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Abstract

Our aim was to evaluate Bayesian Linear Regression (BLR) models with BayesC and BayesR
priors as a fine mapping tool and compare them to the state-of-the-art external models:
FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf. Based on extensive simulations, we
evaluated the different models based on Fi classification score. The different models were
applied on quantitative and binary UK Biobank (UKB) phenotypes and evaluated based upon
predictive accuracy and features of credible sets (CSs). We used over 533K genotyped and 6.6
million imputed single nucleotide polymorphisms (SNPs) for simulations and UKB phenotypes
respectively, from over 335K UKB White British Unrelated samples. We simulated
phenotypes from low (GA1) to moderate (GA2) polygenicity, heritability (h?) of 10% and
30%, causal SNPs (m) of 0.1% and 1% sampled genome-wide, and disease prevalence (PV) of
5% and 15%. Single marker summary statistics and in-sample linkage disequilibrium were
used to fit models in regions defined by lead SNPs. BayesR improved the F1 score, averaged
across all simulations, between 27.26% and 13.32% relative to the external models. Predictive
accuracy quantified as variance explained (R?), averaged across all the UKB quantitative
phenotypes, with BayesR was decreased by 5.32% (SuSIE-Inf) and 3.71% (FINEMAP-Inf),
and was increased by 7.93% (SuSIE-RSS) and 8.3% (BayesC). Area under the receiver
operating characteristic curve averaged across all the UKB binary phenotypes, with BayesR
was increased between 0.40% and 0.05% relative to the external models. SuSIE-RSS and
BayesR, demonstrated the highest number of CSs, with BayesC and BayesR exhibiting the
smallest average median size CSs in the UKB phenotypes. The BLR models performed similar
to the external models. Specifically, BayesR’s performance closely aligned with SuSIE-Inf and
FINEMAP-Inf models. Collectively, our findings from both simulations and application of the

models in the UKB phenotypes support that the BLR models are efficient fine mapping tools.
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Introduction

To better understand the genetic make-up of complex quantitative phenotypes and
multifactorial diseases, it is essential to be able to identify the set of genetic variants that are
most likely causal or linked with the causal genetic variants. Genome-wide association studies
(GWAS) often identify too many genetic variants because long-range linkage disequilibrium
(LD) complicates statistical inference. Hence, additional work such as statistical fine mapping
is often required to refine signal from GWAS to determine the genetic variant (or variants)
most likely responsible for complex phenotypes, given verified association of region (or
regions) with a phenotype. This task of determining the genetics variants and quantifying the
evidence of association is crucial as it is often followed by large-scale replication studies, or
laboratory functional studies to gain further biological insights for potential clinical application
with drug discovery, drug-repositioning in humans. Fine mapping methods usually assume
presence of potential causal genetic variants in the data (1). With the concept of existence of
multiple causal genetic variants in a locus various Bayesian fine mapping methods were
developed (2). Bayesian fine mapping methods can quantify uncertainty of a potential causal
genetic variant through posterior inclusion probability (PIP) in a model. The PIP of a SNP
refers to the mean of posterior probability that the SNP is included in a model with non-zero
effect, which provides evidence for that the SNP potentially is causative (3). These methods
are also able to leverage knowledge about genetic architecture of complex phenotypes through
prior distribution of the effects and number of the genetic variants, which helps to improve

statistical power for identifying effective genetic variants (4).

In the quest for accurate identification of effects of potential causal genetic variants in complex
phenotypes, various Bayesian fine mapping methods have been developed with different

modeling assumptions. FINEMAP (5) for GWAS summary statistics, uses Shotgun Stochastic
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Search (SSS) algorithm to search for different possible causal configurations followed by
focusing on the configurations with non-negligible probability. The algorithm conducts a pre-
defined number of iterations within the space of causal configurations. In each iteration, the
neighborhood of the current causal configuration is defined by configurations that result from
deleting, changing, or adding a causal SNP from the current configuration. In the next iteration,
a new causal configuration is sampled from the neighborhood configurations based on its
posterior normalized within the neighborhood. The sum of single effects (SUSIE) (6), a new
formulation of Bayesian Variable Selection Regression (BVSR) uses a procedure called as
iterative Bayesian stepwise selection approach (IBSS) to fit a model assuming few sparse
causal genetic variants in a locus. It estimates the vector of regression coefficients for sparse
genetic variants by summing up multiple single-effect vectors that each have one non-zero
entry for a potential causal variant. Recently, (7) extended SuSIE by implementing the use of
GWAS summary data and introduced it as SUSIE-RSS. SuSIE-Inf and FINEMAP-Inf (4), an
infinitesimal model similar to linear mixed models, are extensions of SUSIE and FINEMAP
respectively where infinitesimal effects for genetic variants in LD (estimated separately for
locus) with those of the sparse components are modeled. As in FINEMAP, FINEMAP-Inf used
SSS algorithm, where the posterior inference of the sparse genetic variants is marginalized over
the infinitesimal effects and the residuals. As in SuSIE, SUSIE-Inf estimated the sparse causal
effects by summing up multiple single-effect vectors, where for the posterior inference of
sparse genetic effects the joint distribution of single-effect vectors is marginalized over the

infinitesimal effects and residuals.

Following a similar pursuit of accurate fine mapping, we were interested in investigating the
performance of Bayesian Linear Regression (BLR) models for fine mapping. The BLR models
have been applied for mapping genetic variants, prediction (polygenic scores), estimation of

genetic parameters and genetic architectures (8). The genetic architecture of a trait
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84  encompasses number, frequency and effect size of causal variants (9). The BLR models allow
85  joint estimation of marker effects while accounting for LD among SNPs capturing the amount
86  of variation at a genetic locus whose extent is based on the extent of the colocalization of
87  multiple causal genetic variants. Assumptions of number and effect sizes of genetic variants
88  are based on different prior distributions. Here we focused on the performance of the BLR
89  models with the priors BayesC (10), and BayesR (11). During joint marker estimation,
90 depending on priors, BLR models either shrink non-causal genetic variants’ effects or induce
91  both variable selection method and shrinkage helping to obtain accurate estimates of effects of
92  genetic variants. To our knowledge, the BLR models have been investigated numerous times
93 in predictions (12-14) but only few studies have investigated precision and power of these

94  models in fine mapping approach (4, 7).

95 Infine mapping, no single genetic variant is identified as causal due to the complex LD patterns
96  between the genetic variants hence “credible sets” of potentially causal genetic variants are
97  prioritized (1). Credible sets help in variable selection by narrowing down a larger number of
98  variants to a small set of most likely causal variants with certain probability, refining the fine
99  mapping approach. (15) developed a standard Bayesian approach for fine mapping, assumed a
100  single causal locus per genetic region, to prioritize for example 99% credible set (a set whose
101  cumulative sum of PIPs exceeds 0.99 threshold) of potentially causal genetic variants providing
102  acredible set for per region (2). With the main goal of improving fine mapping resolution, the
103  credible sets are meant to contain as few genetic variants as possible while still capturing an

104  effective genetic variant.

105  Inour study, we aimed to assess the efficiency of the BLR models (BayesC and BayesR) as a
106  fine mapping tool using GWAS summary statistics. Using simulations, we designed credible
107  sets and investigated precision and power of inclusion of casual variants in the credible sets

108  to calculate F; classification score (F; score). We also evaluated these models based on the


https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555889; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

109 features of credible sets, and the prediction accuracy using fine mapped regions for five

110  binary and five quantitative phenotypes from the UK Biobank (UKB) (16). The results from
111  BayesC and BayesR priors were compared to the state-of-the-art methods such as FINEMAP
112 (5), SUSIE-RSS (7), SuSIE-Inf and FINEMAP-Inf (4). We also aimed to investigate

113  validation of the BLR model through a detailed examination of the outcomes derived from its

114  application to Type two diabetes (T2D) within the UKB phenotypes.

115  Material and Methods

116  In our study, efficiency of different models was investigated on simulations and the UKB
117  phenotypes. We explored efficiency of the models on complex nature of phenotypes by
118  simulating phenotypes with low to moderate polygenic background and creating different
119  genetic architectures utilizing different values for heritability (hZyp), proportion of causal
120  markers () and their effect sizes (9). Efficiency of the models was also investigated using five
121  quantitative and five binary UKB phenotypes available from the UKB. We have discussed the
122 theory behind single marker-linear regression analysis and its extension to summary data
123 followed by the prior assumptions of BayesC and BayesR, used in our study. Marginal marker
124  effects obtained from the single SNP association analysis were adjusted at multiple designed
125  fine-mapping regions using the BLR models and external fine-mapping models. We present
126  the design of credible sets (CSs) and definition of precision and power in terms of CSs to
127  estimate F; classification score (F; score) on simulations. For the UKB phenotypes, we
128  compared the predictive abilities (coefficient of determination: R? for quantitative phenotypes
129  and Area under the receiver operating characteristic curve (AUC) for binary phenotypes) and
130  the features of CSs. Lastly, we explored the biological mechanisms underlying T2D, drawing

131 insights from the outcomes derived by implementing the BLR model.
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132 Data

133  UKB genotyped and imputed data were used for simulations and analysis of the UKB
134  phenotypes respectively. In our study, we had information about 488,377 participants. To
135  obtain a genetic homogeneous study population we restricted our analyses to unrelated British
136  Caucasians and excluded individuals with more than 5,000 missing markers or individuals with
137  autosomal aneuploidy. Remaining (n=335,532) White British unrelated individuals (WBU)
138  were used for analyses. Then, we excluded markers with minor allele frequency < 0.01, call
139 rate < 0.95 and the markers deviating from Hardy-Weinberg equilibrium (P-value <
140 1 x107'2). We excluded markers located within the major histocompatibility complex
141 (MHC), having ambiguous allele (i.e., GC or AT), were multi-allelic or an indel (17). This
142  resulted in a total of 533,679 single nucleotide polymorphism (SNP) markers in the simulated
143  data. For the UKB imputed data, firstly the markers with the probability of 70% (—hard-call
144  threshold 0.7) were converted to genotypes followed by retaining markers with imputation
145  INFO score >=0.8 using PLINK 2.0 (18). The same quality control criteria were applied to the
146  imputed markers as for the genotyped data, except that we included MHC in the UKB
147  phenotypes as this region contains many known disease-associated markers. After quality
148  control we retained 6,627,732 SNPs and 335,532 WBU for downstream analysis in the UKB

149  imputed data.

150 Genetic architectures for simulations

151  To simulate genetic architectures from low to high polygenicity, we simulated quantitative
152  phenotypes with heritability (h2yp) of 30% and 10%, with two different proportions of causal

153  SNPs (1), 0.1% and 1%, chosen randomly from the genome.
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154  We generated two different types of genetic architectures under a multiple regression model.
155  In the first genetic architecture (GA;), causal SNPs (m.) effects were sampled from the same

156  normal distribution:
mc

157 Yi ZZWU b; +e;,
j=1

158  where y; is the phenotype for i’th individual, b; is the estimate of the j’th SNP effect (normally
159  distributed with mean of 0 and variance given by o/ /m,). We assumed variance of a phenotype
160  to be 1 such that o/ is equal to hZ,,. w;; represents the j’th centered and scaled genotype of

161  the i’th individual:

Xij = 2p;j

szj(l - pj)

163 where, x;; is the effect allele count for i’th individual at the j°th SNP, p; is the allele frequency

164  of the j’th SNP. e; is the residual that has a normal distribution with mean=0 and variance=
165 02(1/ (k%) — 1). Residual variance was scaled in a way so that hZ,, remained 30% (or

166  10%).

167  Inthe second genetic architecture scenario (G A,), the effects of causal SNPs are sampled from

168  a mixture of normal distributions.

mcl mcz TT'LC3

169 yl-=ZWijbj+ZWikbk+ZWilbl+ei,
j=1 k=1 =1

170  where, b; , by , and b, are the effect of causal SNPs sampled from normal distribution with

171 mean=0 and variance = (0.602)/(0.93m.), (0.262)/(0.05m.), and (0.262)/(0.02m,)
172 respectively. In this genetic model, the three normal distributions were designed such that 93%

173  of the causal SNPs would have small effect sizes and the remaining 5% and 2% of the causal


https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555889; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

174  SNPs would have moderate and large effect sizes respectively. This genetic architecture was

175  designed in a similar way as designed in the study by (12).
176  All the other parameters in GA, are created in a similar way as for the GA;.

177  We created ten replicates for each simulation scenario. The total sample of 335,532 were
178  divided into ten replicates. Each replicate contained 80% of the randomly sampled data from

179  the total samples.

180  For the quantitative phenotypes, a total of eight different simulation scenarios were applied:
181  two values of hZ,,, two different proportions of causal SNPs 7 and two different genetic

182  architecture scenarios.

183  Tosimulate binary phenotypes, in addition to the parameters: h2yp,  and genetic architectures,
184  we introduced another parameter “sample disease prevalence” (PV). Two different PV of 5%
185 and 15% were used in our study. We simulated binary phenotypes from quantitative
186  phenotypes. To simulate a binary phenotype, for example with PV 5%, we chose top 5% of
187 individuals with highest simulated quantitative values as cases and the remaining as controls
188  for the total sample in a replicate. Each scenario of a quantitative phenotype gave rise to two
189  different scenarios for binary phenotype. In total we designed 16 different simulation scenarios
190  for the binary phenotypes: two values of hZ,,, two different proportions of causal SNPs 7, two
191  different genetic architecture scenarios, and two prevalence PV. Different scenarios for the
192  quantitative and the binary phenotypes are presented in detail in S1 Table. The flowchart of

193  design of the simulations is presented in Fig 1.
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194

195  Fig 1. Flowchart illustrating the design of the simulation scenarios for both quantitative and
196  the phenotypes, followed by fine mapping using Bayesian Linear Regression models. The BLR
197  models were implemented in different ways, and the resulting posterior inclusion probability

198  (PIPs) for SNPs were used to estimate the Fy classification score based on the credible sets.
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199  Definition of phenotypes from the UKB data

200 From the UKB we selected five quantitative phenotypes: Body mass index (BMI), Hip
201  circumference (HC), Standing height (Height), Waist circumference (WC) and Waist-to-hip
202  ratio (WHR), and five binary phenotypes: Coronary artery disease (CAD), Hypertension
203  (HTN), Psoriasis (PSO), Rheumatoid arthritis (RA) and Type 2 Diabetes mellitus (T2D). The
204  quantitative phenotypes were identified using specific field codes in the UKB data (see UKB
205  showcase, Table 1a). To obtain WHR, we estimated ratio of the waist circumference to the hip
206  circumference. In the UKB, a phenotype can have multiple instances. We used the first instance
207  because of the least number of non-missing samples in that instance. For the definition of the
208  hinary phenotypes, to define individuals as cases for a phenotype of interest we used codes
209 from the data field “Diagnosis-main ICD10” along with codes from the self-reported
210 information (Table 1b). All the individuals missing the appropriate codes for the phenotype of
211  interest were reported as controls. Additional information on age at recruitment (p21022), sex
212  (p31), and the UKB assessment center (p54) were included as covariates in the genetic
213  analyses. Detailed information regarding the number of samples, prevalence for the phenotypes

214  isgivenin Table 1a and Table 1b.

215
216
217
218
219
220
221
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225
226

227

Table 1a. Details of the data fields along with the total number of non-missing samples, age (mean and standard deviation), number of females
(n_female) and average value for the UKB quantitative phenotypes.

UKB Quantitative UKB data Age (Mean Phenotype (Mean
phenotypes field [sd]) Sex (n_female) [sd])

Body Mass Index (BMI) p21001 334,464 56.87 [7.98] 179,309 27.4 [4.76]
Hip Cirumference (HC) p49 334,949 56.87 [7.98] 179,517 103.44 [9.15]
Standing Height (Height) p50 334,828 56.87 [7.98] 179,492 168.86 [9.25]
Waist Circumference (WC) p48 334,983 56.87 [7.98] 179,532 90.37 [13.49]
Waist-Hip Ratio (WHR) NA* 334,917 56.87 [7.98] 179,503 0.87 [0.09]

*NA because the phenotype was calculated in our study.

Table 1b. Details of the ICD10 and self-reported code used for diagnosis of cases for the UKB binary phenotypes, total number of cases, controls
along with the distribution of age (mean and standard deviation) and number of females (n_female) within cases and controls.

Definition of cases Age (Mean [sd]) Sex (n_female)
ICD10 code Self-reported

UKB Binary phenotypes [p41270] code Cases Controls Cases Controls Cases | Controls
Coronary Artery Disease 121; 122; 123; 124;
(CAD) 125 1075 34,726 300,806 61.24 [6.38] 56.37[7.99] |10,845| 168,989
Hypertension (HTN) 110 1065 129,580 205,952 59.75 [6.98] 55.07 [8.04] |60,859| 118,975
Psorias (PSO) L40 1453 6628 328,904 57.15 [7.88] 56.87 [7.98] 3090| 176,744
Rheumatoid Arthritis (RA) MO06 1464 7955 327,577 59.6 [7.04] 56.81 [7.99] 5251| 174,583
Type 2 Diabetes (T2D) E11 1220;1223 25,828 309,704 60.11 [6.9] 56.6 [8.01] |10,072| 169,762
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228  Statistical model

229  Inthe multiple regression model the phenotype is related to the set of genetic markers:
230 y=Xb+e,

231  where y is the phenotype, X a matrix of genotyped markers, where values are standardized to

232 give the ijth element as: x;; = (x;; — 2p;)/ /ij(l — p;), with x;; the number of copies of

233 theeffectallele (e.g. 0, 1 or 2) for the ith individual at the jth marker and p; the allele frequency
234 of the effect allele. b are the genetic effects for each marker, and e the residual error. The
235 dimensions of y, X, b and e are dependent upon the number of phenotypes, k, the number of
236  markers, m, and the number of individuals, n. The residuals, e, are a priori assumed to be
237  independently and identically distributed multivariate normal with null mean and covariance

238  matrix Ig2.
239 Extensions to summary data

240  The key parameter of interest in the multiple regression model is the marker effects. These can
241  be obtained by solving an equation system like:

o2\
242 b = <X’X+I—ez> X'y.
%

243 To solve this equation system individual level data (genotypes [X] and phenotypes [y]) are
244  required. If these are not available, it is possible to reconstruct X'y and X'X from a LD
245  correlation matrix B (from a population matched LD reference panel) and data (LIlyod-Jones et
246  al. 2019):

X'X =D%BD°,

247 X'y Db
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248  where D; = m if the markers have been centered to mean 0 or D; = n; if the markers
b; i i

249  have been centered to mean 0 and scaled to unit variance, b; is the marker effect for the i’th
250  marker, a,fi is the variance of the marginal effects from GWAS. b,, = D~1X'y is the vector of

251  marginal marker effects obtained from a standard GWAS. The LD correlation matrix, B, was

252 computed using squared Pearson’s correlation.
253  Estimation of parameters using BLR models

254  The BLR models use an iterative algorithm, Markov Chain Monte Carlo (MCMC) gibbs
255  sampling techniques, to estimate joint marker effects which depends on additional model
256  parameters such as a probability of being causal (), an overall marker variance (¢7), and
257  residual variance (¢2). The posterior density of the model parameters (b,6Z,62) depend on the
258 likelihood of the data given the parameters and a prior probability for the model parameters

259  which is discussed in detail by (19).

260  Ideally the choice of prior for the marker effect should reflect the genetic architecture of the
261  phenotype. Most complex phenotypes and diseases are likely highly polygenic, with hundreds
262  to thousands of causal genetic variants, most frequently of small effect sizes (20). Thus, the
263 prior distribution should account for many small and few large effect genetic variants. Also,
264  marker effects are a priori assumed to be uncorrelated, but markers can be in strong linkage
265  disequilibrium and therefore a high posterior correlation may exist. To accommodate evolving
266 ideas genetic architectures of phenotypes and diseases, many priors for marker effects have
267  been proposed. Each prior gives rise to a method or family of methods, and two of them are

268  described below:
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269 BayesC

270 In the BayesC approach the marker effects, b, are a priori assumed to be sampled from a
271  mixture with a point mass at zero and univariate normal distribution conditional on common
272 marker effect variance 2. This reflects a very common thought that there were not many causal
273 loci. This can be implemented by introducing additional variables §; which indicates if the i’th
274  marker has an effect or not. In turn, these variables § have a prior Bernoulli distribution with

275  the probability = of being zero. Therefore, the hierarchy of priors is:

1S, o2 0 with probability r,
276 P(519095:7) =1 _ (0,02) with probability 1 —
277 p(05,1v6,S5) = S,
2 2 . 2 0‘5 . . . . . Vp
278  where §f = ajv, with gy = because the variance of a t distribution is ——.
(1-m2¥;pi(1-py) vp—2

279 BayesR

280 In the BayesR (Erbe et al. 2012) approach the marker effects, b, are a priori assumed to be
281  sampled from a mixture with a point mass at zero and univariate normal distributions

282  conditional on common marker effect variance o/, and variance scaling factors, y:

(0 with probability w4,
~ N(0,y,0Z) with probability 7,,
283 bjlm,of =1 o
~ N(0,yc02) with probability 1 — Z T,
\ c=1

284  where T = (1, m,,....,mc) is a vector of prior probabilities and y = (y1,v2,..... ,Ye) is a
285  vector of variance scaling factors for each of C marker variance classes. The y coefficients are

286  prespecified and constrain how the common marker effect variance o/ scales within each
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287  mixture distribution. Typically, y = (0,0.01,0.1,1.0). and = = (0.95,0.02,0.02,0.01) are

288  starting values which can be updated each iteration.

289  The prior distribution for the marker variance o is assumed to be an inverse Chi-square prior

290  distribution, y ~1(S,,vp).

291  The proportion of markers in each mixture class m follows a Direchlet (C, ¢ + «) distribution,
292  where c is a vector of length C that contains the counts of the number of variants in each
293  variance class and a = (1,1,1,1)" such that the pi is updated only using information from the

294  data.

295  Using the concept of data augmentation, an indicator variable d = (dy,d,,..,dpm—1, dym), IS

296  introduced, where d; indicates whether the jth marker effect is zero or nonzero.

297  Genome-wide association study (GWAS)

298  For simulations, we had eight and sixteen simulation scenarios (with ten replicates per
299  scenario) for quantitative and binary phenotypes, respectively. We performed GWAS by fitting
300 asingle marker linear regression model using the R package “qgg” (19). No co-variates were
301 used in the model because no co-variates were simulated. For analysis of the UKB phenotypes,
302 the total population (no missing phenotype) was divided into five replicates of training (80%)
303 and validation (20%) populations. The design for the analysis of the UKB phenotypes is
304  presented in Fig 2. GWAS was performed in the training population of the five replicates for
305 all the UKB phenotypes. For T2D, GWAS was also performed in the total population. We
306 performed single marker linear regression using the R package “qgg” (19), and logistic
307  regression analysis using PLINK 1.9 (21) for the quantitative and binary UKB phenotypes,
308  respectively. To account for any cryptic relatedness in the data, we used top ten principal

309 components (PCS) along with age, sex and the UKB assessment center as co-variates in the
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310 analysis of the UKB imputed data. We computed PCs for WBU from 100K randomly sampled
311  SNPs from the genotyped data after removing SNPs in the autosomal long-range LD regions
312 (22) with pairwise correlation (r2)>0.1 in 500Kb region, using PLINK 2.0 (18).

UKB phenotypes
+ ~335K participants

+ ~0.6 mil SNPs

20% Validation

-———
- = -

- ~

Ll . b}

v LD matrix
Ed

~

Fine-mapping
region

-_——— -

S ————
Teal Region-wide analysis . --" i
[ Predictive ability (R, AUC)
2D « > & ===
313 Credible sets

314  Fig 2. Flowchart illustrating the design of populations for the analysis of the UK Biobank
315  phenotypes to determine the predictive abilities and features of credible sets across different

316 models.

317

318 Designing genomic region for fine mapping

319  Forthe simulated phenotypes, we designed fine-mapping regions based on the number of SNPs
320  (at most 1000 SNPs in total). The regions were designed by defining a window of ~500 SNPs
321 tothe left and right of the causal SNPs. The number of the fine-mapping regions depended on

322  the type of simulation scenario. We did not consider any overlaps across the regions. For the
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323  UKB phenotypes, we designed the fine-mapping regions based on the physical position around
324  each lead SNP. Significant SNPs (p-value <5 X 10-8) from GWAS were used as the lead SNPs
325  to design the fine-mapping regions. We defined a genomic region of one mega base pair (1MB)
326  (~1000kb on both sides) of the lead SNP. If the regions overlapped by more than 500kb then
327  the regions were merged. This arbitrary number was chosen to limit the size of the regions and
328  assuming that the SNPs added to the region might just increase the size but do not contribute

329 to the analysis.
330 Methods for fine mapping using summary statistics

331 We implemented BayesC and BayesR and the following external models: FINEMAP (5),

332  SUSIE-RSS (7), SUSIE-Inf and FINEMAP-Inf (4) for fine mapping.
333 BLR models

334  The BLR models BayesC and BayesR, differ based on their assumption of prior variance of
335 the marker effects. Their assumptions have already been discussed in detail above in the section
336  “BLR models”. For the simulations, BayesC and BayesR were implemented region-wide and

337  genome-wide, using the R package “qgg” (19). This implementation is illustrated in Fig 1.

338  To apply these models’ region-wide, summary data from the GWAS for the SNPs in the fine-
339  mapping regions along with the pair-wise linkage disequilibrium (LD) information among all
340  the SNPs were used. The region-wide analysis was performed in different ways (the following
341 three options) depending on estimation of different model parameters as part of an iterative
342  estimation procedure (Gibbs sampling technique) from fully conditional posterior distributions.
343  Forthe first option, the parameter  was treated as random and estimated in each iteration along

344  with the marker variance and the residual variance. For the second option, = was kept constant.
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345  For the third option, only the marker variance and residual variance were estimated. Option 1:

346 o}, 0}, 0 and w — update Option 2: g, o7 and oZ — update Option 3: 037, and ¢ — update

347  For genome-wide application, we used summary data from the GWAS and sparse LD matrix.
348  We randomly sampled 50,000 out of n=335,532 WBU to estimate sparse LD for a group of
349  SNPs in asliding genomic window containing 2000 SNPs, which slid 1 SNP at a time. Due to
350 computational challenge, for genome-wide analysis, only the “Option 1 was used. The PIPs
351  for SNPs obtained from the genome-wide analysis were used further to design credible sets for
352  the fine-mapped regions. A total of 3000 iterations were used in the analysis with the first 500

353  asburn-in.
354  External fine mapping tools
355  SuSIE-RSS model:

356  The model was applied using the R package susieR (6). We provided the summary statistics
357  (beta estimates and standard error), the LD information and number of samples for the fine
358  mapping regions. The residual variance was estimated as suggested by the model because in-
359  sample LD was used. We used ten causal SNPs which is the default number in the R package

360  SusieR. We used default parameters in the functions. No priors for the SNPs were provided.
361  SuSIE-Inf and FINEMAP-Inf models:

362  To apply these models, we downloaded python package “run_fine mapping.py” from the link:
363  https://github.com/FinucaneLab/fine-mapping-inf (4). We provided the summary statistics
364  (SNP estimates and standard error) along with LD information and number of samples for the
365  fine mapping regions. The number of causal SNPs was assumed to be ten to be consistent with
366  the default number of causal SNPs in susieR. SuSIE-Inf and FINEMAP-Inf models were

367  applied separately. No variance was shared and no priors for the SNPs were provided.
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368 FINEMAP model:

369  We downloaded FINEMAP software from the link:

370  http://www.christianbenner.com/finemap_v1.4 x86_64.tgz (v1.4) (5). We provided the
371 summary statistics (SNP estimates and standard error) along with minor allele frequency
372  (MAF), LD information, and the number of samples for the fine mapping regions. The

373 number of causal SNPs was assumed to be ten. No priors for the SNPs were provided.
374  Quality control/convergence for models

375 The external fine mapping tools FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf,

376  explicitly mentioned convergence of the models in the output.

377  For the BLR models, we estimated the convergence of the key parameters: ¢, of, 0, and .
378 To assess the convergence, we used the metric “zscore”. This involved calculating the
379  difference between the average parameter values taken at the start and end of the iterations.
380  This difference served as our metric to gauge the convergence of the desired parameter. The
381 fine mapping regions with the absolute value of the metric “zscore”, for any of the parameters,
382  greater than three was further investigated by thorough evaluation of the trace plots of the

383  parameters, and scatter plots.
384  Assessment of fine mapping models in simulations

385  Efficiency of different models were investigated based on the F; score, a harmonic mean of

386  precision and power estimated for the credible sets (CS).
387  Credible sets for simulations

388  Credible sets (CSs) help to refine association signals. The CS are defined as the minimum set

389  of SNPs that contains all causal SNPs with probability a. When we assume only one causal
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390 SNP, a can be the sum of the PIPs for SNPs in a set. The CS in our study was designed
391 according to (15). To design the CS of SNPs with coverage probability (cut-off or threshold)
392 of a, firstly SNPs were ranked according to descending order of their PIPs. A vector of
393  cumulative sum of PIPs was created. We added each element of the vector until it crossed a
394  specified coverage probability of a. All the sets exceeding the given threshold of « in the fine
395  mapping regions were refered as the CSs. A CS can contain multiple SNPs if they cross the

396  given PIP threshold. We use a strict coverage probability of 99% for the CSs.

397 Insimulations, with an interest to compare only the core algorithms among different models in
398  our study, we designed the CSs for all the models irrespective of potential of the models to
399  output the CSs. FINEMAP-Inf doesn’t give CSs, however we used the PIPs from FINEMAP-
400 Inf to design CSs for the model. In the scenario where multiple SNPs have the same value of
401  PIP, we investigated the list of SNPS, and if one of those SNPs is the simulated causal SNP
402  then we included that SNP in the CS. The same procedure was applied to design CS for all the
403 models. As we used only one causal SNP per fine-mapping regions without considering
404  overlaps across the regions, the concept of one region harboring one causal SNP remained valid

405  and supported our design of the CSs.

406  F4 classification score for simulations

407  We assessed F; score for the fine-mapping regions based on the credible sets. All the fine-
408  mapping regions harbored a simulated causal SNP (index SNP). The F; score takes a value
409  between 0 and 1. The value close to 1 refers to the capability of a fine-mapping model to better

410 identify true causal SNPs and reduce false positives.

2pr

411 F, = )
p+r

412 where, precision, p = TP/TP + FP and recall r = TP /TP + FN.
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413  F, score was calculated for each replicate of a simulation scenario. For one simulation replicate,
414  True positive (TP) was the total number of CS (referred to as true positive CS; TP_CS) which
415  contained the index SNP corresponding to that region. False positive (FP) was the total number
416  of CS which crossed the threshold of alpha but did not contain the index SNP (referred to as
417  false positives CS; FP_CS). False negative (FN) was the total number of genomic regions
418  where the cumulative sum of PIPs did not cross the threshold of alpha, and no CS was detected.
419 In addition to this criterion in our study for the FN, we also considered two additional criteria.
420  We denoted “unconverged” fine-mapping regions for any methods as FN. We also considered
421  “TP_CS” which contained more than ten SNPs as FN because large credible sets add little to
422  no information in search of causal variants in fine-mapping procedure. We investigated the
423  number of SNPs in true positive credible sets (TP_CS) to investigate the efficient model and
424  tried to have the least number of SNPs in a CS as possible. The design of CSs and estimation

425  of F; score is represented in Fig 3.

1. 99% Credible set (CS):
CS: cumulative sum of PIPs >= 0.99
FN: cumulative sum of PIPs < 0.99

Genomic
region

2. Identify true and false positives
True positive CS: harbors the index SNP
False positive CS: does not harbor the index SNP

Credible set False

(CS) negative (FN)

3. Estimate F, classificationscore:

Precision: p = TP/(TP + FP)
True Positive False Positive Power:r =TP/(TP +FN)
CS (TP) CS (FP) F, classification score =

2pr
p+r

426

427  Fig 3. Design of credible sets with a 0.99 threshold for the cumulative sum of Posterior
428 Inclusion Probabilities (PIPs), and estimation of the Fi classification score based on the

429  credible sets.
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430 Investigate influence of different factors in simulations

431  To investigate the influence of each parameters: h2yp, 7, genetic architectures (GA) and PV on
432  the performance of the models, we performed TukeyHSD test in R. To quantify the factors
433  with the greater influence in the simulations, for each model, we also performed ANOVA on
434  the linear model where the F; score was regressed on hZyp, m, and GA for the quantitative

435  phenotypes (and PV for the binary phenotypes).

436  Similarities among model assumption in simulations

437  We also investigated similarities among the models based on their assumptions of genetic
438  architectures for a complex phenotype. SuSIE, FINEMAP and BayesC assume contribution of
439  sparse genetic variants in the genetic makeup of a complex phenotype. In addition to these
440  sparse genetic variants, SUSIE-Inf and FINEMAP-Inf consider the influence of multiple
441  genetic variants with small effect sizes (infinitesimal models). The BayesR model assume
442  influence of sparse genetic variants with large effect sizes and non-sparse genetic variants with
443  moderate to small effect sizes in the genetic makeup of a complex phenotype. We used total
444  true positive credible sets (TP_CS) determined by each model for only the simulation scenarios
445  for the quantitative phenotype. We investigated the number of overlaps of TP_CS of the
446  BayesC model with SuSIE and FINEMAP, and the overlap of the BayesR with SuSIE-Inf and

447  FIENMAP-Inf.
448  Assessment of fine mapping models in the UKB phenotypes

449  Only the fine-mapped regions which converged across the models were used for downstream

450 analysis to estimate predictive ability and features of the CSs.
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451  Predictive Ability

452  For quantitative phenotypes, the predictive ability was determined by estimating the coefficient
453  of determination, (R?). For binary phenotypes, the predictive ability was determined by

454  estimating Area under the receiver operating characteristic curve (AUC).

455  Firstly, genomic score (GS) (predicted phenotype) of an individual, also known as a predictive
456  score for a phenotype was calculated for the validation population for each replicate. GS for an

457  individual is the sum of the product of effect alleles weighted by their estimated effect size:

459  where X; refers to the genotype matrix that contains an allelic count and b is the estimated

460  marker effect for the i-th variant, m is the number of SNPs.

461  To quantify the accuracy of the GS for real quantitative phenotypes, co-variates adjusted scaled
462  phenotypes for validation population was regressed on the predicted phenotypes. The
463  coefficient of determination, R2, from the regression was used as a metric to assess the
464  predictive ability of the model. To quantify the accuracy of the GS for real binary phenotypes,

465  AUC (23)was reported:

466 AUC = 2 (- lla 1)
T Ve T2 )

467  where, ng, : number of controls n; : number of cases 7;; : average rank of the cases.

468  Difference in the estimates of R? and AUC (averaged across five replicates) among different

469  methods was compared using TukeyHSD test.
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470  Credible sets for the UKB phenotypes

471  Unlike simulations where a fine-mapping regions were not merged irrespective of overlaps, in
472  the UKB phenotypes, fine-mapping regions were merged if they shared a 500kb overlap of
473  SNPs. This approach increased the likelihood of containing multiple potentially causal variants
474  within a single fine-mapped region. To accommodate this, we designed credible sets (CSs)
475  allowing multiple causal variants to be fine-mapped region within the same genomic region.
476  To design a CS, in addition to the algorithm from (15) we also used information of LD. A
477  flowchart detailing the CS design process is presented in S1 Fig. To identify significant SNP
478  sets that are in LD, we utilized posterior PIPs and LD criteria. For each fine-mapped region,
479  CSs were comprised of SNPs where the cumulative PIP was at least 0.80 (PIP.yms—set >=
480  0.80). When a CS contained multiple SNPs, the LD (r?) between the SNP with the highest PIP
481 inthe CS and the other SNPs was at least 0.5. Detailed steps utilized to explore the presence

482  of multiple CSs within a fine-mapped region are mentioned in S1 Text.

483  We applied this methodology (S1) across all models in our study, aiming to compare the
484  efficiency of different algorithms by using a consistent CS creation approach. This allowed us
485  to focus solely on algorithmic efficiency by eliminating other variables. For each trait, non-
486  converged fine-mapped regions were excluded across all the models. Afterwards, for each
487  model, we determined the average total number of CSs, the average median CS size (SNP
488  counts in a CS), and the average median value for the average correlations (avg.r?) among
489  SNPs inthe CS. To estimate avg.r?, we excluded the sets with only one SNP as they were not
490 informative, and we used absolute pair-wise correlations among SNPs in the CS. In case the
491  size of CS exceeded 100, only randomly chosen 100 SNPs were used to obtain avg. r? for that
492  CS. In a fine-mapped region, SNPs with PIPgyp <= 0.001 was excluded before designing
493  multiple CSs assuming that they would have little to no contribution in meeting the criterion

494  of PIP.
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495  Application of BLR model in T2D

496 In earlier sections of our study, we examined the efficacy of the BLR models. This section
497  delves into the application of the BLR model to a complex trait, T2D. We aimed to validate

498  the results obtained from implementation of the BLR model.

499  We performed single SNP logistic regression in PLINK 1.9 (21) leveraging the entire UKB
500 cohort for T2D (Table 1), followed by adjustments of the marginal summary statistics with the
501 BayesR model. Fine mapping regions were created as for the UKB phenotypes discussed above
502  in the section “Designing genomic region for fine mapping”. Multiple credible sets (CSs) per
503  fine-mapped region were designed as discussed above in the section “Credible sets for the UKB

504  phenotypes”.

505  To validate the results obtained from BayesR model for T2D, we conducted non-exhaustive
506  comparison of our findings with the external study. Also, using the R package “gact”, we
507  performed a gene set enrichment analysis to identify diseases enriched for T2D-associated
508  genes and tissue-specific expression Quantitative loci (eQTLS) enrichment analysis to identify

509 tissues enriched for T2D.

510 In the initial step, we mapped SNPs from multiple CSs to genes using the Ensembl Gene
511  Annotation database available at
512  https://ftp.ensembl.org/pub/grch37/release109/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.
513  gtf.gz. This mapping targeted SNPs within the open reading frame (ORF) of a gene, including
514  regions 35kb upstream and 10kb downstream of the ORF, due to their potential regulatory role

515 in controlling main ORF translation.


https://ftp.ensembl.org/pub/grch37/release109/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz
https://ftp.ensembl.org/pub/grch37/release109/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz
https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555889; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

516  Comparison with large-scale meta-GWAS study

517 To obtain any overlapping genes in our study with (24), one of the largest and most
518 comprehensive meta-GWAS on T2D. The study consisted of imputed genetic variants from
519 898,130 European-descent individuals (9% cases). Our study limited comparison to genes
520 given by the study in the Supplementary Table 2 which provided information of 243 loci (135

521 newly identified in T2D predisposition) comprising 403 unique genetic signals/associations.

522  Gene-diseases association enrichment analysis

523  To determine diseases significantly enriched for the gene set of our interest, we first curated a
524  set of genes with PIP of at least 0.5 (sum of PIPsyp). We then downloaded the disease-gene
525 associations data from the DISEASE database (25). This database contained disease—gene
526  association scores (full and filtered) derived from curated knowledge databases, experiments
527  primarily GWAS catalog, and automated text mining of biomedical literature. The analysis was
528  conducted on the final disease-gene association data where association of a gene to a disease
529 was combined from all the above-mentioned sources. This database includes over 10,000
530 diseases. However, multiple terms in the database were used to refer to the same disease. We

531 investigated enrichment via hypergeometric test (26).

532  Tissue-specific eQTLs enrichment analysis

533  To determine tissues enriched for eQTLs associated with T2D, firstly multi-tissue cis-eQTL
534  annotation was obtained from GTEx (Genotype-Tissue Expression) consortium
535  (https://storage.googleapis.com/adult-gtex/bulk-qtl/v8/single-tissue-cis

536  qtl/GTEx_Analysis_v8 eQTL.tar) (27). We identified only eQTLs within our fine-mapped
537  regions for each tissue. We then assessed the enrichment of tissue-specific eQTLs using a
538  multiple linear regression model, adjusting for the influence of other tissue-specific eQTLs.

539  The analysis was conducted using absolute beta-estimates from the BayesR model. The
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540  regression model allowed us to calculate z-scores (coefficient estimates/standard errors) and p-
541  value for each tissue. Tissue-specific eQTLs with a p-value less than 0.05 were considered

542  significantly enriched.

543 Results

544  Application in simulations

545  For simulations, we presented the results of the F; score based on the credible sets to show the
546  overall performance of the models across all simulation scenarios in Fig 4. Then to investigate
547  the influence of each parameter considered while designing simulation scenarios, we present
548  the results of the F; score in each simulation scenario for the quantitative (S2 Fig) and the

549  binary phenotypes (S3 Fig).

F1score Power Precision
bR3- —e— o || —e—
bR2 — o | —e—
bR 1 —e— e ——
bRgw —— - ——
bC3- —— - ——
bC2+ —— - ——
bC1+ —.— - ——
bCgw+—— - ——
SuSIE-RSSA = = e
SuSIE-Inf; —— - ——
FINEMAP-Inf{ e . ——
FINEMARP - —— = e
fo? Q‘??' Q‘b% Q‘?g oF oF o o A° Q“? Q‘b% Q@

550
551  Fig 4. F1 classification score (F1 score), power and precision, averaged across all twenty-four

552  simulation scenarios, for the BLR fine mapping models: BayesR region-wide models (bR3,

553  bR2 and bR1), BayesR genome-wide model (bRgw), BayesC region-wide models (bC3, bC2
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554 and bC1), BayesC genome-wide model (bCgw) and external models. The black solid line

555  represents standard error for the average estimate.

556
557  Most efficient model

558  The bR3 model (option 3) improved the F;4y4sim SCOre (average across all the simulation
559  scenarios) by 21.64%, 11% and 0.06% relative to the BayesR genome-wide analysis (hRgw),
560 and bR1 and bR2. We observed similar results for BayesC. The BayesC region-wide model
561  (option 3, bC3) improved the Fy 4,4 sim SCOTe by 23.41%, 11.72% and 0.10% relative to bCgw,

562 bC1,and bC2.

563  Highest Fig,45im Score, averaged across all the twenty-four simulation (binary and
564  quantitative) scenarios was observed for the BayesR region-wide model (bR3) [F; g simSCOre:
565  0.4] followed by SUSIE-INf [F; 4,4 sim SCOTe: 0.35] and SUSIE-RSS [F; 414 5im SCOre: 0.34] (Fig
566  1). The bR3 improved the F;gy,4 sim SCOre by 27.26%, 26.96%, 18.40%, 15.42%, and 13.32%
567 relative to FINEMAP-Inf, bC3, FINEMAP, SUSIE-RSS and SUSIE-Inf. The precision
568  (Precqyg.sim) and power (Powgyg sim), averaged across all the simulation scenarios ranged
569  between 0.29 to 0.39, and 0.25 to 0.98 respectively. The bR3 model also improved the
570  Powgygsim DY 58% to 72% relative to other models. However, this model decreased the
571  Precgyg.sim DY 26% to 33% relative to other models. Similar patterns were observed when the
572 models were compared only within the quantitative phenotypes and within the binary

573  phenotypes. In the following we only compared bR3 and bC3 with the external methods.
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574  Influence of parameters in simulations

575  All the models performed the best (highest F; score) for the scenario with moderate hZyp of
576 0.3, 0f0.001, and GA, for the quantitative phenotypes (S2 Fig), and PV of 15% for the binary

577  phenotypes (S3 Fig).

578  Pairwise comparison of the Fjg,4,cp SCOre (averaged across the replicates in a scenario)
579  between all the scenarios for both the quantitative and the binary phenotypes showed
580 significant differences between all scenarios (for all the models) as none of the intervals
581 harbored a value of zero. S4 Fig illustrated the results for bR3 for the quantitative simulated
582  phenotypes. ANOVA on the results where F; scores were regressed on hZyp, , and GA (and

583 PV for the binary phenotypes) quantified higher influence of  and least influence of GA.

584  Similarities among methods assumptions in simulations

585  We observed that at least 50% of the true positive credible sets (TP_CS) were shared among
586  BayesC, SuSIE-RSS and FINEMAP (S5 Fig). We observed similar results for the models
587  BayesR, SUSIE-Inf and FINEMAP-Inf. bCgw identified the fewest number of total TP_CS
588  summed across all the scenarios followed by FINEMAP-Inf. bCgw shared 80% of the total
589  TP_CS with SUSIE-RSS, FINEMAP and BayesC region-wide model (bClw or bC3). The
590 bCgw shared ~91% of the total TP_CS with bClw. Similarly, FINEMAP-Inf shared 80% of
591 the total TP_CS with SuSIE-Inf, bRgw, and bRIw of bR3. bRgw shared 85.1% of the total

592  TP_CS with bRIw or bR3.
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593  Application to UKB phenotypes

594  Predictive ability

595  We observed a significant decrease in the Rgvg_re,, (averaged across all the binary phenotypes)
596  of BayesC and BayesR relative to SUSIE-Inf and FINEMAP-Inf for the phenotypes BMI, WC,
597  HCand WHR (Fig 5a). No significant difference in the RZ,4 e, Was observed between BayesR
598 compared to SuSIE-Inf and FINEMAP-Inf for Height, whereas a significant decrease was
599  observed for BayesC compared to these models. We observed significant improvement in the
600  RZ,5.rep Of BayesR relative to SuSIE-RSS for Height. All the methods could predict Height
601  better compared to other quantitative phenotypes. Prediction AUCg,,4 5in (averaged across all
602  the binary phenotypes) with BayesR increased by 0.40%, 0.16%, 0.08%, 0.05% compared to
603  SUSIE-RSS, BayesC, FINEMAP-Inf and SuSIE-Inf, respectively (Fig 5b). We didn’t observe
604 any significant differences between the AUC,yqrp (averaged across all the replicates) of
605 models compared pairwise for any binary phenotypes except for HTN. For HTN, BayesR

606  improved the AUC, significantly compared to SUSIE-RSS. The highest estimate of the

vg.rep
607  AUCgyg.rep Was observed for T2D followed by HTN for all the models. The lowest estimate of
608  the AUCqyg.rep Was Observed for RA. Prediction RZ,, . (averaged across all the quantitative
609 phenotypes) with BayesR decreased by 5.32% and 3.71% compared to SuSIE-Inf and
610 FINEMAP-Inf, whereas increased by 7.93% and 8.3% compared to SUSIE-RSS and BayesC.

611 BayesR model improved the RZ,;.,., (averaged across all the replicates) significantly

612 compared to BayesC model for all the quantitative phenotypes except for WHR.
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Fig 5. Prediction accuracies estimated from fine mapped regions. a. Bar plot of prediction
accuracy, represented by the coefficient of determination (R?), averaged across five replicates
for the UKB quantitative phenotypes: body mass index (BMI), hip circumference (HC),
standing height (Height), waist circumference (WC), and waist-hip ratio (WHR). b. Bar plot
of prediction accuracy, represented by the Area under the Curve (AUC), averaged across five
replicates for the UKB binary phenotypes: coronary artery disease (CAD), hypertension
(HTN), psoriasis (PSO), rheumatoid arthritis (RA), and type 2 diabetes (T2D). The models
used in the fine mapping can be identified by the colors in the legend associated with each
model. For each method within a trait, corresponding mean of R2 or AUC across five replicates

and standard error is written on the top of the box plot.
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624 Credible sets

625  The average total number of fine-mapped regions across five replicates for the quantitative
626  phenotypes ranged from 135.2 for WHR to 461 for Height and for the binary phenotypes ranged
627  from 4 for RA to 137.4 for HTN (Table 1). The highest averaged non-converged regions were
628  observed for RA (55%) followed by PSO (29.62%). For other phenotypes, the non-converged

629  regions ranged from 1.22% to 6.42%.

630 BayesR determined the highest average number of CSs for Height, CAD, HTN and T2D,
631  whereas SUSIE-RSS determined the highest average number of CSs for BMI, HC, WC and
632 WHR (Table 1). For the above-mentioned phenotypes, FINEMAP-Inf determined the smallest
633  average number of CSs. All the models obtained a similar average number of CSs for PSO (9

634 to12)and RA (1.810 2.2).

635 The BLR models showed the smallest average median CS size across all the phenotypes
636  compared to the external fine-mapping models (Table 2). BayesR showed the smallest average
637  median size of CS for BMI, Height, WC, WHR, PSO, RA and T2D. BayesC showed the
638  smallest average median size of CS for CAD. Both BayesC and BayesR showed the same
639  average median size for HC and HTN. The highest average median CS size was shown by
640  SuSIE-Inf for BMI, Height, WC, CAD, PSO, RA and T2D. For other phenotypes, SUSIE-RSS

641  showed the highest value for the median CS size.

642  The average median for avg.r? for the BLR models were smaller compared to the external
643  models. BayesC showed the largest average median value compared to BayesR across all the

644  phenotypes.
645

646

33
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647
548

Table 2. Average for the total number of fine mapped regions and non-converged regions for the UKB phenotypes along with the total number of credible sets

(CSs), median size of the CSs, and median of the average correlations (r?) of the CSs for all the models.

BayesC BayesR FINEMAP FINEMAP-Inf SUSIE-Inf SUSIE-RSS
Avg. | Avg. Non-
Ph l;KtB Total | converged Avg. 'I?\/I\:e% Avg. | Avg. 'I?/I\;% Avg. | Avg. 'I?/I\;% Avg. | Avg. f\/l\;% Avg. | Avg. 'I?/I\:a% Avg. | Avg. 'I?/I\:a% Avg.
enotypes EMR FMR Total CS Med | Total cs Med | Total cs Med | Total CS Med | Total cs Med | Total cs Med
CSs : r2 CSs : r2 | CSs : r2 | CSs : r2 | CSs : rr | CSs | - r?
Size Size Size Size Size Size
Body Mass 11981 48  [3106] 34 |093|3808| 2 |086|4106| 5 |096| 89.8 | 8.6 |0.97 2044|206 |0.90|447.2| 156 | 0.95
Index (BMI)
Hip
Cirumference | 203 5 289.4| 1 1085|3504 | 1 |080|3484| 2 |098| 956 | 3 |0.98|2006]| 44 |097|4104| 6.8 |0.97
(HC)
Standing
Height 461 | 296 |1500| 3.4 [094|18468| 2 |087|1668| 7.1 |0.97|513.6| 83 |0.98|721.2| 175 | 0.93 | 1696 | 14.6 | 0.96
(Height)
Waist
Circumference | 164.4 2 2296| 36 |094|2768| 2 |088|2994| 6 |097| 732 | 7.7 |0.98|157.4| 20.8 | 0.92 |331.6| 15.6 | 0.96
(WC)
WaistHIp 110051 34 |1848] 2.8 |094| 2246 | 2 |088|2382| 52 |097| 77 | 6.6 | 0.98|1426| 11.4 | 0.93 |255.8| 14 |0.96
Ratio (WHR) . . 8l 28 |o. . . 2l 52 |o 6 | 0. . 4o . .
Coronary
Artery Disease | 29.4 0.4 388 | 1.9 [094| 542 | 23 |081|358 | 63 [097| 28 | 57 |097| 358 | 87 |096| 44 |103]|0.97
(CAD)
Hy‘zeHr;eS)s'on 1374| 62 211 | 22 |090| 277 | 2.2 |080|239.8| 42 |097| 968 | 5.2 |0.98|159.4| 8.8 |0.96|246.8| 9.8 |0.96
P?gg'gs)'s 108 3.2 102 | 34 |092| 96 | 1 |089| 98 | 53 |098| 9 |57 |097| 12 |[105|096| 11 | 6.4 |0.98

34
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549

550

651

552

553

554

555

556

Rheumatoid

Arthritis (RA) 4 2.2 1.8 1.3 | NA | 18 12 | NA | 54 15 |1.00| 1.8 26 095 2.2 39 |093] 22 | 28 |0.98
Type 2
Diabetes 49.6 1.2 626 | 1.8 [093| 812 | 16 |0.79| 704 | 49 |097| 476 | 6.4 |097| 60 85 (096 73.2 | 81 |0.97
(T2D)

35



https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555889; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

657  Application of BLR model in T2D

658  We identified a total of 117 CSs for T2D across 69 fine-mapped regions with a median CS size
659  of 2 (range:1 to 297), and the median of avg.r? was 0.80 (range: 0.49 to 1). We identified 53
660 CSsofsize 1 (1 SNP counts), 47 CSs of size between 2 to 50, and the remaining 17 CSs of size
661  more than 50 SNPs.

662  Comparison with large-scale meta-GWAS study

663  We found 53 of the 181 genes identified from our study, listed in Table S2, overlapped with
664  genes from the study Mahajan et al. (2018) (S2 Table). Among 53 overlapped genes, 10 genes
665 (DTNB, RBM6, MBNL1, SLCO6A1, PDE3B, CELF1, MAP2K7, ZC3H4, EYA2, and ZBTB46)
666  were categorized as novel associations in the study by (24).

667  Additionally, our study identified multiple SNPs at TCF7L2 in addition to rs7903146 (PIP:
668  0.9996). This includes rs34855922 (PIP: 0.3844), rs11196234 (PIP: 0.3512) and rs7912600
669  (PIP: 0.086) within a CS (avg.r?: 0.70), as well as rs145034729 (PIP: 0.992) linked to

670 TCF7L2 locus.
671  Gene-Diseases association enrichment

672  The top 30 significant diseases (p-value < 0.05) enriched for our T2D-related gene set and their
673  corresponding p-values are detailed in S3 Table. The list includes disease terms such as Type
674 2 Diabetes Mellitus, Diabetes Mellitus, ICD10:E11 code for T2D, as used in the UKB database.
675  Additionally, we discovered associations with various forms of diabetes, such as several types
676  of maturity-onset diabetes of the young (MODY), prediabetes syndrome, gestational diabetes,
677  both permanent and transient neonatal diabetes, ICD10-E14 (unspecified T2D), and 1ICD10-
678 024 (diabetes in pregnancy). The list also encompassed other conditions, including

679  Rheumatoid Arthritis (RA) with corresponding 1ICD10 codes: MO, M05, M06 and MO069,
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680  Wolfram syndrome, hyperglycemia, hyperinsulinism, glucose intolerance, pancreatic agenesis,

681  pancreatic cystadenoma, and insulinoma.
682  Tissue-specific eQTLs enrichment

683  Among 49 different tissues, significant enrichment (p-value < 0.05) of T2D-related eQTLs
684  were identified in the 13 tissues (S6 Fig): Brain cerebellar hemisphere (n=419), Cells cultured
685  fibroblasts (n=718), Brain cerebellum (n=467), Pituitary (n=379), Esophagus muscularis
686  (n=615), Brain nucleus accumbens basal ganglia (n=308), Lung (n=624), Skin (not sun
687  exposed suprapubic) (n=678), Artery tibial (n=647), Adipose subcutaneous tissue (n=695),

688  Muscle skeletal tissue (n=639), Thyroid (n=810), and Nerve Tibial (n=804).

689 Discussion

690  Here we aimed to assess the efficiency of BayesC and BayesR as a fine mapping tool. We
691  applied these models in simulations and the real UKB data using summary statistics. In
692  simulations, the efficiency was investigated based on F; score. For the UKB phenotypes the
693  models efficiency was based on polygenic scores and credible sets. BayesC and BayesR
694 models’ efficiency were compared to the state-of-the-art methods such as FINEMAP (5),
695  SUSIE-RSS (7), SUSIE-Inf and FINEMAP-Inf (4). All the models used in our study serve the
696  same purpose of identifying true effects of causal variants. However, they differ in the details
697  in the algorithm and their implementation which applied together can have different impact on

698  the overall performance.
699 BayesC and BayesR

700 BayesC and BayesR applied genome-wide and region-wide have the same assumptions of prior

701  variance of marker effects, but they differed in their implementation in our study. To our
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702  knowledge this is the first study comparing implementation of BayesC and BayesR in such
703  manner. We implemented the models, genome-wide where the posterior distributions of the
704  model parameters were estimated based on taking SNPs genome-wide whereas region-wide
705  implementation were limited to the fine-mapped regions designed based on the simulated
706  causal SNPs. In the simulations, better performance of both priors when implemented region-
707  wide compared to genome-wide based on the F; 4,4 im Score for both BayesC and BayesR.
708  However, the genome-wide models showed better Precgy, g sim but 1€ss Powgy,g sim (fewer true
709  positive CSs) than region-wide models. High percentage of overlaps of the CSs for the genome-
710  wide models with the region-wide models suggests that there is a potential in the genome-wide
711  models. It would be interesting to investigate further the common CSs determined by the

712 genome-wide and the region-wide models.

713  BayesR showed significant improvement in prediction accuracy, Precgyqep for four out of
714  the five quantitative phenotypes relative to BayesC. Our prediction accuracies are consistent
715  with previous studies (28, 29). (28) showed an increase of prediction ability, averaged across
716  various economical phenotypes in cattle, using BayesR compared to BayesC. (29) showed
717  similar results across simulation scenarios for phenotypes with high heritability. BayesR
718 identified a large number of CSs, and small sized CSs relative to BayesC. Our results suggest
719 that BayesR assumption about genetic architecture suits better for polygenic phenotypes

720  predictions where many different effect sizes are observed, relative to BayesC
721  Comparison of the BLR models to external models

722  Toour knowledge this is the first study comparing BayesR model to the state-of-the-art models:
723  FINEMAP, SuSIE-RSS, SuSIE-Inf and FINEMAP-Inf. Across different simulation scenarios,

724  BayesR had higher Fyg,4 sim Score relative to the external models with high power but with

725  less precision. The average prediction accuracy (wag.rep) for the quantitative phenotypes was

38


https://doi.org/10.1101/2023.09.01.555889
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555889; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

726  significantly lower for BayesR and BayesC compared to SuSIE-Inf and FINEMAP-Inf for
727  BMI, HC, WC and WHR. We observed highest estimates for the predictive ability of the
728  infinitesimal models, which might have been because we used SNP effects from both sparse
729  and infinitesimal components for SuSIE-Inf and FINEMAP-Inf for predictions, unlike in the
730  study (4) where only sparse components were used to compare prediction accuracies between
731  SuSIE, FINEMAP, SuSIE-Inf and FINEMAP-Inf. Since infinitesimal components do not
732 neglect any SNP effects, this may also explain high prediction accuracy for the models
733 including infinitesimal effects. Our results showed that the performance of BayesR is closer to

734  the infinitesimal models.

735  (30) compared the performance of BayesC to various methods including SuSIE and FINEMAP
736  infine mapping, where BayesC performed similar to SuSIE but better than FINEMAP in power
737  and false discovery rate determination, for different simulation scenarios. We showed that
738  BayesC had improved power relative to FINEMAP whereas the power was decreased relative
739  to SuSIE-RSS. This difference in results might be due to differences in implementation of these
740  models as this study applied the models in whole-genome scale using local regression approach
741  where we applied the models only in specific regions defined by simulated causal SNPs, that
742  not necessarily included whole genome. Our study compared SuSIE-RSS (which is an
743  extension of SuSIE that uses summary statistics) and BayesC, FINEMAP using summary
744  statistics with in-sample LD among other models, whereas this study used individual levels

745  data for BayesC and SuSIE, and summary statistics with in-sample LD for FINEMAP.

746  BayesR and SuSIE-RSS identified a greater number of CSs when applied to the UKB
747  phenotypes. However, BayesR showed the smallest average median CS size. We constructed
748  multiple credible sets for all the models based on our algorithm where we applied the cut-off
749  thresholds of 0.80 for a set to be a CS. We are aware that FINEMAP, SuSIE-RSS and SuSIE-
750 Inf also determine CS where multiple CS can be determined based on multiple causal variants
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751  in the fine mapped region. Such procedure of determining CSs might alter the features of the
752  CSs. However, the main objective of our study was to compare the efficiency of the algorithms
753  of these models. Introducing a comparison based on the CSs they determine would introduce
754  additional complexity and divert us far from our objective. Hence, we determined multiple CSs
755  using the same algorithm for all the models. However, it would be interesting to compare CSs

756  developed by the external models and evaluate their efficiency.
757  Influence of parameters in simulations

758  We observed a significant difference in F1 score between the different simulated parameters
759  hZyp (30% and 10%),  (0.001 and 0.1) and GA (GA, and GA,), and PV (5% and 15%). The
760  pairwise comparison of Fjg,g e, SCOre, within a scenario, among different simulation
761  scenarios for each model showed significant differences among scenarios and significant
762  contribution of each parameter. However, the large value of the F-statistic obtained from
763  ANOVA on the results of the regression (F; = hZyp + m + GA) was seen for the parameter n
764  suggesting greater influence of this parameter in performance of the model. In our simulation,
765  asmaller number of causal SNPs for a given genetic variance would be sampled from a larger
766  marker effect variance compared to a higher number of causal SNPs. This large effect SNPs
767  must have high PIPs such that the credible sets determined by the models harbored the true
768  causal SNPs. The F; score was based on the detection of a true simulated causal variant in a
769  credible set. In addition to the threshold for a cumulative sum of PIPs [0.99] that a set needs to
770  cross to be a credible set, we also set a limit on the size of CS (not more than 10). The main
771  motive of the CS was to refine the resolution of the fine mapping region and a CS with large
772 number of SNPs even if it harbored a true causal variant would not be informative. We used a
773  strict cut-off threshold of 0.99 for cumulative sum of PIPs and maximum size of 10 for CS.

774  The results might differ with lenient thresholds for the cumulative sum, and size of CS. As per
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775  our expectation, all the models performed significantly better (high Fyg,4 ¢, Score) for the

776  phenotypes with moderate hZyp [30%], a smaller number of causal SNPs [r: 0.001], and the
777  phenotypes simulated with few SNPs with large effect size [GA,] for the quantitative
778  phenotypes, and the worst performance was observed for the phenotypes with low hZyp [10%]

779  and a larger number of causal SNPs [rr: 0.01].
780  F, classification score — power and precision of the BLR models

781  F1score is a harmonic mean of precision and power/recall and is a well-known performance
782  metric used for model comparison especially under class imbalance. It penalizes the
783  performance even when only one of either precision or power is low. In our study, both
784  precision and power are given equal importance for the performance of a model. We observed
785  higher Powg,,q sim for BayesR compared to other models. Highest power of BayesR referred
786  to the scenario where majority of CSs obtained from BayesR had small size CSs. We used in-
787  sample LD, while using external summary statistics in-sample LD is not always available as
788  also mentioned by (30). Hence, the power may decrease while using an external reference LD

789  panel. We observed low Precg, 4 sim Of BayesR. This referred to as substantial amount of CSs
790  were false positives. The range of Prec,y,g sim across all the models is not vast suggesting that

791  all the models showed similar performance for precision.
792  The UKB phenotypes, accuracy and fine mapping, credible sets

793  The predictive accuracies for the UKB phenotypes were smaller compared to other studies.

794 RZ,4rep for BMI, Height, HC, WHR, and AUC,, for T2D for the UKB data presented by

vg.rep
795  (12) using SbhayesR and around 1.1 million SNPs were larger compared to the values estimated
796  using BayesR in our study. In our study, accuracies were derived from imputed SNPs limited

797  only to the fine mapped regions. For polygenic phenotypes for example in Height and BMI,
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798  (31) suggested enrichment of heritability from rare genetic variants (MAF < 0.01). In our study,
799  we discarded rare SNPs with MAF < 0.01 and focused only on common SNP effects. In our
800  study, non-converged regions for a model were excluded from analysis for prediction

801  accuracies (also credible sets) which might also have impacted the estimated accuracies.

802 Validation of BLR model

803  Compared to the recent meta-GWAS on T2D (24), we identified 10 genes to overlap with the
804 53 genes, which were categorized as novel loci in (24). This finding demonstrates the
805  effectiveness of BayesR model combined with credible sets in identifying potential causal
806 variants, even in studies with comparatively smaller size. This limited number (53) of
807  overlapping genes could be attributed to our study’s smaller scale (25,828 cases and 309,704
808  controls compared to 74,124 cases and 824,006 controls in (24)), which could limit ability to
809  detect especially rare variants, and the exclusion of rare variants (excluding SNPs with < 1%
810 MAF in our study). Additionally, the discrepancies in how SNPs were mapped to a gene

811  between our study and that of (24) might also contribute to this limited overlap.

812  TCF7L2 (Transcription Factor 7-like 2) explained the highest genetic variance (0.035) in our
813  study. This gene plays a crucial role in Wnt signaling pathway, which regulates pancreatic islet
814  cell proliferation and survival (32). In TCF7L2, rs7903146 is the largest-effect common variant
815 signal for T2D in Europeans (24). Observation of multiple signals for T2D at TCF7L2 in
816  addition to rs7903146 in (24) was the first evidence according to this study. In addition to the
817  rs7903146, we also identified SNP rs34855922 associated to T2D similar with (24), which
818  again demonstrates the effectiveness of BayesR model combined with CSs. The rs7903146 and
819  rs34855922 are two of the eight SNPs that mark regulatory elements within TCF7L2 locus
820  (33). The rs7903146 coordinate regulation of TCF7L2 expression, and overlaps histone

821 modification marks and an annotated enhancer in the pancreas (33). Our study also identified
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822  an intronic variant (rs145034729) at the TCF7L2 locus. The effect of this intronic SNP is
823  uncertain. However, it may function as an enhancer element, modulating the expression of
824  distal genes without necessarily affecting the function of TCF7L2 itself. The discovery of
825  multiple variants within the TCF7L2 locus is interesting, as (33) suggests that it acts as a
826  regulatory hub for genes implicated in the etiology of T2D. Identifying these variants in this

827  locus offers valuable insights into the biological mechanisms underlying T2D.

828  The gene set enrichment analysis for diseases provided further support for the efficacy of
829 BayesR model in T2D. This analysis revealed significant enrichment of our gene set for
830  diseases such as T2D, hyperglycemia (diabetes-like symptoms), hyperinsulinism (one of the
831  processes leading to hyperglycemia (34). Significant enrichment to other types of diabetes and
832  diseases may reflect shared genetic factors (via pleiotropic genes or common pathways)
833 influencing the etiology of diverse conditions (diseases) through different mechanisms. For
834  instance, (35), noted an increased risk of diabetes mellitus incidence in individuals with RA,

835  highlighting the potential role of inflammatory pathways in the T2D pathogenesis.

836  For tissue enrichment analysis, our findings indicate that T2D related eQTLs exhibit tissue-
837  specific effects on gene expression. The implications of our results can be viewed from multiple
838  perspectives. Our results may suggest a complex interplay of regulatory regions in significantly
839  enriched tissues leading to T2D predisposition. Our results may also suggest individuals with
840 T2D might experience adverse effects in these tissues, potentially leading to a range of
841 complications. For instance, (36) explored the association of significantly enriched tissue
842  specific T2D associated eQTLs with different T2D complications. Here we delve into the
843  cerebellar hemisphere region of the brain, the most significant enriched tissue. This region, part
844  of the cerebellum (another significant tissue in our study), has been linked to cognitive
845 impairments when abnormal. (37) highlighted significant cognitive impairments in T2D
846 individuals, correlating these deficits with considerable loss in gray matter volume in brain
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847  regions associated with these functions. The decline in insulin transport and resistance in the
848  cerebral cortex, an area dense with high insulin receptor, may impair regional glucose
849  metabolisms, leading to gray matter volume changes potentially leading to structural and

850  functional changes in brain in T2D individuals.

851  No association with pancreatic tissue was found, likely due to the GTEXx database's limitations.
852  The pancreatic tissue in GTEX represents mostly (97%) exocrine cells that mask islets signals
853  (38). Pancreatic islets are clusters of specialized endocrine cells that are essential to maintain

854  glucose homeostasis and play a central role in etiology of T2D.

855  Our study was confined to the cis-eQTLs database from GTEXx consortium. (39) have shown
856 that trans-eQTLs contribute significantly to T2D heritability, suggesting that further
857  exploration of trans-eQTLs could enhance the understanding of gene expression and cellular

858  functions across different tissues.

859 In conclusion, we observed that the performance of the BLR models was comparable to the
860  state-of-the-art external models. The performance of BayesR prior was closely aligned with
861  SuSIE-Inf and FINEMAP-Inf models. Results from both simulations and application of the

862  models in the UKB phenotypes suggest that the BLR models are efficient fine mapping tools.

863 Data availability statement

864  The genetic and phenotypic data utilized in our study were obtained from the UK Biobank

865  Resource (ID 96479).
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