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ABSTRACT 

In 2019, we developed Autometa, an automated binning pipeline that is able to effectively 

recover metagenome-assembled genomes from complex environmental and non-model 

host-associated microbial communities. Autometa has gained widespread use in a variety of 

environments and has been applied in multiple research projects. However, the genome-

binning workflow was at times overly complex and computationally demanding. As a 

consequence of Autometa’s diverse application, non-technical and technical researchers alike 

have noted its burdensome installation and inefficient as well as error-prone processes. 

Moreover its taxon-binning and genome-binning behaviors have remained obscure. For 

these reasons we set out to improve its accessibility, efficiency and efficacy to further enable 

the research community during their exploration of Earth’s environments. The highly 

augmented Autometa 2 release, which we present here, has vastly simplified installation, a 

graphical user interface and a refactored workflow for transparency and reproducibility. 

Furthermore, we conducted a parameter sweep on standardized community datasets to 

show that it is possible for Autometa to achieve better performance than any other binning 

pipeline, as judged by Adjusted Rand Index. Improvements in Autometa 2 enhance its 

accessibility for non-bioinformatic oriented researchers, scalability for large-scale and highly-

complex samples and interpretation of recovered microbial communities. 

 

INTRODUCTION 

Metagenomics enables the study of organisms that have thus far eluded cultivation, by 

negating the need for the isolation of pure strains or indeed any laboratory culture prior to 

sequencing (1). Such direct environmental sequencing and subsequent assembly generally 

yields contigs from a complex mixture of species, and the de novo separation of contigs into 
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individual genomes (“binning”) remains a computational challenge (2). We previously 

developed Autometa, an automated binning pipeline that is able to effectively recover 

genomes from highly convoluted environmental and non-model host-associated microbial 

communities (3). This tool has seen widespread use in environments ranging from marine, 

freshwater and terrestrial samples, including corals (4), red algae (5), kinetoplastids (6), deep 

sea geothermal vents (7–9), sponges (10–12), coastal sediments (13), stromatolites (14), 

seaweeds (15), shipworms (16), plateau lakes (17, 18), hot springs (19, 20), contaminated 

rivers (21), beetles (22–25), Kickxellomycotina fungi (26), Ensifera insects (27), fermented 

agave (28, 29), a marsh orchid rhizobiome (30), domesticated cattle (31, 32), mice (33) and 

human gut (34), periodontal (35) as well as urinary tract (36) microbiomes.  As a consequence 

of Autometa’s widespread use, both non-technical and technical researchers alike have 

communicated their frustrations regarding the ease of installation as well as the efficiency 

and robustness throughout the various stages of the Autometa workflow. Moreover, the 

behaviors of Autometa’s taxon-binning and genome-binning processes have remained 

obscure. We originally envisioned Autometa’s taxon classification process simply as an aid to 

genome binning in complex samples, and therefore the performance of taxon classification 

has not been rigorously benchmarked (3). Likewise, while a number of parameters are user-

configurable in Autometa, we have previously not systematically explored their effects on 

binning performance. On account of Autometa’s diverse applications and increasing user 

base, we set out to address and improve upon these issues. Here we present the highly 

augmented Autometa 2 release. Autometa 2 comes with many enhancements in 

performance, maintainability and accessibility. This includes new features such as additional 

parameters regarding pre-processing, taxon binning and genome binning, version-

controlled documentation, tooling for continuous integration, testing, benchmarking and 

deployment, and finally modularization which provides all of these metagenomics processing 

features through a python API. 

 

Additionally, automated recovery of high-quality genomes from highly-complex samples or 

samples with high degrees of micro-diversity remains recalcitrant, largely because of the 

required time and compute requirements. Due to the size of these ever-increasing 

metagenomic datasets, we created a “large data mode” and benchmarked the computational 
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requirements and performance metrics for both Autometa versions 1 and 2, as well as “large 

data mode”, alongside other common metagenomics software. We characterized Autometa’s 

genome binning performance and examined binning behavioral changes based on 33,158 

parameter configurations using the CAMI 2 datasets (2), and provide additional descriptions 

of its taxon binning approaches. With these binning insights we outline next steps in 

developing methods to accommodate datasets deemed intractable due to complexity and 

scale. Non-model host-associated samples often fall under this category and are of particular 

interest to the Kwan Group (10, 14, 22, 37). We also highlight the inherent difficulties with 

recovery of highly-resolved genomes from highly-complex and host-associated 

metagenomes.  

 

MATERIAL AND METHODS 

Workflow overview 

The workflow for Autometa 2 is largely unchanged from Autometa 1, with the exception that 

there are now more parameters that users can control. Briefly, Autometa first performs pre-

processing tasks where assembled contiguous sequences (contigs) are filtered by length and 

taxon. The latter process assigns contigs to kingdom-level taxonomies, effectively separating 

eukaryotic host-associated genomes from prokaryotic symbionts. Contigs are recursively 

binned using nucleotide composition and read coverage, with successive rounds first 

splitting the remaining contigs into groups from less to more specific canonical ranks (i.e. 

kingdom, phylum, class, order, family, genus, species). Finally, Autometa attempts to recruit 

any remaining unclustered sequences into one of the recovered putative metagenome-

assembled genomes (MAGs) through classification by a decision tree classifier (or optionally, 

a random forest classifier). The resulting MAGs may then be subjected to manual inspection 

prior to downstream comparative genomic analyses (a companion graphical interface, 

Automappa (38), was developed specifically for this and may be found at: 

https://github.com/WiscEvan/Automappa). 

 

The general Autometa workflow (Figure 1) consists of eight stages: 
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1. Length-filtering: Discard short sequences that may resemble assembly artifacts 

2. Coverage analysis: Calculate contig coverage (a proxy for abundance) 

3. K-mer analysis: Determine sequence similarity based on nucleotide composition 

4. ORF-calling: Identify contigs’ open-reading frames (ORFs) 

5. Marker-annotation: Identify and annotate single-copy marker genes 

6. Taxon-binning: Assign and group contigs by predicted taxonomic rank 

7. Genome-binning: Single-copy marker gene guided recursive clustering of contigs 

into MAGs 

8. Unclustered recruitment: Using aggregate features of the recovered MAGs from 

genome-binning, attempt to recruit unclustered contigs into their corresponding 

MAG 

 

Modularized code/workflow 

The Autometa library has been refactored into individual modules with submodules, using an 

object-oriented approach. This both lowers the barrier of entry for code contributions, and 

simultaneously provides multiple commands to process metagenomic data before, during 

and after the Autometa workflow. Due to the modular structure of the source code, 

community-requested features may be readily integrated into the suite of Autometa 

commands. As an example, we integrated the Genome Taxonomy Database (GTDB) (39) as 

an additional database that can be used during the taxon-binning and genome-binning 

stages, in place of the NCBI taxonomy, and similarly benchmark Autometa’s genome-binning 

performance with GTDB in use. 

 

New file and input options 
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The previous Autometa version had a number of file handling limitations during database 

and metagenome pre-processing. Database preparation required de-compressed inputs, 

greatly increasing the disk requirements as well as limiting the versatility of incorporating 

user-specific databases. Autometa 2 is now capable of handling gzipped inputs and outputs, 

vastly lowering the user’s disk requirements. Both the Autometa Python library and the new 

Nextflow workflow assist users in downloading and formatting all required databases. 

Additionally, many of the intermediate results throughout the workflow may now be written 

for user inspection, if desired. 

 

Version controlled documentation and tutorials 

Autometa 2 is accompanied with major improvements in its documentation. This includes 

detailed instructions on how to install and configure Autometa to suit user-specific needs. 

Detailed explanations are outlined in the available walkthrough tutorials for options 

regarding which workflow to use, how to manage Autometa’s dependencies, how to select 

the appropriate parameters for running the workflow and how to interpret results. With a 

view to encouraging user-submitted code improvements and fixes, we have also released 

contributing guidelines, and welcome input from the community. 

 

The documentation is open source and freely accessible at https://autometa.readthedocs.io. 

In addition to making the front-end of the pipeline easily accessible we have put 

considerable effort into documenting the code itself. Autometa 2 contains type hints and 

docstrings throughout to encourage reuse of existing functions and classes. Type hints allow 

developers to quickly discern the necessary inputs and outputs and this was done with the 

vision to make the codebase more readable and thus support contribution and feedback 

from the bioinformatics community. We have also adopted one of the most widely accepted 

style guides (Numpy) and have standardized the code-format using the uncompromising 

code-formatting tool, Black (40). 
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Ease of installation 

The restructured Autometa package is now amenable to common and easy installation 

options such as pip and conda. A docker image is also available, at 

https://hub.docker.com/r/jasonkwan/autometa, allowing the package to be shared and run 

in most compute environments. These Autometa distributions have also allowed widespread 

use through the Open Science Pool, making Autometa available to a wide array of 

distributed high-throughput computing facilities (41). Furthermore, Autometa is continuously 

deployed, automatically pushing each release to the bioconda channel for use with the 

conda package manager. 

 

Integration with a workflow management framework, nf-core 

Autometa is complex and makes use of multiple bioinformatic databases, software packages 

and methods that can use significant cpu, disk and memory.  To glue the different steps 

together into a comprehensive workflow, and to parallelize processes where appropriate, we 

created an optional Nextflow workflow using the nf-core framework (42, 43). This integration 

provides robustness, efficiency, reproducibility and scalability. Autometa's Nextflow workflow 

may be configured to submit tasks to a local machine, lab servers, and a variety of cloud 

compute infrastructures. Nextflow also comes equipped with checkpointing whereby, if the 

Autometa workflow were to be interrupted, tasks may be resumed from their most recently 

completed process. Additionally, nf-core offers a browser-based submission interface 

allowing Autometa users to easily configure their metagenomic analyses. Utilizing this 

workflow management framework enables the submission of multiple metagenomes with 

one submission file using a single command, which previously would have required constant 

monitoring, possible re-submissions and a great deal of effort by the end-user in ensuring 

each metagenome’s successful processing. 

 

Benchmarking 
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A Github repository (https://github.com/KwanLab/MetaBenchmarks) has been provided 

containing this study’s benchmarking methods. This is an open-source repository allowing 

other users to regenerate metagenomics benchmarks for taxon binning and genome binning 

performance comparisons. Its primary purpose is to provide transparency and reproducibility 

when comparing metagenomics tools and has ultimately resulted in a repository where users 

may add their own tools for benchmarking comparison.  

 

Altogether, fifteen tools were benchmarked against Autometa versions 1 and 2 using two 

different datasets. These datasets included assemblies which were taken from the second 

round of the Critical Assessment of Metagenome Interpretation challenge (CAMI 2) (2) and 

simulated communities which were initially published with the first Autometa release (3). 

Here, we concentrated on comparing binning performance using CAMI 2 datasets, while 

previously published simulated communities were used for taxon binning assessment. 

 

For genome binning benchmarks, we utilized previously published results using the CAMI 2 

datasets (2) to compare Autometa 2 to CONCOCT, MetaBAT2, MaxBin2, Vamb and Autometa 

version 2 as well as git commit "146383e" of Autometa version 1, which is the version used 

for the CAMI 2 challenge (44–47). Genome binning refiners were included in the CAMI 2 

benchmarks and therefore MetaWRAP (48) and UltraBinner 

(https://github.com/huangpq2019/ultrabinner) were included here for comparison, however 

it should be noted these are not de novo genome binning algorithms, but perform consensus 

clustering via MAGs obtained by the aforementioned genome-binning tools. Taxonomy 

binning benchmarks used both CAMI 2 datasets as well as the simulated communities. 

Previously published results using the CAMI 2 datasets (2) were retrieved for Kraken 2.0.8-

beta (49), Diamond 0.9.28 (50), LSHVec cami2 (51), MEGAN 6.15.2 (52), and PhyloPithiaS+ 1.4 

(53). For the simulated communities dataset Autometa v1.0.3 and v2.1.0 as well as MMSeqs2 

v13.45111 (54), Kraken 2.1.2 (49) and Diamond v0.9.21.122 (50) were compared. Taxon 

binners were selected according to their intended use on metagenome assemblies (e.g. 

contigs rather than reads), availability as an open-source command-line utility and 

synchronization with NCBI's taxonomy databases.  
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A variety of clustering and classification metrics were utilized to assess binner behavior and 

performance, based on rationale offered by the CAMI 2 assessment (2). Briefly, following the 

example of the CAMI 2 challenge, we adopt the combined use of Adjusted Rand Index (ARI) 

and the percentage of binned base pairs in the dataset as a measure of binning performance. 

The ARI measures the number of true positive matchings of base pairs binned together and 

the number of true negatives binned apart as a proportion of the binned fraction of base 

pairs, with 1 being a perfect score and 0 being no better than chance (55). We additionally 

measured precision, recall and F1 score. Metrics were sample-weighted by both sequence 

count (seq) and sequence length (bp). MAG-related metrics of completeness, purity, binned 

percentage (sample-weighted as above) and percentage of genomes recovered (sample-

weighted as above) were assessed using the previously described methods (3, 56).  

 

To calculate these metrics for the CAMI 2 data we adapted the benchmarking tool 

Assessment of Metagenome BinnERs (AMBER) from the commands employed for Meyer et al. 

(2). For comparison against the simulated communities (that use different ground truths and 

databases), precision, recall and F1 scores were computed using the available Autometa 

command ‘autometa-benchmark’ (Figure S5).  Future binning studies may easily extend 

MetaBenchmarks to perform custom parameter sweep analysis.  

 

New methods to expand taxon binning 

Following the length-filter task, the second optional pre-processing step during the 

Autometa workflow is taxon binning. Autometa determines the lowest common ancestor 

(LCA) of ORFs based on results from a protein database similarity search. The resulting ORF 

LCA annotations are reduced by modified majority vote to assign taxonomic information to 

individual contigs (3). The rationale for applying a majority voting scheme to each contigs’ 

ORFs is to reduce the confounding impact of horizontal gene transfer. Assigning taxonomy 

to contigs allows for two features of Autometa - the separation of sequences from different 

kingdoms (for example, host and microbiome) and the partitioning of contigs into simpler 
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subfractions in order to simplify clustering. The first version of Autometa only allowed 

domain-level taxon-filtering, whereas, this module is now capable of removing contigs 

corresponding to a user-provided taxon at a user-provided canonical rank. The default 

setting is to remove contigs outside of the kingdoms of bacteria and archaea. This has 

previously been shown to be a crucial pre-processing step particularly for host-associated 

metagenomes (3). Autometa uses Prodigal (57) for ORF prediction and Diamond (50) for 

accelerated protein sequence alignment against NCBI’s non-redundant (nr) protein database 

(50, 57). The updated version of Autometa performs Prodigal’s ORF prediction in parallel 

(using GNUParallel), thereby decreasing Autometa’s overall runtimes. 

 

Autometa’s modularization allows the user to pick and choose different tools for each stage 

of the workflow. This includes homology search methods, LCA identification, voting schema 

and filtering of putative taxon-specific contaminants. One deviation from the previous 

Autometa workflow comes from a new taxonomy database integration, GTDB (39, 58). This 

integration accommodates the revised designations outlined within GDTB to account for 

many of the new and highly divergent microbes recovered from global metagenomic surveys. 

Another advantage of GTDB is its rationalization of canonical ranks in terms of sequence 

divergence, which should improve sequence-based taxonomic classification. However, one 

limitation of GTDB is that it only provides taxonomic designations for bacteria and archaea, 

therefore, a dual NCBI and GTDB approach must be taken if a metagenome is predicted to 

contain sequence from other kingdoms. This proceeds first with filtering out any 

contaminating kingdoms (i.e. Eukaryota, Viruses) using NCBI’s non-redundant protein 

database then subsequently assigning taxonomy for bacterial and archaeal fractions using 

the GTDB database. The GTDB taxon results are then used as the taxon annotations during 

the genome binning stage. This incurs additional overhead as two iterations of the protein 

database similarity search must be performed (i.e. once against NCBI and another against 

GTDB). However, since the GTDB database contains a combined size of ~64 gigabases (Gb) 

(approximately 300,000 prokaryotic genomes) compared to ~163 Gb in nr, database 

searches are much faster during GTDB classification. 
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New methods to expand genome binning 

Sequence similarity analysis. Sequence similarity by nucleotide composition is performed 

using an alignment-free method that counts k-mers (sub-strings of k length) present in each 

contig. K-mer counts are normalized, subjected to principal component analysis (PCA), then 

reduced to two dimensions via a dimension reduction approach known as embedding. This 

subworkflow is commonly referred to as a k-mer frequency analysis and Autometa 2 contains 

multiple new parameters at each process of this stage. Autometa is packaged with a new 

entrypoint ('autometa-kmers') that provides options such as k-mer length, normalization 

method, PCA dimensions, embedding method and embedding dimensions. Additionally, 

runtimes have been reduced by parallelization of the k-mer counting process. With these 

additional parameters, the user now has multiple perspectives with which to analyze their 

metagenome. For example, each embedding method performs dimension reduction in a 

different manner leading to different coordinates in the embedded space. These various 

embeddings may be visualized to better interpret the relationships between sequences and 

their corresponding MAGs. An example analysis on the CAMI 2 marine gold standard 

assembly dataset is shown in Figure S2.  

 

Scaling to high-complexity metagenomes. Autometa’s original taxon-guided genome-binning 

approach recursively clusters contigs as it iterates through the metagenome’s taxon bins. 

This is performed in an ordered and sequential manner from kingdom to species where, 

following each iteration, unbinned contigs are passed on to the subsequent and more 

specific taxon subfractions. However, highly-complex metagenomes may contain many 

contigs in a corresponding taxon bin causing prohibitively large memory requirements and 

lengthy runtimes for the clustering process. Therefore, Autometa 2 is equipped with a new 

"large-data-mode" binning module (autometa-binning-ldm entrypoint) which was optimized 

to handle the most complex metagenomes that have been assembled to date.  

 

The pseudocode depicting the "large-data-mode" algorithm may be found in Figure S3. 

Briefly, similar to the original taxon-guided approach, Autometa proceeds by sequentially 
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iterating through taxon bins. At this stage, rather than the proceeding with the original 

method where the taxon bin is subjected to recursive clustering and MAG quality analysis, 

“large-data-mode” validates the taxon bin size according to whether it is within the user-

designated taxon bin size range (e.g. the ‘--max-partition-size’ parameter). If within range, 

the taxon bin undergoes its own k-mer frequency embedding immediately prior to the 

aforementioned identical recursive clustering approach. If the taxon bin has been deemed 

too complex, i.e. greater than the user-designated taxon bin size, Autometa further partitions 

it (without clustering) in the next iteration. The rationale for skipping a partition that is too 

complex is that clustering will take an inordinate amount of time and resources and will likely 

not result in high quality bins. An edge case arises with the inclusion of taxon bin specific k-

mer frequency analyses. The dimension reduction technique utilized during the k-mer 

frequency analysis requires taxon bin sizes in terms of number of contigs be greater than the 

user’s specified dimensions for both the initial PCA reduction step (if applicable) and the 

embedding step. This edge case can occur when a taxon has only a few representatives, 

reflecting a relatively simple taxon bin. Under these circumstances the k-mer coordinates 

corresponding to the simple taxon bin are retrieved from a pre-computed canonical rank k-

mer frequency analysis. Following the determination of k-mer frequency analysis coordinates, 

recursive clustering proceeds in the same manner as mentioned above. The “large-data-

mode” method also replaces the previously used default clustering algorithm, Density-based 

Spatial Clustering of Applications with Noise (DBSCAN) with its corresponding hierarchical 

approach (HDBSCAN) (59–61) due to its improved scalability and memory usage. 

 

In addition, each iteration’s k-mer analysis and genome binning are checkpointed, to allow 

the pipeline to restart at the latest assessed taxon in the event of an interrupted Autometa 

run. These checkpoints and their accompanying outputs also allow for more granular 

inspection of Autometa's binning decisions.  

 

Genome binning optimization by parameter sweep benchmarking 
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Classification performance evaluation. Autometa version 1 (cami2 branch commit-146383e) 

(3) was assessed during the second round of the Critical Assessment of Metagenome 

Interpretation (CAMI) challenge, which benchmarked a variety of recently published taxon 

and genome binning tools (2). The CAMI 2 competition used metagenomes constructed to 

represent different complexities currently challenging genome binning methods including a 

marine dataset consisting of highly divergent genomes (“marine”) and a dataset of many 

closely related strains (“strain madness”). The CAMI team published gold standard 

assemblies (GSA) as well as megahit assemblies (MA) for each of these sample types, totaling 

four metagenome assemblies available for binning (2). The published CAMI 2 benchmarks 

revealed that Autometa v1 performed higher than most tools in some metrics (average 

purity) and worse for others (average completeness, F1 score, ARI). The consistently low 

average completeness of MAGs recovered from the Autometa v1 results may have been due 

to the default Autometa v1 parameters used for the CAMI submissions: 20% minimum MAG 

completeness, and 95% minimum MAG purity (based on single-copy bacterial marker counts 

per MAG). It should be noted that Autometa's default settings are set for low completion 

and high purity because our lab primarily focuses on host-associated bacteria which often 

have reduced genomes. Consequently, the metrics published by the CAMI challenge (2) 

closely reflected Autometa’s default settings (average completeness ranged from 2.5-32.2% 

and purity 91.7-94.3%). This suggested that increasing the completeness threshold within 

Autometa’s own selection criteria may increase performance across these communities.  

 

To explore this, the raw CAMI 2 benchmarks for Autometa 1 and other binning pipeline 

reported in the original paper were retrieved and computed alongside Autometa’s new 

binning methods and sweeping a selection of run parameters now possible with Autometa 

2’s user-controlled settings (Table 1). Binners were assessed using a variety of metrics 

including: average MAG purity, completeness, F1 score and adjusted Rand index (ARI), all 

used in the CAMI 2 publication (2). Metrics were calculated using AMBER v2.0.3, a tool 

produced for the CAMI 2 challenge (56). The Autometa parameters swept included clustering 

methods, as well as four cutoffs applied during the genome binning process. The cutoff 

parameters correspond to four MAG properties which ultimately determine whether to retain 

the current MAG prediction during binning: single-copy marker completeness and purity as 
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well as coverage standard deviation and GC content standard deviation. Cutoffs for MAG 

completeness and purity were assessed from 10% to 100% in increments of 10%. GC content 

and coverage standard deviations were assessed at values of 2, 5, 10 and 15. The sweep 

totaled 1,296 parameter combinations per clustering method, resulting in 2,592 

configurations per sample (10,368 total jobs from all four CAMI 2 datasets). Large-data-

mode takes additional parameters for k-mer methods such as normalization and embedding. 

Two normalization methods were selected: center log-ratio and isometric log-ratio transform. 

Two embedding methods were selected: Barnes-Hut t-distributed Stochastic Neighbor 

Embedding (BH-tSNE) (62) and Uniform Manifold Approximation (UMAP) (63).  The product 

of large-data-mode genome binning totaled 5,184 parameter combinations per clustering 

method resulting in 10,368 jobs per sample (41,472 total jobs from all four CAMI 2 datasets). 

All genome binning results were formatted to bioboxes format version 0.9.0 (64) using the 

‘autometa-cami-format’ command, then benchmarked using AMBER (56).  

 

AMBER computes a variety of classification metrics, including measures of cluster purity 

(precision), completeness (recall) and their harmonic mean (F1 score). To compute these 

classification scores AMBER applies a mapping strategy where each putative MAG is 

assigned to a single reference genome, such that the representation of the reference 

genome is maximized by genome length. Following MAG reference genome assignment, 

measures of purity and completeness may be determined. Purity represents the ratio of 

correct assignments (base pairs that overlap with the mapped genome) to incorrect 

assignments, quantifying the ability of a binner to construct the respective genome without 

contaminating it with other genomes’ contigs. Completeness indicates the fraction of the 

genome represented (as measured by the sum of base pairs of the genome). AMBER also 

determines the adjusted Rand index which is a normalized measure of the Rand index. The 

Rand index is a clustering measure which compares partitions of base pairs by their 

membership within the same or disparate genome. True positives (TP) are determined by 

whether the base pairs within the same genome are grouped in the same MAG. True 

negatives (TN) are determined by whether the base pairs of different genomes are grouped 

in separate MAGs. The Rand Index is the sum of these values divided by the sum of all of the 

pairs. This then undergoes a normalization transformation by accounting for random 
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clustering resulting in the final computed adjusted Rand index (ARI) metric. A perfectly 

matched genome pair will return a score of one while a reference genome completely split 

across different MAGs will return zero. A MAG with all its members (i.e. complete) but with 

other members of a different MAG (i.e. contaminants) is penalized and will be reflected in the 

ARI score. Conversely (since ARI is a symmetric measure), pure MAGs with unnecessary 

fragmentation are also penalized. 

 

RESULTS AND DISCUSSION 

Benchmarks 

Genome binning. Our primary point of comparison with Autometa 2 genome binning 

performance was the CAMI 2 binning challenge (2), in which Autometa 1 took part. In that 

work, Autometa 1 was found to have high average bin purity compared to other pipelines, 

but it suffered in terms of other metrics, especially ARI (Figure 2), and was judged to have 

low performance overall. However, as this assessment reflected the default parameters of 

Autometa 1, we present a more complete exploration of the additional user-defined 

parameter set here with Autometa 2 (Table 1). Across this parameter sweep, we found that 

ARI values higher than other binners and often close to the ground truth were achievable, 

while maintaining binned percentages either comparable to or surpassing other binners 

(Figure 2). Binned percentage was the primary factor which suffered with worsening 

metagenomic assembly quality (i.e. gold standard versus MegaHit), but ARI values were 

roughly comparable between assembly qualities. In Figure 2, the original Autometa 1 

benchmarks from the CAMI 2 challenge are distinct from the Autometa 2 parameter sweep 

results, and this is attributable to the addition of both GC and coverage standard deviation 

limits in Autometa 2. Our results show that while these limits can lower F1 score and 

sometimes binned percent, they invariably increase ARI. 

 

On the basis of our parameter sweep, it appears Autometa 2 is highly reliable when grouping 

contigs together (as well as for choosing to leave contigs from disparate genomes separate). 

In fact, across all four datasets of seq and bp-weighted ARI, Autometa 2 outperformed all 
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other binners, reaching near perfect scores (Figure S4). This tendency towards stringency 

excludes putative contamination at the expense of leaving genomes incomplete or 

fragmented. In other words it results in increases in precision, lower misclassification rates 

and consequently decreases in recall, completeness and F1 score measures.  

 

Understanding Autometa’s genome binning behavior via these metrics provides future 

algorithmic directions such as implementing a refinement process where high-quality 

fragmented MAGs could be merged into more complete genomes, suggestive of similar 

consensus clustering approaches as already outlined (e.g. 

https://github.com/huangpq2019/ultrabinner and (48)). If implemented correctly, one would 

expect an improvement in completeness, recall and overall F1 score, while maintaining 

equivalent performance in precision, purity and misclassification rates. Across all datasets 

benchmarked, large-data-mode was the majority leader corresponding to ARI, F1 score and 

average completeness (bp-weighted), while ranking below the autometa-binning entrypoint 

in average purity (Table S1). Generally the HDBSCAN clustering method occurred more 

frequently in the best performing parameter configurations for the gold standard assemblies. 

In contrast, DBSCAN performed better with the megahit assemblies. Interestingly, the 

highest scoring completeness parameter configurations used relatively low completeness 

thresholds of 10%, 20%, 30%, and 70% and one purity configuration (10%). This is in 

opposition to the expected result of higher completeness configurations recovering more 

complete MAGs. The cutoffs at ten and twenty percent completeness yielded better results in 

the megahit assemblies whereas the higher thresholds of thirty and seventy percent 

completeness performed better in the gold standard assemblies (marine and strain madness, 

respectively). In contrast, the lowest misclassification rates and correspondingly high ARI 

values (medians ranging from 93-95%) were observed in the results configured with 

relatively high completeness (e.g. 50%, 80% and 90%) and purity (e.g. 40%, 90%) thresholds.  

 

This behavior is important to consider when choosing what is of interest in a particular 

dataset. From the parameter sweep approach, it appears Autometa’s overall tendency is to 

be more stringent rather than lenient, with most parameter sets recovering highly-reliable 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.01.555939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555939
http://creativecommons.org/licenses/by-nc-nd/4.0/


(yet fragmented) MAGs (Figure S5). Some parameter sets however may degrade the 

reliability of these MAGs with slight improvements in completeness and F1 score. This is 

typified by the Autometa 1-like approach of setting limits on the standard deviation of GC 

and coverage in bins to infinity (Figure S1). The broad distribution displayed by these results 

highlight the adaptability of Autometa and the scope of fine-tuning available to achieve the 

desired genome binning result. In settings where a ground truth is not known, different 

Autometa binning results could be compared with an independent method for estimating 

genome quality, such as CheckM (65). The effects of Autometa’s user-defined parameters is 

in contrast to the previously mentioned results from Meyer et al. where parameter changes 

across all tools accounted for relatively minor changes in performance (approximately 3% as 

mentioned by Meyer et al.) (2).  

 

Taxon binning. To improve Autometa's performance, we set out to assess the validity of its 

taxon binning predictions. Robust taxon assignment at each canonical rank may improve 

genome binning performance in multiple ways. For example, application of a taxon filter to 

"denoise" a sample. This is particularly useful regarding host-associated metagenomes (14, 

22), where any Eukaryotic contamination may be removed. Second, taxon-aware genome 

binning algorithms may use these taxon bins to confine contigs under consideration for 

placement within a putative MAG, in order to avoid clustering on very large sets of contigs.  

 

AMBER was used to compute taxon binning metrics (see Genome Binning section for details 

on metrics) to assess performance of each taxon binner’s results. These metrics were 

determined across all canonical ranks (kingdom, phylum, class, order, family, genus, species) 

to demonstrate the scope of each taxon-binner’s capabilities and limitations. Benchmarking 

was performed using simulated communities (see supplementary Figure S6) and the CAMI 2 

datasets, published by Miller et al. and Meyer et al., respectively (2, 3). Autometa consistently 

outperformed all other taxon-binners (Diamond, Kraken2, MMSeqs2) for the simulated 

community benchmarking (Figure S6). To more broadly compare Autometa to existing tools, 

Autometa CAMI 2 taxon binning results were benchmarked against previously published 

results of Meyer et al. (2) (Figure 3, Table S2).   
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For the strain madness dataset, Autometa is more performant than all except PhyloPithiaS+, 

according to F1 score, at the kingdom, phylum and class canonical ranks until also being 

outperformed by MEGAN for the lower ranks (order, family, genus, species). Similarly, 

Autometa is near-perfect by ARI, with Kraken 2 being slightly better at the species rank. 

Taking both F1 score and ARI together, Autometa appears to be more consistent at 

accurately assigning contigs their respective taxon across all canonical ranks (Figure 3). 

PhyloPithiaS+ may be an optimal choice for replacement of Autometa’s taxon binning sub-

workflow when working with datasets containing high amounts of strain overlap (i.e. high 

levels of microdiversity), due to its consistency across canonical ranks by both F1 and ARI 

metrics. However, this software package presented difficulties in set up and is no longer 

maintained, rendering it unsuitable for integration into the Autometa pipeline. In contrast, 

according to ARI, PhyloPithiaS+ always performed worse than Autometa against the marine 

dataset with a difference of -0.23 at the species rank. In regards to the marine dataset, it 

appears MEGAN may be the optimal taxon binning approach. These results suggest that 

replacing Autometa’s taxon binning results with MEGAN’s for Autometa’s taxon-aware 

genome binning workflow may improve Autometa’s overall genome binning performance. 

However, MEGAN is commercial software and consequently makes integration impractical as 

its requirement would unnecessarily restrict the Autometa user base to MEGAN users. 

 

When considering taxon binner performance collectively with F1 score and ARI across both 

datasets, Autometa appears to be as reliable as other existing state-of-the-art taxon binning 

algorithms. Autometa seems to maintain a tendency towards stringency, whereby it is 

conservative in only assigning contigs when confident about their specific taxon. The trade-

off is a result that contains fewer contigs assigned a specific taxon. It should also be noted 

that across all datasets and all tools, at the species level the maximum F1 score never 

reached greater than half the theoretical maximum of one. This underscores the overall 

necessity for further taxon binning method development. 
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Another aspect of Autometa’s taxon binning pipeline is that it allows deconvolution of 

sequences derived from different kingdoms, which can be especially important in many 

environmental and host-associated metagenomes, where either eukaryotic microorganisms 

or the host genome may interfere with prokaryotic genome binning. Therefore, we 

reexamined two host-associated metagenomes (10, 22), using our manually curated binning 

results for two specific uncultured symbionts as the ground truth. We assessed the 

performance of both Autometa v2 and v1 (as well as v2 under large data mode) against 

binning pipelines not available at the time of our v1 publication (Figure 4, left). With respect 

to the “ground truth”, all Autometa versions scored highly as measured by F1, although the 

Autometa v2 run without large data mode could not achieve the maximum F1 for 

“Candidatus Thermophylae lasonolidus”. This result may be due to the presence of a multi-

copy biosynthetic gene cluster that exhibits differing nucleotide frequencies in the genome. 

MaxBin2 did not achieve F1 scores as good as the best Autometa scores, but VAMB and 

MetaBat2 approached similar good scores. However, it should be noted that F1 score only 

reflects precision and recall of a specific ground truth genome, and additional contaminants 

in the bin would not detract from a good F1 score. Correspondingly, we find that MaxBin2, 

VAMB and MetaBat2 all suffered from significant contamination from eukaryotic, viral or 

archaeal contigs, as well as contigs unclassified on the kingdom level (Figure 4, right).  

 

Large data mode. In CAMI 2 datasets, large data mode persistently performed comparably to 

the conventional Autometa pipeline, across the parameter sweep (Figure 2). In both 

conventional and large data mode, binning of the gold standard marine assembly could not 

be completed when using DBSCAN as the clustering algorithm, because it requires much 

more time and memory than HDBSCAN (66). However, even utilizing HDBSCAN for the 

conventional pipeline, a greater fraction of sample parameter combinations could be 

completed in large data mode versus the regular approach (Figure 5). In the simulated 

datasets, there was a tradeoff with large data mode, which exhibited lower F1 scores than the 

conventional pipeline except in the most complex datasets (Table S3).  
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Overview of improvements. Autometa has seen widespread use by researchers across the 

world and along the way its users have provided helpful feedback and suggestions which 

have guided the second release’s development roadmap. Primary among these difficulties, 

now amended, is Autometa’s installation. The Autometa library is now distributed via 

bioconda and docker, allowing the construction of the compute environment and installation 

to be performed in a few simple commands. This has been complemented with extensive 

documentation allowing accessible user customization. Efforts have also been made towards 

making Autometa fault-tolerant, scalable and end-user focused with implementations of 

nextflow workflows following nf-core standards. These implementations provide access to an 

easy-to-use graphical user interface (GUI) to aid non-bioinformatics oriented researchers. 

Likewise, users with access to high-performance compute facilities (or cloud compute 

infrastructures) may also take advantage of the scalability offered by the Autometa nextflow 

workflow. Pre-processing, taxon binning, genome binning and binning refinement tasks have 

been modularized within the Autometa library, providing a structured foundation for future 

long-term use, maintenance and development. Moreover, Autometa’s “large-data-mode” 

has been presented in an effort to scale genome binning methods to high-complexity 

environmental samples. The second major Autometa release provides updates to support 

multiple areas within metagenome mining and was completely refactored to support 

straightforward extension and integration with existing ‘omics workflows. These measures 

were taken to continue to refine Autometa as a key tool for evolutionary studies as well as 

for aiding culturing and synthetic biology efforts.  

 

Current challenges. Despite these upgrades, Autometa (as well as other binners) continue to 

struggle with highly-complex metagenomes where many organisms are novel. During the 

LCA step of the taxon binning subworkflow, Autometa only uses the hits whose bitscore is 

within the top 10% of the top hit and is limited to 200 hits total to assign a taxonomic ID, 

discarding the remaining hit information respective to each query sequence. Furthermore, 

Autometa fails to account for the divergence of query sequence from its BlastP hits. This may 

lead to conservative classification of divergent contigs resulting in fewer taxon-assigned 

contigs as was reflected in the CAMI 2 taxon-binning benchmarks. At this time Autometa 

does not use all of the information gathered from sequence similarity searches against 
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NCBI’s non-redundant (nr) protein database. Adding to its existing limitations in taxon-

binning, draft-quality metagenome-assembled genomes (MAGs) are included in NCBI's nr 

database construction. This inclusion introduces the potential for erroneous assignments of 

subjects to taxids, with these errors being perpetuated by the incorrect genome binning of a 

contig into a draft-quality MAG. The prevalence and magnitude of this error may merit 

further investigation. Conversely, these artifacts  may resolve themselves through continued 

revisions of NCBI’s draft-quality MAGs following continued sequencing efforts.  

 

Improving Autometa’s taxonomic classification methods, to deal with database idiosyncrasies 

and the common presence of novel species, is crucial in order to allow partitioning of large 

datasets to make the individual fractions more tractable for embedding and clustering 

algorithms. Algorithmic and computational developments have produced ever-increasing 

metagenome assembly sizes. As metagenome assembly algorithms scale, preprocessing and 

genome-binning tasks must similarly progress. Autometa’s available clustering 

implementations (DBSCAN and HDBSCAN) scale with the input size better than the worst 

case scenario, but are far from the theoretical best case. In Big O terminology, the 

computational resources they need scale with the input size, n, below ����� complexity, yet 

are unable to attain even ��� ��� ���� complexity (66). This limitation is partially addressed 

by reducing the number of contigs to cluster (i.e. limiting n) by iterating over taxon binning 

results rather than the entire metagenome assembly. However, metagenomes with many 

community members may have an abundance of representatives within each taxon iteration, 

thereby proportionally deteriorating runtime performance. Thus far, orthogonal 

metagenome annotations, such as coverage, taxonomy and k-mer frequencies, have helped 

to improve the manner in which to subset the metagenome prior to clustering. Future 

algorithmic development such as additional sampling heuristics or annotation techniques 

may ultimately enhance overall genome-binning efficiency. 

 

DATA AVAILABILITY 
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The Autometa source code can be found at https://github.com/KwanLab/Autometa and 

through Figshare (doi: 10.6084/m9.figshare.21944876). The MetaBenchmarks source code 

can be found at https://github.com/KwanLab/MetaBenchmarks and through FigShare (doi: 

10.6084/m9.figshare.21952610). The simulated datasets and ground truths used in 

benchmarking were deposited to Figshare (doi: 10.6084/m9.figshare.24070359). 

 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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TABLE AND FIGURES LEGENDS 

Graphical abstract. Autometa: An automated taxon binning and genome binning workflow 

for single sample resolution of metagenomic communities. 

 

Table 1. Parameter configurations utilized during parameter sweep benchmarking  

 

Figure 1. An overview of the Autometa workflow, depicting two possible routes. The first 

route performs genome binning without further metagenome processing. The second route 

incorporates Autometa’s taxon binning subworkflow as an additional metagenome 

processing task. Routes depicted are parallelized where possible when using Autometa’s 

nextflow workflow. Multiple user inputs may be provided with an input sample sheet for 

concurrent processing (and checkpointing) of multiple metagenomes. 

 

Figure 2. Autometa consistently outperforms all other genome binning tools, reaching near 

perfect scores according to clustering based on Adjusted Rand Index (ARI), with the tradeoff 

of lower F1 score. The Autometa 2.1.0 DBSCAN jobs for the marine GSA and megahit 

datasets did not finish due to memory requirements and are therefore absent. 

 

Figure 3. Taxon binning benchmarks against CAMI 2 marine and strain madness gold 

standard assemblies. Metrics were determined according to canonical ranks, corresponding 

to kingdom (k), phylum (p), class (c), order (o), family (f), genus (g) and species (s). Autometa 

again achieves highly reliable results according to the adjusted Rand index (ARI) and 
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according to F1 score is amongst the top three taxon binners as classifications are performed 

on more specific canonical ranks. Both metrics are bp weighted. 

 

Figure 4. Genome binning results for a beetle (Lagria villosa) and sponge (Forcepia sp.) 

metagenome. Panel A displays length-weighted F1 scores for two BGC-containing genomes 

Burkholderia gladioli Lv-StB and “Candidatus Thermopylae lasonolidus” pertaining to L. 

villosa and Forcepia sp., respectively. Autometa v2 and Autometa large-data-mode (v2-ldm) 

outperform other genome binners for the B. gladioli Lv-StB genome. Autometa v1.0.3 and 

Autometa large-data-mode (v2-ldm) outperform other genome binners for “Ca. 

Thermopylae lasonolidus”. Panel B depicts the kingdom percentage of MAGs recovered by 

genome binner for input metagenomes. An (*) indicates genome binning results when using 

only the bacterial classified sequences as annotated by the Autometa v2 taxon binning 

workflow. All genome binning results from other genome binners incorporate sequences 

from other kingdoms, reinforcing the benefits of pre-processing host-associated 

metagenomes by taxon-binning. 

 

Figure 5. Autometa genome binning runtime and memory usage benchmarks against the 

CAMI 2 communities. Each point represents a completed genome-binning result. Panel A 

represents the number of completed runs retrieved using the ‘autometa-binning’ command 

with 6,472 total results recovered. Panel B shows completed results using the large-data-

mode ‘autometa-binning-ldm’ command which was capable of computing 9,073 

configurations with processing times under 48 hours and RAM usage (mostly) under 50GB.  

Each entrypoint was provided with the same set of 10,368 parameter configurations. Point 

color represents the different source datasets used in testing, and the inset pie charts show 

the proportion of parameter combinations that were completed within 48 hours for 

autometa-binning and autometa-binning-ldm. 
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Table S1. Autometa parameter configuration performance. Parameter configurations are 

displayed with their corresponding metric’s score for the computed metrics across each 

CAMI 2 dataset. 

 

Table S2. CAMI 2 taxon binning benchmarks including Autometa v2 results. 

 

Table S3. Simulated communities genome binning benchmarks of Autometa v1 and 

Autometa “large-data-mode” 

 

Figure S1. Performance comparisons between Autometa v2 with cutoffs for GC content 

standard deviation and coverage standard deviation set to infinity to mimic v1-like behavior. 

Comparisons are against the gold standard used in the CAMI 2 challenge. 

 

Figure S2. K-mer frequency analysis coordinates determined by their respective embedding 

method on the CAMI2 marine gold standard assembly prior to filtering by length and 

subsetting by taxon. Contigs are colored by their ground truth reference genome (num. 

MAGs = 976). 

 

Figure S3. Pseudocode of the “large data mode” binning module 

 

Figure S4. Autometa parameter sweep genome binning results with Meyer et al. benchmarks. 

ARI results were determined using AMBER. 

 

Figure S5. Autometa user-provided genome binning thresholds (completeness, purity, GC 

content std. dev., coverage std. dev.) against AMBER computed metrics for the CAMI 2 

datasets. Increasing completeness and purity thresholds tended to return results with higher 
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average purity and ARI. In contrast, increasing completeness thresholds tended to result in 

lower average completeness. Lower values for the newly introduced GC content and 

coverage standard deviation cutoffs appear to improve ARI and average purity, while 

displaying negligible effects for F1 and average completeness. Default parameter set: 

completeness = 20, purity = 90, GC content std. dev. = 5, coverage std. dev. = 15. Strict 

parameter set: completeness = 90, purity = 90, GC content std. dev. = 2, coverage std. dev. = 

2. Relaxed parameter set: completeness = 10, purity = 10, GC content std. dev. = 15, 

coverage std. dev. = 15.  

 

Figure S6. Taxon binning benchmarks against Autometa simulated communities. Autometa 

consistently outperforms other taxon-binning tools with the tools closest relative to 

performance being MMseqs2. The sharp decline of Autometa v2’s performance for the 

2500Mbp community reflects a truncated diamond blastp run. The Autometa v1 diamond 

blastp results were used with Autometa v2 and showed comparable performance to 

Autometa v1 (denoted with an asterisk). 
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