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 2 

Abstract 13 

 14 

Algae and plants carry two organelles of endosymbiotic origin that have been co-evolving in their host 15 
cells for more than a billion years. The biology of plastids and mitochondria can differ significantly 16 
across major lineages and organelle changes likely accompanied the adaptation to new ecological niches 17 
such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic 18 
(Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in 19 
plastid and mitochondrial biology across one billion years of evolution. Taking into account 331,571 20 
protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-21 
bearing eukaryotes. 1906 and 825 protein families are predicted to operate in plastids and mitochondria, 22 
respectively. Tracing the evolutionary history of these protein families through evolutionary time 23 
uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses 24 
of gained orthogroups identifies molecular adaptations of organelle biology that connect to the 25 
diversification of major lineages and facilitated major transitions from chlorophytes en route to the 26 
global greening and origin of angiosperms. 27 

 28 
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 3 

Introduction  30 

Fewer natural phenomena have been as transformative to planet Earth as the global greening through 31 
plants [1,2]. The proliferation of plants on land rests on the emergence and expansion of the 32 
Chloroplastida, also referred to as the Viridiplantae or simply the green lineage. The Chloroplastida are 33 
made up of three phyla: chlorophytes, streptophytes and the prasinodermophytes that are thought to be 34 
the sister lineage to the two former [3]. Chloro- and  prasinodermophytes are represented by algae only, 35 
whereas streptophytes are made up of algae and embryophytes, the latter uniting all land plants [3–5]. 36 
The list of key adaptations that fostered land plant expansion in a macroevolutionary context are 37 
multiple: roots, a mutualistic symbiosis with fungi, stomata, a cuticle, polyplastidy, and an expansion 38 
of many metabolite families such as flavonoids to name a few [1,3–10]. These innovations, evolving 39 
gradually in the common ancestor of land plants (LCA), provided a decisive fitness advantage over the 40 
non-terrestrial chloro-, prasinodermato- and streptophyte algal relatives [1,11]. 41 

The eponymous organelle of plants, the chloroplast, underwent various changes, too. It adapted in 42 
multiple ways to the challenges characterizing the habitat the LCA encountered. Improving stress 43 
response was necessary to deal for instance with increased levels of ultraviolet (UV) high light stress 44 
and to cope with temperature shifts that change rapidly on land in contrast to in water [12–14]. 45 
Polyplastidy, a phenomenon that separates plastid from nuclear division, leading to cells that can harbor 46 
more than one plastid per cell, was part of being able to develop larger body plans [12,15,16]. To 47 
communicate stress and the need for component biosynthesis, an elaborate retrograde signaling evolved 48 
on the basis of messenger proteins such as GUN1 and maybe WHIRLY [17,18]. In combination, these 49 
adaptations were decisive for the success of streptophytes, which is evident in the number of species 50 
they have evolved and the sheer biomass they produce [1,19]. 51 

Plastids do not operate autonomously, but are part of an intricate metabolic network and even physically 52 
interact with other compartments such as the endoplasmic reticulum and peroxisomes [20,21]. Marked 53 
metabolic and physical interactions of plastids also concern the only other compartment of ancient 54 
endosymbiotic origin: the mitochondrion. Plant mitochondria are much less in the focus of plant 55 
research. Next to their canonical functions, they are known to be involved in immunity, lipid 56 
metabolism and other (eco)physiological processes that are frequently in crosstalk with the 57 
photosynthetic organelle [22,23]. Like plastids, mitochondria were critical in the evolution and 58 
continued adaptation of important physiological traits, which characterize the green lineage. A notable 59 
example of preadaptation includes malate decarboxylation in the C4 photosynthetic pathway [24] – a 60 
trait of the green lineage [25] that improves plant photosynthetic efficiency in warm and dry habitats 61 
[26]. Similarly, some components of mitochondrial retrograde signaling also evolved in the land plants 62 
and likely contributed to its ROS and draught tolerance [27]. 63 

In spite of the importance of these two organelles of endosymbiotic origin in coordinating their duties, 64 
the evolution of components specific to chloroplast and mitochondrial biology has not been explicitly 65 
studied in light of streptophyte evolution or plant terrestrialization. Previous work has determined genes 66 
specific to certain plant clades and that are catalogued by valuable resources such as the “GreenCut” 67 
[28]. Such analyses, however, did not focus on organelle biology nor clustered protein families. They 68 
were also limited by a low number of archaeplastidal genomes and insufficient methods for orthology 69 
inference available at that time. Since then, genome assemblies of members from previously unsampled 70 
clades has increased manyfold [11,29–37] and more organelle proteomes and better functional 71 
annotations are available. Similarly, and concomitantly, the development of novel and accurate 72 
algorithms for orthology inference [38–41], along with advances in experimental biology allow to now 73 
identify critical evolutionary changes in an eco-evo context of plastid and mitochondrial biology that 74 
underpin the success of the Chloroplastida. 75 
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Here, we curate a database of protein families unique to the green lineage. We plot their evolution across 76 
the major splits in the evolutionary history of streptophytes, focusing on the biology of the two 77 
organelles of endosymbiotic origin. We report that the number of plastid- and mitochondria-associated 78 
protein families changes most significantly at two evolutionary bifurcations: firstly, at the green lineage 79 
itself and secondly at the split between Zygnematophyceae and embryophytes at the water to land 80 
transition. The newly recruited protein families influenced organellar processes such as carbon and lipid 81 
metabolism, information processing and organelle development. We provide an extensive catalogue of 82 
the changes the proteomes of plastid and mitochondria experienced throughout streptophyte evolution, 83 
which offers multiple angles from which to explore major evolutionary transitions such as the conquest 84 
of land and embryophyte diversification. 85 

 86 

Results 87 

 88 

Half of the chloroplastida protein families are unique to embryophytes 89 

Out of a total of 12,862,035 proteins, 95% were categorized from 686 eukaryotes (Table S1A) and 90 
grouped into 331,570 orthogroups (Table S1B). From these, 31,650 were present only in chloroplastida, 91 
and classified as Green Ortho Groups (GOGs) (Fig. S1 and Table S1C-D). An examination of GOG 92 
distribution among green species revealed that around half of all GOGs were unique to terrestrial plants 93 
(Fig. 1A). Approximately 400 GOGs appeared in more than 90% of species, referred from here on to 94 
as the ‘core GOGs’ (Fig. 1B). For only 5% of all GOGs, a functional annotation could be identified 95 
(Fig. 1C, Table S1E). For embryophyte-specific GOGs the numbers were comparable, yet they 96 
maintained a consistent distribution of identified functions, except for an increased fraction of 97 
membrane trafficking proteins (Fig. 1D, Table S1F). Notably, for the core GOGs the number is higher. 98 
For 30% functional annotations covering photosynthesis, mitochondrial formation, trafficking, and 99 
information processing could be identified (Fig. 1E, Table S1G). The functions for a vast majority of 100 
the GOGs remain elusive (Table S1H), numbers that mirror those of previous studies [28], and they 101 
hence provide an excellent ground for experimental exploration. 102 

 103 
Fig. 1: Distribution and functional annotation of green orthogroups (GOGs). (A) Total number of GOGs 104 
present in each species from major Chloroplastida taxa. (B) Number of GOGs as a function of their presence 105 
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across 159 Chloroplastida species. Major functional categories of 4.71% of all GOGs (c), 3.96% of the 106 
embryophyte GOGs (d) and 27.9 % of the core GOGs (e). 107 

 108 

Mitochondrial and plastid proteomes of the Chloroplastida expanded with the origin and 109 
diversification of the green lineage 110 

To investigate changes in the proteomes of plastids and mitochondria, we curated 1906 plastid and 825 111 
mitochondrial orthogroups (POGs and MOGs, respectively) based on published proteome data and 112 
homology-based protein clustering of 204 eukaryotes, including that of secondarily photosynthetic 113 
eukaryotes (Fig. S1B, Table S2A-D). In comparison to rhodophytes and glaucophytes, the green lineage 114 
encodes almost twice as many POGs (Fig. 2A, Table S2E). Within the green lineage, from the 115 
Zygnematophyceae and embryophytes onwards, plastid proteomes further expanded both in terms of 116 
the number of proteins within each POG and the number of unique POGs. The former is likely a 117 
consequence of genome duplications, while the latter underscores functional divergence that followed 118 
gene duplications. The distribution of MOGs appears qualitatively similar to that of POGs (Fig. 2B, 119 
Table S2F). 60% of the POGs could be functionally annotated, predominantly operating in biosynthetic 120 
and other metabolic pathways such as photosynthesis (Fig. 2C, Table S2G). Around 75% of the MOGs 121 
could be annotated, containing proteins for mitochondrial biogenesis, membrane trafficking and 122 
translation (Fig. 2D, Table S2H). Protein biosynthesis-related proteins are abundant in both, POGs and 123 
MOGs, underscoring their biosynthetic activity. Proteins for mitochondrial biogenesis also appear in 124 
both. For instance, about 60 POGs are annotated as mitochondrial biogenesis and they encompass 125 
numerous PPR and mTERF proteins (crucial for RNA editing and metabolism) and proteins involved 126 
in various other information processing activities, probable to function in both organelles. Analysis of 127 
the N-terminal 20 amino acids show their charge to range from 0 to 2, indicating they might be dually 128 
targeted to plastids and mitochondria [42]. Five of the mTERFs are part of a POG and MOG 129 
simultaneously (Fig. S3D). Overall, the trends show that in embryophytes the number of protein 130 
families associated with an endosymbiotic organelle function increased.  131 
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 132 

 133 
Fig. 2: Mitochondrial and plastid orthogroups across archaeplastidal species. Distribution of plastid (POGs; 134 
A) and mitochondrial orthogroups (MOGs; B). The distribution of POGs was determined for plastids of primary 135 
(1° ES) and secondary endosymbiotic origin (2° ES). Protein copy numbers within each POG or MOG across 136 
species is shown in the heat-map as per the key on the bottom right of the heatmaps. Horizontal bars on the left 137 
side of the heatmaps show the total protein numbers (PN) likely localised to organelles, total POG or MOG 138 
numbers (ON) and distribution of protein number per OG (P/O) for a given species. Major functional categories 139 
of POGs and MOGs in (C) and (D), respectively. 140 

 141 

The increased number of POGs and MOGs in the green lineage is explained by a combination of two 142 
phenomena: (a) new gains in the green ancestor, and (b) secondary losses at the origin of rhodophytes 143 
[43]. We used ancestral state reconstruction (ASR) to resolve between these two possibilities. The 144 
branching order of the archaeplastidal lineages remains challenging [44], as sometimes glaucophytes 145 
[45] and sometimes rhodophytes come out as the sister to the other remaining archaeplastidal lineages 146 
[4,46]. An inferred eukaryotic tree (with 31 non-Archaeplastida eukaryotes as an outgroup to 147 
Archaeplastida) placed the rhodophytes and glaucophytes as sister clades (Fig. S2). This tree and ASR 148 
pipeline were validated using rbcS control (Fig. S3A), and further undergirded the main results which 149 
are also consistent with varying thresholds of probability of presence and absence in a given ancestor 150 
on this eukaryotic tree (Fig. S3B) as well as Archaeplastida only phylogeny manually rooted to have 151 
glaucophyte and rhodophyte as an outgroup to chloroplastida (Fig. S4-7).  152 

The result suggests that the plastid proteome of the last common ancestor of Archaeplastida united ca. 153 
1000 POGs (Fig. 3A, Fig. S3B, Fig. S6, Table S3A-C). This inferred proteome witnessed significant 154 
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gains of protein families at the emergence of the green ancestor (and later speciation). 50% of these 155 
newly gained POGs could be functionally annotated (Fig. 3C, Table S4A), showing that at the origin 156 
of the green lineage novel photosynthesis- and metabolism-related POGs were recruited, while the 157 
transition to land (Z/E and embryophyte ancestors) added metabolism-related, as well as protein 158 
synthesis- and ubiquitin-related POGs to the toolkit (Table S4A). Using hidden Markov searches, we 159 
verify that more than half of the protein families recruited in embryophyte and Z/E ancestors are absent 160 
in non-zygnematophyceae algae (Fig. S3C). The mitochondrial proteome followed a qualitatively 161 
similar trend of expansion (Fig. 3B, Fig. S3B, Fig. S7, Table S3D-F). ca. 500 MOGs trace back to the 162 
archaeplastidal ancestor, while ca. 700 MOGs were identified at the root of angiosperms (Fig. 3C, Fig. 163 
S3B). Around 50% of the newly gained MOGs could be functionally annotated, showing that the 164 
chloroplastidal gains contribute to carbon metabolism, protein synthesis and mitochondrial biogenesis. 165 
Terrestrialization also witnessed a similar gain of MOGs, most of which function in metabolism as well 166 
as mitochondrial biogenesis and membrane trafficking (Fig.3C, Table S4B).  167 

In summary, across plant species, plastid and mitochondrial proteomes are predicted to have gained a 168 
significant number of protein families reflecting the dynamic nature of organellar proteomes post-169 
endosymbiosis [47,48]. A closer look at the function of the newly gained organelle proteins shows a 170 
wide variety, including lipid and carbon metabolism, information processing, development and division 171 
of organelles. 172 

 173 
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 174 

 175 
Fig. 3: Evolution of organelle proteomes in Archaeplastida. Gains in plastid (POGs; A) and mitochondrial 176 
orthogroups (MOGs; B) across all nodes of archaeplastidal evolution and POGs coinciding with primary and 177 
secondary plastid acquisitions. Gains across main nodes of interest in (C), where each circle represents an ancestor, 178 
with its predicted number of protein families shown in the circle and whose diameter correlates with the number 179 
of OGs. Major gains occurred in the chloroplastidal ancestor, the common ancestor of Zygnematophyceae-180 
embryophytes (Z/E) and that of embryophytes. In (D) the same as in (C), but for mitochondrial OGs. Their 181 
functions are shown in the proportionate bar charts below the ancestors.  182 
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 183 

Increased complexity of RNA metabolism and photosynthetic adaptability  184 

RNA metabolisms such as editing intercepts the linear information flow from mRNA to protein and is 185 
crucial for organelles to function [49–51]. Two main domains, the PPR and mTERF domain, are 186 
associated with RNA editing and metabolism [52,53]. We first screened for organelle orthogroups 187 
containing either of these two domains in at least 60% of all proteins within each respective orthogroup 188 
(Fig. S1C). Around 50 POGs and 20 MOGs were found. More than 80% of them were restricted to 189 
embryophytes, only few were present in some algae (Fig. 4). A closer look revealed that most of the 190 
algal homologues lacked PPR and mTERF domains and they are hence unlikely true orthologues. More 191 
generally, this shows that any detailed interpretation regarding an inferred orthogroup’s function should 192 
be supported by screening for functionally relevant domains. 193 

True PPR or mTERF domain-containing RNA-editing, splicing (and processing at large) proteins 194 
increased significantly in number by recruiting new orthogroups, also through adding the two domains 195 
to proteins that did not contain these in their algal ancestor. A presence-absence pattern shows that 196 
>90% of proteins containing PPR/mTERF domains are exclusive to land plants, except for 197 
Chara braunii and Klebsormidium flaccidum (Fig. 4B). These proteins include, but are not limited to, 198 
OTP51 and SOT5 (present in embryophytes and Chara) as well as SOT1, SVR7, THA8, PDM4 (present 199 
only in embryophytes; Fig. S9). Target transcripts of these RNA metabolism factors point to the 200 
synthesis and assembly of photosynthesis-related proteins and to proteins of the thylakoid membrane 201 
(Fig. 6B). Likewise, mTERFs, which are crucial for plastid and leaf development, are also uniquely 202 
expanded in the terrestrial clade with examples of protein re-targeting across organelles [54]. The dual 203 
targeted (plastid and mitochondrion) mTERF6, unique to the land plants (Fig. S9) and the streptophyte 204 
alga Klebsormidium, takes part in retrograde signalling to the nucleus via ABA and imparts abiotic 205 
stress tolerance [55]. Overall, RNA metabolism across plants has undergone major changes and has a 206 
significant impact on photosynthesis, improvement of which was key to thriving on land (Fig. 6B). 207 
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 208 

  209 
Fig. 4: Recruitment of PPR and mTERF domains in organelle proteins. (A) Number of POGs (left) and 210 
MOGs (right) where at least one protein contains a PPR/mTERF domain is shown in bars with dark shades of 211 
colors. Total number of orthogroups (regardless of presence or absence of PPR/mTERF domain in that particular 212 
species) is shown in lighter shade. It shows the presence of the orthogroups in question in algae, but that they only 213 
later obtained PPR/mTERF domains in embryophytes. (B) Each cell represents an orthogroup and a coloured cell 214 
indicates the presence of a PPR or mTERF domain in the protein family (column) of a respective species (rows). 215 

 216 

Adaptation to the terrestrial habitat and changes in plastid biochemistry 217 

Main terrestrial stresses include draught, high (UV)light and swift temperature changes. Cutin and 218 
suberin, two of the most abundant lipid polymers on Earth [56], evolved as one countermeasure [57]. 219 
We find that cutin and suberin evolution was enabled by the recruitment of an organelle-specific GPAT 220 
(Glycerol-3-phosphate acyltransferases) family in the embryophyte ancestor (Fig. 5), which includes 221 
GPAT1 (mitochondrial), GPAT 4,6 and 8 of the endoplasmic reticulum [58,59]. Trafficking of these 222 
lipids across organelles was made possible by a dual targeted TGD4 [60] that was recruited in the 223 
chloroplastida ancestor (Fig. 5). Acyl carrier thioesterases, responsible for the export of fatty acids from 224 
the plastid, acyl carrier protein desaturases (ACP-desaturase) and acyl-carrier proteins co-factors of 225 
fatty acid bio-synthesis were uniquely retained and expanded in the green lineage (Fig. S9). Duplication 226 
and divergence of ACP desaturases in embryo- and spermatophytes played an important role in 227 
regulating lipid composition shifts in response to temperature and drought, the regulation of seed oil 228 
content and development [61]. Likewise, acyl-carrier proteins also increased in copy number (Fig. S9) 229 
and adapted towards a light-induced expression and regulation of the seed fatty acid content [62,63]. 230 
These changes in organelle lipid synthesis and trafficking underpinned embryophyte adaptations to cope 231 
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with draught and high temperature stress (wax biosynthesis, deposition on the layer of leaves and cuticle 232 
development), as well as seed development and germination in spermatophytes (Fig. 6D). 233 
 234 
Changes in starch metabolism mostly pertain to its regulation. ADP-glucose pyrophoshorylase 235 
(AGPase), an enzyme responsible for a rate-limiting step in starch metabolism, is uniquely retained in 236 
the green lineage and increased in copy number in streptophytes (Fig. S9). AGPases diverged to regulate 237 
starch metabolism under osmotic and light stress, as well as the differential regulation of starch 238 
synthesis and degradation [64–68]. Another key regulatory enzyme, PGI (phosphoglucose isomerase) 239 
evolved a distinct family (PGI1) in Zygnematophyceae (Fig. S9). It likely kickstarted the regulation of 240 
starch metabolism at the water-to-land interface and later assumed significant roles in embryophyte 241 
fatty acid content regulation and the yield of seeds [69]. PTST3 also emerged around the time of 242 
terrestrialization (Fig. S9), which evolved to regulate starch synthesis with significant impact on plastid 243 
development [70]. In contrast to the flow of carbon through glycolysis, GSM2 (which originated in 244 
streptophytes; Fig. S9), shunts carbon towards the pentose-phosphate pathway and protects plastids 245 
from oxidative stress in Arabidopsis [71].  246 

 247 

Emergence of sophisticated antero- and retrograde communication cascades 248 

Communication across compartments is critical for a concerted response to environmental stimuli. 249 
Plastids are key environmental sensors that interconnect cellular metabolism with physiological 250 
requirements and stress responses, and terrestrial stressors are key triggers of plastid-to-nucleus 251 
retrograde signalling [12,13,22]. We screened for the origin and diversification of EXECUTOR and 252 
SVR4, both components of retrograde signalling. We also screened for WHIRLY, a protein family that 253 
acts on RNA splicing and ribosome biogenesis, but also relocates between compartments and remains 254 
a candidate for retrograde signalling [18,72–76] . EXECUTOR, key to regulating retrograde signalling, 255 
oxygen and light stress regulation [77–79], originated in the ancestor of the Chloroplastida and so did 256 
WHIRLY (Fig. 5); the latter underwent copy number expansion in embryophytes and was likely lost in 257 
some bryophytes (Fig. S9). Divergence of these copies led to a localisation across multiple organelles 258 
and today they are crucial for maintaining functional respiration, photosynthesis and the response of 259 
mitochondria and plastids to biotic and abiotic stresses [80–82]. These emergence of the Chloroplastida 260 
was marked by the two components EXECUTOR and WHIRLY. Additional paralogs evolved, each 261 
with a specific function in the main green lineages, and they likely aided in the colonization of the 262 
terrestrial habitat by the ancestor of land plants (Fig. 6B). 263 
 264 
SVR4, a dual targeted (plastid and nucleus) recruited around terrestrialization (Fig. 5), likely 265 
communicates required gene expression changes needed for light-induced plastid development, 266 
thylakoid stacking and thermomorphogenesis [83,84]. In combination, this facilitates light-induced 267 
photomorphogenesis, a process key for surviving on land. An increase in the complexity of retrograde 268 
signaling was a precursor for terrestrialization [12], for instance via innovations associated with the the 269 
3′-phosphoadenosine-5′-phosphate family, which facilitated the emergence of stomatal closing in land 270 
plants [85]. The recruitment and diversification of the proteins we highlight were quintessential for 271 
responding to two major stressors that are more pronounced and more rapidly changing on land than in 272 
water: light and temperature (Fig. 6B). 273 
 274 
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  275 
Fig. 5: Origins of key proteins involved in metabolism, communication and development. Ancestor state 276 
reconstruction (ASR) for selected lipid metabolism (GAPT and TGD4), retrograde signalling (Executor and 277 
Whirly), plastid development (SVR4) and division (MCD1) related proteins. The pie charts at each node represent 278 
the probability of presence (green) or absence (black) of a protein family in that node. 279 

 280 

Recruitment of new proteins and changes in organelle development  281 

The coordination of tissue and plastid development is linked to ensure an appropriate response to biotic 282 
and abiotic factors, especially in morphologically complex plants [86–88]. Polyplastidy is a trait of land 283 
plants and many macroscopic algae such as Bryopsis or Chara [89] and known molecular determinants 284 
include MinD, MinE, ARC3 and the FtsZ proteins [16,87]. Our data supports that 285 
MULTIPLE CHLOROPLAST DIVISION SITE 1 (MCD1), a core component of the plastid division 286 
machinery [90], originated in the ancestral embryophyte (Fig. 5). The cotyledon chloroplast biogenesis 287 
factor CYO1 and the transcriptionally active chromosome factor 7 (TAC7) are important components 288 
of thylakoid biogenesis and the plastid translation machinery, respectively. Both originated in the 289 
streptophyte ancestor (Fig. S9) and, in Arabidopsis, play key roles in chloroplast, cotyledon, thylakoid 290 
and leaf development [91–93]. Lastly, CRUMPLED LEAF (CRL), a protein residing in the outer plastid 291 
membrane, emerged during terrestrialization, too (Fig. S9), likely for regulating plastid division and 292 
securing correct plastid inheritance during embryogenesis [94,95]. 293 
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Crucial for plastid biogenesis, especially in light of an expanding proteome, is the import of proteins. 294 
The membrane GTPase TOC159 is essential for chloroplast biogenesis via the selective recognition and 295 
import of the photosynthetic proteins [96] and is unique to the green lineage (Fig. S9). The membrane 296 
recruitment of this protein requires TOC75, of which a special variant evolved in the green ancestor 297 
after the duplication of OEP80 [14,97]. The copy number of TOC159 expanded from the 298 
Zygnematophyceae onwards (Fig. S9), hinting at its functional diversification. Unlike in the 299 
chlorophyte alga Chlamydomonas, land plant TOC159 homologues possess an N-terminal acidic 300 
domain that gets phosphorylated to alter substrate specificity [96,98]. Furthermore, TOC159, along with 301 
TOC132 and TOC120, play important roles in regulating plastid lipid synthesis and membrane fluidity 302 
and in Arabidopsis show tissue specific expression (The Arabidopsis Information Resource) [99–101]. 303 
Further on the course of evolution, the J-domain-containing protein TOC12 [102] was likely recruited 304 
in the ancestral embryophyte for supporting the import machinery at the intermembrane space (Fig. S9). 305 
The terrestrial habitat demands a highly efficient and fluid import of proteins, for example upon high 306 
light and other abiotic stresses [14,103]. The expansion of the TOC/TIC system in the embryophyte 307 
ancestor reflects how the organelle dealt with an ever-increasing diversity of substrates that were 308 
required to be processed. 309 
 310 

Discussion 311 

The settling of land by a streptophyte alga and the subsequent evolution and spreading of plants (Fig. 312 
6A) was pivotal in the transformation of the terrestrial habitat and it laid the foundation for the 313 
concomitant evolution and diversification of animals [1,2]. Throughout the hundreds of millions of 314 
years of plant evolution, both organelles of endosymbiotic origin underwent a multitude of molecular 315 
adaptations, hereby evolving into the plastid and mitochondrion of modern plants. We identified 31,650 316 
protein families unique to the green lineage, approximately 50% of which are unique to embryophytes. 317 
It demonstrates an expansion and divergence of protein families at the time of plant terrestrialization 318 
and in line with a recent study that identified around 10,000 duplications at the birth of embryophytes 319 
[104]. 320 

Expansion of proteins families is evident in both organellar proteomes at the origin of the green lineage 321 
itself and at the water-to-land transition. The gain of protein families at the origin of the Chloroplastida 322 
needs to be treated with caution due to the documented genetic bottleneck that characterizes rhodophyte 323 
origin [105–109] and the sparse availability of glaucophyte genome data. Some of the newly recruited 324 
protein families at the origin of the green lineage might rather be explained by a loss in rhodophytes 325 
and a retention in the chloroplastidal ancestor instead of a gain. Regardless, this has little bearing on the 326 
biological significance of a given protein family with respect to the overall increase in complexity of 327 
organelle biology – both concerning the variety as well as the number of proteins targeted to plastids 328 
and mitochondria – throughout streptophyte evolution. It affected the organelles metabolic, 329 
informational and developmental complexity, and facilitated the evolutionary successful transition from 330 
water to land more than 500 million years ago (Fig. 6). 331 

Changes in organelle lipid biochemistry contributed to one of the key adaptations in land plants that is 332 
the cuticle. Land plant GPATs (Glycerol-3-phosphate acyltransferases; crucial to lipid synthesis for 333 
cutin and suberin) contribute to increased hydrophobicity and water retention in embryophytes [57] and 334 
their activity in embryophytes differs from that in algae [110,111]. Our analyses pinpoint the origins of 335 
organelle specific GPATs (GPAT 1,4,6, and 8) to the embryophyte ancestor, and of which deleting 336 
GPAT4 and GPAT8 distorts cuticles and increases water loss by several fold [58,59]. In parallel, lipid 337 
trafficking was mediated by the recruitment or divergence of proteins such as TGD4 and acyl carrier 338 
thioesterases, which contributed to wax biosynthesis and deposition on leaves, cuticle development, 339 
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thylakoid membrane stacking [60], seed development and germination [61]. As for starch metabolism, 340 
the archaeplastidal ancestor likely stored starch in the cytosol [112], but the red and green lineage 341 
experienced different fates from there on. Rhodophytes continued to store starch in the cytosol in the 342 
form of Floridean starch [113], while in the green lineage, particularly in complex plants, more localized 343 
control of starch synthesis and degradation was facilitated by changes in regulatory proteins (eg 344 
AGPase). Together, organelle metabolism evolved to serve key roles in the synthesis, regulation and 345 
trafficking of lipids involved in wax coating to prevent water loss in the land plant ancestor, as well as 346 
synthesis and storage of starch (Fig. 6D).  347 

RNA processing and editing is a crucial component of information processing and overall functionality 348 
of plant organelles [49,50]. Changes in RNA metabolism are evident from the origin of the green lineage 349 
itself, where RNAse-P (tRNA maturation) was replaced by protein only RNAse P or PROPs [114,115]. 350 
Subsequent expansion of PROPs in embryophytes (Fig. S9) led to organelle-localised copies, of which 351 
some are essential for maintaining organelle morphology, function and plant viability [116]. 352 
Components associated with plastid encoded RNA polymerase (PEP associated proteins, PAPs) also 353 
show a gradual recruitment from the green ancestor to embryophyte ancestor (Fig. S8).  RNA editing 354 
of C to U is not found in algae, however, and editing sites in embryophytes are unlike those of any other 355 
eukaryote, suggesting they emerged independently [50]. Of the many RNA-metabolism proteins we 356 
find that were gained during terrestrialization, known targets are transcripts involved in photosynthesis 357 
and stress tolerance-related transcripts, both key to colonising the land (Fig. 6B). For instance, THA8, 358 
PDM4, SVR7 and SOT1 associate with transcripts such as ycf2 and ycf3, and contribute to thylakoid 359 
development and biogenesis [117], the generation of photosynthetic complex proteins, grana  stacking, 360 
and embryo and plastid development [117,119,120]. OTP51 and SOT5 splice transcripts related to 361 
chlorophyll synthesis, photosynthesis and thylakoid membranes (ycf3, TRNK and RPL2)  [121–123], 362 
whereas DOG1 is important for high temperature response and chloroplast development [124]. This 363 
elaborate RNA processing in organelles, especially plastids, appears to serve photosynthesis (and 364 
thylakoid) related transcripts. It is feasible that by benefitting photosynthesis, organelle RNA editing 365 
continued to be positively selected for during terrestrialization and was expanded. 366 

One evolutionary step towards efficient photosynthesis, where RNA editing also plays a key role, are 367 
grana stacks [86]. The evolutionary origin of grana remains elusive, along with the underlying 368 
developmental pathways involved in regulating its formation and maintenance [86,125,126]. Highly 369 
organized grana stacks are observed in embryophytes and some Zygnematophyceae (e.g. the 370 
Cosmarium genus) [127], but not chlorophytes such as Chlamydomonas [128]. We noticed a patchy 371 
distribution of grana morphology associated proteins such as CURT1, RIQ1 and RIQ2 (Fig. S9), with 372 
both RIQs being present in all streptophytes and some chlorophytes but excluding Chlamydomonas. In 373 
light of the many key adaptations in Zygnematophyceae discussed here and elsewhere [11,129], we 374 
speculate that a sophisticated stacking of grana originated in streptophytes and was beneficial for 375 
thriving on land through photosynthesis optimization, in particular with respect to photosystem repair 376 
and the separation of the photosystems and the ATP synthase [130,131].  377 

This expansion of an organelle proteome necessitates improving the capacity to import proteins. 378 
Changes in some import receptors within the green lineage and in targeting sequences at its origins are 379 
known, with phosphorylation likely emerging as a key regulator for sorting the newly expanded 380 
proteome differentially to plastid and mitochondria (Fig. 6C) [14,42]. Despite such adaptations, protein 381 
sorting is never perfect and some mistargeting might be positively selected for. A regulated distribution 382 
of newly recruited proteins (e.g. WHIRLY, TGD4, mTERF6; Fig. 6B) to multiple organelles (with 383 
distinct organellar functions) hints at adaptive values of this apparent mis-sorting. How many of newly 384 
recruited proteins get ‘mis-sorted’ owing to biological adaptability versus stochasticity remains to be 385 
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explored together with obtaining a more comprehensive picture of (regulatory) mechanisms associated 386 
with sorting in general. 387 

Embryophyte cells target proteins not to a single plastid, but many simultaneously. The presence of 388 
multiple plastids per cell, polyplastidy, in the green lineage, evolved in an embryophyte ancestor, maybe 389 
the common ancestor of embryo– and charophytes, likely through changes in plastid fission and a 390 
decoupling of the latter from the cell cycle [15,16]. We find that MCD1, a core regulator of the plastid 391 
division proteins FtsZ2 and ARC3, emerged in the embryophyte ancestor, which corroborates the idea 392 
of a mono- to polyplastidy switch during the land transition of green algae [16,89,132,133]. A change 393 
in the copy number of plastids also requires a mechanism that maintains a functional organelle to cell 394 
volume ratio and resource allocation (Fig. 6C). The REDUCED CHLOROPLAST COVERAGE (REC) 395 
protein is involved in such a mechanism in Arabidopsis [134] and the phylogenetically related protein 396 
FRIENDLY regulates the distribution of mitochondria, also in plants and non-photosynthetic organisms 397 
[135,136]. REC and FRIENDLY share almost all of their domains. How they exactly function and 398 
differentiate between the two organelles remains elusive. From what we can tell, FRIENDLY emerged 399 
during eukaryogenesis and the origin of mitochondria. REC we can trace back to the streptophyte 400 
ancestor (Fig. S9) and after a likely duplication event of FRIENDLY. We speculate that the origin of 401 
REC helped to cement polyplastidy, which itself supports larger body plans and the diversification of 402 
different plastid types [15]. Lastly, an increase in organelle copy number also requires an overall 403 
increase in the capacity to synthesize proteins. The largest fraction of organelle proteins operate in 404 
tRNA, amino acid and ribosomal biosynthesis and undergird the biosynthetic capacity of organelles, an 405 
adaptation strategy akin to their bacterial ancestor [137,138]. 406 
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 407 

408 
Fig. 6: The global greening and endosymbiotic organelles. (A) After the endosymbiotic origin of the plastid, 409 
three aboriginal lineages emerged that form the Archaeplastida: the glaucophytes, rhodophytes and chlorophytes. 410 
From the latter, streptophyte algae evolved, including the zygnematophyceae, that represent the algal sister clade 411 
to land plants (embryophytes). Abiotic stresses encountered during terrestrialization (water scarcity, high UV, 412 
swiftly altering temperatures and higher levels of O2) selected for adaptive features such as stomata and a cutin 413 
layer. The numbers in parenthesis indicate the number of genomes from each major group that was screened. 414 
Recruitment of new organelle proteins improved three key aspects of organelle biology in light of 415 
terrestrialization: (B) information processing, (C) development and (D) metabolism. Details for each tile are 416 
discussed in the main text. 417 
 418 

The accommodation of the early mitochondrial endosymbiont is associated with the origin of the  419 
endomembrane system and necessitated the emergence of eukaryotic traits including mito- and 420 
autophagy [139–141]. Our analyses show that the integration of a subsequent endosymbiont, the plastid, 421 
coincided with the emergence of proteins that work for the endomembrane system. Salient are changes 422 
in the ubiquitin system during terrestrialization, when polyplastidy in the green lineage also emerged 423 
(Table S2G). Ubiquitination is key to proteosome-mediated degradation and is performed chiefly by 424 
the E3 ubiquitin ligase family, which are important in land plants also for photomorphogenesis[142]. 425 
RING (Really interesting new gene) E3 ligases contribute to growth, development and stress response 426 
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via also mediating protein-protein interactions [143–146]. We trace a number of RING finger and 427 
related proteins to terrestrialization (Fig. S9) that include, but are not limited to, 428 
DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), KEG (Keep on going), and NIP1 and NIP2. 429 
DAL1 and DAL2 play a key role in regulation of programmed cell death [147], peroxisome and 430 
chloroplast biogenesis [148–150]. KEG contributes to stress mitigation [151,152], while NIP1 and NIP2 431 
play a role in plastid development by docking plastid RNA polymerase to the thylakoid membrane 432 
[153]. The regulated degradation of plastids and other changes in the endomembrane system are a 433 
prerequisite for housing multiple plastids per cell and we find many more recruitments broadly affiliated 434 
with the endomembrane system, with poorly characterised functions until now. Exploring the functions 435 
of these proteins will add valuable insights into the cell biological changes that endosymbiosis 436 
stipulates. 437 

In closing, although experimentally reported plant plastid and mitochondrial proteomes are scarce, we 438 
were able to generate a first comprehensive molecular atlas of the changes of plastid and mitochondrial 439 
protein families in the evolution of the green lineage. Ancestral state reconstruction (ASR) allows to 440 
map the organelle transformations that facilitated the major transitions such as terrestrialization and 441 
which will improve with every new proteome that is added. By inferring plastid and mitochondrial 442 
proteomes for 173 species, we set testable expectations for new proteomes to come and provide a solid 443 
database, where origins and across species orthologues of any known (organelle) protein can be 444 
searched (Table S2C-D). Additional proteomes, once available, will likely solidify the general pattern 445 
observed and uncover more lineage-specific curiosities. We identify numerous mitochondrial protein 446 
recruitments, whose physiological roles and adaptive values help to better understand plant 447 
mitochondrial biology. For plastid proteins, we infer their functions and physiological importance based 448 
on the extensively studied Arabidopsis system. Utilizing an advanced orthology search technique [40], 449 
we postulate that orthologues of Arabidopsis are likely to exhibit similar functions in other species. Our 450 
methodologically robust approach maps various changes in evolution, associated in particular with 451 
terrestrialization, that can now be experimentally explored across selected models and with a focus on 452 
less-well studied streptophyte algal and bryophyte species [154,155]. 453 

 454 

 455 

Conclusions 456 

Endosymbiotic organelles have a distinct place in the evolutionary tapestry of life. Through the 457 
combination of organelle proteome data and phylogeny, we trace the evolution of mitochondria and 458 
plastids over a span of a billion years of plant evolution by inferring their proteomes for over a hundred 459 
Archaeplastida species. Our comprehensive molecular atlas identifies main changes in their 460 
metabolism, communication, information processing and biogenesis. Key adaptations in plant 461 
organelles fostered the emergence of wax and cutin (see organelle lipid synthesis and transport), 462 
improved the photosynthetic yield (see organelle RNA metabolism and highly structured grana stacks) 463 
and the response to abiotic stressors (see inter-organelle communication), and mediated the transition 464 
from mono- to polyplastidy (see division and volume control). By connecting the molecular adaptations 465 
of mitochondria and plastids to macroevolutionary trends, we show how important changes in 466 
organelles of endosymbiotic origin were for the speciation that gave rise to the Chloroplastida and later 467 
the origin of land plants from a charophyte algal ancestor. 468 

 469 

 470 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.09.01.555919doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555919
http://creativecommons.org/licenses/by-nc/4.0/


 

 18 

Material and Methods 471 

Curation of green orthogroups (GOGs). Input protein sequences from 686 proteomes (from KEGG 472 
[156]and Phytozome [29], Table S1A) were clustered using Orthofinder version 2.5.4 [40], after all vs 473 
all blasts were conducted (E-value cutoff 10e-10) using diamond blast version2.011 [38]. From 474 
orthogroups (OGs) recovered, OGs with at least 3 Chloroplastida species green species and less than 3 475 
species other than Chloroplastida were annotated as green orthogroup (GOGs). Schematic in Fig. S1A. 476 
(Inhouse python script used for this, and other data processing, are available on Github as repository 477 
‘Molecular-Atlas-of-plant-organelle-evolution’.) 478 

Curation of plastid and mitochondria orthogroups (POGs and MOGs). 5,452,977 proteins from 204 479 
eukaryotes (Table S2A) were clustered using Orthofinder as described above. Orthogroups that 480 
contained at least one experimentally verified organelle protein from any one of the four experimentally 481 
verified organelle proteome of C. reinhardtii  [157], P. patens [158] ,  Z. mays [159], A. thaliana [159], 482 
were annotated as organelle (plastid and mitochondria) orthogroups. Schematic in Fig. S1B. 483 

Functional annotation of orthogroups. The source of >90% species was Kyoto Encyclopedia of Genes 484 
and Genomes (KEGG), which included KEGG orthology identification (KOID) for protein sequences. 485 
For all proteins within each GOG, KOIDs were retrieved and the most frequent KOID (i.e. majority 486 
rule) was annotated to each GOG (Fig. S1C). From the assigned KOIDs, their KO BRITE functional 487 
category was assigned to each GOG. KOIDs for POGs and MOGs were retrieved the same way. For 488 
each KOID, the pathway names and BRITE categories at various level of resolutions were used for 489 
assigning functional categories manually to each OG. Manual assignment was necessary since BRITE 490 
names included a large fraction of categories such as ‘enzymes’ and ‘exosomes’. These were either not 491 
very informative or were misleading as many of ‘exosome’ annotated proteins took part in protein 492 
synthesis or folding. Lastly, for OGs or proteins discussed with respect to their physiological relevance, 493 
the functions were retrieved from the literature (cited in the text). 494 

Inference of ancestral states. A phylogeny of Archaeplastidal species was inferred based on all genes 495 
conserved in all species, using ‘Species tree inference from all genes (STAG)’ method [160], as a part 496 
of orthofinder analysis. STAG infers a species tree by taking greedy consensus of gene trees from each 497 
protein family (including that of multigene families). This phylogeny was rooted using minimal 498 
ancestral deviation [161] which places Rhodophyta as the sister to all others. Independently, the same 499 
unrooted phylogeny was manually rooted using FigTree (v1.4.4) [162] such that Glaucophyta were at 500 
the base. Ancestor state of presence and absence of organelle protein families across nodes, were 501 
inferred using Phytool [163] package 0.7.80. Based on character state at the tips of the tree, Phytool 502 
inferred Bayesian posterior probabilities under a single rate model [164,165] of the character state 503 
across nodes of the tree. All OGs that were present in major ancestors of plant groups with probability 504 
higher than 0.75 and absent in the preceding ancestor, were considered as newly recruited in that 505 
lineage. OGs or proteins discussed with respect to its physiological role in a given clade, their absence 506 
outside the group was verified in our copy number database as well as on homologue database available 507 
on TAIR. 508 

Searching for potential RNA metabolism POGs and MOGs. Hidden Markov models (HMM) of PPR 509 
and mTERF domains were downloaded from pFAM [166] with the IDs: PF01535, PF12854, PF13041, 510 
PF13812, PF02536. Each of these HMMS was used as a query to search against the full sequences of 511 
all proteins within each POG and MOG. If a given OG had more than 60% of individual proteins 512 
containing PPR or mTERF, the OG was annotated as RNA metabolism OG. Origin of such OGs were 513 
traced using ASR as described above. 514 

 515 
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