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Abstract 10 

Our aim was to evaluate Bayesian Linear Regression (BLR) models with BayesC and BayesR 11 

priors as a fine mapping tool and compare them to the state-of-the-art external models: 12 

FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf. Based on extensive simulations, we 13 

evaluated the different models based on F1 classification score. The different models were 14 

applied on quantitative and binary UK Biobank (UKB) phenotypes and evaluated based upon 15 

predictive accuracy and features of credible sets (CSs). We used over 533K genotyped and 6.6 16 

million imputed single nucleotide polymorphisms (SNPs) for simulations and UKB phenotypes 17 

respectively, from over 335K UKB White British Unrelated samples. We simulated 18 

phenotypes from low (GA1) to moderate (GA2) polygenicity, heritability (𝒉𝟐) of 10% and 19 

30%, causal SNPs (π) of 0.1% and 1% sampled genome-wide, and disease prevalence (PV) of 20 

5% and 15%. Single marker summary statistics and in-sample linkage disequilibrium were 21 

used to fit models in regions defined by lead SNPs. BayesR improved the F1 score, averaged 22 

across all simulations, between 27.26% and 13.32% relative to the external models. Predictive 23 

accuracy quantified as variance explained (R2), averaged across all the UKB quantitative 24 

phenotypes, with BayesR was decreased by 5.32% (SuSIE-Inf) and 3.71% (FINEMAP-Inf), 25 

and was increased by 7.93% (SuSIE-RSS) and 8.3% (BayesC). Area under the receiver 26 

operating characteristic curve averaged across all the UKB binary phenotypes, with BayesR 27 

was increased between 0.40% and 0.05% relative to the external models. SuSIE-RSS and 28 

BayesR, demonstrated the highest number of CSs, with BayesC and BayesR exhibiting the 29 

smallest average median size CSs in the UKB phenotypes. The BLR models performed similar 30 

to the external models. Specifically, BayesR’s performance closely aligned with SuSIE-Inf and 31 

FINEMAP-Inf models. Collectively, our findings from both simulations and application of the 32 

models in the UKB phenotypes support that the BLR models are efficient fine mapping tools.  33 

 34 
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Introduction 35 

To better understand the genetic make-up of complex quantitative phenotypes and 36 

multifactorial diseases, it is essential to be able to identify the set of genetic variants that are 37 

most likely causal or linked with the causal genetic variants. Genome-wide association studies 38 

(GWAS) often identify too many genetic variants because long-range linkage disequilibrium 39 

(LD) complicates statistical inference. Hence, additional work such as statistical fine mapping 40 

is often required to refine signal from GWAS to determine the genetic variant (or variants) 41 

most likely responsible for complex phenotypes, given verified association of region (or 42 

regions) with a phenotype. This task of determining the genetics variants and quantifying the 43 

evidence of association is crucial as it is often followed by large-scale replication studies, or 44 

laboratory functional studies to gain further biological insights for potential clinical application 45 

with drug discovery, drug-repositioning in humans. Fine mapping methods usually assume 46 

presence of potential causal genetic variants in the data (1). With the concept of existence of 47 

multiple causal genetic variants in a locus various Bayesian fine mapping methods were 48 

developed (2). Bayesian fine mapping methods can quantify uncertainty of a potential causal 49 

genetic variant through posterior inclusion probability (PIP) in a model. The PIP of a SNP 50 

refers to the mean of posterior probability that the SNP is included in a model with non-zero 51 

effect, which provides evidence for that the SNP potentially is causative (3). These methods 52 

are also able to leverage knowledge about genetic architecture of complex phenotypes through 53 

prior distribution of the effects and number of the genetic variants, which helps to improve 54 

statistical power for identifying effective genetic variants (4). 55 

In the quest for accurate identification of effects of potential causal genetic variants in complex 56 

phenotypes, various Bayesian fine mapping methods have been developed with different 57 

modeling assumptions. FINEMAP (5) for GWAS summary statistics, uses Shotgun Stochastic 58 
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Search (SSS) algorithm to search for different possible causal configurations followed by 59 

focusing on the configurations with non-negligible probability. The algorithm conducts a pre-60 

defined number of iterations within the space of causal configurations. In each iteration, the 61 

neighborhood of the current causal configuration is defined by configurations that result from 62 

deleting, changing, or adding a causal SNP from the current configuration. In the next iteration, 63 

a new causal configuration is sampled from the neighborhood configurations based on its 64 

posterior normalized within the neighborhood. The sum of single effects (SuSIE) (6), a new 65 

formulation of Bayesian Variable Selection Regression (BVSR) uses a procedure called as 66 

iterative Bayesian stepwise selection approach (IBSS) to fit a model assuming few sparse 67 

causal genetic variants in a locus. It estimates the vector of regression coefficients for sparse 68 

genetic variants by summing up multiple single-effect vectors that each have one non-zero 69 

entry for a potential causal variant. Recently, (7) extended SuSIE by implementing the use of 70 

GWAS summary data and introduced it as SuSIE-RSS. SuSIE-Inf and FINEMAP-Inf (4), an 71 

infinitesimal model similar to linear mixed models, are extensions of SuSIE and FINEMAP 72 

respectively where infinitesimal effects for genetic variants in LD (estimated separately for 73 

locus) with those of the sparse components are modeled. As in FINEMAP, FINEMAP-Inf used 74 

SSS algorithm, where the posterior inference of the sparse genetic variants is marginalized over 75 

the infinitesimal effects and the residuals. As in SuSIE, SuSIE-Inf estimated the sparse causal 76 

effects by summing up multiple single-effect vectors, where for the posterior inference of 77 

sparse genetic effects the joint distribution of single-effect vectors is marginalized over the 78 

infinitesimal effects and residuals. 79 

Following a similar pursuit of accurate fine mapping, we were interested in investigating the 80 

performance of Bayesian Linear Regression (BLR) models for fine mapping. The BLR models 81 

have been applied for mapping genetic variants, prediction (polygenic scores), estimation of 82 

genetic parameters and genetic architectures (8). The genetic architecture of a trait 83 
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encompasses number, frequency and effect size of causal variants (9). The BLR models allow 84 

joint estimation of marker effects while accounting for LD among SNPs capturing the amount 85 

of variation at a genetic locus whose extent is based on the extent of the colocalization of 86 

multiple causal genetic variants. Assumptions of number and effect sizes of genetic variants 87 

are based on different prior distributions. Here we focused on the performance of the BLR 88 

models with the priors BayesC (10), and BayesR (11). During joint marker estimation, 89 

depending on priors, BLR models either shrink non-causal genetic variants’ effects or induce 90 

both variable selection method and shrinkage helping to obtain accurate estimates of effects of 91 

genetic variants. To our knowledge, the BLR models have been investigated numerous times 92 

in predictions (12-14) but only few studies have investigated precision and power of these 93 

models in fine mapping approach (4, 7). 94 

In fine mapping, no single genetic variant is identified as causal due to the complex LD patterns 95 

between the genetic variants hence “credible sets” of potentially causal genetic variants are 96 

prioritized (1). Credible sets help in variable selection by narrowing down a larger number of 97 

variants to a small set of most likely causal variants with certain probability, refining the fine 98 

mapping approach. (15) developed a standard Bayesian approach for fine mapping, assumed a 99 

single causal locus per genetic region, to prioritize for example 99% credible set (a set whose 100 

cumulative sum of PIPs exceeds 0.99 threshold) of potentially causal genetic variants providing 101 

a credible set for per region (2). With the main goal of improving fine mapping resolution, the 102 

credible sets are meant to contain as few genetic variants as possible while still capturing an 103 

effective genetic variant. 104 

In our study, we aimed to assess the efficiency of the BLR models (BayesC and BayesR) as a 105 

fine mapping tool using GWAS summary statistics. Using simulations, we designed credible 106 

sets and investigated precision and power of inclusion of casual variants in the credible sets 107 

to calculate 𝐹1 classification score (𝐹1 score). We also evaluated these models based on the 108 
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features of credible sets, and the prediction accuracy using fine mapped regions for five 109 

binary and five quantitative phenotypes from the UK Biobank (UKB) (16). The results from 110 

BayesC and BayesR priors were compared to the state-of-the-art methods such as FINEMAP 111 

(5), SuSIE-RSS (7), SuSIE-Inf and FINEMAP-Inf (4). We also aimed to investigate 112 

validation of the BLR model through a detailed examination of the outcomes derived from its 113 

application to Type two diabetes (T2D) within the UKB phenotypes.  114 

Material and Methods 115 

In our study, efficiency of different models was investigated on simulations and the UKB 116 

phenotypes. We explored efficiency of the models on complex nature of phenotypes by 117 

simulating phenotypes with low to moderate polygenic background and creating different 118 

genetic architectures utilizing different values for heritability (ℎ𝑆𝑁𝑃
2 ), proportion of causal 119 

markers (𝜋) and their effect sizes (9). Efficiency of the models was also investigated using five 120 

quantitative and five binary UKB phenotypes available from the UKB. We have discussed the 121 

theory behind single marker-linear regression analysis and its extension to summary data 122 

followed by the prior assumptions of BayesC and BayesR, used in our study. Marginal marker 123 

effects obtained from the single SNP association analysis were adjusted at multiple designed 124 

fine-mapping regions using the BLR models and external fine-mapping models. We present 125 

the design of credible sets (CSs) and definition of precision and power in terms of CSs to 126 

estimate 𝐹1 classification score (𝐹1 score) on simulations. For the UKB phenotypes, we 127 

compared the predictive abilities (coefficient of determination: 𝑅2 for quantitative phenotypes 128 

and Area under the receiver operating characteristic curve (AUC) for binary phenotypes) and 129 

the features of CSs. Lastly, we explored the biological mechanisms underlying T2D, drawing 130 

insights from the outcomes derived by implementing the BLR model. 131 
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Data 132 

UKB genotyped and imputed data were used for simulations and analysis of the UKB 133 

phenotypes respectively. In our study, we had information about 488,377 participants. To 134 

obtain a genetic homogeneous study population we restricted our analyses to unrelated British 135 

Caucasians and excluded individuals with more than 5,000 missing markers or individuals with 136 

autosomal aneuploidy. Remaining (𝑛=335,532) White British unrelated individuals (WBU) 137 

were used for analyses. Then, we excluded markers with minor allele frequency < 0.01, call 138 

rate < 0.95 and the markers deviating from Hardy-Weinberg equilibrium (𝑃-value <139 

1 × 10−12). We excluded markers located within the major histocompatibility complex 140 

(MHC), having ambiguous allele (i.e., GC or AT), were multi-allelic or an indel (17). This 141 

resulted in a total of 533,679 single nucleotide polymorphism (SNP) markers in the simulated 142 

data. For the UKB imputed data, firstly the markers with the probability of 70% (–hard-call 143 

threshold 0.7) were converted to genotypes followed by retaining markers with imputation 144 

INFO score >= 0.8 using PLINK 2.0 (18). The same quality control criteria were applied to the 145 

imputed markers as for the genotyped data, except that we included MHC in the UKB 146 

phenotypes as this region contains many known disease-associated markers. After quality 147 

control we retained 6,627,732 SNPs and 335,532 WBU for downstream analysis in the UKB 148 

imputed data. 149 

Genetic architectures for simulations 150 

To simulate genetic architectures from low to high polygenicity, we simulated quantitative 151 

phenotypes with heritability (ℎ𝑆𝑁𝑃
2 ) of 30% and 10%, with two different proportions of causal 152 

SNPs (𝜋), 0.1% and 1%, chosen randomly from the genome. 153 
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We generated two different types of genetic architectures under a multiple regression model. 154 

In the first genetic architecture (𝐺𝐴1), causal SNPs (𝑚𝐶) effects were sampled from the same 155 

normal distribution: 156 

𝑦𝑖 =∑𝑤𝑖𝑗

𝑚𝐶

𝑗=1

𝑏𝑗 + 𝑒𝑖 , 157 

where 𝑦𝑖 is the phenotype for 𝑖’th individual, 𝑏𝑗 is the estimate of the 𝑗’th SNP effect (normally 158 

distributed with mean of 0 and variance given by 𝜎𝑔
2/𝑚𝐶). We assumed variance of a phenotype 159 

to be 1 such that 𝜎𝑔
2 is equal to ℎ𝑠𝑛𝑝

2 . 𝑤𝑖𝑗 represents the 𝑗’th centered and scaled genotype of 160 

the 𝑖’th individual: 161 

𝑤𝑖𝑗 =
𝑥𝑖𝑗 − 2𝑝𝑗

√2𝑝𝑗(1 − 𝑝𝑗)

 162 

 where, 𝑥𝑖𝑗 is the effect allele count for 𝑖’th individual at the 𝑗’th SNP, 𝑝𝑗 is the allele frequency 163 

of the 𝑗’th SNP. 𝑒𝑖 is the residual that has a normal distribution with mean=0 and variance= 164 

𝜎𝑔
2(1 ⁄ (ℎ𝑠𝑛𝑝

2 ) − 1). Residual variance was scaled in a way so that ℎ𝑠𝑛𝑝
2  remained 30% (or 165 

10%). 166 

In the second genetic architecture scenario (𝐺𝐴2), the effects of causal SNPs are sampled from 167 

a mixture of normal distributions. 168 

𝑦𝑖 = ∑𝑤𝑖𝑗

𝑚𝐶1

𝑗=1

𝑏𝑗 +∑𝑤𝑖𝑘

𝑚𝐶2

𝑘=1

𝑏𝑘 +∑𝑤𝑖𝑙

𝑚𝐶3

𝑙=1

𝑏𝑙 + 𝑒𝑖, 169 

where, 𝑏𝑗 , 𝑏𝑘 , and 𝑏𝑙 are the effect of causal SNPs sampled from normal distribution with 170 

mean=0 and variance = (0.6𝜎𝑔
2)/(0.93𝑚𝐶), (0.2𝜎𝑔

2)/(0.05𝑚𝐶), and (0.2𝜎𝑔
2)/(0.02𝑚𝐶) 171 

respectively. In this genetic model, the three normal distributions were designed such that 93% 172 

of the causal SNPs would have small effect sizes and the remaining 5% and 2% of the causal 173 
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SNPs would have moderate and large effect sizes respectively. This genetic architecture was 174 

designed in a similar way as designed in the study by (12). 175 

All the other parameters in 𝐺𝐴2 are created in a similar way as for the 𝐺𝐴1. 176 

We created ten replicates for each simulation scenario. The total sample of 335,532 were 177 

divided into ten replicates. Each replicate contained 80% of the randomly sampled data from 178 

the total samples. 179 

For the quantitative phenotypes, a total of eight different simulation scenarios were applied: 180 

two values of ℎ𝑠𝑛𝑝
2 , two different proportions of causal SNPs 𝜋 and two different genetic 181 

architecture scenarios. 182 

To simulate binary phenotypes, in addition to the parameters: ℎ𝑆𝑁𝑃
2 , 𝜋 and genetic architectures, 183 

we introduced another parameter “sample disease prevalence” (𝑃𝑉). Two different 𝑃𝑉 of 5% 184 

and 15% were used in our study. We simulated binary phenotypes from quantitative 185 

phenotypes. To simulate a binary phenotype, for example with 𝑃𝑉 5%, we chose top 5% of 186 

individuals with highest simulated quantitative values as cases and the remaining as controls 187 

for the total sample in a replicate. Each scenario of a quantitative phenotype gave rise to two 188 

different scenarios for binary phenotype. In total we designed 16 different simulation scenarios 189 

for the binary phenotypes: two values of ℎ𝑠𝑛𝑝
2 , two different proportions of causal SNPs 𝜋, two 190 

different genetic architecture scenarios, and two prevalence 𝑃𝑉. Different scenarios for the 191 

quantitative and the binary phenotypes are presented in detail in S1 Table. The flowchart of 192 

design of the simulations is presented in Fig 1. 193 
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 194 

Fig 1. Flowchart illustrating the design of the simulation scenarios for both quantitative and 195 

the phenotypes, followed by fine mapping using Bayesian Linear Regression models. The BLR 196 

models were implemented in different ways, and the resulting posterior inclusion probability 197 

(PIPs) for SNPs were used to estimate the F1 classification score based on the credible sets. 198 
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Definition of phenotypes from the UKB data 199 

From the UKB we selected five quantitative phenotypes: Body mass index (BMI), Hip 200 

circumference (HC), Standing height (Height), Waist circumference (WC) and Waist-to-hip 201 

ratio (WHR), and five binary phenotypes: Coronary artery disease (CAD), Hypertension 202 

(HTN), Psoriasis (PSO), Rheumatoid arthritis (RA) and Type 2 Diabetes mellitus (T2D). The 203 

quantitative phenotypes were identified using specific field codes in the UKB data (see UKB 204 

showcase, Table 1a). To obtain WHR, we estimated ratio of the waist circumference to the hip 205 

circumference. In the UKB, a phenotype can have multiple instances. We used the first instance 206 

because of the least number of non-missing samples in that instance. For the definition of the 207 

binary phenotypes, to define individuals as cases for a phenotype of interest we used codes 208 

from the data field “Diagnosis-main ICD10” along with codes from the self-reported 209 

information (Table 1b). All the individuals missing the appropriate codes for the phenotype of 210 

interest were reported as controls. Additional information on age at recruitment (p21022), sex 211 

(p31), and the UKB assessment center (p54) were included as covariates in the genetic 212 

analyses. Detailed information regarding the number of samples, prevalence for the phenotypes 213 

is given in Table 1a and Table 1b. 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 
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Table 1a. Details of the data fields along with the total number of non-missing samples, age (mean and standard deviation), number of females 222 
(n_female) and average value for the UKB quantitative phenotypes. 223 

UKB Quantitative 

phenotypes 

UKB data 

field Total 

Age (Mean 

[sd]) Sex (n_female) 

Phenotype (Mean 

[sd]) 

Body Mass Index (BMI) p21001 334,464 56.87 [7.98] 179,309 27.4 [4.76] 

Hip Cirumference (HC) p49 334,949 56.87 [7.98] 179,517 103.44 [9.15] 

Standing Height (Height) p50 334,828 56.87 [7.98] 179,492 168.86 [9.25] 

Waist Circumference (WC) p48 334,983 56.87 [7.98] 179,532 90.37 [13.49] 

Waist-Hip Ratio (WHR) NA* 334,917 56.87 [7.98] 179,503 0.87 [0.09] 

*NA because the phenotype was calculated in our study. 224 

Table 1b. Details of the ICD10 and self-reported code used for diagnosis of cases for the UKB binary phenotypes, total number of cases, controls 225 
along with the distribution of age (mean and standard deviation) and number of females (n_female) within cases and controls.  226 

UKB Binary phenotypes 

Definition of cases 

Cases Controls 

Age (Mean [sd]) Sex (n_female) 

ICD10 code 

[p41270] 

Self-reported 

code Cases Controls Cases Controls 

Coronary Artery Disease 

(CAD) 

I21; I22; I23; I24; 

I25 1075 34,726 300,806 61.24 [6.38] 56.37 [7.99] 10,845 168,989 

Hypertension (HTN) I10 1065 129,580 205,952 59.75 [6.98] 55.07 [8.04] 60,859 118,975 

Psorias (PSO) L40 1453 6628 328,904 57.15 [7.88] 56.87 [7.98] 3090 176,744 

Rheumatoid Arthritis (RA) M06 1464 7955 327,577 59.6 [7.04] 56.81 [7.99] 5251 174,583 

Type 2 Diabetes (T2D) E11 1220;1223 25,828 309,704 60.11 [6.9] 56.6 [8.01] 10,072 169,762 

227 
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Statistical model 228 

In the multiple regression model the phenotype is related to the set of genetic markers: 229 

𝑦 = 𝑋𝑏 + 𝑒, 230 

where 𝑦 is the phenotype, 𝑋 a matrix of genotyped markers, where values are standardized to 231 

give the ijth element as: 𝑥𝑖𝑗 = (𝑥𝑖𝑗 − 2𝑝𝑗)/√2𝑝𝑗(1 − 𝑝𝑗), with 𝑥𝑖𝑗 the number of copies of 232 

the effect allele (e.g. 0, 1 or 2) for the ith individual at the jth marker and 𝑝𝑗 the allele frequency 233 

of the effect allele. 𝑏 are the genetic effects for each marker, and 𝑒 the residual error. The 234 

dimensions of 𝑦, 𝑋, 𝑏 and 𝑒 are dependent upon the number of phenotypes, 𝑘, the number of 235 

markers, 𝑚, and the number of individuals, 𝑛. The residuals, 𝑒, are a priori assumed to be 236 

independently and identically distributed multivariate normal with null mean and covariance 237 

matrix 𝐼𝜎𝑒
2. 238 

Extensions to summary data 239 

The key parameter of interest in the multiple regression model is the marker effects. These can 240 

be obtained by solving an equation system like: 241 

𝑏 = (𝑋′𝑋 + 𝐼
𝜎𝑒
2

𝜎𝑏
2)

−1

𝑋′𝑦. 242 

To solve this equation system individual level data (genotypes [𝑋] and phenotypes [𝑦]) are 243 

required. If these are not available, it is possible to reconstruct 𝑋′𝑦 and 𝑋′𝑋 from a LD 244 

correlation matrix 𝐵 (from a population matched LD reference panel) and data (Llyod-Jones et 245 

al. 2019): 246 

𝑋′𝑋 = 𝐷0.5𝐵𝐷0.5,
𝑋′𝑦 = 𝐷𝑏𝑚,

 247 
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where 𝐷𝑖 =
1

𝜎𝑏𝑖
2 +𝑏𝑖

2/𝑛𝑖
 if the markers have been centered to mean 0 or 𝐷𝑖 = 𝑛𝑖 if the markers 248 

have been centered to mean 0 and scaled to unit variance, 𝑏𝑖 is the marker effect for the i’th 249 

marker, 𝜎𝑏𝑖
2  is the variance of the marginal effects from GWAS. 𝑏𝑚 = 𝐷−1𝑋′𝑦 is the vector of 250 

marginal marker effects obtained from a standard GWAS. The LD correlation matrix, B, was 251 

computed using squared Pearson’s correlation.  252 

Estimation of parameters using BLR models 253 

The BLR models use an iterative algorithm, Markov Chain Monte Carlo (MCMC) gibbs 254 

sampling techniques, to estimate joint marker effects which depends on additional model 255 

parameters such as a probability of being causal (𝜋), an overall marker variance (𝜎𝑏
2), and 256 

residual variance (𝜎𝑒
2). The posterior density of the model parameters (𝑏,𝜎𝑏

2,𝜎𝑒
2) depend on the 257 

likelihood of the data given the parameters and a prior probability for the model parameters 258 

which is discussed in detail by (19).  259 

Ideally the choice of prior for the marker effect should reflect the genetic architecture of the 260 

phenotype. Most complex phenotypes and diseases are likely highly polygenic, with hundreds 261 

to thousands of causal genetic variants, most frequently of small effect sizes (20). Thus, the 262 

prior distribution should account for many small and few large effect genetic variants. Also, 263 

marker effects are a priori assumed to be uncorrelated, but markers can be in strong linkage 264 

disequilibrium and therefore a high posterior correlation may exist. To accommodate evolving 265 

ideas genetic architectures of phenotypes and diseases, many priors for marker effects have 266 

been proposed. Each prior gives rise to a method or family of methods, and two of them are 267 

described below: 268 
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BayesC 269 

In the BayesC approach the marker effects, 𝑏, are a priori assumed to be sampled from a 270 

mixture with a point mass at zero and univariate normal distribution conditional on common 271 

marker effect variance 𝜎𝑏
2. This reflects a very common thought that there were not many causal 272 

loci. This can be implemented by introducing additional variables 𝛿𝑖 which indicates if the i’th 273 

marker has an effect or not. In turn, these variables 𝛿 have a prior Bernoulli distribution with 274 

the probability 𝜋 of being zero. Therefore, the hierarchy of priors is: 275 

𝑝(𝑏𝑗|𝛿𝑖 , 𝜎𝑏𝑖
2 , 𝜋) = {

0 with probability 𝜋,

∼ 𝑁(0, 𝜎𝑏𝑖
2 ) with probability 1 − 𝜋

 276 

𝑝(𝜎𝑏𝑖
2 |𝜐𝑏, 𝑆𝑏

2) = 𝑆𝑏
2𝜒𝜐𝑏

−1, 277 

where 𝑆𝑏
2 = 𝜎𝑏

2𝜐𝑏 with 𝜎𝑏
2 =

𝜎𝑔
2

(1−𝜋)2∑ 𝑝𝑖𝑖 (1−𝑝𝑖)
 because the variance of a 𝑡 distribution is 

𝜐𝑏

𝜐𝑏−2
. 278 

BayesR 279 

In the BayesR (Erbe et al. 2012) approach the marker effects, 𝑏, are a priori assumed to be 280 

sampled from a mixture with a point mass at zero and univariate normal distributions 281 

conditional on common marker effect variance 𝜎𝑏
2, and variance scaling factors, 𝛾: 282 

𝑏𝑗|𝜋, 𝜎𝑏
2 =

{
 
 

 
 
0 with probability 𝜋1,

∼ 𝑁(0, 𝛾2𝜎𝑏
2) with probability 𝜋2,

⋮

∼ 𝑁(0, 𝛾𝐶𝜎𝑏
2) with probability 1 −∑𝜋𝑐

𝐶−1

𝑐=1

 283 

where 𝜋 = (𝜋1, 𝜋2, . . . . , 𝜋𝐶) is a vector of prior probabilities and 𝛾 = (𝛾1, 𝛾2, . . . . . , 𝛾𝐶) is a 284 

vector of variance scaling factors for each of C marker variance classes. The  𝛾 coefficients are 285 

prespecified and constrain how the common marker effect variance 𝜎𝑏
2 scales within each 286 
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mixture distribution. Typically, 𝛾 = (0,0.01,0.1,1.0). and 𝜋 = (0.95,0.02,0.02,0.01) are 287 

starting values which can be updated each iteration. 288 

The prior distribution for the marker variance 𝜎𝑏
2 is assumed to be an inverse Chi-square prior 289 

distribution, 𝜒−1(𝑆𝑏, 𝜈𝑏). 290 

The proportion of markers in each mixture class 𝜋 follows a Direchlet (𝐶, 𝑐 + 𝛼) distribution, 291 

where c is a vector of length C that contains the counts of the number of variants in each 292 

variance class and 𝛼 = (1,1,1,1)′ such that the pi is updated only using information from the 293 

data. 294 

Using the concept of data augmentation, an indicator variable 𝑑 = (𝑑1, 𝑑2, . . , 𝑑𝑚−1, 𝑑𝑚), is 295 

introduced, where 𝑑𝑗 indicates whether the jth marker effect is zero or nonzero. 296 

Genome-wide association study (GWAS) 297 

For simulations, we had eight and sixteen simulation scenarios (with ten replicates per 298 

scenario) for quantitative and binary phenotypes, respectively. We performed GWAS by fitting 299 

a single marker linear regression model using the R package “qgg” (19). No co-variates were 300 

used in the model because no co-variates were simulated. For analysis of the UKB phenotypes, 301 

the total population (no missing phenotype) was divided into five replicates of training (80%) 302 

and validation (20%) populations. The design for the analysis of the UKB phenotypes is 303 

presented in Fig 2. GWAS was performed in the training population of the five replicates for 304 

all the UKB phenotypes. For T2D, GWAS was also performed in the total population. We 305 

performed single marker linear regression using the R package “qgg” (19), and logistic 306 

regression analysis using PLINK 1.9 (21) for the quantitative and binary UKB phenotypes, 307 

respectively. To account for any cryptic relatedness in the data, we used top ten principal 308 

components (PCS) along with age, sex and the UKB assessment center as co-variates in the 309 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2023.09.01.555889doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis of the UKB imputed data. We computed PCs for WBU from 100K randomly sampled 310 

SNPs from the genotyped data after removing SNPs in the autosomal long-range LD regions 311 

(22) with pairwise correlation (𝑟2)>0.1 in 500Kb region, using PLINK 2.0 (18). 312 

 313 

Fig 2. Flowchart illustrating the design of populations for the analysis of the UK Biobank 314 

phenotypes to determine the predictive abilities and features of credible sets across different 315 

models. 316 

 317 

Designing genomic region for fine mapping 318 

For the simulated phenotypes, we designed fine-mapping regions based on the number of SNPs 319 

(at most 1000 SNPs in total). The regions were designed by defining a window of ~500 SNPs 320 

to the left and right of the causal SNPs. The number of the fine-mapping regions depended on 321 

the type of simulation scenario. We did not consider any overlaps across the regions. For the 322 
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UKB phenotypes, we designed the fine-mapping regions based on the physical position around 323 

each lead SNP. Significant SNPs (p-value < 5 X 10-8) from GWAS were used as the lead SNPs 324 

to design the fine-mapping regions. We defined a genomic region of one mega base pair (1MB) 325 

(~1000kb on both sides) of the lead SNP. If the regions overlapped by more than 500kb then 326 

the regions were merged. This arbitrary number was chosen to limit the size of the regions and 327 

assuming that the SNPs added to the region might just increase the size but do not contribute 328 

to the analysis. 329 

Methods for fine mapping using summary statistics 330 

We implemented BayesC and BayesR and the following external models: FINEMAP (5), 331 

SuSIE-RSS (7), SuSIE-Inf and FINEMAP-Inf (4) for fine mapping. 332 

BLR models 333 

The BLR models BayesC and BayesR, differ based on their assumption of prior variance of 334 

the marker effects. Their assumptions have already been discussed in detail above in the section 335 

“BLR models”. For the simulations, BayesC and BayesR were implemented region-wide and 336 

genome-wide, using the R package “qgg” (19). This implementation is illustrated in Fig 1. 337 

To apply these models’ region-wide, summary data from the GWAS for the SNPs in the fine-338 

mapping regions along with the pair-wise linkage disequilibrium (LD) information among all 339 

the SNPs were used. The region-wide analysis was performed in different ways (the following 340 

three options) depending on estimation of different model parameters as part of an iterative 341 

estimation procedure (Gibbs sampling technique) from fully conditional posterior distributions. 342 

For the first option, the parameter 𝜋 was treated as random and estimated in each iteration along 343 

with the marker variance and the residual variance. For the second option, 𝜋 was kept constant. 344 
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For the third option, only the marker variance and residual variance were estimated. Option 1: 345 

𝜎𝑏
2, 𝜎𝑔

2, 𝜎𝑒
2 and 𝜋 – update Option 2: 𝜎𝑏

2, 𝜎𝑔
2 and 𝜎𝑒

2 – update Option 3: 𝜎𝑏
2, and 𝜎𝑒

2 – update 346 

For genome-wide application, we used summary data from the GWAS and sparse LD matrix. 347 

We randomly sampled 50,000 out of 𝑛=335,532 WBU to estimate sparse LD for a group of 348 

SNPs in a sliding genomic window containing 2000 SNPs, which slid 1 SNP at a time. Due to 349 

computational challenge, for genome-wide analysis, only the “Option 1” was used. The PIPs 350 

for SNPs obtained from the genome-wide analysis were used further to design credible sets for 351 

the fine-mapped regions. A total of 3000 iterations were used in the analysis with the first 500 352 

as burn-in. 353 

External fine mapping tools 354 

SuSIE-RSS model: 355 

The model was applied using the R package susieR (6). We provided the summary statistics 356 

(beta estimates and standard error), the LD information and number of samples for the fine 357 

mapping regions. The residual variance was estimated as suggested by the model because in-358 

sample LD was used. We used ten causal SNPs which is the default number in the R package 359 

SusieR. We used default parameters in the functions. No priors for the SNPs were provided. 360 

SuSIE-Inf and FINEMAP-Inf models: 361 

To apply these models, we downloaded python package “run_fine_mapping.py” from the link: 362 

https://github.com/FinucaneLab/fine-mapping-inf (4). We provided the summary statistics 363 

(SNP estimates and standard error) along with LD information and number of samples for the 364 

fine mapping regions. The number of causal SNPs was assumed to be ten to be consistent with 365 

the default number of causal SNPs in susieR. SuSIE-Inf and FINEMAP-Inf models were 366 

applied separately. No variance was shared and no priors for the SNPs were provided. 367 
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FINEMAP model: 368 

We downloaded FINEMAP software from the link: 369 

http://www.christianbenner.com/finemap_v1.4_x86_64.tgz (v1.4) (5). We provided the 370 

summary statistics (SNP estimates and standard error) along with minor allele frequency 371 

(MAF), LD information, and the number of samples for the fine mapping regions. The 372 

number of causal SNPs was assumed to be ten. No priors for the SNPs were provided. 373 

Quality control/convergence for models 374 

The external fine mapping tools FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf, 375 

explicitly mentioned convergence of the models in the output. 376 

For the BLR models, we estimated the convergence of the key parameters: 𝜎𝑏
2, 𝜎𝑔

2, 𝜎𝑒
2, and 𝜋. 377 

To assess the convergence, we used the metric “zscore”. This involved calculating the 378 

difference between the average parameter values taken at the start and end of the iterations. 379 

This difference served as our metric to gauge the convergence of the desired parameter. The 380 

fine mapping regions with the absolute value of the metric “zscore”, for any of the parameters, 381 

greater than three was further investigated by thorough evaluation of the trace plots of the 382 

parameters, and scatter plots. 383 

Assessment of fine mapping models in simulations 384 

Efficiency of different models were investigated based on the 𝐹1 score, a harmonic mean of 385 

precision and power estimated for the credible sets (CS). 386 

Credible sets for simulations 387 

Credible sets (CSs) help to refine association signals. The CS are defined as the minimum set 388 

of SNPs that contains all causal SNPs with probability 𝛼. When we assume only one causal 389 
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SNP, 𝛼 can be the sum of the PIPs for SNPs in a set. The CS in our study was designed 390 

according to (15). To design the CS of SNPs with coverage probability (cut-off or threshold) 391 

of 𝛼, firstly SNPs were ranked according to descending order of their PIPs. A vector of 392 

cumulative sum of PIPs was created. We added each element of the vector until it crossed a 393 

specified coverage probability of 𝛼. All the sets exceeding the given threshold of 𝛼 in the fine 394 

mapping regions were refered as the CSs. A CS can contain multiple SNPs if they cross the 395 

given PIP threshold. We use a strict coverage probability of 99% for the CSs. 396 

In simulations, with an interest to compare only the core algorithms among different models in 397 

our study, we designed the CSs for all the models irrespective of potential of the models to 398 

output the CSs. FINEMAP-Inf doesn’t give CSs, however we used the PIPs from FINEMAP-399 

Inf to design CSs for the model. In the scenario where multiple SNPs have the same value of 400 

PIP, we investigated the list of SNPS, and if one of those SNPs is the simulated causal SNP 401 

then we included that SNP in the CS. The same procedure was applied to design CS for all the 402 

models. As we used only one causal SNP per fine-mapping regions without considering 403 

overlaps across the regions, the concept of one region harboring one causal SNP remained valid 404 

and supported our design of the CSs. 405 

𝑭𝟏 classification score for simulations 406 

We assessed 𝐹1 score for the fine-mapping regions based on the credible sets. All the fine-407 

mapping regions harbored a simulated causal SNP (index SNP). The 𝐹1 score takes a value 408 

between 0 and 1. The value close to 1 refers to the capability of a fine-mapping model to better 409 

identify true causal SNPs and reduce false positives. 410 

𝐹1 =
2𝑝𝑟

𝑝 + 𝑟
, 411 

where, precision, 𝑝 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃 and recall 𝑟 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁. 412 
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𝐹1 score was calculated for each replicate of a simulation scenario. For one simulation replicate, 413 

True positive (TP) was the total number of CS (referred to as true positive CS; TP_CS) which 414 

contained the index SNP corresponding to that region. False positive (FP) was the total number 415 

of CS which crossed the threshold of alpha but did not contain the index SNP (referred to as 416 

false positives CS; FP_CS). False negative (FN) was the total number of genomic regions 417 

where the cumulative sum of PIPs did not cross the threshold of alpha, and no CS was detected. 418 

In addition to this criterion in our study for the FN, we also considered two additional criteria. 419 

We denoted “unconverged” fine-mapping regions for any methods as FN. We also considered 420 

“TP_CS” which contained more than ten SNPs as FN because large credible sets add little to 421 

no information in search of causal variants in fine-mapping procedure. We investigated the 422 

number of SNPs in true positive credible sets (TP_CS) to investigate the efficient model and 423 

tried to have the least number of SNPs in a CS as possible. The design of CSs and estimation 424 

of 𝐹1 score is represented in Fig 3.425 

426 

Fig 3. Design of credible sets with a 0.99 threshold for the cumulative sum of Posterior 427 

Inclusion Probabilities (PIPs), and estimation of the F1 classification score based on the 428 

credible sets. 429 
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Investigate influence of different factors in simulations 430 

To investigate the influence of each parameters: ℎ𝑆𝑁𝑃
2 , 𝜋, genetic architectures (𝐺𝐴) and 𝑃𝑉 on 431 

the performance of the models, we performed TukeyHSD test in R. To quantify the factors 432 

with the greater influence in the simulations, for each model, we also performed ANOVA on 433 

the linear model where the 𝐹1 score was regressed on ℎ𝑆𝑁𝑃
2 , 𝜋, and 𝐺𝐴 for the quantitative 434 

phenotypes (and 𝑃𝑉 for the binary phenotypes). 435 

Similarities among model assumption in simulations 436 

We also investigated similarities among the models based on their assumptions of genetic 437 

architectures for a complex phenotype. SuSIE, FINEMAP and BayesC assume contribution of 438 

sparse genetic variants in the genetic makeup of a complex phenotype. In addition to these 439 

sparse genetic variants, SuSIE-Inf and FINEMAP-Inf consider the influence of multiple 440 

genetic variants with small effect sizes (infinitesimal models). The BayesR model assume 441 

influence of sparse genetic variants with large effect sizes and non-sparse genetic variants with 442 

moderate to small effect sizes in the genetic makeup of a complex phenotype. We used total 443 

true positive credible sets (TP_CS) determined by each model for only the simulation scenarios 444 

for the quantitative phenotype. We investigated the number of overlaps of TP_CS of the 445 

BayesC model with SuSIE and FINEMAP, and the overlap of the BayesR with SuSIE-Inf and 446 

FIENMAP-Inf. 447 

Assessment of fine mapping models in the UKB phenotypes 448 

Only the fine-mapped regions which converged across the models were used for downstream 449 

analysis to estimate predictive ability and features of the CSs. 450 
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Predictive Ability 451 

For quantitative phenotypes, the predictive ability was determined by estimating the coefficient 452 

of determination, (𝑅2). For binary phenotypes, the predictive ability was determined by 453 

estimating Area under the receiver operating characteristic curve (AUC). 454 

Firstly, genomic score (GS) (predicted phenotype) of an individual, also known as a predictive 455 

score for a phenotype was calculated for the validation population for each replicate. GS for an 456 

individual is the sum of the product of effect alleles weighted by their estimated effect size: 457 

𝐺𝑆 =∑𝑋𝑖

𝑚

𝑖=1

𝑏̂𝑖 . 458 

where 𝑋𝑖 refers to the genotype matrix that contains an allelic count and 𝑏̂ is the estimated 459 

marker effect for the 𝑖-th variant, 𝑚 is the number of SNPs. 460 

To quantify the accuracy of the GS for real quantitative phenotypes, co-variates adjusted scaled 461 

phenotypes for validation population was regressed on the predicted phenotypes. The 462 

coefficient of determination, 𝑅2, from the regression was used as a metric to assess the 463 

predictive ability of the model. To quantify the accuracy of the GS for real binary phenotypes, 464 

AUC (23)was reported: 465 

𝐴𝑈𝐶 =
1

𝑛𝑑′
(𝑟‾𝑑 −

𝑛𝑑
2
−
1

2
) . 466 

where, 𝑛𝑑′ : number of controls 𝑛𝑑 : number of cases 𝑟‾𝑑 : average rank of the cases. 467 

Difference in the estimates of 𝑅2 and AUC (averaged across five replicates) among different 468 

methods was compared using TukeyHSD test. 469 
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Credible sets for the UKB phenotypes 470 

Unlike simulations where a fine-mapping regions were not merged irrespective of overlaps, in 471 

the UKB phenotypes, fine-mapping regions were merged if they shared a 500kb overlap of 472 

SNPs. This approach increased the likelihood of containing multiple potentially causal variants 473 

within a single fine-mapped region. To accommodate this, we designed credible sets (CSs) 474 

allowing multiple causal variants to be fine-mapped region within the same genomic region. 475 

To design a CS, in addition to the algorithm from (15) we also used information of LD. A 476 

flowchart detailing the CS design process is presented in S1 Fig. To identify significant SNP 477 

sets that are in LD, we utilized posterior PIPs and LD criteria. For each fine-mapped region, 478 

CSs were comprised of SNPs where the cumulative PIP was at least 0.80 (𝑃𝐼𝑃𝑐𝑢𝑚𝑠−𝑠𝑒𝑡 >= 479 

0.80). When a CS contained multiple SNPs, the LD (r2) between the SNP with the highest PIP 480 

in the CS and the other SNPs was at least 0.5. Detailed steps utilized to explore the presence 481 

of multiple CSs within a fine-mapped region are mentioned in S1 Text. 482 

We applied this methodology (S1) across all models in our study, aiming to compare the 483 

efficiency of different algorithms by using a consistent CS creation approach. This allowed us 484 

to focus solely on algorithmic efficiency by eliminating other variables. For each trait, non-485 

converged fine-mapped regions were excluded across all the models. Afterwards, for each 486 

model, we determined the average total number of CSs, the average median CS size (SNP 487 

counts in a CS), and the average median value for the average correlations (𝑎𝑣𝑔. 𝑟2) among 488 

SNPs in the CS. To estimate 𝑎𝑣𝑔. 𝑟2, we excluded the sets with only one SNP as they were not 489 

informative, and we used absolute pair-wise correlations among SNPs in the CS. In case the 490 

size of CS exceeded 100, only randomly chosen 100 SNPs were used to obtain 𝑎𝑣𝑔. 𝑟2 for that 491 

CS. In a fine-mapped region, SNPs with 𝑃𝐼𝑃𝑆𝑁𝑃 <= 0.001 was excluded before designing 492 

multiple CSs assuming that they would have little to no contribution in meeting the criterion 493 

of PIP. 494 
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Application of BLR model in T2D 495 

In earlier sections of our study, we examined the efficacy of the BLR models. This section 496 

delves into the application of the BLR model to a complex trait, T2D. We aimed to validate 497 

the results obtained from implementation of the BLR model.   498 

We performed single SNP logistic regression in PLINK 1.9 (21) leveraging the entire UKB 499 

cohort for T2D (Table 1), followed by adjustments of the marginal summary statistics with the 500 

BayesR model. Fine mapping regions were created as for the UKB phenotypes discussed above 501 

in the section “Designing genomic region for fine mapping”. Multiple credible sets (CSs) per 502 

fine-mapped region were designed as discussed above in the section “Credible sets for the UKB 503 

phenotypes”.  504 

To validate the results obtained from BayesR model for T2D, we conducted non-exhaustive 505 

comparison of our findings with the external study. Also, using the R package “gact”, we 506 

performed a gene set enrichment analysis to identify diseases enriched for T2D-associated 507 

genes and tissue-specific expression Quantitative loci (eQTLs) enrichment analysis to identify 508 

tissues enriched for T2D.  509 

In the initial step, we mapped SNPs from multiple CSs to genes using the Ensembl Gene 510 

Annotation database available at 511 

https://ftp.ensembl.org/pub/grch37/release109/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.512 

gtf.gz. This mapping targeted SNPs within the open reading frame (ORF) of a gene, including 513 

regions 35kb upstream and 10kb downstream of the ORF, due to their potential regulatory role 514 

in controlling main ORF translation.  515 
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Comparison with large-scale meta-GWAS study 516 

To obtain any overlapping genes in our study with (24), one of the largest and most 517 

comprehensive meta-GWAS on T2D. The study consisted of imputed genetic variants from 518 

898,130 European-descent individuals (9% cases). Our study limited comparison to genes 519 

given by the study in the Supplementary Table 2 which provided information of 243 loci (135 520 

newly identified in T2D predisposition) comprising 403 unique genetic signals/associations.  521 

Gene-diseases association enrichment analysis 522 

To determine diseases significantly enriched for the gene set of our interest, we first curated a 523 

set of genes with PIP of at least 0.5 (sum of 𝑃𝐼𝑃𝑆𝑁𝑃). We then downloaded the disease-gene 524 

associations data from the DISEASE database (25). This database contained disease–gene 525 

association scores (full and filtered) derived from curated knowledge databases, experiments 526 

primarily GWAS catalog, and automated text mining of biomedical literature. The analysis was 527 

conducted on the final disease-gene association data where association of a gene to a disease 528 

was combined from all the above-mentioned sources. This database includes over 10,000 529 

diseases. However, multiple terms in the database were used to refer to the same disease. We 530 

investigated enrichment via hypergeometric test (26).  531 

Tissue-specific eQTLs enrichment analysis 532 

To determine tissues enriched for eQTLs associated with T2D, firstly multi-tissue cis-eQTL 533 

annotation was obtained from GTEx (Genotype-Tissue Expression) consortium 534 

(https://storage.googleapis.com/adult-gtex/bulk-qtl/v8/single-tissue-cis 535 

qtl/GTEx_Analysis_v8_eQTL.tar) (27). We identified only eQTLs within our fine-mapped 536 

regions for each tissue. We then assessed the enrichment of tissue-specific eQTLs using a 537 

multiple linear regression model, adjusting for the influence of other tissue-specific eQTLs. 538 

The analysis was conducted using absolute beta-estimates from the BayesR model. The 539 
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regression model allowed us to calculate z-scores (coefficient estimates/standard errors) and p-540 

value for each tissue. Tissue-specific eQTLs with a p-value less than 0.05 were considered 541 

significantly enriched.  542 

Results 543 

Application in simulations 544 

For simulations, we presented the results of the 𝐹1 score based on the credible sets to show the 545 

overall performance of the models across all simulation scenarios in Fig 4. Then to investigate 546 

the influence of each parameter considered while designing simulation scenarios, we present 547 

the results of the 𝐹1 score in each simulation scenario for the quantitative (S2 Fig) and the 548 

binary phenotypes (S3 Fig). 549 

 550 

Fig 4. F1 classification score (F1 score), power and precision, averaged across all twenty-four 551 

simulation scenarios, for the BLR fine mapping models: BayesR region-wide models (bR3, 552 

bR2 and bR1), BayesR genome-wide model (bRgw), BayesC region-wide models (bC3, bC2 553 
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and bC1), BayesC genome-wide model (bCgw) and external models. The black solid line 554 

represents standard error for the average estimate. 555 

 556 

Most efficient model 557 

The 𝑏𝑅3 model (option 3) improved the 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score (average across all the simulation 558 

scenarios) by 21.64%, 11% and 0.06% relative to the BayesR genome-wide analysis (𝑏𝑅𝑔𝑤), 559 

and 𝑏𝑅1 and 𝑏𝑅2. We observed similar results for BayesC. The BayesC region-wide model 560 

(option 3, 𝑏𝐶3) improved the 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score by 23.41%, 11.72% and 0.10% relative to 𝑏𝐶𝑔𝑤, 561 

𝑏𝐶1, and 𝑏𝐶2. 562 

Highest 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score, averaged across all the twenty-four simulation (binary and 563 

quantitative) scenarios was observed for the BayesR region-wide model (𝑏𝑅3) [𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚score: 564 

0.4] followed by SuSIE-Inf [𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score: 0.35] and SuSIE-RSS [𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score: 0.34] (Fig  565 

1). The 𝑏𝑅3 improved the 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score by 27.26%, 26.96%, 18.40%, 15.42%, and 13.32% 566 

relative to FINEMAP-Inf, 𝑏𝐶3, FINEMAP, SUSIE-RSS and SUSIE-Inf. The precision 567 

(𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑠𝑖𝑚) and power (𝑃𝑜𝑤𝑎𝑣𝑔.𝑠𝑖𝑚), averaged across all the simulation scenarios ranged 568 

between 0.29 to 0.39, and 0.25 to 0.98 respectively. The 𝑏𝑅3 model also improved the 569 

𝑃𝑜𝑤𝑎𝑣𝑔.𝑠𝑖𝑚 by 58% to 72% relative to other models. However, this model decreased the 570 

𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑠𝑖𝑚 by 26% to 33% relative to other models. Similar patterns were observed when the 571 

models were compared only within the quantitative phenotypes and within the binary 572 

phenotypes. In the following we only compared 𝑏𝑅3 and 𝑏𝐶3 with the external methods. 573 
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Influence of parameters in simulations 574 

All the models performed the best (highest 𝐹1 score) for the scenario with moderate ℎ𝑆𝑁𝑃
2  of 575 

0.3, 𝜋 of 0.001, and 𝐺𝐴1 for the quantitative phenotypes (S2 Fig), and 𝑃𝑉 of 15% for the binary 576 

phenotypes (S3 Fig). 577 

Pairwise comparison of the 𝐹1𝑎𝑣𝑔.𝑟𝑒𝑝 score (averaged across the replicates in a scenario) 578 

between all the scenarios for both the quantitative and the binary phenotypes showed 579 

significant differences between all scenarios (for all the models) as none of the intervals 580 

harbored a value of zero. S4 Fig illustrated the results for bR3 for the quantitative simulated 581 

phenotypes. ANOVA on the results where 𝐹1 scores were regressed on ℎ𝑆𝑁𝑃
2 , 𝜋, and 𝐺𝐴 (and 582 

𝑃𝑉 for the binary phenotypes) quantified higher influence of 𝜋 and least influence of 𝐺𝐴.   583 

Similarities among methods assumptions in simulations 584 

We observed that at least 50% of the true positive credible sets (TP_CS) were shared among 585 

BayesC, SuSIE-RSS and FINEMAP (S5 Fig). We observed similar results for the models 586 

BayesR, SuSIE-Inf and FINEMAP-Inf. 𝑏𝐶𝑔𝑤 identified the fewest number of total TP_CS 587 

summed across all the scenarios followed by FINEMAP-Inf. 𝑏𝐶𝑔𝑤 shared 80% of the total 588 

TP_CS with SUSIE-RSS, FINEMAP and BayesC region-wide model (𝑏𝐶𝑙𝑤 or 𝑏𝐶3). The 589 

𝑏𝐶𝑔𝑤 shared ~91% of the total TP_CS with 𝑏𝐶𝑙𝑤. Similarly, FINEMAP-Inf shared 80% of 590 

the total TP_CS with SuSIE-Inf, 𝑏𝑅𝑔𝑤, and 𝑏𝑅𝑙𝑤 of 𝑏𝑅3. 𝑏𝑅𝑔𝑤 shared 85.1% of the total 591 

TP_CS with 𝑏𝑅𝑙𝑤 or 𝑏𝑅3. 592 
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Application to UKB phenotypes 593 

Predictive ability 594 

We observed a significant decrease in the 𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2  (averaged across all the binary phenotypes) 595 

of BayesC and BayesR relative to SuSIE-Inf and FINEMAP-Inf for the phenotypes BMI, WC, 596 

HC and WHR (Fig 5a). No significant difference in the 𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2  was observed between BayesR 597 

compared to SuSIE-Inf and FINEMAP-Inf for Height, whereas a significant decrease was 598 

observed for BayesC compared to these models. We observed significant improvement in the 599 

𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2  of BayesR relative to SuSIE-RSS for Height. All the methods could predict Height 600 

better compared to other quantitative phenotypes. Prediction 𝐴𝑈𝐶𝑎𝑣𝑔.𝑏𝑖𝑛 (averaged across all 601 

the binary phenotypes) with BayesR increased by 0.40%, 0.16%, 0.08%, 0.05% compared to 602 

SUSIE-RSS, BayesC, FINEMAP-Inf and SuSIE-Inf, respectively (Fig 5b). We didn’t observe 603 

any significant differences between the 𝐴𝑈𝐶𝑎𝑣𝑔.𝑟𝑒𝑝 (averaged across all the replicates) of 604 

models compared pairwise for any binary phenotypes except for HTN. For HTN, BayesR 605 

improved the 𝐴𝑈𝐶𝑎𝑣𝑔.𝑟𝑒𝑝 significantly compared to SuSIE-RSS. The highest estimate of the 606 

𝐴𝑈𝐶𝑎𝑣𝑔.𝑟𝑒𝑝 was observed for T2D followed by HTN for all the models. The lowest estimate of 607 

the 𝐴𝑈𝐶𝑎𝑣𝑔.𝑟𝑒𝑝 was observed for RA. Prediction 𝑅𝑎𝑣𝑔.𝑞𝑡
2  (averaged across all the quantitative 608 

phenotypes) with BayesR decreased by 5.32% and 3.71% compared to SuSIE-Inf and 609 

FINEMAP-Inf, whereas increased by 7.93% and 8.3% compared to SuSIE-RSS and BayesC. 610 

BayesR model improved the 𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2  (averaged across all the replicates) significantly 611 

compared to BayesC model for all the quantitative phenotypes except for WHR. 612 
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      613 

Fig 5. Prediction accuracies estimated from fine mapped regions. a. Bar plot of prediction 614 

accuracy, represented by the coefficient of determination (R2), averaged across five replicates 615 

for the UKB quantitative phenotypes: body mass index (BMI), hip circumference (HC), 616 

standing height (Height), waist circumference (WC), and waist-hip ratio (WHR). b. Bar plot 617 

of prediction accuracy, represented by the Area under the Curve (AUC), averaged across five 618 

replicates for the UKB binary phenotypes: coronary artery disease (CAD), hypertension 619 

(HTN), psoriasis (PSO), rheumatoid arthritis (RA), and type 2 diabetes (T2D). The models 620 

used in the fine mapping can be identified by the colors in the legend associated with each 621 

model. For each method within a trait, corresponding mean of R2 or AUC across five replicates 622 

and standard error is written on the top of the box plot.623 

a b 
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Credible sets  624 

The average total number of fine-mapped regions across five replicates for the quantitative 625 

phenotypes ranged from 135.2 for WHR to 461 for Height and for the binary phenotypes ranged 626 

from 4 for RA to 137.4 for HTN (Table 1). The highest averaged non-converged regions were 627 

observed for RA (55%) followed by PSO (29.62%). For other phenotypes, the non-converged 628 

regions ranged from 1.22% to 6.42%. 629 

BayesR determined the highest average number of CSs for Height, CAD, HTN and T2D, 630 

whereas SuSIE-RSS determined the highest average number of CSs for BMI, HC, WC and 631 

WHR (Table 1). For the above-mentioned phenotypes, FINEMAP-Inf determined the smallest 632 

average number of CSs. All the models obtained a similar average number of CSs for PSO (9 633 

to 12) and RA (1.8 to 2.2).  634 

The BLR models showed the smallest average median CS size across all the phenotypes 635 

compared to the external fine-mapping models (Table 2). BayesR showed the smallest average 636 

median size of CS for BMI, Height, WC, WHR, PSO, RA and T2D. BayesC showed the 637 

smallest average median size of CS for CAD. Both BayesC and BayesR showed the same 638 

average median size for HC and HTN. The highest average median CS size was shown by 639 

SuSIE-Inf for BMI, Height, WC, CAD, PSO, RA and T2D. For other phenotypes, SuSIE-RSS 640 

showed the highest value for the median CS size. 641 

The average median for 𝑎𝑣𝑔. 𝑟2  for the BLR models were smaller compared to the external 642 

models. BayesC showed the largest average median value compared to BayesR across all the 643 

phenotypes. 644 

 645 

 646 
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Table 2. Average for the total number of fine mapped regions and non-converged regions for the UKB phenotypes along with the total number of credible sets 647 
(CSs), median size of the CSs, and median of the average correlations (r2) of the CSs for all the models. 648 

UKB 

Phenotypes 

 Avg. 

Total 

FMR  

Avg. Non-

converged 

FMR 

BayesC BayesR FINEMAP FINEMAP-Inf SUSIE-Inf SUSIE-RSS 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Avg. 

Total 

CSs 

Avg. 

Med 

CS 

size 

Avg. 

Med 

r2 

Body Mass 

Index (BMI) 
219.8 4.8 310.6 3.4 0.93 389.8 2 0.86 410.6 5 0.96 89.8 8.6 0.97 204.4 20.6 0.90 447.2 15.6 0.95 

Hip 

Cirumference 

(HC) 

203 5 289.4 1 0.85 359.4 1 0.80 348.4 2 0.98 95.6 3 0.98 200.6 4.4 0.97 410.4 6.8 0.97 

Standing 

Height 

(Height) 

461 29.6 1500 3.4 0.94 1846.8 2 0.87 1668 7.1 0.97 513.6 8.3 0.98 721.2 17.5 0.93 1696 14.6 0.96 

Waist 

Circumference 

(WC) 

164.4 2 229.6 3.6 0.94 276.8 2 0.88 299.4 6 0.97 73.2 7.7 0.98 157.4 20.8 0.92 331.6 15.6 0.96 

Waist-Hip 

Ratio (WHR) 
135.2 3.4 184.8 2.8 0.94 224.6 2 0.88 238.2 5.2 0.97 77 6.6 0.98 142.6 11.4 0.93 255.8 14 0.96 

Coronary 

Artery Disease 

(CAD) 

29.4 0.4 38.8 1.9 0.94 54.2 2.3 0.81 35.8 6.3 0.97 28 5.7 0.97 35.8 8.7 0.96 44 10.3 0.97 

Hypertension 

(HTN) 
137.4 6.2 211 2.2 0.90 277 2.2 0.80 239.8 4.2 0.97 96.8 5.2 0.98 159.4 8.8 0.96 246.8 9.8 0.96 

Psoriasis 

(PSO) 
10.8 3.2 10.2 3.4 0.92 9.6 1 0.89 9.8 5.3 0.98 9 5.7 0.97 12 10.5 0.96 11 6.4 0.98 
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Rheumatoid 

Arthritis (RA) 
4 2.2 1.8 1.3 NA 1.8 1.2 NA 5.4 1.5 1.00 1.8 2.6 0.95 2.2 3.9 0.93 2.2 2.8 0.98 

Type 2 

Diabetes 

(T2D) 

49.6 1.2 62.6 1.8 0.93 81.2 1.6 0.79 70.4 4.9 0.97 47.6 6.4 0.97 60 8.5 0.96 73.2 8.1 0.97 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2023.09.01.555889doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Application of BLR model in T2D 657 

We identified a total of 117 CSs for T2D across 69 fine-mapped regions with a median CS size 658 

of 2 (range:1 to 297), and the median of 𝑎𝑣𝑔. 𝑟2 was 0.80 (range: 0.49 to 1). We identified 53 659 

CSs of size 1 (1 SNP counts), 47 CSs of size between 2 to 50, and the remaining 17 CSs of size 660 

more than 50 SNPs.   661 

Comparison with large-scale meta-GWAS study 662 

We found 53 of the 181 genes identified from our study, listed in Table S2, overlapped with 663 

genes from the study Mahajan et al. (2018) (S2 Table). Among 53 overlapped genes, 10 genes 664 

(DTNB, RBM6, MBNL1, SLCO6A1, PDE3B, CELF1, MAP2K7, ZC3H4, EYA2, and ZBTB46) 665 

were categorized as novel associations in the study by (24).  666 

Additionally, our study identified multiple SNPs at TCF7L2 in addition to rs7903146 (PIP: 667 

0.9996). This includes rs34855922 (PIP: 0.3844), rs11196234 (PIP: 0.3512) and rs7912600 668 

(PIP: 0.086) within a CS (𝑎𝑣𝑔. 𝑟2: 0.70), as well as rs145034729 (PIP: 0.992) linked to 669 

TCF7L2 locus. 670 

Gene-Diseases association enrichment 671 

The top 30 significant diseases (p-value < 0.05) enriched for our T2D-related gene set and their 672 

corresponding p-values are detailed in S3 Table. The list includes disease terms such as Type 673 

2 Diabetes Mellitus, Diabetes Mellitus, ICD10:E11 code for T2D, as used in the UKB database. 674 

Additionally, we discovered associations with various forms of diabetes, such as several types 675 

of maturity-onset diabetes of the young (MODY), prediabetes syndrome, gestational diabetes, 676 

both permanent and transient neonatal diabetes, ICD10-E14 (unspecified T2D), and ICD10-677 

O24 (diabetes in pregnancy). The list also encompassed other conditions, including 678 

Rheumatoid Arthritis (RA) with corresponding ICD10 codes: M0, M05, M06 and M069, 679 
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Wolfram syndrome, hyperglycemia, hyperinsulinism, glucose intolerance, pancreatic agenesis, 680 

pancreatic cystadenoma, and insulinoma.  681 

Tissue-specific eQTLs enrichment 682 

Among 49 different tissues, significant enrichment (p-value < 0.05) of T2D-related eQTLs 683 

were identified in the 13 tissues (S6 Fig): Brain cerebellar hemisphere (n=419), Cells cultured 684 

fibroblasts (n=718), Brain cerebellum (n=467), Pituitary (n=379), Esophagus muscularis 685 

(n=615), Brain nucleus accumbens basal ganglia (n=308), Lung (n=624), Skin (not sun 686 

exposed suprapubic) (n=678), Artery tibial (n=647), Adipose subcutaneous tissue (n=695), 687 

Muscle skeletal tissue (n=639), Thyroid (n=810), and Nerve Tibial (n=804).  688 

Discussion 689 

Here we aimed to assess the efficiency of BayesC and BayesR as a fine mapping tool. We 690 

applied these models in simulations and the real UKB data using summary statistics. In 691 

simulations, the efficiency was investigated based on 𝐹1 score. For the UKB phenotypes the 692 

models efficiency was based on polygenic scores and credible sets. BayesC and BayesR 693 

models’ efficiency were compared to the state-of-the-art methods such as FINEMAP (5), 694 

SuSIE-RSS (7), SuSIE-Inf and FINEMAP-Inf (4). All the models used in our study serve the 695 

same purpose of identifying true effects of causal variants. However, they differ in the details 696 

in the algorithm and their implementation which applied together can have different impact on 697 

the overall performance. 698 

BayesC and BayesR 699 

BayesC and BayesR applied genome-wide and region-wide have the same assumptions of prior 700 

variance of marker effects, but they differed in their implementation in our study. To our 701 
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knowledge this is the first study comparing implementation of BayesC and BayesR in such 702 

manner. We implemented the models, genome-wide where the posterior distributions of the 703 

model parameters were estimated based on taking SNPs genome-wide whereas region-wide 704 

implementation were limited to the fine-mapped regions designed based on the simulated 705 

causal SNPs. In the simulations, better performance of both priors when implemented region-706 

wide compared to genome-wide based on the 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score for both BayesC and BayesR. 707 

However, the genome-wide models showed better 𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑠𝑖𝑚 but less 𝑃𝑜𝑤𝑎𝑣𝑔.𝑠𝑖𝑚 (fewer true 708 

positive CSs) than region-wide models. High percentage of overlaps of the CSs for the genome-709 

wide models with the region-wide models suggests that there is a potential in the genome-wide 710 

models. It would be interesting to investigate further the common CSs determined by the 711 

genome-wide and the region-wide models.  712 

BayesR showed significant improvement in prediction accuracy, 𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑟𝑒𝑝 for four out of 713 

the five quantitative phenotypes relative to BayesC. Our prediction accuracies are consistent 714 

with previous studies (28, 29). (28) showed an increase of prediction ability, averaged across 715 

various economical phenotypes in cattle, using BayesR compared to BayesC. (29) showed 716 

similar results across simulation scenarios for phenotypes with high heritability. BayesR 717 

identified a large number of CSs, and small sized CSs relative to BayesC. Our results suggest 718 

that BayesR assumption about genetic architecture suits better for polygenic phenotypes 719 

predictions where many different effect sizes are observed, relative to BayesC 720 

Comparison of the BLR models to external models 721 

To our knowledge this is the first study comparing BayesR model to the state-of-the-art models: 722 

FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf. Across different simulation scenarios, 723 

BayesR had higher 𝐹1𝑎𝑣𝑔.𝑠𝑖𝑚 score relative to the external models with high power but with 724 

less precision. The average prediction accuracy (𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2 ) for the quantitative phenotypes was 725 
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significantly lower for BayesR and BayesC compared to SuSIE-Inf and FINEMAP-Inf for 726 

BMI, HC, WC and WHR. We observed highest estimates for the predictive ability of the 727 

infinitesimal models, which might have been because we used SNP effects from both sparse 728 

and infinitesimal components for SuSIE-Inf and FINEMAP-Inf for predictions, unlike in the 729 

study (4) where only sparse components were used to compare prediction accuracies between 730 

SuSIE, FINEMAP, SuSIE-Inf and FINEMAP-Inf. Since infinitesimal components do not 731 

neglect any SNP effects, this may also explain high prediction accuracy for the models 732 

including infinitesimal effects. Our results showed that the performance of BayesR is closer to 733 

the infinitesimal models. 734 

(30) compared the performance of BayesC to various methods including SuSIE and FINEMAP 735 

in fine mapping, where BayesC performed similar to SuSIE but better than FINEMAP in power 736 

and false discovery rate determination, for different simulation scenarios. We showed that 737 

BayesC had improved power relative to FINEMAP whereas the power was decreased relative 738 

to SuSIE-RSS. This difference in results might be due to differences in implementation of these 739 

models as this study applied the models in whole-genome scale using local regression approach 740 

where we applied the models only in specific regions defined by simulated causal SNPs, that 741 

not necessarily included whole genome. Our study compared SuSIE-RSS (which is an 742 

extension of SuSIE that uses summary statistics) and BayesC, FINEMAP using summary 743 

statistics with in-sample LD among other models, whereas this study used individual levels 744 

data for BayesC and SuSIE, and summary statistics with in-sample LD for FINEMAP. 745 

BayesR and SuSIE-RSS identified a greater number of CSs when applied to the UKB 746 

phenotypes. However, BayesR showed the smallest average median CS size. We constructed 747 

multiple credible sets for all the models based on our algorithm where we applied the cut-off 748 

thresholds of 0.80 for a set to be a CS. We are aware that FINEMAP, SuSIE-RSS and SuSIE-749 

Inf also determine CS where multiple CS can be determined based on multiple causal variants 750 
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in the fine mapped region. Such procedure of determining CSs might alter the features of the 751 

CSs. However, the main objective of our study was to compare the efficiency of the algorithms 752 

of these models. Introducing a comparison based on the CSs they determine would introduce 753 

additional complexity and divert us far from our objective. Hence, we determined multiple CSs 754 

using the same algorithm for all the models. However, it would be interesting to compare CSs 755 

developed by the external models and evaluate their efficiency. 756 

Influence of parameters in simulations 757 

We observed a significant difference in F1 score between the different simulated parameters 758 

ℎ𝑆𝑁𝑃
2  (30% and 10%), 𝜋 (0.001 and 0.1) and 𝐺𝐴 (𝐺𝐴1 and 𝐺𝐴2), and 𝑃𝑉 (5% and 15%). The 759 

pairwise comparison of 𝐹1𝑎𝑣𝑔.𝑟𝑒𝑝 score, within a scenario, among different simulation 760 

scenarios for each model showed significant differences among scenarios and significant 761 

contribution of each parameter. However, the large value of the F-statistic obtained from 762 

ANOVA on the results of the regression (𝐹1 = ℎ𝑆𝑁𝑃
2  + 𝜋 + 𝐺𝐴) was seen for the parameter 𝜋 763 

suggesting greater influence of this parameter in performance of the model. In our simulation, 764 

a smaller number of causal SNPs for a given genetic variance would be sampled from a larger 765 

marker effect variance compared to a higher number of causal SNPs. This large effect SNPs 766 

must have high PIPs such that the credible sets determined by the models harbored the true 767 

causal SNPs. The 𝐹1 score was based on the detection of a true simulated causal variant in a 768 

credible set. In addition to the threshold for a cumulative sum of PIPs [0.99] that a set needs to 769 

cross to be a credible set, we also set a limit on the size of CS (not more than 10). The main 770 

motive of the CS was to refine the resolution of the fine mapping region and a CS with large 771 

number of SNPs even if it harbored a true causal variant would not be informative. We used a 772 

strict cut-off threshold of 0.99 for cumulative sum of PIPs and maximum size of 10 for CS. 773 

The results might differ with lenient thresholds for the cumulative sum, and size of CS. As per 774 
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our expectation, all the models performed significantly better (high 𝐹1𝑎𝑣𝑔.𝑟𝑒𝑝 score) for the 775 

phenotypes with moderate ℎ𝑆𝑁𝑃
2  [30%], a smaller number of causal SNPs [𝜋: 0.001], and the 776 

phenotypes simulated with few SNPs with large effect size [𝐺𝐴1] for the quantitative 777 

phenotypes, and the worst performance was observed for the phenotypes with low ℎ𝑆𝑁𝑃
2  [10%] 778 

and a larger number of causal SNPs [𝜋: 0.01]. 779 

𝑭𝟏 classification score – power and precision of the BLR models 780 

F1 score is a harmonic mean of precision and power/recall and is a well-known performance 781 

metric used for model comparison especially under class imbalance. It penalizes the 782 

performance even when only one of either precision or power is low. In our study, both 783 

precision and power are given equal importance for the performance of a model. We observed 784 

higher 𝑃𝑜𝑤𝑎𝑣𝑔.𝑠𝑖𝑚 for BayesR compared to other models. Highest power of BayesR referred 785 

to the scenario where majority of CSs obtained from BayesR had small size CSs. We used in-786 

sample LD, while using external summary statistics in-sample LD is not always available as 787 

also mentioned by (30). Hence, the power may decrease while using an external reference LD 788 

panel. We observed low 𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑠𝑖𝑚 of BayesR. This referred to as substantial amount of CSs 789 

were false positives. The range of 𝑃𝑟𝑒𝑐𝑎𝑣𝑔.𝑠𝑖𝑚 across all the models is not vast suggesting that 790 

all the models showed similar performance for precision. 791 

The UKB phenotypes, accuracy and fine mapping, credible sets 792 

The predictive accuracies for the UKB phenotypes were smaller compared to other studies. 793 

𝑅𝑎𝑣𝑔.𝑟𝑒𝑝
2  for BMI, Height, HC, WHR, and 𝐴𝑈𝐶𝑎𝑣𝑔.𝑟𝑒𝑝 for T2D for the UKB data presented by 794 

(12) using SbayesR and around 1.1 million SNPs were larger compared to the values estimated 795 

using BayesR in our study. In our study, accuracies were derived from imputed SNPs limited 796 

only to the fine mapped regions. For polygenic phenotypes for example in Height and BMI, 797 
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(31) suggested enrichment of heritability from rare genetic variants (MAF < 0.01). In our study, 798 

we discarded rare SNPs with MAF < 0.01 and focused only on common SNP effects. In our 799 

study, non-converged regions for a model were excluded from analysis for prediction 800 

accuracies (also credible sets) which might also have impacted the estimated accuracies. 801 

Validation of BLR model 802 

Compared to the recent meta-GWAS on T2D (24), we identified 10 genes to overlap with the 803 

53 genes, which were categorized as novel loci in (24). This finding demonstrates the 804 

effectiveness of BayesR model combined with credible sets in identifying potential causal 805 

variants, even in studies with comparatively smaller size. This limited number (53) of 806 

overlapping genes could be attributed to our study’s smaller scale (25,828 cases and 309,704 807 

controls compared to 74,124 cases and 824,006 controls in (24)), which could limit ability to 808 

detect especially rare variants, and the exclusion of rare variants (excluding SNPs with < 1% 809 

MAF in our study). Additionally, the discrepancies in how SNPs were mapped to a gene 810 

between our study and that of (24) might also contribute to this limited overlap.  811 

TCF7L2 (Transcription Factor 7-like 2) explained the highest genetic variance (0.035) in our 812 

study. This gene plays a crucial role in Wnt signaling pathway, which regulates pancreatic islet 813 

cell proliferation and survival (32). In TCF7L2, rs7903146 is the largest-effect common variant 814 

signal for T2D in Europeans (24). Observation of multiple signals for T2D at TCF7L2 in 815 

addition to rs7903146 in (24) was the first evidence according to this study. In addition to the 816 

rs7903146, we also identified SNP rs34855922 associated to T2D similar with (24), which 817 

again demonstrates the effectiveness of BayesR model combined with CSs. The rs7903146 and 818 

rs34855922 are two of the eight SNPs that mark regulatory elements within TCF7L2 locus 819 

(33). The rs7903146 coordinate regulation of TCF7L2 expression, and overlaps histone 820 

modification marks and an annotated enhancer in the pancreas (33). Our study also identified 821 
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an intronic variant (rs145034729) at the TCF7L2 locus. The effect of this intronic SNP is 822 

uncertain. However, it may function as an enhancer element, modulating the expression of 823 

distal genes without necessarily affecting the function of TCF7L2 itself. The discovery of 824 

multiple variants within the TCF7L2 locus is interesting, as (33) suggests that it acts as a 825 

regulatory hub for genes implicated in the etiology of T2D. Identifying these variants in this 826 

locus offers valuable insights into the biological mechanisms underlying T2D.  827 

The gene set enrichment analysis for diseases provided further support for the efficacy of 828 

BayesR model in T2D. This analysis revealed significant enrichment of our gene set for 829 

diseases such as T2D, hyperglycemia (diabetes-like symptoms), hyperinsulinism (one of the 830 

processes leading to hyperglycemia (34). Significant enrichment to other types of diabetes and 831 

diseases may reflect shared genetic factors (via pleiotropic genes or common pathways) 832 

influencing the etiology of diverse conditions (diseases) through different mechanisms. For 833 

instance, (35), noted an increased risk of diabetes mellitus incidence in individuals with RA, 834 

highlighting the potential role of inflammatory pathways in the T2D pathogenesis. 835 

For tissue enrichment analysis, our findings indicate that T2D related eQTLs exhibit tissue-836 

specific effects on gene expression. The implications of our results can be viewed from multiple 837 

perspectives. Our results may suggest a complex interplay of regulatory regions in significantly 838 

enriched tissues leading to T2D predisposition. Our results may also suggest individuals with 839 

T2D might experience adverse effects in these tissues, potentially leading to a range of 840 

complications. For instance, (36) explored the association of significantly enriched tissue 841 

specific T2D associated eQTLs with different T2D complications. Here we delve into the 842 

cerebellar hemisphere region of the brain, the most significant enriched tissue. This region, part 843 

of the cerebellum (another significant tissue in our study), has been linked to cognitive 844 

impairments when abnormal. (37) highlighted significant cognitive impairments in T2D 845 

individuals, correlating these deficits with considerable loss in gray matter volume in brain 846 
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regions associated with these functions. The decline in insulin transport and resistance in the 847 

cerebral cortex, an area dense with high insulin receptor, may impair regional glucose 848 

metabolisms, leading to gray matter volume changes potentially leading to structural and 849 

functional changes in brain in T2D individuals.  850 

No association with pancreatic tissue was found, likely due to the GTEx database's limitations. 851 

The pancreatic tissue in GTEx represents mostly (97%) exocrine cells that mask islets signals 852 

(38). Pancreatic islets are clusters of specialized endocrine cells that are essential to maintain 853 

glucose homeostasis and play a central role in etiology of T2D.   854 

Our study was confined to the cis-eQTLs database from GTEx consortium. (39) have shown 855 

that trans-eQTLs contribute significantly to T2D heritability, suggesting that further 856 

exploration of trans-eQTLs could enhance the understanding of gene expression and cellular 857 

functions across different tissues.  858 

In conclusion, we observed that the performance of the BLR models was comparable to the 859 

state-of-the-art external models. The performance of BayesR prior was closely aligned with 860 

SuSIE-Inf and FINEMAP-Inf models. Results from both simulations and application of the 861 

models in the UKB phenotypes suggest that the BLR models are efficient fine mapping tools. 862 
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