyline plots (BSP). The runs were
253 broken down by the five main geographical patterns from Mexico. These demographic
254 reconstructions showed a bottleneck resulting in a decline in female Ne in the last 20
255 generations in all regions, in accordance with previous observations [22,35,36].
256 Interestingly, the BSP showed an increase of female Ne around 10 ka that was constant until
257 the bottleneck in all the studied regions, suggesting a population expansion of all clades in
258 the early settlement of the present-day Mexican territory (Fig 5).

259

260

261 **Fig 5. Extended Bayesian skyline plot of female effective population size with calibrating**
262 **information from ancient sequences.** Populations were grouped according to the
263 geographic region. (A) North; (B) Northwest; (C) Center; (D) South; (E) Southeast

264

265

266 **Discussion**

267 Since pre-Hispanic times, different migrations, wars, conquests, territorial removals,
268 and displacements occurred between the numerous Mexican populations. Each of these
269 events translates into bottlenecks, genetic drift, and gene flow that have affected the
270 distribution of the maternal haplogroups of current populations. Several studies have

271 shown that many Mesoamerican populations exhibit the haplogroup pattern ABCD,
272 according to their relative frequency. The extensive geographic sampling included here
273 shows that Native American populations matrilineages have persisted over time with a high
274 haplogroup diversity that vary across Mexico and the Americas. Herein, we identified 5
275 haplogroups (A2, B2, C1, D1 and D4h3a) following the expected frequency pattern.
276 However, several populations exhibited haplogroups with higher frequency than A2 (Fig 1)
277 The geographic location of individuals showing higher frequencies of B2 or C1 than A2,
278 suggests that A2, B2 and C1 were dispersed mainly by a Pacific coast route and were spread
279 latitudinally 800 km along the Neovolcanic axis region, then southward by the Pacific coast
280 rout and to Yucatan Peninsula via Gulf coast route. Two important rivers, Lerma and Balsas,
281 originate in the Neovolcanic axis which acts as natural barriers to inclement weather from
282 the Pacific, could have also contributed to spreading of the haplogroups (S3 Table).

283 In addition, 82 different subhaplogroups were also identified, all of them related to
284 the main four haplogroups (A2, B2, C1, D1). From these, 24 subhaplogroups were previously
285 described in the Mexican population, here we report 58 found for the first time in present
286 day Mexican Natives Americans (Table 2). The most frequent among them was the A2+64,
287 which was found with the highest frequency in the populations from the Southeast region
288 belonging to the Mayan (18.9%) and Mixe-Zoque (19.7%) linguistic families. This
289 subhaplogroup was also present in other linguistic families, like the Oto-Mangue (4.1%)
290 from the central region of the country (S4 Table). The tip dating analysis showed that the
291 frequency of this maternal lineage increased in some southern Mexican groups between 28
292 and 16 ka (Fig 2). This haplogroup was previously identified in Pre-Columbian individuals

293 (7%) from Cholula archaeological site [37] and in 7 of 45 (15.6%) ancient settlers of Puerto
294 Rico before the European conquest [31]. The Bayesian inference showed a common origin
295 from those individuals and our modern samples carrying the A2+64 haplogroup (Fig 2),
296 suggesting that it has an origin in an ancestral lineage related to the early settlement of the
297 Americas that was subsequently dispersed into the Caribbean islands through a coastal
298 and/or marine route. Perhaps, the presence of this subhaplogroup in the Center of Mexico
299 is also due to the gene flow between populations from both regions, as previously
300 documented by anthropological and nuclear DNA studies [22,38–42].

301 Regarding D4h3a, which is a one of the founding pan-American subhaplogroups, it
302 has been present in the ~12.8 ka old Anzick-1 child from the Clovis burial and the ~10 ka old
303 Sumidouro5 from Lagoa Santa, Brazil [43,44]. This haplogroup has been previously found in
304 low frequency in some Native American groups from the Center and South of Mexico and
305 other regions of America, mainly distributed over the Pacific Coast [18,21,45]. Actually, we
306 identified this haplogroup only in a Tacuate female from the Pacific Coast in the Southern
307 region.

308 In addition, our results show the presence of all four main mitochondrial haplogroup
309 clades without a clear geographic or linguistic structure in all the tested Mexican indigenous
310 groups. Gene flow among populations was evidenced by PCoA and Median Joining
311 Haplotype Networks, in which populations from different regions are closer to each other
312 and share the same matrilineages (Figs 3 and 4). This pattern can be attributed to the
313 constant movements among populations from different regions [22,38]. For example, there
314 is evidence that in prehispanic times, trade contributed to shape the relations between

315 populations, since there were several sites of commercial exchange across the country
316 [38,39,46]. Additionally, the spread of agriculture could have altered the dynamics and the
317 genetic landscape of populations by the dispersal of different haplotypes, mainly B2a5,
318 which emerged approximately 5 ka ago as a lineage derived from B2a [20]. However, at
319 regional level interesting genetic relationships can be found as the subdivision of Oto-
320 mangue speaking populations in Central Mexico in two clearly different groups, one
321 including the Matlatzinca and Mazahua, and the other the Otomi and Pame (Fig 3). The
322 Otomi-Pame linguistic group include only five populations, four were here analyzed. Their
323 linguistic affinity supports a distant common ancestry but separated early in two groups and
324 probably admixed with other populations before migrating to settle in Central Mexico [18].
325 This genetic difference subsisted despite their geographical proximity due to their marriage
326 customs related with the patrilocal land inheritance and a late urbanization in the region.
327 Another possibility is that the lack of haplogroup structure is also due to shared ancestral
328 lineages, which first entered and spread throughout Mexico before the establishment and
329 differentiation of these populations. In line with this hypothesis, our Bayesian demographic
330 reconstruction shows an exponential increase in female Ne around 10 Ka ago in all regions
331 tested at the same time (Fig 5). This is in accordance with recent studies that show that the
332 early peopling of the Americas was characterized by a rapid dispersal and early
333 diversification of the first settlers through the continent, which in combination with the
334 effect of distance, geographic, and social barriers led to complex population histories
335 [44,47]. Altogether, these data suggest that the indigenous populations were rapidly
336 dispersed through the Mexican territory allowing the distribution of all haplogroups

337 thorough Mexico at different proportions, before linguistic variation was firmly established,
338 and that in conjunction with more recent expansions and contractions of large-scale
339 societies [15], shaped the mitochondrial haplogroups landscape of Mexican Indigenous
340 populations. Otherwise, the presence of ancient Native American haplogroups in the
341 Mexican Indigenous individuals tested here, can be an indicative of genetic persistence of
342 maternal lineages through the continent, in agreement with the model of the
343 Mesoamerican-related expansion into the Caribbean and South America [3,6,7,18,21].
344 In brief, the mitogenomes reported here fill gaps about the mitochondrial haplogroups
345 distribution, and our demographic inferences showed that the American Indigenous
346 population's history was marked by admixture between the populations which allowed the
347 spread of the main haplogroups in the region, potentially predating linguistic diversity.
348

349 **Materials and Methods**

350

351 **Sample description**

352 The samples included in this study belong to the Metabolic Analysis in an Indigenous
353 Sample (MAIS) cohort that was described previously [22,32,48,49]. Briefly, the MAIS cohort
354 was collected between 2011-2015, all individuals were self-recognized as Indigenous
355 members of a specific population, and had parents and grandparents born in the same
356 community. This study was designed in accordance with the Declaration of Helsinki and was
357 approved by the local ethics, research and biosafety human committees of the Instituto

358 Nacional de Medicina Genómica (INMEGEN) in Mexico City (protocol numbers: 31/2011/I
359 and 17/2013/I). All participants provided informed written consent. For some participants,
360 informed consent was translated into their native language, and some individuals signed
361 with their fingerprint.

362 Whole-blood samples were collected by venipuncture in tubes containing EDTA and
363 genomic DNA was extracted using the QIAamp DNA Blood Maxi kit (Qiagen, Valencia CA,
364 USA) according to the manufacturer's protocol. The DNA concentration was determined by
365 spectrophotometry (Nanodrop 1000 Spectrophotometer).

366 From the MAIS cohort, we included only those Mexican Indigenous individuals with
367 at least 90% of Native-American ancestry determined by ADMIXTURE v1.30 [25], comprising
368 a total of 572 Native Mexicans belonging to 60 populations. To assess this, the samples were
369 previously genotyped with Affymetrix human array 6.0 or Illumina Infinium array. Next, this
370 set was merged with a reference population panel composed of 50 Native Americans,
371 previously identified without evidence of recent admixture with continental populations
372 [22] and with 50 Europeans, and 50 Africans derived from the 1000 Genomes Project Phase
373 3 [50]. We then ran ADMIXTURE analyses assuming K=3 clusters, including a block relaxation
374 algorithm as the optimization method, and 100 replicates.

375

376 **Mitogenome sequencing/Massively Parallel Sequencing on the Ion
377 Torrent PGM**

378 Mitochondrial DNA was amplified by two long-range PCR reactions using two pairs
379 of previously reported primers [51], producing overlapping 8.2 and 8.6 kb amplicons,

380 followed by subsequent fragmentation by sonication to appropriately sized fragments using
381 ShearTM Plus Reagents Kit. The fragments were then ligated to ion barcoded adaptors, and
382 the adaptor-ligated library was then size-selected for 400-500bp length. Finally, the
383 sequencing reaction was carried out in the Ion PGMTM Systems.
384 The mtDNA data was de-multiplexed and each sample's raw reads were mapped to the
385 revised Cambridge Reference Sequence (rCRS) [25] with the BWA algorithm [52] and
386 processed with the Genome Analysis Toolkit (GATK) to recalibrate base quality-scores and
387 perform local realignment around known insertion and deletion (indels).

388

389 **Variant Calling of mtDNA-Sequence Data/mtDNA Variant Analysis**

390 Target coverage for each sample was computed with the GATK pipeline [26]. Single
391 nucleotide variants (SNVs) and indels were called with the Unified Genotype module of the
392 GATK and filtered to remove SNVs with annotations indicative of technical artifacts (such as
393 strand-bias, low variant call quality, or homopolymer runs). Variant discovery was
394 performed using HaplotypeCaller from GATK v3.7, setting the ploidy parameter to 1 and
395 next we applied hard filters to SNV and indel calls using the GATK's VariantFiltration [26,27].
396 Variants were annotated with The Ensembl Variant Effect Predictor (VEP) [53].

397

398 **Haplogroups Identification**

399 Aligned sequences were visualized and checked with MEGA7 v7.0.26 software [54]
400 prior haplogroup determination. The assignment of haplogroups for each sample was
401 assessed with the HaploGrep2 v2.1.0 software, which provides an automated way to

402 determine the haplogroup of the mtDNA profiles, based on Phylotree [28]. The classification
403 of haplogroups was based on pre-calculated phylogenetic weights that correspond to the
404 occurrence per position in Phylotree and show the stability of mutation of a variant [28].
405 Samples with non-Native American haplogroups, were excluded for subsequent analyses
406 (n=4).

407

408 **Tip Dating**

409 To date the A2+64 haplogroup we first transformed the genotypes from 50
410 individuals from MAIS carrying the A2+64 haplogroup into a fasta file using the
411 *FastaAlternateReferenceMaker* command from GATK v3.7 [26,27]. All fasta sequences were
412 merged into a single file and were aligned with MAFFT v7 [55]. Next, each sequence was
413 checked with MEGA7 v7.0.26. These sequences were loaded in PartitionFinder2 v2.1.1
414 [56,57] to choose the nucleotide substitution model. To calibrate the tree, we included four
415 ancient samples from Mexico carrying the B2 haplogroup, two contemporary sequences
416 from A4, two from Siberia carrying the B4 haplogroup [6] and seven ancient sequences with
417 the A2+64 haplogroup from Puerto Rico [31]. The Bayesian species calibrated tree was
418 constructed in BEAST2 v2.6.6 [58] with the following parameters: a constant population
419 model, a TN93 as nucleotide substitution model, a strict molecular clock, six partitions
420 (position by codon: 1spot, 2stpos, 3stpos; position by gene: tRNA, rRNA, HVR1-HVR2 and
421 ND6) [6], a mutation rate of 8×10^{-8} , four chains of the MCMC algorithm for 500 million
422 iterations each, sampling every 500 steps with a burn-in of 25%. Convergence was assessed

423 based on the effective sample sizes estimates (>200) and loglikelihood distribution through
424 the run.

425

426 **Distribution of mitochondrial haplogroups**

427 In order to compare the haplogroup distribution in Mexican Native American, we
428 included only those populations with a sample size ≥ 5 giving a $n = 532$ samples distributed
429 in 52 indigenous populations. Next, a genetic distances matrix based on Nei's index were
430 constructed to establish approximate relationships among populations through a Principal
431 Coordinate analysis (PCoA) based on a dissimilarity matrix using the haplogroup
432 designations between populations. To test if mitogenome genetic and geographic distance
433 are related a Mantel test. All tests were carried out with the GenAlex v6.5 software [59].

434

435 **Median Joining Haplotype Networks**

436 To infer evolutionary relationships, we carried out Median Joining Haplotype
437 Networks with Population Analysis with Reticulate Trees using PopArt software with
438 standard specifications [34] in the set of 568 mitochondrial genomes. For regional
439 comparisons, we included the regional Mexican country division North, Northwest, Center,
440 South and Southeast proposed in Contreras-Cubas et al [32].

441

442

443

444 **Demographic inference through Bayesian Skyline Plots**

445 For the five regions, estimation of past population dynamics was carried out by
446 Skyline Plots with BEAST2 (Bayesian Evolutionary Analysis by Sampling trees) v2.4.5 [60] in
447 the set of 568 mitochondrial genomes. BEAST2 is based on Monte Carlo Chains Markov
448 (MCMC) method [61,62]. A Coalescent Extended Bayesian Skyline was run using six
449 partitions (position by codon: 1spot, 2stpos, 3stpos; position by gene: tRNA, rRNA, HVR1-
450 HVR2 and ND6), the T93 model with a strict molecular clock and 250 millions of iterations
451 [59], following Heled and Drummond 2008 [62] and Bouckaert et al 2014 [58]. Also, we used
452 the sequence of Anzick-1 and five ancient sequences from Mexico, 20 modern sequences
453 from Siberia [6], and eight Mexican sequences with African haplogroups with the purpose
454 of calibrating the tree. Trees were plotted with R software [63].

455

456 **Acknowledgements**

457 Marlen Flores-Huacuja is a doctoral student from the Programa de Doctorado en
458 Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and has received
459 the CONAHCyT fellowship 596612. This study was supported by the Consejo Nacional de
460 Ciencia y Tecnología, Mexico [233970]. The funder had no role in the study design, data
461 collection and analysis, decision to publish, or preparation of the manuscript.

462

463

464

465 References

- 466 1. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy:
467 Implications for human health and disease. *Nature Reviews Genetics*. Nature
468 Publishing Group; 2015. pp. 530–542. doi:10.1038/nrg3966
- 469 2. Skoglund P, Reich D. A genomic view of the peopling of the Americas. *Current Opinion*
470 in Genetics and Development. Elsevier Ltd; 2016. pp. 27–35.
471 doi:10.1016/j.gde.2016.06.016
- 472 3. Llamas B, Harkins KM, Fehren-Schmitz L. Genetic studies of the peopling of the
473 Americas: What insights do diachronic mitochondrial genome datasets provide?
474 *Quaternary International*. 2017;444: 26–35. doi:10.1016/j.quaint.2017.04.040
- 475 4. Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, Mulligan CJ, et al. Beringian
476 standstill and spread of native American founders. *PLoS One*. 2007;2.
477 doi:10.1371/journal.pone.0000829
- 478 5. Perego UA, Angerhofer N, Pala M, Olivieri A, Lancioni H, Kashani BH, et al. The initial
479 peopling of the Americas: A growing number of founding mitochondrial genomes
480 from Beringia. *Genome Res*. 2010;20: 1174–1179. doi:10.1101/gr.109231.110
- 481 6. Llamas B, Fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, Rohland N, et al.
482 Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the
483 Americas. *Sci Adv*. 2016;2. doi:10.1126/sciadv.1501385
- 484 7. Roca-Rada X, Souilmi Y, Teixeira JC, Llamas B. Ancient DNA studies in pre-Columbian
485 Mesoamerica. *Genes*. MDPI AG; 2020. pp. 1–19. doi:10.3390/genes1111346
- 486 8. Bisso-Machado R, Fagundes NJR. Uniparental genetic markers in Native Americans:
487 A summary of all available data from ancient and contemporary populations. *Am J*
488 *Phys Anthropol*. 2021;176: 445–458. doi:10.1002/ajpa.24357
- 489 9. Malhi RS, Eshleman JA, Greenberg JA, Weiss DA, Shook BAS, Kaestle FA, et al. The
490 Structure of Diversity within New World Mitochondrial DNA Haplogroups:
491 Implications for the Prehistory of North America. *Am J Hum Genet*. 2002.
- 492 10. Peñaloza-Espinosa RI, Arenas-Aranda Diego, Cerdá-Flores RM, Buentello-Malo
493 Leonor, González-Valencia Gerardo, Torres Javier, et al. Characterization of mtDNA
494 Haplogroups in 14 Mexican Indigenous Populations. *Hum Biol*. 2007;79: 313–320.
495 doi:10.1353/hub.2007.0042
- 496 11. Sandoval K, Buentello-Malo L, Peñaloza-Espinosa R, Avelino H, Salas A, Calafell F, et
497 al. Linguistic and maternal genetic diversity are not correlated in Native Mexicans.
498 *Hum Genet*. 2009;126: 521–531. doi:10.1007/s00439-009-0693-y
- 499 12. Kemp BM, González-Oliver A, Malhi RS, Monroe C, Schroeder KB, McDonough J, et
500 al. Evaluating the farming/language dispersal hypothesis with genetic variation
501 exhibited by populations in the Southwest and Mesoamerica. *Proc Natl Acad Sci U S*
502 A. 2010;107: 6759–6764. doi:10.1073/pnas.0905753107
- 503 13. Martínez-Cortés G, Salazar-Flores J, Haro-Guerrero J, Rubi-Castellanos R, Velarde-
504 Félix JS, Muñoz-Valle JF, et al. Maternal admixture and population structure in
505 Mexican-Mestizos based on mtDNA haplogroups. *Am J Phys Anthropol*. 2013;151:
506 526–537. doi:10.1002/ajpa.22293

507 14. Gorostiza A, Acunha-Alonzo V, Regalado-Liu L, Tirado S, Granados J, Sámano D, et al.
508 Reconstructing the History of Mesoamerican Populations through the Study of the
509 Mitochondrial DNA Control Region. *PLoS One.* 2012;7.
510 doi:10.1371/journal.pone.0044666

511 15. González-Martín A, Gorostiza A, Regalado-Liu L, Arroyo-Peña S, Tirado S, Nuño-Arana
512 I, et al. Demographic history of indigenous populations in Mesoamerica based on
513 mtDNA sequence data. *PLoS One.* 2015;10. doi:10.1371/journal.pone.0131791

514 16. González-Sobrino BZ, Pintado-Cortina AP, Sebastián-Medina L, Morales-Mandujano
515 F, Contreras A V., Aguilar YE, et al. Genetic Diversity and Differentiation in Urban and
516 Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-
517 Chromosome Lineages. *Biodemography Soc Biol.* 2016;62: 53–72.
518 doi:10.1080/19485565.2015.1117938

519 17. Ochoa-Lugo MI, Muñoz M de L, Pérez-Ramírez G, Beaty KG, López-Armenta M,
520 Cervini-Silva J, et al. Genetic affiliation of pre-hispanic and contemporary mayas
521 through maternal lineage. *Hum Biol.* 2016;88: 136–167.
522 doi:10.13110/humanbiology.88.2.0136

523 18. González-Oliver A, Garfijias-Morales E, Smith DG, Quinto-Sánchez M. Mitochondrial
524 DNA analysis of mazahua and otomi indigenous populations from Estado de México
525 suggests a distant common ancestry. *Hum Biol.* 2017;89: 195–216.
526 doi:10.13110/humanbiology.89.3.03

527 19. Mizuno F, Wang L, Sugiyama S, Kurosaki K, Granados J, Gomez-Trejo C, et al.
528 Characterization of complete mitochondrial genomes of indigenous Mayans in
529 Mexico. *Ann Hum Biol.* 2017;44: 652–658. doi:10.1080/03014460.2017.1358393

530 20. Achilli A, Perego UA, Lancioni H, Olivieri A, Gandini F, Kashani BH, et al. Reconciling
531 migration models to the Americas with the variation of North American native
532 mitogenomes. *Proc Natl Acad Sci U S A.* 2013;110: 14308–14313.
533 doi:10.1073/pnas.1306290110

534 21. Mizuno F, Gojobori J, Wang L, Onishi K, Sugiyama S, Granados J, et al. Complete
535 mitogenome analysis of indigenous populations in Mexico: Its relevance for the origin
536 of Mesoamericans. *J Hum Genet.* 2014;59: 359–367. doi:10.1038/jhg.2014.35

537 22. García-Ortiz H, Barajas-Olmos F, Contreras-Cubas C, Cid-Soto MÁ, Córdova EJ,
538 Centeno-Cruz F, et al. The genomic landscape of Mexican Indigenous populations
539 brings insights into the peopling of the Americas. *Nat Commun.* 2021;12.
540 doi:10.1038/s41467-021-26188-w

541 23. Quinto-Cortés CD, Arriola LA, García-Hughes G, García-López R, Molina DP, Flores M,
542 et al. Genetic characterization of indigenous peoples from Oaxaca, Mexico, and its
543 relation to linguistic and geographic isolation. *Hum Biol.* 2010;82: 409–432.
544 doi:10.3378/027.082.0405

545 24. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in
546 unrelated individuals. *Genome Res.* 2009;19: 1655–1664.
547 doi:10.1101/gr.094052.109

548 25. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N.
549 Reanalysis and revision of the Cambridge reference sequence for human
550 mitochondrial DNA. *Nat Genet.* 1999;23: 147–147. doi:10.1038/13779

551 26. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A,
552 et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit
553 best practices pipeline. *Curr Protoc Bioinformatics*. 2013.
554 doi:10.1002/0471250953.bi1110s43

555 27. Depristo MA, Banks E, Poplin R, Garimella KV., Maguire JR, Hartl C, et al. A framework
556 for variation discovery and genotyping using next-generation DNA sequencing data.
557 *Nat Genet*. 2011;43: 491–501. doi:10.1038/ng.806

558 28. Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et
559 al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-
560 throughput sequencing. *Nucleic Acids Res.* 2016;44: W58–W63.
561 doi:10.1093/nar/gkw233

562 29. Kloss-Brandstätter A, Pacher D, Schönherr S, Weissensteiner H, Binna R, Specht G, et
563 al. HaploGrep: A fast and reliable algorithm for automatic classification of
564 mitochondrial DNA haplogroups. *Hum Mutat*. 2011;32: 25–32.
565 doi:10.1002/humu.21382

566 30. Gojobori J, Mizuno F, Wang L, Onishi K, Granados J, Gomez-Trejo C, et al. mtDNA
567 diversity of the Zapotec in Mexico suggests a population decline long before the first
568 contact with Europeans. *J Hum Genet*. 2015;60: 557–559. doi:10.1038/jhg.2015.55

569 31. Nieves-Colón MA, Pestle WJ, Reynolds AW, Llamas B, De La Fuente C, Fowler K, et al.
570 Ancient DNA Reconstructs the Genetic Legacies of Precontact Puerto Rico
571 Communities. *Mol Biol Evol*. 2020;37: 611–626. doi:10.1093/molbev/msz267

572 32. Contreras-Cubas C, Sánchez-Hernández BE, García-Ortiz H, Martínez-Hernández A,
573 Barajas-Olmos F, Cid M, et al. Heterogenous distribution of MTHFR gene variants
574 among mestizos and diverse amerindian groups from Mexico. *PLoS One*. 2016;11.
575 doi:10.1371/journal.pone.0163248

576 33. INALI. CATALOGO de las Lenguas Indígenas Nacionales: Variantes Lingüísticas de
577 México con sus autodenominaciones y referencias geoestadísticas. Mexico; 2008.

578 34. Leigh JW, Bryant D. POPART: Full-feature software for haplotype network
579 construction. *Methods Ecol Evol*. 2015;6: 1110–1116. doi:10.1111/2041-210X.12410

580 35. Lindo J, Rogers M, Mallott EK, Petzelt B, Mitchell J, Archer D, et al. Patterns of Genetic
581 Coding Variation in a Native American Population before and after European Contact.
582 *Am J Hum Genet*. 2018;102: 806–815. doi:10.1016/j.ajhg.2018.03.008

583 36. O’Fallon BD, Fehren-Schmitz L. Native Americans experienced a strong population
584 bottleneck coincident with European contact. *Proceedings of the National Academy
585 of Sciences*. 2011;108: 20444–20448. doi:10.1073/pnas.1112563108

586 37. González-Oliver A, Garfias-Morales E, Bravo-López MJ, De La Cruz-Laina MI. Genetic
587 Relationships between Mesoamerican Ancient Populations and with American
588 Greater Southwest and Caribbean Populations Close to Mesoamerican Borders. *Hum
589 Biol*. 2022. doi:10.1353/hub.2017.0108

590 38. Ragsdale CS, Edgar HJH. Cultural interaction and biological distance in postclassic
591 period Mexico. *Am J Phys Anthropol*. 2015;157: 121–133. doi:10.1002/ajpa.22701

592 39. Mata-Míguez J, Overholtzer L, Rodríguez-Alegría E, Kemp BM, Bolnick DA. The genetic
593 impact of Aztec imperialism: Ancient mitochondrial DNA evidence from Xaltocan,
594 Mexico. *Am J Phys Anthropol*. 2012;149: 504–516. doi:10.1002/ajpa.22152

595 40. Moreno-Estrada A, Gignoux CR, Fernández-López JC, Zakharia F, Sikora M, Contreras
596 A V., et al. The genetics of Mexico recapitulates Native American substructure and
597 affects biomedical traits. *Science* (1979). 2014;344: 1280–1285.
598 doi:10.1126/science.1251688

599 41. Bellwood P. Farmers, Foragers, Languages, Genes: The Genesis of Agricultural
600 Societies. 2002.

601 42. Bellwood P, Gamble C, Blanc SA Le, Pluciennik M, Richards MB, Terrell JE. First
602 Farmers: The Origins of Agricultural Societies, by Peter Bellwood. Malden (MA):
603 Blackwell, 2005; ISBN 0-631-20565-9. *Cambridge Archaeological Journal*. 2007;17:
604 87. doi:doi:10.1017/S0959774307000078

605 43. Rasmussen M, Anzick SL, Waters MR, Skoglund P, Degiorgio M, Stafford TW, et al.
606 The genome of a Late Pleistocene human from a Clovis burial site in western
607 Montana. *Nature*. 2014;506: 225–229. doi:10.1038/nature13025

608 44. Moreno-Mayar JV, Vinner L, De Barros Damgaard P, De La Fuente C, Chan J, Spence
609 JP, et al. Early human dispersals within the Americas. *Science*. 2018;362.
610 doi:10.1126/science.aav2621

611 45. Perego UA, Achilli A, Angerhofer N, Accetturo M, Pala M, Olivieri A, et al. Distinctive
612 Paleo-Indian Migration Routes from Beringia Marked by Two Rare mtDNA
613 Haplogroups. *Current Biology*. 2009;19: 1–8. doi:10.1016/j.cub.2008.11.058

614 46. Bolnick DA, Raff JA, Springs LC, Reynolds AW, Miró-Herrans AT. Native American
615 Genomics and Population Histories. 2016. doi:10.1146/annurev-anthro-102215-
616 100036

617 47. Posth C, Nakatsuka N, Lazaridis I, Skoglund P, Mallick S, Lamnidis TC, et al.
618 Reconstructing the Deep Population History of Central and South America. *Cell*.
619 2018;175: 1185-1197.e22. doi:10.1016/j.cell.2018.10.027

620 48. Mendoza-Caamal EC, Barajas-Olmos F, Garcíá-Ortíz H, Cicerón-Arellano I, Martínez-
621 Hernández A, Córdova EJ, et al. Metabolic syndrome in indigenous communities in
622 Mexico: A descriptive and cross-sectional study. *BMC Public Health*. 2020;20.
623 doi:10.1186/s12889-020-8378-5

624 49. Cid-Soto MA, Martínez-Hernández A, García-Ortíz H, Córdova EJ, Barajas-Olmos F,
625 Centeno-Cruz F, et al. Gene variants in AKT1, GCKR and SOCS3 are differentially
626 associated with metabolic traits in Mexican Amerindians and Mestizos. *Gene*.
627 2018;679: 160–171. doi:10.1016/j.gene.2018.08.076

628 50. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A
629 global reference for human genetic variation. *Nature*. 2015;526: 68–74.
630 doi:10.1038/nature15393

631 51. Gunnarsdóttir ED, Li M, Bauchet M, Finstermeier K, Stoneking M. High-throughput
632 sequencing of complete human mtDNA genomes from the Philippines. *Genome Res*.
633 2011;21: 1–11. doi:10.1101/gr.107615.110

634 52. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
635 transform. *Bioinformatics*. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324

636 53. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl
637 Variant Effect Predictor. *Genome Biol*. 2016;17: 122. doi:10.1186/s13059-016-0974-
638 4

639 54. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis
640 Version 7.0 for Bigger Datasets. *Mol Biol Evol.* 2016;33: 1870–1874.
641 doi:10.1093/molbev/msw054

642 55. Katoh K, Frith MC. Adding unaligned sequences into an existing alignment using
643 MAFFT and LAST. *Bioinformatics.* 2012;28: 3144–3146.
644 doi:10.1093/bioinformatics/bts578

645 56. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New
646 Methods for Selecting Partitioned Models of Evolution for Molecular and
647 Morphological Phylogenetic Analyses. *Mol Biol Evol.* 2016; msw260.
648 doi:10.1093/molbev/msw260

649 57. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
650 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing
651 the Performance of PhyML 3.0. *Syst Biol.* 2010;59: 307–321.
652 doi:10.1093/sysbio/syq010

653 58. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A Software
654 Platform for Bayesian Evolutionary Analysis. *PLoS Comput Biol.* 2014;10.
655 doi:10.1371/journal.pcbi.1003537

656 59. Peakall R, Smouse PE. GenALEX 6.5: Genetic analysis in Excel. Population genetic
657 software for teaching and research—an update. *Bioinformatics.* 2012;28: 2537–2539.
658 doi:10.1093/bioinformatics/bts460

659 60. Drummond AJ, Bouckaert RR. Bayesian Evolutionary Analysis with BEAST. Cambridge:
660 Cambridge University Press; 2015. doi:10.1017/CBO9781139095112

661 61. Drummond AJ. Bayesian Coalescent Inference of Past Population Dynamics from
662 Molecular Sequences. *Mol Biol Evol.* 2005;22: 1185–1192.
663 doi:10.1093/molbev/msi103

664 62. Heled J, Drummond AJ. Bayesian inference of population size history from multiple
665 loci. *BMC Evol Biol.* 2008;8. doi:10.1186/1471-2148-8-289

666 63. R Core Team (2020). R: A language and environment for statistical computing.
667 Vienna, Austria; 2020. Available: <https://www.R-project.org>

668

669

670 **Supporting information**

671 **S1 Fig. Admixture inference assuming K = 3 clusters.** The inference of ancestry proportions
672 in the MAIS dataset was done using a reference panel of African, European and Native-
673 American populations. Purple colored bars represent the proportion of inferred Native
674 American ancestry in each sample.

675 **S2 Fig. Bayesian phylogenetic analysis of A2+64.** Calibrated tree from the whole
676 mitogenome sequences of modern and ancient A2+64 haplogroups mitogenomes

677 **S3 Fig. Mantel test.** Mantel test with 999 permutations based on Nei's genetic distances
678 using the variable sites of the mitochondrial genome and geographic distance (GGD).

679 **S1 Table. Populations size included in the present study.**

680 **S2 Table. Non-Native American Haplogroups identified in the studied populations.**

681 **S3 Table. Haplogroup count and frequency by indigenous population (n and %).**

682 **S4 Table. A2+64 Haplogroup frequency by linguistic Family and ethnic group.**

683 **S5 Table. Pairwise Nei's genetic Distance Matrix.**

684 **S6 Table. Eigen Vectors inferred from Nei's genetic distance Matrix.**

685 **S7 Table. Pairwise geographic distance Matrix.**

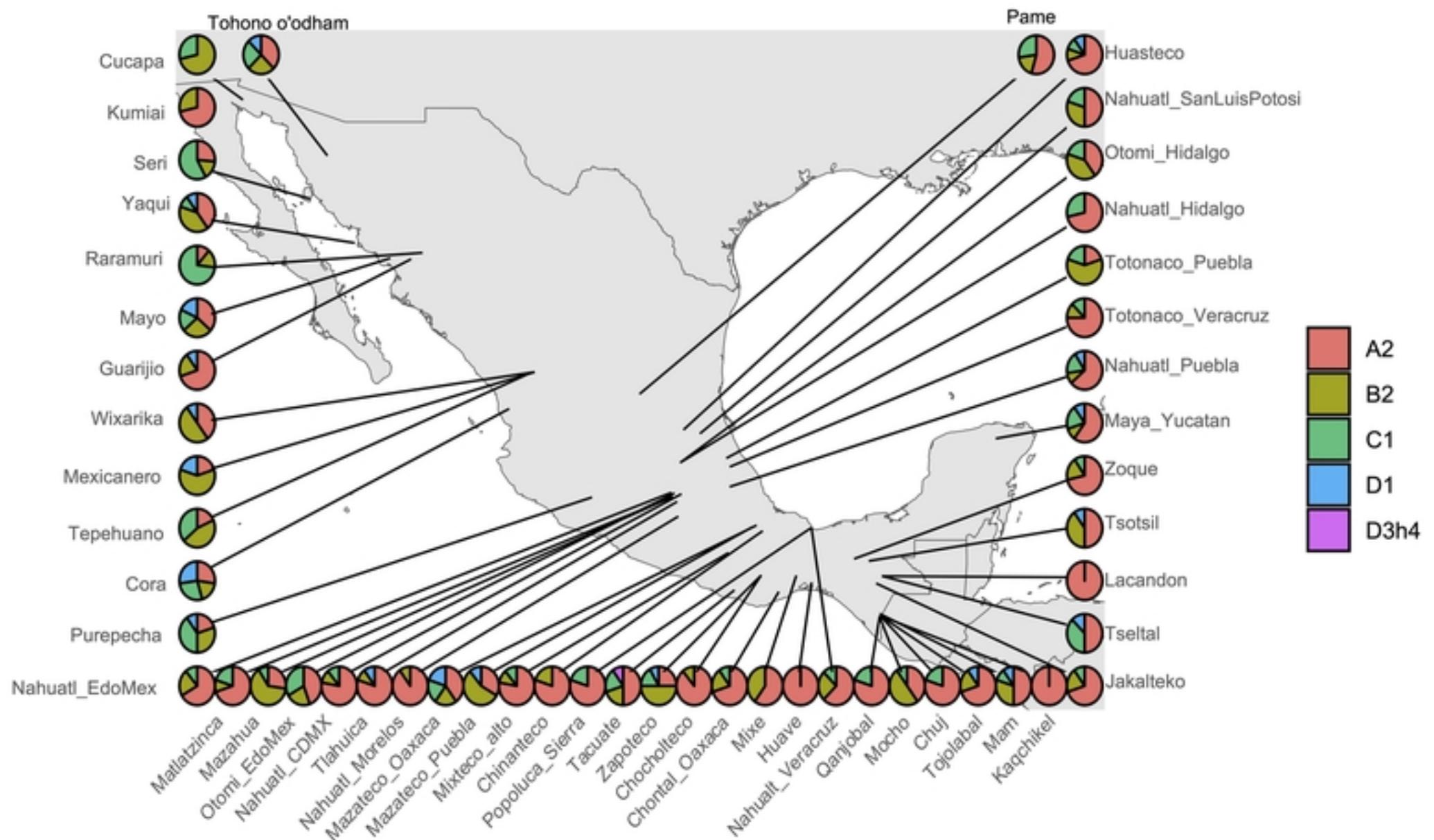


Figure 1

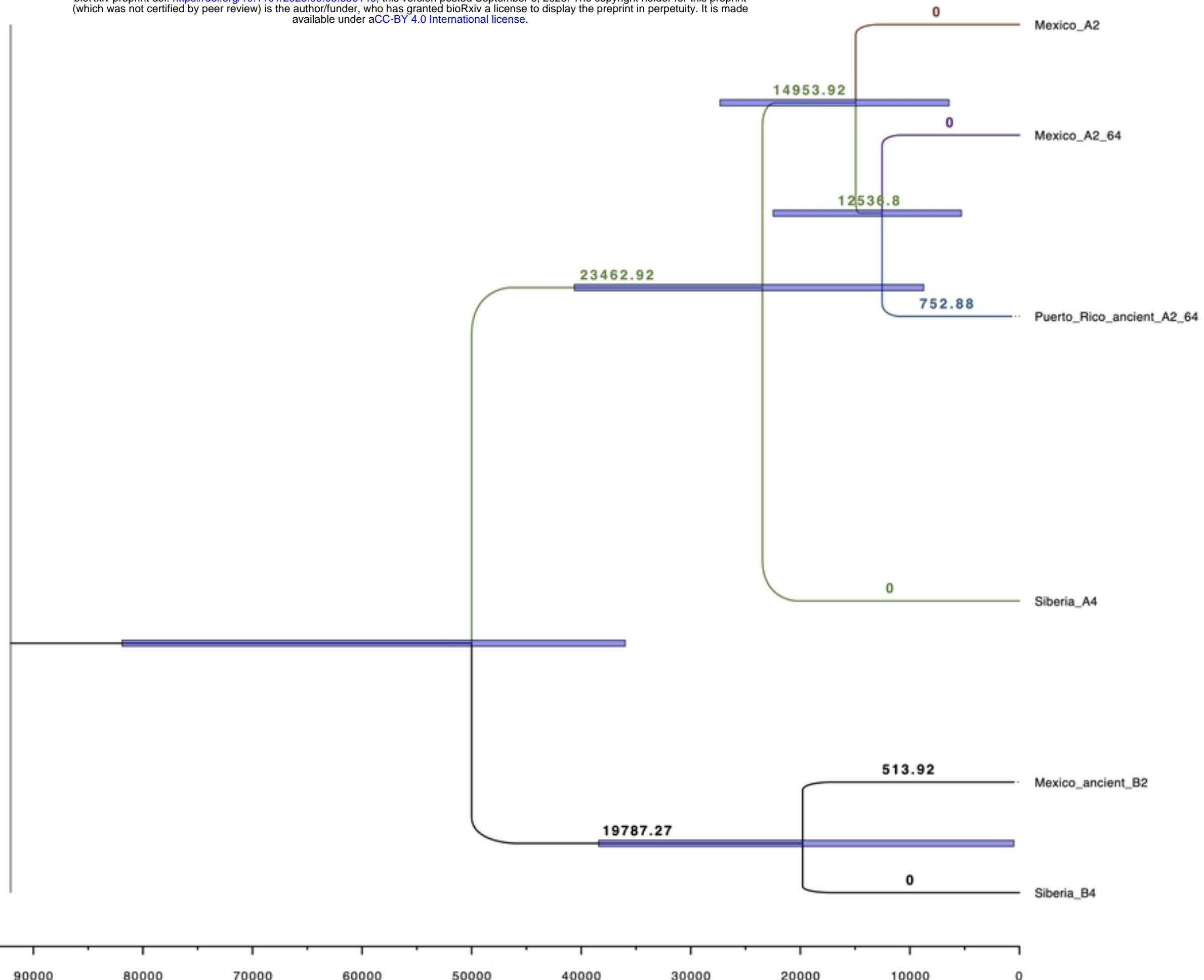
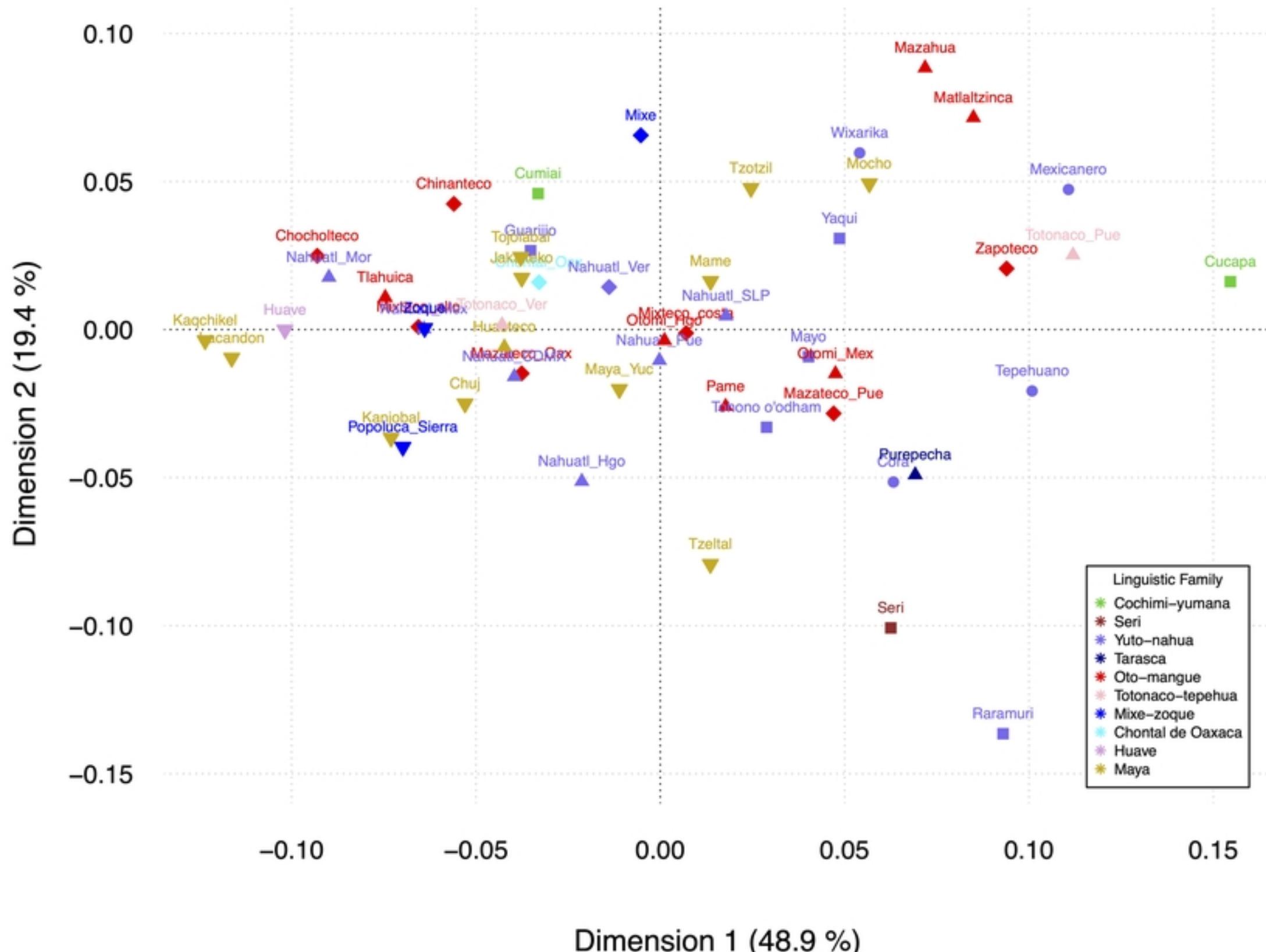


Figure 2



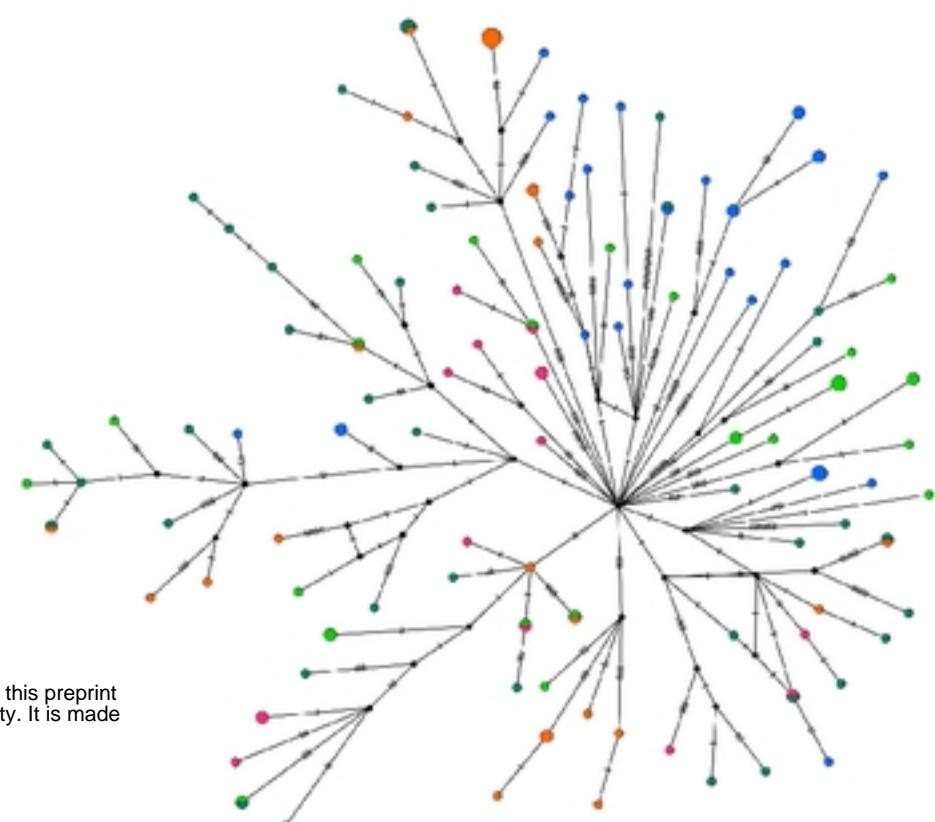
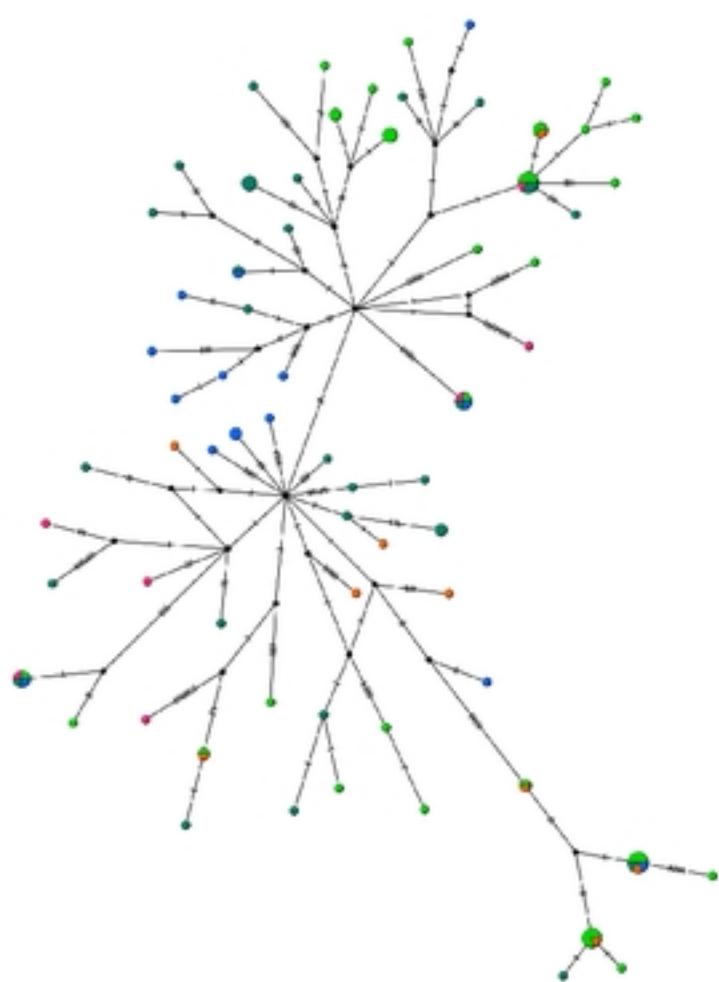


Figure 3


A)

B)

C)

D)

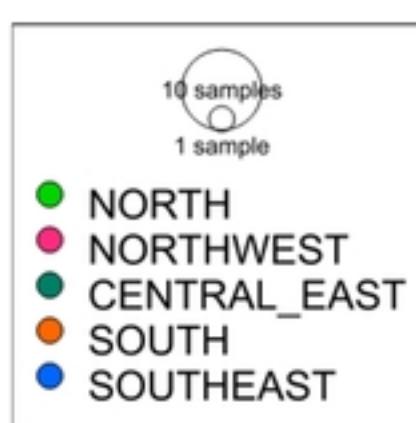
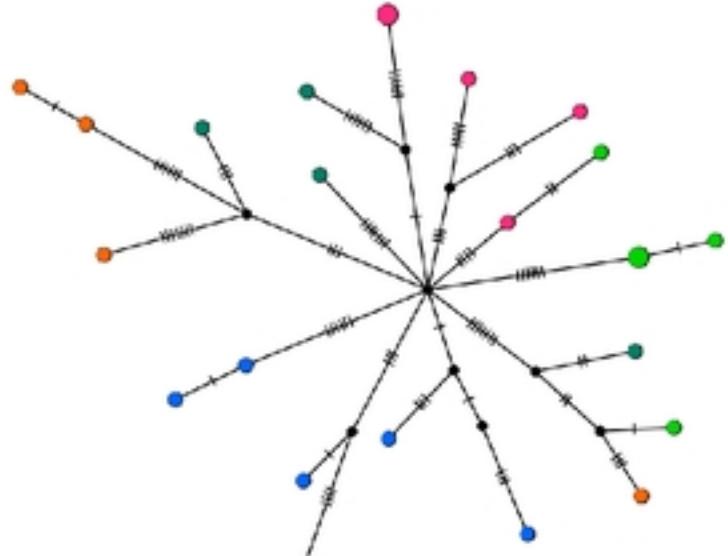
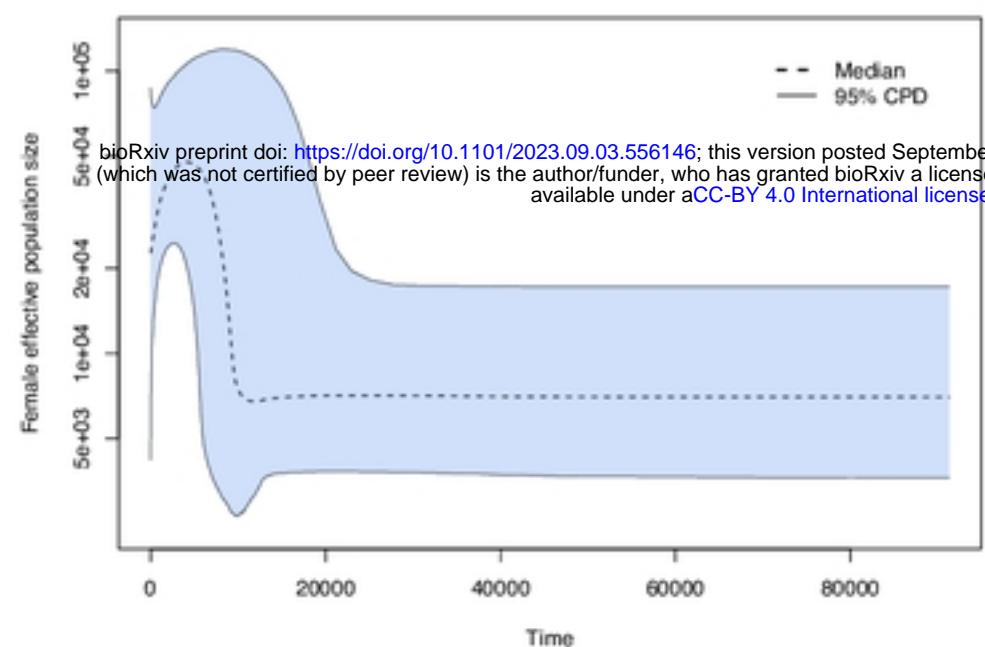
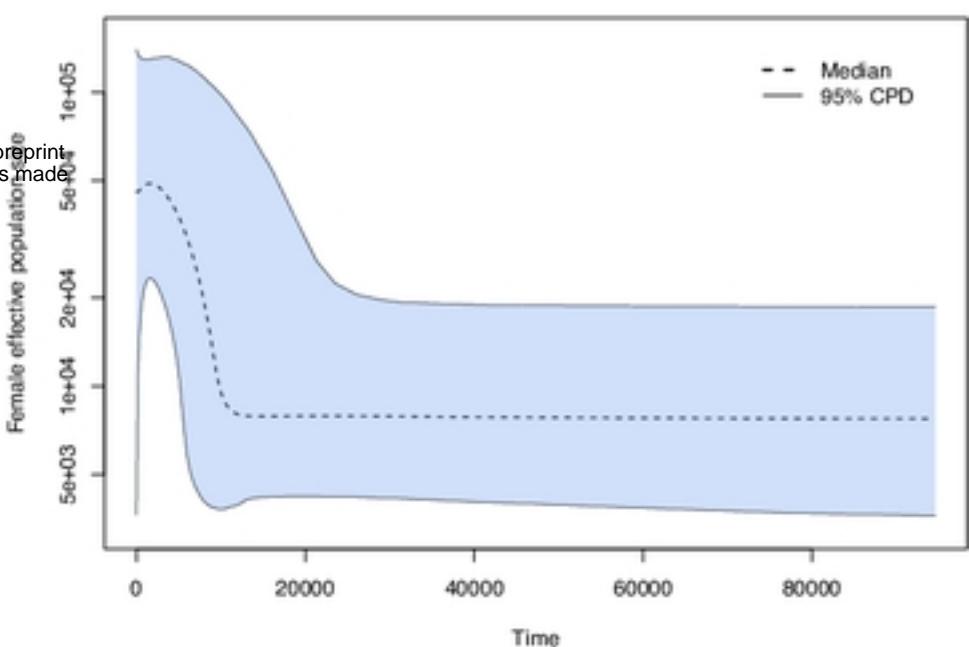



Figure 4

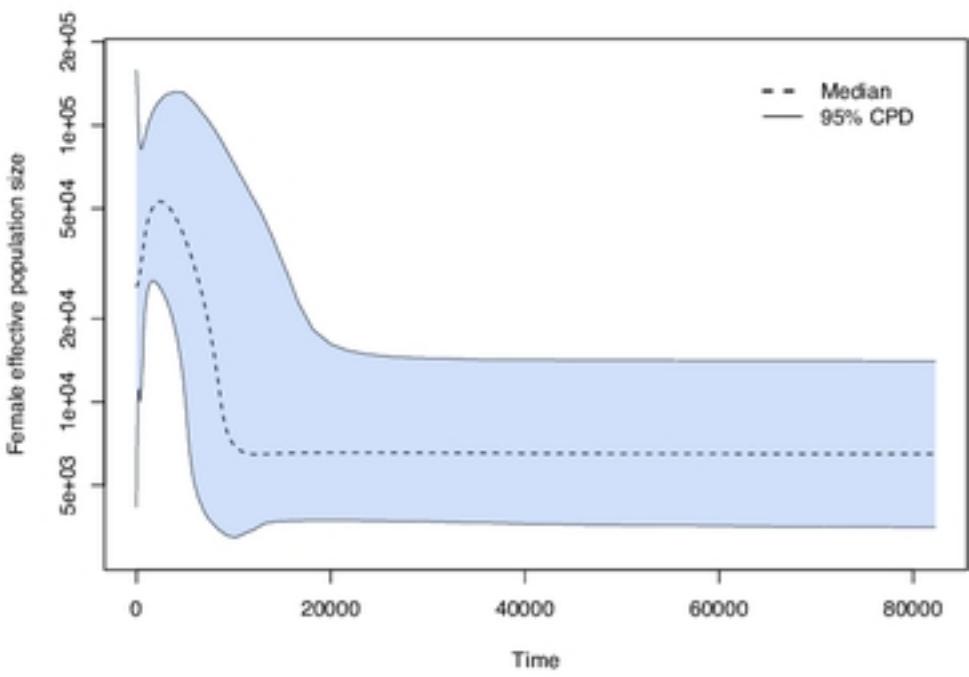
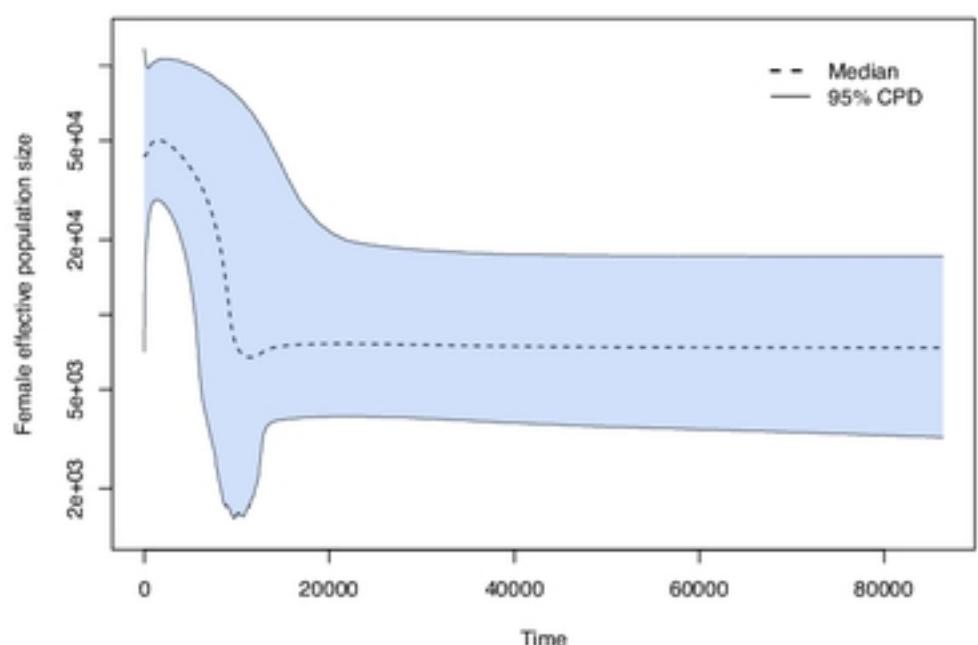
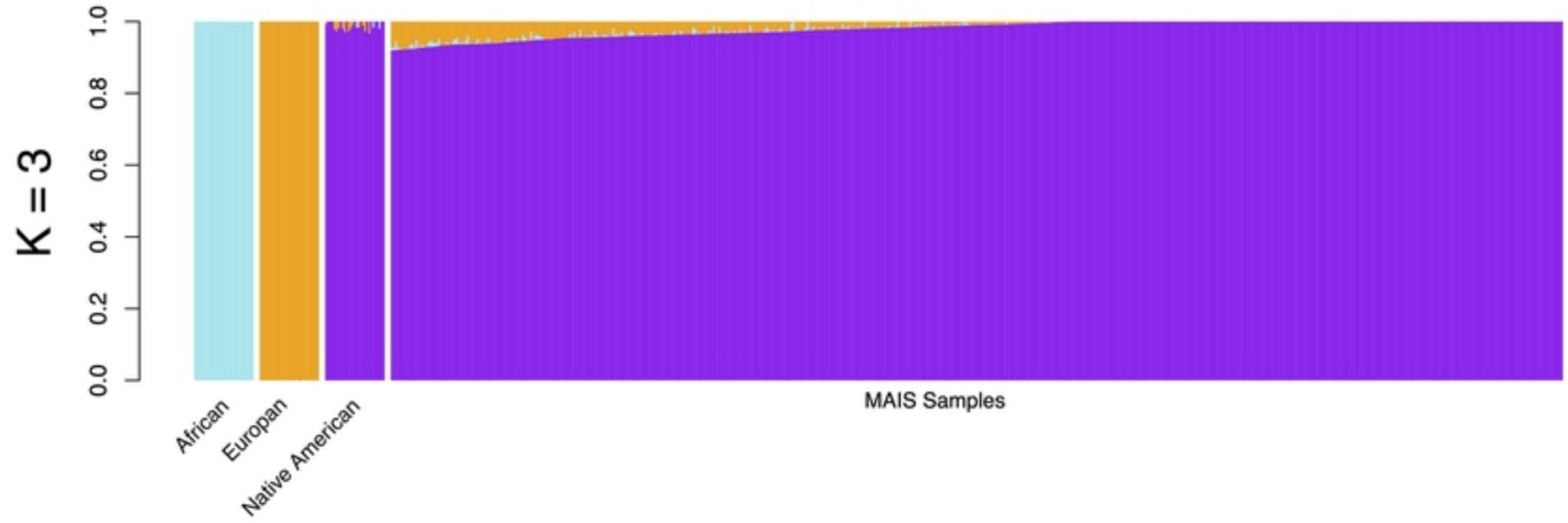
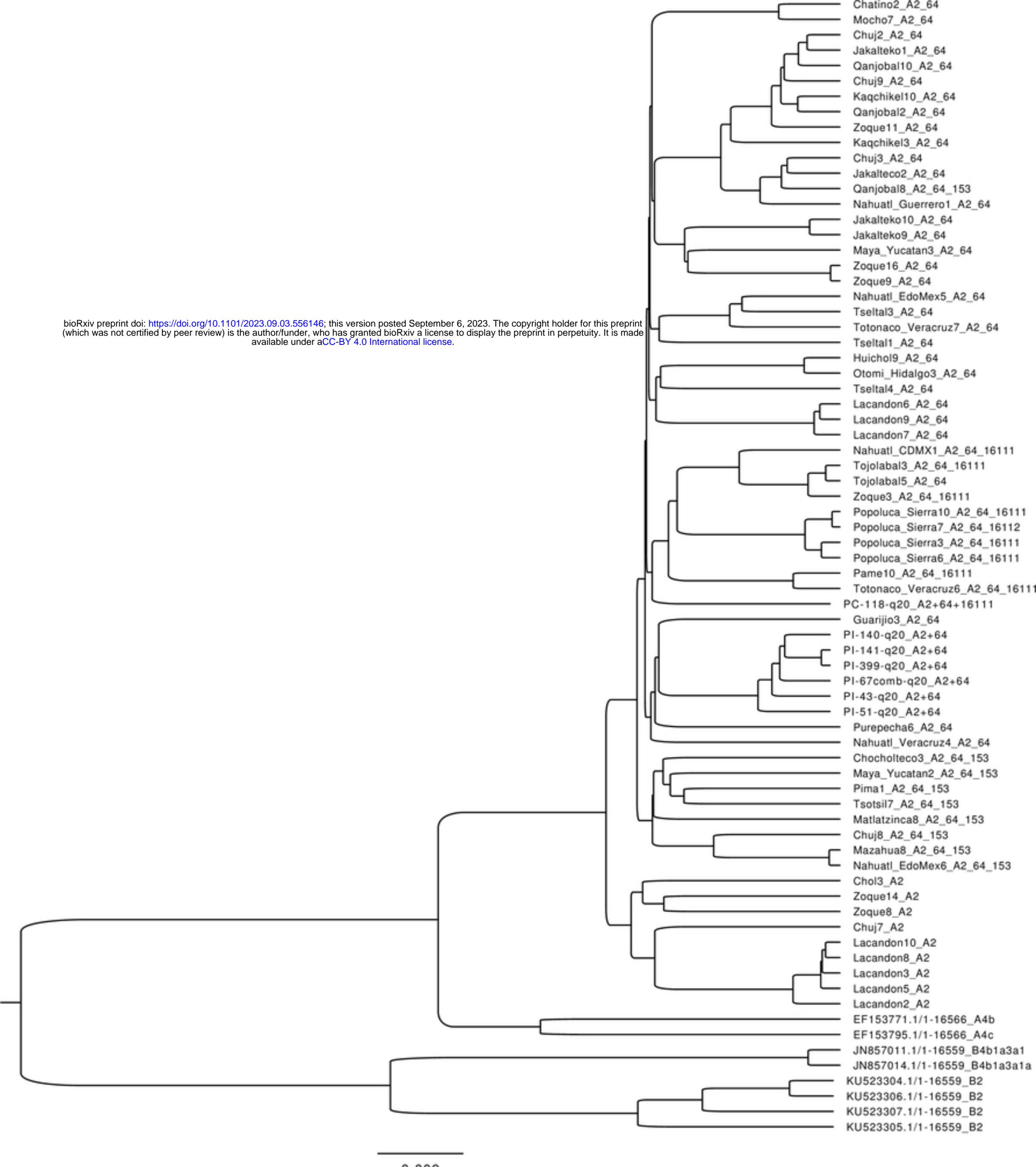




A)**B)****C)****D)****E)**

Figure 5

S1 Figure

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.03.556146>; this version posted September 6, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

S2 Figure

S3 Figure