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ABSTRACT (298 words)

Background: Anthracycline chemotherapy is associated with a risk of cardiotoxicity leading to heart
disease, particularly in pediatric cancer patients. Gold standard methods of detecting cardiotoxicity are
insufficiently sensitive to early damage and specific pathophysiologies driving disease. Positron
emission tomography (PET) couples anatomical resolution with biochemical mechanistic selectivity
and potentially addresses the current diagnostic limitations in cardio-oncology. We aimed to validate
PET imaging biomarkers targeting fibroblast activation protein alpha (FAP), Translocator protein
(TSPO), and norepinephrine receptor (NET) for detection of incipient anthracycline-induced

cardiotoxicity.

Methods: Cardiotoxicity was established in male C57BL/6J mice by a cumulative dose of 24 mg/kg
doxorubicin (DOX) over 2 weeks. DOX mice and their age-matched controls were imaged with
echocardiography and PET, using [®®Ga]Ga-FAPI-04, [®F]DPA-714, and [**FIMFBG, over 12 weeks.
Fractional shortening (FS) was determined from the echocardiograms, and cardiac uptake of the
radioligands was quantified from the PET images. Heart sections were collected and used for the
analysis of bulk RNA-seq, RT-gPCR, Western blot, in situ hybridization (ISH), and histopathological

analysis.

Results: DOX mice exhibited cardiotoxicity and cardiac atrophy. Cardiac [#®Ga]Ga-FAPI-04 PET
signal was significantly higher in DOX mice from 2 weeks through the study endpoint. By contrast, no
cardiac dysfunction was evident by echocardiography until 10 weeks, at which point FS was
significantly reduced in DOX mice. There were no differences in [*®F]DPA-714 and [*®*F]MFBG signals.
Transcription and translation of FAP, but not TSPO or NET, was detected in cardiomyocytes and were
elevated in the DOX hearts, in agreement with the PET data. Genes related to cell adhesion and

extracellular remodeling were significantly upregulated in the DOX mice relative to controls.

Conclusions: FAP is a sensitive and selective imaging biomarker for incipient cardiotoxicity and FAPI

PET is a promising non-invasive imaging tool for identifying patients at risk of cardiotoxicity during or
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after anthracycline chemotherapy.

GRAPHICAL ABSTRACT: A graphical abstract is available for this article.

Key words: cardiotoxicity, anthracyclines, positron emission tomography, fibroblast activation protein

alpha

Nonstandard Abbreviations and Acronyms:

ACE Acetylcholinesterase

BP Biological process

BSA Bovine serum albumin

CT Computed tomography

CTRL Control

DEG Differentially expressed genes

DOX Doxorubicin

FAP Fibroblast activation protein alpha

FAPI Fibroblast activation protein alpha inhibitor
FC Fold change

FPKM Fragments per kilobase of transcript per million mapped reads
FS Fractional shortening

GO Gene oncology

HW Heart weight

ID Injected dose

ISH In situ hybridization

LvDd Left ventricle end-diastolic diameter

LVDs Left ventricle end-systolic diameter

LVEF Left ventricular ejection fraction

MFBG meta-Fluorobenzylguanidine
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MIBG meta-lodobenzylguanidine

MIP Maximum intensity projection

NET Norepinephrine transporter

PBR Peripheral-type benzodiazepine receptor
PBS Phosphate buffered saline

PET Positron emission tomography
RNA-seq RNA sequencing

ROI Region of interest

SPECT Single photon computed tomography
TL Tibia length

Top2p Topoisomerase-2f3

TSPO Translocator protein 18-kDa

VOI Volume of interest

WB Western blot

NOVELTY AND SIGNIFICANCE

What is Known?

e Anthracycline chemotherapy results in cardiotoxicity for a sizeable population of treated
patients. Cardiotoxocity manifests as cardiac dysfunction, and may result in long-term cardiac
disease and heart failure, particularly in survivors of pediatric cancer.

e Cardiotoxicity is typically defined in terms of left ventricular ejection fraction (LVEF) deficits,
as measured by echocardiography. However, this metric is often poorly sensitive to early
disease and agnostic to underlying pathophysiology.

o Early treatment of cardiotoxicity improves recovery and long-term survival, emphasizing the

need for accurate diagnostics in incipient disease.

What New Information Does This Article Contain?
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e [%Ga]Ga-FAPI-04 accumulates in the hearts of mice experiencing doxorubicin-induced
cardiotoxicity as a function of fibroblast activation protein alpha (FAP) expression and activity.
By contrast, cardiac uptake of radioligands targeting the translocator protein 18-kDa (TSPO)
and the norepinephrine transporter (NET) do not differ between DOX animals and controls.

e Positron emission tomography (PET) imaging following administration of [®*Ga]Ga-FAPI-04
detects abnormal cardiac remodeling significantly earlier than LVEF decrease is observed,

indicating that it may be more sensitive to incipient disease.

Our study identifies fibroblast activation protein alpha (FAP) as a promising diagnostic imaging
biomarker in anthracycline-induced cardiotoxicity. We show that cardiac PET signal increases
immediately after doxorubicin treatment, and the signal increase is sustained for at least 10 weeks. In
addition, we demonstrate that FAP inhibitor (FAPI) PET correlates with expression of FAP protein and
gene. Thus, we provide mechanistic insight into potentially-treatable pathophysiologies driving cardiac
atrophy and toxicity, and have identified a translational PET tracer that can image the activation of these

processes at an early stage.
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125 INTRODUCTION

ancer therapy with the anthracycline doxorubicin (DOX) is the treatment of

127  choice for a broad range of cancers, especially for the treatment of solid tumors

and leukemias in adults and children.>? Roughly 60% of pediatric cancer patients

129  today receive DOX as part of their treatment.® However, despite being a mainstay of anti-cancer therapy,
130  DOX can induce cardiovascular dysfunction, especially cardiotoxicity that results in heart failure.*®
131 Heart conditions ranging from cardiomyopathy to heart failure are major adverse events in cancer
132 patients treated with DOX, with up to 70% of total adverse events relating to cardiac health.®’
133 Childhood cancer survivors are particularly susceptible, with more than 10% of those who received
134  DOX treatment developing cardiotoxicity,? which can develop into severe heart disease in adulthood.’
135  Early diagnosis of heart failure can lead to less invasive and more effective treatment. Therefore, the
136 identification of emerging cardiotoxicity and attendant cardiac damage is an essential need to improve

137 outcomes in cancer treatment.

138 Cumulative DOX exposure can produce the symptoms of cardiotoxicity within weeks or
139  months (“early” cardiotoxicity) or after a number of years (“late”).° The specific cellular and molecular
140  changes responsible for these responses have not been fully elucidated.’ Assessment of left ventricular
141 ejection fraction (LVEF) by echocardiography (echo) is currently the gold standard for evaluating
142  cardiac function in patients with suspected cardiotoxicity.’> However, echo is subject to temporal
143 variability**!® and is poorly sensitive to early myocardial damage,*>!® while measurement of LVEF
144 alone discounts other cardiopathologic effects that may occur.!” The introduction of tissue Doppler and
145  strain imaging echo has allowed subclinical cardiotoxicity to be detected more reliably through speckle
146 tracking-based deformation analysis.’*!® Nevertheless, the possibility of intervendor variability in strain
147  measurements may require all follow up scans to be conducted using identical instrumentation.
148  Furthermore, while improvements in echo image analysis have increased detection of subclinical
149  cardiac functional decline, this method cannot be used to detect the underlying pathology responsible

150  for these deficits. Cardiac magnetic resonance is an alternative imaging modality for assessing cardiac

6
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151 dysfunction,® but this method still exhibits limited cost-effectiveness and uncertain diagnostic or
152 prognostic value.?®?! Nuclear imaging methods, such as single photon computed tomography (SPECT),
153 and positron emission tomography (PET), have been developed for assessing LVEF, myocardial
154 viability, and perfusion? but these do not provide mechanistic insight into cardiotoxicity. Circulating
155  cardiac troponins and B-type natriuretic peptides are blood biomarkers of cardiac injury that can be
156  assessed through minimally invasive procedures,?:?® however, their sensitivity and specificity may be
157  insufficient to support use of these indices as single predictive biomarkers without further validation by
158  animaging technique,® paticularly when samples are taken during early (acute) timepoints.? To identify
159  at-risk patients prior to anthracycline chemotherapy and detect incipient cardiotoxicity arising during
160  or after chemotherapy therefore requires the validation of new biomarkers related to specific disease-

161  causing pathophysiologies.

162 PET is a promising modality with which to pursue this aim. PET imaging can be combined
163 with other modalities such as computed tomography (CT) to allow functional and anatomical imaging
164  with spatial resolution as high as 2 mm.% Recently, a number of radiolabeled small molecules for
165  imaging fibroblast activation protein alpha (FAP),26?° translocator protein 18-kDa (TSPO),***? and the
166 norepinephrine transporter (NET)*** by PET have been described for detecting cancer-associated
167  fibrosis, inflammation, and sympathetic innervation, respectively. Among these PET agents, FAP
168  inhibitor [®%Ga]Ga-FAPI-04,” TSPO ligand [*®F]DPA-714,* and NET ligand meta-
169  [*®F]fluorobenzylguanidine, [**FJMFBG,* have undergone preliminary clinical evaluation for
170  oncologic and neurologic applications. Cardiac tissue remodeling,* inflammation and cardiomyocyte
171 mitochondrial dysfunction,®” and loss of cardiac sympathetic innervation® are also identified as
172 contributing pathologies in anthracycline-induced cardiotoxicity. Despite promising detection
173 sensitivity, whole-body dosimetry, and relevance to key pathophysiologies of heart failure, neither these

174 probes nor their molecular targets have been systematically evaluated in the context of cardiotoxicity.

175 Here, we established a preclinical model of DOX-induced cardiotoxicity for validating

176  [%®Ga]Ga-FAPI-04, [*®F]DPA-714, and [*®F]MFBG as diagnostic and prognostic biomarkers in cardio-
7


https://doi.org/10.1101/2023.09.03.556130
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.03.556130; this version posted September 5, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

177  oncology. Our goal was to evaluate the ability of these radioligands to detection incipient cardiotoxicity
178  and identify the most suitable probe for translational to clinical imaging of cancer survivors treated with

179  anthracyclines.
180

181 METHODS
182  General

183 Doxorubicin hydrochloride was purchased from Tocris Bioscience, USA and used without
184  further purification. It was dissolved at a concentration of 0.75 mg/mL in sterile saline for injection
185  (Hospira, USA) with the aid of sonication. The solution was stored in the dark at -20 °C for up to 24 h

186  before use.
187  Mouse model of doxorubicin-induced cardiotoxicity

188 All animal studies were approved by the Institutional Animal Care and Use Committee of
189  Weill Cornell Medicine and were undertaken in accordance with the guidelines set forth by the U.S.
190  Public Health Service Policy on Human Care and Use of Laboratory Animals. Adult male C57BL/6J
191 (8-week-old) mice were purchased from The Jackson Laboratory, USA and randomly assigned to
192  treatment (n=40) or control (n=16) groups. Mice in the treatment group were administered a solution of
193  doxorubicin in saline at 3 mg/kg every other day for 2 weeks (total 8 doses; cumulative dose of 24
194  mg/kg) by intraperitoneal (i.p.) administration.*® Age-matched control (CTRL) mice were administered
195  the same volume of saline i.p. The mice were weighed three times weekly and given access to food and

196  water ad libitum.
197  Echocardiography imaging and analysis

198 For evaluation of cardiac dimensions and function, echocardiography was performed under
199  inhaled isoflurane anesthesia on a 37 °C heated platform using a Vevo 770 and 3100 Imaging systems

200  (VisualSonics, Canada) accordingly to previously published methods.® Briefly, scans were acquired

8
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201 using left-ventricle M-mode and all measurements were obtained by averaging the values of three
202  consecutive cardiac cycles. Left-ventricle end-diastolic (LVDd) and end-systolic (LVDs) dimensions
203  were measured using M-mode traces. Fractional shortening (FS) was calculated using the formula
204  [(LVDd-LVDs)/LVDd]. Diastolic measurements were estimated at the point of maximum cavity
205  dimension, and systolic were taken at the point of minimum cavity dimension, according to the

206  American Society of Echocardiography’s recommended method.*
207  Radiochemistry

208 [*®Ga]FAPI-04,%" [BF]DPA-714,* and [®FJMFBG3** were synthesized from their
209  corresponding precursors according to literature procedures with minor modifications. Full
210  experimental details describing the synthesis of the precursors and radioligands can be found in the
211 Supplemental Material. All radioligands were formulated in 10% v/v ethanol/saline for administration

212 to mice.
213 Small animal microPET/CT imaging

214 DOX and CTRL mice were intravenously administered 100-150 pL of a 10% v/v ethanol/saline
215  solution containing 3.7-11.1 MBq of the corresponding radioligand. The mice were imaged in groups
216 of 2-4 using small-animal microPET/CT (Siemens Inveon™, USA) under isoflurane anesthesia (3.5%
217 for induction, 1.5 % for maintenance) beginning 45 min after injection. The total PET acquisition time
218  was 30 min, and a CT scan was obtained immediately before the PET acquisition for anatomic
219  coregistration and attenuation correction. Images were reconstructed using the commercial Inveon

220  software provided by the vendor. Images were corrected for decay and for the total activity injected.
221 MicroPET/CT imaging data analysis

222 All microPET/CT images were evaluated with the AMIDE algorithm (A Medical Image Data
223 Examiner).”? An ellipsoidal volume of interest (VOI) was generated for the heart and the right thigh

224 muscle. The mean counts in the VOI were converted to percent injected dose per cubic centimeter
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225  (%ID/cmd) using the AMIDE algorithm, which was calibrated against a 1% injected dose standard.
226 The %ID/cm? in the heart was normalized against the %1D/cm? in the muscle, providing a heart/muscle

227 ratio, H/M.
228  Preparation of heart tissue

229 The mice were anesthetized by i.p. ketamine injection and perfused with phosphate-buffered
230  saline (PBS) via the left ventricle at a constant pressure of 80 mmHg. The hearts were patted dry and
231 weighed on a digital balance. To perform the molecular and histological analysis, the hearts were cut
232  transversally at the mid-horizontal plane. Cut fractions were separated for RNA and protein extraction,
233 and tissue staining. Regions for tissue staining were fixed overnight in formalin at 4 °C and stored in
234 70% ethanol until further processing. The fractions for RNA and protein extraction were flash frozen in

235  liquid nitrogen and stored at -78 °C until further use.
236  Heart weight to tibia length (HW/TL) ratios

237 The tibia was collected ex vivo and all soft tissue was removed. The length was measured
238 using a digital calipers. Heart weights were determined as described above and divided by the
239  corresponding tibia length from the same animal to produce the heart weight to tibia length (HW/TL)

240  ratio.
241 Western blotting

242 Frozen heart tissue was pulverized by mortar and pestle for tissue homogenization. Ground
243 heart tissue powders were collected and soaked in tissue protein extraction reagent (#78510,
244 ThermoFisher, USA) supplemented with a protease inhibitor cocktail (#87786, ThermoFisher, USA)

245  for protein extraction. Protein concentrations and western blot (WB) were performed as previously

246 reported.”® The primary antibodies were anti-topoisomerase 23) (TOP23, 1:1000 dilution, #20549-1-

247 AP, Proteintech, USA), anti-fibroblast activation protein alpha (FAP, 1:500 dilution, ab53066, Abcam,

248  UK), anti-PBR (TSPO, 1:6000 dilution, ab109497, Abcam, UK), anti-SLC6A2 (NET, 1:250 dilution,

10
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249 MBS540046, MyBioSource, USA), and anti-HSP60 (1:1000 dilution, 12165S, Cell Signaling
250  Technology, USA). The chemical luminescent signals were measured by Azure c400 Gel imaging
251 system (Azure Biosystems, Inc. USA). Protein expression was quantified by drawing a region-of-

252 interest (ROI) using ImageJ free software.
253  Quantitative RT-PCR analysis

254 Ground heart tissue powders were collected and soaked in Trizol (Invitrogen, USA) and
255  RNeasy Fibrous tissue mini kit (Qiagen, USA) was used to isolate total RNA from heart tissues.
256  Genomic DNA was removed by DNase | (Qiagen), and RNA was reverse transcribed using an iScript
257 kit (Bio-Rad, USA). The resulting cDNA was analyzed by quantitative RT-PCR (qPCR) using SYBR
258  green master mix (Life Technologies, USA) on QuantStudio6 Real-Time PCR system (Life
259  Technologies). mRNA levels were calculated by delta-delta CT method using the target gene (Fap) and

260  reference genes (Rpl32, Thp, Gapdh, and Actb). The full primer list is reported in Table S5.
261 Bulk RNA-seq library construction and data analysis

262 The libraries were sequenced with paired-end 50 bps on the NovaSeq 6000 Sequencer
263 (lllumina, USA). The raw sequencing reads in BCL format was processed through bcl2fastq 2.20
264 (Illumina) for FASTQ conversion and demultiplexing. After trimming the adaptors with cutadapt
265  (version 1.18; https://cutadapt.readthedocs.io/en/v1.18/), RNA reads were aligned and mapped to the
266 GRCm39 mouse reference genome by STAR (version 2.5.2; https://github.com/alexdobin/STAR),* and
267  transcriptome reconstruction was performed by Cufflinks (Version 2.1.1) (http://cole-trapnell-
268 lab.github.io/cufflinks/). The abundance of transcripts was measured with Cufflinks using fragments
269  per kilobase of transcript per million mapped reads (FPKM) as an output.*>4® Raw read counts per gene
270  were extracted using HTSeg-count version 0.11.2.4” Gene expression profiles were constructed for
271  differential expression, cluster, and principle component analyses with the DESeq2 package

272 (https://bioconductor.org/packages/release/bioc/html/DESeg2.html).*®  For differential expression

273 analysis, pairwise comparisons were performed between two or more groups using parametric tests

11
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274 where read counts follow a negative binomial distribution with a gene-specific dispersion parameter.
275  Corrected p-values were calculated based on the Benjamini-Hochberg method to adjust for multiple

276  testing.

277 For the differentially expressed genes (DEGS) analysis, p < 0.01 was used as the signifier of

278  statistical significance, and Log2FC (FC, fold change) > 0.55 and Log2FC < -0.85 were used to

279  distinguish upregulated (Up) and downregulated (Down) DEGs, respectively. The heat map was
280  generated using R studio to compare DEGs between groups, and the volcano plot for the overall

281  distribution of DEGs was analyzed using GraphPad Prism 9.0 (GraphPad Software, USA).
282  DAVID analysis and establishment of PPl networks

283 The database for annotation, visualization, and Integrated Discovery (DAVID) was used to
284  group DEGs based on biological function (https://david.ncifcrf.gov/). The 1326 Upregulated genes and
285 1684 Downregulated genes were submitted for the Gene Ontology (GO) according to the biological
286  process (BP) analysis. The heat map for the GO:BP data was generated using R studio. A protein-protein
287  interaction (PPI) network was developed to identify the association between a target and related DEGs

288 by utilizing the STRING database (http://string-db.org/).*® GO terms and PPI networks with a p-value

289  cutoff < 0.05 were regarded as significant.

290  Histopathology

291 The tissue was processed in alcohol and xylene and embedded in paraffin. Four transverse
292  sections of the heart per mouse, including right and left ventricles, right and left auricles, and
293  interventricular septum were sectioned at 5-pum thickness and stained with hematoxylin and eosin.
294  Histopathological evaluation of the heart was performed by a board-certified veterinary pathologist.
295  Hearts were evaluated on the basis of cardiomyocytes showing necrosis, degeneration (cytoplasmic

296  vacuolization), and atrophy, leukocytic cell infiltrates, and interstitial fibrosis.

297 Formalin fixed sections of the heart were stained with Masson’s Trichrome to evaluate the

12
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298  presence of collagen in cardiac tissues. To determine the percentage of collagen in the heart, digital
299  whole slide images of Masson’s trichrome-stained hearts were manually annotated and then classified
300  pixels were evaluated with a random forest algorithm using QuPath (an open-source software for digital

301 pathology image analysis accessed through: https://qupath.github.io/). Regions of collagen for this

302 analysis included collagen fibrils between cardiomyocytes and around preexisting vasculature within
303  cardiac musculature. Regions excluded for this analysis included preexisting collagen from great

304  vessels, leaflet insertion bands, and pericardial connective tissue.

305  Immunohistochemistry

306 Formalin-fixed, paraffin-embedded sections were stained using an automated staining
307 platform (Leica Bond RX, Leica Biosystems). Following deparaffinization and heat-induced epitope
308 retrieval in a citrate buffer at pH 6.0, the primary antibody against TSPO, also known as peripheral-type
309  benzodiazepine receptor (PBR; ab109497, Abcam, Waltham, MA), was applied at a dilution of
310  1:10000. A rabbit anti-goat secondary antibody (Cat. No. BA-5000, Vector Laboratories, Burlingame,
311 CA) and a polymer detection system (DS9800, Novocastra Bond Polymer Refine Detection, Leica
312  Biosystems) was then applied to the tissues. The chromogen used was 3,3’-diaminobenzidine
313  tetrachloride (DAB) and the sections were counterstained with hematoxylin and examined by light
314 microscopy. Positive immunoreactivity for TSPO was confirmed with internal mouse tissue array
315  controls used to validate this immunoassay. A subset of tissues incubated with antibody diluents and
316  secondary antibody only were used as negative controls for this assay. Images were acquired with an
317  Olympus VS200 slide scanner (Olympus, Tokyo, Japan) with a 20x objective. Quantitative image
318  analysis was performed by using the QuPath Pixel classifier module. A random forest algorithm was
319  used for identifying pixels as TSPO-positive, TSPO-negative and background in cardiac sections.

320  Region of interest and thresholding values were validated by a board-certified veterinary pathologist.

321 For CD11b immunohistochemistry, a heat-mediated antigen retrieval with citrate buffer (pH

322 6.0) was applied on deparaffinized cardiac sections, which were then incubated with a primary anti-
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323  CD11b antibody at a dilution of 1:4000 (ab133357, Abcam, USA). A goat anti-rabbit secondary
324  antibody (Cat. No. BA-1000, Vector Laboratories) and a polymer detection system (DS9800,
325  Novocastra Bond Polymer Refine Detection, Leica Biosystems) were then applied to the tissues. The
326 chromogen was DAB, and the sections were counterstained with hematoxylin and examined by light

327  microscopy.

328  In Situ Hybridization

329 Formalin-fixed, paraffin-embedded cardiac sections were incubated with the target probe
330  designed to detect region 486 - 1588 of murine fibroblast activation protein (Fap) mMRNA, NCBI
331 Reference Sequence NM_007986.3 (RNAscope® LS 2.5 probe for murine FAP, #423888; Advanced
332 Cell Diagnostics, Newark, CA). The target probe was validated on sections of murine skin and heart
333  from mice. Slides were stained on an automated stainer (Leica Bond RX, Leica Biosystems) with
334  RNAscope 2.5 LS Assay Reagent Kit-Red (322150, Advanced Cell Diagnostics) and Bond Polymer
335 Refine Red Detection (DS9390, Leica Biosystems). Control probes detecting a validated positive
336  housekeeping gene (mouse peptidylprolyl isomerase B, Ppib to confirm adequate RNA preservation
337 and detection; 313918, Advanced Cell Diagnostics) and negative control, Bacillus subtilis
338  dihydrodipicolinate reductase gene (dapB to confirm absence of nonspecific labeling; 312038,
339  Advanced Cell Diagnostics) were used. Positive RNA hybridization was identified as discrete, punctate
340  chromogenic red dots under bright field microscopy. Images were acquired with an Olympus VS200
341 slide scanner with a 40x objective. Quantitative image analysis of Fap hybridization was performed
342  with QuPath using an algorithm for singleplex chromogenic RNAscope image analysis. Fap positive
343 hybridization signal was classified as follows: 1 red dot / cell, 2 red dot / cell, and 3+ red dots / cell in
344  each transverse section of the heart. An H-score of Fap positive signal from each sample was calculated
345 by the QuPath software. Samples with autolysis or regions in the tissue with pale-brown precipitate

346  and/or folding artifacts were excluded from this analysis.

347  Statistical analysis
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348 Statistical analyses were carried out using GraphPad Prism 9.0. All data were expressed as
349  means * standard deviation (SD) and are representative of at least three separate biological experiments.
350  The unpaired two-tailed Student’s t-test or Mann-Whitney test was determined for comparisons of two
351 groups. For correlation analysis, the Pearson correlation test was used. A p-value of less than 0.05 was

352 considered statistically significant.
353  RESULTS
354  DOX treatment in mice induces cardiotoxic physiological and molecular changes

355 To establish a clinically-relevant model of DOX-induced cardiotoxicity, we administered
356 intraperitoneal saline (control; CTRL) or DOX (cumulative dose 24 mg/kg) over 2 weeks (W)* to
357  C57BL/6 mice followed by 10-12 W observation together with serial echo and microPET/CT imaging
358  (Figure 1A). In agreement with multiple literature reports,'?* we observed significantly lower body
359  weights in the DOX mice compared to the age-matched CTRL group (Figure 1B; Table S1). The heart
360  weight (HW) to tibia length (TL) ratio was 40% lower in DOX groups compared to the CTRL group at
361  from 7 to 12 W (p < 0.0001) (Figure 1C; Table S2). There were not significant differences in TL
362  between the two groups (p = 0.5566) (Figure S1A), indicating that cardiac atrophy was occurring in
363  the DOX animals, as previously reported.!! Next, to evaluate the effect of DOX treatment at a cellular
364 level, the expression of TOP2B, a primary mediator of DOX-induced toxicity,”® was evaluated. We
365  observed rapid and sustained decrease in TOP2[3 expression, which persisted up to 10 W (Figure 1D).
366  Collectively, these experiments confirmed that a cumulative dose of 24 mg/kg DOX induced sustained

367  cardiac atrophy and reduction of TOP2 protein expression in mice.
368  [®Ga]Ga-FAPI-04 PET detects cardiac abnormalities earlier than echo

369 We performed echo imaging and analysis in CTRL and DOX groups at acute (4 W) and chronic
370 (10 W) phases.?* At 4 W, left-ventricle end-diastolic diameter (LVDd) and left-ventricle end-systolic
371 diameter (LVDs) were not significantly different between the CTRL (n = 6) and DOX (n = 6) animals

372  (LVvDd; p = 0.833, LVDs; p = 0.165) (Figure 2A-C). However, LVDs was significantly increased by
15
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373 20% in the DOX group (n = 5) at 10 W (p < 0.01) (Figure 2A and C). In parallel, we observed no
374  significant change in LVDd (p = 0.149) (Figure 2B). As a result, fractional shortening (FS) decreased
375  from 40% in the CTRL animals and DOX animals at 4 W to less than 30% at 10 W (p < 0.01) (Figure
376  2D). At this later time point, blood cardiac troponin-1 (CTNI) levels were higher in DOX mice, but the

377  difference was not significant (p = 0.247) (Figure S2).

378 We performed serial microPET/CT imaging with [*8Ga]Ga-FAPI-04, [*%F]DPA-714, and
379  [®F]MFBG for 12 W to compare the time course of cardiac uptake differences with the time course of
380  functional deficits in the DOX hearts (Figure S3; Table S3). To account for differences in heart function,
381  we normalized cardiac uptake to skeletal muscle (thigh muscle). Skeletal muscle has minimal basal
382  expression of our molecular targets and therefore acts as a surrogate for blood pool effects. Furthermore,
383 itisalso subject to DOX-induced toxicity! and therefore controls for off-target effects. [®*Ga]Ga-FAPI-
384 04 uptake was significantly increased in the acute phase (2 W; 1.7-fold) (p < 0.01) when no evidence
385  of cardiotoxicity is evident as measured by echo (Figure 2E). Moreover, increased cardiac [*Ga]Ga-
386  FAPI-04 uptake persisted in the DOX mice through the chronic phase (10 W; 1.5-fold) (p < 0.05)
387  (Figure 2E, Figure S3). By contrast, there was no significant difference between cardiac uptake of
388  [!8F]DPA-714 and [*®F]MFBG in the CTRL and DOX groups at either the early or late phases (Figure

389  2F and G, Figure S3).

390  Increased cardiac [®®Ga]Ga-FAPI-04 uptake is significantly correlated to FAP expression at the

391  gene and protein levels

392 Next, we sought to validate the significant differences in cardiac [®®Ga]Ga-FAPI-04 uptake
393  through determining their correlation with FAP protein and mRNA expression. Cardiac tissue was
394  collected from perfused hearts at 4 W for Western blot, qPCR, and RNA-seq analyses and tissue staining
395  (Figure 3A). As expected, FAP expression was 2.9-fold higher (p < 0.01) in DOX mice than CTRL
396  animals, while TSPO and NET showed no significant differences in protein expression (Figure 3B and

397  C). At the same time, we determined the Fap gene expression using three different Fap primers and
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398  different reference genes to ensure accurate qPCR analysis in spite of the heterogeneity of our heart
399 tissue (Table S4).5! Fap gene expression increased 2.5-fold (normalized to Rpl32, p < 0.0001), 2.0-fold
400  (normalized to Thp, p < 0.0001), and 4.7-fold (normalized to Gapdh, p < 0.0001), respectively,
401 compared with CTRL animals (Figure 3D). In agreement with our [%Ga]Ga-FAPI-04 PET imaging,
402  cardiac Fap gene expression in DOX mice increased 1.7-fold (p < 0.01), 2.8-fold (p < 0.0001), and 2.8-
403  fold (p < 0.0001) relative to CTRL mice at 2, 7, and 10 W, respectively (Figure S4A). We observed a
404  similar trend in FAP protein expression (Figure S4B), suggesting that mMRNA and protein expression
405  levels are proportional in this model. Additionally, FAP activity was significantly increased in DOX

406  hearts compared to controls (p = 0.031) (Figure S5).
407  FAP is a diagnostic imaging biomarker for detecting incipient cardiotoxicity by PET

408 Having established that the cardiac PET signals of our candidate probes correlated with protein
409  and mRNA expression of the corresponding molecular target, we sought to validate uptake by tissue
410  staining. We separated a cohort of DOX animals (n = 9) into high or moderate uptake groups (Figure
411 4A). Cardiac [®®Ga]Ga-FAPI-04 PET signal was significantly higher in these animals than in the age-
412 matched CTRL mice (n = 4; p < 0.05). Interestingly, DOX-treated mice showed little evidence of
413 pathological changes in cardiomyocytes. A mild degree of individual cardiomyocyte necrosis and
414 degeneration and/or focal to multifocal aeas of myocardial fibrosis were occasionally observed in four

415  DOX hearts. The rest of the DOX hearts (n = 11) did not show pathological changes.

416 As DOX associated heart damage can lead to fibroblast activation and subsequent interstitial
417  fibrosis, the percentage of collagen was evaluated by the use of Masson’s Trichrome staining of the
418  hearts. There were no differences in H&E and Masson’s trichrome staining between these three groups
419  (Figure 4B). Indeed, collagen-positive regions averaged approximately 7% for CTRL mouse hearts (n
420 = 3) and approximately 6.5% for DOX hearts (n = 15) (Figure 4C). However, spatiotemporal Fap
421 expression, as determined by in-situ hybridization (ISH), was significantly higher in the DOX animals

422  (n=11; p<0.05) (Figure 4D). Fap nucleic acid was detected in the cytoplasm and associated with the
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423 nuclei of cardiomyocytes and stromal cells. Furthermore, the H-score was higher in the tissue slices
424 belonging to mice in the high uptake group than mice in the moderate uptake group (Figure 4B; Table
425  S6). There was a linear correlation between [%Ga]Ga-FAPI-04 PET signal and H-score (p < 0.001)
426  (Figure 4E) but no correlation between PET signal and collagen formation (p = 0.343) (Figure 4F). As
427  predicted by our PET imaging, there was no difference in TSPO staining between DOX and CTRL mice
428  (Figure S6). We observed no NET staining in either CTRL or DOX samples (data not shown). Taken

429  together, these results indicate that FAPI PET is a potential diagnostic biomarker in the DOX model.
430 DOX promotes cardiac remodeling and disrupts mitochondrial energetics

431 To investigate the role that FAP may be playing in DOX-induced cardiotoxicity, we performed
432 bulk RNA-seq analysis. We first constructed a volcano plot using Log2FC and a negative Log False
433 discovery rate (FDR) with 14,101 DEGs. Although none of the Fap, Tspo, and Slc6a2 genes showed
434 significant differences in the overall DEGs population, Fap gene expression did significantly increase
435  when the expression level was normalized by fragments per kilobase of transcript per million (FPKM)
436  mapped fragments (Figure S7A and B). We also generated a heat map of all DEGs. Clear differences
437  between the DOX and CTRL groups were evident, though we observed a degree of heterogeneity within
438  each group (Figure 5A). Compared with CTRL mice, DOX hearts showed 1326 markedly upregulated
439  genes and 1684 markedly downregulated genes. These genes were used to identify the top 20 from the
440  p-value affected biological processes (BP) in the gene ontology (GO). Within the upregulated genes,
441 the most significantly affected GO:BPs included those related to intracellular signal transduction,
442  protein phosphorylation, cell adhesion, angiogenesis, and extracellular matrix organization. Within the
443 downregulated genes, on the other hand, the most affected GO:BPs were those related to mitochondrial
444 translation, ATP synthesis, and respiratory chain complex (Figure 5B). Furthermore, numerous GO:BPs
445  associated with cardiac remodeling were identified in the upregulated group, whereas GO:BPs
446  associated with mitochondrial energetic dysfunction were identified in the downregulated group
447  (Figure S8). Taken together, these data indicate that DOX treatment induces cardiac remodeling and

448  impairs mitochondrial energetics in cardiomyoctyes.
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449 The heat map was refined by selecting representative genes from upregulated or
450  downregulated one BP of the top 3 GO:BP terms, including the Fap gene, and excluding genes with
451 heterogeneous expression (Figure 5C). This heat map highlights the increased expression of Fap
452  (indicated by the hashtag) in DOX hearts compared to CTRLs. Next, we analyzed the same gene family
453 using the STRING database. FAP strongly interacted with fibronectin-1 (Fnl), a major component of
454  cardiac ECM remodeling and fibrosis,>® which in turn associated with other proteins involved in cell
455  adhesion and migration (Figure 5D). On the other hand, there was no protein association between FAP
456  and any component of the downregulated group (Figure 5E). From these findings, we conclude that
457  increased FAP expression contributes to multiple processes involved in cardiac remodeling but does not

458  predict fibrosis in cardiac tissue.
459
460 DISCUSSION

461 In this study, we sought to validate PET imaging targets that are more sensitive to the early
462  symptoms of DOX-induced cardiotoxicity than conventional echo and are biomarkers of specific
463  pathophysiologies. Nuclear medicine approaches have been underutilized for this purpose due to
464  concerns about radiation exposure and lack of widespread availability of imaging devices in cancer
465  treatment facilities. Nevertheless, this imaging technique allows anatomical information to be coupled
466  to biochemical information afforded by a suitably chosen probe targeting a specific disease-relevant
467  molecule or pathway. Although DOX-induced cardiotoxicity ultimately decreases LVEF, compromises
468  cardiac performance, and can lead to heart failure, the mechanisms by which it does so may vary
469  between patients. Non-invasive detection of these mechanism by molecular imaging is a safe and
470  important way of assessing individual-to-individual variations. This is significant because the
471  appropriate cardioprotective treatment could be administered on an individual basis with suitable

472 knowledge of the specific underlying pathology. This is the premise behind personalized medicine.

473 The primary nuclear medicine approaches to imaging cardiotoxicity focus on imaging
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474 perfusion.® Recently, new probes have been developed to image specific pathophysiologies, including
475  mitochondrial damage,>® sympathetic inervation,3*°%° inflammation,3-%%%2 cardiac remodeling,5-%’
476  and cardiac metabolic dysfunction.®®"® These probes have largely been studied in preclinical models,
477  where they have provided important insight into the development and progression of cardiotoxicity. To
478  build on this work, we identified cardiac remodeling, inflammation, and inervation as plausible
479  contributors to DOX-induced cardiotoxicity that could arise at the earliest stages of disease. We selected
480 three radioligands, [®®Ga]Ga-FAPI-04,’%7? [18F]DPA-714,%" and [*®F]MFBG,* that are already under
481  clinical investigation for other indications to image these processes. Preliminary reports indicate that
482  the radiation dosimetry of these probes is acceptable, thereby supporting their use in cancer survivors.

483  We anticipate that this will facilitate the future clinical translation of our PET approach.

484 To further accelerate clinical translation, we applied a well-established model of cardiotoxicity
485  encompassing subacute and chronic phenotypes.?**® This heterogenous model reflects the reality that
486  anthracycline-induced cardiotoxicity is a complex process that involves multiple cell types in heart
487  tissue”™ and often differs between even those patients receiving the same dose of anthracycline. In
488  cardiomyocytes with high TOP2p expression,”® DOX binds to DNA form a complex with TOP2f that
489  triggers cell death pathways.>® Consequently, cancer patients with high levels of TOP2B in
490  cardiomyocytes are likely to be more susceptible to DOX-induced cardiotoxicity.>*’” Our Western blot
491  data confirm that TOP2p expression is rapidly downregulated in response to DOX treatment, with
492  gradual recovery over the 12 W observation period. Furthermore, we observed body weight decrease
493 and diminishing HW/TL ratios after DOX treatment, consistent with established models of DOX-
494  induced cardiotoxicity!:’8, Although not statistically significant at this dose, heart weight was a lower
495  percentage of body weight in the DOX mice than the controls (Figure S1B), suggesting that cardiac
496  atrophy is more pronounced than cachexia or other systemic effects in these animals.!! Finally,
497  functional declines in cardiac performance emerged by 10 W, even when corresponding interstitial
498  fibrosis was not widely observed. These observations indicate a spectrum of symptoms consistent with

499  clinical presentation of cardiotoxicity.
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500 Our transcriptomic data indicate that cardiac remodeling is initiated in response to DOX
501  treatment. Pathological cardiac remodeling arises in chronic heart failure through the activation of
502  multiple pathways,”® and we observed intracellular signaling,®® cell adhesion,® angiogenesis,®
503  extracellular matrix remodeling,%8 and cell migration,®® to be highly enriched in our DOX tissues.
504  Another major aspect of remodeling is cardiac fibrosis. This process is typically initiated by activated
505 cardiac fibroblasts and eventually leads to the functional change of heart tissue and diastolic
506  dysfunction.®® FAP is a marker of activated cardiac fibroblasts® and has recently been targeted by
507  radiopharmaceuticals for PET imaging in cardiovascular disease and heart failure.%%- In addition, a
508  recent case study speculated that incidental cardiac FAPI PET signal detected in a cancer patient may
509 have been due to cardiotoxicity arising from the chemotherapy regimen,’ although this hypothesis was
510  not explored further. Furthermore, the BioGPS® and GTEx databases indicate basal Fap gene
511  expression to be moderate in cardiac tissue of mice and humans (Figure S9), which may enable
512  relatively small changes in expression to be detected by molecular imaging. These observations

513  provided the rationale for our hypothesis that FAPI PET would detect incipient cardiotoxicity.

514 We demonstrate that the cardiac signal intensities of [*¥Ga]Ga-FAPI-04 PET increased almost
515  immediately after DOX treatment, substantially earlier than any functional alteration could be imaged
516 by echo. This increased signal, which was sustained throughout the 12 W observation period,
517  significantly correlated with expression of FAP protein and Fap mRNA. We were unable to successfully
518  perform immunohistochemistry for murine FAP using commercially available antibodies, and therefore
519  used ISH to assess the distribution of FAP in cardiac tissue. Our experiments confirm the specificity of
520 FAPI PET for DOX-induced alterations in cardiac FAP, thereby highlighting the initiation of
521 pathological remodeling pathways in the injured heart. We also provide a mechanistic link between
522  elevated PET signal and disease, an outcome that has not been accomplished in human patients due to
523  inconclusive histopathology studies.®>% Significantly, our data indicate that FAP is a diagnostic imaging
524  biomarker in cardiotoxicity that might be superior to echo in detecting early mediators of cardiac

525  damage.
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526 Our study did not conclusively establish whether FAP is also a prognostic imaging biomarker
527 in cardiotoxicity. We did not find a correlation between PET signal and fibrosis in our tissue samples.
528  However, fibrosis was minimal in our model. We conclude that FAP in this model participates more
529  broadly in cardiac remodeling. Consistent with literature reports in mice and humans,** DOX
530 treatment induced cardiac atrophy in our mice. Cardiac atrophy requires extensive remodeling of the
531 ECM due to loss of cardiomyocyte mass,® consistent with the upregulation of ECM remodeling
532  pathways evident in our RNA-seq analysis (Figure 5B; Figure S7). We did not see evidence of
533  substantial cardiomyocyte death, which may explain why we observed minimal fibrosis in this model.
534  Indeed, reports of fibrosis in atrophied hearts are conflicting,® which likely reflects both the techniques
535  used to quantify collagen and the prevalence of remodeling pathways that do not result in collagen
536  deposition. Nevertheless, given that DOX induces cardiotoxicity through a variety of molecular
537  mechanisms, it is possible that FAP PET might correlate with other indices of disease severity. For
538  example, we observed a negative correlation between cardiac FAPI PET signal and HW/TL at the end
539  of the study (Figure S10). We will need larger group sizes, longer follow up periods, alternative indices
540  of disease severity, and perhaps more acute pathology to determine if elevated cardiac FAPI PET signal

541 corresponds to more severe Iong-term outcomes.

542 Our alternative molecular targets, TSPO and NET, proved to be neither diagnostic nor
543  prognostic biomarkers in DOX-induced cardiotoxicity. Our rationale for targeting TSPO was the
544  prominent role that oxidative stress and inflammation play in DOX-induced cardiotoxicity.3” TSPO is
545  expressed not only in cardiomyocytes®” but also in activated immune cells, especially macrophages.®®-
546 1% Resident and circulating macrophages are implicated in the response to DOX-induced
547  cardiotoxicity.'® Preclinical studies have demonstrated increased cardiac uptake of [**F]DPA-714 in
548  mice with inflammatory heart conditions,®%1% but we observed neither a significant increase in
549  [!8F]DPA-714 signal nor an increase in TSPO staining by immunohistochemistry. Moreover, we found
550  no evidence of macrophage infiltration by histology or CD11b immunohistochemistry (Figure S11).

551  TSPO is also present in the mitochondrial outer membrane of cardiomyocytes where it modulates
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552  oxidative stress and regulates mitochondrial physiology and metabolism.®® We observed
553  downregulation of a number of genes related to mitochondrial metabolism in the DOX mice, but this
554  did not translate to increased [*®F]DPA-714 uptake. Given the nearly ubiquitous expression of TSPO in
555  tissue,'® it is possible that substantial off-target uptake reduces the sensitivity of the radioligand for
556  changes in cardiac expression induced by DOX. Moreover, its high basal expression in human and
557  murine heart (Figure S9), may render TSPO imaging insensitive to small changes in expression levels.
558  Additionally, the systemic inflammation induced by DOX treatment in this mouse model may further

559  obscure small changes in cardiac PET signal and may represent a limitation of our model.

560 Our decision to target NET with [*F]JMFBG was based on prior evidence that cardiac uptake
561  of radiolabeled meta-iodobenzylguanidine (MIBG) decreases in a dose-dependent manner in rodents
562  treated with anthracyclines® and in cancer patients that had received anthracycline chemotherapy
563 relative to those receiving alternative treatment.*®1% We saw considerable cardiac uptake normalized
564  to skeletal muscle of [**FIMFBG in both DOX animals and CTRL (Figure S3), but no decline over the
565 12 W observation period. By contrast, in the early stages of cardiotoxicity, [**F]MFBG uptake was
566  actually higher in DOX mice, though this was not statistically significant (1 W; p = 0.400, 2 W; p =
567 0.527, and 4 W; p = 0.161). Although prior studies did show declines in [***'?[]MIBG uptake
568  concurrent with LVEF decline, the uptake deficit was sustained. It may be that our follow up period
569  was too short to detect differences between our groups, but the convergence of the curves in Figure S3
570  suggests that differences are unlikely to emerge. A retrospective analysis could not discriminate
571  asymptomatic pediatric cancer survivors from healthy controls using [*2I]MIBG image quantification,
572 and myocardial sympathetic activity was neither related to anthracycline dose nor LVEF.1% This may
573  indicate that sympathetic denervation is not sufficiently pronounced in chronic cardiotoxicity to

574  represent a reliable imaging biomarker.

575 To date, echo has been used in cardio-oncology as the main imaging modality for screening
576  patients with suspected cardiotoxicity.!®” Given the implementation of new echo techniques that

577  improve its sensitivity for subclinical disease and the continued definition of cardiotoxicity in terms of
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578  LVEF decreases, echo will continue to play a major role in diagnosis and monitoring progression.
579  However, our results support a role for PET imaging in the management of cancer patients receiving
580  anthracycline chemotherapy. In our model, we detected pathological cardiac remodeling in DOX hearts
581  as much as 8 weeks before functional decline was evident by echo. Early diagnosis of cardiotoxicity
582  could greatly improve its treatment, as evidenced by the more complete recovery of LVEF in patients
583  with cardiotoxicity administered ACE inhibitors or beta blockers shortly after anthracycline
584  chemotherapy than patients treated a few months later.1® Molecular imaging techniques such as FAPI
585  PET may lead to even more impressive treatment outcomes by identifying the activation of specific
586  pathological pathways whose inhibition could mitigate or even prevent cardiotoxicity. For example
587  FAP inhibition improves cardiac repair after myocardial infarction.1®° Future work is needed
588  determine whether it is similarly beneficial in cardiotoxicity, but this example does highlight the

589  potential benefit of PET imaging biomarkers in treating cardiotoxicity.

590 We acknowledge several limitations of our study. Firstly, although we showed the correlation
591 between cardiac FAPI PET uptake and FAP expression, elevated background FAPI PET signal in DOX
592  mice was also seen due to uptake in the gastrointestinal region, muscle, and in some cases, lung. This
593  likely reflects off-target uptake due to sustained and global inflammation caused by systemic
594  administration of DOX. This phenomenon was previously observed in FAPI PET imaging of a pre-
595  clinical model of idiopathic pulmonary fibrosis induced by bleomycin.!! Secondly, our methods of
596  quantifying FAP protein expression could not distinguish between membrane-bound FAP and
597  cytoplasmic FAP. As our radioligand does not cross the cell membrane, the signals derived from this
598  probe reflect the binding of membrane-bound FAP. To our knowledge, FAP is primarily an outer
599  membrane protein, though increased cytoplasmic expression was recently reported in lung
600  adenocarcinoma cells.*? We therefore cannot rule out the possibility that cytoplasmic FAP protein
601  expression confounds our analysis even though our results identify increased FAP protein expression
602  and activity and gene expression in the DOX mice. Moreover, our studies have not determined the

603  function of FAP in DOX-induced cardiotoxicity. Contrary to our expectations, increased FAP
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604  expression did not result in increased fibrosis. We speculate that FAP is broadly involved in ECM
605  remodeling, but without identifying its specific role in this pathology, it will be challenging to determine
606  whether FAPI PET could also be a prognostic biomarker in cardiotoxicity. Larger sample sizes could
607  possibly determine whether early increases in FAPI PET correspond to larger declines in functional
608  parameters such as LVEF. Finally, our studies were limited to male mice because female mice are less
609  susceptible to cardiotoxicity.!* Therefore, further research is required to determine whether FAPI PET

610  will be equally valuable in female patients.
611
612  CONCLUSIONS

613 Although anthracycline chemotherapy has dramatically improved treatment outcome in cancer
614  patients, especially in children with cancer, it causes cardiotoxicity with an increased risk of heart failure
615 in a significant number of patients. Existing imaging modalities detect cardiac functional deficits but
616  do not identify the underlying, potentially treatable, pathologies responsible for these deficits. We
617  demonstrate a significant and sustained increase of FAP expression in response to systemic
618  administration of doxorubicin and show that this change can be imaged by PET using [*8Ga]Ga-FAPI-
619  04. Functional changes were not evident by routine echo until 10 weeks, as much as 8 weeks after
620 cardiac FAPI PET signal increases were detected. These findings suggest that FAPI PET is a diagnostic
621 imaging biomarker for incipient cardiotoxicity and a potential complement to echo for the management
622  of cancer patients receiving anthracycline chemotherapy. Early detection of FAP-mediated cardiac

623  remodeling may improve the efficacy of therapeutic interventions to delay or even prevent heart failure.
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[8Ga]Ga-FAPI-04 (for targeting FAP), [*®F]DPA-714 (for targeting TSPO), and [®®F]MFBG (for
targeting NET). Echocardiography (echo) imaging was performed at 4 weeks and 10 weeks. Heart tissue
was extracted at the PET imaging time points for measurement of heart weight and evaluation of

molecular and cellular changes in cardiac tissue. (B) Body weights were compared between CTRL and

DOX groups over the course of the experiment. (C) Heart weight indexed to tibia length. (D) TOP2f3

expression from the heart lysates was evaluated by western blot. HSP60 was used as an internal control.

Data are presented as the mean * s.d. *** p < 0.001 and **** p < 0.0001.
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Fig. 2. [®®Ga]Ga-FAPI-04 PET detects cardiac remodeling before it is evident by conventional
echo. Pathology was monitored by echo and microPET/CT imaging. DOX-treated mice were randomly
assigned to imaging groups for comparison with age-matched controls (CTRL). (A) Representative
images of the left ventricle (LV) serial echo of CTRL (n =7) and DOX groups (4 W, n =7 and 10 W, n
= 5). Left ventricular end-diastolic diameter (LVDd) (B) and left ventricular end-systolic diameter
(LVDs) (C) were determined from the echo scans. (D) Fractional shortening (FS) was calculated from
LVDd and LVDs. Representative [#Ga]Ga-FAPI-04 (E), [*®F]DPA-714 (F), and [¥F]IMFBG (G)

microPET/CT fusion transaxial images at 2 and 10 W. Quantitative [%Ga]Ga-FAPI-04, [*8F]DPA-714,
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1017  and [*®®F]MFBG PET signals (mean value of % injected dose per centimeter cubed, %ID/cm?®) was
1018  normalized by thigh muscle uptake. The number of mice imaged at each time point is displayed in

1019  Table S3. Data are presented as the mean +s.d. * p < 0.05, and ** p < 0.01.
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1022  Fig. 3. Expression of FAP protein and mRNA is elevated at 4 W. (A) Isolation of heart tissues for

1023  determination of mRNA, protein, and tissue levels. (B) Protein expression of FAP, TSPO, and NET
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(CTRL; n =3, DOX; n = 4) was evaluated by western blot. HSP60 was used as an internal control. (C)
Each band size was normalized by drawing ROIs using ImageJ free software. (D) RT-gPCR (CTRL; n
= 3, DOX; n = 3) was performed for the validation of Fap mRNA expression using three different
primers, listed in Table S5. Rpl32, Thp, and Gapdh were used as reference genes in cardiac tissue. Data
are presented as the mean + s.d. ** p < 0.01 and **** p < 0.0001. The schematic illustration (A) was

drawn using https://biorender.com/
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Fig. 4. Correlation between FAPI PET, FAP in situ hybridization (ISH), and trichrome staining.
(A) Left: Representative whole-body FAPI PET sagittal and coronal maximum intensity projections
(MIPs) acquired 45 min post injection of [8Ga]Ga-FAPI-04. DOX mice showed moderate or high
uptake compared to CTRL. Right: Image-based quantitation of cardiac PET signal normalized by thigh

muscle uptake (H/M). (B) Representative H&E, Trichrome, and FAP ISH stains. Myocardial fibrosis
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was occasionally and regionally detected in DOX-treated hearts (arrows). Fap mRNA (punctate red dots)
was detected in the cytoplasm and/or nuclei of cardiomyocytes and/or epicardial stromal cells (Insets).
(C) Comparison of collagen positive regions from the trichrome staining. Quantitation was performed
using QuPath software, with positive regions defined as deposition of collagen fibril between
cardiomyocytes. (D) Comparison of the H-score from FAP ISH staining. Quantitation was performed
using QuPath software. (E) A significant correlation was observed between [%Ga]Ga-FAPI-04 cardiac
PET signals and FAP expression in the corresponding tissues (p = 0.0003). (F) No correlation was
observed between [*8Ga]Ga-FAPI-04 cardiac uptake and the percentage of collagen positive regions in
the corresponding tissues (p = 0.3425). Data are presented as the mean + s.d. * p < 0.05. Scale bar: 1

mm and 20 um.
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Fig. 5. The apparent difference of biological processes in gene ontology according to DOX
treatment. (A) Heat map representation of the 14,101 genes from the same samples of gPCR. (B) The
top 20 up- (red) or downregulated (blue) biological processes (BP) of gene ontology (GO) by P value
were determined from the bulk RNA-seq data. (C) Heat map representation from the GO:Cell adhesion

(upregulated; 26 genes) and GO:Mitochondrial ATP synthesis coupled proton synthesis (downregulated;
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1053 51 genes) with Fap (marked by #). (D and E) STRING database highlighting interactions between Fap

1054  and highly upregulated or downregulated genes.

1055

48


https://doi.org/10.1101/2023.09.03.556130
http://creativecommons.org/licenses/by-nc-nd/4.0/

