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ABSTRACT

In 2019, we developed Autometa, an automated binning pipeline that is able to effectively
recover metagenome-assembled genomes from complex environmental and non-model
host-associated microbial communities. Autometa has gained widespread use in a variety of
environments and has been applied in multiple research projects. However, the genome-
binning workflow was at times overly complex and computationally demanding. As a
consequence of Autometa’s diverse application, non-technical and technical researchers alike
have noted its burdensome installation and inefficient as well as error-prone processes.
Moreover its taxon-binning and genome-binning behaviors have remained obscure. For
these reasons we set out to improve its accessibility, efficiency and efficacy to further enable
the research community during their exploration of Earth’s environments. The highly
augmented Autometa 2 release, which we present here, has vastly simplified installation, a
graphical user interface and a refactored workflow for transparency and reproducibility.
Furthermore, we conducted a parameter sweep on standardized community datasets to
show that it is possible for Autometa to achieve better performance than any other binning
pipeline, as judged by Adjusted Rand Index. Improvements in Autometa 2 enhance its
accessibility for non-bioinformatic oriented researchers, scalability for large-scale and highly-
complex samples and interpretation of recovered microbial communities.

INTRODUCTION

Metagenomics enables the study of organisms that have thus far eluded cultivation, by
negating the need for the isolation of pure strains or indeed any laboratory culture prior to
sequencing (1). Such direct environmental sequencing and subsequent assembly generally

yields contigs from a complex mixture of species, and the de novo separation of contigs into
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individual genomes (“binning”) remains a computational challenge (2). We previously
developed Autometa, an automated binning pipeline that is able to effectively recover
genomes from highly convoluted environmental and non-model host-associated microbial
communities (3). This tool has seen widespread use in environments ranging from marine,
freshwater and terrestrial samples, including corals (4), red algae (5), kinetoplastids (6), deep
sea geothermal vents (7-9), sponges (10-12), coastal sediments (13), stromatolites (14),
seaweeds (15), shipworms (16), plateau lakes (17, 18), hot springs (19, 20), contaminated
rivers (21), beetles (22-25), Kickxellomycotina fungi (26), Ensifera insects (27), fermented
agave (28, 29), a marsh orchid rhizobiome (30), domesticated cattle (31, 32), mice (33) and
human gut (34), periodontal (35) as well as urinary tract (36) microbiomes. As a consequence
of Autometa’s widespread use, both non-technical and technical researchers alike have
communicated their frustrations regarding the ease of installation as well as the efficiency
and robustness throughout the various stages of the Autometa workflow. Moreover, the
behaviors of Autometa’s taxon-binning and genome-binning processes have remained
obscure. We originally envisioned Autometa’s taxon classification process simply as an aid to
genome binning in complex samples, and therefore the performance of taxon classification
has not been rigorously benchmarked (3). Likewise, while a number of parameters are user-
configurable in Autometa, we have previously not systematically explored their effects on
binning performance. On account of Autometa’s diverse applications and increasing user
base, we set out to address and improve upon these issues. Here we present the highly
augmented Autometa 2 release. Autometa 2 comes with many enhancements in
performance, maintainability and accessibility. This includes new features such as additional
parameters regarding pre-processing, taxon binning and genome binning, version-
controlled documentation, tooling for continuous integration, testing, benchmarking and
deployment, and finally modularization which provides all of these metagenomics processing

features through a python APL

Additionally, automated recovery of high-quality genomes from highly-complex samples or
samples with high degrees of micro-diversity remains recalcitrant, largely because of the
required time and compute requirements. Due to the size of these ever-increasing

metagenomic datasets, we created a “large data mode” and benchmarked the computational
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requirements and performance metrics for both Autometa versions 1 and 2, as well as “large
data mode”, alongside other common metagenomics software. We characterized Autometa’s
genome binning performance and examined binning behavioral changes based on 33,158
parameter configurations using the CAMI 2 datasets (2), and provide additional descriptions
of its taxon binning approaches. With these binning insights we outline next steps in
developing methods to accommodate datasets deemed intractable due to complexity and
scale. Non-model host-associated samples often fall under this category and are of particular
interest to the Kwan Group (10, 14, 22, 37). We also highlight the inherent difficulties with
recovery of highly-resolved genomes from highly-complex and host-associated

metagenomes.

MATERIAL AND METHODS
Workflow overview

The workflow for Autometa 2 is largely unchanged from Autometa 1, with the exception that
there are now more parameters that users can control. Briefly, Autometa first performs pre-
processing tasks where assembled contiguous sequences (contigs) are filtered by length and
taxon. The latter process assigns contigs to kingdom-level taxonomies, effectively separating
eukaryotic host-associated genomes from prokaryotic symbionts. Contigs are recursively
binned using nucleotide composition and read coverage, with successive rounds first
splitting the remaining contigs into groups from less to more specific canonical ranks (i.e.
kingdom, phylum, class, order, family, genus, species). Finally, Autometa attempts to recruit
any remaining unclustered sequences into one of the recovered putative metagenome-
assembled genomes (MAGs) through classification by a decision tree classifier (or optionally,
a random forest classifier). The resulting MAGs may then be subjected to manual inspection
prior to downstream comparative genomic analyses (a companion graphical interface,
Automappa (38), was developed specifically for this and may be found at:

https://qgithub.com/WiscEvan/Automappa).

The general Autometa workflow (Figure 1) consists of eight stages:
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1. Length-filtering: Discard short sequences that may resemble assembly artifacts
2. Coverage analysis: Calculate contig coverage (a proxy for abundance)

3. K-mer analysis: Determine sequence similarity based on nucleotide composition
4. ORF-calling: Identify contigs’ open-reading frames (ORFs)

5. Marker-annotation: Identify and annotate single-copy marker genes

6. Taxon-binning: Assign and group contigs by predicted taxonomic rank

7. Genome-binning: Single-copy marker gene guided recursive clustering of contigs

into MAGs

8. Unclustered recruitment: Using aggregate features of the recovered MAGs from
genome-binning, attempt to recruit unclustered contigs into their corresponding

MAG

Modularized code/workflow

The Autometa library has been refactored into individual modules with submodules, using an
object-oriented approach. This both lowers the barrier of entry for code contributions, and
simultaneously provides multiple commands to process metagenomic data before, during
and after the Autometa workflow. Due to the modular structure of the source code,
community-requested features may be readily integrated into the suite of Autometa
commands. As an example, we integrated the Genome Taxonomy Database (GTDB) (39) as
an additional database that can be used during the taxon-binning and genome-binning
stages, in place of the NCBI taxonomy, and similarly benchmark Autometa’s genome-binning

performance with GTDB in use.

New file and input options
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The previous Autometa version had a number of file handling limitations during database
and metagenome pre-processing. Database preparation required de-compressed inputs,
greatly increasing the disk requirements as well as limiting the versatility of incorporating
user-specific databases. Autometa 2 is now capable of handling gzipped inputs and outputs,
vastly lowering the user’s disk requirements. Both the Autometa Python library and the new
Nextflow workflow assist users in downloading and formatting all required databases.
Additionally, many of the intermediate results throughout the workflow may now be written

for user inspection, if desired.

Version controlled documentation and tutorials

Autometa 2 is accompanied with major improvements in its documentation. This includes
detailed instructions on how to install and configure Autometa to suit user-specific needs.
Detailed explanations are outlined in the available walkthrough tutorials for options
regarding which workflow to use, how to manage Autometa’s dependencies, how to select
the appropriate parameters for running the workflow and how to interpret results. With a
view to encouraging user-submitted code improvements and fixes, we have also released

contributing guidelines, and welcome input from the community.

The documentation is open source and freely accessible at https://autometa.readthedocs.io.

In addition to making the front-end of the pipeline easily accessible we have put
considerable effort into documenting the code itself. Autometa 2 contains type hints and
docstrings throughout to encourage reuse of existing functions and classes. Type hints allow
developers to quickly discern the necessary inputs and outputs and this was done with the
vision to0 make the codebase more readable and thus support contribution and feedback
from the bioinformatics community. We have also adopted one of the most widely accepted
style guides (Numpy) and have standardized the code-format using the uncompromising

code-formatting tool, Black (40).
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Ease of installation

The restructured Autometa package is now amenable to common and easy installation
options such as pip and conda. A docker image is also available, at

https://hub.docker.com/r/jasonkwan/autometa, allowing the package to be shared and run

in most compute environments. These Autometa distributions have also allowed widespread
use through the Open Science Pool, making Autometa available to a wide array of
distributed high-throughput computing facilities (41). Furthermore, Autometa is continuously
deployed, automatically pushing each release to the bioconda channel for use with the

conda package manager.

Integration with a workflow management framework, nf-core

Autometa is complex and makes use of multiple bioinformatic databases, software packages
and methods that can use significant cpu, disk and memory. To glue the different steps
together into a comprehensive workflow, and to parallelize processes where appropriate, we
created an optional Nextflow workflow using the nf-core framework (42, 43). This integration
provides robustness, efficiency, reproducibility and scalability. Autometa's Nextflow workflow
may be configured to submit tasks to a local machine, lab servers, and a variety of cloud
compute infrastructures. Nextflow also comes equipped with checkpointing whereby, if the
Autometa workflow were to be interrupted, tasks may be resumed from their most recently
completed process. Additionally, nf-core offers a browser-based submission interface
allowing Autometa users to easily configure their metagenomic analyses. Utilizing this
workflow management framework enables the submission of multiple metagenomes with
one submission file using a single command, which previously would have required constant
monitoring, possible re-submissions and a great deal of effort by the end-user in ensuring

each metagenome’s successful processing.

Benchmarking
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A Github repository (https://github.com/KwanlLab/MetaBenchmarks) has been provided

containing this study’s benchmarking methods. This is an open-source repository allowing

other users to regenerate metagenomics benchmarks for taxon binning and genome binning
performance comparisons. Its primary purpose is to provide transparency and reproducibility
when comparing metagenomics tools and has ultimately resulted in a repository where users

may add their own tools for benchmarking comparison.

Altogether, fifteen tools were benchmarked against Autometa versions 1 and 2 using two
different datasets. These datasets included assemblies which were taken from the second
round of the Critical Assessment of Metagenome Interpretation challenge (CAMI 2) (2) and
simulated communities which were initially published with the first Autometa release (3).
Here, we concentrated on comparing binning performance using CAMI 2 datasets, while

previously published simulated communities were used for taxon binning assessment.

For genome binning benchmarks, we utilized previously published results using the CAMI 2
datasets (2) to compare Autometa 2 to CONCOCT, MetaBAT2, MaxBin2, Vamb and Autometa
version 2 as well as git commit "146383e" of Autometa version 1, which is the version used
for the CAMI 2 challenge (44-47). Genome binning refiners were included in the CAMI 2
benchmarks and therefore MetaWRAP (48) and UltraBinner

(https://github.com/huangpg2019/ultrabinner) were included here for comparison, however

it should be noted these are not de novo genome binning algorithms, but perform consensus
clustering via MAGs obtained by the aforementioned genome-binning tools. Taxonomy
binning benchmarks used both CAMI 2 datasets as well as the simulated communities.
Previously published results using the CAMI 2 datasets (2) were retrieved for Kraken 2.0.8-
beta (49), Diamond 0.9.28 (50), LSHVec cami2 (51), MEGAN 6.15.2 (52), and PhyloPithiaS+ 1.4
(53). For the simulated communities dataset Autometa v1.0.3 and v2.1.0 as well as MMSeqs2
v13.45111 (54), Kraken 2.1.2 (49) and Diamond v0.9.21.122 (50) were compared. Taxon
binners were selected according to their intended use on metagenome assembilies (e.g.
contigs rather than reads), availability as an open-source command-line utility and

synchronization with NCBI's taxonomy databases.
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A variety of clustering and classification metrics were utilized to assess binner behavior and
performance, based on rationale offered by the CAMI 2 assessment (2). Briefly, following the
example of the CAMI 2 challenge, we adopt the combined use of Adjusted Rand Index (ARI)
and the percentage of binned base pairs in the dataset as a measure of binning performance.
The ARI measures the number of true positive matchings of base pairs binned together and
the number of true negatives binned apart as a proportion of the binned fraction of base
pairs, with 1 being a perfect score and 0 being no better than chance (55). We additionally
measured precision, recall and F1 score. Metrics were sample-weighted by both sequence
count (seq) and sequence length (bp). MAG-related metrics of completeness, purity, binned
percentage (sample-weighted as above) and percentage of genomes recovered (sample-

weighted as above) were assessed using the previously described methods (3, 56).

To calculate these metrics for the CAMI 2 data we adapted the benchmarking tool
Assessment of Metagenome BinnERs (AMBER) from the commands employed for Meyer et al.
(2). For comparison against the simulated communities (that use different ground truths and
databases), precision, recall and F1 scores were computed using the available Autometa
command ‘autometa-benchmark’ (Figure S5). Future binning studies may easily extend

MetaBenchmarks to perform custom parameter sweep analysis.

New methods to expand taxon binning

Following the length-filter task, the second optional pre-processing step during the
Autometa workflow is taxon binning. Autometa determines the lowest common ancestor
(LCA) of ORFs based on results from a protein database similarity search. The resulting ORF
LCA annotations are reduced by modified majority vote to assign taxonomic information to
individual contigs (3). The rationale for applying a majority voting scheme to each contigs’
OREFs is to reduce the confounding impact of horizontal gene transfer. Assigning taxonomy
to contigs allows for two features of Autometa - the separation of sequences from different

kingdoms (for example, host and microbiome) and the partitioning of contigs into simpler
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subfractions in order to simplify clustering. The first version of Autometa only allowed
domain-level taxon-filtering, whereas, this module is now capable of removing contigs
corresponding to a user-provided taxon at a user-provided canonical rank. The default
setting is to remove contigs outside of the kingdoms of bacteria and archaea. This has
previously been shown to be a crucial pre-processing step particularly for host-associated
metagenomes (3). Autometa uses Prodigal (57) for ORF prediction and Diamond (50) for
accelerated protein sequence alignment against NCBI's non-redundant (nr) protein database
(50, 57). The updated version of Autometa performs Prodigal’'s ORF prediction in parallel

(using GNUParallel), thereby decreasing Autometa’s overall runtimes.

Autometa’s modularization allows the user to pick and choose different tools for each stage
of the workflow. This includes homology search methods, LCA identification, voting schema
and filtering of putative taxon-specific contaminants. One deviation from the previous
Autometa workflow comes from a new taxonomy database integration, GTDB (39, 58). This
integration accommodates the revised designations outlined within GDTB to account for
many of the new and highly divergent microbes recovered from global metagenomic surveys.
Another advantage of GTDB is its rationalization of canonical ranks in terms of sequence
divergence, which should improve sequence-based taxonomic classification. However, one
limitation of GTDB is that it only provides taxonomic designations for bacteria and archaea,
therefore, a dual NCBI and GTDB approach must be taken if a metagenome is predicted to
contain sequence from other kingdoms. This proceeds first with filtering out any
contaminating kingdoms (i.e. Eukaryota, Viruses) using NCBI's non-redundant protein
database then subsequently assigning taxonomy for bacterial and archaeal fractions using
the GTDB database. The GTDB taxon results are then used as the taxon annotations during
the genome binning stage. This incurs additional overhead as two iterations of the protein
database similarity search must be performed (i.e. once against NCBI and another against
GTDB). However, since the GTDB database contains a combined size of ~64 gigabases (Gb)
(approximately 300,000 prokaryotic genomes) compared to ~163 Gb in nr, database

searches are much faster during GTDB classification.
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New methods to expand genome binning

Sequence similarity analysis. Sequence similarity by nucleotide composition is performed
using an alignment-free method that counts k-mers (sub-strings of k length) present in each
contig. K-mer counts are normalized, subjected to principal component analysis (PCA), then
reduced to two dimensions via a dimension reduction approach known as embedding. This
subworkflow is commonly referred to as a k-mer frequency analysis and Autometa 2 contains
multiple new parameters at each process of this stage. Autometa is packaged with a new
entrypoint ('autometa-kmers') that provides options such as k-mer length, normalization
method, PCA dimensions, embedding method and embedding dimensions. Additionally,
runtimes have been reduced by parallelization of the k-mer counting process. With these
additional parameters, the user now has multiple perspectives with which to analyze their
metagenome. For example, each embedding method performs dimension reduction in a
different manner leading to different coordinates in the embedded space. These various
embeddings may be visualized to better interpret the relationships between sequences and
their corresponding MAGs. An example analysis on the CAMI 2 marine gold standard

assembly dataset is shown in Figure S2.

Scaling to high-complexity metagenomes. Autometa’s original taxon-guided genome-binning
approach recursively clusters contigs as it iterates through the metagenome’s taxon bins.
This is performed in an ordered and sequential manner from kingdom to species where,
following each iteration, unbinned contigs are passed on to the subsequent and more
specific taxon subfractions. However, highly-complex metagenomes may contain many
contigs in a corresponding taxon bin causing prohibitively large memory requirements and
lengthy runtimes for the clustering process. Therefore, Autometa 2 is equipped with a new
"large-data-mode” binning module (autometa-binning-ldm entrypoint) which was optimized

to handle the most complex metagenomes that have been assembled to date.

The pseudocode depicting the "large-data-mode" algorithm may be found in Figure S3.

Briefly, similar to the original taxon-guided approach, Autometa proceeds by sequentially
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iterating through taxon bins. At this stage, rather than the proceeding with the original
method where the taxon bin is subjected to recursive clustering and MAG quality analysis,
“large-data-mode” validates the taxon bin size according to whether it is within the user-
designated taxon bin size range (e.g. the --max-partition-size’ parameter). If within range,
the taxon bin undergoes its own k-mer frequency embedding immediately prior to the
aforementioned identical recursive clustering approach. If the taxon bin has been deemed
too complex, i.e. greater than the user-designated taxon bin size, Autometa further partitions
it (without clustering) in the next iteration. The rationale for skipping a partition that is too
complex is that clustering will take an inordinate amount of time and resources and will likely
not result in high quality bins. An edge case arises with the inclusion of taxon bin specific k-
mer frequency analyses. The dimension reduction technique utilized during the k-mer
frequency analysis requires taxon bin sizes in terms of number of contigs be greater than the
user's specified dimensions for both the initial PCA reduction step (if applicable) and the
embedding step. This edge case can occur when a taxon has only a few representatives,
reflecting a relatively simple taxon bin. Under these circumstances the k-mer coordinates
corresponding to the simple taxon bin are retrieved from a pre-computed canonical rank k-
mer frequency analysis. Following the determination of k-mer frequency analysis coordinates,
recursive clustering proceeds in the same manner as mentioned above. The “large-data-
mode” method also replaces the previously used default clustering algorithm, Density-based
Spatial Clustering of Applications with Noise (DBSCAN) with its corresponding hierarchical
approach (HDBSCAN) (59-61) due to its improved scalability and memory usage.

In addition, each iteration’s k-mer analysis and genome binning are checkpointed, to allow
the pipeline to restart at the latest assessed taxon in the event of an interrupted Autometa
run. These checkpoints and their accompanying outputs also allow for more granular

inspection of Autometa’s binning decisions.

Genome binning optimization by parameter sweep benchmarking
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Classification performance evaluation. Autometa version 1 (cami2 branch commit-146383e)
(3) was assessed during the second round of the Critical Assessment of Metagenome
Interpretation (CAMI) challenge, which benchmarked a variety of recently published taxon
and genome binning tools (2). The CAMI 2 competition used metagenomes constructed to
represent different complexities currently challenging genome binning methods including a
marine dataset consisting of highly divergent genomes (“marine”) and a dataset of many
closely related strains (“strain madness”). The CAMI team published gold standard
assemblies (GSA) as well as megahit assemblies (MA) for each of these sample types, totaling
four metagenome assemblies available for binning (2). The published CAMI 2 benchmarks
revealed that Autometa v1 performed higher than most tools in some metrics (average
purity) and worse for others (average completeness, F1 score, ARI). The consistently low
average completeness of MAGs recovered from the Autometa v1 results may have been due
to the default Autometa vl parameters used for the CAMI submissions: 20% minimum MAG
completeness, and 95% minimum MAG purity (based on single-copy bacterial marker counts
per MAG). It should be noted that Autometa's default settings are set for low completion
and high purity because our lab primarily focuses on host-associated bacteria which often
have reduced genomes. Consequently, the metrics published by the CAMI challenge (2)
closely reflected Autometa’s default settings (average completeness ranged from 2.5-32.2%
and purity 91.7-94.3%). This suggested that increasing the completeness threshold within

Autometa’s own selection criteria may increase performance across these communities.

To explore this, the raw CAMI 2 benchmarks for Autometa 1 and other binning pipeline
reported in the original paper were retrieved and computed alongside Autometa’s new
binning methods and sweeping a selection of run parameters now possible with Autometa
2's user-controlled settings (Table 1). Binners were assessed using a variety of metrics
including: average MAG purity, completeness, F1 score and adjusted Rand index (ARI), all
used in the CAMI 2 publication (2). Metrics were calculated using AMBER v2.0.3, a tool
produced for the CAMI 2 challenge (56). The Autometa parameters swept included clustering
methods, as well as four cutoffs applied during the genome binning process. The cutoff
parameters correspond to four MAG properties which ultimately determine whether to retain

the current MAG prediction during binning: single-copy marker completeness and purity as
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well as coverage standard deviation and GC content standard deviation. Cutoffs for MAG
completeness and purity were assessed from 10% to 100% in increments of 10%. GC content
and coverage standard deviations were assessed at values of 2, 5, 10 and 15. The sweep
totaled 1,296 parameter combinations per clustering method, resulting in 2,592
configurations per sample (10,368 total jobs from all four CAMI 2 datasets). Large-data-
mode takes additional parameters for k-mer methods such as normalization and embedding.
Two normalization methods were selected: center log-ratio and isometric log-ratio transform.
Two embedding methods were selected: Barnes-Hut t-distributed Stochastic Neighbor
Embedding (BH-tSNE) (62) and Uniform Manifold Approximation (UMAP) (63). The product
of large-data-mode genome binning totaled 5,184 parameter combinations per clustering
method resulting in 10,368 jobs per sample (41,472 total jobs from all four CAMI 2 datasets).
All genome binning results were formatted to bioboxes format version 0.9.0 (64) using the

‘autometa-cami-format’ command, then benchmarked using AMBER (56).

AMBER computes a variety of classification metrics, including measures of cluster purity
(precision), completeness (recall) and their harmonic mean (F1 score). To compute these
classification scores AMBER applies a mapping strategy where each putative MAG is
assigned to a single reference genome, such that the representation of the reference
genome is maximized by genome length. Following MAG reference genome assignment,
measures of purity and completeness may be determined. Purity represents the ratio of
correct assignments (base pairs that overlap with the mapped genome) to incorrect
assignments, quantifying the ability of a binner to construct the respective genome without
contaminating it with other genomes’ contigs. Completeness indicates the fraction of the
genome represented (as measured by the sum of base pairs of the genome). AMBER also
determines the adjusted Rand index which is a normalized measure of the Rand index. The
Rand index is a clustering measure which compares partitions of base pairs by their
membership within the same or disparate genome. True positives (TP) are determined by
whether the base pairs within the same genome are grouped in the same MAG. True
negatives (TN) are determined by whether the base pairs of different genomes are grouped
in separate MAGs. The Rand Index is the sum of these values divided by the sum of all of the

pairs. This then undergoes a normalization transformation by accounting for random


https://doi.org/10.1101/2023.09.01.555939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555939; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

clustering resulting in the final computed adjusted Rand index (ARI) metric. A perfectly
matched genome pair will return a score of one while a reference genome completely split
across different MAGs will return zero. A MAG with all its members (i.e. complete) but with
other members of a different MAG (i.e. contaminants) is penalized and will be reflected in the
ARI score. Conversely (since ARI is a symmetric measure), pure MAGs with unnecessary

fragmentation are also penalized.

RESULTS AND DISCUSSION
Benchmarks

Genome binning. Our primary point of comparison with Autometa 2 genome binning
performance was the CAMI 2 binning challenge (2), in which Autometa 1 took part. In that
work, Autometa 1 was found to have high average bin purity compared to other pipelines,
but it suffered in terms of other metrics, especially ARI (Figure 2), and was judged to have
low performance overall. However, as this assessment reflected the default parameters of
Autometa 1, we present a more complete exploration of the additional user-defined
parameter set here with Autometa 2 (Table 1). Across this parameter sweep, we found that
ARI values higher than other binners and often close to the ground truth were achievable,
while maintaining binned percentages either comparable to or surpassing other binners
(Figure 2). Binned percentage was the primary factor which suffered with worsening
metagenomic assembly quality (i.e. gold standard versus MegaHit), but ARI values were
roughly comparable between assembly qualities. In Figure 2, the original Autometa 1
benchmarks from the CAMI 2 challenge are distinct from the Autometa 2 parameter sweep
results, and this is attributable to the addition of both GC and coverage standard deviation
limits in Autometa 2. Our results show that while these limits can lower F1 score and

sometimes binned percent, they invariably increase ARL

On the basis of our parameter sweep, it appears Autometa 2 is highly reliable when grouping
contigs together (as well as for choosing to leave contigs from disparate genomes separate).

In fact, across all four datasets of seq and bp-weighted ARI, Autometa 2 outperformed all
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other binners, reaching near perfect scores (Figure S4). This tendency towards stringency
excludes putative contamination at the expense of leaving genomes incomplete or
fragmented. In other words it results in increases in precision, lower misclassification rates

and consequently decreases in recall, completeness and F1 score measures.

Understanding Autometa’s genome binning behavior via these metrics provides future
algorithmic directions such as implementing a refinement process where high-quality
fragmented MAGs could be merged into more complete genomes, suggestive of similar
consensus clustering approaches as already outlined (e.g.

https://github.com/huangpq2019/ultrabinner and (48)). If implemented correctly, one would

expect an improvement in completeness, recall and overall F1 score, while maintaining
equivalent performance in precision, purity and misclassification rates. Across all datasets
benchmarked, large-data-mode was the majority leader corresponding to AR, F1 score and
average completeness (bp-weighted), while ranking below the autometa-binning entrypoint
in average purity (Table S1). Generally the HDBSCAN clustering method occurred more
frequently in the best performing parameter configurations for the gold standard assembilies.
In contrast, DBSCAN performed better with the megahit assemblies. Interestingly, the
highest scoring completeness parameter configurations used relatively low completeness
thresholds of 10%, 20%, 30%, and 70% and one purity configuration (10%). This is in
opposition to the expected result of higher completeness configurations recovering more
complete MAGs. The cutoffs at ten and twenty percent completeness yielded better results in
the megahit assemblies whereas the higher thresholds of thirty and seventy percent
completeness performed better in the gold standard assemblies (marine and strain madness,
respectively). In contrast, the lowest misclassification rates and correspondingly high ARI
values (medians ranging from 93-95%) were observed in the results configured with

relatively high completeness (e.g. 50%, 80% and 90%) and purity (e.g. 40%, 90%) thresholds.

This behavior is important to consider when choosing what is of interest in a particular
dataset. From the parameter sweep approach, it appears Autometa’s overall tendency is to

be more stringent rather than lenient, with most parameter sets recovering highly-reliable
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(yet fragmented) MAGs (Figure S5). Some parameter sets however may degrade the
reliability of these MAGs with slight improvements in completeness and F1 score. This is
typified by the Autometa 1-like approach of setting limits on the standard deviation of GC
and coverage in bins to infinity (Figure S1). The broad distribution displayed by these results
highlight the adaptability of Autometa and the scope of fine-tuning available to achieve the
desired genome binning result. In settings where a ground truth is not known, different
Autometa binning results could be compared with an independent method for estimating
genome quality, such as CheckM (65). The effects of Autometa’s user-defined parameters is
in contrast to the previously mentioned results from Meyer et al. where parameter changes
across all tools accounted for relatively minor changes in performance (approximately 3% as

mentioned by Meyer et al.) (2).

Taxon binning. To improve Autometa's performance, we set out to assess the validity of its
taxon binning predictions. Robust taxon assignment at each canonical rank may improve
genome binning performance in multiple ways. For example, application of a taxon filter to
"denoise" a sample. This is particularly useful regarding host-associated metagenomes (14,
22), where any Eukaryotic contamination may be removed. Second, taxon-aware genome
binning algorithms may use these taxon bins to confine contigs under consideration for

placement within a putative MAG, in order to avoid clustering on very large sets of contigs.

AMBER was used to compute taxon binning metrics (see Genome Binning section for details
on metrics) to assess performance of each taxon binner's results. These metrics were
determined across all canonical ranks (kingdom, phylum, class, order, family, genus, species)
to demonstrate the scope of each taxon-binner’s capabilities and limitations. Benchmarking
was performed using simulated communities (see supplementary Figure S6) and the CAMI 2
datasets, published by Miller et al. and Meyer et al,, respectively (2, 3). Autometa consistently
outperformed all other taxon-binners (Diamond, Kraken2, MMSeqs2) for the simulated
community benchmarking (Figure S6). To more broadly compare Autometa to existing tools,
Autometa CAMI 2 taxon binning results were benchmarked against previously published

results of Meyer et al. (2) (Figure 3, Table S2).
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For the strain madness dataset, Autometa is more performant than all except PhyloPithiaS+,
according to F1 score, at the kingdom, phylum and class canonical ranks until also being
outperformed by MEGAN for the lower ranks (order, family, genus, species). Similarly,
Autometa is near-perfect by ARI, with Kraken 2 being slightly better at the species rank.
Taking both F1 score and ARI together, Autometa appears to be more consistent at
accurately assigning contigs their respective taxon across all canonical ranks (Figure 3).
PhyloPithiaS+ may be an optimal choice for replacement of Autometa’s taxon binning sub-
workflow when working with datasets containing high amounts of strain overlap (i.e. high
levels of microdiversity), due to its consistency across canonical ranks by both F1 and ARI
metrics. However, this software package presented difficulties in set up and is no longer
maintained, rendering it unsuitable for integration into the Autometa pipeline. In contrast,
according to ARI, PhyloPithiaS+ always performed worse than Autometa against the marine
dataset with a difference of -0.23 at the species rank. In regards to the marine dataset, it
appears MEGAN may be the optimal taxon binning approach. These results suggest that
replacing Autometa’s taxon binning results with MEGAN's for Autometa’s taxon-aware
genome binning workflow may improve Autometa’s overall genome binning performance.
However, MEGAN is commercial software and consequently makes integration impractical as

its requirement would unnecessarily restrict the Autometa user base to MEGAN users.

When considering taxon binner performance collectively with F1 score and ARI across both
datasets, Autometa appears to be as reliable as other existing state-of-the-art taxon binning
algorithms. Autometa seems to maintain a tendency towards stringency, whereby it is
conservative in only assigning contigs when confident about their specific taxon. The trade-
off is a result that contains fewer contigs assigned a specific taxon. It should also be noted
that across all datasets and all tools, at the species level the maximum F1 score never
reached greater than half the theoretical maximum of one. This underscores the overall

necessity for further taxon binning method development.
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Another aspect of Autometa’s taxon binning pipeline is that it allows deconvolution of
sequences derived from different kingdoms, which can be especially important in many
environmental and host-associated metagenomes, where either eukaryotic microorganisms
or the host genome may interfere with prokaryotic genome binning. Therefore, we
reexamined two host-associated metagenomes (10, 22), using our manually curated binning
results for two specific uncultured symbionts as the ground truth. We assessed the
performance of both Autometa v2 and v1 (as well as v2 under large data mode) against
binning pipelines not available at the time of our v1 publication (Figure 4, left). With respect
to the "ground truth”, all Autometa versions scored highly as measured by F1, although the
Autometa v2 run without large data mode could not achieve the maximum F1 for
“Candidatus Thermophylae lasonolidus”. This result may be due to the presence of a multi-
copy biosynthetic gene cluster that exhibits differing nucleotide frequencies in the genome.
MaxBin2 did not achieve F1 scores as good as the best Autometa scores, but VAMB and
MetaBat2 approached similar good scores. However, it should be noted that F1 score only
reflects precision and recall of a specific ground truth genome, and additional contaminants
in the bin would not detract from a good F1 score. Correspondingly, we find that MaxBin2,
VAMB and MetaBat2 all suffered from significant contamination from eukaryotic, viral or

archaeal contigs, as well as contigs unclassified on the kingdom level (Figure 4, right).

Large data mode. In CAMI 2 datasets, large data mode persistently performed comparably to
the conventional Autometa pipeline, across the parameter sweep (Figure 2). In both
conventional and large data mode, binning of the gold standard marine assembly could not
be completed when using DBSCAN as the clustering algorithm, because it requires much
more time and memory than HDBSCAN (66). However, even utilizing HDBSCAN for the
conventional pipeline, a greater fraction of sample parameter combinations could be
completed in large data mode versus the regular approach (Figure 5). In the simulated
datasets, there was a tradeoff with large data mode, which exhibited lower F1 scores than the

conventional pipeline except in the most complex datasets (Table S3).
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Overview of improvements. Autometa has seen widespread use by researchers across the
world and along the way its users have provided helpful feedback and suggestions which
have guided the second release’s development roadmap. Primary among these difficulties,
now amended, is Autometa’s installation. The Autometa library is now distributed via
bioconda and docker, allowing the construction of the compute environment and installation
to be performed in a few simple commands. This has been complemented with extensive
documentation allowing accessible user customization. Efforts have also been made towards
making Autometa fault-tolerant, scalable and end-user focused with implementations of
nextflow workflows following nf-core standards. These implementations provide access to an
easy-to-use graphical user interface (GUI) to aid non-bioinformatics oriented researchers.
Likewise, users with access to high-performance compute facilities (or cloud compute
infrastructures) may also take advantage of the scalability offered by the Autometa nextflow
workflow. Pre-processing, taxon binning, genome binning and binning refinement tasks have
been modularized within the Autometa library, providing a structured foundation for future
long-term use, maintenance and development. Moreover, Autometa’s “large-data-mode”
has been presented in an effort to scale genome binning methods to high-complexity
environmental samples. The second major Autometa release provides updates to support
multiple areas within metagenome mining and was completely refactored to support
straightforward extension and integration with existing ‘omics workflows. These measures
were taken to continue to refine Autometa as a key tool for evolutionary studies as well as

for aiding culturing and synthetic biology efforts.

Current challenges. Despite these upgrades, Autometa (as well as other binners) continue to
struggle with highly-complex metagenomes where many organisms are novel. During the
LCA step of the taxon binning subworkflow, Autometa only uses the hits whose bitscore is
within the top 10% of the top hit and is limited to 200 hits total to assign a taxonomic ID,
discarding the remaining hit information respective to each query sequence. Furthermore,
Autometa fails to account for the divergence of query sequence from its BlastP hits. This may
lead to conservative classification of divergent contigs resulting in fewer taxon-assigned
contigs as was reflected in the CAMI 2 taxon-binning benchmarks. At this time Autometa

does not use all of the information gathered from sequence similarity searches against


https://doi.org/10.1101/2023.09.01.555939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555939; this version posted September 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NCBI's non-redundant (nr) protein database. Adding to its existing limitations in taxon-
binning, draft-quality metagenome-assembled genomes (MAGs) are included in NCBI's nr
database construction. This inclusion introduces the potential for erroneous assignments of
subjects to taxids, with these errors being perpetuated by the incorrect genome binning of a
contig into a draft-quality MAG. The prevalence and magnitude of this error may merit
further investigation. Conversely, these artifacts may resolve themselves through continued

revisions of NCBI's draft-quality MAGs following continued sequencing efforts.

Improving Autometa’s taxonomic classification methods, to deal with database idiosyncrasies
and the common presence of novel species, is crucial in order to allow partitioning of large
datasets to make the individual fractions more tractable for embedding and clustering
algorithms. Algorithmic and computational developments have produced ever-increasing
metagenome assembly sizes. As metagenome assembly algorithms scale, preprocessing and
genome-binning tasks must similarly progress. Autometa’s available clustering
implementations (DBSCAN and HDBSCAN) scale with the input size better than the worst
case scenario, but are far from the theoretical best case. In Big O terminology, the
computational resources they need scale with the input size, n, below 0(n?) complexity, yet
are unable to attain even 0(n log (n)) complexity (66). This limitation is partially addressed
by reducing the number of contigs to cluster (i.e. limiting n) by iterating over taxon binning
results rather than the entire metagenome assembly. However, metagenomes with many
community members may have an abundance of representatives within each taxon iteration,
thereby proportionally deteriorating runtime performance. Thus far, orthogonal
metagenome annotations, such as coverage, taxonomy and k-mer frequencies, have helped
to improve the manner in which to subset the metagenome prior to clustering. Future
algorithmic development such as additional sampling heuristics or annotation techniques

may ultimately enhance overall genome-binning efficiency.
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The Autometa source code can be found at https://github.com/KwanLab/Autometa and

through Figshare (doi: 10.6084/m9.figshare.21944876). The MetaBenchmarks source code
can be found at https://github.com/KwanLab/MetaBenchmarks and through FigShare (doi:

10.6084/m9.figshare.21952610). The simulated datasets and ground truths used in
benchmarking were deposited to Figshare (doi: 10.6084/m9.figshare.24070359).
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TABLE AND FIGURES LEGENDS
Graphical abstract. Autometa: An automated taxon binning and genome binning workflow

for single sample resolution of metagenomic communities.

Table 1. Parameter configurations utilized during parameter sweep benchmarking

Figure 1. An overview of the Autometa workflow, depicting two possible routes. The first
route performs genome binning without further metagenome processing. The second route
incorporates Autometa’s taxon binning subworkflow as an additional metagenome
processing task. Routes depicted are parallelized where possible when using Autometa’s
nextflow workflow. Multiple user inputs may be provided with an input sample sheet for

concurrent processing (and checkpointing) of multiple metagenomes.

Figure 2. Autometa consistently outperforms all other genome binning tools, reaching near
perfect scores according to clustering based on Adjusted Rand Index (ARI), with the tradeoff
of lower F1 score. The Autometa 2.1.0 DBSCAN jobs for the marine GSA and megahit

datasets did not finish due to memory requirements and are therefore absent.

Figure 3. Taxon binning benchmarks against CAMI 2 marine and strain madness gold
standard assemblies. Metrics were determined according to canonical ranks, corresponding
to kingdom (k), phylum (p), class (c), order (0), family (f), genus (g) and species (s). Autometa

again achieves highly reliable results according to the adjusted Rand index (ARI) and
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according to F1 score is amongst the top three taxon binners as classifications are performed

on more specific canonical ranks. Both metrics are bp weighted.

Figure 4. Genome binning results for a beetle (Lagria villosa) and sponge (Forcepia sp.)
metagenome. Panel A displays length-weighted F1 scores for two BGC-containing genomes
Burkholderia gladioli Lv-StB and “Candidatus Thermopylae lasonolidus” pertaining to L.
villosa and Forcepia sp., respectively. Autometa v2 and Autometa large-data-mode (v2-ldm)
outperform other genome binners for the B. gladioli Lv-StB genome. Autometa v1.0.3 and
Autometa large-data-mode (v2-ldm) outperform other genome binners for “Ca.
Thermopylae lasonolidus”. Panel B depicts the kingdom percentage of MAGs recovered by
genome binner for input metagenomes. An (*) indicates genome binning results when using
only the bacterial classified sequences as annotated by the Autometa v2 taxon binning
workflow. All genome binning results from other genome binners incorporate sequences
from other kingdoms, reinforcing the benefits of pre-processing host-associated

metagenomes by taxon-binning.

Figure 5. Autometa genome binning runtime and memory usage benchmarks against the
CAMI 2 communities. Each point represents a completed genome-binning result. Panel A
represents the number of completed runs retrieved using the ‘autometa-binning’ command
with 6,472 total results recovered. Panel B shows completed results using the large-data-
mode ‘autometa-binning-ldm’ command which was capable of computing 9,073
configurations with processing times under 48 hours and RAM usage (mostly) under 50GB.
Each entrypoint was provided with the same set of 10,368 parameter configurations. Point
color represents the different source datasets used in testing, and the inset pie charts show
the proportion of parameter combinations that were completed within 48 hours for

autometa-binning and autometa-binning-ldm.
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Table S1. Autometa parameter configuration performance. Parameter configurations are
displayed with their corresponding metric’s score for the computed metrics across each

CAMI 2 dataset.

Table S2. CAMI 2 taxon binning benchmarks including Autometa v2 results.

Table S3. Simulated communities genome binning benchmarks of Autometa v1 and

Autometa “large-data-mode”

Figure S1. Performance comparisons between Autometa v2 with cutoffs for GC content
standard deviation and coverage standard deviation set to infinity to mimic v1-like behavior.

Comparisons are against the gold standard used in the CAMI 2 challenge.

Figure S2. K-mer frequency analysis coordinates determined by their respective embedding
method on the CAMI2 marine gold standard assembly prior to filtering by length and
subsetting by taxon. Contigs are colored by their ground truth reference genome (num.

MAGs = 976).

Figure S3. Pseudocode of the “large data mode” binning module

Figure S4. Autometa parameter sweep genome binning results with Meyer et al. benchmarks.

ARI results were determined using AMBER.

Figure S5. Autometa user-provided genome binning thresholds (completeness, purity, GC
content std. dev., coverage std. dev.) against AMBER computed metrics for the CAMI 2

datasets. Increasing completeness and purity thresholds tended to return results with higher
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average purity and ARL In contrast, increasing completeness thresholds tended to result in
lower average completeness. Lower values for the newly introduced GC content and
coverage standard deviation cutoffs appear to improve ARI and average purity, while
displaying negligible effects for F1 and average completeness. Default parameter set:
completeness = 20, purity = 90, GC content std. dev. = 5, coverage std. dev. = 15. Strict
parameter set. completeness = 90, purity = 90, GC content std. dev. = 2, coverage std. dev. =
2. Relaxed parameter set: completeness = 10, purity = 10, GC content std. dev. = 15,

coverage std. dev. = 15,

Figure S6. Taxon binning benchmarks against Autometa simulated communities. Autometa
consistently outperforms other taxon-binning tools with the tools closest relative to
performance being MMseqs2. The sharp decline of Autometa v2's performance for the
2500Mbp community reflects a truncated diamond blastp run. The Autometa v1 diamond
blastp results were used with Autometa v2 and showed comparable performance to

Autometa vl (denoted with an asterisk).
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Autometa parameter sweep genome binning AMBER classification results
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Autometa genome binning memory usage and runtime performance
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