

1 The tumor microbiome reacts to hypoxia and can influence response to 2 radiation treatment in colorectal cancer

3
4 Martin Benej, PhD^{1,*}; Rebecca Hoyd, BS^{2,*}; McKenzie Kreamer, BS¹; Caroline E. Wheeler, BA²;
5 Dennis J. Grencewicz, BS²; Fouad Choueiry, BS³; Carlos H.F. Chan, MD, PhD⁴; Yousef
6 Zakharia, MD⁵; Qin Ma, PhD^{6,7}; Rebecca D. Dodd, PhD⁸; Cornelia M. Ulrich, PhD, MS⁹; Sheetal
7 Hardikar, PhD, MPH, MBBS⁹; Michelle L. Churchman, PhD¹⁰; Ahmad A. Tarhini, MD, PhD¹¹;
8 Lary A. Robinson, MD¹²; Eric A. Singer, MD, MA, MS, FACS, FASCO¹³; Alexandra P. Ikeguchi,
9 MD¹⁴; Martin D. McCarter, MD¹⁵; Gabriel Tinoco, MD, FACP²; Marium Husain, MD, MPH²; Ning
10 Jin, MD²; Aik Choon Tan, PhD¹⁶; Afaf E.G. Osman, MD¹⁷; Islam Eljilany, PhD¹⁸; Gregory
11 Riedlinger, MD, PhD¹⁹; Bryan P. Schneider, MD²⁰; Katarina Benejova, MS¹; Martin Kery, PhD¹;
12 Ioanna Papandreou, PhD¹; Jiangjiang Zhu, PhD³; Nicholas Denko, MD, PhD^{1,\$}; Daniel
13 Spakowicz, PhD^{2,7,\$}

14 AFFILIATIONS

15 ¹Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA

16 ²Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer
17 Center, Columbus, OH, USA

18 ³Department of Health Sciences, The Ohio State University, Columbus, OH, USA

19 ⁴University of Iowa, Holden Comprehensive Cancer Center, Iowa City, IA, USA

20 ⁵Division of Oncology, Hematology and Blood & Marrow Transplantation, University of Iowa, Holden Comprehensive
21 Cancer Center, Iowa City, IA, USA

22 ⁶Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA

23 ⁷Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus; OH,
24 USA

25 ⁸Department of Internal Medicine, University of Iowa, Iowa City, IA, USA

26 ⁹Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

27 ¹⁰Clinical & Life Sciences, M2GEN, Tampa, FL, USA

28 ¹¹Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute,
29 Tampa, FL, USA

30 ¹²Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

31 ¹³Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA

32 ¹⁴Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, OK,
33 USA

34 ¹⁵Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA

35 ¹⁶Departments of Oncological Science and Biomedical Informatics, Huntsman Cancer Institute, University of Utah,
36 Salt Lake City, UT, USA

37 ¹⁷Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA

38 ¹⁸Clinical Science Lab -- Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

39 ¹⁹Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

40 ²⁰Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA

41 *Co-First Authors

42 \$Corresponding Authors: Dr. Nicholas Denko. Email: nicholas.denko@osumc.edu; Dr. Daniel Spakowicz. Email:
43 daniel.spakowicz@osumc.edu

44 **RUNNING TITLE:** Tumor microbiome, radiation treatment & hypoxia in CRC

45 **KEYWORDS:** microbiome, tumor microbiome, colorectal cancer, hypoxia, RNA sequencing,
46 radiation

50

51 **SUBMISSION SECTION:** Precision Medicine & Biomarkers

52

53 **FINANCIAL SUPPORT**

54 This project was partly supported by The Ohio State University Comprehensive Cancer Center
55 and the National Institutes of Health (P30CA016058); The Ohio State University Center for
56 Clinical and Translational Science and the National Center for Advancing Translational
57 Sciences (8UL1TR000090-05); an Alpha Omega Alpha Carolyn L. Kuckein Student Research
58 Fellowship (DG); and a Samuel J. Roessler Memorial Scholarship (DG).

59

60 **CONFLICTS OF INTEREST**

61 Carlos Chan: None related to this project. Other unrelated projects and clinical trials (Research
62 support from Checkmate Pharmaceuticals, Regeneron, Angiodynamics, Optimum Therapeutics)

63 Yousef Zakharia: Advisory Board: Bristol Myers Squibb, Amgen, Roche Diagnostics, Novartis,
64 Janssen, Eisai, Exelixis, Castle Bioscience, Genzyme Corporation, AstraZeneca, Array, Bayer,
65 Pfizer, Clovis, EMD serono, Myovant. Grant/research support from: Institution clinical trial
66 support from NewLink Genetics, Pfizer, Exelixis, Eisai. DSMC: Janssen Research and
67 Development Consultant honorarium: Pfizer, Novartis

68 Ahmad Tarhini: Contracted research grants with institution from Bristol Myers Squibb,
69 Genentech-Roche, Regeneron, Sanofi-Genzyme, Nektar, Clinigen, Merck, Acrotech, Pfizer,
70 Checkmate, OncoSec. Personal consultant/advisory board fees from Bristol Myers Squibb,
71 Merck, Eisai, Instil Bio Clinigin, Regeneron, Sanofi-Genzyme, Novartis, Partner Therapeutics,
72 Genentech/Roche, BioNTech, Concert AI, AstraZeneca outside the submitted work.

73 Eric Singer: Astellas/Medivation: research support (clinical trial); Johnson & Johnson: advisory
74 board; Merck: advisory board; Vyriad: advisory board; Aura Biosciences: data safety monitoring
75 board

76 Gregory Riedlinger: AstraZeneca advisory board

77 Bryan Schneider: Genentech-Research support (drug supply only); Pfizer-Research support
78 (drug supply only); Foundation Medicine-research support (sequencing support)

79

80 **CODE AVAILABILITY**

81 The code to reproduce all analyses and figures is available at

82 <https://github.com/spakowiczlab/recrad>

83

84 **AUTHOR CONTRIBUTIONS**

85 Conceptualization: DS, ND

86 Resources: DS, LAR, CC, YZ, RDD, CMU, SH, MC, AAT, EAS, API, MM, AEGO, ACT, QM,
87 GR, BS, JZ

88 Data curation: RH, CEW, MB, MK, JZ, FC

89 Software: RH, CEW, DS

90 Formal analysis: RH, CEW, DS, MB, JZ, FC

91 Supervision: CEW, JZ

92 Validation: RH

93 Investigation: RH, MB, MK, JZ, FC, KB, MK

94 Visualization: RH, CEW, MB, MK
95 Methodology: RH, CEW, DS
96 Project administration: DS, ND
97 Writing - original draft: CEW, DS, MC, ND, MB
98 Writing - review and editing: RH, CEW, DS, LAR, CC, YZ, RDD, CMU, SH, MC, AAT, EAS, API,
99 MM, ND, GT, MH, NJ, MB, MK, DJG, IE, ACT, QM, GR, BS, JZ, IP, FC, KB, MK
100

101 **ABSTRACT**

102 Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially
103 because it reduces radiation's ability to kill cells. We investigated whether some of the clinical
104 effects of hypoxia could also be due to its impact on the tumor microbiome. We examined the
105 RNA-seq data from the Oncology Research Information Exchange Network (ORIEN) database of
106 colorectal cancer (CRC) patients treated with radiotherapy. For each tumor, we identified
107 microbial RNAs and related them to the hypoxic gene expression scores calculated from host
108 mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes
109 and identified tumors enriched with certain microbes such as *Fusobacterium nucleatum*. The
110 presence of other microbes, such as *Fusobacterium canifelinum*, predicted poor patient
111 outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation
112 response. To investigate this concept experimentally, we implanted CT26 CRC cells into both
113 immune-competent BALB/c and immune-deficient athymic nude mice. After growth, where tumors
114 passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted
115 nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their
116 hypoxia score and performed metatranscriptomic analysis of microbial gene expression. In
117 addition to hypoxia-trophic and -phobic microbial populations, analysis of microbial gene
118 expression at the strain level showed expression differences based on the hypoxia score. Hypoxia
119 appears to not only associate with different microbial populations but also elicit an adaptive
120 transcriptional response in intratumoral microbes.

121

122 **SIGNIFICANCE**

123 Tumor hypoxia reduces radiation's ability to kill cells. We explored whether some of the clinical
124 effects of hypoxia could also be due to interaction with the tumor microbiome. Hypoxic
125 expression scores associated with certain microbes and elicited an adaptive transcriptional
126 response in others.

127 **INTRODUCTION**

128 Colorectal cancer (CRC) is the third most common and second most lethal cancer worldwide,
129 accounting for 1.9 million cases and nearly 900,000 deaths every year (1). More than 60% of all
130 CRC cases occur in the sigmoid colon and are diagnosed at stage II or above (2). The 5-year
131 survival rate for CRC typically ranges from 90% for patients diagnosed with localized disease to
132 14% for those diagnosed with metastatic disease (3). Clinical management of CRC depends on
133 the stage: surgery is the main treatment option in the early stages, while neoadjuvant
134 chemoradiation therapy (nCRT) followed by surgery is the standard of care for locally advanced
135 stages (4). However, only about 15% of CRC patients treated with nCRT achieve complete
136 pathological responses (5). Because dose escalation dramatically increases the risk of toxicity
137 and exceeds the radiotolerance of adjacent normal tissues, understanding the mechanisms
138 behind CRC resistance to nCRT therapy is of utmost clinical importance.

139

140 The human intestinal microbiome comprises 10^{13} - 10^{14} mutualistic microorganisms that play a
141 crucial role in shaping the intestinal epithelium, harvesting nutrients, maturation of the host
142 immune system, defense against pathogens, and maintenance of gut barrier function (6-10).
143 Increasing lines of evidence suggest that dysbiosis or alteration of the intestinal microbiome
144 composition and function is increasingly involved with the initiation and progression of CRC (11).
145 Moreover, emerging studies suggest a direct association between intestinal microbiome dysbiosis
146 and sensitivity to anti-cancer therapy (12-15). In particular, studies in gnotobiotic mice have shown
147 that intestinal microbiota can shape the response to anti-cancer therapy, suggesting complex
148 host-microbiome crosstalk (16,17).

149

150 The microenvironment of the human gastrointestinal (GI) tract is generally hypoxic (physiological
151 hypoxia), showing steep oxygen gradients along the radial axis ranging from well-oxygenated
152 subepithelial mucosa to the anaerobic lumen (18,19). The lumen is inhabited by a vast number of

153 anaerobic microbes that thrive under anoxic conditions. Microbial colonization of CRC tumors by
154 microbial taxa is therefore highly influenced by the route by which they reach the tumor and by
155 the ability of the microorganism to survive the environmental oxygen within the tumor
156 microenvironment (TME). Because hypoxia directly limits the efficiency of radiation therapy (20),
157 we have asked whether potential crosstalk between the CRC tumor microbiome and the hypoxic
158 TME can influence the tumor response to radiotherapy.

159

160 In this study, we analyzed RNA-seq data from 141 pretreatment CRC samples from patients
161 receiving radiation therapy as a part of their treatment regimen to identify environmental hypoxia-
162 and radiation treatment-dependent variations in the tumor microbiome. We then assessed these
163 patterns for their impact on overall survival. We performed in vivo validation of these concepts in
164 heterotopic model CT26 tumors to identify microbiome composition and gene expression as a
165 function of tumor oxygenation. Comparison of host animals from BALB/c and athymic nude strains
166 identified hypoxia-dependent microbial populations and adaptive gene-level response to varying
167 oxygen conditions.

168

169 **METHODS**

170 **Study Design**

171 The Oncology Research Information Exchange Network (ORIEN) is an alliance of 18 US cancer
172 centers established in 2014. All ORIEN alliance members utilize a standard Total Cancer Care®
173 (TCC) protocol. As part of the TCC study, participants agree to have their clinical data followed
174 over time, to undergo germline and tumor sequencing, and to be contacted in the future by their
175 provider if an appropriate clinical trial or other study becomes available (21). TCC is a prospective
176 cohort study with a subset of patients enrolled in the ORIEN Avatar program, which includes
177 research-use-only (RUO)-grade whole-exome tumor sequencing, RNA sequencing, germline

178 sequencing, and collection of deep longitudinal clinical data with lifetime follow-up. Nationally,
179 over 325,000 participants have enrolled in TCC. M2GEN, the commercial and operational partner
180 of ORIEN, harmonizes all abstracted clinical data elements and molecular sequencing files into a
181 standardized, structured format to enable aggregation of de-identified data for sharing across the
182 network. This study included 2,755 ORIEN Avatar patients diagnosed with melanoma, sarcoma,
183 thyroid, pancreatic, colorectal, or lung cancer who consented to the TCC protocol from the
184 participating members of ORIEN. Of these, 500 patients had colon adenocarcinoma and 95 had
185 rectal adenocarcinoma.

186

187 **Sequencing Methods**

188 ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at HudsonAlpha
189 (Huntsville, AL) or Fulgent Genetics (Temple City, CA). For frozen and optimal cutting
190 temperature (OCT) tissue RNA extraction, Qiagen RNAeasy plus mini kit is performed, generating
191 216 bp average insert size. For formalin-fixed paraffin-embedded (FFPE) tissue, Covaris
192 Ultrasonication FFPE DNA/RNA kit is utilized to extract both DNA and RNA, generating a 165 bp
193 average insert size. RNA sequencing (RNA-seq) is performed using the Illumina TruSeq RNA
194 Exome with single library hybridization, cDNA synthesis, library preparation, and sequencing (100
195 bp paired reads at Hudson Alpha, 150 bp paired reads at Fulgent) to a coverage of 100M total
196 reads/50M paired reads. RNA-seq tumor pipeline analysis is processed according to the workflow
197 outlined below using GRCh38/hg38 human genome reference sequencing and GenCode build
198 version 32. Adapter sequences are trimmed from the raw tumor sequencing FASTQ file. Adapter
199 trimming via k-mer matching is performed along with quality trimming and filtering, contaminant
200 filtering, sequence masking, guanine-cytosine (GC) filtering, length filtering, and entropy filtering.
201 The trimmed FASTQ file is used as input to the read alignment process. The tumor adapter-
202 trimmed FASTQ file is aligned to the human genome reference (GRCh38/hg38) and the Gencode
203 genome annotation v32 using the STAR aligner. The STAR aligner generates multiple output files

204 used for gene fusion prediction and gene expression analysis. RNA expression values are
205 calculated and reported using estimated mapped reads, fragments per kilobase of transcript per
206 million mapped reads (FPKM), and transcripts per million mapped reads (TPM) at both the
207 transcript and gene levels based on transcriptome alignment generated by STAR. For model
208 murine tumors, we used Powerfecal pro kits from Qiagen to extract RNA and DNA.

209

210 **Athymic Nude and BALB/c Mice Tumors**

211 Animals were purchased from Charles River (housed in groups of 5) and were injected
212 subcutaneously on the right flank with 0.5 million CT26 cells with tumor growth measured by
213 calipers using the formula $(L \times W^2)/2$. Radiotherapy was delivered by a single tangential beam from
214 the Small Animal Radiation Research Platform (SARRP). Untreated tumors were typically
215 harvested on day 16 after sacrifice when most tumors were at removal criteria. Mice stool was
216 collected before tumor harvesting.

217

218 **Hypoxia Score Generation**

219 Hypoxia scores were generated using the R package (22) for Buffa, Winter, and Leonard
220 signatures. The R package {mt.surv} was used to compare these scores' relationships to overall
221 survival, and Buffa (23) was chosen to represent hypoxia in further analyses. For all analyses
222 comparing low and high hypoxia scores, samples were defined as having low hypoxia if their
223 hypoxia score was in the lower tertile of the data and high hypoxia if their score was in the upper
224 tertile of the data.

225

226 Kaplan-Meier (KM) survival curves were generated, and Cox proportional hazards models were
227 applied using the R package {survival}.

228

229 **Differential Abundance and Expression Analyses**

230 The R package {DESeq2} was used to compare the abundance of microbes in low- and high-
231 hypoxia tumors for both The Cancer Genome Atlas (TCGA) and ORIEN data. It was also used to
232 compare microbe abundances in low- and high-hypoxia tumors in the mouse experiments, as well
233 as the behavior of microbe gene expressions in high- and low-hypoxia mouse tumors.

234

235 **Mouse Sequencing Processing – Microbe Genes**

236 To obtain information on the gene expression of microbes in the mouse experiments, RNA-seq
237 data from the mouse tumors were classified using HUMAnN 3.0 with MetaPhlAn and the default
238 ChocoPhlAn database.

239

240 **{exotic} Processing**

241 Microbes were classified in both human and mouse samples using the {exotic} pipeline. This
242 entails first removing as many human or mouse reads as possible by aligning to the appropriate
243 genome using STAR. The hg38 genome was used for human samples, the GRC m39 genome
244 was used for mouse samples, and annotated genes were further used in gene expression
245 analyses. Reads left unclassified after STAR alignment were then aligned to a Kraken 2 database
246 customized to include fungi and archaea, after which Bracken (short for Bayesian reestimation of
247 abundance with Kraken) was used to determine the likely species of all classified reads. The R
248 package {exotic} (24) was then used to decontaminate the results and to normalize the human
249 samples to account for processing at different sequencing centers.

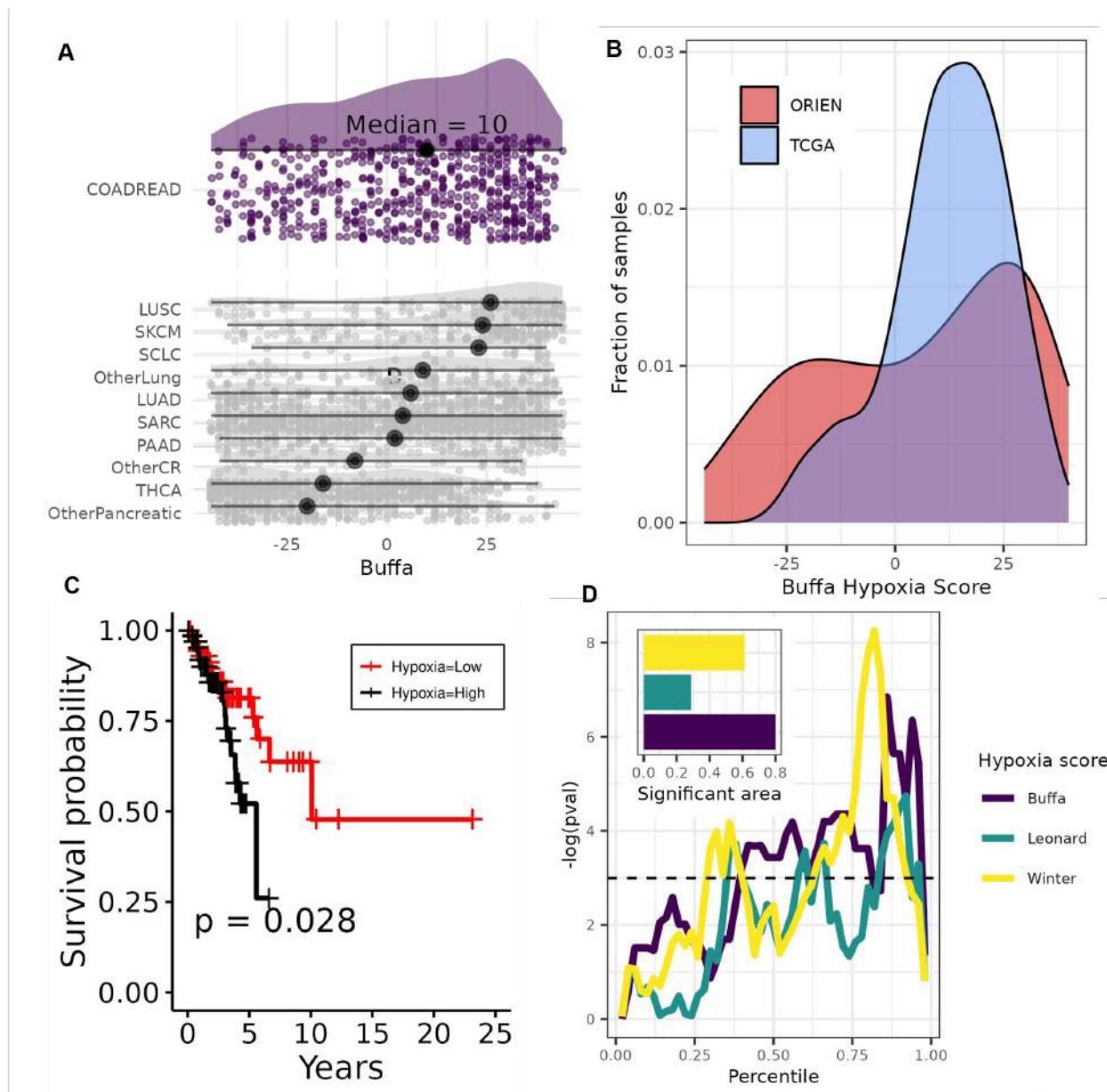
250

251 **Microbial Culture and Healthy Gut Mixture**

252 Representative bacteria strains *Akkermansia muciphila* (ATCC® BAA-35™), *Lactobacillus*
253 *acidophila* (ATCC® 4356™), *Streptococcus thermophilus* (ATCC® 19258™), *Bacteroides ovatus*

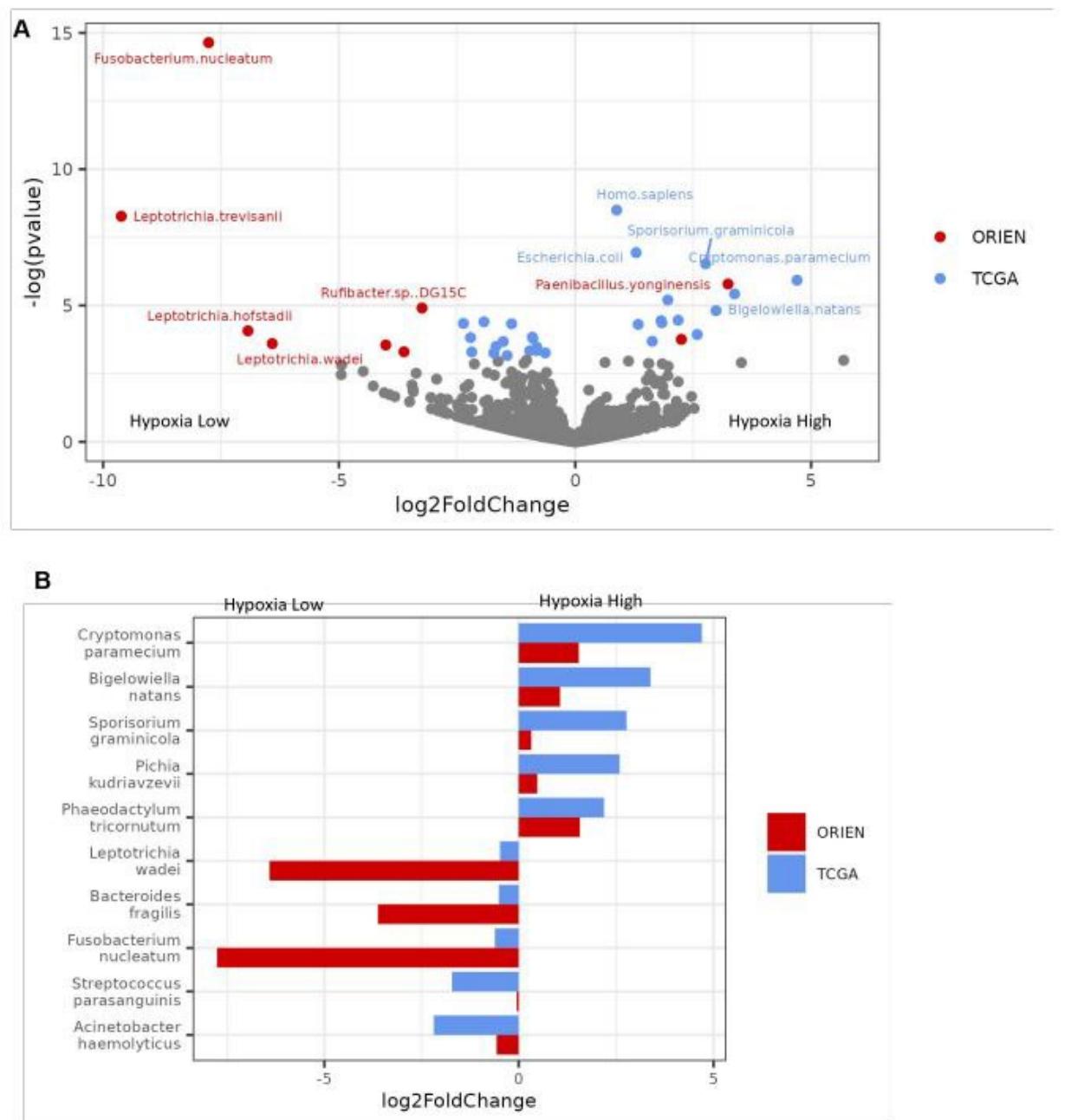
254 (ATCC® 8483™), and *Dorea formicigenerans* (ATCC® 27755™) were obtained from American
255 Type Culture Collection (ATCC, Manassas, VA). Fecal bacteria isolates were collected from 3
256 healthy adult volunteers as described previously (25) (protocol approval was obtained from the
257 Institutional Review Board, and informed consent was documented for each individual). All
258 bacterial strains were maintained in standard culture conditions as previously described (26).
259 Briefly, overnight cultures of bacteria were established in Gifu anaerobic medium (GAM)
260 (HiMedia, West Chester, PA). The cultures were maintained in an anaerobic environment at 37°C
261 using a Coy Laboratories anaerobic chamber (Coy Lab, Flint, MI). The final optical density (OD)
262 of bacterial cultures was measured using an ELx808 absorbance plate reader (BioTek, Winooski,
263 VT) to estimate growth. Drop plate analysis was also used to quantify the colony-forming units
264 (CFU) in each culture. Prior to injections, bacteria cultures were centrifuged and then
265 resuspended at a final concentration of 3×10^9 CFU per injection.

266


267 RESULTS

268 Virtually all solid tumor types are characterized by some level of hypoxia. One way to approximate
269 tumor hypoxia is to use quantitative gene expression signatures of hypoxia-regulated genes. For
270 **Figure 1A**, we calculated the values and distribution of the hypoxia expression score (23) across
271 cancer types within the ORIEN dataset (23). This hypoxia signature is similar to others and scores
272 sets of genes induced in response to hypoxia primarily by the HIF1 transcription factor. This gene
273 family can be extracted from tumor mRNA data in publicly available clinical datasets to identify
274 tumors with significant levels of hypoxia.

275

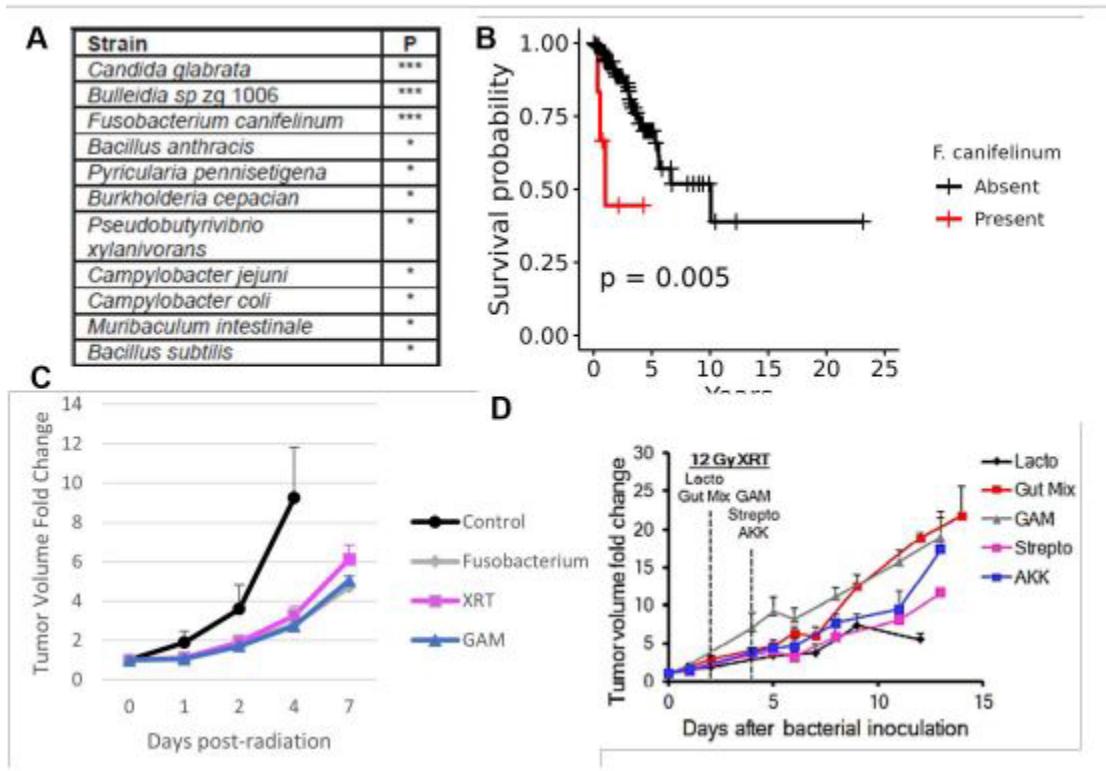

276 We downloaded RNA-seq data from 141 CRC patients available through the ORIEN network and
277 calculated hypoxia scores (23) for each sample. Colorectal adenocarcinoma (COADREAD) ranks
278 among the more hypoxic cancer types with a median hypoxia score of 12. The distribution of
279 hypoxia scores ranges from lowest in thyroid cancer (median hypoxia expression score of 16) to

280 highest in lung squamous cell cancer (median hypoxia expression score of 26). We then cross-
281 validated the ORIEN COADREAD hypoxia scores by comparing them with the publicly available
282 TCGA COADREAD dataset. We found substantial overlap in the distribution of scores between
283 the independent patient datasets, confirming the robustness of this analysis and indicating that
284 the many COADREAD samples were distributed within the high-end hypoxia expression score
285 (23) region (**Figure 1B**). Current molecular models of radiation-induced DNA damage specify that
286 oxygen is needed for the “fixation” of damage; thus, hypoxia directly impairs the efficiency of
287 radiation therapy (27). Therefore, we tested whether elevated hypoxia scores would correlate with
288 poor survival of CRC patients treated with radiation therapy. ORIEN patients who underwent
289 radiation therapy were stratified at the median hypoxia expression score (23), and KM analysis
290 shows that a high hypoxic score significantly correlates with poor overall patient survival ($p=0.028$)
291 (**Figure 1C**). For a more robust survival analysis, we evaluated whether stratification strategy
292 influences significance within these COADREAD patients. To this point, we stratified this dataset
293 of hypoxia expression score (23) tumors over a range of different values and analyzed the impact
294 on the significance of outcome prediction. **Figure 1D** shows this analysis for 3 published hypoxia
295 gene scores. The predictive ability of a high hypoxia expression score (23) is significant for
296 survival over a wide range of stratification points, and the hypoxia expression score (23) appears
297 to be the most discriminating of the signatures.

310 using the exogenous sequences in tumors and immune cells {exotic} tool for quantifying
311 microbe abundances in tumor RNA-seq data (24). To identify taxa associated with high levels of
312 tumor hypoxia, we stratified patient samples into tertiles of increasing hypoxia scores (23) and
313 quantified log2 abundance fold change between the bottom- and top-ranked tertiles. This
314 analysis was performed on both ORIEN and TCGA CRC datasets, and only those microbes that
315 were significant in both datasets were identified as hypoxia-trophic or -phobic. A volcano plot of
316 significant strains is shown in **Figure 2A**, and a bar graph with the magnitude of the effect is
317 shown in **Figure 2B**. Results for all log2 fold changes are available in **Table S1**. Interestingly,
318 *Fusobacterium nucleatum* has been associated with poor outcomes in patients with CRC
319 (15,29) and is elevated in hypoxic tumors.

320

321
322 **Figure 2. Hypoxia score associated with significant differences in microbial populations in CRC**
323 (A) Volcano plot of microbes from ORIEN and TCGA tumors showing strain differences when tumors are stratified by
324 high vs. low hypoxia scores (tertiles). (B) Fold change of microbes that show hypoxic enrichment in both ORIEN and
325 TCGA datasets.


326

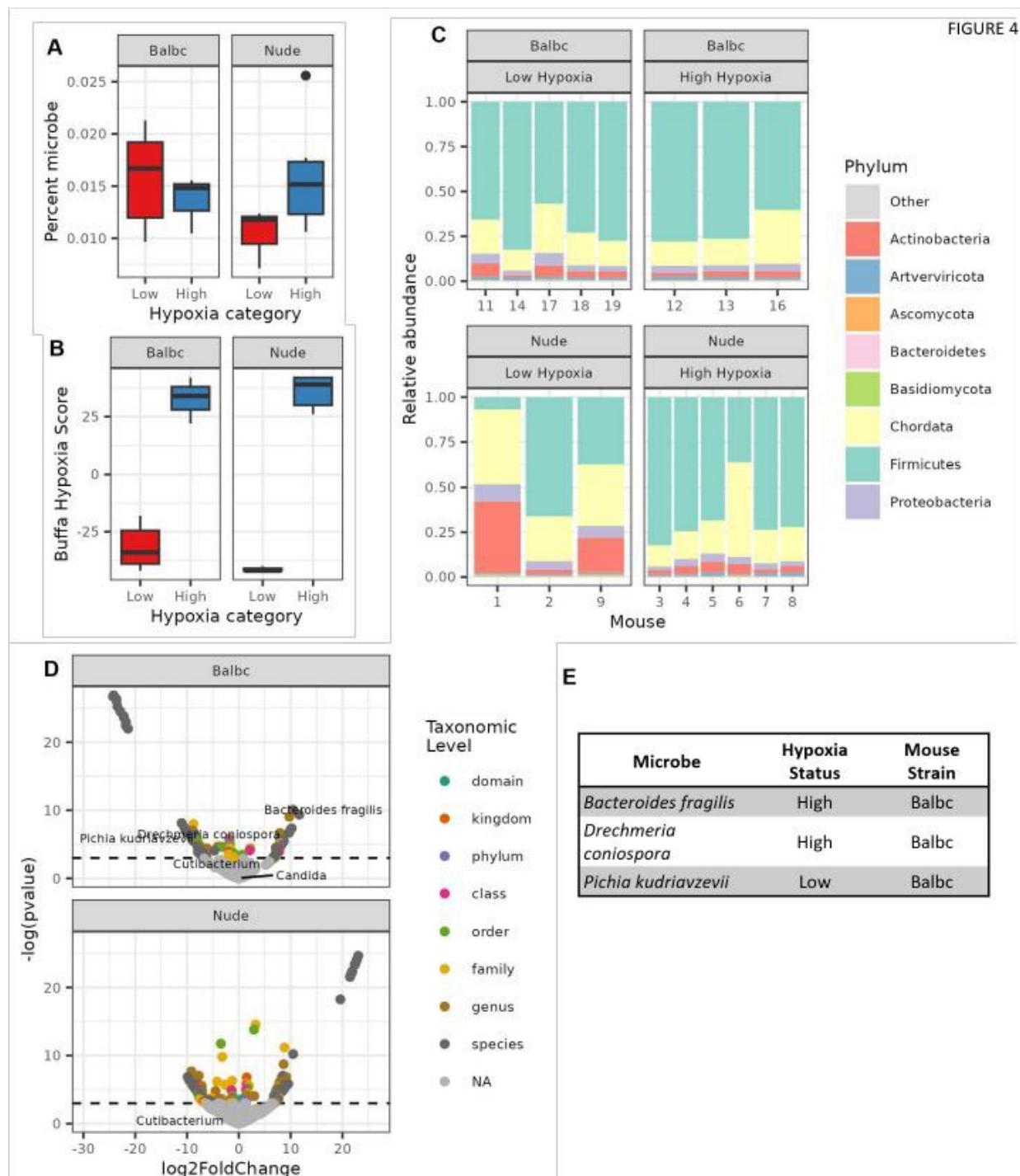
327 We next analyzed the intratumoral microbial populations in these patients for strains that
328 correlated with the outcome of radiotherapy for CRC. We identified 11 microbes whose presence
329 correlated with significantly worse outcomes after radiotherapy (**Figure 3A**). Complete results for
330 the survival analyses are available in **Table S2**. Strains showing the strongest statistical

331 correlation included *Candida glabrata*, a fungus, and *Fusobacterium canifelinum* and *Bulleidia* sp
332 zg 1006, both bacteria. *Fusobacterium canifelinum* is an anaerobic, gram-negative bacilli that is
333 not generally present in a healthy human gut microbiome but typically occurs in the oral cavity
334 (30). The closely related *Fusobacterium nucleatum* has been identified in recurrent CRC, and the
335 presence of the *Fusobacterium* strain promotes CRC development (31,32) and chemoresistance
336 (16). We therefore asked whether the combined presence of hypoxia and *F. canifelinum* affected
337 treatment outcomes in CRC patients undergoing radiation therapy. Analysis of CRC patients
338 treated with radiation therapy identified that the presence of *F. canifelinum* or a high hypoxia score
339 (23) is significantly associated with reduced overall survival (p-values : *F. canifelinum* = 0.005, *F.*
340 *canifelinum* interacting with hypoxia < 0.001) (**Figure 3B**).

341
342 To experimentally validate our bioinformatic observations *in vivo*, athymic nude mice were
343 inoculated heterotopically with the mouse CRC line MC38. Upon reaching 100 mm³, which is the
344 volume typically associated with the formation of a hypoxic core, MC38 tumor-bearing mice were
345 randomized into groups receiving either nothing as control, intratumoral bacterial growth medium
346 (GAM), or cultured *F. nucleatum* grown in GAM to achieve a ratio of 1:1 bacteria to tumor cells.
347 After 48 hours, mice were either sham irradiated or given one dose of 8 Gy external beam
348 radiation using the SARRP. **Figure 3C** shows no significant change in tumor response to therapy
349 with the introduction of *F. nucleatum*.

350

Figure 3. Presence of certain microbes in ORIEN tumors correlate with worse outcomes after radiotherapy


(A) List of strains whose interactions with hypoxia in the tumor are significantly associated with survival outcomes in ORIEN patients who received radiation treatment. (B) Kaplan-Meier survival curve showing association between the presence of *F. canifelatum* and patient outcome. (C) Model CT26 tumors grown in immune-deficient mice and inoculated with *Fusobacterium* shows no increase in tumor growth delay after radiotherapy. (D) Similar model tumors inoculated with several other bacterial strains showing significant increase in tumor growth delay after radiotherapy.

351
352 We therefore decided to test other bacterial strains for effects on radiation response and repeated
353 this experiment using several common gut bacteria strains: 1) microbial coculture representative
354 of a healthy intestinal microbiome (gut mix); 2) *Lactobacillus* spp.; 3) *Streptococcus* spp.; or 4)
355 *Akkermansia* spp., also by intratumoral injection at a 1:1 ratio of microbe to tumor cell, followed
356 48-72 hours later by a 12 Gy dose of local radiation. **Figure 3D** shows that injection of
357 *Lactobacillus* or *Streptococcus* bacterial strains into heterotopic CRC tumors resulted in a
358 pronounced increase in tumor growth delay after radiation. Taken together, these findings support
359 the idea that intratumoral microbes can influence the response of model tumors to radiotherapy
360 in a strain-dependent manner.

361

369 We next investigated the impact of a hypoxic TME on spontaneous tumor microbial colonization
370 in model tumors in mice. We inoculated a cohort of 10 BALB/c and 10 athymic nude host mice
371 with the CT26 murine CRC cell line. The mice received CT26 cells subcutaneously in the flank,
372 and their tumors were harvested upon reaching 500 mm³ for nucleic acid extraction. Hypoxia
373 scores (23) were calculated from tumor RNA for each sample, and the tumors were stratified at
374 the mean hypoxia score (23) into normoxic (low hypoxia expression score) and hypoxic (high
375 hypoxia expression score) tumors in each mouse host (**Figure 4A**). We used metatranscriptomic
376 sequencing of exogenous RNA to identify microbial strains enriched in hypoxic tumors. **Figure**
377 **4B** shows the bacterial burden of the tumors by calculating the fraction of RNA reads that were
378 bacterial. In the immune-competent model, the bacterial burden was equivalent in both low- and
379 high-hypoxia tumors. However, in the tumors grown in nude mice, the burden was higher in
380 hypoxic tumors, potentially due to the predominance of anaerobic strains (**Figure 4C**). A
381 comparison of the bacterial phyla identified in each group shows similarities in the tumors and the
382 prominence of *Firmicutes* phylum (**Figure 4C**). Microbes were identified that were significantly
383 enriched in the normoxic and hypoxic tumors for each host (**Figure 4D**). **Table S3** contains the
384 results summarized in **Figure 4D**. Interestingly, there was an overlap of 3 of the strains found
385 preferentially in the hypoxic tumors in both humans and mice (**Figure 4E**). The analyses of these
386 microbes in each dataset are presented in **Table S4**.

387

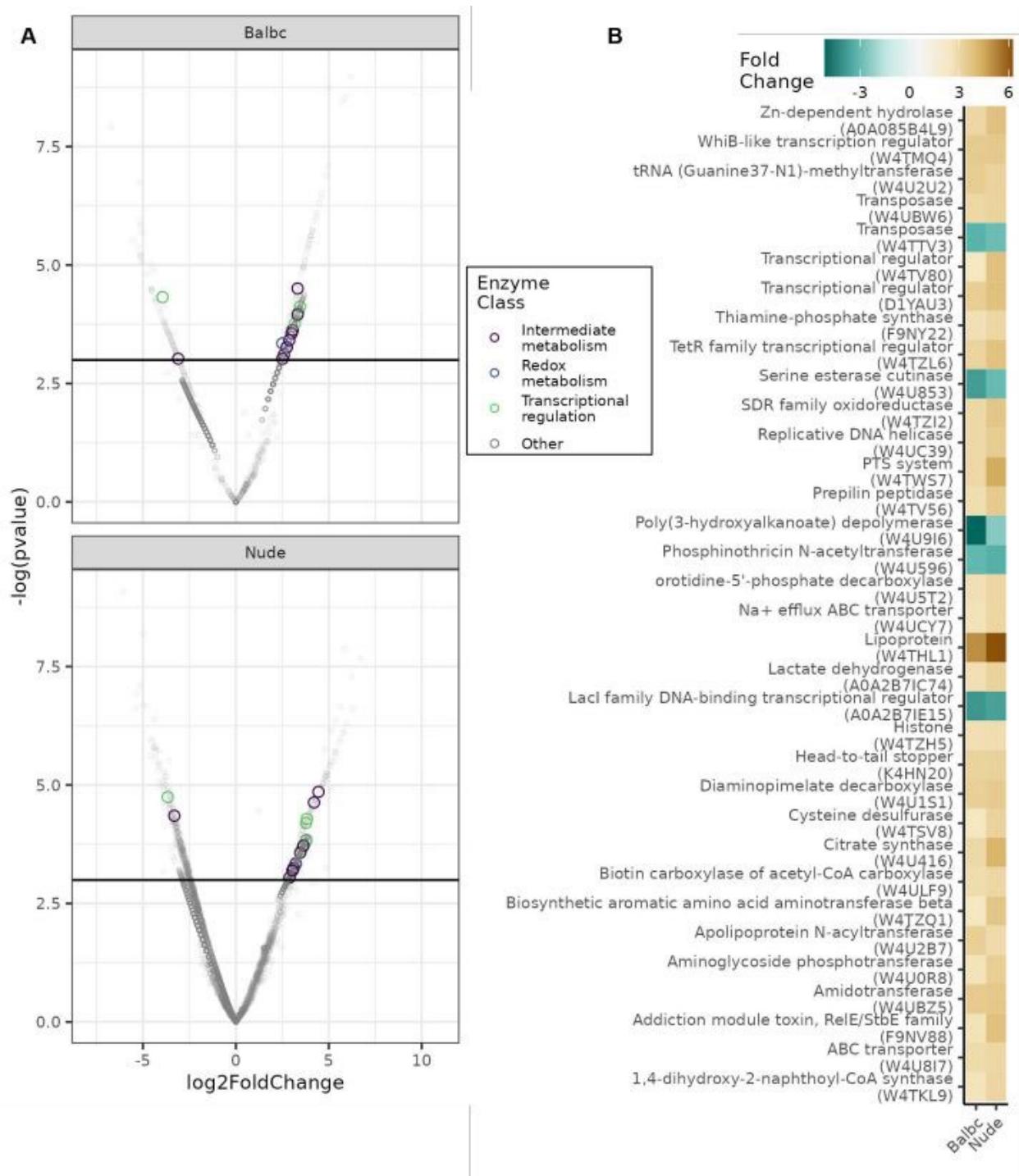

388
389
390
391
392
393
394
395

Figure 4. Model tumors also have oxygen-dependent microbial strain differences.

(A) CT26 CRC tumors grown in immune deficient hosts have increased microbial burden with increased hypoxia. (B) CT26 CRC tumors grown in immune deficient or immune competent hosts can be stratified into low and high hypoxia groups by tumor Buffa score. (C) Metatranscriptomic identification of microbial strains spontaneously colonizing individual tumors. (D) Volcano plot of strains identified in C with tropism for tumor of either high or low hypoxia score. (E) Microbes found to be enriched in both mouse and human hosts with hypoxia status.

396 However, the most consistent colonization of all tumors was observed with the genus
397 *Cutibacterium* from the phylum *Actinobacteria* (**Figure 4D**). *Cutibacterium* is gram-positive
398 anaerobic bacilli typically found in the skin and associated with acne vulgaris; however, emerging
399 studies identified a possible role for the microbe in prostate cancer immunosuppression (33).
400 Based on the prevalence of *Cutibacterium* in all analyzed samples, we performed transcriptomic
401 analysis of this species in both the BALB/c and nude mouse hosts. We analyzed how the same
402 microbial strain responds to these TME variables (tumor oxygenation as determined by hypoxia
403 expression score) in different mouse hosts. Differential microbial RNA analysis revealed
404 significant differences between microbial gene expression in normoxic versus hypoxic tumors,
405 indicative of microbial adaptation to TME changes (**Figures 5A and 5B, Table S5**). Of the 1,295
406 identified RNA species, we found 48 to be significantly different in the normoxic versus hypoxic
407 tumors in both datasets (39 induced by hypoxia and 9 repressed). The 34 with Uniref90
408 annotations are listed in **Figure 5B** in order of significance.

409

410
411
412
413
414
415
416

Figure 5. Oxygen-responsive gene expression of *Cutibacterium* within model tumors.
(A) Volcano plot of metatranscriptomic analysis of transcripts from *Cutibacterium* found in low or high hypoxia score CT26 tumors grown in either immune-deficient or immune-competent host animals (1,295 total transcripts identified).
(B) Table of the 34 annotated transcripts that showed significant concordant changes to hypoxia score in both datasets (49 total: 40 positive, 9 negative).

417 Even with the paucity of annotation in this strain, we find that adaptive changes included genes
418 primarily involved in metabolism but also several involved in oxygen/redox stress, DNA
419 metabolism, and several transcriptional regulators. Hypoxic induction of lactate dehydrogenase
420 or citrate synthase may be analogous to what is seen in higher species adapting their metabolism
421 to reduced oxygen environments. One of the more interesting induced transcriptional regulators
422 is the WhiB family member, which contains a redox-sensitive [4Fe-4S] cluster. The WhiB-like
423 (Wbl) protein family is exclusively found in *Actinobacteria* and has been reported to be nitric oxide
424 and oxygen-responsive in other strains (34). This transcriptional regulator may be analogous to
425 the hypoxia-responsive HIF1 transcriptional regulator found in higher species that is largely
426 responsible for transcriptional adaptation to hypoxia. The sum of these findings indicates that
427 intratumoral oxygen tension can both favor the growth of specific microbial populations and elicit
428 adaptive transcriptional responses in microbes that can grow in both normoxic and hypoxic
429 tumors.

430

431 **DISCUSSION**

432 Several lines of evidence show that host-microbiome interactions can affect the response to anti-
433 cancer therapy (14,35-37). The balance between bacterial and fungal microbes and the
434 metabolites produced by these microbes can affect response to radiation therapy (38,39). Chronic
435 intestinal inflammation associated with microbial dysbiosis and an intrinsically hypoxic
436 microenvironment creates a niche permissive to microbial colonization of all ranges of partial
437 oxygen pressure (pO₂) within the tumor. In line with this expectation, we observed that tumor
438 microbiome composition shows distinct patterns as a function of tumor oxygen levels in CRC
439 patient datasets.

440

441 Under normal conditions, the intestinal microbiome consists of 1,000+ species of bacteria, most
442 of which are obligate anaerobes (40). Intestinal dysbiosis triggers the rapid expansion of

443 conditional anaerobic pathogens that can disrupt the intestinal mechanical barrier and result in
444 luminal microbes colonizing the tumor. Mean pO_2 levels within the GI tract range from 42-71
445 mmHg (7-10% O_2) in the colonic muscle wall to 3 mmHg (0.4% O_2) in the sigmoid colon, similar
446 to 2.5 mmHg levels typically observed in CRC tumors (41,42). Distribution characteristics of
447 conditional pathogens in both mouse hosts show an overrepresentation of the *Firmicutes* phylum,
448 similar to observations made in human CRC (43).

449

450 Much investigation has gone into the composition of the intratumoral immune system to establish
451 its role in determining which microbes can colonize a tumor (44). However, there are fewer studies
452 of the metabolic parameters that influence what microbes find a tumor hospitable. The partial
453 pressure of oxygen has been long recognized as an important component of culture media for
454 different microorganisms. Bacteria have been found that range from obligate anaerobes that can
455 only grow in the absence of oxygen to aerobes that grow well in an atmosphere with 21% oxygen.
456 Often, this categorization is due to the presence or absence of enzymes within the microbial
457 genome that are capable of metabolizing toxic oxygen species, such as superoxide dismutase or
458 catalase, which can facilitate growth in an oxidizing environment. Many microbes fall between
459 these extremes and can be categorized as facultative anaerobes or microaerophiles capable of
460 growth in low- or no-oxygen environments. These microbes may be most well adapted for growth
461 in intermediate to low oxygen, which is often found within the TME.

462

463 Similarly, while much attention has been given to what strains of bacteria exist within the tumor,
464 relatively less study has been completed on the physiologic state of intratumoral microbes.
465 Microbes could have a very different impact on the tumor due to the expression or silencing of
466 different genes. Our data suggest that differing levels of microbially produced lactate or citrate
467 may be present in the hypoxic tumors relative to the more well oxygenated tumors. Such
468 metabolites may interact with and change the behavior or morphology of the tumor. For example,

469 tumor lactate has been shown to impact macrophage polarization (45). Such signals from
470 microbes have also been shown to impact tumor cell response to radiotherapy (39). In our study,
471 we observed several microbial strains correlated with worse outcomes from radiation therapy in
472 rectal cancer. Notably, *C. glabrata* and *F. canifelinum* were identified, both of which share close
473 taxonomic similarity to microbes previously related to cancer: *Candida albicans* and
474 *Fusobacterium nucleatum*, respectively. *C. albicans* has been linked to oral squamous cell
475 carcinoma (46) and radioresistant rectal cancer (47) and was shown in a large study to be
476 predictive of metastatic disease across multiple GI tumors (48). Additionally, previous studies
477 have reported that species from the *Fusobacterium* genus are associated with elevated
478 inflammatory response in the colorectal mucosa (49-51). This raises the question of whether the
479 host's immune response to microbial dysbiosis affects radiation therapy outcomes.

480

481 Experimentally, we observed that immunocompromised BALB/c and nude mice hosts show
482 distinct acute immune responses following intratumoral inoculation with several microbial strains
483 found in human CRC (52). The inoculated mice exhibited mild symptoms of acute immune
484 response associated with changes in tumor growth and response to radiation therapy. We
485 identified that the presence of common commensal bacteria *Lactobacillus acidophilus*,
486 *Akkermansia muciphila*, and *Streptococcus thermophilus* in the tumor enhances the therapeutic
487 efficacy of local radiation therapy while inoculation with *Fusobacterium nucleatum* or microbial
488 coculture, representative of a healthy intestinal microbiome, does not potentiate radiation therapy.
489 These observations support the model that the presence of *Lactobacillus*, *Akkermansia*, or
490 *Streptococcus* genera might be predictive of better outcomes of radiation therapy in CRC patients,
491 while the presence of *Fusobacterium* predicts worse outcomes (*F. nucleatum* in previous
492 publications, and *F. canifelinum* in our study).

493

494 Perhaps the most intriguing findings come from the metatranscriptomics analysis of conditional
495 pathogen enrichment in hypoxic versus normoxic CT26 CRC tumors in BALB/c and nude mice.
496 We identified that *Cutibacterium*, a typically anaerobic opportunistic pathogen, is most
497 consistently colonizing both the normoxic and hypoxic tumors, displaying wide adaptive flexibility
498 toward different pO₂ environments. Transcriptomic analysis revealed a systemic reprogramming
499 underlying the adaptive response of the pathogen to varying pO₂ levels. These results support
500 the model that opportunistic pathogens colonizing CRC tumors can respond to environmental
501 oxygen levels with adaptive gene expression changes, providing a strong rationale for
502 investigating microbial metabolism in future studies. These results also indicate that it may not be
503 just the presence or absence of a specific microbe within a tumor that dictates its effect on clinical
504 outcome but the physiological state of the microbe that can be influenced by the
505 microenvironment in which it resides.

506

507 **SUPPLEMENTARY DATA**

508 **Table S1:** Log2 fold changes of microbes between hypoxic and anoxic tumors in TCGA and
509 ORIEN samples

510 **Table S2:** Results of survival analyses of interactions between microbes and hypoxia in
511 COADREAD patients receiving radiation therapy

512 **Table S3:** Log2 fold changes of microbes between hypoxic and anoxic tumors in nude and
513 BALB/c mice

514 **Table S4:** Selected log2 fold change results for microbes found to be significantly enriched in
515 hypoxic tumors in both mice and human subjects

516 **Table S5:** Log2 fold changes of annotated *cutibacterium* genes between hypoxic and normoxic
517 tumors in nude and BALB/c mice

518

519 **ACKNOWLEDGMENTS**

520 This work was supported by the Pelotonia Institute of Immuno-Oncology (PIIO). The content is
521 solely the responsibility of the authors and does not necessarily represent the official views of
522 the PIIO. The authors acknowledge the support and resources of the Ohio Supercomputer
523 Center (PAS1695, PCON0005). We would like to thank Angela Dahlberg, Editor, Division of
524 Medical Oncology at The Ohio State University Comprehensive Cancer Center, for editing and
525 proofreading the manuscript.

526

527 REFERENCES

- 528 1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. *Transl
529 Oncol* **2021**;14(10):101174 doi 10.1016/j.tranon.2021.101174.
- 530 2. Simpson J, Scholefield JH. Treatment of colorectal cancer: surgery, chemotherapy and
531 radiotherapy. *Surgery (Oxford)* **2008**;26(8):329-33 doi
532 <https://doi.org/10.1016/j.mpsur.2008.06.003>.
- 533 3. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al.
534 Colorectal cancer statistics, 2020. *CA Cancer J Clin* **2020**;70(3):145-64 doi
535 10.3322/caac.21601.
- 536 4. Habiba K, Aziz K, Sanders K, Santiago CM, Mahadevan LSK, Makarov V, et al.
537 Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms
538 Decorated with Graphene as Radiosensitizers. *Sci Rep* **2019**;9(1):17120 doi
539 10.1038/s41598-019-53706-0.
- 540 5. Agarwal A, Chang GJ, Hu CY, Taggart M, Rashid A, Park IJ, et al. Quantified pathologic
541 response assessed as residual tumor burden is a predictor of recurrence-free survival in
542 patients with rectal cancer who undergo resection after neoadjuvant chemoradiotherapy.
543 *Cancer* **2013**;119(24):4231-41 doi 10.1002/cncr.28331.
- 544 6. Alam A, Neish A. Role of gut microbiota in intestinal wound healing and barrier function.
545 *Tissue Barriers* **2018**;6(3):1539595 doi 10.1080/21688370.2018.1539595.
- 546 7. Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota:
547 pathological and therapeutic implications. *Pharmacol Res* **2013**;69(1):42-51 doi
548 10.1016/j.phrs.2012.10.007.
- 549 8. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role
550 of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy
551 metabolism. *J Lipid Res* **2013**;54(9):2325-40 doi 10.1194/jlr.R036012.
- 552 9. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria
553 in the gut. *Nature* **2016**;535(7610):85-93 doi 10.1038/nature18849.
- 554 10. Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. *Front Immunol*
555 **2020**;11:615056 doi 10.3389/fimmu.2020.615056.
- 556 11. Alhinai EA, Walton GE, Commane DM. The Role of the Gut Microbiota in Colorectal
557 Cancer Causation. *Int J Mol Sci* **2019**;20(21) doi 10.3390/ijms20215295.
- 558 12. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. *Nat Rev Cancer*
559 **2017**;17(5):271-85 doi 10.1038/nrc.2017.13.
- 560 13. Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?
561 *Gut* **2020**;69(10):1867-76 doi 10.1136/gutjnl-2020-321153.

562 14. Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, *et al.* Gut microbiota-mediated nucleotide
563 synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer.
564 *Cancer Cell* **2023**;41(1):124-38.e6 doi 10.1016/j.ccr.2022.11.013.

565 15. Yi Y, Shen L, Shi W, Xia F, Zhang H, Wang Y, *et al.* Gut Microbiome Components
566 Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced
567 Rectal Cancer: A Prospective, Longitudinal Study. *Clin Cancer Res* **2021**;27(5):1329-40
568 doi 10.1158/1078-0432.Ccr-20-3445.

569 16. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, *et al.* Fusobacterium nucleatum Promotes
570 Chemoresistance to Colorectal Cancer by Modulating Autophagy. *Cell* **2017**;170(3):548-
571 63.e16 doi 10.1016/j.cell.2017.07.008.

572 17. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, *et al.* Potential
573 role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug
574 gemcitabine. *Science* **2017**;357(6356):1156-60 doi doi:10.1126/science.aah5043.

575 18. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, *et al.* Correlation
576 between intraluminal oxygen gradient and radial partitioning of intestinal microbiota.
577 *Gastroenterology* **2014**;147(5):1055-63.e8 doi 10.1053/j.gastro.2014.07.020.

578 19. Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the
579 healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. *Am J Physiol
580 Cell Physiol* **2015**;309(6):C350-60 doi 10.1152/ajpcell.00191.2015.

581 20. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and
582 the possible implications for radiotherapy. *Br J Cancer* **1955**;9(4):539-49 doi
583 10.1038/bjc.1955.55.

584 21. Dalton WS, Sullivan D, Ecsedy J, Caligiuri MA. Patient Enrichment for Precision-Based
585 Cancer Clinical Trials: Using Prospective Cohort Surveillance as an Approach to
586 Improve Clinical Trials. *Clin Pharmacol Ther* **2018**;104(1):23-6 doi 10.1002/cpt.1051.

587 22. Hoyd R, Wheeler C, Denko L, Spakowicz D. spakowiczlab/tmesig: Tumor
588 MicroEnvironment Expression Signatures: Zenodo; 2021.

589 23. Buffa FM, Harris AL, West CM, Miller CJ. Large meta-analysis of multiple cancers
590 reveals a common, compact and highly prognostic hypoxia metagene. *Br J Cancer*
591 **2010**;102(2):428-35 doi 10.1038/sj.bjc.6605450.

592 24. Hoyd R, Wheeler C, Liu Y, Singh M, Muniak M, Denko N, *et al.* Exogenous sequences in
593 tumors and immune cells (exotic): a tool for estimating the microbe abundances in tumor
594 RNAseq data. 2022.

595 25. Zhang S, Xu M, Sun X, Liu X, Choueiry F, Xu R, *et al.* Black raspberry extract shifted gut
596 microbe diversity and their metabolic landscape in a human colonic model. *J
597 Chromatogr B Analyt Technol Biomed Life Sci* **2022**;1188:123027 doi
598 10.1016/j.jchromb.2021.123027.

599 26. Choueiry F, Xu R, Zhu J. Adaptive Metabolism of *Staphylococcus aureus* Revealed by
600 Untargeted Metabolomics. *J Proteome Res* **2022**;21(2):470-81 doi
601 10.1021/acs.jproteome.1c00797.

602 27. Busk M, Horsman MR. Relevance of hypoxia in radiation oncology: pathophysiology,
603 tumor biology and implications for treatment. *Q J Nucl Med Mol Imaging* **2013**;57(3):219-
604 34.

605 28. Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, *et al.* Gut microbiota-mediated nucleotide
606 synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer.
607 *Cancer Cell* **2023**;41(1):124-38.e6 doi 10.1016/j.ccr.2022.11.013.

608 29. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, *et al.* Fusobacterium nucleatum Promotes
609 Chemoresistance to Colorectal Cancer by Modulating Autophagy. *Cell* **2017**;170(3):548-
610 63.e16 doi 10.1016/j.cell.2017.07.008.

611 30. Conrads G, Citron DM, Mutters R, Jang S, Goldstein EJ. *Fusobacterium canifelinum* sp.
612 nov., from the oral cavity of cats and dogs. *Syst Appl Microbiol* **2004**;27(4):407-13 doi
613 10.1078/0723202041438509.

614 31. Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, et al. Profiling *Fusobacterium* infection at high
615 taxonomic resolution reveals lineage-specific correlations in colorectal cancer. *Nat
616 Commun* **2022**;13(1):3336 doi 10.1038/s41467-022-30957-6.

617 32. Zhou Z, Chen J, Yao H, Hu H. *Fusobacterium* and Colorectal Cancer. *Front Oncol*
618 **2018**;8:371 doi 10.3389/fonc.2018.00371.

619 33. Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, Erlandsson A.
620 *Cutibacterium acnes* Induces the Expression of Immunosuppressive Genes in
621 Macrophages and is Associated with an Increase of Regulatory T-Cells in Prostate
622 Cancer. *Microbiol Spectr* **2021**;9(3):e0149721 doi 10.1128/spectrum.01497-21.

623 34. Crack JC, den Hengst CD, Jakimowicz P, Subramanian S, Johnson MK, Buttner MJ, et
624 al. Characterization of [4Fe-4S]-containing and cluster-free forms of *Streptomyces WhiD*.
625 *Biochemistry* **2009**;48(51):12252-64 doi 10.1021/bi901498v.

626 35. Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in
627 metabolic disorders. *Gut* **2021**;70(6):1174-82 doi 10.1136/gutjnl-2020-323071.

628 36. Fong W, Li Q, Yu J. Gut microbiota modulation: a novel strategy for prevention and
629 treatment of colorectal cancer. *Oncogene* **2020**;39(26):4925-43 doi 10.1038/s41388-
630 020-1341-1.

631 37. Ferreira MR, Muls A, Dearnaley DP, Andreyev HJ. Microbiota and radiation-induced
632 bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist.
633 *Lancet Oncol* **2014**;15(3):e139-47 doi 10.1016/s1470-2045(13)70504-7.

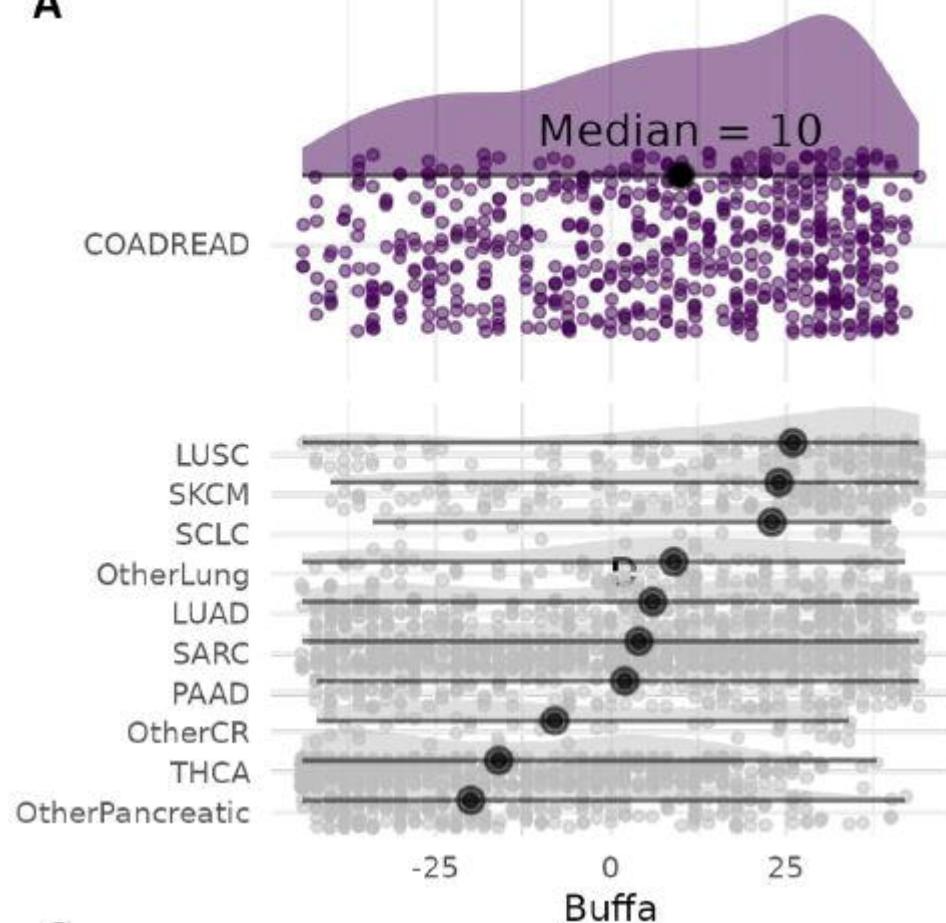
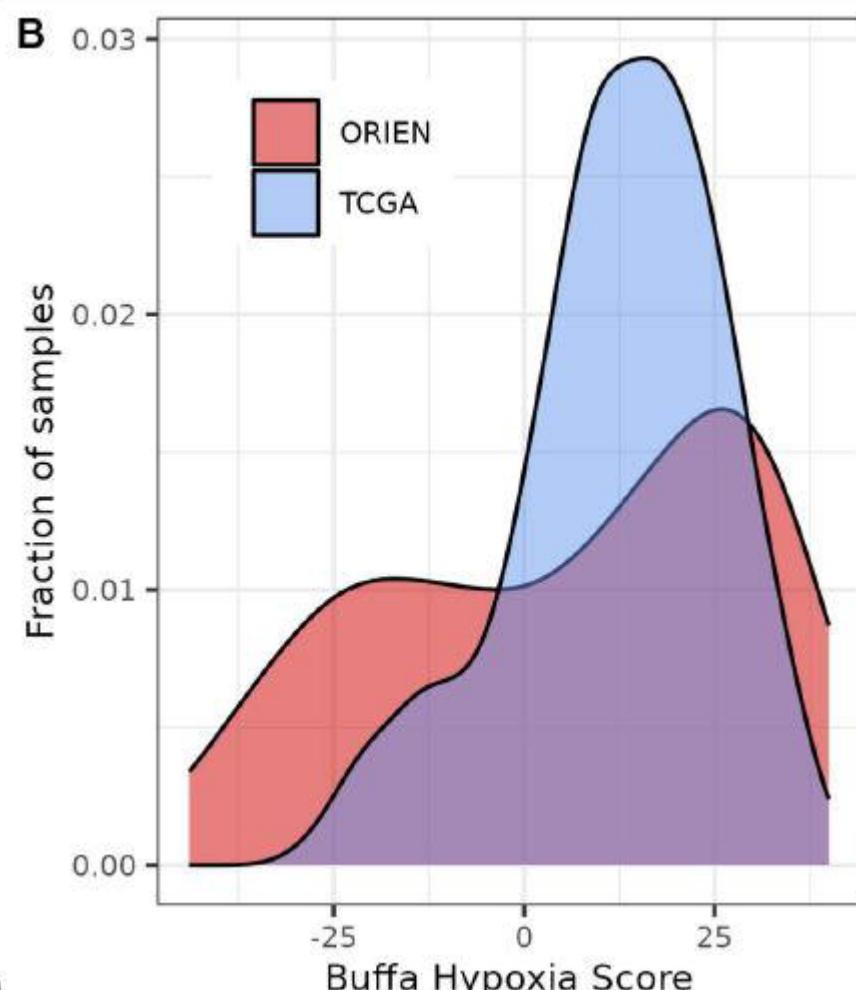
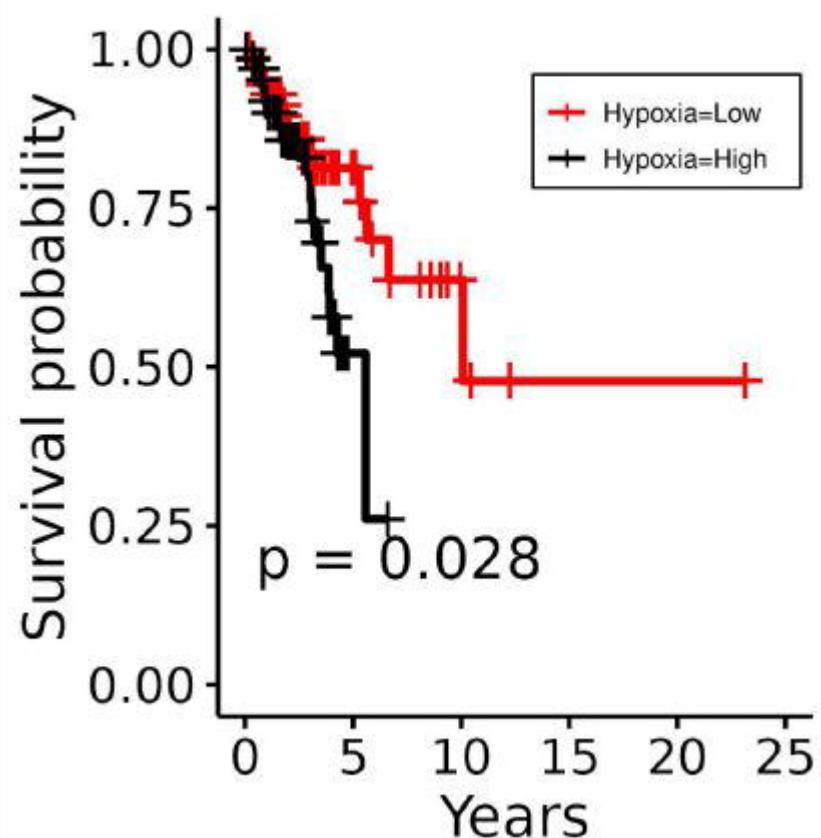
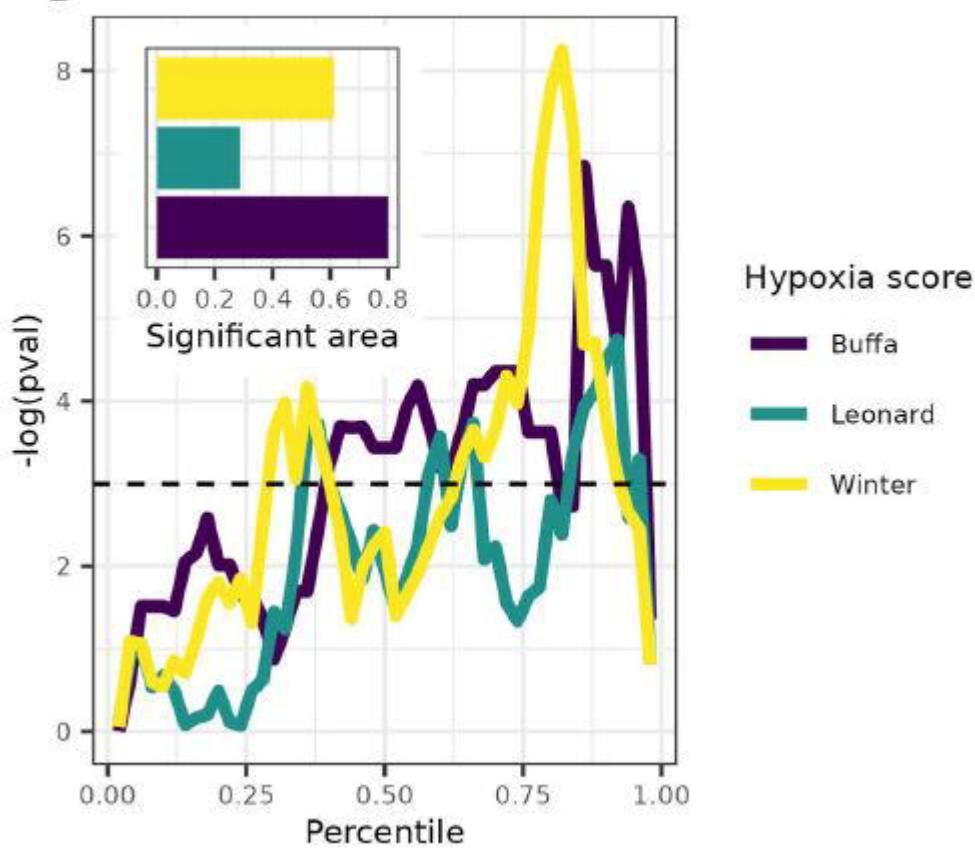
634 38. Shiao SL, Kershaw KM, Limon JJ, You S, Yoon J, Ko EY, et al. Commensal bacteria
635 and fungi differentially regulate tumor responses to radiation therapy. *Cancer Cell*
636 **2021**;39(9):1202-13 e6 doi 10.1016/j.ccr.2021.07.002.

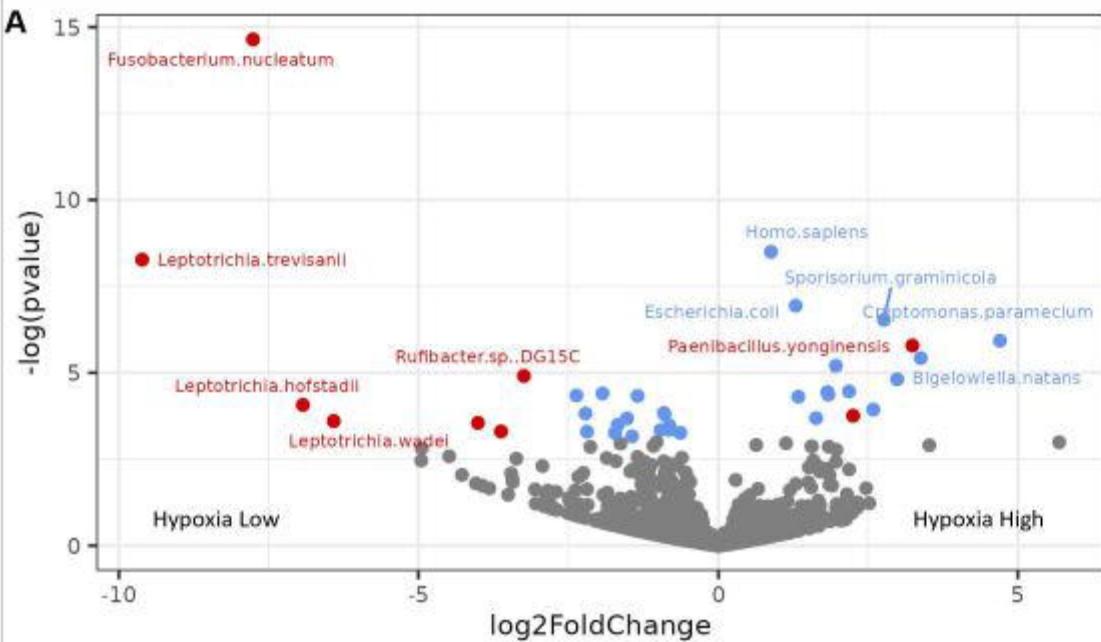
637 39. Guo H, Chou WC, Lai Y, Liang K, Tam JW, Brickey WJ, et al. Multi-omics analyses of
638 radiation survivors identify radioprotective microbes and metabolites. *Science*
639 **2020**;370(6516) doi 10.1126/science.aay9097.

640 40. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al.
641 The long-term stability of the human gut microbiota. *Science* **2013**;341(6141):1237439
642 doi 10.1126/science.1237439.

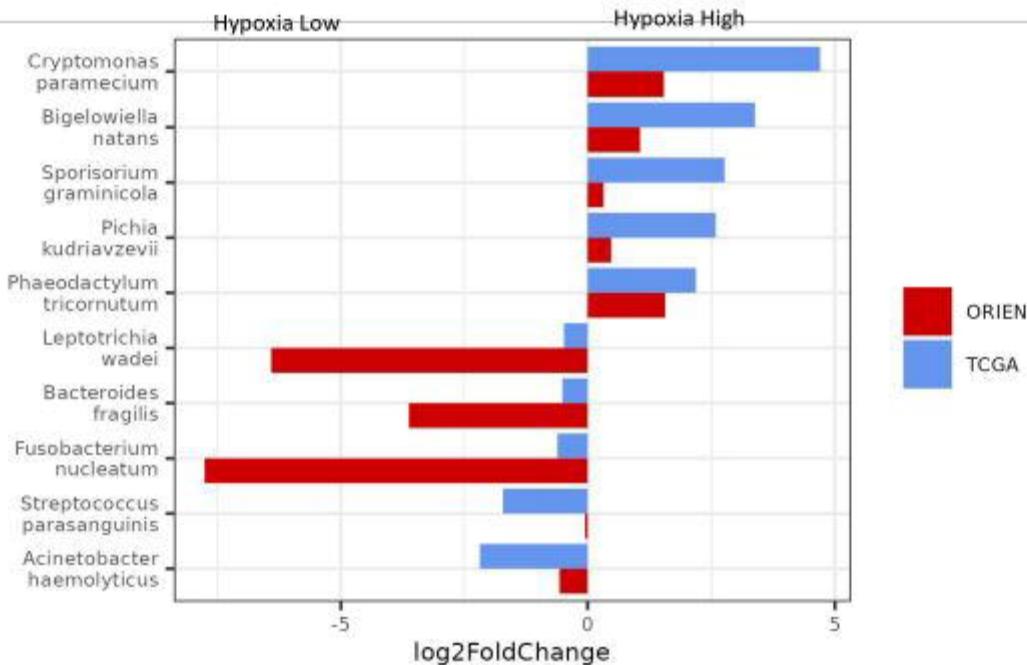
643 41. He G, Shankar RA, Chzhan M, Samoilov A, Kuppusamy P, Zweier JL. Noninvasive
644 measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal
645 tract of living mice with spatial and spectral EPR imaging. *Proc Natl Acad Sci U S A*
646 **1999**;96(8):4586-91 doi 10.1073/pnas.96.8.4586.

647 42. Zhang L, Hu Y, Xi N, Song J, Huang W, Song S, et al. Partial Oxygen Pressure Affects
648 the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the
649 Microenvironment of Colorectal Cancer Tissue. *Oxid Med Cell Longev*
650 **2016**;2016:1204715 doi 10.1155/2016/1204715.





651 43. Han N, Pan Z, Liu G, Yang R, Yujing B. Hypoxia: The "Invisible Pusher" of Gut
652 Microbiota. *Front Microbiol* **2021**;12:690600 doi 10.3389/fmicb.2021.690600.


653 44. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The
654 microbiome and human cancer. *Science* **2021**;371(6536) doi 10.1126/science.abc4552.

655 45. Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, et al. Tumor-derived lactate induces M2
656 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in
657 breast cancer. *Cell Cycle* **2018**;17(4):428-38 doi 10.1080/15384101.2018.1444305.


658 46. Jahanshahi G, Shirani S. Detection of *Candida albicans* in oral squamous cell carcinoma
659 by fluorescence staining technique. *Dent Res J (Isfahan)* **2015**;12(2):115-20.

660 47. Stary L, Mezerova K, Vyslouzil K, Zboril P, Skalicky P, Stasek M, *et al.* *Candida albicans*
661 culture from a rectal swab can be associated with newly diagnosed colorectal cancer.
662 *Folia Microbiol (Praha)* **2020**;65(6):989-94 doi 10.1007/s12223-020-00807-3.
663 48. Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, *et al.* A pan-cancer
664 mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. *Cell*
665 **2022**;185(20):3807-22 e12 doi 10.1016/j.cell.2022.09.015.
666 49. Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, *et al.* *Fusobacterium*
667 *Nucleatum Subspecies Animalis Influences Proinflammatory Cytokine Expression and*
668 *Monocyte Activation in Human Colorectal Tumors. Cancer Prev Res (Phila)*
669 **2017**;10(7):398-409 doi 10.1158/1940-6207.Capr-16-0178.
670 50. Senthakumaran T, Moen AEF, Tannæs TM, Endres A, Brackmann SA, Rounge TB, *et*
671 *al.* Microbial dynamics with CRC progression: a study of the mucosal microbiota at
672 multiple sites in cancers, adenomatous polyps, and healthy controls. *Eur J Clin Microbiol*
673 *Infect Dis* **2023**;42(3):305-22 doi 10.1007/s10096-023-04551-7.
674 51. Wang N, Fang JY. *Fusobacterium nucleatum*, a key pathogenic factor and microbial
675 biomarker for colorectal cancer. *Trends Microbiol* **2023**;31(2):159-72 doi
676 10.1016/j.tim.2022.08.010.
677 52. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota dysbiosis is associated with colorectal
678 cancer. *Front Microbiol* **2015**;6:20 doi 10.3389/fmicb.2015.00020.
679

A**B****C****D**

B

A

Strain	P
<i>Candida glabrata</i>	***
<i>Bulleidia</i> sp zg 1006	***
<i>Fusobacterium canifelinum</i>	***
<i>Bacillus anthracis</i>	*
<i>Pyricularia penisetigena</i>	*
<i>Burkholderia cepacian</i>	*
<i>Pseudobutyrivibrio xylanivorans</i>	*
<i>Campylobacter jejuni</i>	*
<i>Campylobacter coli</i>	*
<i>Muribaculum intestinalis</i>	*
<i>Bacillus subtilis</i>	*

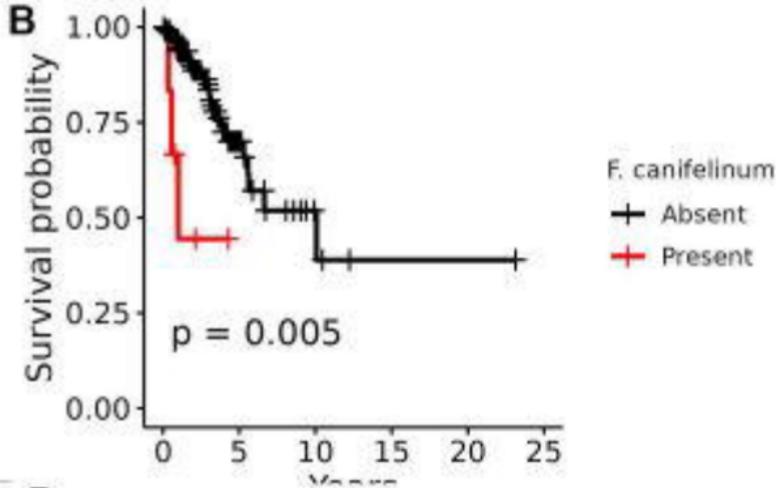
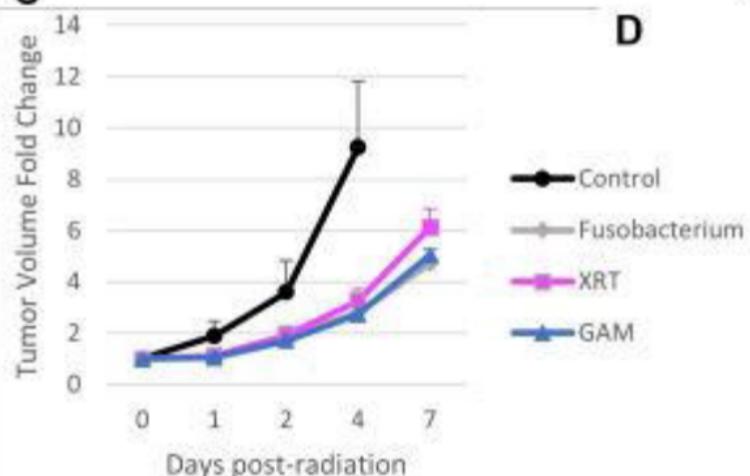
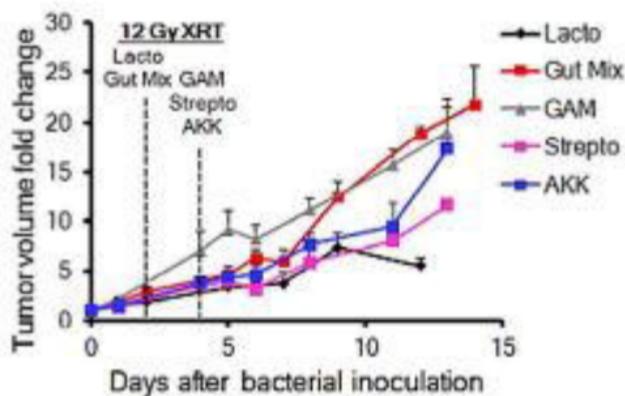
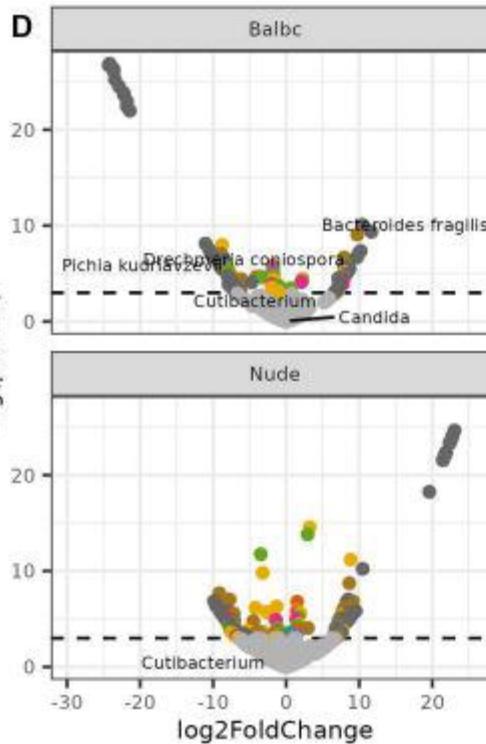
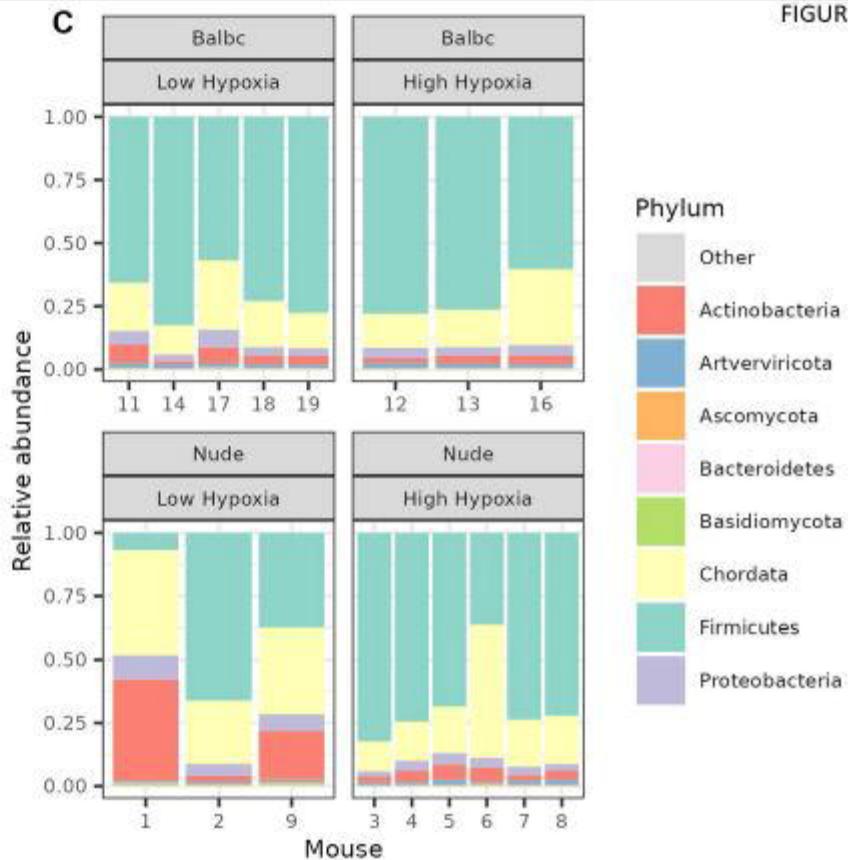
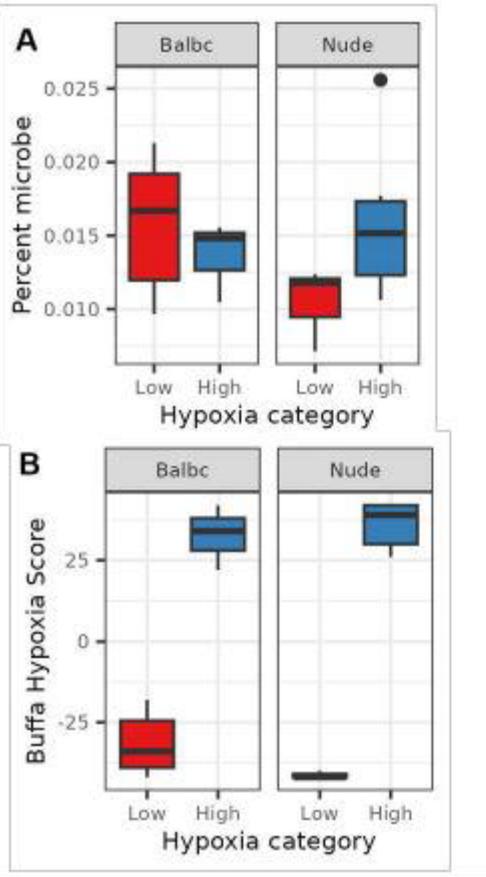
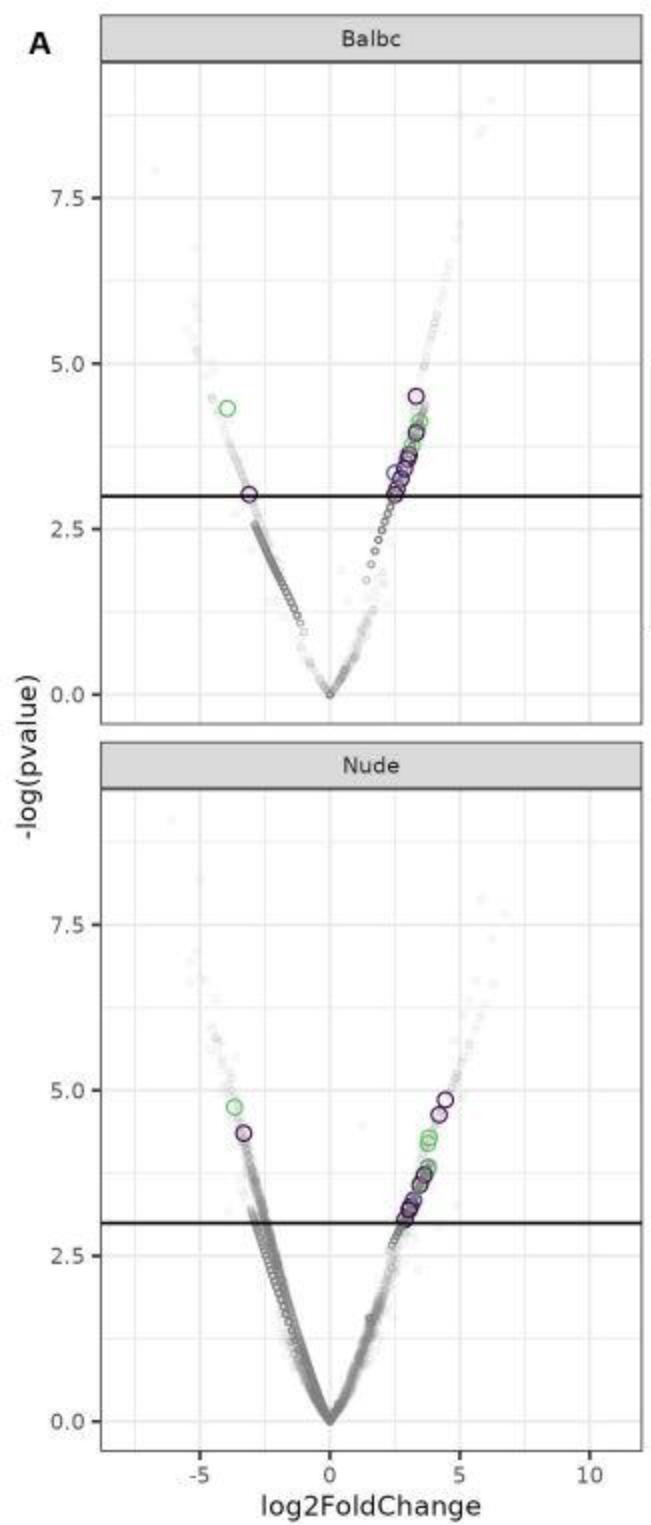
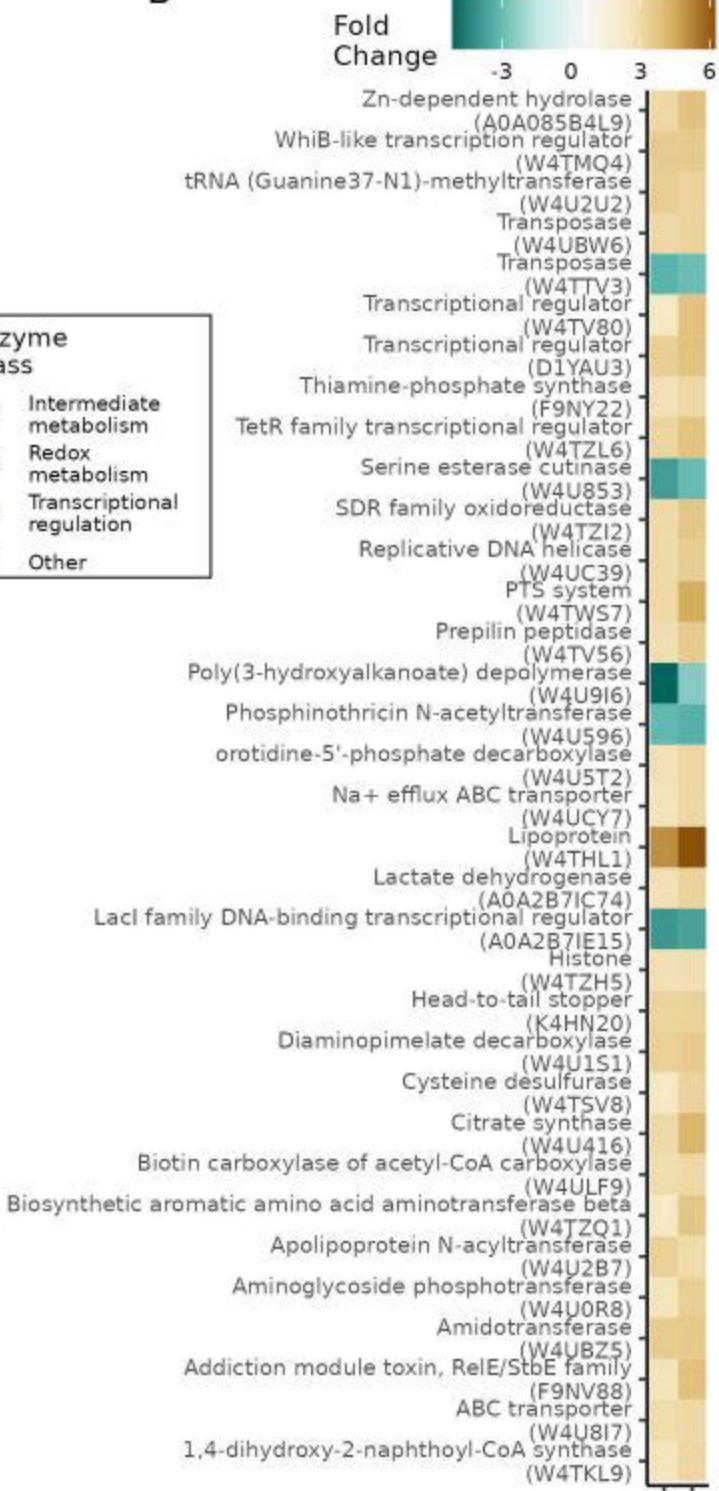








B**C****D**

FIGURE 4

E

Microbe	Hypoxia Status	Mouse Strain
<i>Bacteroides fragilis</i>	High	Balbc
<i>Drechmeria coniospora</i>	High	Balbc
<i>Pichia kudriavzevii</i>	Low	Balbc

A**B**Balbc
Nude