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Abstract

Algae and plants carry two organelles of endosymbiotic origin that have been co-evolving in their host
cells for more than a billion years. The biology of plastids and mitochondria can differ significantly
across major lineages and organelle changes likely accompanied the adaptation to new ecological niches
such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic
(Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in
plastid and mitochondrial biology across one billion years of evolution. Taking into account 331,571
protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-
bearing eukaryotes. 1906 and 825 protein families are predicted to operate in plastids and mitochondria,
respectively. Tracing the evolutionary history of these protein families through evolutionary time
uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses
of gained orthogroups identifies molecular adaptations of organelle biology that connect to the
diversification of major lineages and facilitated major transitions from chlorophytes en route to the
global greening and origin of angiosperms.
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Introduction

Fewer natural phenomena have been as transformative to planet Earth as the global greening through
plants [1,2]. The proliferation of plants on land rests on the emergence and expansion of the
Chloroplastida, also referred to as the Viridiplantae or simply the green lineage. The Chloroplastida are
made up of three phyla: chlorophytes, streptophytes and the prasinodermophytes that are thought to be
the sister lineage to the two former [3]. Chloro- and prasinodermophytes are represented by algae only,
whereas streptophytes are made up of algae and embryophytes, the latter uniting all land plants [3-5].
The list of key adaptations that fostered land plant expansion in a macroevolutionary context are
multiple: roots, a mutualistic symbiosis with fungi, stomata, a cuticle, polyplastidy, and an expansion
of many metabolite families such as flavonoids to name a few [1,3—10]. These innovations, evolving
gradually in the common ancestor of land plants (LCA), provided a decisive fitness advantage over the
non-terrestrial chloro-, prasinodermato- and streptophyte algal relatives [1,11].

The eponymous organelle of plants, the chloroplast, underwent various changes, too. It adapted in
multiple ways to the challenges characterizing the habitat the LCA encountered. Improving stress
response was necessary to deal for instance with increased levels of ultraviolet (UV) high light stress
and to cope with temperature shifts that change rapidly on land in contrast to in water [12—14].
Polyplastidy, a phenomenon that separates plastid from nuclear division, leading to cells that can harbor
more than one plastid per cell, was part of being able to develop larger body plans [12,15,16]. To
communicate stress and the need for component biosynthesis, an elaborate retrograde signaling evolved
on the basis of messenger proteins such as GUN1 and maybe WHIRLY [17,18]. In combination, these
adaptations were decisive for the success of streptophytes, which is evident in the number of species
they have evolved and the sheer biomass they produce [1,19].

Plastids do not operate autonomously, but are part of an intricate metabolic network and even physically
interact with other compartments such as the endoplasmic reticulum and peroxisomes [20,21]. Marked
metabolic and physical interactions of plastids also concern the only other compartment of ancient
endosymbiotic origin: the mitochondrion. Plant mitochondria are much less in the focus of plant
research. Next to their canonical functions, they are known to be involved in immunity, lipid
metabolism and other (eco)physiological processes that are frequently in crosstalk with the
photosynthetic organelle [22,23]. Like plastids, mitochondria were critical in the evolution and
continued adaptation of important physiological traits, which characterize the green lineage. A notable
example of preadaptation includes malate decarboxylation in the C4 photosynthetic pathway [24] — a
trait of the green lineage [25] that improves plant photosynthetic efficiency in warm and dry habitats
[26]. Similarly, some components of mitochondrial retrograde signaling also evolved in the land plants
and likely contributed to its ROS and draught tolerance [27].

In spite of the importance of these two organelles of endosymbiotic origin in coordinating their duties,
the evolution of components specific to chloroplast and mitochondrial biology has not been explicitly
studied in light of streptophyte evolution or plant terrestrialization. Previous work has determined genes
specific to certain plant clades and that are catalogued by valuable resources such as the “GreenCut”
[28]. Such analyses, however, did not focus on organelle biology nor clustered protein families. They
were also limited by a low number of archaeplastidal genomes and insufficient methods for orthology
inference available at that time. Since then, genome assemblies of members from previously unsampled
clades has increased manyfold [11,29-37] and more organelle proteomes and better functional
annotations are available. Similarly, and concomitantly, the development of novel and accurate
algorithms for orthology inference [38—41], along with advances in experimental biology allow to now
identify critical evolutionary changes in an eco-evo context of plastid and mitochondrial biology that
underpin the success of the Chloroplastida.
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Here, we curate a database of protein families unique to the green lineage. We plot their evolution across
the major splits in the evolutionary history of streptophytes, focusing on the biology of the two
organelles of endosymbiotic origin. We report that the number of plastid- and mitochondria-associated
protein families changes most significantly at two evolutionary bifurcations: firstly, at the green lineage
itself and secondly at the split between Zygnematophyceae and embryophytes at the water to land
transition. The newly recruited protein families influenced organellar processes such as carbon and lipid
metabolism, information processing and organelle development. We provide an extensive catalogue of
the changes the proteomes of plastid and mitochondria experienced throughout streptophyte evolution,
which offers multiple angles from which to explore major evolutionary transitions such as the conquest
of land and embryophyte diversification.

Results

Half of the chloroplastida protein families are unique to embryophytes

Out of a total of 12,862,035 proteins, 95% were categorized from 686 eukaryotes (Table S1A) and
grouped into 331,570 orthogroups (Table S1B). From these, 31,650 were present only in chloroplastida,
and classified as Green Ortho Groups (GOGs) (Fig. S1 and Table S1C-D). An examination of GOG
distribution among green species revealed that around half of all GOGs were unique to terrestrial plants
(Fig. 1A). Approximately 400 GOGs appeared in more than 90% of species, referred from here on to
as the ‘core GOGs’ (Fig. 1B). For only 5% of all GOGs, a functional annotation could be identified
(Fig. 1C, Table S1E). For embryophyte-specific GOGs the numbers were comparable, yet they
maintained a consistent distribution of identified functions, except for an increased fraction of
membrane trafficking proteins (Fig. 1D, Table S1F). Notably, for the core GOGs the number is higher.
For 30% functional annotations covering photosynthesis, mitochondrial formation, trafficking, and
information processing could be identified (Fig. 1E, Table S1G). The functions for a vast majority of
the GOGs remain elusive (Table S1H), numbers that mirror those of previous studies [28], and they
hence provide an excellent ground for experimental exploration.

W ® © Percentage
4 0 5 10
10 Ubiqutin system [ T T
123 Y
0] Transcription factors
o .
8 108 o Chromosome (associated)
8 o Mitochondrial biogenesis :\
k] 8 Protein kinases
= -é 102 Exosome
o) 3 Membrane trafficking
.3 9 Transporters
2 10 .
= Spliceosome :I
0 20 60 100 140 Cytoskeleton [ |
Eudicots Presence in number of species
Monocots ) Percentage (E) Percentage
P 0 5 10 0 5 10
Ubiquitin system | Membrane trafficking
Gymnosperm Membrane trafficking Photosynthesis
Transcription factors Exosome :’
B,yoiﬁryr:: Chromosome (associated) Mitochondrial biogenesis
Mitochondrial biogenesis :I Glycosyltransferases :
Zygnematophyta .
Streptophyta Exosome Transcription factors
Spliceosome Ubiquitin system [ ]
chercphvia Transporters Chromosome (associated)
2000 8000 mRNA biogenesis DNA repair and recon.'nbinatio‘n
Number of total GOGs Protein kinases mRNA biogenesis

Fig. 1: Distribution and functional annotation of green orthogroups (GOGs). (A) Total number of GOGs
present in each species from major Chloroplastida taxa. (B) Number of GOGs as a function of their presence
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106 across 159 Chloroplastida species. Major functional categories of 4.71% of all GOGs (c), 3.96% of the
107  embryophyte GOGs (d) and 27.9 % of the core GOGs (e).

108

109  Mitochondrial and plastid proteomes of the Chloroplastida expanded with the origin and
110  diversification of the green lineage

111 To investigate changes in the proteomes of plastids and mitochondria, we curated 1906 plastid and 825
112 mitochondrial orthogroups (POGs and MOGs, respectively) based on published proteome data and
113 homology-based protein clustering of 204 eukaryotes, including that of secondarily photosynthetic
114 eukaryotes (Fig. S1B, Table S2A-D). In comparison to rhodophytes and glaucophytes, the green lineage
115  encodes almost twice as many POGs (Fig. 2A, Table S2E). Within the green lineage, from the
116  Zygnematophyceae and embryophytes onwards, plastid proteomes further expanded both in terms of
117  the number of proteins within each POG and the number of unique POGs. The former is likely a
118  consequence of genome duplications, while the latter underscores functional divergence that followed
119  gene duplications. The distribution of MOGs appears qualitatively similar to that of POGs (Fig. 2B,
120  Table S2F). 60% of the POGs could be functionally annotated, predominantly operating in biosynthetic
121  and other metabolic pathways such as photosynthesis (Fig. 2C, Table S2G). Around 75% of the MOGs
122 could be annotated, containing proteins for mitochondrial biogenesis, membrane trafficking and
123 translation (Fig. 2D, Table S2H). Protein biosynthesis-related proteins are abundant in both, POGs and
124 MOGs, underscoring their biosynthetic activity. Proteins for mitochondrial biogenesis also appear in
125  both. For instance, about 60 POGs are annotated as mitochondrial biogenesis and they encompass
126  numerous PPR and mTERF proteins (crucial for RNA editing and metabolism) and proteins involved
127  in various other information processing activities, probable to function in both organelles. Analysis of
128  the N-terminal 20 amino acids show their charge to range from 0 to 2, indicating they might be dually
129  targeted to plastids and mitochondria [42]. Five of the mTERFs are part of a POG and MOG
130 simultaneously (Fig. S3D). Overall, the trends show that in embryophytes the number of protein
131  families associated with an endosymbiotic organelle function increased.
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Fig. 2: Mitochondrial and plastid orthogroups across archaeplastidal species. Distribution of plastid (POGs;
A) and mitochondrial orthogroups (MOGs; B). The distribution of POGs was determined for plastids of primary
(1° ES) and secondary endosymbiotic origin (2° ES). Protein copy numbers within each POG or MOG across
species is shown in the heat-map as per the key on the bottom right of the heatmaps. Horizontal bars on the left
side of the heatmaps show the total protein numbers (PN) likely localised to organelles, total POG or MOG
numbers (ON) and distribution of protein number per OG (P/O) for a given species. Major functional categories
of POGs and MOGs in (C) and (D), respectively.

The increased number of POGs and MOGs in the green lineage is explained by a combination of two
phenomena: (a) new gains in the green ancestor, and (b) secondary losses at the origin of rhodophytes
[43]. We used ancestral state reconstruction (ASR) to resolve between these two possibilities. The
branching order of the archaeplastidal lineages remains challenging [44], as sometimes glaucophytes
[45] and sometimes rhodophytes come out as the sister to the other remaining archaeplastidal lineages
[4,46]. An inferred eukaryotic tree (with 31 non-Archaeplastida eukaryotes as an outgroup to
Archaeplastida) placed the rhodophytes and glaucophytes as sister clades (Fig. S2). This tree and ASR
pipeline were validated using rbcS control (Fig. S3A), and further undergirded the main results which
are also consistent with varying thresholds of probability of presence and absence in a given ancestor
on this eukaryotic tree (Fig. S3B) as well as Archaeplastida only phylogeny manually rooted to have
glaucophyte and rhodophyte as an outgroup to chloroplastida (Fig. S4-7).

The result suggests that the plastid proteome of the last common ancestor of Archaeplastida united ca.
1000 POGs (Fig. 3A, Fig. S3B, Fig. S6, Table S3A-C). This inferred proteome witnessed significant
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155  gains of protein families at the emergence of the green ancestor (and later speciation). 50% of these
156  newly gained POGs could be functionally annotated (Fig. 3C, Table S4A), showing that at the origin
157  of the green lineage novel photosynthesis- and metabolism-related POGs were recruited, while the
158  transition to land (Z/E and embryophyte ancestors) added metabolism-related, as well as protein
159  synthesis- and ubiquitin-related POGs to the toolkit (Table S4A). Using hidden Markov searches, we
160  verify that more than half of the protein families recruited in embryophyte and Z/E ancestors are absent
161  in non-zygnematophyceae algae (Fig. S3C). The mitochondrial proteome followed a qualitatively
162 similar trend of expansion (Fig. 3B, Fig. S3B, Fig. S7, Table S3D-F). ca. 500 MOGs trace back to the
163 archaeplastidal ancestor, while ca. 700 MOGs were identified at the root of angiosperms (Fig. 3C, Fig.
164  S3B). Around 50% of the newly gained MOGs could be functionally annotated, showing that the
165  chloroplastidal gains contribute to carbon metabolism, protein synthesis and mitochondrial biogenesis.
166  Terrestrialization also witnessed a similar gain of MOGs, most of which function in metabolism as well
167  as mitochondrial biogenesis and membrane trafficking (Fig.3C, Table S4B).

168  In summary, across plant species, plastid and mitochondrial proteomes are predicted to have gained a
169  significant number of protein families reflecting the dynamic nature of organellar proteomes post-
170  endosymbiosis [47,48]. A closer look at the function of the newly gained organelle proteins shows a
171  wide variety, including lipid and carbon metabolism, information processing, development and division
172 of organelles.

173
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Fig. 3: Evolution of organelle proteomes in Archaeplastida. Gains in plastid (POGs; A) and mitochondrial
orthogroups (MOGs; B) across all nodes of archaeplastidal evolution and POGs coinciding with primary and
secondary plastid acquisitions. Gains across main nodes of interest in (C), where each circle represents an ancestor,
with its predicted number of protein families shown in the circle and whose diameter correlates with the number
of OGs. Major gains occurred in the chloroplastidal ancestor, the common ancestor of Zygnematophyceae-
embryophytes (Z/E) and that of embryophytes. In (D) the same as in (C), but for mitochondrial OGs. Their
functions are shown in the proportionate bar charts below the ancestors.
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183
184  Increased complexity of RNA metabolism and photosynthetic adaptability

185  RNA metabolisms such as editing intercepts the linear information flow from mRNA to protein and is
186  crucial for organelles to function [49-51]. Two main domains, the PPR and mTERF domain, are
187  associated with RNA editing and metabolism [52,53]. We first screened for organelle orthogroups
188  containing either of these two domains in at least 60% of all proteins within each respective orthogroup
189  (Fig. SIC). Around 50 POGs and 20 MOGs were found. More than 80% of them were restricted to
190  embryophytes, only few were present in some algae (Fig. 4). A closer look revealed that most of the
191  algal homologues lacked PPR and mTERF domains and they are hence unlikely true orthologues. More
192 generally, this shows that any detailed interpretation regarding an inferred orthogroup’s function should
193  be supported by screening for functionally relevant domains.

194 True PPR or mTERF domain-containing RNA-editing, splicing (and processing at large) proteins
195  increased significantly in number by recruiting new orthogroups, also through adding the two domains
196  to proteins that did not contain these in their algal ancestor. A presence-absence pattern shows that
197  >90% of proteins containing PPR/mMTERF domains are exclusive to land plants, except for
198  Chara braunii and Klebsormidium flaccidum (Fig. 4B). These proteins include, but are not limited to,
199  OTPS51 and SOTS (present in embryophytes and Chara) as well as SOT1, SVR7, THAS8, PDM4 (present
200  only in embryophytes; Fig. S9). Target transcripts of these RNA metabolism factors point to the
201  synthesis and assembly of photosynthesis-related proteins and to proteins of the thylakoid membrane
202  (Fig. 6B). Likewise, mTERFs, which are crucial for plastid and leaf development, are also uniquely
203  expanded in the terrestrial clade with examples of protein re-targeting across organelles [54]. The dual
204  targeted (plastid and mitochondrion) mTERF6, unique to the land plants (Fig. S9) and the streptophyte
205  alga Klebsormidium, takes part in retrograde signalling to the nucleus via ABA and imparts abiotic
206  stress tolerance [55]. Overall, RNA metabolism across plants has undergone major changes and has a
207  significant impact on photosynthesis, improvement of which was key to thriving on land (Fig. 6B).
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species) is shown in lighter shade. It shows the presence of the orthogroups in question in algae, but that they only
later obtained PPR/mTERF domains in embryophytes. (B) Each cell represents an orthogroup and a coloured cell
indicates the presence of a PPR or mTERF domain in the protein family (column) of a respective species (rows).

Adaptation to the terrestrial habitat and changes in plastid biochemistry

Main terrestrial stresses include draught, high (UV)light and swift temperature changes. Cutin and
suberin, two of the most abundant lipid polymers on Earth [56], evolved as one countermeasure [57].
We find that cutin and suberin evolution was enabled by the recruitment of an organelle-specific GPAT
(Glycerol-3-phosphate acyltransferases) family in the embryophyte ancestor (Fig. 5), which includes
GPATI1 (mitochondrial), GPAT 4,6 and 8 of the endoplasmic reticulum [58,59]. Trafficking of these
lipids across organelles was made possible by a dual targeted TGD4 [60] that was recruited in the
chloroplastida ancestor (Fig. 5). Acyl carrier thioesterases, responsible for the export of fatty acids from
the plastid, acyl carrier protein desaturases (ACP-desaturase) and acyl-carrier proteins co-factors of
fatty acid bio-synthesis were uniquely retained and expanded in the green lineage (Fig. S9). Duplication
and divergence of ACP desaturases in embryo- and spermatophytes played an important role in
regulating lipid composition shifts in response to temperature and drought, the regulation of seed oil
content and development [61]. Likewise, acyl-carrier proteins also increased in copy number (Fig. S9)
and adapted towards a light-induced expression and regulation of the seed fatty acid content [62,63].
These changes in organelle lipid synthesis and trafficking underpinned embryophyte adaptations to cope

10
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232 with draught and high temperature stress (wax biosynthesis, deposition on the layer of leaves and cuticle
233 development), as well as seed development and germination in spermatophytes (Fig. 6D).

234

235  Changes in starch metabolism mostly pertain to its regulation. ADP-glucose pyrophoshorylase
236  (AGPase), an enzyme responsible for a rate-limiting step in starch metabolism, is uniquely retained in
237  the green lineage and increased in copy number in streptophytes (Fig. S9). AGPases diverged to regulate
238  starch metabolism under osmotic and light stress, as well as the differential regulation of starch
239  synthesis and degradation [64—68]. Another key regulatory enzyme, PGI (phosphoglucose isomerase)
240  evolved a distinct family (PGI1) in Zygnematophyceae (Fig. S9). It likely kickstarted the regulation of
241 starch metabolism at the water-to-land interface and later assumed significant roles in embryophyte
242  fatty acid content regulation and the yield of seeds [69]. PTST3 also emerged around the time of
243 terrestrialization (Fig. S9), which evolved to regulate starch synthesis with significant impact on plastid
244 development [70]. In contrast to the flow of carbon through glycolysis, GSM2 (which originated in
245  streptophytes; Fig. S9), shunts carbon towards the pentose-phosphate pathway and protects plastids
246  from oxidative stress in Arabidopsis [71].

247
248  Emergence of sophisticated antero- and retrograde communication cascades

249  Communication across compartments is critical for a concerted response to environmental stimuli.
250  Plastids are key environmental sensors that interconnect cellular metabolism with physiological
251  requirements and stress responses, and terrestrial stressors are key triggers of plastid-to-nucleus
252 retrograde signalling [12,13,22]. We screened for the origin and diversification of EXECUTOR and
253  SVR4, both components of retrograde signalling. We also screened for WHIRLY, a protein family that
254  acts on RNA splicing and ribosome biogenesis, but also relocates between compartments and remains
255  acandidate for retrograde signalling [18,72-76] . EXECUTOR, key to regulating retrograde signalling,
256  oxygen and light stress regulation [77-79], originated in the ancestor of the Chloroplastida and so did
257  WHIRLY (Fig. 5); the latter underwent copy number expansion in embryophytes and was likely lost in
258  some bryophytes (Fig. S9). Divergence of these copies led to a localisation across multiple organelles
259  and today they are crucial for maintaining functional respiration, photosynthesis and the response of
260  mitochondria and plastids to biotic and abiotic stresses [80—-82]. These emergence of the Chloroplastida
261  was marked by the two components EXECUTOR and WHIRLY. Additional paralogs evolved, each
262  with a specific function in the main green lineages, and they likely aided in the colonization of the
263  terrestrial habitat by the ancestor of land plants (Fig. 6B).

264

265 SVR4, a dual targeted (plastid and nucleus) recruited around terrestrialization (Fig. 5), likely
266  communicates required gene expression changes needed for light-induced plastid development,
267  thylakoid stacking and thermomorphogenesis [83,84]. In combination, this facilitates light-induced
268  photomorphogenesis, a process key for surviving on land. An increase in the complexity of retrograde
269  signaling was a precursor for terrestrialization [12], for instance via innovations associated with the the
270  3'-phosphoadenosine-5'-phosphate family, which facilitated the emergence of stomatal closing in land
271  plants [85]. The recruitment and diversification of the proteins we highlight were quintessential for
272 responding to two major stressors that are more pronounced and more rapidly changing on land than in
273 water: light and temperature (Fig. 6B).

274
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276 Fig. 5: Origins of key proteins involved in metabolism, communication and development. Ancestor state
277 reconstruction (ASR) for selected lipid metabolism (GAPT and TGD4), retrograde signalling (Executor and
278 Whirly), plastid development (SVR4) and division (MCD1) related proteins. The pie charts at each node represent
279  the probability of presence (green) or absence (black) of a protein family in that node.

280

281  Recruitment of new proteins and changes in organelle development

282  The coordination of tissue and plastid development is linked to ensure an appropriate response to biotic
283  and abiotic factors, especially in morphologically complex plants [86—88]. Polyplastidy is a trait of land
284  plants and many macroscopic algae such as Bryopsis or Chara [89] and known molecular determinants
285 include MinD, MinE, ARC3 and the FtsZ proteins [16,87]. Our data supports that
286 ~ MULTIPLE CHLOROPLAST DIVISION SITE 1 (MCD1), a core component of the plastid division
287  machinery [90], originated in the ancestral embryophyte (Fig. 5). The cotyledon chloroplast biogenesis
288  factor CYOI and the transcriptionally active chromosome factor 7 (TAC7) are important components
289  of thylakoid biogenesis and the plastid translation machinery, respectively. Both originated in the
290  streptophyte ancestor (Fig. S9) and, in Arabidopsis, play key roles in chloroplast, cotyledon, thylakoid
291  andleaf development [91-93]. Lastly, CRUMPLED LEAF (CRL), a protein residing in the outer plastid
292  membrane, emerged during terrestrialization, too (Fig. S9), likely for regulating plastid division and
293 securing correct plastid inheritance during embryogenesis [94,95].
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294 Crucial for plastid biogenesis, especially in light of an expanding proteome, is the import of proteins.
295  The membrane GTPase TOC159 is essential for chloroplast biogenesis via the selective recognition and
296  import of the photosynthetic proteins [96] and is unique to the green lineage (Fig. S9). The membrane
297  recruitment of this protein requires TOC75, of which a special variant evolved in the green ancestor
298  after the duplication of OEP80 [14,97]. The copy number of TOC159 expanded from the
299  Zygnematophyceae onwards (Fig. S9), hinting at its functional diversification. Unlike in the
300  chlorophyte alga Chlamydomonas, land plant TOC159 homologues possess an N-terminal acidic
301 domain that gets phosphorylated to alter substrate specificity [96,98]. Furthermore, TOC159, along with
302 TOCI132 and TOC120, play important roles in regulating plastid lipid synthesis and membrane fluidity
303  and in Arabidopsis show tissue specific expression (The Arabidopsis Information Resource) [99—101].
304  Further on the course of evolution, the J-domain-containing protein TOC12 [102] was likely recruited
305  inthe ancestral embryophyte for supporting the import machinery at the intermembrane space (Fig. S9).
306  The terrestrial habitat demands a highly efficient and fluid import of proteins, for example upon high
307  light and other abiotic stresses [14,103]. The expansion of the TOC/TIC system in the embryophyte
308  ancestor reflects how the organelle dealt with an ever-increasing diversity of substrates that were

309  required to be processed.
310

311 Discussion

312 The settling of land by a streptophyte alga and the subsequent evolution and spreading of plants (Fig.
313 6A) was pivotal in the transformation of the terrestrial habitat and it laid the foundation for the
314 concomitant evolution and diversification of animals [1,2]. Throughout the hundreds of millions of
315  years of plant evolution, both organelles of endosymbiotic origin underwent a multitude of molecular
316  adaptations, hereby evolving into the plastid and mitochondrion of modern plants. We identified 31,650
317  protein families unique to the green lineage, approximately 50% of which are unique to embryophytes.
318 It demonstrates an expansion and divergence of protein families at the time of plant terrestrialization
319  and in line with a recent study that identified around 10,000 duplications at the birth of embryophytes
320  [104].

321  Expansion of proteins families is evident in both organellar proteomes at the origin of the green lineage
322 itself and at the water-to-land transition. The gain of protein families at the origin of the Chloroplastida
323 needs to be treated with caution due to the documented genetic bottleneck that characterizes rhodophyte
324 origin [105-109] and the sparse availability of glaucophyte genome data. Some of the newly recruited
325  protein families at the origin of the green lineage might rather be explained by a loss in thodophytes
326  and aretention in the chloroplastidal ancestor instead of a gain. Regardless, this has little bearing on the
327  Dbiological significance of a given protein family with respect to the overall increase in complexity of
328  organelle biology — both concerning the variety as well as the number of proteins targeted to plastids
329  and mitochondria — throughout streptophyte evolution. It affected the organelles metabolic,
330  informational and developmental complexity, and facilitated the evolutionary successful transition from
331  water to land more than 500 million years ago (Fig. 6).

332 Changes in organelle lipid biochemistry contributed to one of the key adaptations in land plants that is
333 the cuticle. Land plant GPATs (Glycerol-3-phosphate acyltransferases; crucial to lipid synthesis for
334 cutin and suberin) contribute to increased hydrophobicity and water retention in embryophytes [57] and
335  their activity in embryophytes differs from that in algae [110,111]. Our analyses pinpoint the origins of
336 organelle specific GPATs (GPAT 1,4,6, and 8) to the embryophyte ancestor, and of which deleting
337  GPAT4 and GPATS distorts cuticles and increases water loss by several fold [58,59]. In parallel, lipid
338  trafficking was mediated by the recruitment or divergence of proteins such as TGD4 and acyl carrier
339  thioesterases, which contributed to wax biosynthesis and deposition on leaves, cuticle development,
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340  thylakoid membrane stacking [60], seed development and germination [61]. As for starch metabolism,
341  the archaeplastidal ancestor likely stored starch in the cytosol [112], but the red and green lineage
342  experienced different fates from there on. Rhodophytes continued to store starch in the cytosol in the
343 form of Floridean starch [113], while in the green lineage, particularly in complex plants, more localized
344  control of starch synthesis and degradation was facilitated by changes in regulatory proteins (eg
345  AGPase). Together, organelle metabolism evolved to serve key roles in the synthesis, regulation and
346  trafficking of lipids involved in wax coating to prevent water loss in the land plant ancestor, as well as
347  synthesis and storage of starch (Fig. 6D).

348  RNA processing and editing is a crucial component of information processing and overall functionality
349  ofplant organelles [49,50]. Changes in RNA metabolism are evident from the origin of the green lineage
350  itself, where RNAse-P (tRNA maturation) was replaced by protein only RNAse P or PROPs [114,115].
351  Subsequent expansion of PROPs in embryophytes (Fig. S9) led to organelle-localised copies, of which
352  some are essential for maintaining organelle morphology, function and plant viability [116].
353  Components associated with plastid encoded RNA polymerase (PEP associated proteins, PAPs) also
354  show a gradual recruitment from the green ancestor to embryophyte ancestor (Fig. S8). RNA editing
355  of Cto U isnot found in algae, however, and editing sites in embryophytes are unlike those of any other
356  eukaryote, suggesting they emerged independently [50]. Of the many RNA-metabolism proteins we
357  find that were gained during terrestrialization, known targets are transcripts involved in photosynthesis
358  and stress tolerance-related transcripts, both key to colonising the land (Fig. 6B). For instance, THAS,
359  PDM4, SVR7 and SOT1 associate with transcripts such as ycf2 and ycf3, and contribute to thylakoid
360  development and biogenesis [117], the generation of photosynthetic complex proteins, grana stacking,
361 and embryo and plastid development [117,119,120]. OTP51 and SOTS5 splice transcripts related to
362  chlorophyll synthesis, photosynthesis and thylakoid membranes (ycf3, TRNK and RPL2) [121-123],
363  whereas DOGTI is important for high temperature response and chloroplast development [124]. This
364  elaborate RNA processing in organelles, especially plastids, appears to serve photosynthesis (and
365  thylakoid) related transcripts. It is feasible that by benefitting photosynthesis, organelle RNA editing
366  continued to be positively selected for during terrestrialization and was expanded.

367  One evolutionary step towards efficient photosynthesis, where RNA editing also plays a key role, are
368  grana stacks [86]. The evolutionary origin of grana remains elusive, along with the underlying
369  developmental pathways involved in regulating its formation and maintenance [86,125,126]. Highly
370  organized grana stacks are observed in embryophytes and some Zygnematophyceae (e.g. the
371 Cosmarium genus) [127], but not chlorophytes such as Chlamydomonas [128]. We noticed a patchy
372  distribution of grana morphology associated proteins such as CURT1, RIQ1 and RIQ2 (Fig. S9), with
373 both RIQs being present in all streptophytes and some chlorophytes but excluding Chlamydomonas. In
374 light of the many key adaptations in Zygnematophyceae discussed here and elsewhere [11,129], we
375  speculate that a sophisticated stacking of grana originated in streptophytes and was beneficial for
376  thriving on land through photosynthesis optimization, in particular with respect to photosystem repair
377  and the separation of the photosystems and the ATP synthase [130,131].

378  This expansion of an organelle proteome necessitates improving the capacity to import proteins.
379  Changes in some import receptors within the green lineage and in targeting sequences at its origins are
380  known, with phosphorylation likely emerging as a key regulator for sorting the newly expanded
381  proteome differentially to plastid and mitochondria (Fig. 6C) [14,42]. Despite such adaptations, protein
382  sorting is never perfect and some mistargeting might be positively selected for. A regulated distribution
383  of newly recruited proteins (e.g. WHIRLY, TGD4, mTERF6; Fig. 6B) to multiple organelles (with
384  distinct organellar functions) hints at adaptive values of this apparent mis-sorting. How many of newly
385  recruited proteins get ‘mis-sorted’ owing to biological adaptability versus stochasticity remains to be
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386  explored together with obtaining a more comprehensive picture of (regulatory) mechanisms associated
387  with sorting in general.

388  Embryophyte cells target proteins not to a single plastid, but many simultaneously. The presence of
389  multiple plastids per cell, polyplastidy, in the green lineage, evolved in an embryophyte ancestor, maybe
390  the common ancestor of embryo— and charophytes, likely through changes in plastid fission and a
391  decoupling of the latter from the cell cycle [15,16]. We find that MCDI1, a core regulator of the plastid
392 division proteins FtsZ2 and ARC3, emerged in the embryophyte ancestor, which corroborates the idea
393  of a mono- to polyplastidy switch during the land transition of green algae [16,89,132,133]. A change
394  in the copy number of plastids also requires a mechanism that maintains a functional organelle to cell
395  volume ratio and resource allocation (Fig. 6C). The REDUCED CHLOROPLAST COVERAGE (REC)
396  protein is involved in such a mechanism in Arabidopsis [134] and the phylogenetically related protein
397  FRIENDLY regulates the distribution of mitochondria, also in plants and non-photosynthetic organisms
398  [135,136]. REC and FRIENDLY share almost all of their domains. How they exactly function and
399  differentiate between the two organelles remains elusive. From what we can tell, FRIENDLY emerged
400  during eukaryogenesis and the origin of mitochondria. REC we can trace back to the streptophyte
401  ancestor (Fig. S9) and after a likely duplication event of FRIENDLY. We speculate that the origin of
402  REC helped to cement polyplastidy, which itself supports larger body plans and the diversification of
403  different plastid types [15]. Lastly, an increase in organelle copy number also requires an overall
404  increase in the capacity to synthesize proteins. The largest fraction of organelle proteins operate in
405  tRNA, amino acid and ribosomal biosynthesis and undergird the biosynthetic capacity of organelles, an
406  adaptation strategy akin to their bacterial ancestor [137,138].
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Fig. 6: The global greening and endosymbiotic organelles. (A) After the endosymbiotic origin of the plastid,
three aboriginal lineages emerged that form the Archaeplastida: the glaucophytes, rhodophytes and chlorophytes.
From the latter, streptophyte algae evolved, including the zygnematophyceae, that represent the algal sister clade
to land plants (embryophytes). Abiotic stresses encountered during terrestrialization (water scarcity, high UV,
swiftly altering temperatures and higher levels of O2) selected for adaptive features such as stomata and a cutin
layer. The numbers in parenthesis indicate the number of genomes from each major group that was screened.
Recruitment of new organelle proteins improved three key aspects of organelle biology in light of
terrestrialization: (B) information processing, (C) development and (D) metabolism. Details for each tile are
discussed in the main text.

The accommodation of the early mitochondrial endosymbiont is associated with the origin of the
endomembrane system and necessitated the emergence of eukaryotic traits including mito- and
autophagy [139—141]. Our analyses show that the integration of a subsequent endosymbiont, the plastid,
coincided with the emergence of proteins that work for the endomembrane system. Salient are changes
in the ubiquitin system during terrestrialization, when polyplastidy in the green lineage also emerged
(Table S2G). Ubiquitination is key to proteosome-mediated degradation and is performed chiefly by
the E3 ubiquitin ligase family, which are important in land plants also for photomorphogenesis[142].
RING (Really interesting new gene) E3 ligases contribute to growth, development and stress response
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427  via also mediating protein-protein interactions [143—146]. We trace a number of RING finger and
428  related proteins to terrestrialization (Fig. S9) that include, but are not limited to,
429  DALI and DAL?2 (for Drosophila DIAPI like 1 and 2), KEG (Keep on going), and NIP1 and NIP2.
430  DALI and DAL2 play a key role in regulation of programmed cell death [147], peroxisome and
431  chloroplast biogenesis [ 148—150]. KEG contributes to stress mitigation [151,152], while NIP1 and NIP2
432 play a role in plastid development by docking plastid RNA polymerase to the thylakoid membrane
433 [153]. The regulated degradation of plastids and other changes in the endomembrane system are a
434  prerequisite for housing multiple plastids per cell and we find many more recruitments broadly affiliated
435  with the endomembrane system, with poorly characterised functions until now. Exploring the functions
436  of these proteins will add valuable insights into the cell biological changes that endosymbiosis
437  stipulates.

438  In closing, although experimentally reported plant plastid and mitochondrial proteomes are scarce, we
439  were able to generate a first comprehensive molecular atlas of the changes of plastid and mitochondrial
440  protein families in the evolution of the green lineage. Ancestral state reconstruction (ASR) allows to
441  map the organelle transformations that facilitated the major transitions such as terrestrialization and
442  which will improve with every new proteome that is added. By inferring plastid and mitochondrial
443  proteomes for 173 species, we set testable expectations for new proteomes to come and provide a solid
444  database, where origins and across species orthologues of any known (organelle) protein can be
445  searched (Table S2C-D). Additional proteomes, once available, will likely solidify the general pattern
446  observed and uncover more lineage-specific curiosities. We identify numerous mitochondrial protein
447  recruitments, whose physiological roles and adaptive values help to better understand plant
448  mitochondrial biology. For plastid proteins, we infer their functions and physiological importance based
449  on the extensively studied Arabidopsis system. Utilizing an advanced orthology search technique [40],
450  we postulate that orthologues of Arabidopsis are likely to exhibit similar functions in other species. Our
451  methodologically robust approach maps various changes in evolution, associated in particular with
452  terrestrialization, that can now be experimentally explored across selected models and with a focus on
453  less-well studied streptophyte algal and bryophyte species [154,155].

454
455
456 Conclusions

457  Endosymbiotic organelles have a distinct place in the evolutionary tapestry of life. Through the
458  combination of organelle proteome data and phylogeny, we trace the evolution of mitochondria and
459  plastids over a span of a billion years of plant evolution by inferring their proteomes for over a hundred
460  Archaeplastida species. Our comprehensive molecular atlas identifies main changes in their
461  metabolism, communication, information processing and biogenesis. Key adaptations in plant
462  organelles fostered the emergence of wax and cutin (see organelle lipid synthesis and transport),
463  improved the photosynthetic yield (see organelle RNA metabolism and highly structured grana stacks)
464  and the response to abiotic stressors (see inter-organelle communication), and mediated the transition
465  from mono- to polyplastidy (see division and volume control). By connecting the molecular adaptations
466  of mitochondria and plastids to macroevolutionary trends, we show how important changes in
467  organelles of endosymbiotic origin were for the speciation that gave rise to the Chloroplastida and later
468  the origin of land plants from a charophyte algal ancestor.

469
470
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471 Material and Methods

472 Curation of green orthogroups (GOGs). Input protein sequences from 686 proteomes (from KEGG
473 [156]and Phytozome [29], Table S1A) were clustered using Orthofinder version 2.5.4 [40], after all vs
474  all blasts were conducted (E-value cutoff 10e-10) using diamond blast version2.011 [38]. From
475  orthogroups (OGs) recovered, OGs with at least 3 Chloroplastida species green species and less than 3
476  species other than Chloroplastida were annotated as green orthogroup (GOGs). Schematic in Fig. S1A.
477  (Inhouse python script used for this, and other data processing, are available on Github as repository
478  ‘Molecular-Atlas-of-plant-organelle-evolution’.)

479  Curation of plastid and mitochondria orthogroups (POGs and MOGs). 5,452,977 proteins from 204
480  eukaryotes (Table S2A) were clustered using Orthofinder as described above. Orthogroups that
481  contained at least one experimentally verified organelle protein from any one of the four experimentally
482  verified organelle proteome of C. reinhardtii [157], P. patens [158], Z. mays [159], A. thaliana [159],
483  were annotated as organelle (plastid and mitochondria) orthogroups. Schematic in Fig. S1B.

484  Functional annotation of orthogroups. The source of >90% species was Kyoto Encyclopedia of Genes
485  and Genomes (KEGG), which included KEGG orthology identification (KOID) for protein sequences.
486  For all proteins within each GOG, KOIDs were retrieved and the most frequent KOID (i.e. majority
487  rule) was annotated to each GOG (Fig. S1C). From the assigned KOIDs, their KO BRITE functional
488  category was assigned to each GOG. KOIDs for POGs and MOGs were retrieved the same way. For
489  each KOID, the pathway names and BRITE categories at various level of resolutions were used for
490  assigning functional categories manually to each OG. Manual assignment was necessary since BRITE
491  names included a large fraction of categories such as ‘enzymes’ and ‘exosomes’. These were either not
492  very informative or were misleading as many of ‘exosome’ annotated proteins took part in protein
493  synthesis or folding. Lastly, for OGs or proteins discussed with respect to their physiological relevance,
494  the functions were retrieved from the literature (cited in the text).

495  Inference of ancestral states. A phylogeny of Archaeplastidal species was inferred based on all genes
496  conserved in all species, using ‘Species tree inference from all genes (STAG)’ method [160], as a part
497  of orthofinder analysis. STAG infers a species tree by taking greedy consensus of gene trees from each
498  protein family (including that of multigene families). This phylogeny was rooted using minimal
499  ancestral deviation [161] which places Rhodophyta as the sister to all others. Independently, the same
500  unrooted phylogeny was manually rooted using FigTree (v1.4.4) [162] such that Glaucophyta were at
501  the base. Ancestor state of presence and absence of organelle protein families across nodes, were
502  inferred using Phytool [163] package 0.7.80. Based on character state at the tips of the tree, Phytool
503  inferred Bayesian posterior probabilities under a single rate model [164,165] of the character state
504  across nodes of the tree. All OGs that were present in major ancestors of plant groups with probability
505  higher than 0.75 and absent in the preceding ancestor, were considered as newly recruited in that
506  lineage. OGs or proteins discussed with respect to its physiological role in a given clade, their absence
507  outside the group was verified in our copy number database as well as on homologue database available
508  on TAIR.

509  Searching for potential RNA metabolism POGs and MOGs. Hidden Markov models (HMM) of PPR
510 and mTERF domains were downloaded from pFAM [166] with the IDs: PF01535, PF12854, PF13041,
511  PF13812, PF02536. Each of these HMMS was used as a query to search against the full sequences of
512 all proteins within each POG and MOG. If a given OG had more than 60% of individual proteins
513 containing PPR or mTERF, the OG was annotated as RNA metabolism OG. Origin of such OGs were
514  traced using ASR as described above.

515
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