

1 **PET imaging of fibroblast activation protein alpha (FAP) detects incipient cardiotoxicity due to**
2 **anthracycline chemotherapy**

3 Chul-Hee Lee, Ph.D.¹, Onorina Manzo, Ph.D.², Luisa Rubinelli², Sebastian E. Carrasco, DVM, Ph.D.^{3,4,5,6},
4 Sungyun Cho, Ph.D.^{7,8}, Thomas M. Jeitner, Ph.D.¹, John W. Babich, Ph.D.^{1,8,9,10}, Annarita Di Lorenzo,
5 Ph.D.², James M. Kelly, Ph.D.^{1,8,9*}

6 ¹Molecular Imaging Innovations Institute (MI3) and Department of Radiology, Weill Cornell Medicine, New
7 York, NY 10021, USA

8 ²Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA

9 ³Laboratory of Comparative Pathology, Weill Cornell Medicine, New York, NY 10021, USA

10 ⁴Laboratory of Comparative Pathology, Memorial-Sloan Kettering Cancer Center, New York, NY 10065, USA

11 ⁵Laboratory of Comparative Pathology, Rockefeller University, New York, NY 10065, USA

12 ⁶Laboratory of Comparative Pathology, Hospital for Special Surgery, New York, NY 10021, USA

13 ⁷Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA

14 ⁸Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA

15 ⁹Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA

16 ¹⁰Ratio Therapeutics, Inc. Boston, MA, 02210, USA

17

18 **Short Title:** FAPI PET imaging detects early cardiotoxicity

19 * Corresponding author:

20 **James M. Kelly, Ph.D.**

21 Division of Radiopharmaceutical Sciences

22 Department of Radiology

23 413 East 69th St, Room BB-1604

24 Weill Cornell Medicine, New York, NY, USA

25 E-mail: jak2046@med.cornell.edu, Office: (646) 962-6791, Cell: +1-(917) 750-8688

26

27 **Word Count:** 11,492

28

29 **ABSTRACT** (298 words)

30 **Background:** Anthracycline chemotherapy is associated with a risk of cardiotoxicity leading to heart
31 disease, particularly in pediatric cancer patients. Gold standard methods of detecting cardiotoxicity are
32 insufficiently sensitive to early damage and specific pathophysiolgies driving disease. Positron
33 emission tomography (PET) couples anatomical resolution with biochemical mechanistic selectivity
34 and potentially addresses the current diagnostic limitations in cardio-oncology. We aimed to validate
35 PET imaging biomarkers targeting fibroblast activation protein alpha (FAP), Translocator protein
36 (TSPO), and norepinephrine receptor (NET) for detection of incipient anthracycline-induced
37 cardiotoxicity.

38 **Methods:** Cardiotoxicity was established in male C57BL/6J mice by a cumulative dose of 24 mg/kg
39 doxorubicin (DOX) over 2 weeks. DOX mice and their age-matched controls were imaged with
40 echocardiography and PET, using [⁶⁸Ga]Ga-FAPI-04, [¹⁸F]DPA-714, and [¹⁸F]MFBG, over 12 weeks.
41 Fractional shortening (FS) was determined from the echocardiograms, and cardiac uptake of the
42 radioligands was quantified from the PET images. Heart sections were collected and used for the
43 analysis of bulk RNA-seq, RT-qPCR, Western blot, in situ hybridization (ISH), and histopathological
44 analysis.

45 **Results:** DOX mice exhibited cardiotoxicity and cardiac atrophy. Cardiac [⁶⁸Ga]Ga-FAPI-04 PET
46 signal was significantly higher in DOX mice from 2 weeks through the study endpoint. By contrast, no
47 cardiac dysfunction was evident by echocardiography until 10 weeks, at which point FS was
48 significantly reduced in DOX mice. There were no differences in [¹⁸F]DPA-714 and [¹⁸F]MFBG signals.
49 Transcription and translation of FAP, but not TSPO or NET, was detected in cardiomyocytes and were
50 elevated in the DOX hearts, in agreement with the PET data. Genes related to cell adhesion and
51 extracellular remodeling were significantly upregulated in the DOX mice relative to controls.

52 **Conclusions:** FAP is a sensitive and selective imaging biomarker for incipient cardiotoxicity and FAPI
53 PET is a promising non-invasive imaging tool for identifying patients at risk of cardiotoxicity during or

54 after anthracycline chemotherapy.

55 **GRAPHICAL ABSTRACT:** A graphical abstract is available for this article.

56

57 **Key words:** cardiotoxicity, anthracyclines, positron emission tomography, fibroblast activation protein

58 alpha

59

60 **Nonstandard Abbreviations and Acronyms:**

61	ACE	Acetylcholinesterase
62	BP	Biological process
63	BSA	Bovine serum albumin
64	CT	Computed tomography
65	CTRL	Control
66	DEG	Differentially expressed genes
67	DOX	Doxorubicin
68	FAP	Fibroblast activation protein alpha
69	FAPI	Fibroblast activation protein alpha inhibitor
70	FC	Fold change
71	FPKM	Fragments per kilobase of transcript per million mapped reads
72	FS	Fractional shortening
73	GO	Gene oncology
74	HW	Heart weight
75	ID	Injected dose
76	ISH	In situ hybridization
77	LVDd	Left ventricle end-diastolic diameter
78	LVDs	Left ventricle end-systolic diameter
79	LVEF	Left ventricular ejection fraction
80	MFBG	meta-Fluorobenzylguanidine

81	MIBG	meta-Iodobenzylguanidine
82	MIP	Maximum intensity projection
83	NET	Norepinephrine transporter
84	PBR	Peripheral-type benzodiazepine receptor
85	PBS	Phosphate buffered saline
86	PET	Positron emission tomography
87	RNA-seq	RNA sequencing
88	ROI	Region of interest
89	SPECT	Single photon computed tomography
90	TL	Tibia length
91	Top2 β	Topoisomerase-2 β
92	TSPO	Translocator protein 18-kDa
93	VOI	Volume of interest
94	WB	Western blot

95

96 NOVELTY AND SIGNIFICANCE

97

98 What is Known?

99 • Anthracycline chemotherapy results in cardiotoxicity for a sizeable population of treated
100 patients. Cardiotoxicity manifests as cardiac dysfunction, and may result in long-term cardiac
101 disease and heart failure, particularly in survivors of pediatric cancer.

102 • Cardiotoxicity is typically defined in terms of left ventricular ejection fraction (LVEF) deficits,
103 as measured by echocardiography. However, this metric is often poorly sensitive to early
104 disease and agnostic to underlying pathophysiology.

105 • Early treatment of cardiotoxicity improves recovery and long-term survival, emphasizing the
106 need for accurate diagnostics in incipient disease.

107

108 What New Information Does This Article Contain?

109 • $[^{68}\text{Ga}]\text{Ga-FAPI-04}$ accumulates in the hearts of mice experiencing doxorubicin-induced
110 cardiotoxicity as a function of fibroblast activation protein alpha (FAP) expression and activity.
111 By contrast, cardiac uptake of radioligands targeting the translocator protein 18-kDa (TSPO)
112 and the norepinephrine transporter (NET) do not differ between DOX animals and controls.
113 • Positron emission tomography (PET) imaging following administration of $[^{68}\text{Ga}]\text{Ga-FAPI-04}$
114 detects abnormal cardiac remodeling significantly earlier than LVEF decrease is observed,
115 indicating that it may be more sensitive to incipient disease.

116

117 Our study identifies fibroblast activation protein alpha (FAP) as a promising diagnostic imaging
118 biomarker in anthracycline-induced cardiotoxicity. We show that cardiac PET signal increases
119 immediately after doxorubicin treatment, and the signal increase is sustained for at least 10 weeks. In
120 addition, we demonstrate that FAP inhibitor (FAPI) PET correlates with expression of FAP protein and
121 gene. Thus, we provide mechanistic insight into potentially-treatable pathophysiologies driving cardiac
122 atrophy and toxicity, and have identified a translational PET tracer that can image the activation of these
123 processes at an early stage.

124

125 **INTRODUCTION**

126 **C**ancer therapy with the anthracycline doxorubicin (DOX) is the treatment of
127 choice for a broad range of cancers, especially for the treatment of solid tumors
128 and leukemias in adults and children.^{1,2} Roughly 60% of pediatric cancer patients
129 today receive DOX as part of their treatment.³ However, despite being a mainstay of anti-cancer therapy,
130 DOX can induce cardiovascular dysfunction, especially cardiotoxicity that results in heart failure.^{4,5}
131 Heart conditions ranging from cardiomyopathy to heart failure are major adverse events in cancer
132 patients treated with DOX, with up to 70% of total adverse events relating to cardiac health.^{6,7}
133 Childhood cancer survivors are particularly susceptible, with more than 10% of those who received
134 DOX treatment developing cardiotoxicity,⁸ which can develop into severe heart disease in adulthood.⁹
135 Early diagnosis of heart failure can lead to less invasive and more effective treatment. Therefore, the
136 identification of emerging cardiotoxicity and attendant cardiac damage is an essential need to improve
137 outcomes in cancer treatment.

138 Cumulative DOX exposure can produce the symptoms of cardiotoxicity within weeks or
139 months (“early” cardiotoxicity) or after a number of years (“late”).¹⁰ The specific cellular and molecular
140 changes responsible for these responses have not been fully elucidated.¹¹ Assessment of left ventricular
141 ejection fraction (LVEF) by echocardiography (echo) is currently the gold standard for evaluating
142 cardiac function in patients with suspected cardiotoxicity.¹² However, echo is subject to temporal
143 variability¹³⁻¹⁵ and is poorly sensitive to early myocardial damage,^{15,16} while measurement of LVEF
144 alone discounts other cardiopathologic effects that may occur.¹⁷ The introduction of tissue Doppler and
145 strain imaging echo has allowed subclinical cardiotoxicity to be detected more reliably through speckle
146 tracking-based deformation analysis.^{10,18} Nevertheless, the possibility of intervendor variability in strain
147 measurements may require all follow up scans to be conducted using identical instrumentation.¹⁸
148 Furthermore, while improvements in echo image analysis have increased detection of subclinical
149 cardiac functional decline, this method cannot be used to detect the underlying pathology responsible
150 for these deficits. Cardiac magnetic resonance is an alternative imaging modality for assessing cardiac

151 dysfunction,¹⁹ but this method still exhibits limited cost-effectiveness and uncertain diagnostic or
152 prognostic value.^{20,21} Nuclear imaging methods, such as single photon computed tomography (SPECT),
153 and positron emission tomography (PET), have been developed for assessing LVEF, myocardial
154 viability, and perfusion²² but these do not provide mechanistic insight into cardiotoxicity. Circulating
155 cardiac troponins and B-type natriuretic peptides are blood biomarkers of cardiac injury that can be
156 assessed through minimally invasive procedures,^{21,23} however, their sensitivity and specificity may be
157 insufficient to support use of these indices as single predictive biomarkers without further validation by
158 an imaging technique,⁵ particularly when samples are taken during early (acute) timepoints.²⁴ To identify
159 at-risk patients prior to anthracycline chemotherapy and detect incipient cardiotoxicity arising during
160 or after chemotherapy therefore requires the validation of new biomarkers related to specific disease-
161 causing pathophysiologies.

162 PET is a promising modality with which to pursue this aim. PET imaging can be combined
163 with other modalities such as computed tomography (CT) to allow functional and anatomical imaging
164 with spatial resolution as high as 2 mm.²⁵ Recently, a number of radiolabeled small molecules for
165 imaging fibroblast activation protein alpha (FAP),²⁶⁻²⁹ translocator protein 18-kDa (TSPO),³⁰⁻³² and the
166 norepinephrine transporter (NET)^{33,34} by PET have been described for detecting cancer-associated
167 fibrosis, inflammation, and sympathetic innervation, respectively. Among these PET agents, FAP
168 inhibitor [⁶⁸Ga]Ga-FAPI-04,²⁷ TSPO ligand [¹⁸F]DPA-714,³⁵ and NET ligand *meta*-
169 [¹⁸F]fluorobenzylguanidine, [¹⁸F]MFBG,³³ have undergone preliminary clinical evaluation for
170 oncologic and neurologic applications. Cardiac tissue remodeling,³⁶ inflammation and cardiomyocyte
171 mitochondrial dysfunction,³⁷ and loss of cardiac sympathetic innervation³⁸ are also identified as
172 contributing pathologies in anthracycline-induced cardiotoxicity. Despite promising detection
173 sensitivity, whole-body dosimetry, and relevance to key pathophysiologies of heart failure, neither these
174 probes nor their molecular targets have been systematically evaluated in the context of cardiotoxicity.

175 Here, we established a preclinical model of DOX-induced cardiotoxicity for validating
176 [⁶⁸Ga]Ga-FAPI-04, [¹⁸F]DPA-714, and [¹⁸F]MFBG as diagnostic and prognostic biomarkers in cardio-

177 oncology. Our goal was to evaluate the ability of these radioligands to detection incipient cardiotoxicity
178 and identify the most suitable probe for translational to clinical imaging of cancer survivors treated with
179 anthracyclines.

180

181 **METHODS**

182 **General**

183 Doxorubicin hydrochloride was purchased from Tocris Bioscience, USA and used without
184 further purification. It was dissolved at a concentration of 0.75 mg/mL in sterile saline for injection
185 (Hospira, USA) with the aid of sonication. The solution was stored in the dark at -20 °C for up to 24 h
186 before use.

187 **Mouse model of doxorubicin-induced cardiotoxicity**

188 All animal studies were approved by the Institutional Animal Care and Use Committee of
189 Weill Cornell Medicine and were undertaken in accordance with the guidelines set forth by the U.S.
190 Public Health Service Policy on Human Care and Use of Laboratory Animals. Adult male C57BL/6J
191 (8-week-old) mice were purchased from The Jackson Laboratory, USA and randomly assigned to
192 treatment (n=40) or control (n=16) groups. Mice in the treatment group were administered a solution of
193 doxorubicin in saline at 3 mg/kg every other day for 2 weeks (total 8 doses; cumulative dose of 24
194 mg/kg) by intraperitoneal (i.p.) administration.³⁹ Age-matched control (CTRL) mice were administered
195 the same volume of saline i.p. The mice were weighed three times weekly and given access to food and
196 water *ad libitum*.

197 **Echocardiography imaging and analysis**

198 For evaluation of cardiac dimensions and function, echocardiography was performed under
199 inhaled isoflurane anesthesia on a 37 °C heated platform using a Vevo 770 and 3100 Imaging systems
200 (VisualSonics, Canada) accordingly to previously published methods.⁴⁰ Briefly, scans were acquired

201 using left-ventricle M-mode and all measurements were obtained by averaging the values of three
202 consecutive cardiac cycles. Left-ventricle end-diastolic (LVDd) and end-systolic (LVDs) dimensions
203 were measured using M-mode traces. Fractional shortening (FS) was calculated using the formula
204 $[(LVDd-LVDs)/LVDd]$. Diastolic measurements were estimated at the point of maximum cavity
205 dimension, and systolic were taken at the point of minimum cavity dimension, according to the
206 American Society of Echocardiography's recommended method.⁴¹

207 **Radiochemistry**

208 $[^{68}\text{Ga}]$ FAPI-04,²⁷ $[^{18}\text{F}]$ DPA-714,³⁰ and $[^{18}\text{F}]$ MFBG³⁴ were synthesized from their
209 corresponding precursors according to literature procedures with minor modifications. Full
210 experimental details describing the synthesis of the precursors and radioligands can be found in the
211 Supplemental Material. All radioligands were formulated in 10% v/v ethanol/saline for administration
212 to mice.

213 **Small animal microPET/CT imaging**

214 DOX and CTRL mice were intravenously administered 100-150 μL of a 10% v/v ethanol/saline
215 solution containing 3.7-11.1 MBq of the corresponding radioligand. The mice were imaged in groups
216 of 2-4 using small-animal microPET/CT (Siemens InveonTM, USA) under isoflurane anesthesia (3.5%
217 for induction, 1.5 % for maintenance) beginning 45 min after injection. The total PET acquisition time
218 was 30 min, and a CT scan was obtained immediately before the PET acquisition for anatomic
219 coregistration and attenuation correction. Images were reconstructed using the commercial Inveon
220 software provided by the vendor. Images were corrected for decay and for the total activity injected.

221 **MicroPET/CT imaging data analysis**

222 All microPET/CT images were evaluated with the AMIDE algorithm (A Medical Image Data
223 Examiner).⁴² An ellipsoidal volume of interest (VOI) was generated for the heart and the right thigh
224 muscle. The mean counts in the VOI were converted to percent injected dose per cubic centimeter

225 (%ID/cm³) using the AMIDE algorithm, which was calibrated against a 1% injected dose standard.
226 The %ID/cm³ in the heart was normalized against the %ID/cm³ in the muscle, providing a heart/muscle
227 ratio, H/M.

228 **Preparation of heart tissue**

229 The mice were anesthetized by i.p. ketamine injection and perfused with phosphate-buffered
230 saline (PBS) via the left ventricle at a constant pressure of 80 mmHg. The hearts were patted dry and
231 weighed on a digital balance. To perform the molecular and histological analysis, the hearts were cut
232 transversally at the mid-horizontal plane. Cut fractions were separated for RNA and protein extraction,
233 and tissue staining. Regions for tissue staining were fixed overnight in formalin at 4 °C and stored in
234 70% ethanol until further processing. The fractions for RNA and protein extraction were flash frozen in
235 liquid nitrogen and stored at -78 °C until further use.

236 **Heart weight to tibia length (HW/TL) ratios**

237 The tibia was collected ex vivo and all soft tissue was removed. The length was measured
238 using a digital calipers. Heart weights were determined as described above and divided by the
239 corresponding tibia length from the same animal to produce the heart weight to tibia length (HW/TL)
240 ratio.

241 **Western blotting**

242 Frozen heart tissue was pulverized by mortar and pestle for tissue homogenization. Ground
243 heart tissue powders were collected and soaked in tissue protein extraction reagent (#78510,
244 ThermoFisher, USA) supplemented with a protease inhibitor cocktail (#87786, ThermoFisher, USA)
245 for protein extraction. Protein concentrations and western blot (WB) were performed as previously
246 reported.⁴³ The primary antibodies were anti-topoisomerase 2β (TOP2β, 1:1000 dilution, #20549-1-
247 AP, Proteintech, USA), anti-fibroblast activation protein alpha (FAP, 1:500 dilution, ab53066, Abcam,
248 UK), anti-PBR (TSPO, 1:6000 dilution, ab109497, Abcam, UK), anti-SLC6A2 (NET, 1:250 dilution,

249 MBS540046, MyBioSource, USA), and anti-HSP60 (1:1000 dilution, 12165S, Cell Signaling
250 Technology, USA). The chemical luminescent signals were measured by Azure c400 Gel imaging
251 system (Azure Biosystems, Inc. USA). Protein expression was quantified by drawing a region-of-
252 interest (ROI) using ImageJ free software.

253 **Quantitative RT-PCR analysis**

254 Ground heart tissue powders were collected and soaked in Trizol (Invitrogen, USA) and
255 RNeasy Fibrous tissue mini kit (Qiagen, USA) was used to isolate total RNA from heart tissues.
256 Genomic DNA was removed by DNase I (Qiagen), and RNA was reverse transcribed using an iScript
257 kit (Bio-Rad, USA). The resulting cDNA was analyzed by quantitative RT-PCR (qPCR) using SYBR
258 green master mix (Life Technologies, USA) on QuantStudio6 Real-Time PCR system (Life
259 Technologies). mRNA levels were calculated by delta-delta CT method using the target gene (Fap) and
260 reference genes (Rpl32, Tbp, Gapdh, and Actb). The full primer list is reported in **Table S5**.

261 **Bulk RNA-seq library construction and data analysis**

262 The libraries were sequenced with paired-end 50 bps on the NovaSeq 6000 Sequencer
263 (Illumina, USA). The raw sequencing reads in BCL format was processed through bcl2fastq 2.20
264 (Illumina) for FASTQ conversion and demultiplexing. After trimming the adaptors with cutadapt
265 (version 1.18; <https://cutadapt.readthedocs.io/en/v1.18/>), RNA reads were aligned and mapped to the
266 GRCm39 mouse reference genome by STAR (version 2.5.2; <https://github.com/alexdobin/STAR>),⁴⁴ and
267 transcriptome reconstruction was performed by Cufflinks (Version 2.1.1) ([http://cole-trapnell-
268 lab.github.io/cufflinks/](http://cole-trapnell-lab.github.io/cufflinks/)). The abundance of transcripts was measured with Cufflinks using fragments
269 per kilobase of transcript per million mapped reads (FPKM) as an output.^{45,46} Raw read counts per gene
270 were extracted using HTSeq-count version 0.11.2.⁴⁷ Gene expression profiles were constructed for
271 differential expression, cluster, and principle component analyses with the DESeq2 package
272 (<https://bioconductor.org/packages/release/bioc/html/DESeq2.html>).⁴⁸ For differential expression
273 analysis, pairwise comparisons were performed between two or more groups using parametric tests

274 where read counts follow a negative binomial distribution with a gene-specific dispersion parameter.
275 Corrected *p*-values were calculated based on the Benjamini-Hochberg method to adjust for multiple
276 testing.

277 For the differentially expressed genes (DEGs) analysis, *p* < 0.01 was used as the signifier of
278 statistical significance, and Log2FC (FC, fold change) \geq 0.55 and Log2FC \leq -0.85 were used to
279 distinguish upregulated (Up) and downregulated (Down) DEGs, respectively. The heat map was
280 generated using R studio to compare DEGs between groups, and the volcano plot for the overall
281 distribution of DEGs was analyzed using GraphPad Prism 9.0 (GraphPad Software, USA).

282 **DAVID analysis and establishment of PPI networks**

283 The database for annotation, visualization, and Integrated Discovery (DAVID) was used to
284 group DEGs based on biological function (<https://david.ncifcrf.gov/>). The 1326 Upregulated genes and
285 1684 Downregulated genes were submitted for the Gene Ontology (GO) according to the biological
286 process (BP) analysis. The heat map for the GO:BP data was generated using R studio. A protein-protein
287 interaction (PPI) network was developed to identify the association between a target and related DEGs
288 by utilizing the STRING database (<http://string-db.org/>).⁴⁹ GO terms and PPI networks with a *p*-value
289 cutoff < 0.05 were regarded as significant.

290 **Histopathology**

291 The tissue was processed in alcohol and xylene and embedded in paraffin. Four transverse
292 sections of the heart per mouse, including right and left ventricles, right and left auricles, and
293 interventricular septum were sectioned at 5- μ m thickness and stained with hematoxylin and eosin.
294 Histopathological evaluation of the heart was performed by a board-certified veterinary pathologist.
295 Hearts were evaluated on the basis of cardiomyocytes showing necrosis, degeneration (cytoplasmic
296 vacuolization), and atrophy, leukocytic cell infiltrates, and interstitial fibrosis.

297 Formalin fixed sections of the heart were stained with Masson's Trichrome to evaluate the

298 presence of collagen in cardiac tissues. To determine the percentage of collagen in the heart, digital
299 whole slide images of Masson's trichrome-stained hearts were manually annotated and then classified
300 pixels were evaluated with a random forest algorithm using QuPath (an open-source software for digital
301 pathology image analysis accessed through: <https://qupath.github.io/>). Regions of collagen for this
302 analysis included collagen fibrils between cardiomyocytes and around preexisting vasculature within
303 cardiac musculature. Regions excluded for this analysis included preexisting collagen from great
304 vessels, leaflet insertion bands, and pericardial connective tissue.

305 **Immunohistochemistry**

306 Formalin-fixed, paraffin-embedded sections were stained using an automated staining
307 platform (Leica Bond RX, Leica Biosystems). Following deparaffinization and heat-induced epitope
308 retrieval in a citrate buffer at pH 6.0, the primary antibody against TSPO, also known as peripheral-type
309 benzodiazepine receptor (PBR; ab109497, Abcam, Waltham, MA), was applied at a dilution of
310 1:10000. A rabbit anti-goat secondary antibody (Cat. No. BA-5000, Vector Laboratories, Burlingame,
311 CA) and a polymer detection system (DS9800, Novocastra Bond Polymer Refine Detection, Leica
312 Biosystems) was then applied to the tissues. The chromogen used was 3,3'-diaminobenzidine
313 tetrachloride (DAB) and the sections were counterstained with hematoxylin and examined by light
314 microscopy. Positive immunoreactivity for TSPO was confirmed with internal mouse tissue array
315 controls used to validate this immunoassay. A subset of tissues incubated with antibody diluents and
316 secondary antibody only were used as negative controls for this assay. Images were acquired with an
317 Olympus VS200 slide scanner (Olympus, Tokyo, Japan) with a 20x objective. Quantitative image
318 analysis was performed by using the QuPath Pixel classifier module. A random forest algorithm was
319 used for identifying pixels as TSPO-positive, TSPO-negative and background in cardiac sections.
320 Region of interest and thresholding values were validated by a board-certified veterinary pathologist.

321 For CD11b immunohistochemistry, a heat-mediated antigen retrieval with citrate buffer (pH
322 6.0) was applied on deparaffinized cardiac sections, which were then incubated with a primary anti-

323 CD11b antibody at a dilution of 1:4000 (ab133357, Abcam, USA). A goat anti-rabbit secondary
324 antibody (Cat. No. BA-1000, Vector Laboratories) and a polymer detection system (DS9800,
325 Novocastra Bond Polymer Refine Detection, Leica Biosystems) were then applied to the tissues. The
326 chromogen was DAB, and the sections were counterstained with hematoxylin and examined by light
327 microscopy.

328 **In Situ Hybridization**

329 Formalin-fixed, paraffin-embedded cardiac sections were incubated with the target probe
330 designed to detect region 486 - 1588 of murine fibroblast activation protein (Fap) mRNA, NCBI
331 Reference Sequence NM_007986.3 (RNAscope® LS 2.5 probe for murine FAP, #423888; Advanced
332 Cell Diagnostics, Newark, CA). The target probe was validated on sections of murine skin and heart
333 from mice. Slides were stained on an automated stainer (Leica Bond RX, Leica Biosystems) with
334 RNAscope 2.5 LS Assay Reagent Kit-Red (322150, Advanced Cell Diagnostics) and Bond Polymer
335 Refine Red Detection (DS9390, Leica Biosystems). Control probes detecting a validated positive
336 housekeeping gene (mouse *peptidylprolyl isomerase B*, *Ppib* to confirm adequate RNA preservation
337 and detection; 313918, Advanced Cell Diagnostics) and negative control, *Bacillus subtilis*
338 dihydrodipicolinate reductase gene (*dapB* to confirm absence of nonspecific labeling; 312038,
339 Advanced Cell Diagnostics) were used. Positive RNA hybridization was identified as discrete, punctate
340 chromogenic red dots under bright field microscopy. Images were acquired with an Olympus VS200
341 slide scanner with a 40x objective. Quantitative image analysis of Fap hybridization was performed
342 with QuPath using an algorithm for singleplex chromogenic RNAscope image analysis. Fap positive
343 hybridization signal was classified as follows: 1 red dot / cell, 2 red dot / cell, and 3+ red dots / cell in
344 each transverse section of the heart. An H-score of Fap positive signal from each sample was calculated
345 by the QuPath software. Samples with autolysis or regions in the tissue with pale-brown precipitate
346 and/or folding artifacts were excluded from this analysis.

347 **Statistical analysis**

348 Statistical analyses were carried out using GraphPad Prism 9.0. All data were expressed as
349 means \pm standard deviation (SD) and are representative of at least three separate biological experiments.
350 The unpaired two-tailed Student's *t*-test or Mann-Whitney test was determined for comparisons of two
351 groups. For correlation analysis, the Pearson correlation test was used. A *p*-value of less than 0.05 was
352 considered statistically significant.

353 **RESULTS**

354 **DOX treatment in mice induces cardiotoxic physiological and molecular changes**

355 To establish a clinically-relevant model of DOX-induced cardiotoxicity, we administered
356 intraperitoneal saline (control; CTRL) or DOX (cumulative dose 24 mg/kg) over 2 weeks (W)³⁹ to
357 C57BL/6 mice followed by 10-12 W observation together with serial echo and microPET/CT imaging
358 (**Figure 1A**). In agreement with multiple literature reports,^{11,24} we observed significantly lower body
359 weights in the DOX mice compared to the age-matched CTRL group (**Figure 1B; Table S1**). The heart
360 weight (HW) to tibia length (TL) ratio was 40% lower in DOX groups compared to the CTRL group at
361 from 7 to 12 W (*p* < 0.0001) (**Figure 1C; Table S2**). There were not significant differences in TL
362 between the two groups (*p* = 0.5566) (**Figure S1A**), indicating that cardiac atrophy was occurring in
363 the DOX animals, as previously reported.¹¹ Next, to evaluate the effect of DOX treatment at a cellular
364 level, the expression of TOP2 β , a primary mediator of DOX-induced toxicity,⁵⁰ was evaluated. We
365 observed rapid and sustained decrease in TOP2 β expression, which persisted up to 10 W (**Figure 1D**).
366 Collectively, these experiments confirmed that a cumulative dose of 24 mg/kg DOX induced sustained
367 cardiac atrophy and reduction of TOP2 β protein expression in mice.

368 **[⁶⁸Ga]Ga-FAPI-04 PET detects cardiac abnormalities earlier than echo**

369 We performed echo imaging and analysis in CTRL and DOX groups at acute (4 W) and chronic
370 (10 W) phases.²⁴ At 4 W, left-ventricle end-diastolic diameter (LVDd) and left-ventricle end-systolic
371 diameter (LVDs) were not significantly different between the CTRL (n = 6) and DOX (n = 6) animals
372 (LVDd; *p* = 0.833, LVDs; *p* = 0.165) (**Figure 2A-C**). However, LVDs was significantly increased by

373 20% in the DOX group ($n = 5$) at 10 W ($p < 0.01$) (**Figure 2A and C**). In parallel, we observed no
374 significant change in LVDd ($p = 0.149$) (**Figure 2B**). As a result, fractional shortening (FS) decreased
375 from 40% in the CTRL animals and DOX animals at 4 W to less than 30% at 10 W ($p < 0.01$) (**Figure**
376 **2D**). At this later time point, blood cardiac troponin-I (CTNI) levels were higher in DOX mice, but the
377 difference was not significant ($p = 0.247$) (**Figure S2**).

378 We performed serial microPET/CT imaging with $[^{68}\text{Ga}]\text{Ga-FAPI-04}$, $[^{18}\text{F}]\text{DPA-714}$, and
379 $[^{18}\text{F}]\text{MFBG}$ for 12 W to compare the time course of cardiac uptake differences with the time course of
380 functional deficits in the DOX hearts (**Figure S3; Table S3**). To account for differences in heart function,
381 we normalized cardiac uptake to skeletal muscle (thigh muscle). Skeletal muscle has minimal basal
382 expression of our molecular targets and therefore acts as a surrogate for blood pool effects. Furthermore,
383 it is also subject to DOX-induced toxicity¹¹ and therefore controls for off-target effects. $[^{68}\text{Ga}]\text{Ga-FAPI-}$
384 04 uptake was significantly increased in the acute phase (2 W; 1.7-fold) ($p < 0.01$) when no evidence
385 of cardiotoxicity is evident as measured by echo (**Figure 2E**). Moreover, increased cardiac $[^{68}\text{Ga}]\text{Ga-}$
386 FAPI-04 uptake persisted in the DOX mice through the chronic phase (10 W; 1.5-fold) ($p < 0.05$)
387 (**Figure 2E, Figure S3**). By contrast, there was no significant difference between cardiac uptake of
388 $[^{18}\text{F}]\text{DPA-714}$ and $[^{18}\text{F}]\text{MFBG}$ in the CTRL and DOX groups at either the early or late phases (**Figure**
389 **2F and G, Figure S3**).

390 **Increased cardiac $[^{68}\text{Ga}]\text{Ga-FAPI-04}$ uptake is significantly correlated to FAP expression at the**
391 **gene and protein levels**

392 Next, we sought to validate the significant differences in cardiac $[^{68}\text{Ga}]\text{Ga-FAPI-04}$ uptake
393 through determining their correlation with FAP protein and mRNA expression. Cardiac tissue was
394 collected from perfused hearts at 4 W for Western blot, qPCR, and RNA-seq analyses and tissue staining
395 (**Figure 3A**). As expected, FAP expression was 2.9-fold higher ($p < 0.01$) in DOX mice than CTRL
396 animals, while TSPO and NET showed no significant differences in protein expression (**Figure 3B and**
397 **C**). At the same time, we determined the Fap gene expression using three different Fap primers and

398 different reference genes to ensure accurate qPCR analysis in spite of the heterogeneity of our heart
399 tissue (**Table S4**).⁵¹ Fap gene expression increased 2.5-fold (normalized to Rpl32, $p < 0.0001$), 2.0-fold
400 (normalized to Tbp, $p < 0.0001$), and 4.7-fold (normalized to Gapdh, $p < 0.0001$), respectively,
401 compared with CTRL animals (**Figure 3D**). In agreement with our [⁶⁸Ga]Ga-FAPI-04 PET imaging,
402 cardiac Fap gene expression in DOX mice increased 1.7-fold ($p < 0.01$), 2.8-fold ($p < 0.0001$), and 2.8-
403 fold ($p < 0.0001$) relative to CTRL mice at 2, 7, and 10 W, respectively (**Figure S4A**). We observed a
404 similar trend in FAP protein expression (**Figure S4B**), suggesting that mRNA and protein expression
405 levels are proportional in this model. Additionally, FAP activity was significantly increased in DOX
406 hearts compared to controls ($p = 0.031$) (**Figure S5**).

407 **FAP is a diagnostic imaging biomarker for detecting incipient cardiotoxicity by PET**

408 Having established that the cardiac PET signals of our candidate probes correlated with protein
409 and mRNA expression of the corresponding molecular target, we sought to validate uptake by tissue
410 staining. We separated a cohort of DOX animals ($n = 9$) into high or moderate uptake groups (**Figure**
411 **4A**). Cardiac [⁶⁸Ga]Ga-FAPI-04 PET signal was significantly higher in these animals than in the age-
412 matched CTRL mice ($n = 4$; $p < 0.05$). Interestingly, DOX-treated mice showed little evidence of
413 pathological changes in cardiomyocytes. A mild degree of individual cardiomyocyte necrosis and
414 degeneration and/or focal to multifocal areas of myocardial fibrosis were occasionally observed in four
415 DOX hearts. The rest of the DOX hearts ($n = 11$) did not show pathological changes.

416 As DOX associated heart damage can lead to fibroblast activation and subsequent interstitial
417 fibrosis, the percentage of collagen was evaluated by the use of Masson's Trichrome staining of the
418 hearts. There were no differences in H&E and Masson's trichrome staining between these three groups
419 (**Figure 4B**). Indeed, collagen-positive regions averaged approximately 7% for CTRL mouse hearts (n
420 = 3) and approximately 6.5% for DOX hearts ($n = 15$) (**Figure 4C**). However, spatiotemporal Fap
421 expression, as determined by in-situ hybridization (ISH), was significantly higher in the DOX animals
422 ($n = 11$; $p < 0.05$) (**Figure 4D**). Fap nucleic acid was detected in the cytoplasm and associated with the

423 nuclei of cardiomyocytes and stromal cells. Furthermore, the H-score was higher in the tissue slices
424 belonging to mice in the high uptake group than mice in the moderate uptake group (**Figure 4B; Table**
425 **S6**). There was a linear correlation between $[^{68}\text{Ga}]\text{Ga-FAPI-04}$ PET signal and H-score ($p < 0.001$)
426 (**Figure 4E**) but no correlation between PET signal and collagen formation ($p = 0.343$) (**Figure 4F**). As
427 predicted by our PET imaging, there was no difference in TSPO staining between DOX and CTRL mice
428 (**Figure S6**). We observed no NET staining in either CTRL or DOX samples (*data not shown*). Taken
429 together, these results indicate that FAPI PET is a potential diagnostic biomarker in the DOX model.

430 **DOX promotes cardiac remodeling and disrupts mitochondrial energetics**

431 To investigate the role that FAP may be playing in DOX-induced cardiotoxicity, we performed
432 bulk RNA-seq analysis. We first constructed a volcano plot using Log2FC and a negative Log False
433 discovery rate (FDR) with 14,101 DEGs. Although none of the Fap, Tspo, and Slc6a2 genes showed
434 significant differences in the overall DEGs population, Fap gene expression did significantly increase
435 when the expression level was normalized by fragments per kilobase of transcript per million (FPKM)
436 mapped fragments (**Figure S7A and B**). We also generated a heat map of all DEGs. Clear differences
437 between the DOX and CTRL groups were evident, though we observed a degree of heterogeneity within
438 each group (**Figure 5A**). Compared with CTRL mice, DOX hearts showed 1326 markedly upregulated
439 genes and 1684 markedly downregulated genes. These genes were used to identify the top 20 from the
440 *p*-value affected biological processes (BP) in the gene ontology (GO). Within the upregulated genes,
441 the most significantly affected GO:bps included those related to intracellular signal transduction,
442 protein phosphorylation, cell adhesion, angiogenesis, and extracellular matrix organization. Within the
443 downregulated genes, on the other hand, the most affected GO:bps were those related to mitochondrial
444 translation, ATP synthesis, and respiratory chain complex (**Figure 5B**). Furthermore, numerous GO:bps
445 associated with cardiac remodeling were identified in the upregulated group, whereas GO:bps
446 associated with mitochondrial energetic dysfunction were identified in the downregulated group
447 (**Figure S8**). Taken together, these data indicate that DOX treatment induces cardiac remodeling and
448 impairs mitochondrial energetics in cardiomyocytes.

449 The heat map was refined by selecting representative genes from upregulated or
450 downregulated one BP of the top 3 GO:BP terms, including the Fap gene, and excluding genes with
451 heterogeneous expression (**Figure 5C**). This heat map highlights the increased expression of Fap
452 (indicated by the hashtag) in DOX hearts compared to CTRLs. Next, we analyzed the same gene family
453 using the STRING database. FAP strongly interacted with fibronectin-1 (Fn1), a major component of
454 cardiac ECM remodeling and fibrosis,^{52,53} which in turn associated with other proteins involved in cell
455 adhesion and migration (**Figure 5D**). On the other hand, there was no protein association between FAP
456 and any component of the downregulated group (**Figure 5E**). From these findings, we conclude that
457 increased FAP expression contributes to multiple processes involved in cardiac remodeling but does not
458 predict fibrosis in cardiac tissue.

459

460 **DISCUSSION**

461 In this study, we sought to validate PET imaging targets that are more sensitive to the early
462 symptoms of DOX-induced cardiotoxicity than conventional echo and are biomarkers of specific
463 pathophysiologies. Nuclear medicine approaches have been underutilized for this purpose due to
464 concerns about radiation exposure and lack of widespread availability of imaging devices in cancer
465 treatment facilities. Nevertheless, this imaging technique allows anatomical information to be coupled
466 to biochemical information afforded by a suitably chosen probe targeting a specific disease-relevant
467 molecule or pathway. Although DOX-induced cardiotoxicity ultimately decreases LVEF, compromises
468 cardiac performance, and can lead to heart failure, the mechanisms by which it does so may vary
469 between patients. Non-invasive detection of these mechanism by molecular imaging is a safe and
470 important way of assessing individual-to-individual variations. This is significant because the
471 appropriate cardioprotective treatment could be administered on an individual basis with suitable
472 knowledge of the specific underlying pathology. This is the premise behind personalized medicine.

473 The primary nuclear medicine approaches to imaging cardiotoxicity focus on imaging

474 perfusion.⁵⁴ Recently, new probes have been developed to image specific pathophysiologies, including
475 mitochondrial damage,^{55,56} sympathetic innervation,^{34,57-59} inflammation,^{31,60-62} cardiac remodeling,⁶³⁻⁶⁷
476 and cardiac metabolic dysfunction.⁶⁸⁻⁷⁰ These probes have largely been studied in preclinical models,
477 where they have provided important insight into the development and progression of cardiotoxicity. To
478 build on this work, we identified cardiac remodeling, inflammation, and innervation as plausible
479 contributors to DOX-induced cardiotoxicity that could arise at the earliest stages of disease. We selected
480 three radioligands, [⁶⁸Ga]Ga-FAPI-04,^{71,72} [¹⁸F]DPA-714,^{35,73} and [¹⁸F]MFBG,⁷⁴ that are already under
481 clinical investigation for other indications to image these processes. Preliminary reports indicate that
482 the radiation dosimetry of these probes is acceptable, thereby supporting their use in cancer survivors.
483 We anticipate that this will facilitate the future clinical translation of our PET approach.

484 To further accelerate clinical translation, we applied a well-established model of cardiotoxicity
485 encompassing subacute and chronic phenotypes.^{24,39} This heterogenous model reflects the reality that
486 anthracycline-induced cardiotoxicity is a complex process that involves multiple cell types in heart
487 tissue⁷⁵ and often differs between even those patients receiving the same dose of anthracycline. In
488 cardiomyocytes with high TOP2 β expression,⁷⁶ DOX binds to DNA form a complex with TOP2 β that
489 triggers cell death pathways.^{5,50} Consequently, cancer patients with high levels of TOP2 β in
490 cardiomyocytes are likely to be more susceptible to DOX-induced cardiotoxicity.^{50,77} Our Western blot
491 data confirm that TOP2 β expression is rapidly downregulated in response to DOX treatment, with
492 gradual recovery over the 12 W observation period. Furthermore, we observed body weight decrease
493 and diminishing HW/TL ratios after DOX treatment, consistent with established models of DOX-
494 induced cardiotoxicity^{11,78}. Although not statistically significant at this dose, heart weight was a lower
495 percentage of body weight in the DOX mice than the controls (**Figure S1B**), suggesting that cardiac
496 atrophy is more pronounced than cachexia or other systemic effects in these animals.¹¹ Finally,
497 functional declines in cardiac performance emerged by 10 W, even when corresponding interstitial
498 fibrosis was not widely observed. These observations indicate a spectrum of symptoms consistent with
499 clinical presentation of cardiotoxicity.

500 Our transcriptomic data indicate that cardiac remodeling is initiated in response to DOX
501 treatment. Pathological cardiac remodeling arises in chronic heart failure through the activation of
502 multiple pathways,^{79,80} and we observed intracellular signaling,⁸¹⁻⁸³ cell adhesion,⁸⁴ angiogenesis,⁸⁵
503 extracellular matrix remodeling,^{86,87} and cell migration,⁸⁸ to be highly enriched in our DOX tissues.
504 Another major aspect of remodeling is cardiac fibrosis. This process is typically initiated by activated
505 cardiac fibroblasts and eventually leads to the functional change of heart tissue and diastolic
506 dysfunction.⁸⁹ FAP is a marker of activated cardiac fibroblasts⁸⁹ and has recently been targeted by
507 radiopharmaceuticals for PET imaging in cardiovascular disease and heart failure.^{65,90-92} In addition, a
508 recent case study speculated that incidental cardiac FAPI PET signal detected in a cancer patient may
509 have been due to cardiotoxicity arising from the chemotherapy regimen,⁷ although this hypothesis was
510 not explored further. Furthermore, the BioGPS⁹³ and GTEx databases indicate basal Fap gene
511 expression to be moderate in cardiac tissue of mice and humans (**Figure S9**), which may enable
512 relatively small changes in expression to be detected by molecular imaging. These observations
513 provided the rationale for our hypothesis that FAPI PET would detect incipient cardiotoxicity.

514 We demonstrate that the cardiac signal intensities of [⁶⁸Ga]Ga-FAPI-04 PET increased almost
515 immediately after DOX treatment, substantially earlier than any functional alteration could be imaged
516 by echo. This increased signal, which was sustained throughout the 12 W observation period,
517 significantly correlated with expression of FAP protein and Fap mRNA. We were unable to successfully
518 perform immunohistochemistry for murine FAP using commercially available antibodies, and therefore
519 used ISH to assess the distribution of FAP in cardiac tissue. Our experiments confirm the specificity of
520 FAPI PET for DOX-induced alterations in cardiac FAP, thereby highlighting the initiation of
521 pathological remodeling pathways in the injured heart. We also provide a mechanistic link between
522 elevated PET signal and disease, an outcome that has not been accomplished in human patients due to
523 inconclusive histopathology studies.^{65,66} Significantly, our data indicate that FAP is a diagnostic imaging
524 biomarker in cardiotoxicity that might be superior to echo in detecting early mediators of cardiac
525 damage.

526 Our study did not conclusively establish whether FAP is also a prognostic imaging biomarker
527 in cardiotoxicity. We did not find a correlation between PET signal and fibrosis in our tissue samples.
528 However, fibrosis was minimal in our model. We conclude that FAP in this model participates more
529 broadly in cardiac remodeling. Consistent with literature reports in mice and humans,^{11,94} DOX
530 treatment induced cardiac atrophy in our mice. Cardiac atrophy requires extensive remodeling of the
531 ECM due to loss of cardiomyocyte mass,⁹⁵ consistent with the upregulation of ECM remodeling
532 pathways evident in our RNA-seq analysis (**Figure 5B; Figure S7**). We did not see evidence of
533 substantial cardiomyocyte death, which may explain why we observed minimal fibrosis in this model.
534 Indeed, reports of fibrosis in atrophied hearts are conflicting,⁹⁴ which likely reflects both the techniques
535 used to quantify collagen and the prevalence of remodeling pathways that do not result in collagen
536 deposition. Nevertheless, given that DOX induces cardiotoxicity through a variety of molecular
537 mechanisms,⁹⁶ it is possible that FAP PET might correlate with other indices of disease severity. For
538 example, we observed a negative correlation between cardiac FAPI PET signal and HW/TL at the end
539 of the study (**Figure S10**). We will need larger group sizes, longer follow up periods, alternative indices
540 of disease severity, and perhaps more acute pathology to determine if elevated cardiac FAPI PET signal
541 corresponds to more severe long-term outcomes.

542 Our alternative molecular targets, TSPO and NET, proved to be neither diagnostic nor
543 prognostic biomarkers in DOX-induced cardiotoxicity. Our rationale for targeting TSPO was the
544 prominent role that oxidative stress and inflammation play in DOX-induced cardiotoxicity.³⁷ TSPO is
545 expressed not only in cardiomyocytes⁹⁷ but also in activated immune cells, especially macrophages.⁹⁸⁻
546¹⁰⁰ Resident and circulating macrophages are implicated in the response to DOX-induced
547 cardiotoxicity.¹⁰¹ Preclinical studies have demonstrated increased cardiac uptake of [¹⁸F]DPA-714 in
548 mice with inflammatory heart conditions,^{60,102} but we observed neither a significant increase in
549 [¹⁸F]DPA-714 signal nor an increase in TSPO staining by immunohistochemistry. Moreover, we found
550 no evidence of macrophage infiltration by histology or CD11b immunohistochemistry (**Figure S11**).
551 TSPO is also present in the mitochondrial outer membrane of cardiomyocytes where it modulates

552 oxidative stress and regulates mitochondrial physiology and metabolism.¹⁰³ We observed
553 downregulation of a number of genes related to mitochondrial metabolism in the DOX mice, but this
554 did not translate to increased [¹⁸F]DPA-714 uptake. Given the nearly ubiquitous expression of TSPO in
555 tissue,¹⁰⁴ it is possible that substantial off-target uptake reduces the sensitivity of the radioligand for
556 changes in cardiac expression induced by DOX. Moreover, its high basal expression in human and
557 murine heart (**Figure S9**), may render TSPO imaging insensitive to small changes in expression levels.
558 Additionally, the systemic inflammation induced by DOX treatment in this mouse model may further
559 obscure small changes in cardiac PET signal and may represent a limitation of our model.

560 Our decision to target NET with [¹⁸F]MFBG was based on prior evidence that cardiac uptake
561 of radiolabeled *meta*-iodobenzylguanidine (MIBG) decreases in a dose-dependent manner in rodents
562 treated with anthracyclines⁵⁷ and in cancer patients that had received anthracycline chemotherapy
563 relative to those receiving alternative treatment.^{38,105} We saw considerable cardiac uptake normalized
564 to skeletal muscle of [¹⁸F]MFBG in both DOX animals and CTRL (**Figure S3**), but no decline over the
565 12 W observation period. By contrast, in the early stages of cardiotoxicity, [¹⁸F]MFBG uptake was
566 actually higher in DOX mice, though this was not statistically significant (1 W; $p = 0.400$, 2 W; $p =$
567 0.527, and 4 W; $p = 0.161$). Although prior studies did show declines in [^{123/125}I]MIBG uptake
568 concurrent with LVEF decline, the uptake deficit was sustained. It may be that our follow up period
569 was too short to detect differences between our groups, but the convergence of the curves in **Figure S3**
570 suggests that differences are unlikely to emerge. A retrospective analysis could not discriminate
571 asymptomatic pediatric cancer survivors from healthy controls using [¹²³I]MIBG image quantification,
572 and myocardial sympathetic activity was neither related to anthracycline dose nor LVEF.¹⁰⁶ This may
573 indicate that sympathetic denervation is not sufficiently pronounced in chronic cardiotoxicity to
574 represent a reliable imaging biomarker.

575 To date, echo has been used in cardio-oncology as the main imaging modality for screening
576 patients with suspected cardiotoxicity.¹⁰⁷ Given the implementation of new echo techniques that
577 improve its sensitivity for subclinical disease and the continued definition of cardiotoxicity in terms of

578 LVEF decreases, echo will continue to play a major role in diagnosis and monitoring progression.
579 However, our results support a role for PET imaging in the management of cancer patients receiving
580 anthracycline chemotherapy. In our model, we detected pathological cardiac remodeling in DOX hearts
581 as much as 8 weeks before functional decline was evident by echo. Early diagnosis of cardiotoxicity
582 could greatly improve its treatment, as evidenced by the more complete recovery of LVEF in patients
583 with cardiotoxicity administered ACE inhibitors or beta blockers shortly after anthracycline
584 chemotherapy than patients treated a few months later.¹⁰⁸ Molecular imaging techniques such as FAPI
585 PET may lead to even more impressive treatment outcomes by identifying the activation of specific
586 pathological pathways whose inhibition could mitigate or even prevent cardiotoxicity. For example
587 FAP inhibition improves cardiac repair after myocardial infarction.^{109,110} Future work is needed
588 determine whether it is similarly beneficial in cardiotoxicity, but this example does highlight the
589 potential benefit of PET imaging biomarkers in treating cardiotoxicity.

590 We acknowledge several limitations of our study. Firstly, although we showed the correlation
591 between cardiac FAPI PET uptake and FAP expression, elevated background FAPI PET signal in DOX
592 mice was also seen due to uptake in the gastrointestinal region, muscle, and in some cases, lung. This
593 likely reflects off-target uptake due to sustained and global inflammation caused by systemic
594 administration of DOX. This phenomenon was previously observed in FAPI PET imaging of a pre-
595 clinical model of idiopathic pulmonary fibrosis induced by bleomycin.¹¹¹ Secondly, our methods of
596 quantifying FAP protein expression could not distinguish between membrane-bound FAP and
597 cytoplasmic FAP. As our radioligand does not cross the cell membrane, the signals derived from this
598 probe reflect the binding of membrane-bound FAP. To our knowledge, FAP is primarily an outer
599 membrane protein, though increased cytoplasmic expression was recently reported in lung
600 adenocarcinoma cells.¹¹² We therefore cannot rule out the possibility that cytoplasmic FAP protein expression
601 confounds our analysis even though our results identify increased FAP protein expression
602 and activity and gene expression in the DOX mice. Moreover, our studies have not determined the
603 function of FAP in DOX-induced cardiotoxicity. Contrary to our expectations, increased FAP

604 expression did not result in increased fibrosis. We speculate that FAP is broadly involved in ECM
605 remodeling, but without identifying its specific role in this pathology, it will be challenging to determine
606 whether FAPI PET could also be a prognostic biomarker in cardiotoxicity. Larger sample sizes could
607 possibly determine whether early increases in FAPI PET correspond to larger declines in functional
608 parameters such as LVEF. Finally, our studies were limited to male mice because female mice are less
609 susceptible to cardiotoxicity.¹¹ Therefore, further research is required to determine whether FAPI PET
610 will be equally valuable in female patients.

611

612 CONCLUSIONS

613 Although anthracycline chemotherapy has dramatically improved treatment outcome in cancer
614 patients, especially in children with cancer, it causes cardiotoxicity with an increased risk of heart failure
615 in a significant number of patients. Existing imaging modalities detect cardiac functional deficits but
616 do not identify the underlying, potentially treatable, pathologies responsible for these deficits. We
617 demonstrate a significant and sustained increase of FAP expression in response to systemic
618 administration of doxorubicin and show that this change can be imaged by PET using [⁶⁸Ga]Ga-FAPI-
619 04. Functional changes were not evident by routine echo until 10 weeks, as much as 8 weeks after
620 cardiac FAPI PET signal increases were detected. These findings suggest that FAPI PET is a diagnostic
621 imaging biomarker for incipient cardiotoxicity and a potential complement to echo for the management
622 of cancer patients receiving anthracycline chemotherapy. Early detection of FAP-mediated cardiac
623 remodeling may improve the efficacy of therapeutic interventions to delay or even prevent heart failure.

624

625 ACKNOWLEDGMENTS

626 The authors wish to acknowledge Anil Ekkati, Ph.D. and David J. Warren, Ph.D. of the Milstein Core
627 Chemistry facility for synthesizing DPA-714 and its tosylate precursor, and Pradeep K. Singh, Ph.D., and

628 Stephen G. DiMagno, Ph.D. of the University of Illinois-Chicago for support with ALP-mFBG synthesis.
629 The authors also wish to acknowledge Alejandro Amor-Coarasa, Ph.D., of Ratio Therapeutics, Serge
630 Lyashchenko, Pharm.D., and Eva Burnazi of Memorial-Sloan Kettering Cancer Center for helpful
631 discussions concerning the radiosynthesis of [¹⁸F]MFBG.

632

633 **SOURCES OF FUNDING**

634 This work was partially funded by award R21CA246409-01 (J.M.K.) from the National Cancer Institute
635 (NCI) of the National Institutes of Health and by NCI Cancer Center Support Grant P30CA008748 issued
636 to Memorial-Sloan Kettering Cancer Center (Laboratory of Comparative Pathology, S.E.C.). The funding
637 agency did not influence the design, execution, or interpretation of the experiments.

638

639 **DISCLOSURES**

640 J.M.K. and J.W.B. hold intellectual property rights for compounds targeting FAP.

641

642 **AUTHOR CONTRIBUTIONS**

643 The studies were conceived by J.M.K., J.W.B., and A.diL. Experiments were designed by C-H.L. and
644 J.M.K. and performed by C-H.L, O.M., L.R., and T.M.J. Data analysis was performed by C-H.L., O.M.,
645 S. Cho., T.M.J., A. diL., and J.M.K. Pathology and quantitation of ISH and IHC was performed by S.E.C.
646 Funding was acquired by J.M.K. The manuscript was written by C-H.L. and J.M.K. and reviewed by
647 O.M., L.R., S.E.C., S. Cho., T.M.J., J.W.B., and A. diL.

648

649 **REFERENCES**

650 1. Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, Hutchison RE, Ravindranath Y,

651 Armenian SH, Camitta BM, Lipshultz SE. Cardioprotection and Safety of Dexrazoxane in Patients
652 Treated for Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Advanced-Stage Lymphoblastic
653 Non-Hodgkin Lymphoma: A Report of the Children's Oncology Group Randomized Trial Pediatric
654 Oncology Group 9404. *J Clin Oncol.* 2016;34:854-862. doi: 10.1200/JCO.2015.60.8851

655 2. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline Chemotherapy
656 and Cardiotoxicity. *Cardiovasc Drugs Ther.* 2017;31:63-75. doi: 10.1007/s10557-016-6711-0

657 3. van Dalen EC, Raphael MF, Caron HN, Kremer LC. Treatment including anthracyclines versus treatment
658 not including anthracyclines for childhood cancer. *Cochrane Database Syst Rev.* 2014;CD006647. doi:
659 10.1002/14651858.CD006647.pub4

660 4. Unverferth BJ, Magorien RD, Balcerzak SP, Leier CV, Unverferth DV. Early changes in human
661 myocardial nuclei after doxorubicin. *Cancer.* 1983;52:215-221. doi: 10.1002/1097-
662 0142(19830715)52:2<215::aid-cncr2820520206>3.0.co;2-f

663 5. Sawyer DB. Anthracyclines and heart failure. *N Engl J Med.* 2013;368:1154-1156. doi:
664 10.1056/NEJMcibr1214975

665 6. Von Hoff DD, Layard MW, Basa P, Davis HL, Jr., Von Hoff AL, Rozencweig M, Muggia FM. Risk
666 factors for doxorubicin-induced congestive heart failure. *Ann Intern Med.* 1979;91:710-717. doi:
667 10.7326/0003-4819-91-5-710

668 7. Totzeck M, Siebermair J, Rassaf T, Rischpler C. Cardiac fibroblast activation detected by positron
669 emission tomography/computed tomography as a possible sign of cardiotoxicity. *Eur Heart J.*
670 2020;41:1060. doi: 10.1093/eurheartj/ehz736

671 8. Mancilla TR, Iskra B, Aune GJ. Doxorubicin-Induced Cardiomyopathy in Children. *Compr Physiol.*
672 2019;9:905-931. doi: 10.1002/cphy.c180017

673 9. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors:
674 strategies for prevention and management. *Future Cardiol.* 2012;8:647-670. doi: 10.2217/fca.12.44

675 10. Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. *Front Cardiovasc Med.* 2020;7:26.
676 doi: 10.3389/fcvm.2020.00026

677 11. Willis MS, Parry TL, Brown DI, Mota RI, Huang W, Beak JY, Sola M, Zhou C, Hicks ST, Caughey MC,
678 et al. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-
679 Specific Ubiquitin Ligase MuRF1. *Circ Heart Fail.* 2019;12:e005234. doi:

680 10.1161/CIRCHEARTFAILURE.118.005234

681 12. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE,
682 et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in
683 patients treated with anthracyclines, taxanes, and trastuzumab. *Circ Cardiovasc Imaging*. 2012;5:596-
684 603. doi: 10.1161/CIRCIMAGING.112.973321

685 13. Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic
686 measurements of left ventricular parameters using real-time three-dimensional echocardiography. *J Am
687 Coll Cardiol*. 2004;44:878-886. doi: 10.1016/j.jacc.2004.05.050

688 14. Hoffmann R, von Bardeleben S, ten Cate F, Borges AC, Kasprzak J, Firschke C, Lafitte S, Al-Saadi N,
689 Kuntz-Hehner S, Engelhardt M, et al. Assessment of systolic left ventricular function: a multi-centre
690 comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-
691 enhanced echocardiography. *Eur Heart J*. 2005;26:607-616. doi: 10.1093/eurheartj/ehi083

692 15. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of
693 echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes:
694 application to patients undergoing cancer chemotherapy. *J Am Coll Cardiol*. 2013;61:77-84. doi:
695 10.1016/j.jacc.2012.09.035

696 16. Ky B, Putt M, Sawaya H, French B, Januzzi JL, Jr., Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR,
697 et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast
698 cancer treated with doxorubicin, taxanes, and trastuzumab. *J Am Coll Cardiol*. 2014;63:809-816. doi:
699 10.1016/j.jacc.2013.10.061

700 17. Becker MMC, Arruda GFA, Berenguer DRF, Buril RO, Cardinale D, Branda SCS. Anthracycline
701 cardiotoxicity: current methods of diagnosis and possible role of (18)F-FDG PET/CT as a new biomarker.
702 *Cardiooncology*. 2023;9:17. doi: 10.1186/s40959-023-00161-6

703 18. Liu J, Banchs J, Mousavi N, Plana JC, Scherrer-Crosbie M, Thavendiranathan P, Barac A. Contemporary
704 Role of Echocardiography for Clinical Decision Making in Patients During and After Cancer Therapy.
705 *JACC Cardiovasc Imaging*. 2018;11:1122-1131. doi: 10.1016/j.jcmg.2018.03.025

706 19. Jordan JH, Todd RM, Vasu S, Hundley WG. Cardiovascular Magnetic Resonance in the Oncology Patient.
707 *JACC Cardiovasc Imaging*. 2018;11:1150-1172. doi: 10.1016/j.jcmg.2018.06.004

708 20. Plana JC, Thavendiranathan P, Bucciarelli-Ducci C, Lancellotti P. Multi-Modality Imaging in the

738 pharmacologic characterization. *J Nucl Med.* 2008;49:814-822. doi: 10.2967/jnumed.107.046151

739 31. MacAskill MG, Stadulyte A, Williams L, Morgan TEF, Sloan NL, Alcaide-Corral CJ, Walton T,
740 Wimberley C, McKenzie CA, Spath N, et al. Quantification of Macrophage-Driven Inflammation During
741 Myocardial Infarction with (18)F-LW223, a Novel TSPO Radiotracer with Binding Independent of the
742 rs6971 Human Polymorphism. *J Nucl Med.* 2021;62:536-544. doi: 10.2967/jnumed.120.243600

743 32. Simeon FG, Lee JH, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow JS, Gladding RL, Dick RM, Yan
744 X, et al. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery
745 of a Promising (18)F-Labeled Ligand. *J Med Chem.* 2021;64:16731-16745. doi:
746 10.1021/acs.jmedchem.1c01562

747 33. Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, Burnazi
748 E, Zhang H, Lewis JS, Blasberg R, et al. Biodistribution and Dosimetry of (18)F-Meta-
749 Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine
750 Malignancies. *J Nucl Med.* 2018;59:147-153. doi: 10.2967/jnumed.117.193169

751 34. Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, Yalamanchili P, Onthank D, Mistry M,
752 Lazewatsky J, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent,
753 in cells and animal models. *Circ Cardiovasc Imaging.* 2011;4:435-443. doi:
754 10.1161/CIRCIMAGING.110.962126

755 35. Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, Maia S, Corcia P, Stabin MG,
756 Reynolds A, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for
757 neuroinflammation. *Nucl Med Biol.* 2012;39:570-578. doi: 10.1016/j.nucmedbio.2011.10.012

758 36. Lencova-Popelova O, Jirkovsky E, Mazurova Y, Lenco J, Adamcova M, Simunek T, Gersl V, Sterba M.
759 Molecular remodeling of left and right ventricular myocardium in chronic anthracycline cardiotoxicity
760 and post-treatment follow up. *PLoS One.* 2014;9:e96055. doi: 10.1371/journal.pone.0096055

761 37. Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF, Arzilli C, Cardinale D, Passino
762 C, Emdin M. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and
763 possible therapeutic targets. *Heart Fail Rev.* 2021;26:881-890. doi: 10.1007/s10741-020-10063-9

764 38. Valdes Olmos RA, Ten Bokkel Huinink WW, Tenhoeve RFA, Vantinteren H, Bruning PF, Vanvliet B,
765 Hoefnagel CA. Assessment of Anthracycline-Related Myocardial Adrenergic Derangement by [I-123]
766 Metaiodobenzylguanidine Scintigraphy. *Eur J Cancer.* 1995;31a:26-31. doi: Doi 10.1016/0959-

767 8049(94)00357-B

768 39. Amgalan D, Garner TP, Pekson R, Jia XF, Yanamandala M, Paulino V, Liang FG, Corbalan JJ, Lee J, Chen Y, et al. A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. *Nat Cancer*. 2020;1:315-328. doi: 10.1038/s43018-020-0039-1

770

771 40. Sasset L, Manzo OL, Zhang Y, Marino A, Rubinelli L, Riemma MA, Chalasani MLS, Dasoveanu DC, Roviezzo F, Jankauskas SS, et al. Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure. *Cardiovasc Res*. 2023;119:506-519. doi: 10.1093/cvr/cvac108

773

774 41. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, Ogunyankin KO, Palma RA, Velazquez EJ. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. *J Am Soc Echocardiogr*. 2019;32:1-64. doi: 10.1016/j.echo.2018.06.004

776

777

778 42. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. *Mol Imaging*. 2003;2:131-137. doi: 10.1162/15353500200303133

779

780 43. Lee CH, Kim MJ, Lee HH, Paeng JC, Park YJ, Oh SW, Chai YJ, Kim YA, Cheon GJ, Kang KW, et al. Adenine Nucleotide Translocase 2 as an Enzyme Related to [(18)F] FDG Accumulation in Various Cancers. *Mol Imaging Biol*. 2019;21:722-730. doi: 10.1007/s11307-018-1268-x

781

782

783 44. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29:15-21. doi: 10.1093/bioinformatics/bts635

784

785

786 45. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol*. 2010;28:511-515. doi: 10.1038/nbt.1621

787

788

789 46. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nat Biotechnol*. 2013;31:46-53. doi: 10.1038/nbt.2450

790

791 47. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics*. 2015;31:166-169. doi: 10.1093/bioinformatics/btu638

792

793 48. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol*. 2014;15:550. doi: 10.1186/s13059-014-0550-8

794

795 49. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted

796 functional associations between proteins. *Nucleic Acids Res.* 2003;31:258-261. doi: 10.1093/nar/gkg034

797 50. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET. Identification of the molecular basis

798 of doxorubicin-induced cardiotoxicity. *Nat Med.* 2012;18:1639-1642. doi: 10.1038/nm.2919

799 51. Ruiz-Villalba A, Mattiotti A, Gunst QD, Cano-Ballesteros S, van den Hoff MJ, Ruijter JM. Reference

800 genes for gene expression studies in the mouse heart. *Sci Rep.* 2017;7:24. doi: 10.1038/s41598-017-

801 00043-9

802 52. Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG. Myocardial fibroblast-matrix interactions and

803 potential therapeutic targets. *J Mol Cell Cardiol.* 2014;70:92-99. doi: 10.1016/j.jmcc.2014.01.008

804 53. Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simao D. Transcriptome and proteome

805 profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. *Front*

806 *Cardiovasc Med.* 2022;9:1015473. doi: 10.3389/fcvm.2022.1015473

807 54. Kelly JM, Babich JW. PET Tracers for Imaging Cardiac Function in Cardio-oncology. *Curr Cardiol Rep.*

808 2022;24:247-260. doi: 10.1007/s11886-022-01641-4

809 55. Safee ZM, Baark F, Waters ECT, Veronese M, Pell VR, Clark JE, Mota F, Livieratos L, Eykyn TR, Blower

810 PJ, Southworth R. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected (99m)Tc

811 sestamibi SPECT. *Sci Rep.* 2019;9:216. doi: 10.1038/s41598-018-36721-5

812 56. McCluskey SP, Haslop A, Coello C, Gunn RN, Tate EW, Southworth R, Plisson C, Long NJ, Wells LA.

813 Imaging of Chemotherapy-Induced Acute Cardiotoxicity with (18)F-Labeled Lipophilic Cations. *J Nucl*

814 *Med.* 2019;60:1750-1756. doi: 10.2967/jnumed.119.226787

815 57. Wakasugi S, Fischman AJ, Babich JW, Aretz HT, Callahan RJ, Nakaki M, Wilkinson R, Strauss HW.

816 Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin

817 cardiomyopathy. *J Nucl Med.* 1993;34:1283-1286.

818 58. Collin B, Oudot A, Vrigneaud JM, Delemasure S, Guillemin M, Walker PM, Lalande A, Cochet A,

819 Brunotte F. Abnormal cardiac adrenergic neuron activity assessed by I-123-MIBG is an early marker of

820 cardiac dysfunction in doxorubicin-induced cardiomyopathy in rats. *Eur J Nucl Med Mol I.* 2016;43:S88-

821 S89.

822 59. Hartmann F, Ziegler S, Nekolla S, Hadamitzky M, Seyfarth M, Richardt G, Schwaiger M. Regional

823 patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11

824 hydroxyephedrine and positron emission tomography. *Heart.* 1999;81:262-270. doi:

825 10.1136/hts.81.3.262

826 60. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, Bauersachs J, Wollert KC, Bengel
827 FM. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction.
828 *J Am Coll Cardiol.* 2018;71:263-275. doi: 10.1016/j.jacc.2017.11.024

829 61. Borchert T, Hess A, Lukacevic M, Ross TL, Bengel FM, Thackeray JT. Angiotensin-converting enzyme
830 inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation
831 without effect on chronic neuroinflammation. *Eur J Nucl Med Mol Imaging.* 2020;47:1757-1768. doi:
832 10.1007/s00259-020-04736-8

833 62. Glasenapp A, Derlin K, Gutberlet M, Hess A, Ross TL, Wester HJ, Bengel FM, Thackeray JT. Molecular
834 Imaging of Inflammation and Fibrosis in Pressure Overload Heart Failure. *Circ Res.* 2021;129:369-382.
835 doi: 10.1161/Circresaha.120.318539

836 63. Jenkins WS, Vesey AT, Stirrat C, Connell M, Lucatelli C, Neale A, Moles C, Vickers A, Fletcher A,
837 Pawade T, et al. Cardiac alpha(V)beta(3) integrin expression following acute myocardial infarction in
838 humans. *Heart.* 2017;103:607-615. doi: 10.1136/heartjnl-2016-310115

839 64. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, Topping G, Sun T, Nekolla SG, Richter
840 A, et al. Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a (68)Ga-Labeled
841 Fibroblast Activation Protein Inhibitor, FAPI-04. *J Nucl Med.* 2019;60:1743-1749. doi:
842 10.2967/jnumed.119.226993

843 65. Heckmann MB, Reinhardt F, Finke D, Katus HA, Haberkorn U, Leuschner F, Lehmann LH. Relationship
844 Between Cardiac Fibroblast Activation Protein Activity by Positron Emission Tomography and
845 Cardiovascular Disease. *Circ-Cardiovasc Imag.* 2020;13. doi: ARTN e010628.
846 10.1161/CIRCIMAGING.120.010628

847 66. Siebermair J, Kohler MI, Kupusovic J, Nekolla SG, Kessler L, Ferdinandus J, Guberina N, Stuschke M,
848 Gafe H, Siveke JT, et al. Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a
849 potential novel biomarker of cardiac injury/remodeling. *J Nucl Cardiol.* 2021;28:812-821. doi:
850 10.1007/s12350-020-02307-w

851 67. Langer LBN, Hess A, Korkmaz Z, Tillmanns J, Reffert LM, Bankstahl JP, Bengel FM, Thackeray JT,
852 Ross TL. Molecular imaging of fibroblast activation protein after myocardial infarction using the novel
853 radiotracer [Ga-68]MHLL1. *Theranostics.* 2021;11:7755-7766. doi: 10.7150/thno.51419

854 68. O'Farrell AC, Evans R, Silvola JM, Miller IS, Conroy E, Hector S, Cary M, Murray DW, Jarzabek MA,
855 Maratha A, et al. A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic
856 Pathway Remodeling in Response to Sunitinib Malate. *PLoS One*. 2017;12:e0169964. doi:
857 10.1371/journal.pone.0169964

858 69. Croteau E, Tremblay S, Gascon S, Dumulon-Perreault V, Labbe SM, Rousseau JA, Cunnane SC,
859 Carpentier AC, Benard F, Lecomte R. [(11)C]-Acetoacetate PET imaging: a potential early marker for
860 cardiac heart failure. *Nucl Med Biol*. 2014;41:863-870. doi: 10.1016/j.nucmedbio.2014.08.006

861 70. Sarocchi M, Bauckneht M, Arboscello E, Capitanio S, Marini C, Morbelli S, Miglino M, Congiu AG,
862 Ghigliotti G, Balbi M, et al. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with
863 left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. *J
864 Transl Med*. 2018;16:295. doi: 10.1186/s12967-018-1670-9

865 71. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Rohrich
866 M, Winter H, et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. *J Nucl Med*.
867 2019;60:801-805. doi: 10.2967/jnumed.119.227967

868 72. Mori Y, Dendl K, Cardinale J, Kratochwil C, Giesel FL, Haberkorn U. FAPI PET: Fibroblast Activation
869 Protein Inhibitor Use in Oncologic and Nononcologic Disease. *Radiology*. 2023;306:e220749. doi:
870 10.1148/radiol.220749

871 73. Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caille F, Lavis S, Gervais P, Stankoff B,
872 Sarazin M, et al. [(18)F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on
873 the human plasma input function. *Eur J Nucl Med Mol Imaging*. 2023. doi: 10.1007/s00259-023-06286-
874 1

875 74. Pauwels E, Celen S, Vandamme M, Leysen W, Baete K, Bechter O, Bex M, Serdons K, Van Laere K,
876 Bormans G, Deroose CM. Improved resolution and sensitivity of [(18)F]MFBG PET compared with
877 [(123)I]MIBG SPECT in a patient with a norepinephrine transporter-expressing tumour. *Eur J Nucl Med
878 Mol Imaging*. 2021;48:313-315. doi: 10.1007/s00259-020-04830-x

879 75. He X, Du T, Long T, Liao X, Dong Y, Huang ZP. Signaling cascades in the failing heart and emerging
880 therapeutic strategies. *Signal Transduct Target Ther*. 2022;7:134. doi: 10.1038/s41392-022-00972-6

881 76. Capranico G, Tinelli S, Austin CA, Fisher ML, Zunino F. Different patterns of gene expression of
882 topoisomerase II isoforms in differentiated tissues during murine development. *Biochim Biophys Acta*.

883 1992;1132:43-48. doi: 10.1016/0167-4781(92)90050-a

884 77. Vejpongsa P, Yeh ET. Topoisomerase 2beta: a promising molecular target for primary prevention of
885 anthracycline-induced cardiotoxicity. *Clin Pharmacol Ther.* 2014;95:45-52. doi: 10.1038/clpt.2013.201

886 78. Timm KN, Perera C, Ball V, Henry JA, Miller JJ, Kerr M, West JA, Sharma E, Broxholme J, Logan A,
887 et al. Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature
888 assessed with hyperpolarized MRI. *Commun Biol.* 2020;3:692. doi: 10.1038/s42003-020-01440-z

889 79. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress.
890 *Annu Rev Physiol.* 1997;59:551-571. doi: 10.1146/annurev.physiol.59.1.551

891 80. Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological
892 stimulation. *Circulation.* 2010;122:2727-2735. doi: 10.1161/CIRCULATIONAHA.110.942268

893 81. Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, Zhang Y, Hua S, Fu Q, Zhao M, et al. Downregulation of
894 FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in
895 oral squamous cell carcinoma. *Cell Death Dis.* 2014;5:e1155. doi: 10.1038/cddis.2014.122

896 82. Jia J, Martin TA, Ye L, Jiang WG. FAP-alpha (Fibroblast activation protein-alpha) is involved in the
897 control of human breast cancer cell line growth and motility via the FAK pathway. *Bmc Cell Biol.*
898 2014;15. doi: Artn 16. 10.1186/1471-2121-15-16

899 83. Yang XG, Lin YL, Shi YH, Li BJ, Liu WR, Yin W, Dang YJ, Chu YW, Fan J, He R. FAP Promotes
900 Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-
901 CCL2 Signaling. *Cancer Res.* 2016;76:4124-4135. doi: 10.1158/0008-5472.CAN-15-2973

902 84. Wang XM, Yu DMT, McCaughan GW, Gorrell MD. Fibroblast activation protein increases apoptosis,
903 cell adhesion, and migration by the LX-2 human stellate cell line. *Hepatology.* 2005;42:935-945. doi:
904 10.1002/hep.20853

905 85. Chen M, Lei X, Shi C, Huang M, Li X, Wu B, Li Z, Han W, Du B, Hu J, et al. Pericyte-targeting prodrug
906 overcomes tumor resistance to vascular disrupting agents. *J Clin Invest.* 2017;127:3689-3701. doi:
907 10.1172/JCI94258

908 86. Jellis C, Martin J, Narula J, Marwick TH. Assessment of Nonischemic Myocardial Fibrosis. *Journal of*
909 *the American College of Cardiology.* 2010;56:89-97. doi: 10.1016/j.jacc.2010.02.047

910 87. Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P, Houghton
911 AN. FAP alpha, a surface peptidase expressed during wound healing, is a tumor suppressor. *Oncogene.*

912 2004;23:5435-5446. doi: 10.1038/sj.onc.1207730

913 88. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac Fibrosis The Fibroblast Awakens.

914 *Circ Res.* 2016;118:1021-1040. doi: 10.1161/Circresaha.115.306565

915 89. Tillmanns J, Hoffmann D, Habbaba Y, Schmitto JD, Sedding D, Fraccarollo D, Galuppo P, Bauersachs

916 J. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial

917 infarction. *Journal of Molecular and Cellular Cardiology.* 2015;87:194-203. doi:

918 10.1016/j.yjmcc.2015.08.016

919 90. Shi X, Lin X, Huo L, Li X. Cardiac fibroblast activation in dilated cardiomyopathy detected by positron

920 emission tomography. *J Nucl Cardiol.* 2022;29:881-884. doi: 10.1007/s12350-020-02315-w

921 91. Wang L, Zhang Z, Zhao Z, Yan C, Fang W. (68)Ga-FAPI right heart uptake in a patient with idiopathic

922 pulmonary arterial hypertension. *J Nucl Cardiol.* 2022;29:1475-1477. doi: 10.1007/s12350-020-02407-

923 7

924 92. Song WY, Zhang X, He SK, Gai YK, Qin CX, Hu F, Wang Y, Wang ZH, Bai P, Wang J, Lan XL. Ga-68-

925 FAPI PET visualize heart failure: from mechanism to clinic. *Eur J Nucl Med Mol I.* 2023;50:475-485.

926 doi: 10.1007/s00259-022-05994-4

927 93. Wu C, Macleod I, Su AI. BioGPS and MyGene.info: organizing online, gene-centric information. *Nucleic*

928 *Acids Res.* 2013;41:D561-565. doi: 10.1093/nar/gks1114

929 94. Jordan JH, Castellino SM, Melendez GC, Klepin HD, Ellis LR, Lamar Z, Vasu S, Kitzman DW, Ntim

930 WO, Brubaker PH, et al. Left Ventricular Mass Change After Anthracycline Chemotherapy. *Circ Heart*

931 *Fail.* 2018;11:e004560. doi: 10.1161/CIRCHEARTFAILURE.117.004560

932 95. Harvey PA, Leinwand LA. Cardiac atrophy and remodeling. In: *Cellular and molecular pathobiology of*

933 *cardiovascular disease.* Elsevier; 2014:37-50.

934 96. Nishi M, Wang PY, Hwang PM. Cardiotoxicity of Cancer Treatments: Focus on Anthracycline

935 Cardiomyopathy. *Arterioscler Thromb Vasc Biol.* 2021;41:2648-2660. doi:

936 10.1161/ATVBAHA.121.316697

937 97. Thackeray JT. Molecular Imaging Using Cardiac PET/CT: Opportunities to Harmonize Diagnosis and

938 Therapy. *Curr Cardiol Rep.* 2021;23:96. doi: 10.1007/s11886-021-01526-y

939 98. Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B. Mitochondrial translocator protein (TSPO): From

940 physiology to cardioprotection. *Biochem Pharmacol.* 2016;105:1-13. doi: 10.1016/j.bcp.2015.12.003

941 99. Largeau B, Dupont AC, Guilloteau D, Santiago-Ribeiro MJ, Arlicot N. TSPO PET Imaging: From
942 Microglial Activation to Peripheral Sterile Inflammatory Diseases? *Contrast Media Mol Imaging*.
943 2017;2017:6592139. doi: 10.1155/2017/6592139

944 100. Narayan N, Owen DR, Mandhair H, Smyth E, Carlucci F, Saleem A, Gunn RN, Rabiner EA, Wells L,
945 Dakin SG, et al. Translocator Protein as an Imaging Marker of Macrophage and Stromal Activation in
946 Rheumatoid Arthritis Pannus. *Journal of Nuclear Medicine*. 2018;59:1125-1132. doi:
947 10.2967/jnumed.117.202200

948 101. Zhang HW, Xu AD, Sun X, Yang YQ, Zhang L, Bai H, Ben JJ, Zhu XD, Li XY, Yang Q, et al. Self-
949 Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced
950 Cardiomyopathy Through the SR-A1-c-Myc Axis. *Circ Res*. 2020;127:610-627. doi:
951 10.1161/Circresaha.119.316428

952 102. Kashiyama N, Miyagawa S, Fukushima S, Kawamura T, Kawamura A, Yoshida S, Harada A, Watabe T,
953 Kanai Y, Toda K, et al. Development of PET Imaging to Visualize Activated Macrophages Accumulated
954 in the Transplanted iPSC-Derived Cardiac Myocytes of Allogeneic Origin for Detecting the Immune
955 Rejection of Allogeneic Cell Transplants in Mice. *Plos One*. 2016;11. doi: ARTN e0165748.
956 10.1371/journal.pone.0165748

957 103. Thai PN, Daugherty DJ, Frederich BJ, Lu XY, Deng WB, Bers DM, Dedkova EN, Schaefer S. Cardiac-
958 specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure
959 Overload Induced Heart Failure. *Sci Rep-Uk*. 2018;8. doi: ARTN 16213. 10.1038/s41598-018-34451-2

960 104. Batarseh A, Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and
961 disease states. *Mol Cell Endocrinol*. 2010;327:1-12. doi: 10.1016/j.mce.2010.06.013

962 105. Valdes Olmos RA, Ten Bokkel Huinink WW, Dewit LG, Hoefnagel CA, Liem IH, vanTinteren H. Iodine-
963 123 metaiodobenzylguanidine in the assessment of late cardiac effects from cancer therapy. *Eur J Nucl
964 Med*. 1996;23:453-458. doi: Doi 10.1007/Bf01247376

965 106. dos Santos MJ, da Rocha ET, Verberne HJ, da Silva ET, Aragon DC, Soares J. Assessment of late
966 anthracycline-induced cardiotoxicity by I-123-mIBG cardiac scintigraphy in patients treated during
967 childhood and adolescence. *J Nucl Cardiol*. 2017;24:256-264. doi: 10.1007/s12350-015-0309-y

968 107. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay
969 SM, Evers LR, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure A Report

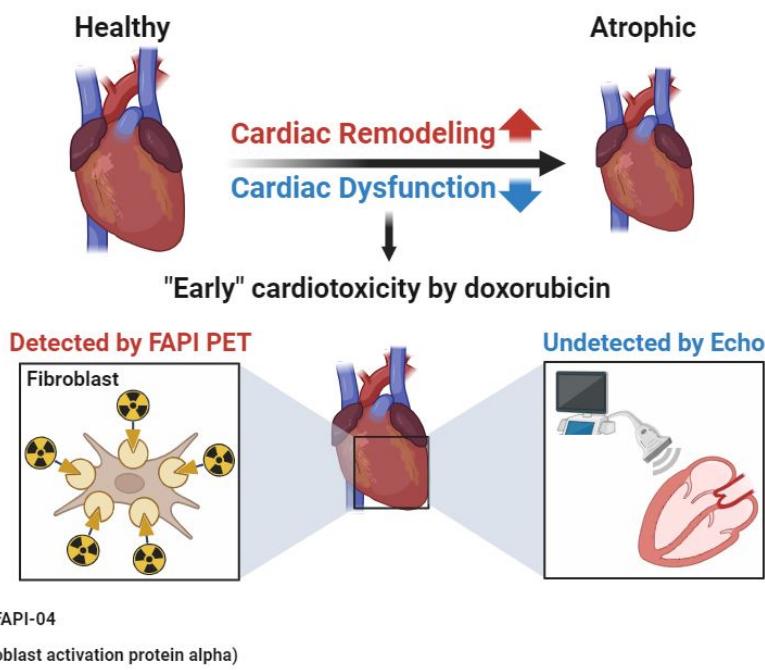
970 of the American College of Cardiology/American Heart Association Joint Committee on Clinical
971 Practice Guidelines. *Journal of the American College of Cardiology*. 2022;79:E253-E421. doi:
972 10.1016/j.jacc.2021.12.012

973 108. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F,
974 Fiorentini C, Cipolla CM. Anthracycline-Induced Cardiomyopathy Clinical Relevance and Response to
975 Pharmacologic Therapy. *Journal of the American College of Cardiology*. 2010;55:213-220. doi:
976 10.1016/j.jacc.2009.03.095

977 109. Hoffmann DB, Fraccarollo D, Galuppo P, Frantz S, Bauersachs J, Tillmanns J. Genetic ablation of
978 fibroblast activation protein alpha attenuates left ventricular dilation after myocardial infarction. *Plos
979 One*. 2021;16. doi: ARTN e0248196. 10.1371/journal.pone.0248196

980 110. Sun YX, Ma MQ, Cao DD, Zheng AC, Zhang YY, Su Y, Wang JF, Xu YH, Zhou M, Tang YS, et al.
981 Inhibition of Fap Promotes Cardiac Repair by Stabilizing BNP. *Circ Res*. 2023;132:586-600. doi:
982 10.1161/Circresaha.122.320781

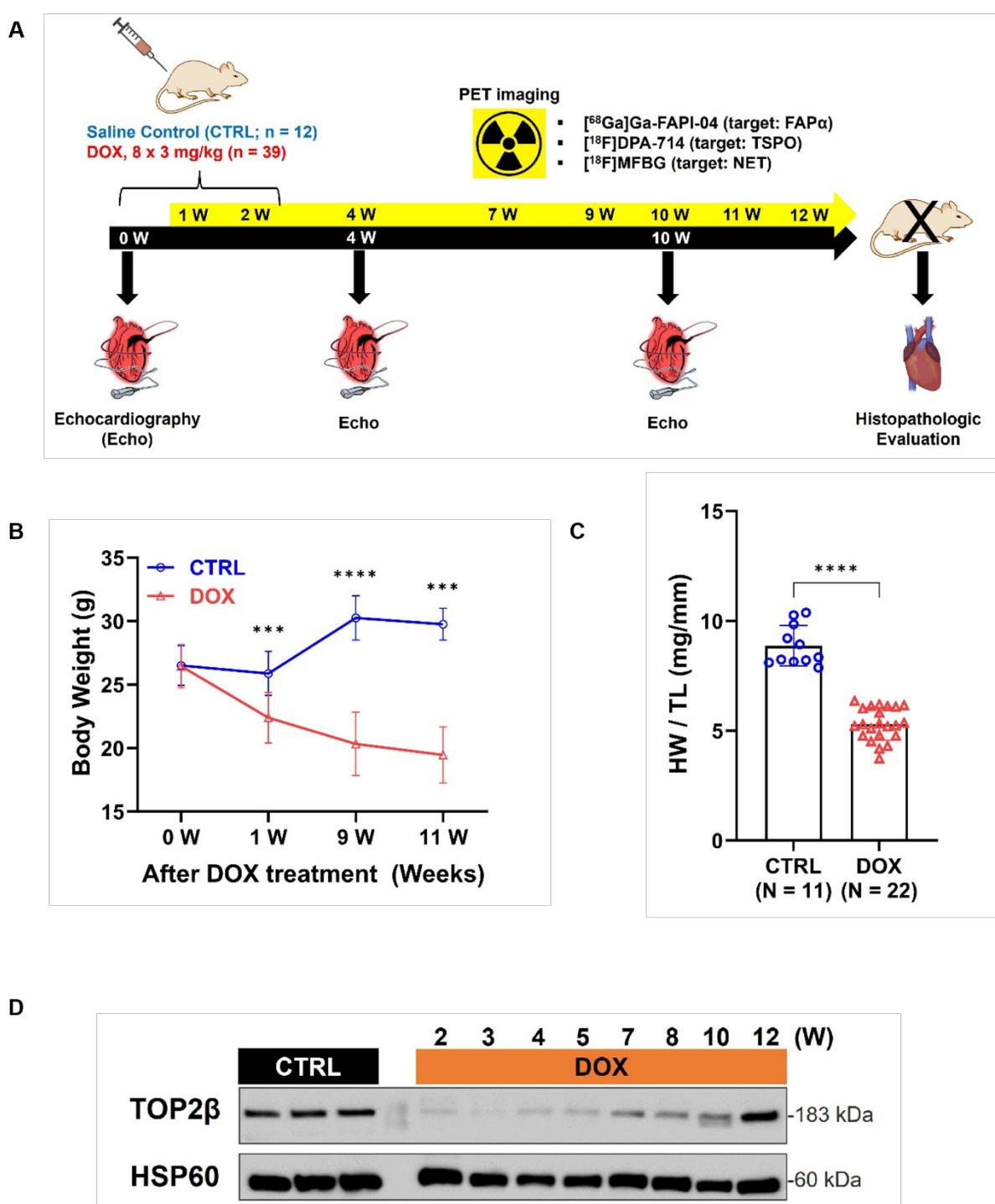
983 111. Rosenkrans ZT, Massey CF, Bernau K, Ferreira CA, Jeffery JJ, Schulte JJ, Moore M, Valla F, Batterton
984 JM, Drake CR, et al. [Ga-68]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease
985 activity. *Eur J Nucl Med Mol I*. 2022;49:3705-3716. doi: 10.1007/s00259-022-05814-9


986 112. Shi JL, Hou ZL, Yan J, Qiu WF, Liang LX, Meng MY, Li L, Wang XD, Xie YH, Jiang LH, Wang WJ.
987 The prognostic significance of fibroblast activation protein-u in human lung adenocarcinoma. *Ann Transl
988 Med*. 2020;8. doi: ARTN 224. 10.21037/atm.2020.01.82

989

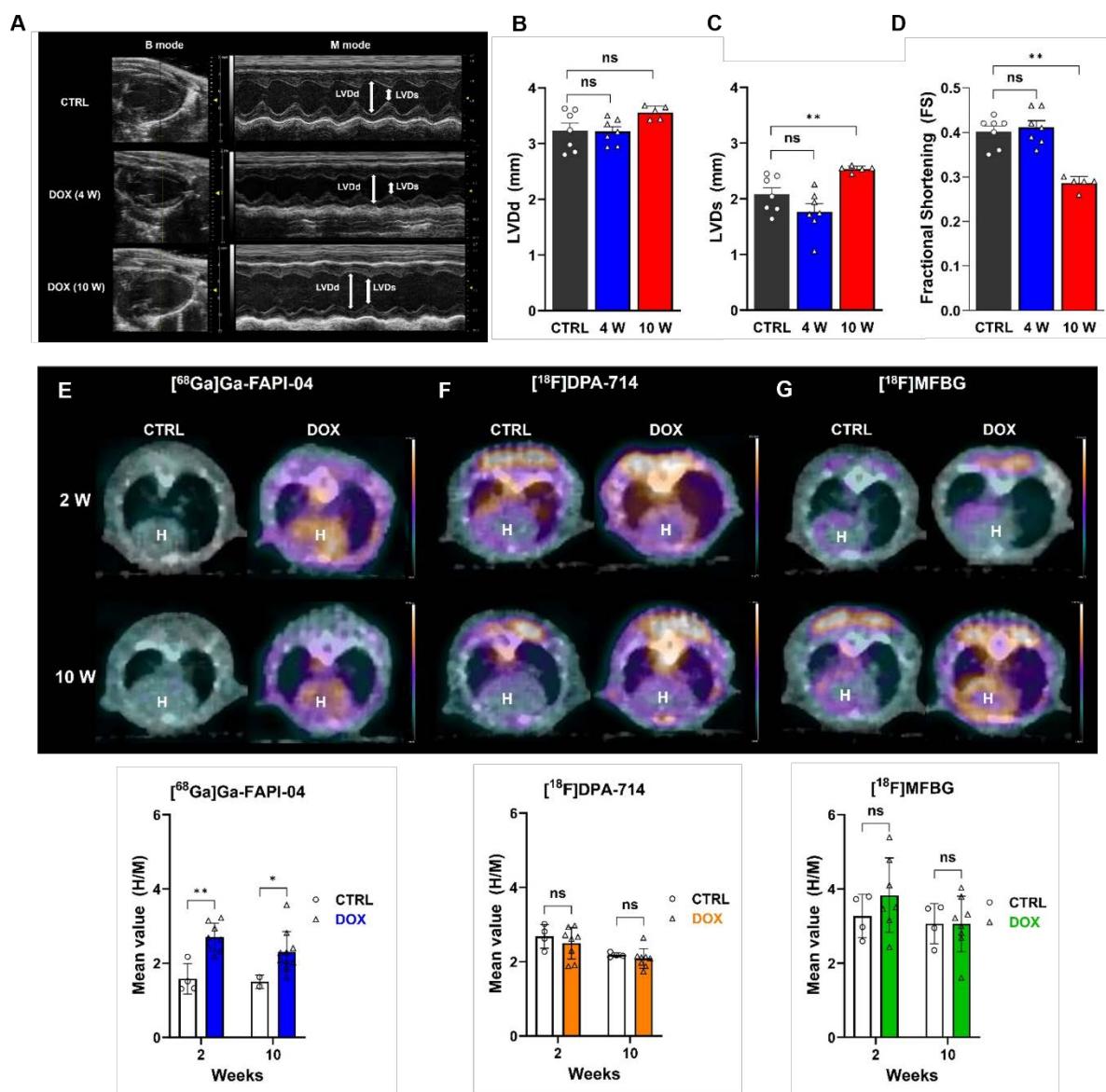
990

991


992 **Graphical Abstract**

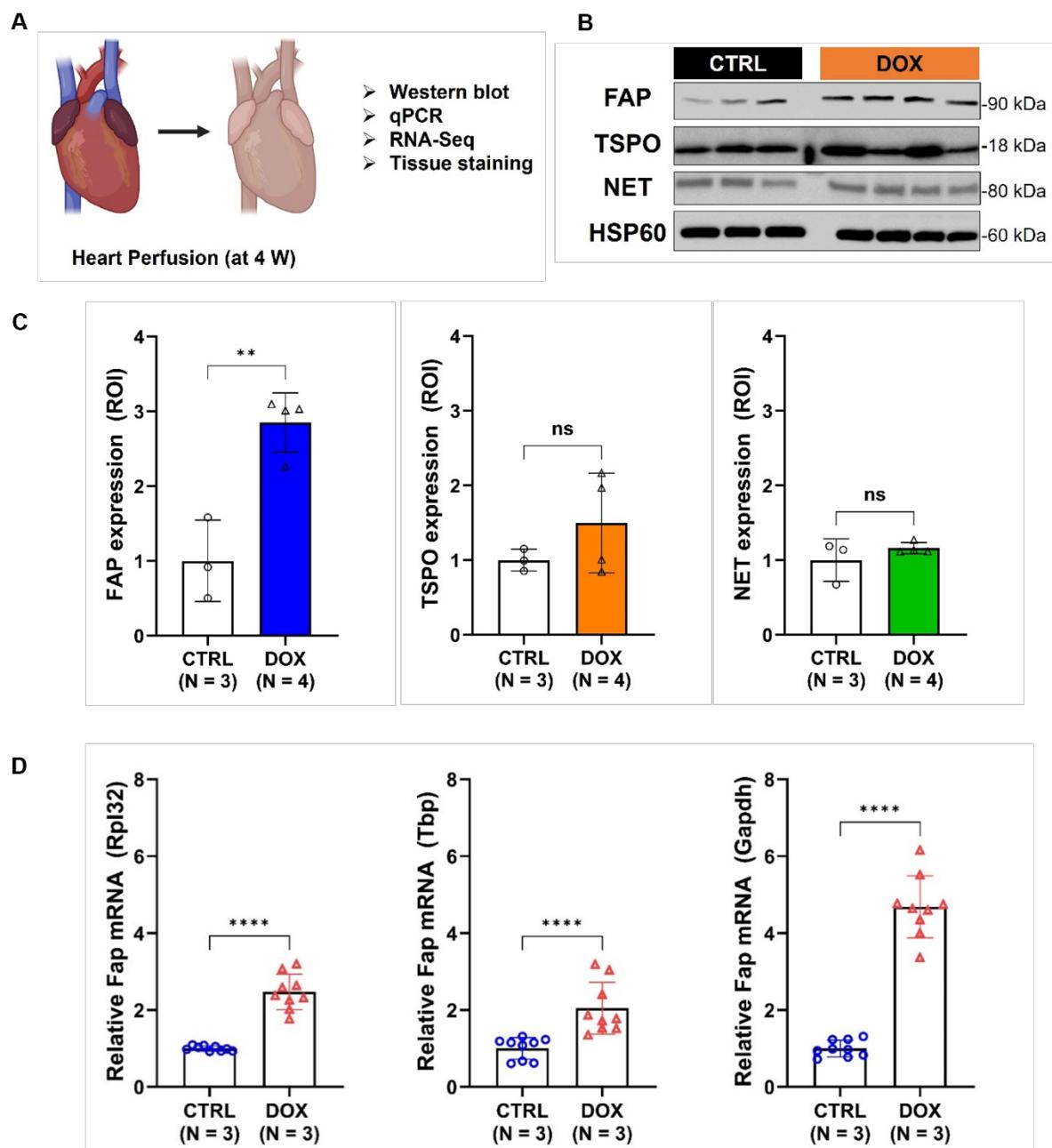
993

994

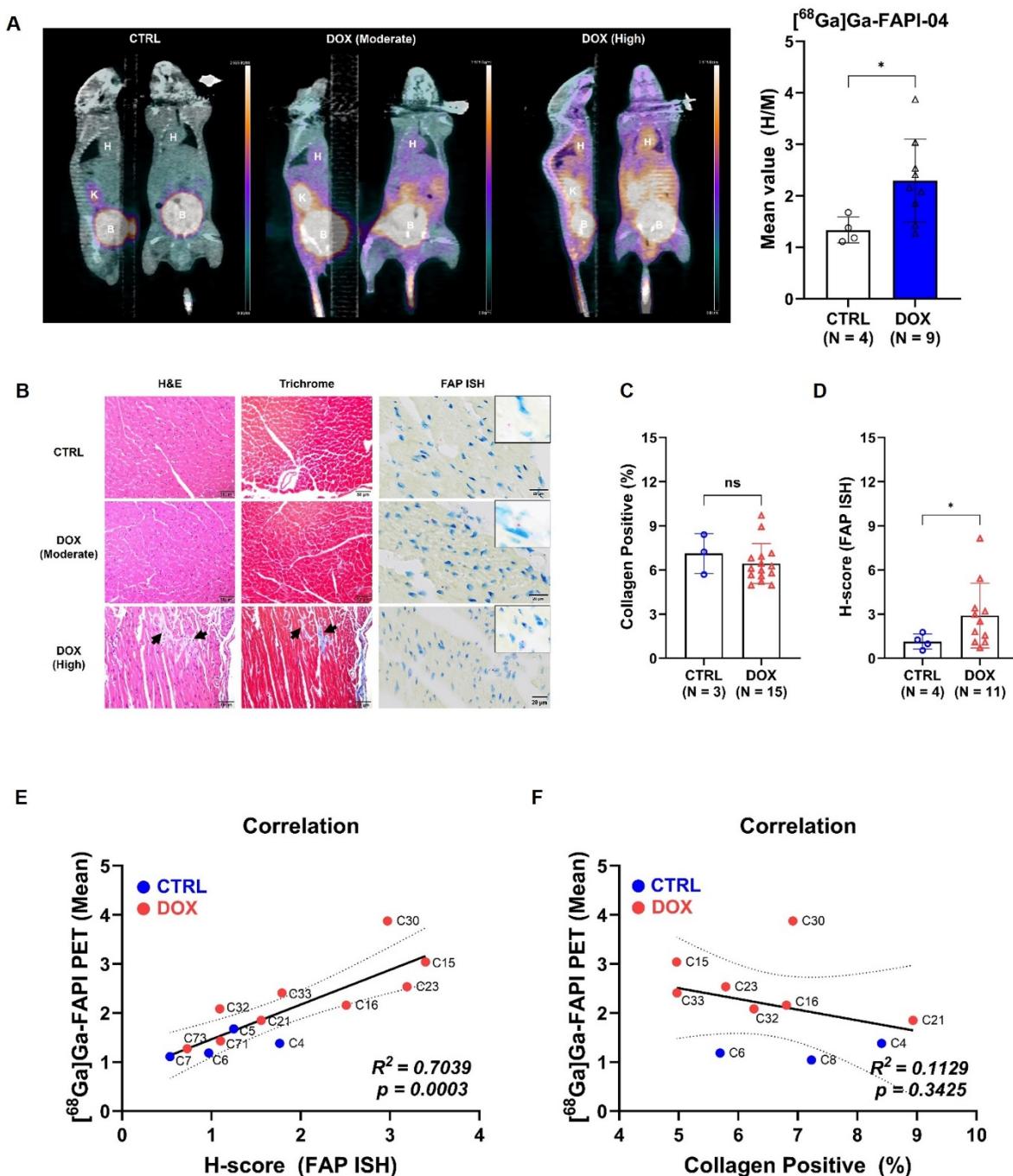

995 **FIGURES AND FIGURE LEGENDS**

997 **Fig. 1. Establishment of clinically-relevant cardiotoxic mouse model induced by systemic**
998 **administration of DOX. (A)** Schematic of this study. After establishing the DOX-induced
999 cardiotoxicity model, underlying pathophysiology was evaluated by serial PET imaging using

1000 [⁶⁸Ga]Ga-FAPI-04 (for targeting FAP), [¹⁸F]DPA-714 (for targeting TSPO), and [¹⁸F]MFBG (for
1001 targeting NET). Echocardiography (echo) imaging was performed at 4 weeks and 10 weeks. Heart tissue
1002 was extracted at the PET imaging time points for measurement of heart weight and evaluation of
1003 molecular and cellular changes in cardiac tissue. **(B)** Body weights were compared between CTRL and
1004 DOX groups over the course of the experiment. **(C)** Heart weight indexed to tibia length. **(D)** TOP2 β
1005 expression from the heart lysates was evaluated by western blot. HSP60 was used as an internal control.
1006 Data are presented as the mean \pm s.d. *** $p < 0.001$ and **** $p < 0.0001$.


1007

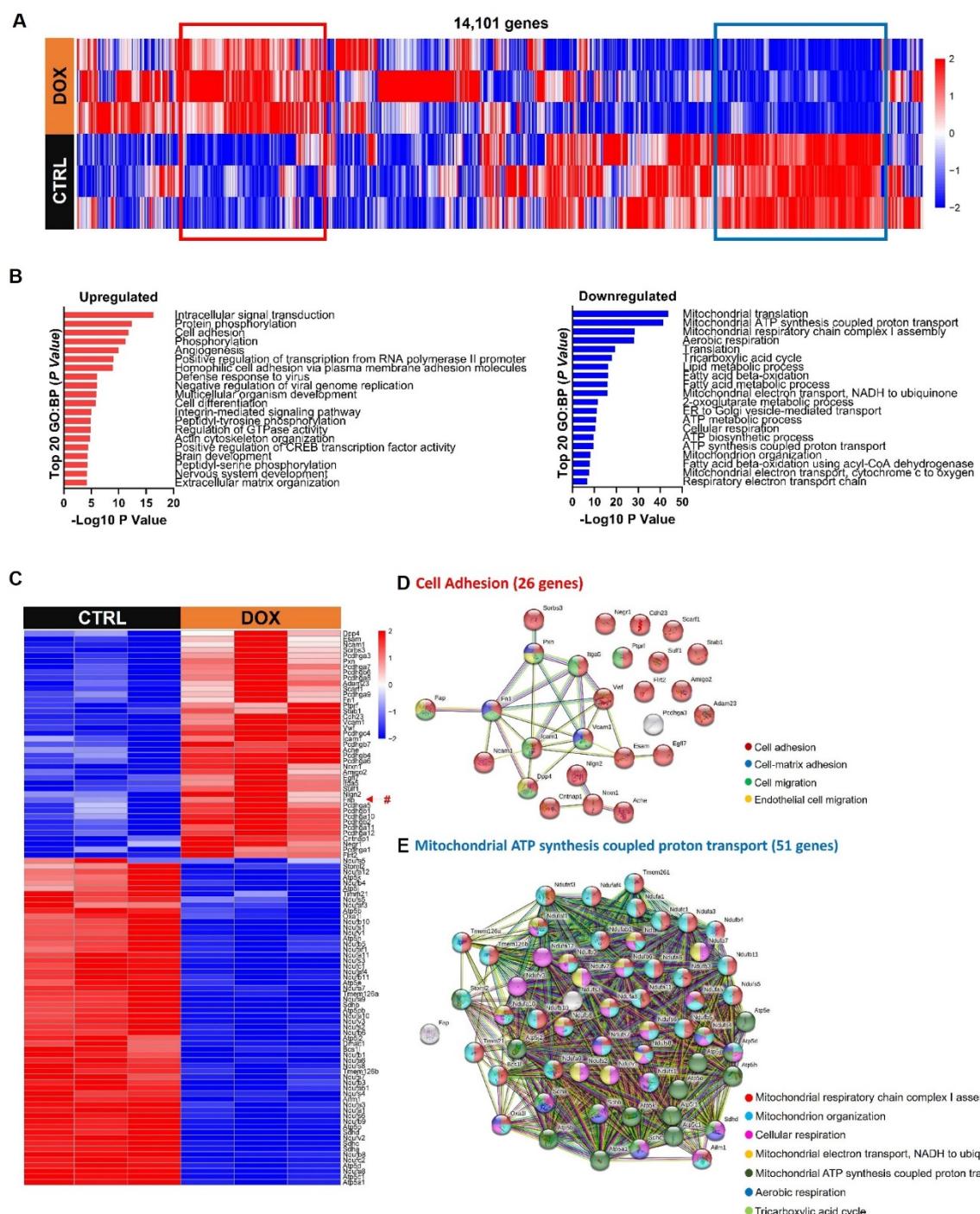
1009 **Fig. 2. [⁶⁸Ge]Ga-FAPI-04 PET detects cardiac remodeling before it is evident by conventional**
1010 **echo.** Pathology was monitored by echo and microPET/CT imaging. DOX-treated mice were randomly
1011 assigned to imaging groups for comparison with age-matched controls (CTRL). **(A)** Representative
1012 images of the left ventricle (LV) serial echo of CTRL (n = 7) and DOX groups (4 W, n = 7 and 10 W, n
1013 = 5). Left ventricular end-diastolic diameter (LVDd) **(B)** and left ventricular end-systolic diameter
1014 (LVDs) **(C)** were determined from the echo scans. **(D)** Fractional shortening (FS) was calculated from
1015 LVDd and LVDs. Representative [⁶⁸Ge]Ga-FAPI-04 **(E)**, [¹⁸F]DPA-714 **(F)**, and [¹⁸F]MFBG **(G)**
1016 microPET/CT fusion transaxial images at 2 and 10 W. Quantitative [⁶⁸Ge]Ga-FAPI-04, [¹⁸F]DPA-714,


1017 and [¹⁸F]MFBG PET signals (mean value of % injected dose per centimeter cubed, %ID/cm³) was
1018 normalized by thigh muscle uptake. The number of mice imaged at each time point is displayed in
1019 **Table S3**. Data are presented as the mean \pm s.d. * $p < 0.05$, and ** $p < 0.01$.

1020

1022 **Fig. 3. Expression of FAP protein and mRNA is elevated at 4 W.** (A) Isolation of heart tissues for
1023 determination of mRNA, protein, and tissue levels. (B) Protein expression of FAP, TSPO, and NET

1024 (CTRL; n = 3, DOX; n = 4) was evaluated by western blot. HSP60 was used as an internal control. **(C)**
1025 Each band size was normalized by drawing ROIs using ImageJ free software. **(D)** RT-qPCR (CTRL; n
1026 = 3, DOX; n = 3) was performed for the validation of Fap mRNA expression using three different
1027 primers, listed in **Table S5**. Rpl32, Tbp, and Gapdh were used as reference genes in cardiac tissue. Data
1028 are presented as the mean \pm s.d. ** $p < 0.01$ and **** $p < 0.0001$. The schematic illustration (A) was
1029 drawn using <https://biorender.com/>


1030

1031 **Fig. 4. Correlation between FAPI PET, FAP in situ hybridization (ISH), and trichrome staining.**

1032 (A) *Left:* Representative whole-body FAPI PET sagittal and coronal maximum intensity projections
 1033 (MIPs) acquired 45 min post injection of $[^{68}\text{Ga}]\text{Ga-FAPI-04}$. DOX mice showed moderate or high
 1034 uptake compared to CTRL. *Right:* Image-based quantitation of cardiac PET signal normalized by thigh
 1035 muscle uptake (H/M). (B) Representative H&E, Trichrome, and FAP ISH stains. Myocardial fibrosis

1036 was occasionally and regionally detected in DOX-treated hearts (arrows). Fap mRNA (punctate red dots)
1037 was detected in the cytoplasm and/or nuclei of cardiomyocytes and/or epicardial stromal cells (Insets).
1038 **(C)** Comparison of collagen positive regions from the trichrome staining. Quantitation was performed
1039 using QuPath software, with positive regions defined as deposition of collagen fibril between
1040 cardiomyocytes. **(D)** Comparison of the H-score from FAP ISH staining. Quantitation was performed
1041 using QuPath software. **(E)** A significant correlation was observed between [⁶⁸Ga]Ga-FAPI-04 cardiac
1042 PET signals and FAP expression in the corresponding tissues ($p = 0.0003$). **(F)** No correlation was
1043 observed between [⁶⁸Ga]Ga-FAPI-04 cardiac uptake and the percentage of collagen positive regions in
1044 the corresponding tissues ($p = 0.3425$). Data are presented as the mean \pm s.d. * $p < 0.05$. Scale bar: 1
1045 mm and 20 μ m.

1046

1047

1048 **Fig. 5. The apparent difference of biological processes in gene ontology according to DOX**
1049 **treatment. (A)** Heat map representation of the 14,101 genes from the same samples of qPCR. **(B)** The
1050 top 20 up- (red) or downregulated (blue) biological processes (BP) of gene ontology (GO) by *P* value
1051 were determined from the bulk RNA-seq data. **(C)** Heat map representation from the GO:Cell adhesion
1052 (upregulated; 26 genes) and GO:Mitochondrial ATP synthesis coupled proton synthesis (downregulated;

1053 51 genes) with Fap (marked by #). **(D and E)** STRING database highlighting interactions between Fap

1054 and highly upregulated or downregulated genes.

1055