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The ability of Gram-negative pathogens to adapt and protect themselves against antibiotics is a grow-
ing threat to public health. The low permeability of the outer membrane (OM) in combination with
effective multidrug efflux pumps, constitute the two main antibiotic resistance mechanisms. Though
much efforts have been devoted to discover new antibiotics that can bypass these defense mecha-
nisms, no new antibiotic classes have been introduced into clinics in the last 35 years. Models that
identify specific descriptors of molecular properties and predict the likelihood that a given compound
is capable of successfully permeate the OM and inhibit bacterial growth while avoiding efflux could
facilitate the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors
of 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-
negative Pseudomonas aeruginosa. While part of these descriptors are computed using traditional
approaches based on the physicochemical properties intrinsic to the compounds, ensemble docking
and all-atom molecular dynamics (MD) simulations are used to derive additional bacterium-specific
mechanistic properties. Descriptors of compound permeation across the OM were calculated using
all-atom MD simulations of the compounds in different subregions of the OM model. Descriptors of
interactions with efflux pumps were calculated from ensemble docking of compounds targeting specific
binding pockets of MexB, the major efflux transporter of P. aeruginosa. Using these descriptors
and the measured antibacterial inhibitory concentrations of compounds, we design and implement a
statistical protocol to identify a subset of the molecular properties that are predictive of whether a
given compound is a strong or weak permeator across the Gram-negative OM. Our results indicate
that 88.4% of the compounds that show measurable antibacterial activity, follow very consistent rules
of permeation, which highlight the critical role that the interaction between the compound and the
OM have at predicting permeation. The remaining 11.6% of the compounds, although less predictive,
are characterized by distinctive structural markers that can be used to minimize classification errors.
An implementation of the permeation rules and the structural markers uncovered in our study is
shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds.
Taken together, our analysis sheds new light on the key molecular properties that drug candidates
should have in order to be effective at OM permeation/inhibition of P. aeruginosa, and opens the
gate to similar data-driven studies in other Gram-negative pathogens.

1 Introduction

The emerging antibiotic resistance crises are driven by the indiscriminate use of existing antibiotics and
the lagging discovery of new antibiotics [1, 2]. This has fueled rise of bacterial resistance at unprece-
dented rates. According to the World Health Organization priority list, all three pathogens classified
as critical (its most urgent category) are Gram-negative [3–13]. Yet no new major class of antibiotics
has been approved to treat infections caused by this group of organisms since 1962 [10,14]. Therefore,
there is a critical need to find effective ways to bypass the biological and chemical challenges that
hamper the discovery of new and effective antibacterial treatments.
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The major determinants of resistance in Gram-negative bacteria are (1) the low permeability barrier of
the outer membrane (OM) that hinders diffusion of drug molecules across the membrane, and (2) the
action of multidrug efflux pumps that expel drugs and other noxious compounds from the cytoplasm
and periplasm back into the extracellular environment [4–8,15]. The synergistic relationship between
slow permeation and efflux effectively prevents intracellular accumulation of antibiotic to reach crit-
ical concentration levels that inhibit bacteria growth. Mathematical modeling efforts have been able
to quantify critical aspects of single-cell in/out flux dynamics [16–18] and their implications at the
colony level [19,20]. However, the large complexity and diversity of the interactions occurring between
the drugs and the determinants of antibiotic resistance at molecular scale makes it harder to develop
predictive models for drug permeation, efflux avoidance and antibacterial activity. Therefore, there is
a need to incorporate detailed molecular determinants from computational approaches that probe the
bacterium-specific molecular-level interaction profiles.

Molecular dynamics (MD) simulation has emerged as a useful tool to provide mechanistic understand-
ing of the structure-function relationship of complex macromolecules and how they behave and interact
with particular environments at the molecular scale. In addition, MD is able to offer spatio-temporal
information that can fill the gap between experimental resolution and modelling limitations. MD
has been successfully applied in the field of drug discovery [21–24], and in particular at providing
detailed information of the molecular structures responsible for the low permeability of Gram Nega-
tive OM [25–29] and on the drug trafficking through efflux pumps [30]. Furthermore, it allows us to
explore the complexity of the chemical environment by quantifying the interactions between a wide
spectrum of compounds with specific proteins and compartments of a bacterial cell such as the OM
and an efflux pump. The output of these MD simulations are often long multivariate time series de-
scribing the position of every atom over time, which are generally challenging to analyze. Traditional
statistical techniques [31–34], network theory [35, 36], and artificial intelligence [37] are among the
most implemented and promising quantitative tools to help unravel complex patterns in these large
multidimensional datasets.

In P. aeruginosa, the low permeability of the OM is mostly attributed to its particular composition.
A combination of highly anionic Lipopolysaccharide (LPS) molecules, tightly complexed with diva-
lent cations makes this membrane an almost impenetrable shield [7, 25, 38]. A single LPS molecule
provides distinctive chemical environments across the OM of the Gram-negative bacteria: 1) Long
carbohydrate-enriched regions massively shield the exposure of the membrane towards the extracellu-
lar space; 2) phosphates and ionizable chemical groups are highly repellent to hydrophobic molecules
and 3) a sheet of divalent cations provides strong coordination among the LPS of the outer layer in
the OM. Thus, extracting the molecular determinants of the process governing the passive diffusion
of molecules across this layer would be of tremendous aid in the design of new antibiotics. In order to
achieve this, we have carried out massive MD calculations at atomic level, extracting specific proper-
ties during the assisted translocation of hundreds of compounds across the OM of P. aeruginosa. For
each compound we have computed 35 permeability descriptors, which are extracted by instantiating
MD trajectories from seven distinctive regions of the OM [37]. These regions were selected in order to
have a full representation of all the chemical environments which directly affects the diffusion process.
The approach is iteratively repeated until the entire set of compounds is fully covered. The perme-
ability descriptors encompass a set of physical parameters which can directly impact the efficiency of
molecular translocation: molecular interaction energy with the surrounding environment (∆h), num-
ber of hydrogen bonds with surrounding (HB), molecular lateral mean squared displacement (∆xy)
and molecular entropy (∆s).

The major efflux pump of P. aeruginosa that contributes to clinical antibiotic resistance is MexAB-
OprM, which extends across the inner and outer membrane aiding the organism to expel toxins from
the intracellular and periplasmic region, directly into the extracellular space. [39–41]. In this complex,
MexB is a homotrimeric protein embedded into the inner membrane and belonging to the Resistance
Nodulation cell Division (RND) superfamily. It is in charge of recognition, binding, and transport of
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(a) molecules

(c) computational

type or family number
Physicochemical (PC) 73
Docking (D) 66
Permeation (P) 35
Total 174

descriptors

Our Data

strain of P. aeruginosa
Wild-type (PAO1)
Efflux deficient (PΔ6)
Efflux deficient and hyperporinated (PΔ6-Pore)

inhibition (𝐈𝐈𝐈𝐈𝟓𝟓𝟓𝟓)

(b) experimental

dihydroimidazole

2,7-diaminoquinoline

2-aminobenzothiazoles

cinnamoyl derivatives

thienylpyridines

diaminopyrimidines benzoylimidiazolines

(d) OM sub regions
source/description number

1 Dihydroimidazoline EPIs 174
2 2,7-diaminoquinoline EPIs 68
3 2-aminobenzothiazoles antibacterial 79
4 Benzoylimidazolines EPIs 14
5 Cinnamoyl derivatives EPI/antibacterial 74
6 Basilea 8
7 Thienylpiperidines EPI 8
8 Diamino pyrimidines EPI 50
9 Condensin inhibitors antibacterial 108

10 Known Antibiotics 17
11 Fluoroquinolone 19
12 Beta-lactam 56
13 Oxadiazoles 9
14 Rempex 255
15 Enamine Screening compounds 160
16 Miscellaneous 161

Total 1260 (e) 

Figure 1: Our data is comprised by (a) 1260 antimicrobial molecules classified into 16 distinct structural
chemotypes as listed (top left), and some examples are shown in the central panels. (b) Each compound is
characterized by its antimicrobial activity in three strains of P. aeruginosa by means of the 50% inhibitory
concentration (IC50). (c) In addition, the molecules in (a) are further characterized by 174 computationally-
derived mechanistic descriptors classified as either docking (D), permeation (P), or physicochemical (PC). These
are computed using QSAR methods, density functional calculations, ensemble docking and MD simulations in
water and in the OM of P. aeruginosa. (d) Computational representation of the outer membrane environment
(OM) of P. aeruginosa detailing the seven sub-regions where MD simulations where the 35 descriptors listed
in (c) were computed for each molecule. (e) Principal components third degree decomposition of the molecules
following the color code shown in (a).

diverse substrates [41–43], and it constitutes the main barrier that any compound in the intracellular
region needs to overcome. Each monomer of the MexB trimer adopts three different conformations
enabling access (A), binding (B), and extrusion (C) of substrates [44,45]. We quantify the interactions
between each of the studied compounds and MexB via ensemble docking calculations, from which we
collected all docking poses (600 per compound), average affinity binding, and identified the contacts
made by each compound to every MexB residue. From the list of contacts, we selected a subset of
residues of the access of the Loose monomer (AP) and deep (DP) of the Tight monomer substrate
binding pockets based on known crystallographic data for AcrB from E. coli, homologous to MexB
from P. aeruginosa [44, 46]. These residues are generally considered to line/define the two pockets
and are relevant for recognition/binding of compounds [45,47]. Some of them, in particular the PHE
residues of the hydrophobic trap inside the DP, were found to be key for the interaction of the trans-
porter with inhibitors [48,49]. Our computational analysis of MexB yielded 66 docking descriptors for
each compound [37].

In this paper, we analyze the growth inhibitory activities of a unique library of 1260 antimicrobial
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molecules belonging to several structural classes of compounds including known antibiotics and efflux
pump inhibitors [Fig. 1(a)]. The antibacterial activities are measured in strategically designed strains
of P. aeruginosa [Fig. 1(b)] that can isolate the effects of permeation and efflux avoidance [50]. We then
use the antibacterial activity data to identify correlations with a large set of computationally-derived
mechanistic descriptors described above [Fig. 1(c)]. These properties are subsequently characterized
by means of their ranked correlations along with a hierarchical clustering algorithm to establish sim-
ilarity relationships (linear and non-linear) among them. The resultant clusters are used as input
parameters of a statistical model that, using the experimental 50% inhibition concentration (IC50)
data, identifies non-trivial relationships between different sets of descriptors and their ability to pre-
dict bacterial permeation. Our analysis identifies an optimal subset of nine relevant clusters containing
the mechanistic markers yielding prediction accuracy scores of up to 96%. Our results highlight the
role of the permeation descriptors quantifying the interactions between the compounds and the OM
surface, the LPS lipid-A and oligosaccharide core 2 sub-regions of the OM. These features, combined
with intrinsic properties of the compound like the hydrophobic surface area and the Randic index,
show high correlations with permeation and growth inhibition information for a specified range of de-
scriptor values. Our findings shed a new light into which specific molecular interactions are responsible
for OM penetration and hindering of bacterial growth. Our approach and conclusions can impact the
design of a new generation of antimicrobials.

2 Results

Following the protocol outlined in [37], mechanistic descriptors are computed using variety of ap-
proaches for a much broader spectrum of molecules. We use traditional chemical/physical property
evaluations, density functional theory calculations, and all-atom MD simulations of compounds in
water. We refer to these 73 physicochemical (PC) descriptors that depend entirely on the compounds
as QSAR, QM, and MD, respectively. In addition, we calculate an additional set of 101 descriptors
that are generated based on the interaction of compounds with the bacterium-specific efflux pump and
the OM and we call them mechanistic descriptors. Here, to account for influx, we consider descrip-
tors calculated from the all-atom MD simulations of compounds interacting with the OM model [Fig.
1(d)], and, to account for efflux, we consider ensemble docking of compounds targeting specific binding
pockets of MexB, the major efflux transporter of P. aeruginosa. We refer to them as permeation and
docking descriptors, respectively. Our experimental data is obtained by analyzing inhibitory activity
of an assembled library of 1260 compounds with antibacterial properties in two mutant derivatives of
the wild-type P. aeruginosa (PAO1): the P∆6 strain, which lacks six major efflux pumps (∆MexAB-
oprM, ∆MexCD-oprJ, ∆MexXY, ∆MexJKL, ∆MexEF-oprN, and ∆TriABC), and P∆6-Pore, which
is the hyperporinated version of the P∆6 strain.

2.1 Assembly and properties of the compound library for analyses

For this study, we assembled a unique library of 1260 compounds with antibacterial and efflux in-
hibitory activities from several different sources [Fig 1(a)]. The library included the two separate
compound series developed by Basilea Pharmaceutica [51] (8 compounds) and Rempex Phamaceuti-
cals [52] (255) which were culled from their respective efflux-pump inhibitor (EPI) projects. There
were also 92 known antibiotics belonging to various structural classes, including Fluoroquinolone (19)
and Beta-lactam (56), were also acquired to be included in this library. Several compound series in the
collection were synthesized at Saint Louis University (SLU) as part of on-going EPI and antibacterial
projects. The largest source of compounds were a series of EPIs designed to inhibit the AcrAB-TolC
pump in E. coli including dihydroimidazoline [53] (174), a related series of benzoylimidazolines [54]
(14) and a chemical series of 2,7-diaminoquinoline [55] (68). The two sets of antibacterial compounds
included a series of 2-aminobenzothiazoles (79) with an unknown antibacterial target and a series of
quaternary amine compounds (108) that target a bacterial condensin enzyme [56]. A series of cin-
namoyl derivatives [55] (73) which showed both antibacterial and EPI activity were also included in
this set.
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Several additional series identified in previous screening efforts were also obtained from commer-
cial sources. These included a series of diamino substituted pyrimidines (50) [57], small series of
thienylpiperidines and Oxadiazoles (8 compounds each), and a large set of diverse compounds (160)
purchased from Enamine. Finally, a set of miscellaneous compounds (161) comprised synthetic in-
termediates, related analogs that did not belong to one of the aforementioned chemical series and
various screening compounds from the NCI collection [58]. We use the 16 chemotype designations to
broadly classify the compounds. An alternate classification of the compounds’ 2D structures, using
a complete Tanimoto similarity analysis [59], further subdivides the chemotypes shown in Fig. 1(a)
yielding a total of 233 subgroups. This high-resolution classification of the chemical structures will be-
come relevant to further analyze permeation predictability of a few key subgroups (see sec. 2.5 and 2.7).

The analyzed 1260 compounds vary in molecular weight (MW) between 156 and 1260 Da, in the
total charge between -2 and +5 and have cLogD7.4 values between 11 and -11.3. To evaluate the
physicochemical space occupied by the library, we carried out the principal component analysis of
nine physicochemical properties of the compounds, which included the molecular weight, the number
of hydrogen bond donors and acceptors, the total polar surface area (ASA P), clogD7.4, the topological
surface area, the fraction of sp3 hybridized carbon atoms (Fsp3), the total charge, and the number
of rotatable bonds for the analyzed compounds. The first three principal components (PC) [Fig.
1(e)] covered 82.3% of the explained variance. All nine properties almost equally contributed to the
compound distribution in the PC1 coordinate, whereas the total charge, the number of hydrogen bond
acceptors and the number of rotatable bonds were major contributors in the PC2 [Fig. S1]. Thus, the
assembled library is unbiased in respect to one or more features and covers a broad physicochemical
space.

2.2 Nonlinear relationships among descriptors

The diversity of the chemical space is reflected by the wide range of physicochemical properties of
individual compounds, as well as, in their interactions with specific bacterial components such as the
OM and the efflux pump. Finding the relevant properties that reliably correlate with a particularly
desired behavior or process is challenging: among various descriptors of the compound and molecular
descriptors of compound’s interactions with bacterial components, some carry redundant information
while others are uninformative. Therefore, reducing the number of descriptors is helpful in developing
a robust predictive model. We achieve this by clustering the descriptors and grouping them into sub-
sets that have similar co-variation across the 1260 compounds. Each cluster can be interpreted as a
collection of nearly equally informative features, from which one can select a representative covariate
to be used to predict an outcome. Such a reduction not only helps manage the complexity of predictive
models, but also alleviate the experimental and computational efforts required to characterize each
compound.

Traditional correlation coefficients (e.g., Pearson coefficient, Cij), often implemented by clustering
algorithms, quantify the strength of the linear relationships among random variables. Highly corre-
lated variables are expected to belong to the same cluster, while variables with smaller correlation
coefficients are placed on different clusters. It is well known that nonlinear transformations of a given
variable, while containing the same information, can have a small correlation coefficient. Thus, cluster-
ing variables based on the correlation coefficient can have the undesirable property of separating into
different clusters, variables that are non-linear transformations from one another. In our evaluation,
we observe nonlinear relationships between features, and find that focusing only on linear relation-
ships (e.g., using the standard correlation coefficient to cluster the variables) leads to poor predictive
models. To address this problem, we consider rank correlations (Rij), a generalization of the standard
correlation, that captures both linear and (monotone) nonlinear relationships.

Figure 2 depicts key examples of the relationships that are found in the molecular descriptors computed
on the studied compounds. The left panel shows the values of the compounds’ cumulative entropy
calculated in two different sub-regions of the OM, the lipid surface heads (y-axis) and the glycerol
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Figure 2: Examples of basic relationships found among the descriptors. Each data point represents a molecule,
and it is projected on the two-dimensional space of two descriptors as shown. Some of the most common
properties found among the descriptors are: linear correlations (a), non-linear correlations (b), and uncorrelated
(c). The numbers on each of the panels are computed by standard correlations (i.e., Pearson coefficient), Cij ,
and rank correlations, Rij . As shown, rank correlations capture better the non-linear relationship shown in the
central panel.

region (x-axis). They show a strong linear correlation captured by a Pearson coefficient and rank
correlation values close to unity. In contrast, the central panel shows that the relationship between
the physicochemical descriptors associated to the rotational constant in the z coordinate (y-axis) and
the isotropic polarization (x-axis), is monotonically decreasing. This pair of variables is characterized
by a Pearson coefficient of −0.4787, which does not quantify the strong non-linear dependency shown.
On the other hand, the rank correlation captures better the decreasing monotonic relationship shown
by these two physicochemical descriptors with a coefficient value of −0.8851. These key changes in
the correlation coefficients have greater effects when computing a hierarchical clustering algorithm of
the full set of descriptors leading to the identification of 29 clusters using standard correlations, while
the rank correlations identify 37 clusters (see SI). In this case, the latter is able to better capture
the wide diversity among the different families of descriptors, which has an ultimate key implication
when identifying the optimal combination of descriptors (or clusters) that better correlate with the
compounds’ desired behavior. Finally, the right panel of Fig. 2 shows the compounds’ molecular
weight against their resonantcount, resulting on values close to zero for both measures pointing to
uncorrelated variables, which is in agreement with the shown dependency in the plot.

2.3 Non-trivial relationships among the different classes of descriptors

A hierarchical clustering characterization of the individual families of descriptors reveals two ways in
which the grouping of these quantities occurs: first and most simple, descriptors that quantify prop-
erties associated with a single attribute gather together, and second, descriptors that are computed in
neighboring locations of a specific molecular environment also tend to cluster together. An example of
the former is the clustering of size-related intrinsic physicochemical quantities such as the molecular
weight and the number of heavy atoms [Figs. S3-S4]. As for the latter, we find that the number of
contacts a given compound makes with a specific residue in MexB (docking descriptor) is correlated
to that of another residue, if the residues are close to each other within the same MexB monomer [Fig.
S5]. Combinations of these two cases are also found. For example, the cumulative entropy associated
with a molecule when computed in neighboring sub-regions of the OM (permeation descriptors) are
highly correlated among them [Fig. S4]. A detailed quantitative analysis using hierarchical clustering
algorithm on these individual families of descriptors is presented in the SI. The natural question that
arises is how descriptors, belonging to different families, are correlated with each other, and what is
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Figure 3: Full data characterization of the 174 molecular descriptors by means of a hierarchical clustering
algorithm using their associated rank correlations. The computation yields 37 dissimilar clusters of sizes ranging
from single descriptor clusters (e.g., cluster 37) up to a large cluster of 52 descriptors (cluster 1). The dendrogram
in the left-hand side depicts the individual as well as cluster level relationships among the descriptors (single
line) and clusters (blue groups), respectively. It also permits the visualization of the cut defining the number
of clusters, which was determined by the L-method (see sec. 3.1 in the SI). The heat map further highlights
the different clusters as well as the relationships between themselves and between individual descriptors via a
dissimilarity computation of their associated rank correlations. The type of descriptor is defined in the right-
hand side by the color code shown in the legend.

the meaning of these relationships within the context of predicting bacteria permeation and growth
inhibition.

Figure 3 shows a visual representation of the individual relationships among all 174 descriptors to-
gether with the clusters that are identified by a hierarchical algorithm using the ranked correlation
coefficients. The relationship between pairs of descriptors is quantified by means of a dissimilarity
matrix (heat map), which is defined as the square-root of the unity minus the square of the (ranked)
correlation coefficient associated with the pair, and ordered according to the clustering algorithm (see
dendrogram). The colored regions in the dendrogram define the clusters, which are determined by
the L-method [60] using the percentage of the variance explained as the critical parameter (see sec.
3.1 in the SI). The procedure identifies 37 clusters in total (blue groups in the dendrogram and white
squares in the dissimilarity matrix), 32 of which are comprised by descriptors of a single type, while
only 5 clusters are comprised by two or more types. The categorization of the descriptors is illustrated
by the following color code: permeation descriptors are magenta, docking descriptors are orange, and
for the physicochemical descriptors we further separate them into QSAR in light blue, QM in green,
and MD in water in gray.
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Among the single-type clusters found in the full set, there are similar grouping patterns than when
performing hierarchical clustering on a single family of descriptors only [Figs. S3-S5], which is expected
given the wide spectrum of properties analyzed. However, we also find interesting differences. For
example, a single-descriptor cluster in the single-family analysis (e.g., number of donors) becomes part
of a larger cluster with descriptors belonging to a different type (e.g., number of hydrogen bonds in
OM sub-regions). This provides helpful information to identify redundancy in the information carried
by the data, which is desired in order to improve the performance of prediction models. Another
interesting finding is that some large clusters formed when grouping single-family descriptors (e.g.,
permeation only), break when the full set of descriptors is considered. This is also helpful in order to
identify outliers with a predictability power difficult to identify when they belong to a larger cluster.
This is the case of cluster c8, which contains one permeation descriptor (HB-MEM-INTER) that is
later found to have a great predictability potential. This descriptor, when the clustering is carried
out within the single family of permeation descriptors, is part of a larger cluster of other hydrogen
bonds-related properties, that together hold a weaker predictability potential. Clusters c33 and c34,
both of them quantifying the lateral diffusion in sub-regions of the OM, is another example of this
type of advantage of using the full set of molecular properties. They comprise a single cluster in the
single-family analysis. According to our prediction analysis (presented in the next section), c34 has a
higher potential of becoming a predictor than c33, and hence, the resultant separation of these clusters
in the full set analysis is critical.

When analyzing the full set of descriptors, the largest cluster (c1) comprises 52 molecular quantities
of all types except for permeation. The features grouped in this cluster are mostly related to intrinsic
physicochemical properties of the molecules such as size (e.g., volume), graph topology (e.g., Szeged
index), polarization (e.g., refractivity), and energy (e.g., thermal energy) of the molecules, together
with docking information quantifying the binding energy at both of the studied binding sites of MexB
(AP and DP). Interestingly, some additional docking descriptors quantifying the number of contacts
between the molecule and residues in DP also comprise c1. This is explained by a found statistical
proximity between these docking descriptors in the DP with the binding energy in both AP and DP
[Fig. S5].

Among the clusters with more than one type of descriptors, c2 is the only one that gathers prop-
erties from all types. These include the highly correlated entropy values found in the different sub-
regions of the OM, descriptors quantifying flexibility (rotatable bonds), topology (chain and aliphatic
atoms/bonds, rotational constant), and dynamical properties (MD fluctuations and minimal projec-
tion area) of the molecule. These properties are found to be correlated also with the number of contacts
the molecule makes with residue Thr130 (Threonine) in the deep pocket of MexB. The knowledge of
these non-trivial correlations is helpful when determining the predictability power of the cluster, and
opens the gate to examine the extent of these relationships in larger families of compounds and the
implication when analyzing particular interactions.

2.4 Identification of descriptors that predict permeation

The nonlinear relationships found among descriptors, together with the inability of traditional prin-
cipal component analysis methods to distinguish between weak and strong permeators (see SI), lead
us to design a framework that, accounting for these nonlinearities, determines the likelihood that a
compound can be classified as be a good or a bad permeator. We aim at identifying a minimal set
of molecular descriptors that better correlate with the ability of the compound to permeate/inhibit
the pathogen. As many of these properties have strong linear and non-linear correlations among each
other, our hierarchical clustering analysis that implements the ranked correlations serves to identify
similarities in the descriptor space and hence becomes a good starting point to search for the minimal
set of predictors. While descriptors that belong to different clusters are weakly correlated with each
other, the information that they carry about the molecule is not redundant and it could point (from
different angles) to its ability to permeate and inhibit the bacteria’s growth. Similarly, descriptors
within the same cluster carry correlated information about the molecule and not all of these values
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may be needed.

The target class (i.e., the measure of classification) in these calculations is determined by ratios of
the IC50 values associated with each compound and extracted from inhibitory activity in two mutant
derivatives of P. aeruginosa PAO1 (see Fig. 1(b)). For permeation we use the IC50 ratio P∆6-
Pore/P∆6, which highlights the role of the OM. If the ratio tends to 1, the concentration of drug
needed to inhibit 50% of the bacterial growth for both derivatives is very similar. This means that
the OM barrier makes little to no difference in the action of such drug. Hence, a molecule with such
ratio is classified as a strong permeator. Conversely, if the ratio tends to 0, the concentration of
drug needed to inhibit 50% of the growth of the P∆6 derivative is much greater than that needed to
inhibit the hyperporinated P∆6-Pore derivative. Hence, compounds with such ratios are classified as
weak permeators. Our calculations show that using a threshold ratio of 0.5 to distinguish between
the permeation classes optimizes the classification when compared to other threshold choices (see Fig.
S11 in the SI), turning this analysis into a binary classification problem. In short, the target classes
are defined as: strong permeators (i.e., class 1) having an IC50 ratio greater or equal to 0.5, and weak
permeators (i.e., class 0) with an IC50 ratio smaller than 0.5. The total number of molecules with
measurable inhibitory activity in these mutant pathogens is 602.

Figure 4(a) describes the algorithm designed to reduce the number of descriptors in order to identify
an optimal set that are best associated with the molecule’s ability to permeate the bacterial OM. We
start by dividing the set of 602 compounds into a large group of 482 compounds and a small group of
120. The large group is used to train/validate on a subset of x descriptors a nonlinear classifier and
quantify the importance of each descriptor of the subset. The small group is used to test the efficacy of
the trained/validated model at predicting the respective target class. The value of x is determined by
the number of clusters considered in the calculation, and the subset of descriptors is comprised by one
descriptor per cluster randomly selected. We start with the complete set of 37 clusters (i.e., x = 37
initially). From this set, 200 subsets of x descriptors each, are randomly assembled. For each subset,
a random forest (i.e., bagged ensemble) classifier [61] comprised by Ne = 1001 estimators (i.e., 1001
classification trees) that use x1/2 descriptors for each estimator assigned randomly with equal weight
is implemented using the scikit-learn package in python [62]. Using the properties of the compounds
in the training portion, each estimator determines which permeation class is more appropriate for each
compound of the testing portion. The dominant class i.e., the one that is assigned by the majority of
estimators, becomes the class prediction of the compound in question. The classification algorithm is
trained over the target class of 95% of compounds in the large group of compounds, and the remaining
5% is used for validation, which helps to control for over-fitting. For each subset of x descriptors, we
carry out 50 classification runs over random 95:5 training/validation splits (see dotted circle in Fig.
4(a)). Hence, considering all 200 subsets of x descriptors, there are 10,000 classification runs that are
carried out for each value of x. On each of these runs we measure how good each of the x descriptors
is at reducing the entropy (i.e., uncertainty) of the classification problem evaluated over the training
set. Thus, aggregating the measures of different subsets of x randomly selected descriptors, provides
a measure of relevance at the level of the cluster. This measure is then used to rank the clusters
accordingly. Finally, the number of clusters is reduced by eliminating the lowest scoring one and the
cycle is restarted for the reduced set of clusters (i.e., x → x − 1). In addition to this process, for
each of the classification runs, the fitted model is tested on the small group of 120 compounds (orange
arrow in Fig. 4(a)), where we compute the standard confusion matrix and its associated evaluation
metrics of accuracy, precision, recall, specificity, and F1. In this way we keep track of how better or
worse the model performs for the different combinations of x descriptors, as well as, when the number
of clusters decreases. An example of the testing portion of the algorithm is illustrated in Fig. 4(b) for
the evaluation metric of prediction accuracy (see Fig. S6 in the SI for additional evaluation metrics).
For a given value of x, it is shown how the random combination of descriptors coming from different
clusters perform (orange circles), and how this metric is affected by reducing the number of clusters. It
is also shown how the model performance compares with that of a baseline model consisting of simply
running the classification algorithm in the full set of 174 descriptors. As illustrated, we find that
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Figure 4: Our model of predictors identification. (a) A hierarchical clustering algorithm is used to select
different combinations of x descriptors. A random forest classifier is trained on the x descriptors alongside
with IC50 ratios, and the descriptors performance are scored accordingly. Over the course of several random
selections of x descriptors, the aggregated x scores are used to rank the clusters according to predictability.
The lowest ranked cluster is eliminated and the value of x is reduced. In parallel, for each classification run,
the fitted model is tested in a separate set of compounds and the evaluation metrics are stored. (b) Model
performance accuracy for each cycle of the model. Individual circles represent the average accuracy score of a
single random combination of x descriptors using a random forest classifier over 50 random training/validation
splits. The dashed green line represents the average accuracy score for a random forest classifier using the
full set of 174 descriptors. (c) Top-9 clusters ranked according to their testing performance. The table in the
left panel distinguishes the cluster number, its size (number of descriptors comprising the cluster), and type of
descriptors they contain. The central panel is the aggregated cluster score where all values add to 104, which
is the total number of runs for a particular value of x. The right panel lists the top-9 optimal descriptors that
produce a testing accuracy of 96.2%.
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many combinations of descriptors outperform the baseline model for values of x greater than 3. The
maximum in the prediction accuracy is found for x = 9 clusters for some combinations of descriptors
as noted in Fig. 4(c), where the optimal combination of descriptors found is listed (additional details
of this calculation are given in Fig. S7). The full ranking of clusters is shown in Table S1 in the SI,
where we also show additional details of the model performance for alternative selection of descriptors
of these nine clusters [Fig. S8]. Indeed, if we start with a different arrangement of compounds in
the large and the small groups, we find changes in the combination of descriptors that maximize the
accuracy. Interestingly, the top-9 clusters remain unchanged. The relevance of these nine clusters
is preserved even when the large and small groups are randomly scrambled after each iteration (see
Table S2). Hence, the information provided by these clusters is crucial at determining the ability of a
molecule to permeate and inhibit the pathogen.

Fig. 4(c) also shows the ranking of these 9 clusters by their cumulative scores (the sum of all values is
104), and the optimal combination of descriptors that yields a maximum prediction accuracy evaluated
in the testing set equal to 96.2%. As shown, within the top predictors, the permeation descriptors
associated with the interaction between the compound and the OM of P. aeruginosa in the external
environment, in the lipid A, and the LPS core 2 sub-regions of the OM, along with the cumulative
entropy and number of hydrogen bonds in the water-membrane interface at the inner leaflet of the OM,
score the highest. Also, the physicochemical descriptors quantifying the hydrophobic surface area, the
ratio between the solvent accessible surface area of all atoms with positive partial charge and the total
water accessible surface area (ASAplus/ASA), and the number of docking poses in the DP of MexB
complete the list of nine predictors. As mentioned above, the optimal combination of descriptors
tends to change with the testing sample [Table S3]. However, we note that this particular combination
performs, on average, within 2.3% of the maximum score found for different random testing samples
[Figs. S9-S10]. This is encouraging since this particular combination can be generalized across different
random testing samples with a modest cost in the performance. Hence, the identification of these
markers opens the gate for a deeper study of these key properties, which could guide the design of
novel antimicrobials.

2.5 Relationship between permeation predictability and chemical structure of compounds

We analyze the robustness of our statistical model and classify the different active compounds in
terms of their predictability. We carry out 5000 additional calculations on 100 random testing sam-
ples of 120 compounds (50 computations per sample where the training/validation group is scrambled
at each computation) employing the classification algorithm over the identified molecular predictors
(Fig. 4(c))). The aggregated results of the prediction for each batch of compounds were analyzed
and used to classify the molecules in one out of three sets, as depicted in Fig. 5(a). Compounds
that were predicted correctly every time, are colored green (set G) and the bar is above the x-axis.
This is regardless of the compound being a strong or weak permeator, here we are only examining the
truthfulness of the prediction. Compounds that are always predicted incorrectly, are colored red (set
R) and the bar is below the x-axis. Finally, compounds that for some simulations runs were predicted
correctly and for some other were predicted incorrectly, are colored blue (set B) and portions of the
bar are both above and below the x-axis. Interestingly, the largest fraction of the compounds (83.5%
or 503 compounds) is predicted correctly every time pointing to a consistent relationship between
the predictors’ values and the permeation classes. This regularity is encouraging and talks about the
existence of clear trends in the computational data that are strongly linked to the experiments and
their consistency across a wide diversity of compounds. We devote the next section to unfold these
trends for the most predictive descriptors. On the other hand, sets R and B, though much smaller
in size, point to the limitations that a one-rule-fits-all approach have. We find that 9.9% of the com-
pounds (60) were predicted incorrectly every time, pointing to a strong but incorrect signal from the
computational data, while the remaining 39 compounds (6.4%) are found to give a mix prediction,
which hints to a noisy and hence weak signal. Here we analyze these different sets via our model
detailed output and examining the chemical structure of the compounds.
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compounds

(a)

(c)

molecule classification based on predictability

predictability broken down by structural chemotype

structural chemotype

correct prediction (set G) incorrect prediction (set R) mixed prediction (set B)

structural chemotype G (%) R (%) B (%)
Dihydroimidazoline EPIs 58 (90.6) 6 (9.3) 0 (0)
2,7-diaminoquinoline EPIs 27 (79.4) 5 (14.7) 2 (5.9)
2-aminobenzothiazoles antibacterial 30 (78.9) 6 (15.8) 2 (5.3)
Cinnamoyl derivatives EPI/antibacterial 23 (62.1) 6 (16.2) 8 (21.6)
Basilea 8 (100) 0 (0) 0 (0)
Thienylpiperidines EPI 4 (100) 0 (0) 0 (0)
Diamino pyrimidines EPI 48 (98) 1 (2) 0 (0)
Condensin inhibitors antibacterial 31 (86.1) 5 (13.9) 0 (0)
Known Antibiotics 10 (76.9) 3 (23.1) 0 (0)
Fluoroquinolone 17 (94.4) 1 (5.6) 0 (0)
Beta-lactam 27 (93.1) 1 (3.4) 1 (3.4)
Rempex 197 (79.1) 26 (10.4) 26 (10.4)
Enamine Screening compounds 1 (100) 0 (0) 0 (0)
Miscellaneous 22 (100) 0 (0) 0 (0)
Total 503 (83.5) 60 (9.9) 39 (6.4)
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Figure 5: Model prediction analysis. (a) Classification of compounds according to their predictability by our
model. 100 random samples of 120 compounds each were tested on the remaining of the data. Compounds that
were correctly predicted at each model realization are represented by a green bar pointing above the x-axis (set
G). Compounds that were incorrectly predicted in every run are represented by a red bar pointing below the
x-axis (set R). Compounds that in some runs were correctly predicted and in some other, incorrectly predicted,
are represented by blue bars pointing both ways (set B). The color bar in the bottom indicates the structural
chemotype a given compound belongs to as defined in Fig. 1. (b) Probability density q(y) as a function of the
probability value y associated with each category of descriptors (G, R, and B) for the dominant target class,
i.e., y = max{ps, pw}, where ps and pw are the probabilities of being a strong or a weak permeator, respectively.
Vertical lines indicate the average probability ȳ for each case. (c) Number of compounds and percentage of
each set (G, R, and B as defined in (a)) for each structural chemotype. (d) Analysis of three selected subgroups
according to a complete Tanimoto similarity analysis that contain a relevant amount of compounds from the sets
R (inverted triangles) and B (squares). Each panel shows the specific subgroups (SB201, SB71, and SB168) in
the space of two descriptors identified by our model (Fig. 4(a)) and compared to their respective experimental
class: strong permeator (red) and weak permeator (blue). Dashed line in the left panel is produced by a support
vector machine classification algorithm.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.02.555818doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.02.555818
http://creativecommons.org/licenses/by-nc-nd/4.0/


To understand the nature of these results, we first analyze the probability densities associated with the
identified sets of compounds. We define y as the dominant classification probability associated with
each compound using the contributions of every estimator for all model realizations. For example,
if for a given compound, out of the Ne estimators, n0 of them choose class 0 while the remaining
n1 = Ne − n0 class 1, we can define the probabilities for each class as p0 = n0/Ne and p1 = n1/Ne.
The dominant probability y of the compound is therefore defined as y = max{p0, p1}. The probability
density associated with each predictability set, q(y), is illustrated in Fig. 5(b). Compounds of the set
B are characterized by having weak probability values with an average of ȳ = 0.56. This result is very
close to the maximum uncertainty limit of 0.5 (i.e., a coin-flip classification) making the prediction
highly unreliable, which is consistent with the mix signal shown in Fig. 5(a). Compounds of the set
R have greater values of y, but with a wider distribution and an average of 0.82. Finally, compounds
of the set G hold a consistently higher average probability of ȳ = 0.89 with a median above 0.91.
Therefore, having consistently high probability values help rule out compounds from the set B and
most of those of the set R.

To explore further these differences, we look at the compounds’ chemical structure and break down
the different sets according to the 16 distinct structural chemotypes defined in Figure 1(a). As shown
in Figure 5(c), five chemotypes have members in all three predictability sets, five chemotypes have
members in two sets, and four chemotypes have members in only the set G. Hence, at this level of
analysis, there is not a clear relationship between the structural chemotypes and the predictability
sets. A sharper picture can be drawn when we examine the subdivisions of the distict chemotypes
by means of a complete Tanimoto similarity analysis. As mentioned in section 1.2, this analysis finds
a total of 233 subgroups. Interestingly, nearly 90% of the compounds in sets R and B are concen-
trated in just 10 Tanimoto subgroups, namely SB71, SB112, SB117, SB118, SB167-SB170, SB201,
and SB223. Each of these subgroups is characterized by unique structural features as listed in Table
S2 in the supplementary section. We examine the each of these subgroups individually using our
model described in Fig. 4(a) but adjusting for the number compounds of each subgroup. In four of
these subgroups (SB112, SB170, SB201 and SB223) there is a clear separation between the permeation
classes using alternative descriptors to those identified for the full set of active compounds. An exam-
ple of this finding is illustrated in the left panel of Fig. 5(d) for the subgroup SB201, which belongs
to the structural chemotype 3 (i.e., 2-aminobenothiazoles). A combination of the docking descriptor
quantifying the number of contacts between the molecule in question and the residue ASN135 in the
access monomer in MexB, and the asymmetric atoms allow for a good separation of the permeation
classes determined by our experiments in P. aeruginosa. This pair of descriptors did not show a wide
relevance for the full set of active compounds, but they are found to be key for this specific subgroup
of molecules. Our fine-tune analysis of this subgroup correctly classifies the eight compounds of sets R
and B that belong to chemotype 3. Similar results are found for subgroups SB112, SB170, and SB223
with different descriptors, as shown in the supplementary section [Fig. S14]. For subgroups SB71 and
SB118, the alternative descriptors identified by the model separate better the permeation classes than
those of the full set, but some overlap between the classes remains. This is shown in the central panel
of Figure 5(d) for the subgroup SB71 (see SB118 in the supplementary section Fig. S14). For the
remaining four subgroups (SB117, SB167, SB168, and SB169), which belong to chemotype 14 (i.e.,
Rempex), a greater overlap between the classes persists pointing to complex nonlinearities between
the permeation classes and their descriptors’ values and hence the limitations of using descriptors to
find clear trends able to distinguish the molecules according to their permeation class.

Focusing on the set G, which comprises the large majority of active compounds (503 molecules), we
find clear trends in the values of the key descriptors that define parameter regions mostly associated
to one of the two permation classes [Fig. S12-S13]. For example, strong permeators are found at
strong HB interaction values at the surface of the OM (HB-MEM-INTER) together with a strong
negative enthalpy in the Lipid-A sub region of the OM. On the other hand, weak permeators fall into
the opposite category with weak OM interaction and weak enthalpy [Fig. S13]. In the next section
we explore further these general trends and their mechanistic implications in OM permeation.
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2.6 Descriptor values associated with strong and weak OM permeation

The consistency found in the predictability of the permeation class of the compounds in the set G,
makes them a good batch to extract helpful rules that associate specific ranges of descriptor values
with a particular target class, i.e., strong or weak OM permeator. To determine the approximate class
boundaries and ranges for each individual descriptor, we train a traditional support vector machine
(SVM) algorithm [63] for each descriptor of the top-9 clusters (112 descriptors) for the set G of active
compounds (503 compounds). Density distribution of descriptor values across the range of selected
individual descriptors associated with each permeation class given by their IC50 ratio, i.e., strong (red)
or weak (blue) permeator, are depicted in Fig. 6. The vertical gray line indicates the binary class
boundary identified by SVM. Strong permeators category highly correlates with parameters indicat-
ing stronger interactions with different OM subregions, as exemplified in Fig. 6(a). They are able to
stabilize a larger number of hydrogen bonds (HB) with different parts of the membrane (e.g. Core-2),
while retaining a close water shell during the translocation process in the most hydrophobic regions
(e.g. aliphatic tails). Consequently, this contributes with a more favorable enthalpy of interaction in
specific parts of the membrane [Fig. 6(b)]. Interestingly, permeation is enhanced by the presence of
more rotatable bonds as well as higher entropy, indicative of a more flexible molecular scaffold able
to accommodate to the different spatial restrictions along the diffusion pathway. Counterintuitively,
larger hydrophobic area does not favor the passage of molecules across the OM, a feature that corre-
lates with the need for localized charges (+2e and higher) and stronger dipole moment. Graph-based
molecular structure indicators such as Randić, Harary, Wiener, and Platt indexes are generally higher
for strong permeators [Fig. 6(e)]. Finally, for docking descriptors, it is found that strong permeators
hold higher number of poses inside the DP in contact with at least z% (z = 20, 30, 40) of the residues
lining the pocket. This yields higher free energy bindings for strong permeators, and a consistently
higher number of contacts to key residues inside the DP in MexB, than weak permeators [Fig. 6(f)].

The resultant cutoff values are then tested in the entire set of active compounds (602 compounds)
and their associated evaluation metrics are computed for two sets, i.e., set G and the set of all active
compounds. These implementations identify simple rules of permeation with very good accuracy in the
entire set of active compounds. The circled number in each panel of Fig. 6 refers to the ranking of the
descriptor in question according to accuracy for the entire set of active compounds. Tables S4 and S5
list the complete ranking results of the individual descriptors. The resultant one-dimensional ranking
is dominated by permeation descriptors. Among those of the top-10, 8 are permeation descriptors.
Specifically, the hydrogen bonds and enthalpies computed across different sub-regions of the OM are,
overall, the best individual descriptors at determining permeation. Accordingly, and in agreement with
our findings at the cluster level, the persistence of hydrogen bonds (time-averaged over 20 ns) between
the compound and inner leaflet of the OM at the membrane-water interface (HB-MEM-INTER) is
the best single descriptor overall (i.e., best accuracy or a0), and also the best one at detecting strong
permeators (i.e., best positive predictive value or PPV). More than four fifths (0.836) of the active
compounds analyzed, including 95.5% of the compounds in set G, that make (time-averaged) 1.36 or
more HB with the surface of the outer membrane, are strong permeators.

Among the enthalpy descriptors, and again in agreement with the cluster-level analysis, the enthalpy
calculated in the LIPID-A sub-region of the OM ranks the highest in accuracy and in determining
strong permeators (i.e., high PPV). More than four fifths of the active compounds (0.815), including
93.7% of the set G, with an enthalpy value in the LIPID-A sub-region smaller than -988.85 kJ/mol,
are strong permeators. Combining this information with knowledge of the entropy in the water neigh-
boring the OM (∆s-SOL), increases the fraction of strong permeators correctly identified up to 0.854.
Enthalpies associated with other OM sub-regions are next in the ranking of descriptors going from
top-3 down to top-6, while the HB in the OM core 2 and heads, are top-7 and 9, respectively. 79.6%
and 77.9% of the compounds making 3.34 (time-averaged) HB with the core 2 and heads subregion of
the OM, respectively, are strong permeators. The QSAR descriptor quantifying the number of rota-
tional bonds ranks eight and it is the best individual QSAR descriptor overall able to identify 89.2%
and 78.06% of the weak and strong permeators, respectively. The best individual docking descriptor
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Figure 6: Density distribution values across the range of selected individual descriptors associated with a par-
ticular target class given by their IC50 ratio, i.e., strong (red) or weak (blue) permeator, for the 506 compounds
comprising the predictive group (Fig. 6). The vertical gray line indicates the class threshold estimated by an
SVM algorithm. We considered all descriptors from the top 9 clusters from our predictive model (Fig. 4) The
descriptors shown hold high predictability scores across general categories (see full list in Tables S4-S5) described
as follows: (a) Hydrogen bonds in the OM. Top panel uses two vertical scales and an horizontal logarithmic
scale. The red vertical scale corresponds to strong permeators (red). All other panels use a single scale for both
categories of compounds. (b) Enthalpy and entropy in the OM, (c) Molecular structure, (d) Electric properties
and electronic structure, (e) Graph-based molecular structure indexes, and (f) DP docking in MexB. The circled
number in each panel list the ranking according to their single-descriptor predictability scores (Tables S4-S5).
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is the number of contacts between a compound and the residue THR130 in the DP of MexB. 88.9%
of the compounds making less than 26 contacts with this residue are weak permeators. Ranking the
compounds according to their negative predictive value (NPV), highlights descriptors that are good
at detecting weak permeators. According to this ranking, the molecular orbitals and the number of
donors, are the best descriptors at identifying this property. Between 90% and 91% of the active
compounds with HOMO (LUMO) levels greater than -0.3045 (-0.2006) Hartree and/or less than four
(3.88 on average) donors, are weak permeators.

Next, extending beyond the individual consideration of top-9 clusters (i.e. 1D), we analyze the de-
scriptors for their joint behavior as duets (2D) and triplets of descriptors (3D). Indeed, by carrying
out higher order analyzes (i.e., two and more descriptors) it is possible to improve the classification
metrics obtained with only one descriptor. For example, combining the permeation descriptor HB-
MEM-INTER with the total polar surface area (i.e., QSAR: ASA P(Å2)), the classification accuracy
increases up to 87.27% while the PPV to 86.68% when tested in the group of all compounds. Further,
in a three-descriptor analysis, the highest accuracy score found is 88.4% when combining the enthalpy
in the LPS sub-region core 2 (P: ∆h-CORE-2), the hydrophobic surface ratio of the compound (QSAR:
ASA H/ASA), and the number of contacts that the compound makes with residue PHE615 in the DP
of MexB. The PPV and NPV scores are 86.1% and 90.0%, respectively. Certainly, there are many
more combinations that produce slightly lower but competitive scores [Fig. S13]. We have listed the
most important in the two- and three-descriptor analysis in the Table S6 and S7, respectively, in the
SI. According to the analysis in section 2.5, the metric values found for the three-descriptors case lie at
the ceiling of the evaluation metric given the behavior of the compounds in the sets R and B. Hence,
we do not expect further improvements when going to higher dimensions without breaking down the
groups of compounds as we did in the previous section. This is in agreement with the reduction
algorithm of the section 2.3, where the random forest determined that nine clusters (x = 9) optimizes
the classification performance of the entire set, where each classification tree is constructed with the
information of three descriptors (i.e., x1/2). The information extracted by this analysis recovers the
performance of the nonlinear method (i.e., random forest) and it therefore exhaust the possibilities of
better performances with the totality of our data.

2.7 Implementation of our statistical model and the permeation rules

As an example of how our analysis can be applied on additional compounds to predict their OM
permation, we carry out a testing evaluation on ten new compounds not seen before at any stage of
this study. Figures 7(a) and 7(b) detail the structures of these molecules, and show the classification
results according to permeation, respectively. The structures and origin of these compounds can be
bounded to some of the main 16 chemotypes outlined in Figure 1(a) in the following way: five com-
pounds of chemotype 14 (C2-C6), three of chemotype 1 (C0, C7,C8), one of chemotype 7 (C1), and
one of chemotype 9 (C9). Using the most consistent descriptors across several random splits of the
training data, the algorithm calculates the probabilities that each compound is either a strong (class
1) or a weak (class 0) OM permeator i.e., p1 and p0, respectively. The model calculates consistent
prediction probabilities for nine out of the ten compounds. Accordingly, it predicts that four of them
are strong permeators (C2-C5) with an average probability of p1 = 0.94, and five of them are classified
as weak permeators (C0,C1,C7-C9) with an average probability of p0 = 0.84. Experimental results of
the IC50 ratios on these compounds in P. aeruginosa validates the prediction results for these nine
testing compounds. This is illustrated in Fig. 7(b) where we plot the values of p1 for each compound
(black dots) against the target class found experimentally (gray bars). The probabilities calculated
for the remaining compound (C6) are p1 = 0.56 and p0 = 0.44. These values are very close to those
of a random classification (orange line), akin to the values found for compounds of the set B (see Fig.
5(b)). In addition, a structural analysis of this compound indicates that it is akin to subgroup SB167,
where the trends between the descriptors and the molecule’s permeation class are not conclusive. The
subgroup SB167, which is characterized by having compounds containing an amide derived from 3-
aminoquinoline, gathers a large fraction of compounds of the set B. Therefore, we determine that the
classification of compound C6 is inconclusive. Our experiments indicate that the compound C6 is a
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Figure 7: Model testing on additional compounds. (a) Ten compounds labeled C0-C9 structurally classified
using the color code defined Figure 1(a). (b) Model prediction associated with the ten compounds (solid black
line) against the target class (gray bars) assigned from the IC50 ratio measured experimentally in Pseudomonas
aeruginosa. The prediction quantifies the probability that a given testing compound is a strong permeator,
p1. Error bars are the standard deviation of 100 model runs. Orange line is the maximum uncertainty (i.e.,
random) classification value of 0.5. The value of p1 of compound C6 lies very close to this high uncertainty
value. (c) Ranges of high-ranked descriptors as singles (top), duets (center), and triplets (bottom) for the testing
compounds and classification given by the model. Each panel shows how these compounds’ properties compare
to the classification boundary of the training set (dark line or plane).

weak permeator.

Figure 7(c) illustrates the values of some key descriptors of the testing compounds as singles (top
panel), duets (central panel), and triplets (bottom panel), and how they compare with the permeation
boundaries determined in the previous section with the compounds of the training batch. For the high-
ranked descriptors (i.e., HB-MEM-INTER and enthalpy in the Lipid A subregion of the OM), most of
the testing compounds are in very good agreement with the respective classification boundaries. This
further supports our analysis and grants confidence in the applicability to other batches of compounds.
Lower-ranked descriptors as singles, such as the LUMO level and polar surface area (ASA P), have an
excellent performance as a duet and also as triplets, highlighting an existing complementary relation-
ship among the descriptors. Compound C6 shows an interesting behavior where, for some combination
of descriptors, it sides with the strong permeators, while for other, it sides with the weak permeators.
This inconclusive outcome with respect to descriptors sheds light on the limitations of an approach
based only on these properties to classify some types of compounds. However, having characterized
these specific subgroups by their distinguishable structural markers has prevented a possible error in
its classification.

3 Discussion

Molecular diffusion across bacterial membranes is a very complex process which is largely dependent
on the composition of the OM. In particular, Gram-negative organisms have capitalized on very sophis-
ticated mechanisms to ”screen” the passage of molecules from extracellular to intracellular regions. As
a consequence, it is extremely difficult to develop new compounds to fight bacterial infections without
a proper knowledge of the physical rules governing the overall translocation process. Our results show
that small molecule permeation across the OM of P. aeruginosa can be predicted with high precision
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and accuracy based on the abilities of compounds to inhibit growth of cells with the native and hy-
perporinated OM. These predictions can be made for a library of structurally diverse compounds that
likely use different mechanisms to penetrate the OM permeability barrier. However, the robustness of
the model is increased by introducing descriptors of passive permeation across the OM model (perme-
ation descriptors). This result provides further support to a recent finding that most antibiotics and
nutrients accumulate inside cells by diffusion through the lipid bilayer of the OM.

An accurate calculation of drug permeation is very challenging and requires extensive computing re-
sources as the permeation is related to the exponent of the potential mean force [64]. It becomes
impractical when the calculations are required for a large number of compounds such those considered
here. Instead, we have generated a large number of molecular and mechanistic descriptors and used
machine learning to identify the descriptors that are predictive of compound permeation. Interestingly,
we find that descriptors indicative of interactions with different regions of the OM (HB, ∆h) are among
top ranked predictors for permeation. In fact, a favorable interaction with the membrane can lead to a
positive chemical potential in virtue of high compound density, leading to an increase in translocation
across the OM [65]. Not surprisingly, the presence of descriptors associated with both the Lipid-A
and the core-2 of LPS indicates their importance during passive diffusion. With the exception of
the highest ranked descriptor, hydrogen-bonding interactions at the membrane-water interface (HB-
MEM-INTER), other highly ranked permeability descriptors can be substituted by QSAR descriptors,
resulting in models with slightly lower accuracy. However, this can be beneficial when detailed cal-
culations such MD simulations are not available. This is expected since inherent physicochemical
properties of the compounds can be indicative of the chemical space they prefer. In particular, the
importance of molecular connectivity (Randic index) and ASA properties for accurate prediction in
our analysis indicates that surface exposure to the environment may be critical during the passage of
the compounds across the OM. From the mechanistic perspective, the exposure of hydrophobic sur-
faces (ASA H) can indeed enhance the interaction with the hydrophobic regions of the membrane [66]
and is apparently in our calculations a more relevant descriptor for the prediction of permeation than
the water-octanol partition coefficients (LogP). We want to highlight however, that QSAR descriptors
by themselves are unable to replicate the level of accuracy obtained by using permeation descriptors,
highlighting the importance of descriptors generated using all-atom MD simulations of compounds
with a realistic Gram-negative OM model.

From a data analysis perspective, our main challenge is to circumnavigate the multidimensional set
of descriptors in a way that rationally lessens the computational cost of running a classification algo-
rithm on every single combination of them. The proposed analysis is designed to map, navigate, and
reduce this extensive parameter set highlighting the theoretical/computational quantities that better
correlate with our experiments. Since the reduction is done at the level of the cluster, it is key to use
an optimal clustering technique that accounts for the nonlinearities found in the data. Hierarchical
clustering is adequate because it uses correlations as its similarity measure [60] and when applied to
a ranked data set (i.e., ranked correlations), it accounts for nonlinear monotonic relationships among
the different features [Fig. 2]. In addition, we use a random forest classifier [61] that also identifies and
benefits from nonlinear trends found in complex datasets [67–69]. Using a cluster-centered framework
alleviates part of the computational cost of testing myriad combinations of parameters and grants
a wider perspective on the overall properties that are linked to improvements in their permeation
properties. As shown in Fig. S8, although there are performance differences when using different
members of a cluster, there are highly correlated descriptors with a performance that are comparable
to each other, and the best descriptor is the one that is broadly represented by a general property of
the compound (e.g., size) rather than a very specific one (e.g., Wiener index). Even after the imple-
mentation of these techniques, the number of possible combinations of descriptors is still very large.
A sampling technique was therefore implemented to scan the clusters, rank them according to their
predictive capacity, and in parallel, test the different combinations of descriptors of each sample. The
effectiveness of this technique at finding a good parameter space for permeation is demonstrated by
the more rigorous reverse analysis shown in Figure S7, where alternative combinations of descriptors
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within the same cluster were identified, and their score compares to that of the combination found
during the sampling process. This effectiveness would have not been possible if the clustering tech-
nique implemented ignored the nonlinear relationships, since it yields a smaller number of clusters (29
clusters) restricting the parameter space and the descriptors exploration.

Our analysis identified nine key clusters containing the relevant descriptors that maximize the model’s
prediction performance, which in turn, allowed us to classify the compounds according to the con-
sistency in their predictability. This classification identified three sets of compounds [Fig. 5]. The
largest of them (set G accounting for 83.6% of the compounds) is the most consistent yielding correct
predictions in every calculation performed. This gives us confidence in the robustness of the properties
captured and in the statistical techniques employed. In reference to the sets R and B, a structural
examination using a complete Tanimoto similarity analysis reveals that 10 subgroups contain most of
these compounds pointing to a structural connection with their permeation predictability. We find
that for some of these subgroups there are subgroup-specific descriptors able to correctly classify the
compounds and bypass the prediction difficulty. However, for other subgroups, even the best-ranked
descriptors appear to be unable to separate the permeation classes. Though this is a limitation of
this approach based on descriptors, this is only found on 4 subgroups of the structural chemotype 14
(Rempex), which is 1 among the 16 structural chemotypes considered in this study. Focusing on the
majority set (i.e., set G), we find that it is characterized by projecting strong and weak permeators in
well-segregated parameter regions [Fig. S12] allowing us to extract simple empirical rules associated
with the descriptor space akin to OM permeation. Using the descriptors of the nine key clusters,
we established one-, two- and three-body (i.e., descriptors) rules that better describe the patterns
found in all of the active compounds. For example, the one-body analysis highlights the role of the
permeation descriptors, especially the hydrogen bonds and the enthalpy computed in several regions
of the OM [Table S5-S6]. The patterns found reveal that weak permeators are characterized by having
very limited hydrogen bond stabilization with the OM, as well as, having a very weak enthalpy of
association [Fig. 6]. The two- and three-body analysis [Figs. S13-S14] revealed a complementary
role of the compound’s polar and hydrophobic surface areas that enhance the number of compounds
correctly classified [Tables S7-S8]. Docking descriptors, particularly those describing properties of the
deep pocket of MexB, are found to be highly correlated with the OM permeation. In fact, there are
many examples of three-descriptors sets yielding correct classification scores that are comprised by one
permeation, one docking, and one QSAR descriptor [Table S7]. This highlights a complex relationship
among these types of descriptors that captures well-rounded properties of both, weak and strong per-
meation, and hence, it facilitates their correct identification. An application of these uncovered rules
on a new batch of compounds demonstrate their predictability power and opens the door to similar
data-driven studies in other Gram-negative pathogens. This analysis complements similar efforts at
determining the key properties that distinguishes strong and weak permeators [70].

In summary, our work combines experimental, computational, and statistical protocols in order to
identify the critical properties that optimally predicts the passage of molecules across the bacterial
OM and inhibit growth of Gram-Negative P. aeruginosa. The successful approach was able to reduce
the spectrum of relevant mechanistic properties in a set of chemically diverse compounds with known
antibacterial activity into simple but non-trivial empirical rules for the prediction of strong or weak
permeators. We hope that the found relationships can guide additional experimental efforts and
accelerate the rational design of new classes of molecules for combating antibiotic resistant strains.
Our approach can be expanded for targeting the permeability of molecules to different biological
membranes, regardless of their composition or distribution.
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[30] C. A. López, T. Travers, K. M. Pos, H. I. Zgurskaya, S. Gnanakaran, Dynamics of intact mexab-
oprm efflux pump: Focusing on the mexa-oprm interface, Scientific reports 7 (1) (2017) 16521.
doi:10.1038/s41598-017-16497-w.
URL https://europepmc.org/articles/PMC5705723

[31] A. Bruzzese, J. A. R. Dalton, J. Giraldo, Statistics for the analysis of molecular dynamics simu-
lations: providing p values for agonist-dependent gpcr activation, Scientific reports 10 (1) (2020)
19942. doi:10.1038/s41598-020-77072-4.
URL https://europepmc.org/articles/PMC7672096

[32] V. Gapsys, B. L. de Groot, On the importance of statistics in molecular simulations for thermo-
dynamics, kinetics and simulation box size, eLife 9 (2020) e57589. doi:10.7554/eLife.57589.
URL https://doi.org/10.7554/eLife.57589
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1 Experimental Methods and Chemical Syntheses

The experimental set-up has been reported before [1, 2]. Briefly, P. aeruginosa cells were grown in Luria
Bertani Broth (LB) (10 g tryptone, 5 g yeast extract, 5 g NaCl per liter, pH 7.0) at 37◦ C with shaking.
Inhibitory concentration (IC50) determination was carried out using the 2-fold broth dilution method. Two
independent experiments were carried out. The expression of the Pore was induced at OD600 = 0.3 − 0.4
by addition of 0.1 mM IPTG. Chemical structures of the assembled library of 1260 compounds and the
measured IC50 values are available upon request.

1.1 Principal component analysis of our library of compounds

As mentioned in the main paper, the library is comprised of 16 different structural groups coming from
different sources, including known antibiotics. A principal components decomposition using nine basic
properties properties is shown in Fig. 1(d) of the main paper. Figure S1, shows the contribution of each of
these nine properties to the first three principal components. This is calculated from the eigenvectors of the
covariance matrix of the standardized data (i.e., after a z-score normalization). The absolute value of the
entry of each eigenvector is scaled so that the sum is 100, i.e., a percentage. As shown, the first principal
component has a rather similar contribution of each of the properties. On the other hand, the corresponding
eigenvalues provide information about the variance held by each degree of the principal components. In Fig.
1(d) of the main paper, we show the percentage held by the first three.

Molecular_weight
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Acceptors

Rotatable_bonds

FSP3

logD

0 5 10
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0 5 10 15 20 25
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Figure S1: Contribution of each of the nine listed properties to the principal components representation up to third
degree for the full set of 1260 compounds used in this study. The contribution is calculated from the eigenvectors of
the covariance matrix.

2 Computational Setup and Protocols for Computing Molecular Descriptors

2.1 QSAR, QM, and MD calculations

For each compound we considered the protonation/charge state most populated at physiological pH. We
used the ChemAxon’s Marvin suite of programs [3] to obtain standard 1-2-3D descriptors used in QSAR
studies (e.g., numbers of heavy atoms, rotatable bonds, H-bond donors/acceptors, van der Waals volume
and surface, etc. see [1]). The geometry of the major microspecies has been used to perform QM calculations
with the Gaussian16 package [4] as previously described [5]. Employing a polarizable continuum model to
mimic the effect of water solvent we optimized the ground-state structure and performed full vibrational
analysis, obtaining real frequencies in all cases. On the optimized geometry, we performed single-point energy
calculations in vacuum to generate the atomic partial charges fitting the molecular electrostatic potential.
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Under the constraint of reproducing the electric dipole moment of the molecule, we used the Merz-Kollman
scheme [6]. Atomic partial charges were generated through the two-step restrained electrostatic potential
method [7] implemented in the AnteChamber package [8]. With this program we derived general Amber
force field (GAFF) parameters [9]. QM descriptors associated with the ground-state optimized structure
include static polarizabilities, frontier molecular orbital energies, permanent dipole moment, and rotational
constants. For each compound, we performed 1-µs-long all-atom MD simulation in explicit water solution
(0.1 M KCl) using the Amber18 package as described before [5]. From MD simulations, we obtained struc-
tural and dynamic features of the compounds investigated by means of the CPPTRAJ program [10]. The
number and population of structural clusters were determined using a hierarchical agglomerative algorithm
[11].

2.2 P. aeruginosa OM set up for MD

The initial coordinates of the Outer membrane (OM) corresponding to the P. aeruginosa Gram-negative
bacteria were downloaded from http://dqfnet.ufpe.br/biomat/software.html. The model has been parame-
terized in line with the GLYCAM force field[18] and parameters are adapted to run in the GROMACS[19]
molecular dynamics engine. Briefly, the OM consists of an inner leaflet composed of 1,2-dipalmitoyl-sn-
glycero-3-phosphoethanolamine (DPPE) and an outer leaflet composed of a truncated LPS structure. The
membrane is fully solvated using the TIP3P water[20] model and anionic charges in the LPS molecules are
counter balanced with CA++ cations. A schematic representation of the model is provided in Fig. 1(e) in
the main paper and more details about its parameterization can be found in the original work[21].

Compounds were represented using the Amber force field. First, we optimized the ground-state structure
of each compound employing a polarizable continuum model [22] as to mimic the effect of water solvent
particularly to avoid formation of strong intramolecular H-bonds. This geometry was confirmed performing
a full vibrational analyses, obtaining real frequencies in all cases. On the optimized geometry, we then
performed single-point energy calculations in vacuum to generate the atomic partial charges fitting the
molecular electrostatic potential. Under the constraint of reproducing the electric dipole moment of the
molecule, we used the Merz-Kollman scheme [23] to construct a grid of points around the molecule. Atomic
partial charges were then generated through the two-step restrained electrostatic potential method [24] im-
plemented in the AnteChamber package [25]. Using this program, we derived general Amber force field
(GAFF) parameter[26], which were transformed into GROMACS input files using the antechamber python
parser interface (ACPYPE) tool[27].

2.2.1 MD protocol for computing the permeation descriptors

In order to screen the molecular descriptors corresponding to the permeation along the OM membrane,
each drug was placed into seven different molecular environments corresponding to specific regions along the
normal of the OM (Fig. 1(e) in the main paper). These regions were explicitly selected in order to cover the
influence of both the inner (DPPE) and outer leaflet (LPS) of the OM. Thus, seven independent simulations
per drug were necessary in order to recapitulate the influence of the OM into the permeation process. The
whole procedure was automated via a series of bash scripts, which iteratively connected the pulling code
and energy minimization in GROMACS[19].

All simulations were run with the GROMACS 5.4.1 molecular dynamics engine[19] with a time step of
2 fs. The LINCS algorithm[28] was applied to constrain all bond lengths with a relative geometric tol-
erance of 10−4. In line with its original parameterization, short-range interactions (vdW and Coulomb)
were calculated using a cut-off scheme of 0.9 nm, which were evaluated based on a pair-list recalculated
every five time steps. Long-range interactions were handled using a reaction field[29] correction with a
permittivity dielectric constant of 66. After initial set-up, each system was energy minimized using 3000
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steps of conjugated gradient, followed by a thermal equilibration of 1 ns. A harmonic potential of 1000
kJ mol-2, along the Z vector connecting the center of mass (COM) of the drug and the OM of the mem-
brane was applied in order to maintain the relative position of the drug with respect to each of the seven
defined regions of the membrane (Fig. 1). During equilibration, bilayers were coupled to 1.0 bar using
a Berendsen barostat[30] through a semi-isotropic approach with relaxation time of 1.0 ps. Afterwards,
production runs were coupled using a Parrinello barostat[31] algorithm and a constant temperature of 310K
was maintained by weak coupling of the solvent and solute separately to a velocity-rescaling[32] scheme with
a relaxation time of 1.0 ps. Production simulations were run for 20 ns and trajectories were saved each 20 ps.

A total of 8841 (176 µs) trajectories were analyzed using in-home developed bash scripts, which were di-
rectly interconnected to the in-built GROMACS tools. Thus, for each simulation the following molecular
descriptors were evaluated (Fig. 1(e) in the main paper): Number of hydrogen bonds between the drug with
its first solvation shell (HB-WATER), number of hydrogen bonds between the drug and the surrounding
OM environment (HB), lateral mean squared displacement of the Drug (∆xy), Total enthalpic component
of interaction between drug and surrounding environment (∆h),and total cummulative entropy of the drug
(∆s). All these analysis were carried with the in-built analysis tool set provided in GROMACS.

2.3 Ensemble docking to MexB

Molecular docking calculations were performed using the AutoDock Vina package [12]. The program was
used with default settings except for the exhaustiveness parameter which was set to 1024 (default of 8).
Protein and ligand input files were prepared with AutoDock Tools [13]. Flexibility of docking partners was
considered indirectly by using the ensemble of conformations. In particular, for each compound we used 10
different cluster representatives extracted from MD simulations in explicit water solution, while for MexB,
we considered 6 conformations, including available X-ray crystal structures (PDB Ids 2V50, 3W9I, and
3W9J) [14, 15] and MD snapshots extracted from MD simulations [16]. For each docking run, we retained
the top 10 docking poses. Following Ref. [17] we performed two sets of guided docking runs into the two
major binding pockets of MexB: the access pocket of the access monomer (AP) and the deep binding pocket
of the binding monomer (DP). In each case, the docking search was performed within a cubic volume of
40×40×40 Å3 centered in the center of mass of the pocket. The interaction between compounds and MexB
was quantified by means of a statistical analysis of all poses, yielding about 60 descriptors. These descriptors
include average binding affinities (according to the docking scoring function) as well as the total number of
contacts with single residues lining the two pockets (see Table S1).

3 Hierarchical Clustering Implementation

3.1 Agglomerative clustering: generalities and applications

This is an unsupervised statistical technique that uses correlations among random variables to form groups
(or clusters) of highly correlated quantities, resulting in clusters that are highly dissimilar from one another.
This is a bottom-up technique that starts with clusters formed by a single random variable. Then the
correlations coefficients among all the pairs are computed and ranked. The pair with the lowest dissimilarity
measure is merged together into a cluster of size two. The dissimilarity Dij is defined as the square-root of
one minus the square of the correlation coefficient between the pair i and j:

Dij =
√
1−R2

ij , (1)

where, Rij is the correlation coefficient between variables i and j. Subsequently, all correlation coefficients
are computed again treating the cluster of two as a single variable in which the resultant correlation between
the pair and another variable is derived as the average of the correlation with each member of the cluster
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Figure S2: Finding the optimal number of clusters for each set of molecular descriptors and for the combined set
following the L method

individually. Then, the dissimilarity measures among all groups are ranked and the pair with the lowest one
is merged into a larger cluster. This process is repeated until only one cluster remains.

In our analysis we implement the ranked correlations coefficients consisting on replacing the value of the
random variable (i.e., molecular descriptor of the compound) for the low-to-high rank of such value within
the distribution. For example, for the molecular property of molecular weight, the lightest compound would
have a rank of one, the second lightest a rank of two, and so one. We do the same procedure for all descrip-
tors. Then, the ranked correlations are calculated by computing the Pearson correlation coefficient over the
list of ranked values.

In order to determine the optimal number of clusters we use the fractional variance explained defined as the
ration of the variance between groups (i.e., points residing in different clusters) to the total variance (i.e.,
all points):

σfve =
σbetween groups

σtotal
=

∑
ij|ci ̸=cj

D2
ij∑

ij D
2
ij

(2)

This quantity increases as the number of clusters decreases and then stabilizes, which points to an appro-
priate number of clusters. At this point variance from within clusters is small enough hinting at a relative
closeness among points within clusters and otherwise for points in different clusters. The L method [?] is
employed to identify the optimal number of clusters nc. First we create the list of the fractional variance
explained σfve vs the number of clusters n. For each candidate number n we find the best straight line
fit of all points before and after n, and compute the weighted sum of the root mean square error (RMSE)
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associated to the fits. The value of n that minimizes RMSE corresponds to the point in which the variance
stopped increasing as a function of the number of clusters. We consider this point as the optimal number of
clusters. Figure S2 illustrates the application of this technique to determine the optimal number of clusters
for each set of descriptors independently as well as for the combined set.

3.2 Physicochemical and permeation descriptors cluster around the type of observable

We compute non-linear hierarchical clustering to the group of 73 physicochemical descriptors, as well as,
to the group of 35 permeation descriptors using the ranked correlations and the full set of compounds (see
Fig 1). For both cases we find that the resultant clusters are formed around descriptors that quantify
similar observables. This is not surprising for the physicochemical descriptors given that these quantities
measure intrinsic properties of the compound (e.g., total charge), or they were computed in simple water
environments. Fig S3 illustrates the classification of the 73 physicochemical descriptors in 24 clusters. The
largest of them comprises 32 descriptors, which quantify properties akin to the size of the compound (e.g.,
molecular weight, atom count, and volume), together with positive, negative, and water accessible surface
areas. These are mostly QSAR and QM descriptors. Slightly less correlated, but still within the same large
cluster we find descriptors computed via MD simulations in water environments. These include the average
value of the minimal projection area associated to the configurations explored by the molecule in the MD
trajectory, and the average value of the root mean square fluctuation (RMSF) of the atomic positions. On
the other hand, the remaining clusters are comprised by between one and five descriptors. These clusters
group additional compounds properties such as charge and molecular orbitals, partition coefficients, shape,
surface, and aromatic properties (full list given in the SM). Most of these smaller clusters contain only one
type of descriptor (either MD, or QSAR or QM), and highly dissimilar among each other as depicted in the
heatmap and dendrogram of Fig S3.

On the other hand, the permeation descriptors were computed through extensive all-atom MD simulations
in seven different regions of the simulated OM of P. aeruginosa. These regions are characterized by having
contrasting chemical properties and dissimilar compounds interact very differently with each of the region.
In spite of this contrast, our clustering analysis groups together descriptors quantifying the same type of
observable (e.g., entropy) measured at the different OM regions. This is in contrast with our analysis of
the docking descriptors where it was found that the region where these properties were computed defined
the cluster these belong to. Permeation descriptors group according to observable rather than the region.
The only exception found is the number of hydrogen bonds between the compound and surrounding water
molecules in the hydrophobic tails region, as well as, the lipid A sub-region. Our analysis finds that these
descriptors are statistically more akin to the interaction energy (i.e., enthalpy ∆h) between the compound
and the OM than to the hydrogen bonds in the other regions. Moreover, hierarchical relationships among
neighboring regions of the OM are found when we look at highly correlated descriptors belonging to the
same cluster. The clearest example is the clustering of the entropy values, where we find a hierarchy of
correlations among descriptors that resemble almost perfectly the neighboring regions in the OM. The most
correlated pair is the entropies associated with the two outer sub-regions (SOL and HEAD), which in turn,
is highly correlated to the third outer region of Glycerol. The resultant group is statistically more akin to
the hydrophobic tails, forming a group that is more alike to lipid A. Finally, the resultant group is associated
to the core regions. The high correlation between an observable measured in neighboring regions of the OM
can be found in all clusters.

3.3 Correlations in the number of contacts between compounds and key residues in MexB are
primarily associated to residues proximity

A statistical analysis of the docking descriptors using hierarchical clustering and rank correlations results
in 21 clusters of different sizes ranging from single descriptor clusters and up to one cluster comprised of 13
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Figure S3: Clustering characterization of physicochemical descriptors. A hierarchical clustering is computed with
the ranked correlations of 73 physicochemical descriptors for each of the 1263 compounds derived from quantita-
tive structure-activity relationship (QSAR) modeling, density functional quantum mechanical calculations (QM), and
molecular dynamics (MD) simulations in water, as shown in the color bar at the right hand side. The calculation
yields 24 clusters arranged by the dendrogram and illustrated by heatmap by means of the dissimilarity defined as
(1−R2

i,j)
1/2, where Rij is the ranked correlation between descriptors i and j.
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∆xy-LIPID-A (cm2/s) |
∆xy-CORE-1 (cm2/s) |
∆xy-CORE-2 (cm2/s) |

∆xy-SOL (cm2/s) |

5 clusters

clustering characterization of permeation descriptors

Figure S4: Hierarchical clustering characterization of the permeation descriptors revealing 5 dissimilar clusters
grouped, for the most part, by physical quantity.

descriptors. This is represented in the dendrogram of Fig S5. As reasonably found, descriptors associated
to DPB tend to cluster together and are highly dissimilar statistically from those associated to APA, which
also clustered together among themselves. These two highly dissimilar groups break further into clusters of
descriptors, some of which quantify the number of contacts to specific residues, while other the access and
binding energies. A direct examination of the clusters containing the descriptors that quantify the contacts
to key residues and the structure of the APA and DPB protomers, clustered residues tend to be in close
proximity to each other within the protomer. The residues contained in the clusters are not characterized by
similar physicochemical properties, but interestingly, the clusters also identify different sub regions of both
of the pockets. For example, those in the DPB are close to the hydrophobic trap and appear to line a region
in which compounds can fit well. In fact, the group of residues in the DPB are all hydrophobic, which is also
consistent with what is expected since hydrophobicity is a common feature of good substrates/inhibitors of
the transporter [36, 37]. On the other hand, those of the APA represent the sub-region just before entrance
to the DPB, close to the G-loop separating the two pockets. In a like manner, we also find strong correlations
among descriptors quantifying the average binding affinity (as predicted by docking) in the access and distal
pockets however they are within the same cluster.

4 Full ranking of clusters according to predictability of OM permeation using

the full set of descriptors

Table S1 lists all of the clusters, their low-to-high ranking according to prediction of permeability, and the
descriptors that comprise each of the clusters as illustrated in the Figure 3 of the main paper. Complemen-
tary of this ranking, we repeat the process but we now randomly produce a new training and testing sample
after each model iteration. The ranking up to top-21 is shown in Table S2. As shown, the top-9 clusters
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ALA667_A |
PRO668_A |
GLN577_A |
LEU674_A |
GLU825_A |
ASP681_A |
LYS134_A |
LYS292_A |

SER79_A |
THR91_A |

#poses_DPB_40% |
ARG620_B |

GLN46_B |
ARG128_B |
VAL177_B |

THR89_B |
GLY179_B |
ASP274_B |
SER180_B |
GLN273_B |

THR130_B |
#poses_DPB_30% |

PHE615_B |
GLN176_B |
LYS134_B |
PHE617_B |
PHE136_B |
PHE178_B |
ILE277_B |

SER276_B |
VAL139_B |
TYR327_B |
PHE628_B |
PHE573_B |
PHE610_B |
VAL612_B |

PHE666_A |
GLN575_A |
ARG716_A |
PHE664_A | 
MET662_A |

PHE573_A |
ASN135_A |
PHE617_A |

#poses_APA_30% |
ASN676_A |
ASN718_A |

DPB

APA

hierarchical clustering of docking descriptors

Figure S5: Hierarchical clustering of docking descriptors showing a subset of those associated to contacts to residues
in MexB. Our statistical analysis yields 21 clusters in total. For illustration purposes, we present 16 of them that group
the number of contacts between the compound and specific residues in the DP T (upper left) and AP L (bottom left)
pockets of MexB. There is a clear separation between the descriptors associated to residues in the DP T and those in
the AP L, showing stronger similarities in the former, as shown the dendrogram (right panel). These residues depict
clear correlations between proximity and cluster membership.
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remains stable and their relevance is not dependent in the specifics of the testing sample employed for the
data analysis.

5 Our reduction algorithm and its robustness across combinations of descriptors

5.1 Evaluation metrics: definitions

The model evaluation metrics computed in this work are based on combinations of the output from the
traditional confusion matrix, which compares the fruitfulness of the prediction (i.e., true or false), with the
binary classification (class 1 or class 0) of the real data. Hence, each prediction outcome can be classified as
either true positive (TP , or class 1 correctly identified), true negative (TN , or class 0 correctly identified),
false positive (FP , or a real class 0 identified as class 1), or false negative (FN , or real class 1 identified as
class 0). The accuracy (a0) is the ratio of correct predictions to all predictions, i.e., the fraction of correct
predictions:

a0 =
TP + TN

TP + TN + FP + FN
. (3)

Similarly, the classification error (e0) is defined as the opposite to the accuracy, which is the ratio of the
incorrect predictions to all predictions, i.e., the fraction of incorrect predictions:

e0 = 1− a0 =
FP + FN

TP + TN + FP + FN
. (4)

In addition, metrics targeted to reduce specific error outcomes provide different angles of a given classification
model. For example, recall (r0) calculates the fraction of all positive instances that are correctly identified,
and hence it is also known as the true positive rate (TPR). Its purpose is to minimize the false negative
outputs:

r0 =
TP

TP + FN
(5)

The opposite of recall, is the specificity (s0), which quantifies the fraction of all negative instances that the
classifier identify as positive. Hence, it is known also as the false positive rate (FPR):

s0 =
FP

TN + FP
(6)

Moreover, the measure of precision is targeted to minimize false positives, and it is also known as the positive
predictive value (PPV). It quantifies the fraction of positive predictions that are real:

PPV =
TP

TP + FP
(7)

An equivalent measure to precision, but targeted to quantify the fraction of negative predictions that are
real, is known as the negative predictive value (NPV):

NPV =
TN

TN + FN
. (8)

Often, there is a tradeoff between precision and recall. Hence, a quantify known as F1 that effectively
combines these two measurements as the harmonic mean of them is defined as:

F1 =
2TP

2TP + FN + FP
. (9)
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R# C# Descriptors

37 29 QSAR: Aliphatic rings
36 27 D: LEU674 A
35 17 QSAR: Acceptors
34 22 D: ALA667 A
33 31 QSAR: Aromatic atoms, QSAR: Aromatic bonds, QSAR: Aromatic rings
32 23 D: PRO668 A
31 33 P: ∆xy-IL-HEAD (cm2/s), P: ∆xy-IL-GLY (cm2/s), P: ∆xy-TAILS (cm2/s), P: ∆xy-LIPID-A (cm2/s), P: ∆xy-CORE-1

(cm2/s), P: ∆xy-CORE-2 (cm2/s)
30 37 QSAR: Resonantcount
29 28 QSAR: Heterorings
28 26 D: SER79 A, D: THR91 A, D: LYS134 A, D: LYS292 A, D: ASP681 A, D: GLU825 A
27 14 D: SER276 B
26 20 D: #poses APA 40%, D: GLN575 A, D: MET662 A, D: PHE664 A, D: PHE666 A, D: ARG716 A
25 21 MD: ERR ASP, MD: ERR K2
24 35 D: GLN577 A
23 25 MD: #poses DPB 20%
22 30 QSAR: Rings, QSAR: Balabanindex, QSAR: Cyclomatic number
21 34 P: ∆xy-SOL (cm2/s)
20 21 MD: Asphericity, MD: Kappa2
19 11 QM: HL gap (Hartree)
18 19 D: #poses APA 20%, D: #poses APA 30%, D: ASN135 A, D: PHE573 A, D: PHE617 A, D: ASN676 A, D: ASN718 A
17 15 QSAR: Asymmetric atoms
16 5 QM: Total DFT energy (Hartree)
15 24 D: VAL139 B, D: TYR327 B, D: PHE573 B, D: PHE610 B, D: VAL612 B, D: PHE628 B
14 10 MD: Acylindricity
13 16 QSAR: FSP3
12 32 QSAR: Anisotropic pol (a.u.)
11 14 QSAR: xlogP3, QSAR: logP, QSAR: logD

10 9 MD: ERR RMSF (Å)
9 36 QSAR: ASAplus/ASA, QSAR: ASAminus/ASA
8 1 QSAR: Molecular weight (g/mol), QSAR: Atom Count, QSAR: Heavy atoms, QM: Rotational constant b (GHz),

QM: Rotational constant c (GHz), QSAR: Volume (Å3), MD: Water 1st hydration shell, MD: ERR WA1, MD: Wa-
ter 2nd hydration shell, D: Aff APA 20% (kcal/mol), D: ERR A20 (kcal/mol), D: Aff APA 30% (kcal/mol), D: ERR A30
(kcal/mol), D: Aff APA 40% (kcal/mol), D: ERR A40 (kcal/mol), D: Aff APA (kcal/mol), D: ERR APA (kcal/mol), D:
Aff DPB 20% (kcal/mol), D: ERR B20 (kcal/mol), D: Aff DPB 30% (kcal/mol), D: ERR B30 (kcal/mol), D: #poses DPB 40%,
D: Aff DPB 40% (kcal/mol), D: ERR B40 (kcal/mol), D: Aff DPB (kcal/mol), D: ERR DPB (kcal/mol), D: GLN46 B, D:
THR89 B, D: ARG128 B, D: VAL177 B, D: GLY179 B, D: SER180 B, D: GLN273 B, D: ASP274 B, D: ARG620 B, QSAR:
Bonds, QSAR: Refractivity, QSAR: Hararyindex, QSAR: Plattindex, QSAR: Randicindex, QSAR: Szegedindex, QSAR: Wiener-
index, QSAR: Hyperwienerindex, QSAR: Surface (Å2), QSAR: ASA (Å2), QSAR: ASAplus (Å2), QSAR: ASAminus (Å2),
QSAR: Pienergy, QSAR: Isotropic pol (a.u.), QM: E thermal (kcal/mol), QM: CV (cal/mol-Kelvin), QM: S (cal/mol-Kelvin)

7 4 D: #poses DPB 30%, D: LYS134 B, D: PHE136 B, D: GLN176 B, D: PHE178 B, D: ILE277 B, D: PHE615 B, D: PHE617 B

6 6 QSAR: ASA H (Å2)

5 2 QM: Rotational constant a (GHz), MD: ERR WA2, MD: RMSF (Å), MD: MPA (Å2), MD: ERR MPA (Å2), MD: ERR ACY,
D: THR130 B, QSAR: Rotatable bonds, QSAR: Aliphatic atoms, QSAR: Aliphatic bonds, QSAR: Chainatoms, QSAR: Chain-
bonds, P: ∆s-SOL (J/mol K), P: ∆s-IL-HEAD (J/mol K), P: ∆s-IL-GLY (J/mol K), P: ∆s-TAILS (J/mol K), P: ∆s-LIPID-A
(J/mol K), P: ∆s-CORE-1 (J/mol K), P: ∆s-CORE-2 (J/mol K)

4 12 QSAR: Topolog surface (Å2), QSAR: ASA P (Å2), QSAR: ASA H/ASA, QSAR: ASA P/ASA, P: HB-WATER, P: HB-
WATER-IL-HEAD, P: HB-WATER-IL-GLY, P: HB-WATER-CORE-1, P: HB-WATER-CORE-2

3 7 QSAR: Donors, P: HB-IL-HEAD, P: HB-IL-GLY, P: HB-TAILS, P: HB-LIPID-A, P: HB-CORE-1, P: HB-CORE-2
2 3 QSAR: Total charge (e), QM: Total dipole moment (Db), QM: HOMO (Hartree), QM: LUMO (Hartree), P: ∆h-SOL (kJ/mol),

P: ∆h-IL-HEAD, P: ∆h-IL-GLY (kJ/mol), P: HB-WATER-TAILS, P: ∆h-TAILS (kJ/mol), P: HB-WATER-LIPID-A, P: ∆h-
LIPID-A (kJ/mol), P: ∆h-CORE-1 (kJ/mol), P: ∆h-CORE-2 (kJ/mol)

1 8 P: HB-MEM-INTER

Table S1: Ranking number (R#) of individual clusters according to permeation predictability, their cluster number
(C#), and the descriptors that belong to each of cluster.

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

cj fixed 8 3 4 12 2 6 7 1 36 9 14 32 16 10 24 5 15 19 11 21 34

cj random 8 3 7 2 12 6 4 1 36 9 13 32 16 10 24 15 19 5 25 11 21

Table S2: Ranking of clusters cj up to top-21, where we compare the ordering when using a fixed testing sample,
with a ranking produced when the testing sample changes randomly on every single iteration. The ordering of the
clusters is robust to these changes for the most part.
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precision recall F1

number of clusters, 𝑥𝑥

𝑥𝑥 descriptors
all descriptors

Figure S6: Precision (left), recall (center), and F1 (right) testing results evaluated in the testing portion of the
reduction algorithm presented in the main paper. Each orange circle points to the performance of a random combination
of x compounds, while the horizontal green line is the evaluation metric when all descriptors are considered. Vertical
blue line indicates the x = 9 mark.

5.2 Evaluation metrics: application

We use these definitions into the classification outcome from our model described in Figs. 4 of the main
paper, which also shows the result of accuracy. The results for precision, recall, and F1 for each of the tested
combination of x descriptors against the testing set of 121 compounds is presented in Fig S6, showing that
the cutoff of nine clusters is reasonable in these metrics, as well as, in accuracy.

Figure S7 details the prediction results from the combination listed in Fig. 4(c) in the main paper. The
prediction output, which classifies the testing sample of 120 randomly selected molecules as either strong
(class 1) or weak (class 0) permeators, is computed over 50 runs of the classification algorithm, where we
do random splits of training/validation of the remaining 482 compounds. From the resultant binary output
list of 50 outputs, the average target class of each compound is obtained, which could be interpreted as the
probability that a given compound to be a strong permeator (class 1). Indeed, if the average output class
is near zero, it indicates the algorithm classifies a given compound is a weak permeator (class 0). A direct
comparison between our model’s output and the experimental data in the from the IC50 ratios is shown in
Fig. S7(a), where we see several points of coincidence, as well as, a few misses. Specifically, we see that
across the 117 correct classifications of testing compounds as either class 1 or class 0, there are two com-
pounds incorrectly classified as class 1 (FP), and two incorrectly classified as class 0 (FN). Additional model
evaluation metrics are presented in Figs. S7(b-c), including the Receiver Operating Characteristic (ROC)
curve (solid curve) that is well separated from the limit of random classification (dashed curve). In addition,
the evaluation metrics indicates a similar score for recall and for precision, meaning that the algorithm
provides a balanced outcome that minimizes almost equally false positives and false negatives. Similarly,
the precision or positive predictive value (PPV), and the negative predictive value (NPV), indicates that
around 95% of the compounds classified as strong permeators are real, while almost 97% of the compounds
classified as weak permeators, are correctly classified as such.
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precision (PPV) 0.948 ± 0.022
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Figure S7: Detailed output of the model in the space of the 120 testing compounds. (a) Direct comparison between
the model target class output and the data. The classification output is computed over several random splits of
training/validation, hence the average class is reported and could be interpreted as the probability that a given
compound is a strong permeator (class 1). (b) Equivalent target class out put but projected in the space of the top-2
descriptors (HB-MEM-INTER, and ∆h-LIPID-A). Correct predictions (TP and TN) are shown combined in gray,
while the false negatives are orange and the false positive in green. (c) Receiver operating characteristic (ROC) curve
associated to our classification model (dark gray) compared to a fully random classification model (black dashed line).
(d) Evaluation metrics of the classification model over the testing sample.

5.3 Performance of alternative combination of descriptors from the top-9 clusters

Next, we wonder how far, in terms of performance, other combinations in the top-9 clusters identified by
our model are from the optimal. From Fig. 4(c) of the main paper, we see that three of these clusters (6,
8, and 36) have one or two descriptors. This drastically reduces the total number of possible combinations
and facilitates a deeper examination of alternative sets of predictors that yield comparable accuracy scores
as those presented in Fig. 5 of the main paper. Figure S8 uses the ranking of clusters given by our model
(Fig. 4(c) of the main paper) to inspect the top-3, top-5, and top-9 clusters. For the top-3 [Fig.S8(a)] we
look at the model performance of cluster 8 with all combinations of pairs from cluster 3 and 7. The top-5
clusters [Fig.S8(b)] uses the optimal descriptors in cluster 8, 7 and 3, and combine them with all the pairs
of clusters 2 and 12. Finally, for the top-9 [S8(c)], we use the optimal values of clusters, 2, 3, 7, 12, 6 and
36, with all the pairs from clusters 1 and 4.

Inspecting the top-3 clusters [Fig.S8(a)] we find that permeation descriptors of each cluster tend to perform
higher than QM and QSAR descriptors. More specifically, it is found that the enthalpies of the compounds
in different regions of the OM (cluster 3), with the exception of CORE 1, pair well with their hydrogen
bond interactions (cluster 7). The top-5 shows that the number of hydrogen bonds in the neighboring of the
membrane (HB-WATER) performs well when paired with permeation descriptors associated with entropy
beyond the one found by the model (∆s-SOL), which is reasonable given the high correlations found within
this quantity when measured across the OM [Fig. S4]. Interestingly, it is also found that the polar surface
area (ASA P) and some combinations of the polar and hydrophobic surface areas to the water accessi-
ble surface area (ASA P/ASA and ASA H/ASA, respectively) also give a good accuracy score and hence
could represent alternative descriptors when the entropies across the OM and the hydrogen bonds in water
are not known. Finally, the top-9 shows that, in addition to the docking descriptor found by our model
(#poses DPB 30%), descriptors quantifying the number of contacts between the compound and residues
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Figure S8: Model performance across clusters. (a) Model’s prediction accuracy using all combinations of descriptors
from the top-3 clusters (clusters, 8, 3 and 7). (b) Prediction accuracy for all pairs of descriptors from the forth and
fifth ranked clusters together with top-3 descriptors from the optimal combination. (c) Prediction accuracy for all
pairs of the seventh and eighth ranked clusters alongside with the top-6 descriptors from the optimal set and descriptor
ASAplus/ASA (ranked nineth among clusters).
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Figure S9: Frequency of identification of specific descriptors for the top-9 clusters across 51 random testing sets of
121 compounds.

PHE136 and PHE617 in the DP of MexB give a good prediction performance when compared to descriptors
from cluster 1 associated with the size of the compound beyond the Randic index. Hence, these results, in
addition to serve as rigorous test of the outcome of our model, deliver alternative combinations of predictors
with comparable performance scores to that of the optimal set found by the model that be helpful when
screening candidate drugs.

6 High performance permeation prediction from different combinations of de-

scriptors across testing samples

This section explores additional testing samples using the sampling algorithm described in the main paper.
For each random testing set of 120 compounds, 200 different combinations of nine descriptors are randomly
chosen (one per cluster), trained and validated in the remaining 482 compounds, and the combination of x
descriptors that produces the maximum evaluation accuracy in the testing sample is identified. Table S2
lists these descriptors for 50 randomly generated testing samples. A large diversity of combinations is found
meaning that the specifics of the data plays a strong role in determining good combinations of descriptors
that maximize accuracy.

We further analyze these found combinations by counting the number of times specific descriptors are de-
tected across the different testing samples. The results are shown in the charts of Fig. S9. We find that
for the top-9 clusters, there are preferences in choosing some descriptors over other, which highlights their
enhanced ability to predict permeation. However, the fact that descriptors are chosen at least once, indicates
that for a particular testing sample they play a critical role and therefore its importance cannot be neglected.

To test this finding even further, we compare the accuracy score in the different testing samples for three
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cluster c4 cluster c3 cluster c7 cluster c12 cluster c2 cluster c1

PHE617 B HB-W-LIPID-A HB-CORE-1 HB-W-IL-HEAD ∆s-IL-GLY (J/mol K) Water 2nd hydration shell

GLN176 B LUMO (Hartree) HB-TAILS Topolog surface (Å2) THR130 B ARG128 B
ILE277 B HOMO (Hartree) Donors ASA P/ASA Rotatable bonds ERR B30 (kcal/mol)
#pos DPB 30% ∆h-TAILS (kJ/mol) HB-LIPID-A ASA H/ASA Rotatable bonds GLN273 B

LYS134 B ∆h-LIPID-A (kJ/mol) HB-IL-HEAD Topolog surface (Å2) THR130 B Refractivity
PHE617 B ∆h-CORE-1 (kJ/mol) HB-TAILS HB-W-IL-HEAD Rotatable bonds Water 2nd hydration shell
PHE136 B Total charge (e) HB-IL-GLY HB-W ∆s-IL-HEAD (J/mol K) GLY179 B
ILE277 B HOMO (Hartree) HB-IL-HEAD ASA H/ASA Chainatoms GLN46 B
#pos DPB 30% LUMO (Hartree) HB-CORE-2 HB-W-IL-HEAD Rot constant a (GHz) Aff APA 30% (kcal/mol)
GLN176 B ∆h-LIPID-A (kJ/mol) HB-TAILS ASA H/ASA Aliphatic atoms ARG128 B
PHE615 B ∆h-LIPID-A (kJ/mol) HB-TAILS HB-W-IL-HEAD ∆s-IL-HEAD (J/mol K) ARG128 B

LYS134 B Total charge (e) HB-TAILS ASA P (Å2) ERR ACY Atom Count

PHE136 B ∆h-IL-GLY (kJ/mol) HB-CORE-2 HB-W-CORE-1 MPA (Å2) ASAminus (Å2)
PHE617 B ∆h-SOL (kJ/mol) HB-CORE-2 HB-W-IL-HEAD ERR ACY E thermal (kcal/mol)
GLN176 B Total charge (e) Donors ASA P/ASA RMSF (A) ERR A20 (kcal/mol)
ILE277 B LUMO (Hartree) HB-TAILS HB-W THR130 B ARG128 B
LYS134 B ∆h-CORE-2 (kJ/mol) Donors HB-W Rot constant a (GHz) ERR B20 (kcal/mol)
PHE178 B ∆h-LIPID-A (kJ/mol) HB-IL-HEAD HB-W-CORE-1 ERR ACY Water 1st hydration shell
#pos DPB 30% LUMO (Hartree) Donors HB-W-IL-GLY ∆s-TAILS (J/mol K) Atom Count
PHE136 B HOMO (Hartree) HB-LIPID-A HB-W Rotatable bonds Aff DPB (kcal/mol)
#pos DPB 30% Total charge (e) Donors HB-W-IL-GLY ERR ACY ARG128 B
PHE178 B HB-W-LIPID-A HB-LIPID-A HB-W THR130 B GLN273 B
GLN176 B LUMO (Hartree) HB-CORE-2 ASA H/ASA ERR ACY ERR B40 (kcal/mol)

LYS134 B ∆h-SOL (kJ/mol) HB-IL-GLY HB-W-CORE-2 RMSF (A) Volume (Å3)
ILE277 B LUMO (Hartree) Donors ASA P/ASA THR130 B ARG128 B
LYS134 B ∆h-TAILS (kJ/mol) HB-TAILS HB-W-IL-HEAD Aliphatic atoms Plattindex
ILE277 B ∆h-IL-HEAD HB-IL-HEAD HB-W-IL-HEAD ∆s-SOL (J/mol K) Aff DPB 30% (kcal/mol)
PHE178 B ∆h-LIPID-A (kJ/mol) HB-LIPID-A HB-W ERR ACY ARG620 B
PHE615 B ∆h-CORE-1 (kJ/mol) HB-IL-GLY ASA H/ASA Aliphatic bonds ERR A20 (kcal/mol)
GLN176 B HOMO (Hartree) HB-TAILS ASA H/ASA Rotatable bonds Aff APA 20% (kcal/mol)
LYS134 B LUMO (Hartree) Donors ASA P/ASA ∆s-SOL (J/mol K) Randicindex
#pos DPB 30% LUMO (Hartree) HB-LIPID-A HB-W-IL-HEAD Rot constant a (GHz) Bonds
PHE615 B ∆h-CORE-1 (kJ/mol) HB-LIPID-A ASA H/ASA ∆s-IL-GLY (J/mol K) Randicindex
#pos DPB 30% ∆h-CORE-1 (kJ/mol) HB-IL-GLY HB-W-IL-GLY THR130 B Aff DPB (kcal/mol)

#pos DPB 30% Total charge (e) HB-CORE-2 ASA H/ASA MPA (Å2) Aff DPB 30% (kcal/mol)
PHE136 B LUMO (Hartree) HB-TAILS ASA P/ASA Rotatable bonds ERR A20 (kcal/mol)
GLN176 B LUMO (Hartree) HB-IL-GLY ASA P/ASA ∆s-IL-GLY (J/mol K) Hyperwienerindex

GLN176 B HOMO (Hartree) HB-TAILS ASA P (Å2) Chainbonds Water 2nd hydration shell
PHE617 B LUMO (Hartree) HB-CORE-2 HB-W-IL-HEAD THR130 B #pos DPB 40%

PHE617 B Total charge (e) Donors ASA H/ASA MPA (Å2) ERR DPB (kcal/mol)
#pos DPB 30% Total charge (e) HB-TAILS HB-W-IL-HEAD Chainbonds Isotropic pol (a.u.)

ILE277 B ∆h-CORE-2 (kJ/mol) HB-LIPID-A ASA P/ASA Rot constant a (GHz) ASA (Å2)
GLN176 B ∆h-CORE-1 (kJ/mol) HB-TAILS HB-W-IL-HEAD ∆s-IL-HEAD (J/mol K) ASP274 B
#pos DPB 30% HB-W-TAILS HB-LIPID-A HB-W-CORE-1 ∆s-IL-GLY (J/mol K) ASP274 B

PHE615 B Total charge (e) HB-TAILS HB-W-IL-HEAD ERR MPA (Å2) Heavy atoms
#pos DPB 30% ∆h-IL-GLY (kJ/mol) HB-TAILS HB-W-IL-HEAD Rotatable bonds ERR WA1
ILE277 B HOMO (Hartree) HB-CORE-1 HB-W-CORE-1 ∆s-TAILS (J/mol K) Water 2nd hydration shell

PHE617 B LUMO (Hartree) HB-CORE-1 HB-W-IL-HEAD ∆s-CORE-1 (J/mol K) ASA (Å2)

PHE136 B HB-W-TAILS HB-IL-GLY HB-W-IL-HEAD ∆s-IL-HEAD (J/mol K) ASA (Å2)
GLN176 B HOMO (Hartree) HB-IL-HEAD HB-W-IL-GLY THR130 B Hyperwienerindex
PHE615 B HOMO (Hartree) HB-CORE-1 ASA H/ASA THR130 B Aff APA 40% (kcal/mol)
#pos DPB 30% ∆h-LIPID-A (kJ/mol) HB-CORE-2 HB-W ∆s-SOL (J/mol K) Randicindex

Table S3: Example of the variety of combinations of descriptors from the top-9 clusters identified that lead to maximal
accuracy for different random testing samples. Since three clusters in the top-9 contain only one (c8 and c6) or two
descriptors (c36), the table lists those for clusters of size greater than 2 only.

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.02.555818doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.02.555818
http://creativecommons.org/licenses/by-nc-nd/4.0/


testing set

ac
cu

ra
cy

combination j combination a combination b

Figure S10: Accuracy score over 50 randomly assembled testing samples using the different combinations of descriptors
as explained in the text: combination j, combination a, and combination b. Gray horizontal line indicates the 90%
mark in accuracy.

types of combinations of descriptors. We call combination j, to the set of descriptors that yield the highest
accuracy for the testing set j. Thus, if we are working with 50 testing samples, each of them would have a
particular combination of descriptors given by the Table S2. By contrast, we call combination a the set of
descriptors that is found for one single testing sample and use it on the different testing samples. For the
case shown in Fig. S10, we use the last row of Table S2, which is also the combination listed in Fig. 4(c) of
the main paper. Finally, we use the most frequent descriptor for each cluster as indicated in Fig. S9. This
is referred to as combination b. Figure S10 illustrates the results for these three contrasting cases, where we
find that the curves tend to follow each other very well and hence the differences between these scores are
rather small. Indeed, in most instances, combination a tends to be slightly below the other two cases, but
the calculating the average difference with combination j we find that it is only 2.33%, while combination b
has an average difference of 1.3% with combination j. Hence, the information provided by the descriptors
of the different combinations is highly correlated with the IC50 ratios, and it leaves a very small room for
improvement or optimization.

7 Classification of active compounds according to predictability

The analysis performed in section 2.4 is further examined in order to extract insights about the predictability
of the different compounds.

7.1 Permeation class threshold based on empirical IC50 ratio

The IC50 ratio threshold separating the permeation classification of the compounds presented in the main
manuscript is 0.5. This choice comes from extensive calculations with several choices of thresholds. For
each choice we have run our reduction algorithm over the entire set of clusters of descriptors where we
identified the combination that maximizes the classification performance (Fig 4(a) in the main manuscript).
Subsequently, we test these descriptors across 100 randomly constructed testing samples of 120 compounds
each where we identify the groups G (always predicted correctly), R (always predicted incorrectly), and B
(sometimes predicted correctly and sometimes incorrectly) for each ratio threshold tested (Fig. 6(a) in the
main manuscript). Figure S11 shows that a ratio of 0.5 maximizes the number of compounds predicted
correctly (set G on top) at every run, while simultaneously minimizing the number of compounds predicted
incorrectly (set R in the middle) and those producing mixed results (set B in the bottom). As shown, other
threshold choices produces higher classification errors and larger fluctuations.
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Figure S11: Active compounds classification according to predictability for different choices of IC50 ratio threshold.
The size of the sets G, R and B, are shown in the top, middle, and bottom panel, respectively. A threshold of 0.5
maximizes the compounds in the set G while minimizing the sets R and B, as shown.

metric/set all G + B G + R R + B

accuracy 0.868±0.027 0.969±0.016 0.893±0.027 0.720±0.086
recall 0.820±0.051 0.971±0.027 0.843±0.044 0.721±0.132

precision 0.853±0.047 0.951±0.032 0.893±0.042 0.756±0.130
NPV 0.878±0.037 0.981 ±0.017 0.893±0.031 0.698±0.143

specificity 0.097±0.034 0.031±0.021 0.070±0.029 0.266±0.142
class error 0.131±0.027 0.030±0.016 0.106±0.027 0.279±0.086

F1 0.835±0.034 0.960±0.022 0.867±0.035 0.726±0.092

Table S4: Comparison of the different evaluation metrics for different combination of predictability sets: all sets,
G+R, G+B, and R+B. For each combination set we show the average metric across 100 randomly assembled testing
samples.

7.2 Parameter regions associated with the different permeation classes

Focusing on the threshold of 0.5 and for the set of nine descriptors highlighted by the reduction algorithm
(see Fig 4 in the main paper), we examine the two-dimensional scatter plots of the compounds of the set
G. This yield a total of 36 scatter plots that are shown in Fig. S12. Interestingly, there are clear regions
that separate strong (red) and weak (blue) permeators. The set G contain the largest amount of com-
pounds (503), accounting for 83% of all active molecules analyzed. This finding allow us to draw simple
rules of permeation based on the descriptor values associated with a given compound. For comparison, Table
S4 provides the evaluation metric for different combinations of predictability sets: all, G+B, G+R, and R+B.

In order to compare this behavior of the set G with the compounds of the sets R and B, Fig. S13 illustrates
these three sets in the space of the top-2 descriptors that better predict their permeation properties. Similar
to the result of the set G, compounds in the set R are also separated into specific regions in the parameter
space. However, the regions associated to weak and strong permeators are opposite to those in the compounds
of the set G. This explains why they are always missed by the prediction algorithm. Finally, the set B has
compounds some of which belong to the pattern shown by the set G and the remaining show the pattern
presented in the set R.
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Figure S12: Compounds of the set G projected over the nine descriptors highlighted by the reduction algorithm, as
listed in the bottom left. In each of the scatter plots shown, red dots represent strong permeators, while blue are weak
permeators. For each row (column) the y-(x-)axis represents a single descriptor, as shown.
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Figure S13: Projection of the 605 active compounds over the top-2 descriptors that predict permeation the best for
the three predictive classification groups: set G (left panel), set R (central panel), and set B (right panel).

7.3 Structural aspects of compounds in critical subgroups

A classification of the compounds by means of a complete Tanimoto similarity analysis reveals 233 subgroups.
As explained in the main manuscript, around 90% of the compounds in sets R and B are concentrated in 10
Tanimoto subgroups. Figure S14 shows the results of our modeling classification in the seven subgroups not
shown in Figure 5(d) of the main manuscript. Our analysis identifies descriptors able to separate weak and
strong permeators for some of these subgroups including some compounds of the sets R and B. For other
subgroups, however, it remains a challenge. The structural features that distinguish these 10 subgroups are
detailed below:

• SB71 are the NSC-33353 analogs made as EPI’s. Most of those compounds had a substituted naphthyl
amide group present. This is the small subset that didn’t have a naphthyl amide but instead had phenyl
or biphenyl. So, this seems clear relative to the other compounds in the NSC-33353 series. What is
also interesting, it is these phenyl and biphenyl are currently being made because they work in WT
Acinetobacter. But not E. coli or PAO1.

• SB117 is full of NSC-60339 analogs. Unlike the subgroup below, these typically have 5-aromatic rings
in them or more and tend to be more symmetrical with 2 or more of the dihydroimidazoline groups.
So, this subgroup is mostly the original hits and analogs. The subgroup below (SB118) is typically 2-3-
aromatic and non-symmetrical with only one dihydroimiazoline group. So, that’s the biggest difference.
This subgroup is the analogs with more than one dihydroimidazoline moiety in them. They are going
to have larger MW compared to SB118 as well.

• SB118 is composed of the NSC-60339 analogs we got from the NCI and synthesized to generate new
EPI’s. They all have that same group (4-(4,5-dihydro-1H-imidazol-2-yl)aniline) that all of the NSC-
60339 analogs have in it. These are generally fairly linear with only a few rotatable bonds and generally
fairly lipophilic.

• SB112 is a mix of the original NSC-125028 compounds (MUKB inhibitors) and NSC-60339 (Original
EPI compounds). There is a mix of charged and uncharged compounds. Finally, analogs and the
intermediates to make them. They are all polyaromatic with amide linkers. There are not many
rotatable bonds, generally lipophilic.

• SB167 is an amide derived from 3-aminoquinoline with one exception is cmpd, which is not a quinoline
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Figure S14: Complementary analysis of relevant descriptors for the remaining seven Tanimoto subgroups that contain
relevant number of compound of sets R and B, as illustrated in Figure 5(d) of the main manuscript. In cases where
the separation between weak and strong permeators is somewhat clear, it is marked by a class boundary black line
found using an SVM algorithm.

but a naphthyl. It could have been in this group or in SB168. The reason it was not could be that
most, but not all, of SB167 also has a formal +1 charge while most of SB168 does not.

• SB168 all have an amide derived from a 6-aminoquinoline group present in their structure. There were
3 exceptions. One of them has a 6-substituted quinoline in it, but it is not an amide. And then two
compounds which do not have the quinoline but instead have a cyclic boronate derived amide in them.

• SB169 has the phenyl ethyl side chain (from the unnatural amino acid) as opposed to the phenyl
alanine or substituted phenyl alanine, that is present in most of the others.

• 12/13 compounds of SB170 contain a phenyl boronic acid group. In general, these are less rigid and
lower MW than the previous Rempex subgroups discussed. The one non-boronic acid has a phenol
instead but otherwise does look somewhat similar and the PKA’s of phenol and boronic acid are
somewhat close. This subgroup is somewhat related structurally to SB223. More so than the other
Rempex subgroups.

• SB201 are benzothiazoles (BTZs) from JKW lab. The majority of the BTZ’s made had a n-propylimidazole
group on them. That was key for the antibacterial activity but also made them substrates for efflux
and contributed to poor PK. A handful of them were made without the n-propylimidazole group to try
and change the properties and hopefully improve their permeability etc. That small subset is captured
in subgroup SB201. the n-propylimidazole group was replaced by simple heterocyclic groups such as
piperidine, pyrrolidine etc.

• SB223 are Rempex compounds. With one exception none of these compounds are charged (N-
methylated). There is also one boronic acid in this group. They are also more in general have
more SP3 character. MW is probably lower on average compared to the other Rempex subgroups, but
certainly less rigid, not as elaborated structurally and not formally charged.
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8 Descriptor ranges associated to weak and strong permeation

The consistency of the patterns found for the largest group of compounds (set G), allows us to draw simple
rules of permeation based on a compound’s parameter values. To this end, we use the top-9 clusters that
better correlate with the IC50 ratios. This results in a total of 112 descriptors. Tables S5 and S6 shows the
ranking of these descriptors that better correlate with permeation individually. In these tables we compare
the metrics for the set G with that of all of the active compounds. The ranking is according to accuracy
in the latter set. The value tc is the critical threshold dividing strong and weak permeators according to
column L|R. For example, when looking at descriptor δj , if δj > tc, its classification would be that of R (i.e.,
W or S for weak and strong permeator, as listed in the L|R column), and it is L, otherwise. The threshold is
estimated using a Support Vector Machine [38] (SVM) algorithm with linear kernel that separates the strong
and weak permeators data using a maximum-margin hyperplane. For the one-dimensional case (i.e., one de-
scriptor), tc is a single point. Extensions to two and three dimensions are also implemented for comparison,
where the SVM find the optimal line [Fig. S12] or plane [Fig. S13] to separate the target classes, respectively.

A similar analysis now using sets of two- and three-descriptors is also performed, where we trained a 2-
and 3-dimensional support vector machine on all combinations of two and three descriptors of the top-9
clusters (no more than one descriptor per cluster per combination), respectively. Accordingly, we found
an enhancement in the performance accuracy for different combinations of two and three descriptors. For
simplicity, we have use a straight line and a plane for the cut off of the two- and three-descriptor analysis,
respectively. The top-40 combinations and corresponding parameters are listed in the Tables S7 and S8,
while we highlight four sets of three-descriptors combinations that classifies well strong and weak permeators
(see Fig. S16).

The two-descriptor analysis highlights the role of the electrostatic properties and the electronic structure,
together with, the hydrophobic and polar area, of the compounds [Fig. S15]. These pairs of descriptors
yield accuracy scores up to 88.1% computed across the entire set of active compounds. In addition, we find
several pairs of descriptors comprised by one of permeation (either HB or enthalpy) and one of docking
(#poses or contacts to key residues in DP of MexB), or permeation with QM or QSAR descriptors. Finally,
the three-descriptor analysis finds the QSAR descriptor quantifying the ratio of the hydrophobic area to the
water accessible surface area (i.e., ASA H/ASA) in myriad combinations with either one permeation and one
docking descriptor, or one docking with another QSAR or QM. This separation talks about an interesting
relationship among the different types of descriptors and how their information can be harnessed in order to
better identify strong and weak permeators. Some examples are found in Fig. S16 reaching accuracy scores
of 88.42% obtained across the whole set of active compounds.
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set G all compounds

r cj descriptor tc L|R PPV NPV a0 PPV NPV a0

1 8 P: HB-MEM-INTER 1.361 W|S 0.955 0.99 0.976 0.836 0.883 0.864
2 3 P: ∆h-LIPID-A (kJ/mol) -988.85 S|W 0.937 1. 0.974 0.816 0.891 0.859
3 3 P: ∆h-TAILS (kJ/mol) -1011.43 S|W 0.923 0.997 0.966 0.806 0.89 0.854
4 3 P: ∆h-SOL (kJ/mol) -979.863 S|W 0.927 0.987 0.962 0.81 0.88 0.851
5 3 P: ∆h-IL-GLY (kJ/mol) -1010.67 S|W 0.931 0.983 0.962 0.81 0.88 0.851
6 3 P: ∆h-IL-HEAD -952.17 S|W 0.921 0.977 0.954 0.804 0.873 0.844
7 2 QSAR: Rotatable bonds 8.374 W|S 0.885 0.993 0.946 0.781 0.892 0.842
8 7 P: HB-CORE-2 3.343 W|S 0.91 0.964 0.942 0.796 0.876 0.842
9 7 P: HB-IL-HEAD 3.342 W|S 0.897 0.99 0.95 0.78 0.89 0.841
10 2 D: THR130 B 26.007 W|S 0.877 0.993 0.942 0.777 0.889 0.839

11 12 QSAR: ASA P (Å2) 184.089 W|S 0.865 0.996 0.938 0.788 0.878 0.839
12 2 QSAR: Chainatoms 15.428 W|S 0.892 0.986 0.946 0.782 0.88 0.837
13 1 D: THR89 B 49.831 W|S 0.903 0.973 0.944 0.784 0.875 0.836
14 7 P: HB-IL-GLY 3.121 W|S 0.907 0.973 0.946 0.788 0.871 0.836
15 1 D: GLN46 B 115.409 W|S 0.869 0.996 0.94 0.764 0.893 0.834
16 1 D: #poses DPB 40% 104.373 W|S 0.862 1. 0.938 0.76 0.895 0.833
17 3 P: ∆h-CORE-2 (kJ/mol) -1141.99 S|W 0.869 0.996 0.94 0.768 0.886 0.833
18 2 QSAR: Chainbonds 17.124 W|S 0.879 0.983 0.938 0.773 0.876 0.831
19 3 P: HB-WATER-TAILS 3.154 W|S 0.866 0.976 0.929 0.771 0.878 0.831
20 3 QM: Total dipole moment (Db) 32.652 W|S 0.896 0.957 0.933 0.782 0.86 0.828
21 4 D: GLN176 B 131.529 W|S 0.825 0.996 0.917 0.735 0.889 0.816
22 1 D: VAL177 B 74.43 W|S 0.81 0.993 0.907 0.725 0.888 0.809
23 7 P: HB-CORE-1 2.857 W|S 0.847 0.942 0.903 0.751 0.854 0.809
24 1 D: ARG620 B 113.094 W|S 0.801 0.996 0.903 0.718 0.895 0.808
25 3 P: ∆h-CORE-1 (kJ/mol) -1089.79 S|W 0.81 0.993 0.907 0.724 0.885 0.808
26 2 MD: ERR WA2 5.654 W|S 0.837 0.952 0.903 0.745 0.853 0.806
27 3 QSAR: Total charge (e) 1.393 W|S 0.795 1. 0.901 0.716 0.895 0.806
28 1 QM: E thermal (kcal/mol) 335.469 W|S 0.797 0.992 0.899 0.716 0.889 0.804
29 12 QSAR: ASA H/ASA 0.743 S|W 0.785 0.996 0.893 0.724 0.877 0.804
30 12 QSAR: ASA P/ASA 0.257 W|S 0.785 0.996 0.893 0.724 0.877 0.804
31 2 P: ∆s-SOL (J/mol K) 808.542 W|S 0.807 0.978 0.899 0.72 0.874 0.801
32 1 D: ARG128 B 79.772 W|S 0.776 0.988 0.885 0.705 0.89 0.798
33 1 QSAR: Randicindex 27.08 W|S 0.788 0.985 0.891 0.707 0.882 0.796
34 1 QSAR: Pienergy 53.92 W|S 0.799 0.96 0.887 0.732 0.846 0.796
35 3 QM: LUMO (Hartree) -0.201 S|W 0.763 0.996 0.879 0.695 0.906 0.796
36 3 P: HB-WATER-LIPID-A 3.035 W|S 0.8 0.978 0.895 0.713 0.873 0.796
37 1 QSAR: Atom Count 61.33 W|S 0.785 0.985 0.889 0.705 0.882 0.794

38 1 QSAR: Surface (Å2) 657.716 W|S 0.788 0.981 0.889 0.706 0.879 0.794

39 2 MD: MPA (Å2) 61.503 W|S 0.779 1. 0.891 0.701 0.89 0.794
40 2 P: ∆s-CORE-2 (J/mol K) 553.616 W|S 0.791 0.97 0.887 0.712 0.87 0.794
41 4 D: PHE615 B 159.34 W|S 0.771 0.992 0.883 0.698 0.889 0.793
42 1 QSAR: Plattindex 221.664 W|S 0.776 0.988 0.885 0.699 0.884 0.791
43 1 QM: CV (cal/mol K) 119.661 W|S 0.781 0.981 0.885 0.701 0.879 0.791
44 7 QSAR: Donors 3.885 W|S 0.755 1. 0.875 0.689 0.905 0.791

45 12 QSAR: Topological surface (Å2) 119.181 W|S 0.799 0.974 0.893 0.711 0.862 0.791
46 1 QSAR: Bonds 63.899 W|S 0.772 0.984 0.881 0.696 0.883 0.789
47 2 P: ∆s-CORE-1 (J/mol K) 446.791 W|S 0.803 0.964 0.891 0.712 0.857 0.789
48 2 P: ∆s-IL-GLY (J/mol K) 647.777 W|S 0.779 0.973 0.881 0.701 0.871 0.788

49 1 QSAR: Volume (Å3) 418.747 W|S 0.771 0.981 0.879 0.694 0.877 0.786
50 1 QM: S (cal/mol K) 209.437 W|S 0.765 0.992 0.879 0.691 0.885 0.786

51 2 MD: RMSF (Å) 0.196 W|S 0.776 0.985 0.883 0.691 0.869 0.781
52 1 MD: Water 1st hydration shell 55.394 W|S 0.756 0.98 0.869 0.684 0.878 0.779
53 1 QSAR: Hararyindex 136.77 W|S 0.77 0.962 0.871 0.692 0.864 0.779
54 2 P: ∆s-LIPID-A (J/mol K) 551.215 W|S 0.773 0.962 0.873 0.696 0.857 0.779
55 4 D: LYS134 B 116.579 W|S 0.758 0.977 0.869 0.685 0.876 0.779
56 1 MD: Water 2nd hydration shell 114.493 W|S 0.753 0.98 0.867 0.682 0.878 0.778
57 1 D: ASP274 B 64.911 W|S 0.734 0.984 0.855 0.677 0.889 0.778
58 1 QSAR: Refractivity 144.05 W|S 0.748 0.972 0.861 0.683 0.875 0.778
59 2 P: ∆s-IL-HEAD (J/mol K) 703.76 W|S 0.762 0.969 0.869 0.688 0.866 0.778

Table S5: Individual descriptor ranges associated with strong (SP) and weak (WP) OM permeation for the top-60
descriptors according to the accuracy score of all active compounds. For each ranking descriptor r belonging to cluster
cj , the threshold tc separating the target classes, is listed in the measurement units of the descriptor. Column L|R
indicates whether WP are associated with descriptor values smaller than tc and hence SP associated with values larger
than tc (entry W|S), or vice versa (entry S|W). The evaluation metrics of positive predictive value (PPV), negative
predictive value (NPV) and accuracy (a0) are listed for each descriptor for the compounds of the set G only and for
all active compounds, as indicated.
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set G all compounds

r cj descriptor tc L|R PPV NPV a0 PPV NPV a0

60 1 QSAR: Heavy atoms 33.457 W|S 0.764 0.966 0.869 0.687 0.863 0.776
61 1 MD: ERR WA1 4.355 W|S 0.771 0.941 0.863 0.696 0.847 0.776
62 1 QSAR: Wienerindex 4272.3 W|S 0.777 0.942 0.867 0.696 0.847 0.776
63 1 D: SER180 B 52.181 W|S 0.749 0.965 0.859 0.682 0.867 0.774
64 1 QSAR: Hyperwienerindex 23670. W|S 0.788 0.92 0.863 0.704 0.832 0.774
65 1 QSAR: Molecular weight (g/mol) 473.818 W|S 0.755 0.965 0.863 0.681 0.864 0.773

66 2 MD: ERR MPA (Å2) 5.67 W|S 0.749 0.976 0.863 0.679 0.869 0.773
67 2 MD: ERR ACY 0.396 W|S 0.758 0.977 0.869 0.68 0.867 0.773
68 2 QSAR: Aliphatic atoms 19.48 W|S 0.748 0.984 0.865 0.676 0.874 0.773
69 12 P: HB-WATER-IL-GLY 3.726 W|S 0.761 0.941 0.857 0.693 0.844 0.773
70 1 D: GLN273 B 39.855 W|S 0.743 0.976 0.859 0.678 0.866 0.771
71 1 D: ERR A30 (kcal/mol) 0.603 W|S 0.805 0.891 0.857 0.719 0.801 0.768
72 2 P: ∆s-TAILS (J/mol K) 601.65 W|S 0.758 0.955 0.861 0.682 0.849 0.768
73 12 P: HB-WATER-CORE-1 3.511 W|S 0.771 0.931 0.859 0.695 0.828 0.768
74 1 D: ERR APA (kcal/mol) 0.6 W|S 0.77 0.906 0.847 0.7 0.818 0.766
75 12 P: HB-WATER 6.742 W|S 0.733 0.949 0.843 0.67 0.851 0.761

76 1 QSAR: ASA (Å2) 684.798 W|S 0.742 0.939 0.845 0.67 0.841 0.758
77 3 QM: HOMO (Hartree) -0.305 S|W 0.698 0.991 0.831 0.644 0.914 0.758
78 1 D: ERR A20 (kcal/mol) 0.627 W|S 0.763 0.905 0.843 0.685 0.813 0.756
79 7 P: HB-TAILS 2.122 W|S 0.767 0.888 0.837 0.691 0.805 0.756
80 1 D: ERR A40 (kcal/mol) 0.556 W|S 0.721 0.938 0.831 0.664 0.843 0.755
81 2 QSAR: Aliphatic bonds 21.404 W|S 0.716 0.979 0.841 0.654 0.867 0.755
82 1 D: ERR DPB (kcal/mol) 0.735 W|S 0.757 0.89 0.833 0.685 0.802 0.751
83 1 D: GLY179 B 73.627 W|S 0.709 0.955 0.829 0.649 0.868 0.751
84 1 QSAR: Szegedindex 5787.5 W|S 0.743 0.916 0.837 0.671 0.82 0.751
85 7 P: HB-LIPID-A 1.825 W|S 0.777 0.877 0.837 0.686 0.796 0.75

86 1 QSAR: ASAminus (Å2) 221.86 W|S 0.726 0.928 0.831 0.662 0.823 0.746
87 1 D: ERR B40 (kcal/mol) 0.733 W|S 0.724 0.895 0.817 0.658 0.806 0.738
88 4 D: #poses DPB 30% 214.971 W|S 0.692 0.958 0.817 0.635 0.859 0.738
89 1 D: ERR B20 (kcal/mol) 0.726 W|S 0.721 0.879 0.81 0.661 0.798 0.736
90 1 D: Aff APA 30% (kcal/mol) -9.719 S|W 0.697 0.958 0.821 0.635 0.846 0.735
91 1 D: Aff DPB 20% (kcal/mol) -10.321 S|W 0.68 0.978 0.813 0.629 0.866 0.735
92 1 D: Aff DPB 40% (kcal/mol) -10.393 S|W 0.674 0.982 0.81 0.625 0.871 0.733
93 1 D: Aff DPB 30% (kcal/mol) -10.361 S|W 0.674 0.982 0.81 0.624 0.868 0.731
94 12 P: HB-WATER-IL-HEAD 4.076 W|S 0.699 0.898 0.804 0.648 0.806 0.731
95 1 D: Aff APA (kcal/mol) -9.447 S|W 0.663 0.952 0.794 0.625 0.851 0.728
96 1 D: ERR B30 (kcal/mol) 0.737 W|S 0.698 0.888 0.8 0.644 0.803 0.728
97 4 D: PHE617 B 95.925 W|S 0.681 0.93 0.802 0.631 0.832 0.728
98 1 D: Aff APA 40% (kcal/mol) -9.665 S|W 0.665 0.977 0.802 0.619 0.866 0.726
99 1 D: Aff DPB (kcal/mol) -10.28 S|W 0.667 0.982 0.804 0.618 0.869 0.726
100 1 D: Aff APA 20% (kcal/mol) -9.634 S|W 0.663 0.944 0.792 0.616 0.846 0.72

101 1 QSAR: ASAplus (Å2) 462.964 W|S 0.678 0.892 0.788 0.619 0.799 0.71
102 4 D: PHE136 B 123.694 W|S 0.632 0.944 0.766 0.591 0.837 0.697
103 2 QM: Rotational constant a (GHz) 0.324 S|W 0.614 1. 0.758 0.577 0.876 0.688
104 12 P: HB-WATER-CORE-2 3.906 W|S 0.65 0.844 0.754 0.604 0.756 0.687
105 1 QM: Isotropic pol (a.u.) 406.648 W|S 0.634 0.827 0.738 0.592 0.759 0.68
106 4 D: ILE277 B 123.369 W|S 0.605 0.855 0.724 0.58 0.783 0.677
107 1 QM: Rotational constant c (GHz) 0.053 S|W 0.586 0.967 0.724 0.555 0.863 0.663
108 4 D: PHE178 B 176.99 W|S 0.575 0.863 0.7 0.558 0.784 0.657
109 1 QM: Rotational constant b (GHz) 0.066 S|W 0.533 0.948 0.661 0.52 0.86 0.62
110 36 QSAR: ASAplus/ASA 0.677 S|W 0.5 0.742 0.615 0.502 0.699 0.594
111 36 QSAR: ASAminus/ASA 0.323 W|S 0.5 0.742 0.615 0.502 0.699 0.594

112 6 QSAR: ASA H (Å2) 500.76 S|W 0.391 0.622 0.5 0.423 0.608 0.512

Table S6: Individual descriptor ranges associated with strong (SP) and weak (WP) OM permeation for the descriptors below
the top-60 according to the accuracy score of all active compounds. For each ranking descriptor r belonging to cluster cj , the
threshold tc separating the target classes, is listed in the measurement units of the descriptor. Column L|R indicates whether
WP are associated with descriptor values smaller than tc and hence SP associated with values larger than tc (entry W|S), or vice
versa (entry S|W). The evaluation metrics of positive predictive value (PPV), negative predictive value (NPV) and accuracy
(a0) are listed for each descriptor for the compounds of the set G only and for all active compounds, as indicated.
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Figure S15: 2-dimensional analysis of the parameter regions associated to weak (blue) and strong (red) permeation
for four sets of highly accurate predictors found. Scatter plot at the left of each panel is equivalent to the density
distribution plots at the right. Active compounds of the set G are shown on each panel. (a) Randicindex (QSAR),

ASA H (Å2) (QSAR). (b) ∆h-LIPID-A (permeation), HB-CORE-2 (permeation). (c) LUMO (QM), HB-TAILS (per-
meation). (d) Rotatable bonds (QSAR), ASA H/ASA (QSAR). Straight line in the left panel of each figure results
from the analysis done by the two-dimensional SVM algorithm. The specifics of the function is given in Table S7.
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Figure S16: 3-dimensional analysis of the parameter regions associated to weak (blue) and strong (red) permeation
for four sets of highly accurate predictors found. All 605 active compounds are shown on each panel. (a) PHE615 B
(docking), ∆h-CORE-2 (permeation), ASA H/ASA (QSAR). (b) ∆s-IL-GLY (permeation), Total charge (QSAR),

ASA H(Å2)(QSAR). (c) PHE615 B (docking), ∆h-LIPID-A (permeation), ASAplus/ASA (QSAR). (d) HOMO (QM),
HB-MEM-INTER (permeation), ASA H/ASA (QSAR). Accuracy score a0 for each panel is also shown. Gray plane
results from the analysis done by the three-dimensional SVM algorithm. The specifics of the function is given in Table
S8.
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set G all compounds

r ci cj descriptor i descriptor j a b L|R PPV NPV a0 PPV NPV a0

1 3 12 QSAR: Total charge (e) QSAR: ASA H/ASA 0.105 0.533 W|S 0.9848 1 0.9941 0.8571 0.8972 0.881

2 3 12 QSAR: Total charge (e) QSAR: ASA P (Å2) -46.782 286.671 W|S 0.9847 0.9935 0.9901 0.8589 0.8901 0.8777
3 3 12 QM: LUMO (Hartree) QSAR: ASA H/ASA -1.03 0.464 S|W 0.9848 0.9968 0.9921 0.8619 0.888 0.8777
4 3 12 QM: LUMO (Hartree) QSAR: ASA P/ASA 0.928 0.506 S|W 0.9798 0.9968 0.9901 0.8589 0.8901 0.8777
5 3 12 QSAR: Total charge (e) QSAR: ASA P/ASA -0.094 0.437 W|S 0.9701 1 0.9881 0.8468 0.8964 0.876
6 3 4 P: ∆h-LIPID-A (kJ/mol) D: PHE615 B 0.105 290.942 S|W 0.9799 1 0.9921 0.8496 0.8942 0.876

7 4 12 D: PHE615 B QSAR: ASA P (Å2) -1.806 520.791 W|S 0.9846 0.9904 0.9881 0.8613 0.8856 0.876
8 1 3 D: #poses DPB 40% P: ∆h-TAILS (kJ/mol) 11.001 -2569.72 W|S 0.9799 1 0.9921 0.8462 0.8939 0.8744

9 1 12 D: #poses DPB 40% QSAR: ASA P (Å2) -2.495 531.439 W|S 0.9897 0.9936 0.9921 0.8577 0.8852 0.8744
10 1 3 D: GLN46 B P: ∆h-LIPID-A (kJ/mol) 4.808 -1832.22 W|S 0.9799 1 0.9921 0.8462 0.8939 0.8744
11 2 3 MD: RMSF (A) P: ∆h-LIPID-A (kJ/mol) 2199.87 -1612.36 W|S 0.9798 0.9968 0.9901 0.8519 0.8895 0.8744
12 2 3 D: THR130 B P: ∆h-LIPID-A (kJ/mol) 14.35 -1611.71 W|S 0.9799 1 0.9921 0.849 0.8917 0.8744
13 3 4 P: ∆h-SOL (kJ/mol) D: PHE615 B 0.107 295.042 S|W 0.9847 0.9935 0.9901 0.8519 0.8895 0.8744
14 3 4 P: ∆h-IL-GLY (kJ/mol) D: PHE615 B 0.089 274.717 S|W 0.9847 0.9935 0.9901 0.849 0.8917 0.8744
15 3 4 P: ∆h-TAILS (kJ/mol) D: PHE615 B 0.126 318.541 S|W 0.9848 0.9968 0.9921 0.849 0.8917 0.8744
16 4 8 D: PHE615 B P: HB-MEM-INTER -0.03 7.205 W|S 0.9797 0.9935 0.9881 0.8548 0.8874 0.8744
17 1 3 QM: Rotational constant c (GHz) P: ∆h-LIPID-A (kJ/mol) -3704.93 -1013.48 S|W 0.9847 0.9935 0.9901 0.8571 0.8828 0.8727
18 1 3 D: ERR A20 (kcal/mol) P: ∆h-LIPID-A (kJ/mol) 570.859 -1504.48 W|S 0.9798 0.9968 0.9901 0.8512 0.8871 0.8727
19 1 3 D: ERR A30 (kcal/mol) P: ∆h-LIPID-A (kJ/mol) 513.93 -1466.44 W|S 0.9798 0.9968 0.9901 0.8512 0.8871 0.8727
20 1 3 D: ERR B20 (kcal/mol) P: ∆h-LIPID-A (kJ/mol) 328.972 -1376.86 W|S 0.9798 0.9968 0.9901 0.8512 0.8871 0.8727
21 1 3 D: ERR B30 (kcal/mol) P: ∆h-LIPID-A (kJ/mol) 267.145 -1339.87 W|S 0.9797 0.9935 0.9881 0.8542 0.8849 0.8727
22 1 3 D: #poses DPB 40% P: ∆h-IL-HEAD 14.536 -2939.74 W|S 0.9798 0.9968 0.9901 0.8427 0.8936 0.8727
23 1 3 D: #poses DPB 40% P: HB-WATER-LIPID-A -0.088 15.326 W|S 0.9798 0.9968 0.9901 0.84 0.8958 0.8727
24 1 3 D: #poses DPB 40% P: ∆h-LIPID-A (kJ/mol) 8.714 -2226.26 W|S 0.9799 1 0.9921 0.8455 0.8914 0.8727
25 1 12 D: #poses DPB 40% QSAR: ASA P/ASA -0.003 0.656 W|S 0.9847 0.9935 0.9901 0.8571 0.8828 0.8727
26 1 3 D: THR89 B P: ∆h-LIPID-A (kJ/mol) 4.728 -1383.25 W|S 0.9799 1 0.9921 0.8484 0.8892 0.8727
27 1 3 QSAR: Hararyindex P: ∆h-LIPID-A (kJ/mol) 1.386 -1342.76 W|S 0.9749 0.9967 0.9881 0.8512 0.8871 0.8727
28 2 3 QM: Rotational constant a (GHz) P: ∆h-LIPID-A (kJ/mol) -1019.87 -954.779 S|W 0.9799 1 0.9921 0.8484 0.8892 0.8727

29 3 12 QM: HOMO (Hartree) QSAR: ASA P (Å2) 565.255 402.578 S|W 0.9847 0.9935 0.9901 0.8602 0.8808 0.8727
30 3 4 P: HB-WATER-TAILS D: PHE615 B -16.898 238.4 W|S 0.9698 0.9935 0.9842 0.8427 0.8936 0.8727
31 3 4 P: ∆h-LIPID-A (kJ/mol) D: #poses DPB 30% 0.317 582.916 S|W 0.9799 1 0.9921 0.8484 0.8892 0.8727
32 3 4 P: ∆h-LIPID-A (kJ/mol) D: GLN176 B 0.081 237.763 S|W 0.9799 1 0.9921 0.8455 0.8914 0.8727
33 3 4 P: ∆h-LIPID-A (kJ/mol) D: PHE617 B 0.276 411.109 S|W 0.975 1 0.9901 0.8484 0.8892 0.8727
34 4 12 D: PHE615 B QSAR: ASA P/ASA -0.003 0.781 W|S 0.9747 0.9935 0.9862 0.8571 0.8828 0.8727

35 8 12 P: HB-MEM-INTER QSAR: ASA P (Å2) -57.579 344.199 W|S 0.9948 0.9841 0.9881 0.8795 0.8688 0.8727

36 1 3 QSAR: Volume (Å3) P: ∆h-LIPID-A (kJ/mol) 0.607 -1417.18 W|S 0.9747 0.9935 0.9862 0.8506 0.8846 0.8711
37 1 3 MD: Water 1st hydration shell P: ∆h-LIPID-A (kJ/mol) 8.039 -1601.42 W|S 0.9798 0.9968 0.9901 0.8477 0.8867 0.8711
38 1 3 MD: ERR WA1 P: ∆h-LIPID-A (kJ/mol) 97.314 -1580.89 W|S 0.9797 0.9935 0.9881 0.8536 0.8825 0.8711
39 1 3 D: Aff APA 20% (kcal/mol) P: ∆h-LIPID-A (kJ/mol) -164.919 -2759.12 S|W 0.9749 0.9967 0.9881 0.8449 0.8889 0.8711
40 1 3 D: Aff APA (kcal/mol) P: ∆h-TAILS (kJ/mol) -334.734 -4402.66 S|W 0.9796 0.9903 0.9862 0.8477 0.8867 0.8711

Table S7: Top-40 pairs of descriptors and associated ranges with strong (SP) and weak (WP) OM permeation according to the accuracy score of all active compounds. The trained classification
model over the compounds in the set G follow the linear equation y = ax + b, where y and x are the axes of descriptor i and j, respectively, and they are listed in the measurement units of
the descriptors. Column L|R indicates whether WP are associated with descriptor values to the left of the trained linear model and hence SP associated with values to the right of the linear
model (entry W|S), or vice versa (entry S|W). The evaluation metrics of positive predictive value (PPV), negative predictive value (NPV) and accuracy (a0) are listed for each descriptor for the
compounds of the set G only and for all active compounds, as indicated.
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set G all compounds

r ci cj ck descriptor i descriptor j descriptor k a b c d PPV NPV a0 PPV NPV a0

1 3 4 12 P: ∆h-CORE-2 (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -64.547 896.378 -337345. 1574.73 0.99 1. 0.996 0.861 0.9 0.884
2 3 4 12 P: ∆h-IL-GLY (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -56.951 814.238 -316696. 3547.86 1. 0.997 0.998 0.867 0.893 0.883
3 3 4 12 P: ∆h-TAILS (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -74.285 735.046 -309035. 3217.87 0.995 1. 0.998 0.864 0.895 0.883
4 1 3 12 D: Aff DPB 40% (kcal/mol) QM: LUMO (Hartree) QSAR: ASA H/ASA -0.13 -2.339 -2.745 0. 0.985 1. 0.994 0.863 0.893 0.881
5 2 4 12 QSAR: Rotatable bonds D: PHE615 B QSAR: ASA H/ASA 54.446 7.344 -2561.71 -9.696 0.99 0.997 0.994 0.86 0.895 0.881
6 2 4 12 QSAR: Chainbonds D: PHE615 B QSAR: ASA H/ASA 56.138 14.03 -4987.05 24.308 0.99 0.994 0.992 0.863 0.893 0.881
7 3 4 36 P: ∆h-LIPID-A (kJ/mol) D: PHE615 B QSAR: ASAplus/ASA -63.269 566.324 -274559. 3152.54 1. 0.994 0.996 0.869 0.889 0.881
8 3 4 12 P: ∆h-CORE-1 (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -42.589 924.569 -299790. -1005.7 0.995 0.997 0.996 0.86 0.895 0.881
9 1 3 12 D: Aff DPB 30% (kcal/mol) QM: LUMO (Hartree) QSAR: ASA H/ASA -0.127 -2.422 -2.712 -0.001 0.98 1. 0.992 0.86 0.893 0.879
10 1 2 12 D: #poses DPB 40% QSAR: Rotatable bonds QSAR: ASA H/ASA 6.384 43.123 -1887.3 13.96 0.99 1. 0.996 0.857 0.895 0.879
11 1 3 12 D: #poses DPB 40% P: ∆h-CORE-2 (kJ/mol) QSAR: ASA H/ASA -312.612 25.767 107021. 1340.04 0.995 1. 0.998 0.86 0.893 0.879
12 1 3 12 D: Aff DPB (kcal/mol) QM: LUMO (Hartree) QSAR: ASA H/ASA -0.124 -2.467 -2.664 -0.002 0.975 1. 0.99 0.857 0.895 0.879
13 1 3 36 D: GLN46 B P: ∆h-TAILS (kJ/mol) QSAR: ASAplus/ASA 228.948 -29.765 -103855. -6.769 0.995 0.994 0.994 0.86 0.893 0.879
14 1 4 12 QSAR: Plattindex D: PHE178 B QSAR: ASA H/ASA 43.512 48.02 -27192.8 -102.343 0.995 0.997 0.996 0.866 0.888 0.879

15 1 4 12 QSAR: Surface (Å2) D: PHE615 B QSAR: ASA H/ASA 34.629 278.931 -101122. -191.046 0.985 0.997 0.992 0.857 0.895 0.879

16 2 4 12 MD: ERR MPA (Å2) D: PHE615 B QSAR: ASA H/ASA 33.809 4.79 -1476.4 -3.831 0.99 0.994 0.992 0.86 0.893 0.879
17 2 4 12 MD: ERR ACY D: PHE615 B QSAR: ASA H/ASA 43.931 0.255 -94.278 0.712 0.995 0.987 0.99 0.869 0.886 0.879
18 2 4 12 P: ∆s-LIPID-A (J/mol K) D: PHE615 B QSAR: ASA H/ASA 37.815 355.474 -115024. -1188.95 0.985 0.997 0.992 0.857 0.895 0.879
19 3 4 12 QM: HOMO (Hartree) D: PHE615 B QSAR: ASA H/ASA -52.496 0.134 -59.11 0.128 0.995 0.997 0.996 0.866 0.888 0.879
20 3 4 12 QM: LUMO (Hartree) D: PHE615 B QSAR: ASA H/ASA -53.461 0.184 -59.362 -0.872 0.99 1. 0.996 0.854 0.897 0.879
21 3 4 12 P: ∆h-SOL (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -63.562 731.009 -298440. 5726.87 0.995 0.994 0.994 0.863 0.89 0.879
22 3 4 12 P: ∆h-IL-HEAD D: PHE615 B QSAR: ASA H/ASA -66.683 685.875 -306706. 6974.82 0.995 0.997 0.996 0.863 0.89 0.879
23 3 4 12 P: ∆h-LIPID-A (kJ/mol) D: PHE615 B QSAR: ASA H/ASA -78.304 668.34 -302908. 2764.13 0.995 1. 0.998 0.863 0.89 0.879
24 3 4 12 P: ∆h-CORE-1 (kJ/mol) D: #poses DPB 30% QSAR: ASA H/ASA -73.633 724.374 -379461. 6888.94 0.985 0.994 0.99 0.863 0.89 0.879
25 1 3 12 D: Aff DPB 20% (kcal/mol) QM: LUMO (Hartree) QSAR: ASA H/ASA -0.123 -2.428 -2.695 0.004 0.995 0.99 0.992 0.868 0.884 0.878
26 1 3 12 D: #poses DPB 40% P: ∆h-IL-HEAD QSAR: ASA H/ASA -698.75 30.461 181346. -420.221 0.99 1. 0.996 0.853 0.894 0.878
27 1 3 12 D: #poses DPB 40% P: ∆h-IL-GLY (kJ/mol) QSAR: ASA H/ASA -350.939 27.876 111184. 2597.91 0.995 1. 0.998 0.859 0.89 0.878
28 1 3 12 D: #poses DPB 40% P: ∆h-LIPID-A (kJ/mol) QSAR: ASA H/ASA -309.314 24.115 98180.8 164.15 0.995 1. 0.998 0.859 0.89 0.878
29 1 3 36 D: #poses DPB 40% P: ∆h-CORE-2 (kJ/mol) QSAR: ASAplus/ASA 260.738 -19.013 -88564.3 365.962 0.995 0.997 0.996 0.856 0.892 0.878
30 1 4 12 D: GLN46 B D: PHE615 B QSAR: ASA H/ASA 56.089 102.781 -37337.1 118.866 0.995 0.99 0.992 0.865 0.886 0.878
31 1 3 12 D: ARG620 B QM: HOMO (Hartree) QSAR: ASA H/ASA -0.123 36.397 40.731 -0.524 0.99 0.997 0.994 0.853 0.894 0.878
32 1 4 12 QSAR: Randicindex D: PHE178 B QSAR: ASA H/ASA 51.036 4.448 -3388.78 19.364 0.995 0.99 0.992 0.868 0.884 0.878
33 1 4 12 QM: E thermal (kcal/mol) D: #poses DPB 30% QSAR: ASA H/ASA 56.572 88.556 -58795.5 -30.918 0.995 0.997 0.996 0.856 0.892 0.878

34 2 4 12 MD: MPA (Å2) D: PHE615 B QSAR: ASA H/ASA 46.023 29.777 -12126.4 49.277 0.995 0.99 0.992 0.868 0.884 0.878

35 2 4 12 MD: ERR MPA (Å2) D: GLN176 B QSAR: ASA H/ASA 26.861 4.741 -1229.01 -6.514 0.975 0.994 0.986 0.853 0.894 0.878
36 2 4 12 MD: ERR ACY D: GLN176 B QSAR: ASA H/ASA 43.017 0.226 -75.808 -0.277 0.98 0.997 0.99 0.853 0.894 0.878
37 2 4 12 QSAR: Chainatoms D: PHE615 B QSAR: ASA H/ASA 62.152 12.995 -4981.36 54.159 0.995 0.987 0.99 0.868 0.884 0.878
38 2 4 12 P: ∆s-IL-GLY (J/mol K) D: PHE615 B QSAR: ASA H/ASA 37.517 431.642 -141139. -977.553 0.99 0.99 0.99 0.859 0.89 0.878
39 3 8 12 QM: HOMO (Hartree) P: HB-MEM-INTER QSAR: ASA H/ASA -0.638 0.116 -0.606 -0.018 0.985 0.994 0.99 0.865 0.886 0.878
40 3 4 36 P: ∆h-TAILS (kJ/mol) D: PHE136 B QSAR: ASAplus/ASA -60.59 241.588 -155730. 1704.63 0.99 0.994 0.992 0.859 0.89 0.878

Table S8: Top-40 groups of three descriptors and associated ranges with strong (SP) and weak (WP) OM permeation according to the accuracy score of all active compounds. The trained
classification model over the compounds in the set G follow the equation ax + by + cz + d = 0, where x, y, and z are the axes of descriptors i, j, and k, respectively, and they are listed in the
measurement units of the descriptors. The evaluation metrics of positive predictive value (PPV), negative predictive value (NPV) and accuracy (a0) are listed for each descriptor for the compounds
of the set G only and for all active compounds, as indicated.
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