

1 **Evolutionarily related host and microbial pathways regulate fat desaturation**

2

3 Bennett W. Fox¹, Maximilian J. Helf^{1,2}, Russell N. Burkhardt^{1,2}, Alexander B. Artyukhin², Brian J.
4 Curtis¹, Diana Fajardo Palomino¹, Amaresh Chaturbedi³, Arnaud Tauffenberger¹, Chester J.J.
5 Wrobel¹, Ying K. Zhang¹, Siu Sylvia Lee³, Frank C. Schroeder^{1,*}

6

7 ¹Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell
8 University, Ithaca, New York 14853, United States

9 ²Chemistry Department, College of Environmental Science and Forestry, State University of
10 New York, Syracuse, New York 13210, United States

11 ³Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853,
12 United States

13

14 [#]These authors contributed equally.

15

16 *Correspondence to fs31@cornell.edu

17 **ABSTRACT**

18 Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of
19 membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and
20 associated microbiota regulate desaturase expression^{1–4}, but the underlying mechanisms have
21 remained unclear. Here, we show that endogenous and microbiota-dependent small molecule
22 signals promote lipid desaturation via the nuclear receptor NHR-49/PPAR α in *C. elegans*.
23 Untargeted metabolomics of a β -oxidation mutant, *acdh-11*, in which expression of the stearoyl-
24 CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β -
25 cyclopropyl fatty acid, bencyp#1, that potently activates *fat-7* expression via NHR-49.
26 Biosynthesis of bencyp#1 is strictly dependent on expression of cyclopropane synthase by
27 associated bacteria, e.g., *E. coli*. Screening for structurally related endogenous metabolites
28 revealed a β -methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent
29 bencyp#1, but is derived from a methyltransferase, *fcmt-1*, that is conserved across Nematoda
30 and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer.
31 Activation of *fat-7* expression by these structurally similar metabolites is controlled by distinct
32 mechanisms, as microbiota-dependent bencyp#1 is metabolized by a dedicated β -oxidation
33 pathway, while the endogenous bemeth#1 is metabolized via α -oxidation. Collectively, we
34 demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated
35 microbiota converge on NHR-49/PPAR α to regulate fat desaturation.

36 **MAIN**

37 Metazoan metabolism is intricately linked to that of associated microbiota, and host-microbial
38 co-evolution has resulted in complex metabolic networks governing metazoan physiology^{5,6}.
39 Microbial metabolites influence lipid composition of membranes and fat stores^{2,3,7}, modulate
40 signaling pathways that regulate host immune function^{8,9}, and provide diet-derived metabolic
41 feedback^{10,11}. Fatty acid desaturation plays a central role in lipid membrane and metabolic
42 homeostasis^{12,13}, and is governed by highly conserved stearoyl-CoA desaturase (*SCD1*, **Fig.**
43 **1A**). Correspondingly, perturbation of *SCD1* expression has pervasive effects on physiology, for
44 example, changes in *SCD1* expression are associated with obesity and insulin resistance^{14,15}
45 and are a hallmark of inflammatory and autoimmune diseases as well as many cancers¹⁶⁻¹⁹.

46 Nuclear receptors (NRs) of the liver-X receptor (LXR) and peroxisome-proliferator
47 activated receptor (PPAR) families are master regulators of vertebrate lipid metabolism,
48 including *SCD1* expression (**Fig. 1A**)^{20,21}. Synthetic PPAR α agonists, e.g. fibrates, are
49 prescribed to combat metabolic disorders and promote expression of *SCD1*^{20,22}. Endogenous
50 regulation of PPAR α activity relies on metabolic and nutritional feedback²³⁻²⁶; however, it is
51 unclear whether there exist specific, endogenous PPAR α agonists that promote *SCD1*
52 expression²⁷. Moreover, it is unknown whether microbiota-derived metabolites can regulate fatty
53 acid desaturation at the transcriptional level, despite strong evidence for key roles of microbiota
54 in host fat metabolism, including fat storage and insulin sensitivity^{3,7,28,29}.

55 In *C. elegans*, a tractable model system for lipid metabolism³⁰ and host-microbe
56 interactions³¹, there are three *SCD1* homologs³², including *fat-7*, which governs the relative
57 abundances of saturated and unsaturated fatty acids^{33,34}. *fat-7* expression is primarily regulated
58 via the NR, NHR-49³⁵, a homolog of human hepatocyte nuclear factor-4 α (HNF4 α)³⁶; however,
59 NHR-49 functionally mimics PPAR α , based on similar roles during starvation³⁷ and the finding
60 that PPAR α -targeting fibrates extend *C. elegans* lifespan in an NHR-49-dependent manner³⁸.
61 Here we leverage the tractability of *C. elegans* and its dietary bacteria to uncover an ancestral
62 biochemical network that integrates elements of microbial and host metabolism to regulate lipid
63 desaturation via NHR-49/PPAR α and *FAT-7/SCD1*.

64

65 **A cyclopropyl fatty acid promotes desaturation**

66 In *C. elegans*, the $\Delta 9$ desaturases *FAT-6* and *FAT-7* function as gatekeepers of polyunsaturated
67 fatty acid (PUFA) biosynthesis and convert stearoyl-CoA into oleoyl-CoA (**Fig. 1A**)^{35,39}. Fatty

68 acid desaturation via FAT-7, but not FAT-6, is important for maintaining membrane fluidity
69 during thermal stress. *fat-7* expression is strongly induced by as little as 3 hours cold exposure⁴⁰
70 and conversely suppressed during heat exposure³⁴. Previous work demonstrated that the acyl-
71 CoA dehydrogenase, ACDH-11, plays a central role in heat adaptation by attenuating NHR-49-
72 dependent expression of *fat-7*³⁴. *acdh-11(n5878)* loss-of-function mutants exhibit constitutively
73 high *fat-7* expression, which results in excessive membrane fluidity at elevated temperature (25
74 °C) causing embryonic lethality and developmental arrest³⁴. To explain the heat-sensitive
75 phenotype, it was proposed that ACDH-11 would sequester C₁₀-C₁₂-straight-chain fatty acids
76 that activate NHR-49, thereby downregulating expression of *fat-7* (**Fig. 1B**)³⁴.

77 However, phylogenetic analysis indicated that *acdh-11* is distinct from other *C. elegans*
78 acyl-CoA dehydrogenases participating in fatty acid β-oxidation (**Fig. 1C**), which led us to
79 hypothesize that *acdh-11* may instead be involved in metabolism of a structurally distinct
80 substrate that acts as an NHR-49 agonist. To test this idea, we performed comparative
81 metabolomics of *acdh-11* mutants and WT animals, which revealed accumulation of a large
82 number of previously uncharacterized metabolites in the *acdh-11* mutant (**Fig. 1D**). To clarify
83 what structural features characterize these *acdh-11*-enriched metabolites, we isolated one of
84 the most abundant compounds via chromatographic fractionation. NMR spectroscopic analysis
85 of the isolated sample revealed a hydroxylated 11-carbon β-cyclopropyl fatty acid (becyp#2,
86 **Fig. 1E**). Further analysis of molecular formulae and MS2 spectra of the *acdh-11*-enriched
87 metabolites suggested that most of the *acdh-11*-enriched metabolites could plausibly be derived
88 from a corresponding 11-carbon parent β-cyclopropyl fatty acid (βCPFA), named becyp#1 (**Fig.**
89 **1F**). We then confirmed the structure of becyp#1 via chemical synthesis and found that this
90 compound is more than 10-fold enriched in *acdh-11* mutants (**Fig. 1F**).

91 becyp#1 is an unusual 11-carbon fatty acid, distinguished from straight-chain fatty acids
92 by a β-cyclopropyl moiety (**Fig. 1F**), suggesting that its accumulation in *acdh-11* mutants may
93 underlie the dramatically increased *fat-7* expression in this mutant. To test this, we
94 supplemented synthetic samples of becyp#1 and straight-chain undecanoic acid to a transgenic
95 reporter strain that expresses a FAT-7::green fluorescent protein (GFP) fusion driven by the *fat-*
96 *7* promoter (*P_{fat-7}::fat-7::GFP*). Supplementation with becyp#1 strongly induced FAT-7::GFP,
97 whereas induction by straight chain undecanoic acid was weak at the tested concentrations
98 (**Fig. 1G**). Next, we asked whether FAT-7::GFP induction by becyp#1 requires NHR-49 by using
99 RNAi. Whereas FAT-7::GFP was strongly induced in becyp#1-treated animals reared on *E. coli*
100 HT115 expressing empty vector (L4440), animals reared on HT115 expressing *nhr-49* RNAi did

101 not show any detectable FAT-7::GFP (**Fig. 1H**). Taken together, our comparative metabolomic
102 analysis revealed a C₁₁-β-cyclopropyl NHR-49 agonist, becyp#1, that accumulates in *acdh-11*
103 animals and thus may explain the constitutively high *fat-7* expression in this mutant.

104

105 **Bacterial cyclopropyl lipids are the source of becyp#1**

106 The lipidome of *C. elegans* fed *E. coli*, the most common food source used in the laboratory,
107 contains large amounts of ω-7 C₁₇ and C₁₉ cyclopropyl lipids, which are derived from bacterial
108 phospholipid membranes⁴¹. To corroborate that becyp#1 and other βCPFAs enriched in *acdh-11*
109 are in fact derived from bacterial cyclopropyl lipids, we performed additional comparative
110 metabolomics of *acdh-11* mutants reared on *E. coli* BW25113 (WT) or mutant *E. coli* JW1653-1
111 (Δcfa), a cyclopropane-deficient strain from the Keio collection (**Fig. 2A**)⁴². These analyses
112 revealed that almost all *acdh-11*-enriched metabolites, including becyp#1, were absent from the
113 metabolome of *acdh-11* animals reared on Δcfa *E. coli* (summarized in **Supplementary Table**
114 **1**), confirming that they are derived from bacterial cyclopropyl lipids.

115 Next, we investigated the role of bacterial cyclopropyl fatty acid production for *acdh-11*-
116 dependent phenotypes. Consistent with previous studies³⁴, strong FAT-7::GFP expression was
117 observed at all life stages in *acdh-11* mutants reared on WT *E. coli* diets, including in unhatched
118 eggs (**Fig. 2B, Extended Data Fig. 1**). However, FAT-7::GFP expression was sharply reduced
119 in *acdh-11* animals reared on Δcfa *E. coli* as compared to animals reared on WT *E. coli* (**Fig.**
120 **2B**). One of the major cyclopropyl fatty acids produced by *E. coli* is lactobacillic acid (LBA)^{43,44}.
121 Following dietary uptake by *C. elegans*, four rounds of β-oxidation of LBA would produce
122 becyp#1-CoA (**Fig. 2C**), which, due to the presence of the β-cyclopropyl group, would be
123 unsuitable for further processing by canonical β-oxidation enzymes⁴⁵, and thus may require a
124 specialized acyl-CoA dehydrogenase such as ACDH-11, explaining accumulation of becyp#1 in
125 *acdh-11* mutants. LBA supplementation to *acdh-11* animals reared on Δcfa *E. coli* resulted in
126 dose-dependent recovery of FAT-7::GFP expression (**Fig. 2B**), along with concomitant recovery
127 of βCPFA production (**Extended Data Fig. 2**). To a lesser extent, LBA supplementation also
128 induced FAT-7::GFP in WT animals (**Fig. 2B**). In contrast, supplementation with vaccenic acid
129 (VA), the monounsaturated precursor of LBA we used as a control, had no effect on FAT-
130 7::GFP expression in *acdh-11* mutants or WT animals, even at much higher concentrations
131 (**Fig. 2B**).

132 Given the dramatic reduction in FAT-7::GFP expression in *acdh-11* mutants fed Δ cfa *E.*
133 *coli*, we next investigated the effect of bacterial cyclopropyl lipid production on viability of *acdh-*
134 *11* mutants at elevated temperatures. As previously reported, loss of *acdh-11* function results in
135 *fat-7*-dependent embryonic lethality and developmental arrest at 25 °C³⁴. Strikingly, embryonic
136 lethality at 25 °C was abolished when rearing *acdh-11* mutant animals on cyclopropyl fatty acid-
137 deficient Δ cfa *E. coli* (**Fig. 2D**). In addition, *acdh-11* mutants hatched and developed normally at
138 25 °C when fed cyclopropyl-containing HT115 expressing *nhr-49* RNAi, demonstrating that
139 β CPFAs are not inherently toxic (**Fig. 2E**). Collectively, these results establish that the *acdh-11*
140 heat-sensitive phenotype is the result of NHR-49-dependent hyperactivation of *fat-7* expression
141 by becyp#1, which is derived from bacterial cyclopropyl lipids and accumulates in *acdh-11*
142 mutants (**Fig. 2F**).

143

144 **An endogenous activator of *fat-7* expression**

145 While the identification of becyp#1 explains *fat-7* hyperactivation in *acdh-11* mutants under
146 laboratory conditions, it seemed unlikely that control of *fat-7* expression via *nhr-49* would rely
147 entirely on one specific type of bacterial lipid. Desaturase expression is controlled by a
148 regulatory network that integrates nutrient availability, pathogen responses, and reproductive
149 signals^{46–49}. This suggested the existence of additional small molecule agonists of NHR-49,
150 possibly a metabolite structurally related to becyp#1. Surveying existing data for the *C. elegans*
151 metabolome, we noted that mutants defective in *hacl-1* (2-hydroxy-acyl-CoA lyase 1), a key
152 component of conserved peroxisomal fatty acid α -oxidation, accumulate large quantities of 11-
153 carbon β -methyl fatty acids (β MFAs), e.g., bemeth#3⁵⁰, whose structures are reminiscent of the
154 11-carbon β CPFAs we identified as shunt metabolites in *acdh-11* mutants (**Fig. 3A**).

155 The most abundant β MFAs identified from *hacl-1* mutants are α -hydroxylated,
156 suggesting that they represent shunt metabolites derived from incomplete α -oxidation of a β -
157 methyldecenoic acid precursor via hydroxylation by the phytanoyl-CoA dioxygenase homologs
158 ZK550.5 and/or ZK550.6 (**Fig. 3A**). Inspection of the free fatty acid profile of wildtype animals in
159 fact revealed the presence of β -methyldecenoic acid (bemeth#1), as confirmed using a synthetic
160 standard (**Fig. 3B**). Considering the striking structural similarity of bemeth#1 with the bacterial-
161 derived becyp#1, we hypothesized that bemeth#1 may represent an endogenous regulator of
162 *nhr-49*-dependent *fat-7* expression. Like becyp#1, bemeth#1 is an 11-carbon fatty acid featuring
163 an unusual β -branched carbon skeleton, distinguished by a β -methyl group instead of the β -
164 cyclopropyl ring as in becyp#1 (**Fig. 3A**). Therefore, we tested synthetic bemeth#1 and becyp#1

165 in parallel for activation of FAT-7::GFP expression. We found that, similar to becyp#1,
166 supplementation with synthetic bemeth#1 strongly induced FAT-7::GFP (**Fig. 3C**).
167 Supplementation with the α -hydroxylated derivative, bemeth#2, did not induce FAT-7::GFP, nor
168 was expression of FAT-7::GFP increased in *hacl-1* mutants in which α -hydroxylated β MFAs
169 accumulate (**Extended Data Fig. 3**).

170 Because metabolite-receptor interactions are often highly stereospecific^{51,52}, we
171 developed a synthesis employing Sharpless chiral resolution and subsequent chirality transfer
172 via Claisen rearrangement to access the two enantiomers of bemeth#1, (3R)-bemeth#1 and
173 (3S)-bemeth#1 (**Fig. 3D**, see **Methods** for details)⁵³. We next determined the absolute
174 configuration of natural bemeth#1 and bemeth#2 using a chiral oxidation and derivatization
175 approach, which revealed (3R)-bemeth#1 and (2R,3S)-bemeth#2 as the predominant natural
176 isomers (**Fig. 3D**, see **Methods** for details). The (2R,3S)-configuration of bemeth#2, indicative
177 of *syn*-hydroxylation, is consistent with the predicted specificity of the *C. elegans* α -oxidation
178 enzymes ZK550.5 and ZK550.6, based on their homology to human PHYH⁵⁴.

179 Testing synthetic samples of the two enantiomers of bemeth#1, we found that low
180 micromolar concentrations of (3R)-bemeth#1 strongly induced FAT-7::GFP, whereas treatment
181 with (3S)-bemeth#1 resulted in significantly lower induction (**Fig. 3E, 3F**). The residual activity of
182 the (3S)-bemeth#1 sample used in this study may be attributable to contamination with about
183 15% of the other enantiomer, resulting from the limited selectivity of available synthetic routes
184 for chiral methyl-branched fatty acids⁵⁵. We also tested for effects of bemeth#1 supplementation
185 on expression of *fat-6*, a desaturase that is functionally redundant with FAT-7 but regulated by
186 different mechanisms³⁵. Examination of a FAT-6::GFP transgenic reporter strain showed that
187 expression is unaffected by bemeth#1 (**Extended Data Fig. 4**). Finally, we used RT-PCR to
188 measure *fat-6* and *fat-7* expression of non-transgenic WT animals supplemented with bemeth#1
189 and observed a greater than tenfold increase in *fat-7* expression, whereas expression of *fat-6*
190 was unchanged, consistent with the results for the transgenic reporters (**Fig. 3G**). Taken
191 together, these results demonstrate that, like becyp#1, bemeth#1 regulates *fat-7* expression in
192 an NHR-49-dependent manner.

193

194 **A methyltransferase conserved across Nematoda**

195 β -branched fatty acids are highly unusual because they cannot be obtained via canonical fatty
196 acid biosynthesis from acetate or propionate, nor from leucine-derived monomethyl branched

197 chain fatty acids which contain a methyl branch at the terminal carbon (**Fig. 4A**)^{39,56,57}. We
198 therefore hypothesized that the unusual β -methyl group is installed by an S-adenosyl
199 methionine (SAM)-dependent methyltransferase. To test this, we used a stable isotope labeling
200 approach in which *hacl-1* larvae were supplemented with D₃-methyl methionine (D₃-Met) in the
201 absence of bacteria. Analysis of D₃-Met-supplemented *hacl-1* larvae by HPLC-HRMS revealed
202 incorporation of three deuterium atoms in all annotated β MFAs, including the putative parent
203 compound bemeth#1 and the α -hydroxylated derivatives bemeth#2 and bemeth#3 (**Fig. 4B**,
204 **Extended Data Fig. 5**). These results support the idea that β MFA biosynthesis is not dependent
205 on bacteria, but rather requires an endogenous SAM-dependent methyltransferase.

206 In *C. elegans*, as in humans, the overwhelming majority of SAM-dependent
207 methyltransferases catalyze methylation of nitrogen or oxygen, e.g., *N*-methylation of
208 nucleosides or amino acids⁵⁸. Of the 121 annotated SAM-dependent methyltransferases in *C.*
209 *elegans*, there are only seven enzymes that are predicted to methylate carbon (C-methylation):
210 these include sterol methyltransferase (*strm-1*)⁵⁹, ubiquinone C-methyltransferase (*coq-5*)⁶⁰, and
211 four annotated cytosine C⁵-methyltransferases⁶¹. The one remaining predicted C-
212 methyltransferase, *F13D12.9*, is highly conserved across Nematoda and exhibits notable
213 similarity to bacterial cyclopropane synthases. Phylogenetic analysis revealed that the closest
214 homologs of *F13D12.9* are found in nematodes and bacteria, not in other animals, consistent
215 with ancient, horizontal gene transfer (HGT) (**Fig. 4C**)⁶². Correspondingly, *F13D12.9* is
216 annotated as a mycolic acid cyclopropane synthase; however, we and others have shown that
217 *C. elegans* does not synthesize cyclopropane lipids, suggesting that *F13D12.9* could instead be
218 involved in β MFA biosynthesis^{41,44,50}.

219 To test the role of *F13D12.9* in the biosynthesis of β MFAs, we obtained two predicted
220 loss-of-function alleles; *F13D12.9(gk155709)* containing an early stop codon (K127*), and
221 *F13D12.9(tm2382)* with a deletion spanning exons 2-4 (**Fig. 4D**). Comparative metabolomic
222 analysis of wildtype and the two *F13D12.9* mutants revealed that *F13D12.9* is strictly required
223 for production of bemeth#1 and other detected β MFA-derived metabolites (**Fig. 4E**, summarized
224 in **Supplementary Table 2**). We therefore named *F13D12.9* as Fatty acid C-Methyl Transferase
225 (*fcmt-1*). Consistent with conservation of *fcmt-1* in other nematodes, β MFAs were also detected
226 in the closely related *C. briggsae* (**Extended Data Fig. 6**)⁶³.

227

228 **NHR-49 agonists integrate bacterial and endogenous metabolism**

229 Our metabolomic analyses revealed two remarkably similar NHR-49 agonists, becyp#1 and
230 bemeth#1, that are derived from parallel biosynthetic pathways involving homologous bacterial
231 and endogenous enzymes, cyclopropane fatty acid synthase (CFA) in *E. coli* and FCMT-1 in *C.*
232 *elegans*, which likely originated from bacterial CFA via HGT (**Fig. 4C**). In *E. coli*, the substrates
233 of CFA are phospholipids derived from singly unsaturated *cis*-16:1 (palmitoleic) or *cis*-18:1 (VA)
234 ω -7 fatty acids (**Fig. 2C**)^{41,43}. CFA homologs in other bacterial species produce diverse
235 cyclopropyl and methyl-branched lipids, e.g., the mycolic acids of *Mycobacterium tuberculosis*⁶⁴.

236 To clarify the parallel roles of bacterial CFA and endogenous FCMT-1 for the synthesis
237 of becyp#1 and bemeth#1, respectively, we considered possible substrates for FCMT-1. Based
238 on its homology to bacterial CFAs, we hypothesized that FCMT-1 should catalyze methyl
239 transfer to an ω -7 *cis*-double bond, as in *cis*-VA, which is abundant in *E. coli*⁶⁵. Intriguingly, the
240 *Rhodobacter sphaeroides* CFA homolog, UfaM (FCMT-1 BLAST E-value 5e⁻⁷²), catalyzes
241 methyl transfer to VA with concomitant double bond migration, resulting in an 11-methyl-12-
242 *trans* 18:1 fatty acid, a plausible precursor of bemeth#1 (**Fig. 5A**)⁶⁶. Therefore, we performed
243 stable isotope feeding experiments using D₁₃-*cis*-VA (**Fig. 5B**). As an additional control, we fed
244 D₁₃-*trans*-VA, reasoning that, based on homology, the *trans* double bond may not function as a
245 methyl acceptor. Comparative metabolomic analyses of D₁₃-*cis*- and D₁₃-*trans*-VA-
246 supplemented animals showed that all *fcmt-1*-dependent metabolites incorporate deuterium
247 label from D₁₃-*cis*- but not D₁₃-*trans*-VA (**Fig. 5C**). These results indicate that FCMT-1 acts on
248 *cis*-double bonds of monounsaturated fatty acids, in close analogy to bacterial enzymes such as
249 UfaM. Moreover, partial loss of the deuterium label at specific positions in the *fcmt-1*-dependent
250 metabolites from D₁₃-*cis*-VA-supplemented animals, e.g., at position 5 in bemeth#1 (**Fig. 5B**,
251 arrow), provided additional corroboration of the proposed biosynthetic pathway (**Extended Data**
252 **Fig. 7**). Taken together, our results indicate that the two NHR-49 agonists, becyp#1 and
253 bemeth#1, are produced via parallel pathways from ω -7 fatty acids common in *E. coli*. The
254 β MFA bemeth#1 is produced via a fully endogenous pathway, in which VA is likely C-
255 methylated by FCMT-1 and chain-shortened via canonical β -oxidation, whereas becyp#1 is
256 derived from conversion of VA to LBA by bacterial CFA, followed again by endogenous β -
257 oxidation.

258 Given their structural similarity, we asked whether there are any overt differences in the
259 activation of *fat-7* expression by bemeth#1 and becyp#1. NHR-13, NHR-80 and NHR-66 have
260 been characterized as direct NHR-49-interactors⁶⁷, whereby NHR-13 and NHR-80 affect

261 expression of desaturase genes, including *fat-7*, whereas NHR-66 cooperates with NHR-49 to
262 repress genes related to sphingolipid and phospholipid metabolism^{67,68}. Induction of FAT-
263 7::GFP expression by both *bemeth#1* and *becyp#1* was reduced, but not abolished, in animals
264 reared on *nhr-80* or *nhr-13* RNAi (**Fig. 5D**). In animals reared on *nhr-80* RNAi, FAT-7::GFP was
265 expressed weakly in the first intestinal cell and additionally around the pharynx, as well as in the
266 extreme posterior cells (**Fig. 5D**). A subset of animals reared on *nhr-13* RNAi exhibited mosaic
267 FAT-7::GFP in response to supplemented *bemeth#1* or *becyp#1*, in which expression was
268 restricted to the tail and posterior intestinal cells (**Fig. 5D**). Animals reared on RNAi against *nhr-*
269 *66* did not exhibit altered FAT-7::GFP expression in response to supplemented fatty acids, nor
270 did animals fed *hlh-30* RNAi, which cooperates with *nhr-49* in starvation responses (**Extended**
271 **Data Fig. 8**)^{67,69}. Thus, supplementation with either *bemeth#1* or *becyp#1* increased *fat-7*
272 expression in a manner that was strictly dependent on NHR-49 and partially dependent on
273 NHR-13 and NHR-80, consistent with a model in which *bemeth#1* and *becyp#1* modulate fat
274 metabolism via tissue-specific heterodimers of NHR-49 with NHR-13 and NHR-80⁶⁷.

275

276 DISCUSSION

277 In this work, we identified parallel biosynthetic pathways that control fatty acid desaturation via
278 NHR-49/PPAR α , (i) a pathway dependent on microbiota-derived cyclopropane lipids, which are
279 converted endogenously into the β -cyclopropane 11-carbon fatty acid, *becyp#1*, and (ii) a fully
280 endogenous pathway that involves the likely HGT-derived methyltransferase FCMT-1, required
281 for biosynthesis of the β -methyl-branched 11-carbon fatty acid, *bemeth#1*, (**Fig. 5E**). Both
282 *becyp#1* and *bemeth#1* strongly promote expression of the desaturase FAT-7 in a manner that
283 requires NHR-49 and is partially dependent on NHR-13- and NHR-80. Despite their structural
284 similarity, *becyp#1* degradation proceeds via a dedicated β -oxidation enzyme, ACDH-11,
285 whereas *bemeth#1* is degraded via α -oxidation, analogous to human metabolism of β -methyl
286 fatty acids, e.g., dairy-derived phytanic acid^{50,70}. Their distinct degradation pathways suggest
287 that *fat-7* activation by microbiota-dependent *becyp#1* and endogenous *bemeth#1* is regulated
288 via separate mechanisms, which may be required to accommodate fluctuating nutritional and
289 environmental conditions.

290 The identification of *becyp#1* as an NHR-49/PPAR α agonist highlights the importance of
291 microbiota-derived metabolites for metazoan physiology. Examples include propionate and
292 butyrate, simple short-chain fatty acids that play key roles in the maintenance of intestinal
293 immune homeostasis⁷¹, and the microbial metabolism of bile acids^{72,73}, which function as

294 endogenous agonists of the farnesoid-X receptor (FXR)⁷⁴, a conserved NR and central regulator
295 of cholesterol and lipid metabolism in vertebrates⁷⁵. The example of bencyp#1 demonstrates that
296 microbiota-specific lipids, e.g., cyclopropane fatty acids, can function as precursors for potent
297 signaling molecules. Cyclopropyl lipids have become more abundant in human diets, primarily in
298 meat and dairy products, as a result of the large-scale introduction of fermented grains (silage)
299 as animal feed in the mid-20th century⁷⁶. While little is known about the metabolic fate of
300 cyclopropyl lipids in humans, cyclopropyl lipids are robustly detected in human serum, and
301 cyclopropyl fatty acids may interact directly with the human NR, HNF4α, a master regulator of
302 mammalian liver metabolism and homolog of NHR-13, -49, and -80^{77,78}. Early biochemical
303 studies showed that cyclopropyl lipids are highly persistent in rats, accumulating as shorter-
304 chain derivatives in adipose tissue^{79,80}.

305 In contrast to mammals, *C. elegans* appears able to degrade cyclopropyl lipids via a
306 specialized β-oxidation enzyme, ACDH-11, that prevents hyper-activation of NHR-49 due to
307 bencyp#1 build-up, possibly as a dietary adaptation since the genomes of many naturally *C.*
308 *elegans*-associated bacteria include predicted cyclopropane synthases⁸¹. Consistent with a
309 direct functional role in homeoviscous adaptation, *acd*h-11 is heat-inducible⁴⁰, resulting in
310 increased bencyp#1 degradation at elevated temperature, which reduces NHR-49- and FAT-7-
311 dependent fatty acid desaturation, thereby reducing membrane fluidity and thus promoting heat
312 adaptation (**Fig. 2F**). Because cyclopropane biosynthesis varies between different bacteria and
313 can be stress- or growth phase-dependent⁸²⁻⁸⁴, the extent to which cyclopropyl lipids impact *C.*
314 *elegans* physiology may vary considerably in different natural and laboratory environments.
315 Correspondingly, rearing *acd*h-11 mutants on *E. coli* lacking the cyclopropane synthase gene
316 (Δ cfa) fully rescues their heat-sensitive phenotype. *acd*h-11 homologs are highly conserved in
317 many other bacterivorous and also parasitic nematodes (**Fig. 1C**), suggesting that the role of
318 *acd*h-11 homologs in the sequestration of β-cyclopropyl fatty acids may also be conserved.

319 Conservation of the methyltransferase *fcmt-1* across Nematoda is consistent with an
320 ancient HGT event that conferred to nematodes the endogenous capacity to produce otherwise
321 inaccessible β-methyl-branched fatty acids. We showed that production of 11-carbon β-methyl
322 fatty acids is conserved in *C. briggsae*, suggesting that β-methyl fatty acids function as NHR-
323 49/PPARα agonists also in other nematode species. We infer that there is considerable flux
324 through the bemeth#1 pathway based on the dramatic accumulation of oxidized βMFAs in
325 starved *hac-1(tm6725)* larvae⁵⁰. Life stage- and sex-specific functions of FCMT-1 are further
326 suggested by the recent observations that production of specific bemeth#-family metabolites is

327 greatly increased during the transition from late larval (L4) stage to reproductive adult⁵⁰, and is
328 increased further in adult males⁸⁵, consistent with publicly available transcriptomic data
329 suggesting that *fcmt-1* is expressed in the male germline^{86,87}. Further investigation into the life
330 stage- and tissue-specific regulation of NHR-49 by β -branched fatty acids may reveal additional
331 evolutionary insight into the acquisition of a bacterial methyltransferase by an ancient metazoan.

332 Collectively, our results showcase a central role for microbiota in the regulation of
333 metazoan fatty acid metabolism by demonstrating that a microbiota-derived cyclopropyl fatty
334 acid can activate NR-dependent desaturase expression. Further, our findings suggest an
335 ancient origin for microbial regulation of nematode fat metabolism, given that *C. elegans* has
336 acquired the capability to produce a signaling molecule, via HGT from bacteria, that mimics the
337 bacteria-dependent becyp#1⁸⁸. Lastly, the biogenesis of becyp#1 highlights the significance of
338 microbiota-dependent small molecule signals that arise from shared biochemical networks
339 involving both metazoan and bacterial metabolism^{89,90}, a challenge that we here show can be
340 addressed by whole organism comparative metabolomics.

341

342 **METHODS**

343 **Nematode strains**

344 Unless otherwise indicated, worms were maintained on Nematode Growth Medium (NGM) 6 cm
345 diameter petri dish plates seeded with *E. coli* OP50 obtained from the *Caenorhabditis* Genetics
346 Center (CGC), except for the *acd*h-11(*n5878*) mutant, which was maintained on cyclopropane-
347 deficient JW1653-1. For imaging experiments, worms were grown on 3.5 cm diameter petri dish
348 plates seeded with *E. coli* OP50, HB101, BW25113, JW1653-1, or HT115 for RNAi, as
349 indicated. The following Nematode strains were used for comparative metabolomics: *C. elegans*
350 Bristol N2 (“wildtype”), *C. elegans* FCS7 *hac*l-1(*tm6725*) II, *C. elegans* FCS40 *fcmt*-1(*gk155709*)
351 II, *C. elegans* FCS20 *fcmt*-1(*tm2382*) II, *C. elegans* DMS303 *nls590*[*P*_{fat-7}::*fat-7*::GFP] V
352 (“wildtype”), *C. elegans* DMS441 *acd*h-11(*n5878*) III; *nls590* V, *C. elegans* FCS66 *hac*l-
353 1(*tm6725*) II; *nls590* V, *C. elegans* BX115 *lin-15B*&*lin-15A*(*n765*) X; *waEx16*[*P*_{fat-6}::*fat-6*::GFP +
354 *lin-15*(+)], and *C. Briggsae* AF16 (“wildtype”). *hac*l-1 mutants were backcrossed as previously
355 described⁵⁰, *fcmt*-1 mutants were backcrossed with Bristol N2 for a total of six generations, and
356 other strains were analyzed as received from the CGC. The genotypes were confirmed by PCR
357 and Sanger sequencing (Cornell University Institute of Biotechnology). Primers (Integrated DNA
358 Technologies) used for genotyping are listed in **Supplementary Table 3**.

359 Of note, several unrelated metabolites were significantly enriched only in the FCS20
360 *fcmt*-1(*tm2382*) strain, but not FCS40 *fcmt*-1(*gk155709*) (**Extended Data Fig. 9**). The *tm2382*
361 deletion affects a genomic interval encoding genes on both strands of DNA and deletes intronic
362 sequence of *VF13D12L.3*, which encodes an enzyme annotated as a malate/lactate
363 oxidoreductase. To avoid potentially confounding effects resulting from presumed disruption of
364 *VF13D12L.3*, subsequent experiments were conducted using the *fcmt*-1(*gk155709*) mutant.

365

366 **Metabolite nomenclature**

367 All newly detected metabolites for which a structure could be proposed were named using Small
368 Molecule Identifiers (SMIDs), a search-compatible nomenclature for metabolites identified from
369 *C. elegans* and other nematodes. The SMID database (www.smid-db.org) is an electronic
370 resource maintained in collaboration with WormBase (www.wormbase.org); a complete list of
371 SMIDs can be found at www.smid-db.org/browse.

372

373 ***C. elegans* liquid cultures**

374 Alkaline bleach treatment of mixed-stage animals yielded a sterile egg suspension, which was
375 rocked overnight in 3-5 mL M9 solution to yield synchronized, starved L1 larvae⁹¹. For the

376 analysis of staged adults, cultures ranging from 25,000-75,000 synchronized L1 larvae obtained
377 from alkaline bleach treatment were added to 50- or 125 mL Erlenmeyer flasks containing S-
378 complete medium such that the density of worms was maintained at approximately 3,000
379 nematodes / mL, and kanamycin added at 35 μ g/mL to prevent contamination. Worms were fed
380 with 50x concentrated *E. coli* and incubated at 20 °C with shaking at 180 RPM for 64-70 hours,
381 unless otherwise indicated. Control samples to account for bacterial matrix were prepared with
382 the same amount of *E. coli* under identical conditions. For the analysis of mixed-stage cultures,
383 a well-populated 6 cm NGM plate was washed with M9 solution, and the recovered animals
384 seeded to liquid cultures and incubated with shaking for 2-7 days, as described above. Cultures
385 were fed with additional bacteria as needed, determined by cloudiness of cultures. Liquid
386 cultures were transferred to 15- or 50 mL conical tubes and centrifuged (200 \times g, 22 °C, 30 s),
387 and the supernatant (exo-metabolome) was transferred to a fresh conical tube and snap frozen.
388 Remaining worm pellet (endo-metabolome) was transferred to a 15 mL conical tube and
389 washed with 10 mL M9 solution, centrifuged (200 \times g, 22 °C, 30 s), supernatant removed, and
390 worm pellet washed twice more with M9 solution before snap freezing in liquid nitrogen.

391

392 **Stable isotope labeling experiments**

393 Alkaline bleach treatment of a mixed-stage *hac-1(tm6725)* culture yielded a sterile egg
394 suspension that was evenly divided into three 50 mL Erlenmeyer flasks containing 10 mL M9
395 solution. Worm suspensions were supplemented with water (vehicle control), methionine (Sigma
396 M-9625), or isotopically labeled D₃-methyl-methionine (Cambridge Isotope Laboratories DLM-
397 431-1) at a final concentration of 5 mM. Cultures were incubated at 20 °C with shaking at 180
398 RPM for approximately 24 hours. *Exo-* and *endo*-metabolome samples were harvested
399 separately, as described above. Two independent labeling experiments in *hac-1(tm6725)* were
400 performed, one in larvae as described and one in mixed-stage cultures, described below.

401 Mixed-stage cultures of N2 and *hac-1(tm6725)* were collected, washed in M9 solution,
402 and evenly divided to five or seven 50 mL Erlenmeyer flasks containing 10 mL S-Complete
403 medium and kanamycin at 35 μ g/mL. Worms were fed with 50x concentrated *E. coli* and
404 supplemented with ethanol (vehicle control), *cis*-vaccenic acid (Cayman Chemical 20023), D₁₃-
405 *cis*-vaccenic acid (Cayman Chemical 27716), *trans*-vaccenic acid (Cayman Chemical 15301), or
406 D₁₃-*trans*-vaccenic acid (Cayman Chemical 27717) at a final concentration of 100 μ M (first
407 replicate) or 75 μ M (second replicate); *hac-1(tm6725)* was additionally supplemented with
408 methionine or D₃-methyl-methionine at a final concentration of 5 mM. Cultures were incubated
409 at 20 °C with shaking at 180 RPM for 3-4 days. *Exo-* and *endo*-metabolome samples were

410 harvested separately, as described above. One labeling experiment was performed in N2 (WT),
411 and two independent labeling experiments were performed in *hac-1(tm6725)* mutant.

412

413 **Evolutionary analysis of ACDH-11 and FCMT-1 homologs**

414 PSI-BLAST searches on the NCBI-nr database using the *C. elegans* ACDH-11 sequence
415 (NP_001033378.1) as query were run on July 23, 2023. The first search was not restricted to
416 any taxonomy and returned hits predominantly from clade V (Rhabditina), from which the
417 satellite model organisms *Caenorhabditis briggsae* and *Pristionchus pacificus* were selected for
418 alignment on the basis of high-quality genomic data, as well as two representative hits from the
419 Strongylida suborder (*Ancylostoma ceylanicum* and *Haemonchus contortus*). An additional PSI-
420 BLAST was conducted using the *C. elegans* ACDH-11 sequence as query and excluding the
421 subclass Rhabditina (taxid:2301116), which returned hits belonging to clade IV (Tylenchina)
422 nematodes from the *Strongyloididae* and *Steinernematidae* families, which are represented by
423 ACDH-11 sequences from *Strongyloides ratti* and *Steinernema carpocapsae*, respectively⁹². To
424 compare against other ACDH enzymes in *C. elegans*, a second PSI-blast search was
425 performed using the *C. elegans* ACDH-11 sequence as query restricted to *C. elegans* (taxid:
426 6239), and all hits above the minimum threshold were downloaded. A MUSCLE alignment of
427 ACDH-11 and the 19 selected sequences was performed in MEGA 11 software using default
428 settings⁹³. The evolutionary history was inferred by using the Maximum Likelihood method and
429 LG+G model with 200 bootstrap iterations in MEGA 11 software⁹⁴. The tree with the highest log
430 likelihood (-19853.00) is shown. Initial tree(s) for the heuristic search were obtained
431 automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
432 estimated using the JTT model, and then selecting the topology with superior log likelihood
433 value. A discrete Gamma distribution was used to model evolutionary rate differences among
434 sites (5 categories, +G parameter = 1.8549). The tree is drawn to scale, with branch lengths
435 measured in the number of substitutions per site.

436 Blastp searches on the NCBI-nr database using the *C. elegans* FCMT-1 sequence
437 (NP_001380126.2) as query were run on August 7, 2022. The first search was not restricted to
438 any taxonomy. Sequences of the top 50 blast hits from this search were downloaded and
439 included 37 nematode and 13 bacterial sequences. To compare homologs in other animals, we
440 performed a second blastp search restricted to Animalia (taxid: 33208) but excluding Nematoda
441 (taxid: 6231). The top 10 sequences from this search were also downloaded. A MUSCLE
442 alignment of FCMT-1 and the 60 sequences from both searches was performed in MEGA 11
443 software using default settings⁹³. The evolutionary history was inferred by using the Maximum

444 Likelihood method and JTT matrix-based model with 200 bootstrap iterations in MEGA 11
445 software⁹⁵. The tree with the highest log likelihood (-46241.85) is shown. Initial tree(s)
446 generation and branch lengths as described above.

447

448 **FAT-7::GFP microscopy**

449 Commercially available and synthetic compounds were prepared as stock solutions at 10
450 mg/mL in ethanol or DMSO, as indicated. Stock solutions were diluted into 40 µL of a 50:50
451 mixture of solvent: water or 40 µL of solvent only, as indicated, then applied topically to NGM
452 3.5 cm diameter petri dish plates (4 mL NGM agar volume) seeded with *E. coli* and allowed to
453 dry with the lid off for 15 minutes in a laminar flow cabinet. The lids were replaced, and the
454 plates were shifted to an incubator at the experimental temperature and stored for 1-2 hours
455 before plating synchronized, starved L1 larvae obtained from alkaline bleach treatment of a 6
456 cm NGM maintenance plate. Alternatively, young adult animals were placed on treatment plates
457 and allowed to lay eggs for 4-6 hours, the adults removed, and the resulting progeny analyzed.

458 Gravid adult animals were removed from treatment plates by washing with M9 buffer and
459 collecting in 1.5 mL Eppendorf tubes. Samples were centrifuged (100 × g, 22 °C, 30 s) using an
460 Eppendorf benchtop centrifuge. The supernatant was aspirated, and animals were washed with
461 1 mL of M9 buffer, centrifuged, and the supernatant aspirated to leave approximately 0.1 mL
462 remaining. An equal volume (~ 0.1 mL) of 20 mM sodium azide in M9 was added to the tubes to
463 anaesthetize live animals. A ~5-10 µL aliquot of the paralyzed worms was then dropped onto an
464 unseeded NGM plate, and the liquid was allowed to fully absorb into the agar. Worms were
465 imaged directly on NGM plates using a Leica M205FA stereomicroscope outfitted with a
466 DFC7000T camera and controlled by Leica Application Suite X software (v3.6.0.20104 Leica
467 Microsystems). Transmitted light brightfield images were acquired with no filter; incident light
468 was generated by a Lumencor Sola Light Engine (SM5-LCR-VA Lumencor, Inc.) and GFP
469 fluorescence was acquired with an ET GFP bandpass filter, excitation 450-490 nm, emission
470 500-550 nm (Leica Microsystems part no. 10447408). Typical microscope settings were as
471 follows: magnification 75x; transmitted light: exposure 20 ms, gain 1, intensity 55%, aperture
472 60%, auto balance off; incident light: exposure 400 ms, gain 3, intensity 100%, aperture N/A.
473 The magnification and exposure settings were consistent within each experiment and any
474 quantification was performed relative to a control performed in parallel. Quantification was
475 performed using ImageJ software (v1.54c). In brief, individual animals were outlined using the
476 *freehand selection* tool in the brightfield micrographs, and then these outlines were transferred
477 to the GFP micrographs using the *restore selection* command. The intensity of the outlined area

478 was analyzed using the *measure* command. Background intensity was calculated by averaging
479 the minimum intensity of all outlined areas in a given experiment; this value was subtracted from
480 the mean intensity for each individual measurement. Intensities were normalized to the average
481 of the untreated control in each independent experiment.

482

483 **Gene expression analysis**

484 Stock solutions were diluted as described above and treatment plates were prepared by
485 applying 80 μ L of a 50:50 mixture of DMSO : water (vehicle) or the same mixture containing (*R*)-
486 bemeth#1 such that the final concentration on the plates was 0.05 mM. Solutions were applied
487 topically to NGM 6 cm petri dish plates (8 mL NGM agar volume) seeded with *E. coli* JW1653-1
488 and allowed to dry and equilibrate, as described above. Alkaline bleach treatment of mixed-
489 stage animals yielded a sterile egg suspension. Following counting and concentration, 2,000
490 eggs were applied directly to each of four plates per condition per experiment. Eggs were
491 incubated on plates at 20 °C for 70-74 hours, at which point gravid adult animals were removed
492 by washing with M9 buffer and collecting in 1.5 mL Eppendorf tubes. Samples were centrifuged
493 (100 \times g, 22 °C, 30 s) using an Eppendorf benchtop centrifuge and washed twice, as described
494 above, before snap freezing in liquid nitrogen and storage at -80 °C. Total RNA was extracted
495 and purified using Trizol reagent and RNA Clean & Concentrator-5 kit (Zymo Research cat. no.
496 R1013) according to the manufacturer's protocol. Following quantification, 2 μ g of RNA per
497 sample were used to synthesize cDNA using the SuperScript III First-Strand kit (Invitrogen cat.
498 no. 12574026). RT-PCR was performed using SYBR green dye (Thermo Fisher Scientific cat.
499 no. 4367659) and a Bio-Rad C1000TM Thermal Cycler. Relative gene expression levels were
500 calculated using the $\Delta\Delta Ct$ method with *act-1* as the reference gene⁹⁶. Four independent
501 biological experiments were performed and analyzed as three technical replicates per gene per
502 experiment in 10 μ L reaction volumes. Technical replicates were averaged prior to calculating
503 $\Delta\Delta Ct$ values, which were normalized against the average of all mock (control) samples. Primers
504 (Integrated DNA Technologies) used for RT-PCR are listed in **Supplementary Table 4**.

505

506 **Cyclopropyl fatty acid supplement**

507 Mixed-stage cultures of *P_{fat-7}::fat-7::GFP* (WT) and *acdh-11(n5878);P_{fat-7}::fat-7::GFP* reared on
508 JW1653-1 (*Δcfa*) *E. coli* were collected, washed in M9 solution, and evenly divided to four 50
509 mL Erlenmeyer flasks containing 10 mL S-Complete medium and kanamycin at 35 μ g/mL.
510 Worms were fed with 50x concentrated *E. coli* BW25113 (WT) or (*Δcfa*) *E. coli* and
511 supplemented with ethanol (vehicle control), lactobacillic acid (Cayman Chemical 10012556), or

512 dihydrosterculinic acid (Cayman Chemical 24824) at a final concentration of 20 μ M. Cultures were
513 incubated at 20 °C with shaking at 180 RPM for 3-4 days. *Exo*- and *endo*-metabolome samples
514 were harvested separately, as described above.

515

516 **Sample preparation for HPLC-HRMS**

517 Animal bodies (*endo*-metabolome) and conditioned medium (*exo*-metabolome) were frozen and
518 processed separately. For preparation of *endo*-metabolome extracts, samples were lyophilized
519 for 18–24 h using a VirTis BenchTop 4K Freeze Dryer. After the addition of 1 mL methanol
520 directly to the conical tube in which animals were frozen, samples were sonicated for 5 min (2 s
521 on/off pulse cycle at 90 A) using a Qsonica Q700 Ultrasonic Processor with a water bath cup
522 horn adaptor (Qsonica 431C2). Following sonication, an additional 4-9 mL of methanol was
523 added, depending on sample size, and the extract rocked overnight at room temperature. The
524 conical tubes were centrifuged (3000 x g, 22 °C, 5 min) and the resulting clarified supernatant
525 transferred to a clean 8- or 20-mL glass vial which was concentrated to dryness in an
526 SC250EXP Speedvac Concentrator coupled to an RVT5105 Refrigerated Vapor Trap (Thermo
527 Scientific). The resulting powder was suspended in 100-250 μ L of methanol, depending on
528 sample size, followed by vigorous vortex and brief sonication. This solution was transferred to a
529 clean microfuge tube and subjected to centrifugation (20,000 x g, 22 °C, 5 min) in an Eppendorf
530 5417R centrifuge to remove precipitate. The resulting supernatant was transferred to an HPLC
531 vial and analyzed by HPLC–HRMS.

532 For preparation of *exo*-metabolome extracts, samples were lyophilized ~48 h using a
533 VirTis BenchTop 4 K Freeze Dryer. Dried material was extracted in 5-15 mL methanol,
534 depending on sample size, and rocked overnight at room temperature. The conical tubes were
535 centrifuged (3000 x g, 22 °C, 5 min) and the resulting clarified supernatant transferred to clean
536 8- or 20-mL glass vials which were concentrated *in vacuo* and suspended in methanol as
537 described for *endo*-metabolome samples.

538

539 **HPLC-HRMS analysis**

540 Reversed-phase chromatography was performed using a Vanquish HPLC system controlled by
541 Chromeleon Software (ThermoFisher Scientific) and coupled to an Orbitrap Q-Exactive HF
542 mass spectrometer controlled by Xcalibur software (ThermoFisher Scientific), or by a Dionex
543 Ultimate 3000 HPLC system coupled to an Orbitrap Q-Exactive mass spectrometer controlled
544 by the same software. Extracts prepared as described above were separated on a Thermo
545 Scientific Hypersil Gold column (150 mm x 2.1 mm, particle size 1.9 μ m, part no. 25002-

546 152130) maintained at 40 °C with a flow rate of 0.5 mL/min. Solvent A: 0.1% formic acid (Fisher
547 Chemical Optima LC/MS grade; A11750) in water (Fisher Chemical Optima LC/MS grade; W6-
548 4); solvent B: 0.1% formic acid in acetonitrile (Fisher Chemical Optima LC/MS grade; A955-4).
549 A/B gradient started at 1% B for 3 min after injection and increased linearly to 98% B at 20 min,
550 followed by 5 min at 98% B, then back to 1% B over 0.1 min and finally held at 1% B for an
551 additional 2.9 min.

552 Reversed-phase post-column ion-pairing chromatography was performed using the
553 same system as described; extracts were separated on a Thermo Scientific Hypersil Gold
554 column (150 mm x 2.1 mm, particle size 1.9 µm, part no. 25002-152130) or on a Kinetex Evo
555 C18 (150 mm x 2.1 mm, particle size 1.7 µm, part no. 00F-4726-AN) maintained at 40 °C with a
556 flow rate of 0.5 mL/min. Solvent A: 0.1% ammonium acetate in water; solvent B: acetonitrile.
557 A/B gradient started at 5% B for 3 min after injection and increased linearly to 98% B at 20 min,
558 followed by 5 min at 98% B, then back to 5% B over 0.1 min and finally held at 5% B for an
559 additional 2.9 min. A second pump (Dionex 3000) controlling a solution of 800 mM ammonia in
560 methanol was run at a constant flow rate of 0.015 mL/min for the duration of the method and
561 mixed via micro-splitter valve (Idex #P-460S) with the eluate line from the column.

562 Mass spectrometer parameters: spray voltage, -3.0 KV / +3.5 KV; capillary temperature
563 380 °C; probe heater temperature 400 °C; sheath, auxiliary, and sweep gas, 60, 20, and 2 AU,
564 respectively; S-Lens RF level, 50; resolution, 60,000 or 120,000 at *m/z* 200; AGC target, 3E6.
565 Each sample was analyzed in negative (ESI-) and positive (ESI+) electrospray ionization
566 modes with *m/z* range 117–1000. Parameters for MS/MS (dd-MS2): MS1 resolution, 60,000;
567 AGC Target, 1E6. MS2 resolution, 30,000; AGC Target, 2E5. Maximum injection time, 60 msec;
568 Isolation window, 1.0 *m/z*; stepped normalized collision energy (NCE) 10, 30; dynamic
569 exclusion, 1.5 sec; top 8 masses selected for MS/MS per scan.

570 HPLC-HRMS RAW data were converted to mzXML file format using MSConvert (v3.0,
571 ProteoWizard) and were analyzed using Metaboseek software (v0.9.9.0) and normalized to the
572 abundance of ascr#3 in negative ionization mode or normalized to the abundance of ascr#2 in
573 positive ionization mode. Quantification was performed with Metaboseek software or via
574 integration using Xcalibur QualBrowser v4.1.31.9 (Thermo Fisher Scientific) using a 3-ppm
575 window around the *m/z* of interest.

576 For volcano plot in **Fig. 1D**, the exo-metabolome in negative ionization mode is depicted
577 as a representative dataset. The list of features identified by peak picking in Metaboseek
578 (including degenerate features such as adducts and isotopes) was culled by retention time (180–
579 1,080 s) and further filtered by grouped analysis as described⁵⁰. In brief, all *C. elegans* samples

580 were grouped and compared against a blank solvent injection. Blank subtraction was performed
581 by removing any feature less than five-fold more abundant in *C. elegans* samples relative to
582 blank. Features were further culled by a mean intensity threshold of 10,000 AU for the *C.*
583 *elegans* group. The resulting feature list of 30,191 features was regrouped according to
584 genotype and analyzed by unpaired, two-sided Welch's t-test; because ascr#3 was used as a
585 normalization factor, ascr#3 isotopes and adducts were manually removed. A representative
586 experiment comparing *P_{fat-7}::fat-7::GFP* WT reporter strain and the *acd-11(n5878);P_{fat-7}::fat-*
587 *7::GFP* mutant at different temperatures was analyzed, comprising two cultures reared at 20 °C
588 and one culture each at 15 °C and 25 °C, which were modeled as four independent
589 experiments.

590 For volcano plots in **Fig. 4E** and **Extended Data Fig. 9**, the exo-metabolome in negative
591 ionization mode is depicted. Data represents three independent experiments each with two
592 technical replicates grown and extracted independently. For purpose of comparison, data were
593 modeled as six independent experiments (or five for *fcmt-1(gk155709)*) and adjusted for
594 significance by the Benjamini-Hochberg method using false discovery rates of 15% or 5%, as
595 indicated⁹⁷. List of features culled as above except retention time window adjusted (60-1,080 s).
596 The resulting feature list of 40,436 features was analyzed by unpaired, two-sided Welch's t-test;
597 ascr#3 isotopes and adducts were manually removed, as above. Statistical analysis for
598 metabolomics was performed with Metaboseek software (v0.9.9.0), Microsoft Excel (v2302
599 Build 16.0.16130.20332), and with GraphPad Prism (v9.5.0.730).

600

601 **Isolation and NMR spectroscopy of becyp#2 (14)**

602 The exo-metabolomes of several medium-scale *C. elegans* cultures were lyophilized and
603 extracted with methanol, as described. Dried methanol extract was loaded onto Celite and
604 fractionated using medium pressure reverse phase chromatography (15 g C18 Combiflash
605 RediSep column, Teledyne Isco 69-2203-334). Solvent A: 0.1% acetic acid in water; solvent B:
606 acetonitrile. Column was primed with 1% B; separation was achieved by 5% B for 2 column
607 volumes (CV), which was increased linearly to 50% B over 15 CV, then to 100% B over 3 CV
608 and held at 100% B for 5 CV, before returning to 80% B for 3 CV. Fractions were assayed for
609 compounds of interest by HPLC-MS, the relevant fractions were combined and dried *in vacuo*.
610 Following suspension in water: methanol (1:2), the pooled fractions were further separated by
611 semi-preparative HPLC on a Thermo Hypersil Gold C18 column (250 mm × 10 mm, particle size
612 5 µM; 25005-259070) using a Vanquish UPLC system controlled by Chromeleon Software
613 (ThermoFisher Scientific) and coupled to a Dionex UltiMate 3000 Automated fraction collector

614 and to an Orbitrap Q-Exactive High Field mass spectrometer using a 9:1 split. Fractions
615 containing becyp#2 were combined and analyzed by 2D NMR spectroscopy (CD₃OD, Bruker
616 Avance III HD, 800 MHz). For NMR spectroscopic data, see **Supplementary Table 5**.

617

618 **Chemical syntheses**

619 See **Supplementary Information** for synthetic schemes, synthesis procedures, and NMR
620 spectroscopic data.

621

622 **Data availability**

623 The HPLC-HRMS data generated during this study have been deposited in the MassIVE
624 database under accession code MSV000092700.

625 **REFERENCES**

- 626 1. Kindt, A. *et al.* The gut microbiota promotes hepatic fatty acid desaturation and elongation
627 in mice. *Nat. Commun.* **9**, (2018).
- 628 2. Brown, E. M., Clardy, J. & Xavier, R. J. Gut microbiome lipid metabolism and its impact
629 on host physiology. *Cell Host Microbe* **31**, 173–186 (2023).
- 630 3. Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. *Rev.*
631 *Endocr. Metab. Disord.* **20**, 461–472 (2019).
- 632 4. Mauvoisin, D. & Mounier, C. Hormonal and nutritional regulation of SCD1 gene
633 expression. *Biochimie* **93**, 78–86 (2011).
- 634 5. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. *Nat. Rev.*
635 *Microbiol.* **19**, 55–71 (2021).
- 636 6. Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut
637 microbiome on host metabolism through the regulation of gut hormone release. *Front.*
638 *Physiol.* **10**, (2019).
- 639 7. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut
640 microbes associated with obesity. *Nature* **444**, 1022–1023 (2006).
- 641 8. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving
642 superfamily of mediators. *J. Clin. Invest.* **128**, 2657–2669 (2018).
- 643 9. Kahn-Kirby, A. H. *et al.* Specific polyunsaturated fatty acids drive TRPV-dependent
644 sensory signaling in vivo. *Cell* **119**, 889–900 (2004).
- 645 10. Agus, A., Clément, K. & Sokol, H. Gut microbiota-derived metabolites as central
646 regulators in metabolic disorders. *Gut* **70**, 1174–1182 (2021).
- 647 11. Rowland, I. *et al.* Gut microbiota functions: metabolism of nutrients and other food
648 components. *Eur. J. Nutr.* **2017** *57* **1**, 1–24 (2017).
- 649 12. Tiku, P. E., Gracey, A. Y., Macartney, A. I., Beynon, R. J. & Cossins, A. R. Cold-induced
650 expression of Δ9-desaturase in carp by transcriptional and posttranslational mechanisms.
651 *Science (80-.)* **271**, 815–818 (1996).
- 652 13. Flowers, M. T. & Ntambi, J. M. Role of stearoyl-coenzyme A desaturase in regulating lipid
653 metabolism. *Curr. Opin. Lipidol.* **19**, 248 (2008).
- 654 14. Liu, X., Strable, M. S. & Ntambi, J. M. Stearoyl CoA Desaturase 1: Role in Cellular
655 Inflammation and Stress. *Adv. Nutr.* **2**, 15 (2011).
- 656 15. Hu, C. C., Qing, K. & Chen, Y. Diet-Induced Changes in Stearoyl-CoA Desaturase 1
657 Expression in Obesity-Prone and -Resistant Mice. *Obes. Res.* **12**, 1264–1270 (2004).
- 658 16. Grajchen, E. *et al.* Fatty acid desaturation by stearoyl-CoA desaturase-1 controls
659 regulatory T cell differentiation and autoimmunity. *Cell. Mol. Immunol.* (2023)
660 doi:10.1038/s41423-023-01011-2.
- 661 17. Vriens, K. *et al.* Evidence for an alternative fatty acid desaturation pathway increasing
662 cancer plasticity. *Nature* **566**, 403–406 (2019).
- 663 18. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer.
664 *Br. J. Cancer* **122**, 4–22 (2020).
- 665 19. MacDonald, M. L. E. *et al.* Despite antiatherogenic metabolic characteristics, SCD1-
666 deficient mice have increased inflammation and atherosclerosis. *Arterioscler. Thromb.*
667 *Vasc. Biol.* **29**, 341–347 (2009).
- 668 20. Miller, C. W. & Ntambi, J. M. Peroxisome proliferators induce mouse liver stearoyl-CoA
669 desaturase 1 gene expression. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 9443–9448 (1996).
- 670 21. Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-
671 activated nuclear receptors. *Nature* **454**, 470–477 (2008).
- 672 22. Toyama, T. *et al.* Stearoyl-CoA desaturase activity is elevated by the suppression of its
673 degradation by clofibrate acid in the liver of rats. *J. Pharmacol. Sci.* **103**, 383–390 (2007).
- 674 23. Chakravarthy, M. V. *et al.* Identification of a Physiologically Relevant Endogenous Ligand

675 for PPAR α in Liver. *Cell* **138**, 476–488 (2009).

676 24. Roy, A. *et al.* Identification and characterization of PPAR α ligands in the hippocampus. *Nat. Chem. Biol.* **12**, 1075 (2016).

677 25. Stojanović, O. *et al.* Dietary excess regulates absorption and surface of gut epithelium through intestinal PPAR α . *Nat. Commun.* **2021** *12*, 1–15 (2021).

678 26. Ntambi, J. M. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. *J. Biol. Chem.* **267**, 10925–10930 (1992).

679 27. Fu, J. *et al.* Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR- α . *Nature* **425**, 90–93 (2003).

680 28. Ridaura, V. K. *et al.* Gut microbiota from twins discordant for obesity modulate metabolism in mice. *Science* (80-). **341**, (2013).

681 29. De Groot, P. *et al.* Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. *Gut* **69**, 502–512 (2019).

682 30. Srinivasan, S. Regulation of body fat in *Caenorhabditis elegans*. *Annu. Rev. Physiol.* **77**, 161–178 (2015).

683 31. Kim, D. H. & Flavell, S. W. Host-microbe interactions and the behavior of *Caenorhabditis elegans*. *J. Neurogenet.* **34**, 500–509 (2020).

684 32. Brock, T. J., Browse, J. & Watts, J. L. Genetic regulation of unsaturated fatty acid composition in *C. elegans*. *PLoS Genet.* (2006) doi:10.1371/journal.pgen.0020108.

685 33. Devkota, R. *et al.* The adiponectin receptor AdipoR2 and its *Caenorhabditis elegans* homolog PAQR-2 prevent membrane rigidification by exogenous saturated fatty acids. *PLoS Genet.* **13**, e1007004 (2017).

686 34. Ma, D. K. *et al.* Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. *Cell* **161**, 1152–1163 (2015).

687 35. Van Gilst, M. R., Hadjivassiliou, H., Jolly, A. & Yamamoto, K. R. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in *C. elegans*. *PLoS Biol.* (2005) doi:10.1371/journal.pbio.0030053.

688 36. Van Gilst, M. R., Hadjivassiliou, H. & Yamamoto, K. R. A *Caenorhabditis elegans* nutrient response system partially dependent on nuclear receptor NHR-49. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 13496–13501 (2005).

689 37. Leone, T. C., Weinheimer, C. J. & Kelly, D. P. A critical role for the peroxisome proliferator-activated receptor α (PPAR α) in the cellular fasting response: The PPAR α -null mouse as a model of fatty acid oxidation disorders. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 7473–7478 (1999).

690 38. Brandstt, S., Schmeisser, K., Zarse, K. & Ristow, M. Lipid-lowering fibrates extend *C. elegans* lifespan in a NHR-49/PPARalpha-dependent manner. *Aging (Albany. NY)*. (2013) doi:10.18632/aging.100548.

691 39. Watts, J. L. & Ristow, M. Lipid and carbohydrate metabolism in *Caenorhabditis elegans*. *Genetics* **207**, 413–446 (2017).

692 40. Murray, P., Hayward, S. A. L., Govan, G. G., Gracey, A. Y. & Cossins, A. R. An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 5489–5494 (2007).

693 41. Brooks, K. K., Liang, B. & Watts, J. L. The influence of bacterial diet on fat storage in *C. elegans*. *PLoS One* **4**, e7545 (2009).

694 42. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: The Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

695 43. Grogan, D. W. & Cronan, J. E. Cyclopropane ring formation in membrane lipids of bacteria. *Microbiol. Mol. Biol. Rev.* **61**, 429–441 (1997).

696 44. Dolke, F. *et al.* Ascaroside Signaling in the Bacterivorous Nematode *Caenorhabditis remanei* Encodes the Growth Phase of Its Bacterial Food Source. *Org. Lett.* **21**, 5832–

726 5837 (2019).

727 45. Mukherji, M. *et al.* *The chemical biology of branched-chain lipid metabolism. Progress in*
728 *Lipid Research* vol. 42 359–376 (Pergamon, 2003).

729 46. Choi, L. S., Shi, C., Ashraf, J., Sohrabi, S. & Murphy, C. T. Oleic Acid Protects
730 Caenorhabditis Mothers From Mating-Induced Death and the Cost of Reproduction.
731 *Front. Cell Dev. Biol.* **0**, 1430 (2021).

732 47. Brock, T. J., Browse, J. & Watts, J. L. Fatty Acid Desaturation and the Regulation of
733 Adiposity in Caenorhabditis elegans. *Genetics* **176**, 865 (2007).

734 48. Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A mediator subunit, MDT-
735 15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -
736 independent pathways in C. elegans. *Genes Dev.* (2006) doi:10.1101/gad.1395406.

737 49. Anderson, S. M. *et al.* The fatty acid oleate is required for innate immune activation and
738 pathogen defense in caenorhabditis elegans. *PLoS Pathog.* **15**, (2019).

739 50. Helf, M. J., Fox, B. W., Artyukhin, A. B., Zhang, Y. K. & Schroeder, F. C. Comparative
740 metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway
741 in C. elegans. *Nat. Commun.* **13**, (2022).

742 51. Smith, S. W. Chiral Toxicology: It's the Same Thing... Only Different. *Toxicol. Sci.* **110**, 4–
743 30 (2009).

744 52. Bello, J. E., McElfresh, J. S. & Millar, J. G. Isolation and determination of absolute
745 configurations of insect-produced methyl-branched hydrocarbons. *Proc. Natl. Acad. Sci.*
746 U. S. A.

747 52. Bello, J. E., McElfresh, J. S. & Millar, J. G. Isolation and determination of absolute
745 configurations of insect-produced methyl-branched hydrocarbons. *Proc. Natl. Acad. Sci.*
746 U. S. A.

747 53. Enders, D., Knopp, M. & Schiffers, R. Asymmetric [3.3]-sigmatropic rearrangements in
748 organic synthesis. *Tetrahedron Asymmetry* **7**, 1847–1882 (1996).

749 54. Croes, K., Casteels, M., Dieuaide-Noubhani, M., Mannaerts, G. P. & Van Veldhoven, P.
750 P. Stereochemistry of the α -oxidation of 3-methyl-branched fatty acids in rat liver. *J. Lipid*
751 *Res.* **40**, 601–609 (1999).

752 55. Biermann, U. & Metzger, J. O. Synthesis of alkyl-branched fatty acids. *Eur. J. Lipid Sci.*
753 *Technol.* **110**, 805–811 (2008).

754 56. Han, M., Jia, F., Cui, M. & Than, M. T. Developmental defects of Caenorhabditis elegans
755 lacking branched-chain α -ketoacid dehydrogenase are mainly caused by monomethyl
756 branched-chain fatty acid deficiency. *J. Biol. Chem.* **291**, 2967–2973 (2016).

757 57. Kniazeva, M., Crawford, Q. T., Seiber, M., Wang, C. Y. & Han, M. Monomethyl branched-
758 chain fatty acids play an essential role in Caenorhabditis elegans development. *PLoS*
759 *Biol.* **2**, (2004).

760 58. Petrossian, T. C. & Clarke, S. G. Uncovering the Human Methyltransferosome. *Mol. Cell.*
761 *Proteomics* **10**, (2011).

762 59. Hannich, J. T. *et al.* Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva
763 Formation in Caenorhabditis elegans. *Dev. Cell* **16**, 833–843 (2009).

764 60. Asencio, C., Rodríguez-Aguilera, J. C., Ruiz-Ferrer, M., Vela, J. & Navas, P. Silencing of
765 ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. *FASEB J.*
766 **17**, 1135–1137 (2003).

767 61. Navarro, I. C. *et al.* Translational adaptation to heat stress is mediated by RNA 5-
768 methylcytosine in Caenorhabditis elegans. *EMBO J.* **40**, e105496 (2021).

769 62. Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A. & Micklem, G. Expression of multiple
770 horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes.
771 *Genome Biol.* **2015** *16* **1**, 1–13 (2015).

772 63. Wrobel, C. J. J. *et al.* Combinatorial Assembly of Modular Glucosides via
773 Carboxylesterases Regulates C. elegans Starvation Survival. *Cite This J. Am. Chem. Soc.*
774 **143**, 14676–14683 (2021).

775 64. Barkan, D., Rao, V., Sukenick, G. D. & Glickman, M. S. Redundant function of cmaA2
776 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated

777 65. mycolates. *J. Bacteriol.* **192**, 3661–3668 (2010).

778 66. Han, S. *et al.* Mono-unsaturated fatty acids link H3K4me3 modifiers to *C. elegans* lifespan. *Nat.* **2017** *5447649* **544**, 185–190 (2017).

779 67. Lemke, R. A. S. *et al.* A bacterial biosynthetic pathway for methylated furan fatty acids. *J. Biol. Chem.* **295**, 9786–9801 (2020).

780 68. Pathare, P. P., Lin, A., Bornfeldt, K. E., Taubert, S. & van Gilst, M. R. Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. *PLoS Genet.* (2012) doi:10.1371/journal.pgen.1002645.

781 69. Lee, K., Goh, G. Y. S., Wong, M. A., Klassen, T. L. & Taubert, S. Gain-of-function alleles in *caenorhabditis elegans* nuclear hormone receptor *nhr-49* are functionally distinct. *PLoS One* (2016) doi:10.1371/journal.pone.0162708.

782 70. Wani, K. A. *et al.* *Nhr-49/ppar-a* and *hlh-30/tfeb* cooperate for *c. elegans* host defense via a flavin-containing monooxygenase. *Elife* **10**, (2021).

783 71. Wanders, R. J. A., Komen, J. & Ferdinandusse, S. *Phytanic acid metabolism in health and disease*. *Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids* vol. 1811 498–507 (Elsevier, 2011).

784 72. Smith, P. M. *et al.* The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. *Science* (80- .) **341**, 569–573 (2013).

785 73. Funabashi, M. *et al.* A metabolic pathway for bile acid dehydroxylation by the gut microbiome. *Nature* **582**, 566–570 (2020).

786 74. Quinn, R. A. *et al.* Global chemical effects of the microbiome include new bile-acid conjugations. *Nature* **579**, 123–129 (2020).

787 75. Downes, M. *et al.* A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. *Mol. Cell* **11**, 1079–1092 (2003).

788 76. Claudel, T., Staels, B. & Kuipers, F. The Farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism. *Arterioscler. Thromb. Vasc. Biol.* **25**, 2020–2031 (2005).

789 77. Caligiani, A., Nocetti, M., Lolli, V., Marseglia, A. & Palla, G. Development of a Quantitative GC-MS Method for the Detection of Cyclopropane Fatty Acids in Cheese as New Molecular Markers for Parmigiano Reggiano Authentication. *J. Agric. Food Chem.* **64**, 4158–4164 (2016).

790 78. Mika, A. *et al.* Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders. *Lipids* **51**, 867–873 (2016).

791 79. Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y.-I. & Shoelson, S. E. Crystal Structure of the HNF4 α Ligand Binding Domain in Complex with Endogenous Fatty Acid Ligand *. *J. Biol. Chem.* **277**, 37973–37976 (2002).

792 80. Wood, R. & Reiser, R. Cyclopropane fatty acid metabolism: Physical and chemical identification of propane ring metabolic products in the adipose tissue. *J. Am. Oil Chem. Soc.* (1965) doi:10.1007/BF02540137.

793 81. Chung, A. E. Metabolism of cyclopropane fatty acids oxidation of cis-9,10-methylene hexadecanoic and cis-9,10-methylene octadecanoic acids by rat-liver mitochondria. *Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab.* (1966) doi:10.1016/0005-2760(66)90003-8.

794 82. Dirksen, P. *et al.* CeMbio - The *Caenorhabditis elegans* microbiome resource. *G3 Genes, Genomes, Genet.* (2020) doi:10.1534/g3.120.401309.

795 83. Karlinsky, J. E. *et al.* Cyclopropane Fatty Acids Are Important for *Salmonella enterica* Serovar *Typhimurium* Virulence. *Infect. Immun.* **90**, (2022).

796 84. Palacios-Chaves, L. *et al.* Identification and functional analysis of the cyclopropane fatty acid synthase of *Brucella abortus*. *Microbiology* **158**, 1037–1044 (2012).

797 85. Wang, A. -Y & Cronan, J. E. The growth phase-dependent synthesis of cyclopropane fatty acids in *Escherichia coli* is the result of an RpoS(KatF)-dependent promoter plus

828 enzyme instability. *Mol. Microbiol.* **11**, 1009–1017 (1994).

829 85. Burkhardt, R. N. *et al.* Sex-specificity of the *C. elegans* metabolome. *Nat. Commun.* **14**,
830 1–15 (2023).

831 86. Ebbing, A. *et al.* Spatial Transcriptomics of *C. elegans* Males and Hermaphrodites
832 Identifies Sex-Specific Differences in Gene Expression Patterns. *Dev. Cell* **47**, 801–
833 813.e6 (2018).

834 87. Ortiz, M. A., Noble, D., Sorokin, E. P. & Kimble, J. A New Dataset of Spermatogenic vs.
835 Oogenic Transcriptomes in the Nematode *Caenorhabditis elegans*. *G3*
836 *Genes/Genomes/Genetics* **4**, 1765 (2014).

837 88. Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to
838 eukaryotes. *Nat. Rev. Microbiol.* **16**, 67–79 (2018).

839 89. Pruss, K. M. *et al.* Host-microbe co-metabolism via MCAD generates circulating
840 metabolites including hippuric acid. *Nat. Commun.* **14**, 1–12 (2023).

841 90. Jin, W. B. *et al.* Genetic manipulation of gut microbes enables single-gene interrogation in
842 a complex microbiome. *Cell* **185**, 547–562.e22 (2022).

843 91. Artyukhin, A. B., Schroeder, F. C. & Avery, L. Density dependence in *Caenorhabditis*
844 larval starvation. *Sci. Rep.* **3**, 1–7 (2013).

845 92. Ahmed, M. *et al.* Phylogenomic Analysis of the Phylum Nematoda: Conflicts and
846 Congruences With Morphology, 18S rRNA, and Mitogenomes. *Front. Ecol. Evol.* **9**,
847 769565 (2022).

848 93. Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis
849 Version 11. *Mol. Biol. Evol.* **38**, 3022–3027 (2021).

850 94. Le, S. Q. & Gascuel, O. An Improved General Amino Acid Replacement Matrix. *Mol. Biol.*
851 *Evol.* **25**, 1307–1320 (2008).

852 95. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data
853 matrices from protein sequences. *Bioinformatics* **8**, 275–282 (1992).

854 96. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time
855 quantitative PCR and the 2- $\Delta\Delta CT$ method. *Methods* **25**, 402–408 (2001).

856 97. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and
857 Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* **57**, 289–300 (1995).

858

859 **Acknowledgements**

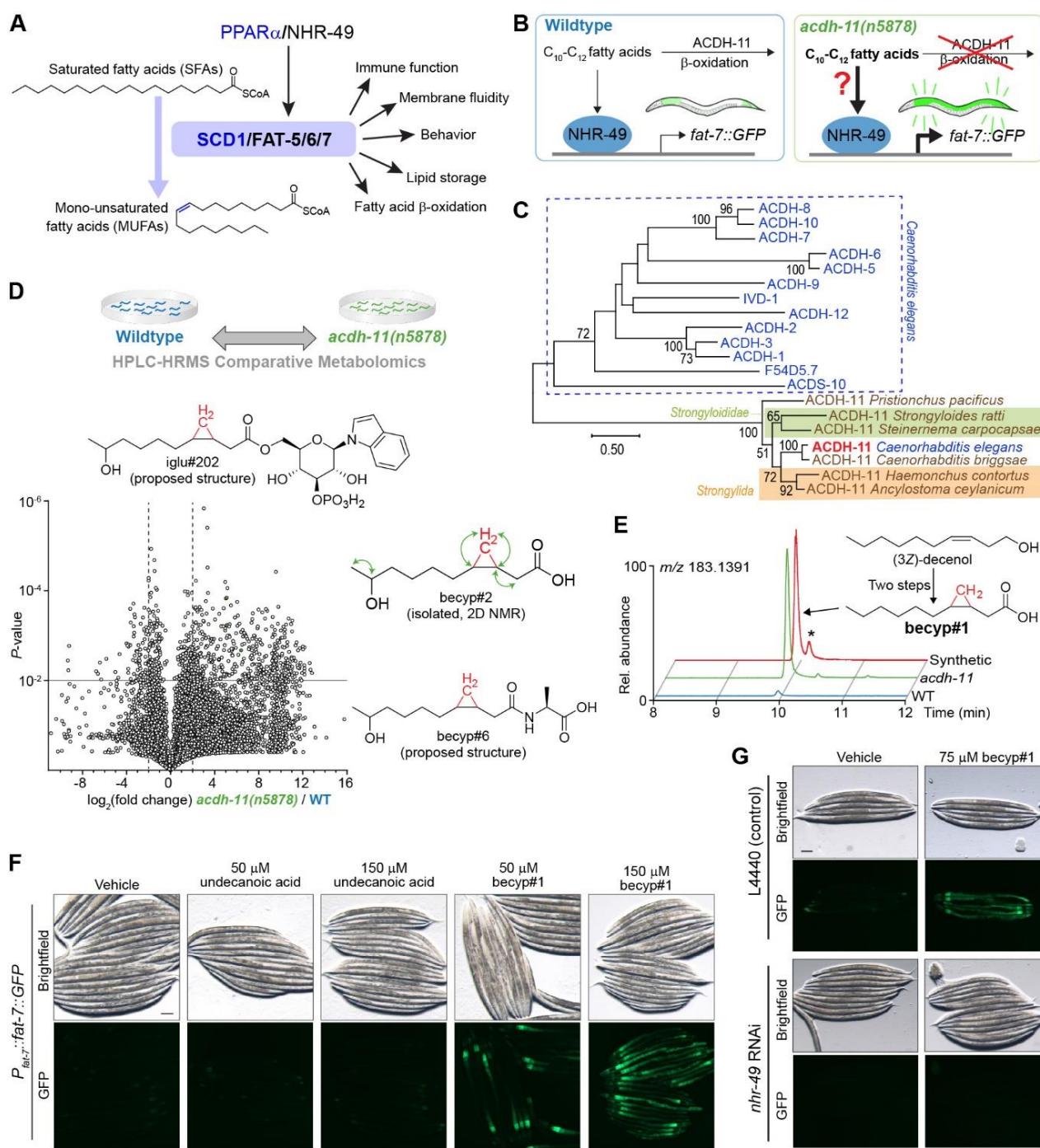
860 This research was supported in part by the National Institutes of Health (R35GM131877 to FCS)
861 and the Howard Hughes Medical Institute (Faculty Scholar grant to F.C.S.). MJH received a
862 Research Fellowship from the Deutsche Forschungsgemeinschaft (DFG), Project Number
863 386228702. Some strains used in this work were provided by the CGC, which is funded by the
864 NIH Office of Research Infrastructure Programs (P40 OD010440). *hacI-1(tm6725)* and *fcmt-1(tm2382)*
865 were obtained from the National Bioresource Project, Tokyo, Japan. We thank Gary
866 Horvath for technical support. We thank Erich Schwarz for helpful discussions and critical
867 feedback.

868 **Author contributions**

869 FCS and SSL supervised the study. BWF, RNB, MJH, ABA, DFP, AC, AT, and CJW performed
870 chemical and biological experiments. RNB, BJC, and YKZ performed syntheses. BWF and FCS
871 wrote the paper with input from all authors.

872 **Competing interests**

873 F.C.S. is a co-founder of Holoclara and Ascribe Bioscience, a member of the Board of Directors
874 of Ascribe Bioscience, and a member of the Scientific Advisory Board of Hexagon Bio.


875

876 **Correspondence and requests for materials**

877 All correspondence and material requests should be addressed to F.C.S.

878

FIGURES

879

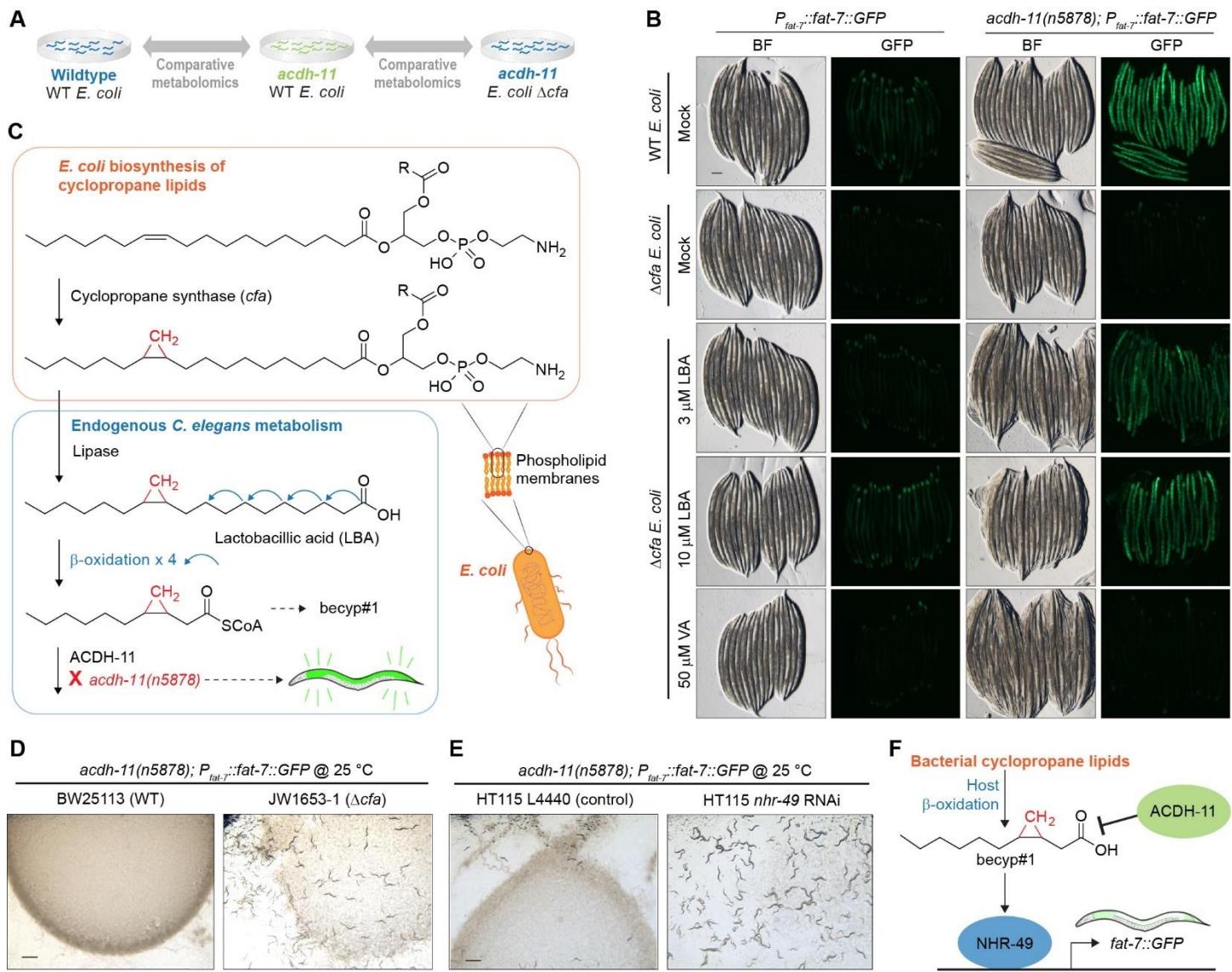
880 **Fig. 1. β-branched cyclopropyl fatty acids promote desaturation**

881 **A)** PPAR α /NHR-49 promotes transcription of stearoyl-CoA desaturase enzymes (*SCD1* in humans, *fat-5/6/7* in
882 *C. elegans*), which convert saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFA) and are
883 implicated in a range of physiologic processes.

884 **B)** Schematic summarizing inhibition of *fat-7* expression by ACDH-11, which is proposed to sequester medium
885 chain fatty acids. *fat-7* is highly expressed in *acdih-11* mutants, and it was previously hypothesized that this is
886 due to an accumulation of medium chain fatty acids that activate NHR-49-dependent transcription of *fat-7*³⁴.

887 **C)** Maximum likelihood tree for ACDH-11 homologs (see **Methods** for details). ACDH-11 is highly conserved
888 across bacterivorous and parasitic nematodes in clade V as well as a subset of nematodes (*Strongyloididae*)

889 from clade IV, but is distinct from other acyl-CoA dehydrogenase enzymes in *C. elegans*. Bootstrap support
890 values over 50% are indicated in the tree.


891 **D)** Schematic for comparative metabolomics by HPLC-HRMS of *acdH-11(n5878)* versus the wildtype FAT-
892 7::GFP control. Volcano plot for subset of features detected in negative ion mode in the exo-metabolome. See
893 **Methods** for more details. Proposed structures based on MS/MS fragmentation and subsequent experiments
894 (*vide infra*).

895 **E)** The ω -1 hydroxylated C₁₁-cyclopropane fatty acid, named becyp#2, was isolated by chromatographic
896 fractionation, and characterized by 2D-NMR. Structural assignment based on ¹H-¹H couplings marked by
897 green arrows (see also **Extended Data Fig. 4**).

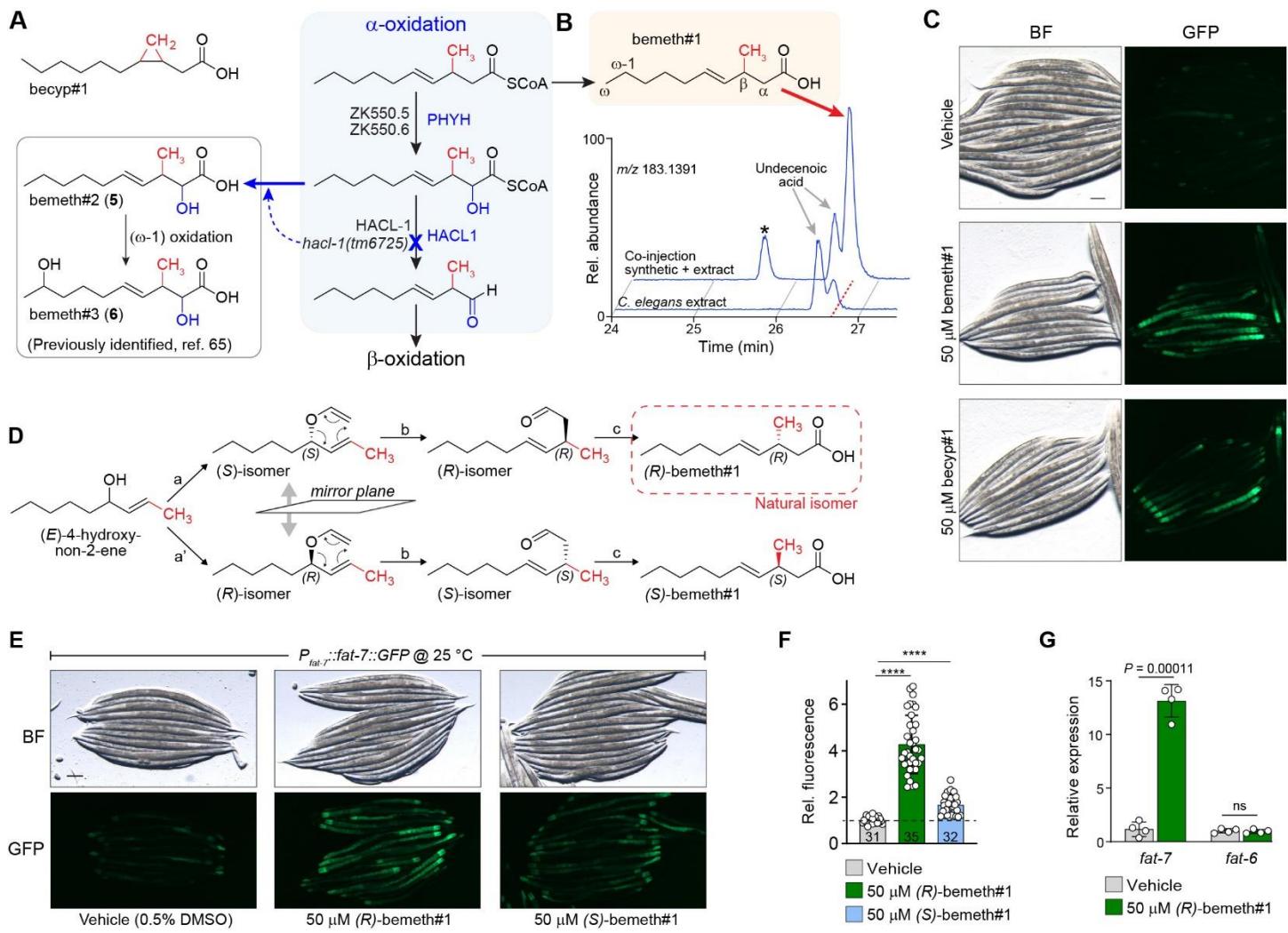
898 **F)** Synthesis of becyp#1 was accomplished by Simmons-Smith cyclopropanation and subsequent Jones
899 oxidation of (3Z)-decenol, see **Supporting Information** for details. Extracted ion chromatograms (EICs) for
900 *m/z* 183.1391, corresponding to C₁₁H₁₉O₂⁻, in extracts of N2 or *acdH-11* mutants reared on *E. coli* OP50, or
901 synthetic becyp#1, as indicated. Asterisk (*) marks the *trans*-becyp#1 isomer, an impurity from synthesis not
902 detected in natural samples.

903 **G)** Representative brightfield and GFP fluorescence micrographs of *P_{fat-7}:fat-7::GFP* animals reared at 25 °C
904 on *E. coli* JW1653-1 supplemented with vehicle (0.5% ethanol), 50 μ M undecanoic acid, 150 μ M undecanoic
905 acid, 50 μ M becyp#1, or 150 μ M becyp#1, as indicated. The scale bar represents 0.1 mm.

906 **H)** Representative brightfield and GFP fluorescence micrographs of *P_{fat-7}:fat-7::GFP* animals reared at 25 °C on
907 HT115 *E. coli* L4440 (vector control) or *nhr-49* RNAi and supplemented with vehicle (0.5% ethanol) or 75 μ M
908 becyp#1, as indicated. The scale bar represents 0.1 mm.

Fig. 2. Bacterial cyclopropyl lipids are the source of becyp#1

A) Schematic for parallel comparative metabolomics experiments to identify features enriched in *acdh-11* mutants relative to WT that are derived from cyclopropane lipid metabolism. The vast majority of metabolites enriched in *acdh-11* are derived from cyclopropane lipids, results summarized in **Supplementary Table 1**.


B) Representative brightfield and GFP fluorescence micrographs of WT and *acdh-11(n5878)* *P*_{fat-7}::*fat-7*::GFP animals reared at 20 °C on WT *E. coli*, Δcfa *E. coli*, or Δcfa *E. coli* supplemented with lactobacillic (LBA) or vaccenic acid (VA) fatty acids, as indicated. The scale bar represents 0.1 mm.

C) Cyclopropyl lipids are synthesized by the *E. coli* cyclopropyl fatty acid synthase (CFA), which converts VA or palmitoleic acid to the corresponding cyclopropyl derivatives in the context of phospholipids⁴³. Lipolysis and β -oxidation of CPFAs by *C. elegans* produces a C₁₁ β -cyclopropyl fatty acid, becyp#1, that accumulates in *acdh-11* loss-of-function mutants.

D) Representative brightfield micrographs of *acdh-11* mutants reared on BW25113 (WT) or JW1653-1 (Δcfa) at 25 °C. Twelve L1 larvae were seeded onto each plate and photographed after five days. The scale bar represents 1 mm.

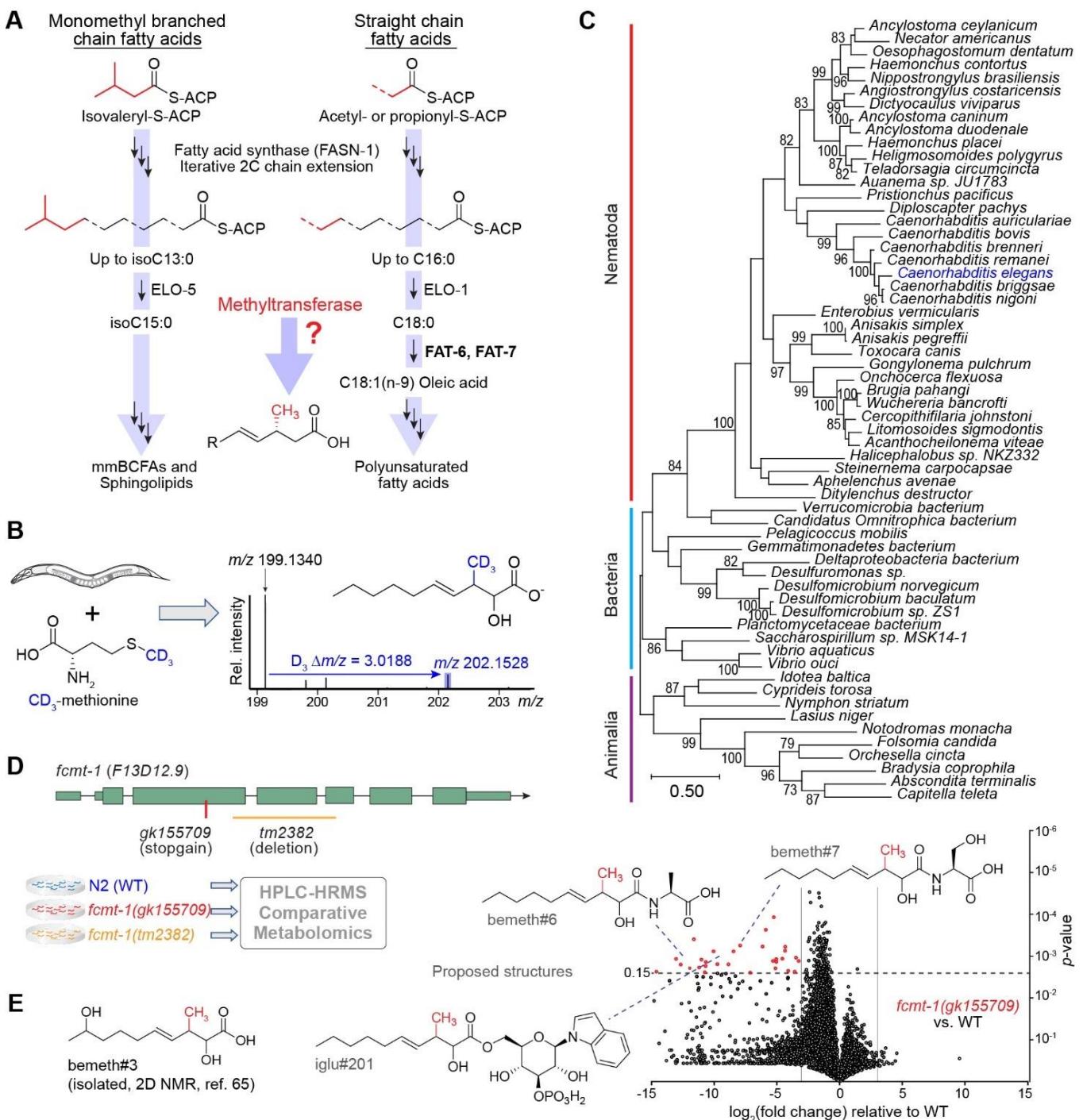
924 **E**) Representative brightfield micrographs of *acdH-11* mutants reared on L4440 (control) or *nhr-49* RNAi at 25
925 °C. Twenty L1 larvae were seeded onto each plate and photographed after four days. The scale bar
926 represents 1 mm.

927 **F**) Revised model of ACDH-11 regulation of *fat-7* expression. Bacteria-derived βCPFAs accumulate in the
928 *acdH-11(n5878)* mutant and drive NHR-49-dependent *fat-7* expression.

Fig. 3. An endogenous activator of *fat-7* expression

A) The structures of β -cyclopropyl fatty acids are similar to β -methyl fatty acids (β MFAs) that accumulate in the *hacl-1(tm6725)* mutant⁵⁰. Predicted biosynthesis of β MFAs begins with α -hydroxylation of a β -methyl decenoic acid precursor that is likely catalyzed by one or both of the *C. elegans* homologs of human PHYH (ZK550.5, ZK550.6). HAACL-1 is required for the subsequent C-C bond breaking step that yields an aldehyde and one equivalent of formyl-CoA. The aldehyde likely undergoes oxidation by aldehyde dehydrogenase to yield an α -methyl fatty acid that can now undergo β -oxidation. Fatty acids accumulating in the *hacl-1(tm6725)* loss-of-function mutant include bemeth#2 and bemeth#3, which were previously characterized⁵⁰.

B) EICs for m/z 183.1391, corresponding to $C_{11}H_{19}O_2^-$, from endo-metabolome extract of N2 larvae, and a co-injection of 500 nM synthetic bemeth#1 (3-methyl-4-*E*-decenoic acid) in extract of N2 larvae, as indicated. Red dashed line highlights bemeth#1, which elutes slightly later than an unknown structural isomer (“undecenoic acid”). Asterisk (*) marks 3-methyl-4-*Z*-decenoic acid, “*cis*-bemeth#1,” an impurity from synthesis. No *cis*-bemeth#1 was detected in any biological samples.


C) Representative brightfield and GFP fluorescence micrographs of *P_fat-7::GFP* animals reared at 25 °C on BW25113 *E. coli* and supplemented with vehicle (0.5% ethanol), 50 μ M bemeth#1, or 50 μ M becyp#1, as indicated. The scale bar represents 0.1 mm.

D) Overview of syntheses to afford enantiomerically enriched (*R*)- or (*S*)-bemeth#1. a, a'. Sharpless chiral resolution and conversion to vinyl ethers; b. Claisen rearrangement to the branched aldehyde; c. chlorite

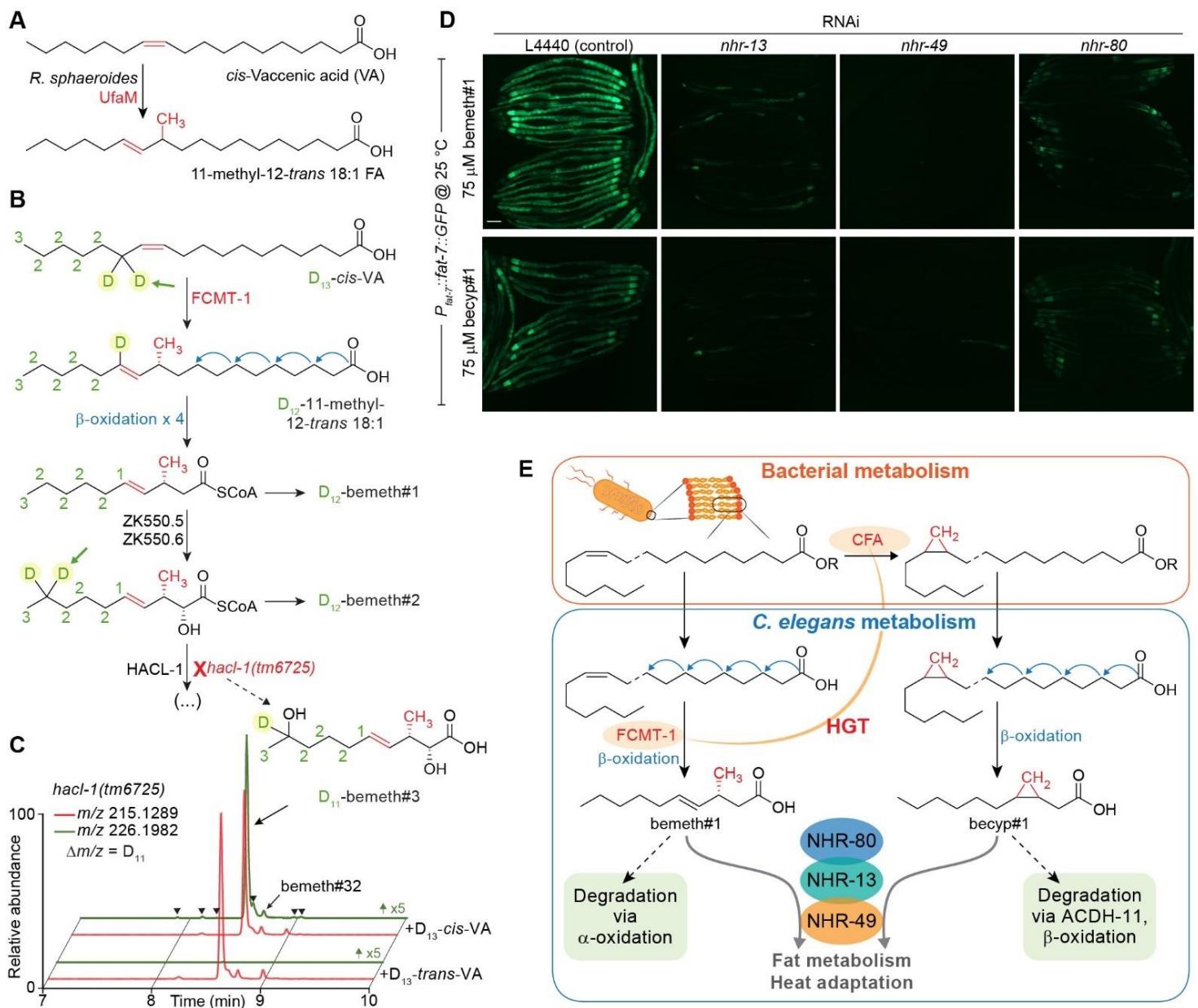
948 oxidation. Absolute configuration of natural bemeth#1 was determined via Mosher derivatization, See
949 **Supporting Information** for details.

950 **E, F)** Representative brightfield and GFP fluorescence micrographs (**E**) and quantification of fluorescence
951 intensity (**F**) of *P_{fat-7}:fat-7::GFP* animals reared at 25 °C supplemented with vehicle (0.5% DMSO or ethanol),
952 50 µM (*R*)-bemeth#1, or 50 µM (*S*)-bemeth#1. The scale bar represents 0.1 mm. Data represent four
953 biologically independent experiments in which 6-12 animals per treatment were quantified, bars indicate mean
954 ± s.d. *****P* < 0.0001, as calculated by Welch's ANOVA with post-hoc comparison using Dunnett's T3 multiple
955 comparisons test.

956 **G)** Relative expression of *fat-6* and *fat-7* desaturase genes in N2 (WT) animals supplemented with vehicle
957 (0.5% DMSO) or 50 µM (*R*)-bemeth#1 as determined by RT-PCR. Data represent four biologically independent
958 experiments and error bars indicate mean ± s.d. *P* values calculated using unpaired, two-sided *t*-test with
959 Welch correction. ns, not significant.

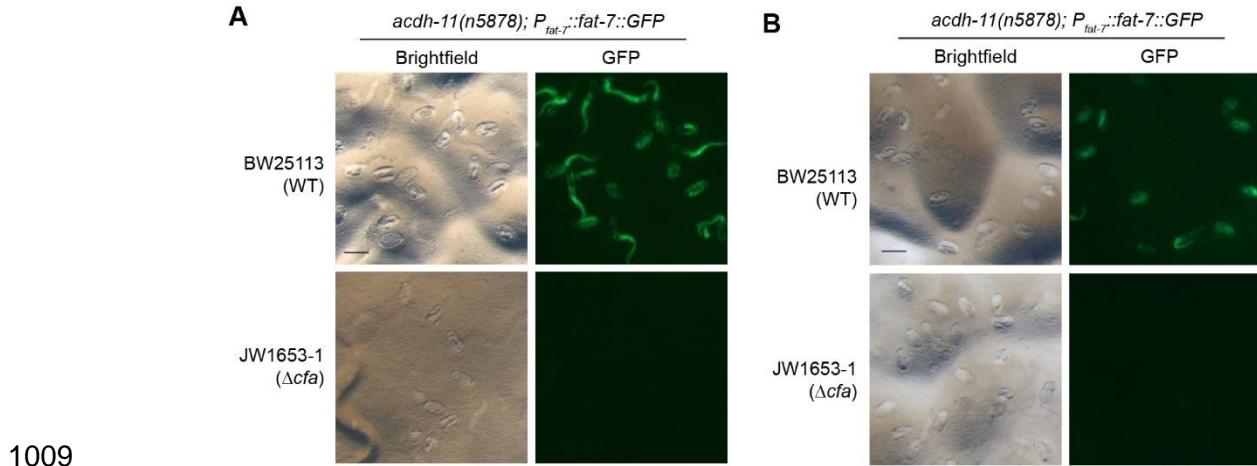
960
961 **Fig. 4. A methyltransferase conserved across Nematoda**

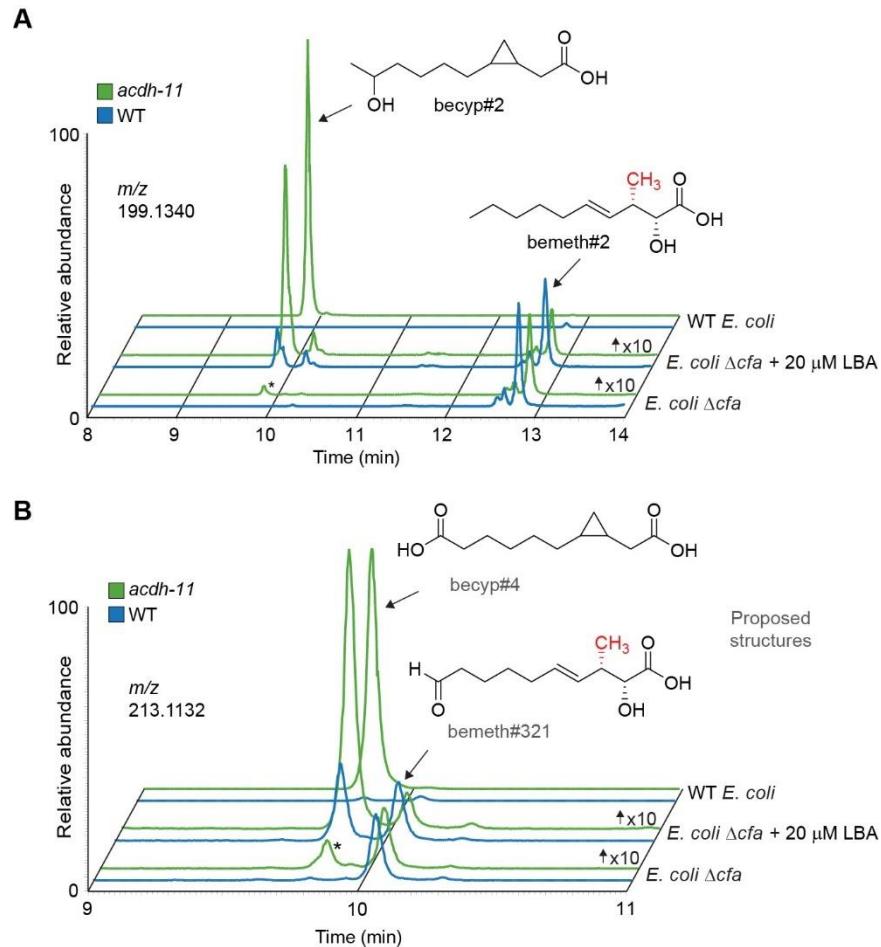
962 **A**) Canonical straight chain fatty acid biosynthesis in *C. elegans* begins with either acetyl- or propionyl-CoA
963 and proceeds via iterative 2-carbon condensation cycles to produce even- or odd-numbered fatty acids up to
964 16 carbons in length. Biosynthesis of monomethyl branched chain fatty acids begins with isovaleryl-CoA
965 derived from Leu, in which the methyl branch is located at the terminal (ω) carbon. No known biosynthetic
966 pathways exist for the production of β -methyl branched fatty acids, suggesting the activity of a
967 methyltransferase.


968 **B)** *hac-1(tm6725)* larvae were supplemented with 5 mM D₃-methyl methionine (CD₃-Met) in the absence of
969 bacteria, and extracts were analyzed by HPLC-HRMS. Mass spectrum for bemeth#2 exhibits an isotope with

970 an exact *m/z* shift of 3.0188 (blue), corresponding to incorporation of exactly three deuterium atoms, thereby
971 implicating an endogenous methyltransferase.

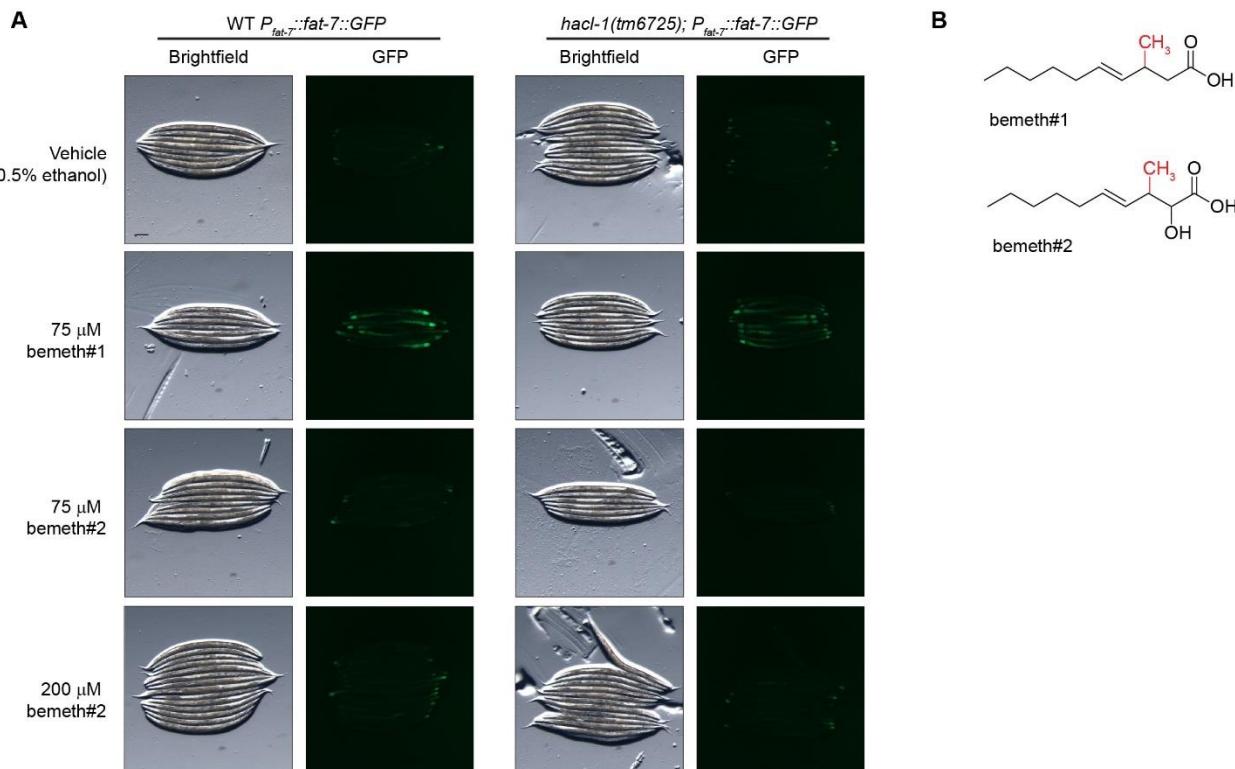
972 **C)** Maximum likelihood tree for FCMT-1 homologs. Sequences of the top 50 Blastp hits in the NCBI-nr
973 database were aligned along with the top 10 Blastp hits in animals (excluding nematodes). The closest
974 homologs are found in nematodes and bacteria, not in other animals, pointing to a possible horizontal gene
975 transfer (HGT) event in a Nematode ancestor⁶². Bootstrap support values over 70% are indicated in the tree.


976 **D)** Schematic of *fcmt-1* (previously *F13D12.9*) gene structure and comparative metabolomics. *fcmt-*
977 *1(gk155709)* harbors a nonsense mutation resulting in an early stop codon, K127*, and *fcmt-1(tm2382)*
978 harbors a genomic deletion spanning exons 2-4. Small olive rectangles represent untranslated regions, large
979 rectangles represent exons, and black lines represent introns. The indicated strains were grown and extracted
980 in parallel, then analyzed by HPLC-HRMS using Metaboseek software for comparative metabolomics.


981 **E)** Volcano plot for subset of features detected by HPLC-HRMS (negative ion) in the exo-metabolomes of *fcmt-*
982 *1(gk155709)* versus the wildtype (N2) control. See **Methods** for more details. bemeth#3 was previously
983 characterized⁵⁰; additional proposed structures based on MS/MS fragmentation and stable isotope enrichment,
984 see **Supplementary Table 2** for a complete list of *fcmt-1*-dependent features.

999 D) Representative GFP fluorescence micrographs of *P_{fat-7}::fat-7::GFP* animals reared at 25 °C on HT115 *E. coli*
000 expressing various RNAi and supplemented with either 75 µM bemeth#1 or 75 µM becyp#1, as indicated. The
001 scale bar represents 0.1 mm.

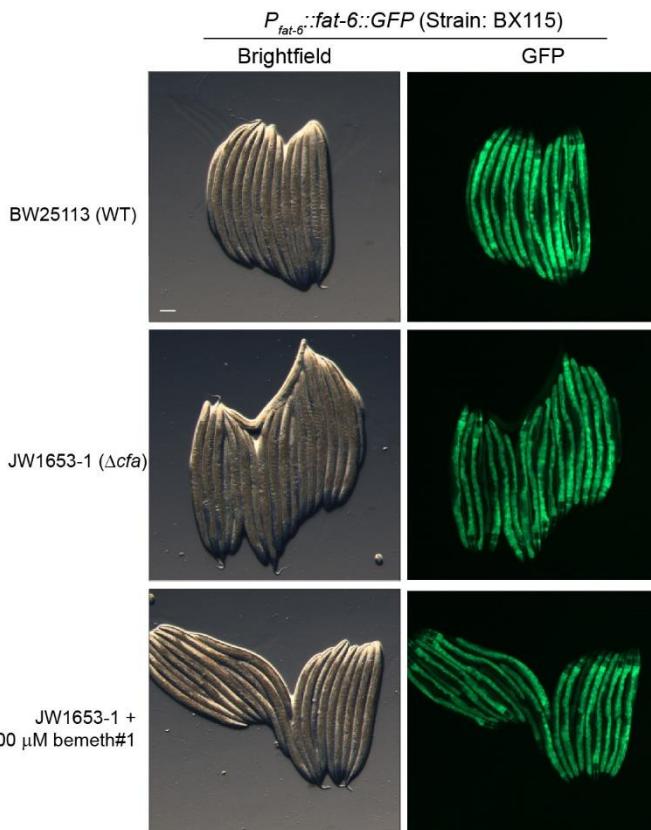
002 E) Top: Cyclopropyl lipids are synthesized by the *E. coli* cyclopropyl fatty acid synthase, CFA, which converts
003 VA or palmitoleic acid to the corresponding cyclopropyl derivatives in membrane phospholipids. Bottom: VA is
004 the substrate for FCMT-1 methylation; four rounds of β -oxidation produce bemeth#1, a *fat-7* agonist that
005 requires NHR-13, -49, and -80. Degradation of bemeth#1 occurs via α -oxidation, which yields an α -methyl
006 aldehyde compatible with β -oxidation. In parallel, lipolysis and β -oxidation of bacterial CPFAs by *C. elegans*
007 produces a C₁₁ β -cyclopropyl fatty acid, becyp#1, which signals via overlapping NHRs. becyp#1 is likely
008 degraded by ACDH-11-dependent β -oxidation, which is predicted to yield an α -methyl aldehyde.



1021

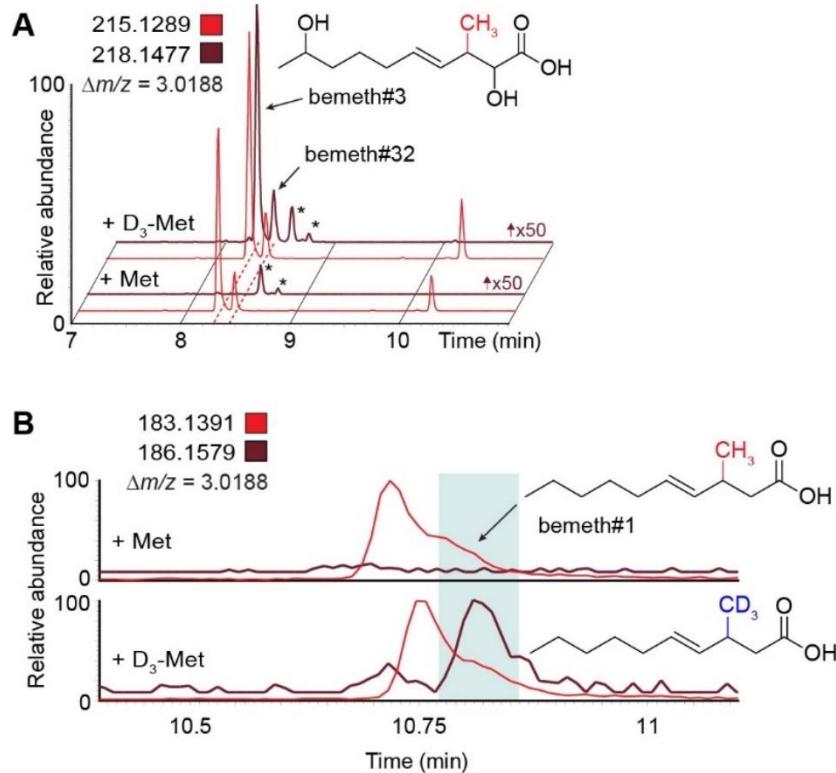
1022 Extended Data Fig. 2. Supplementation with lactobacillic acid (LBA) restores β CPFAs.

1023 **A)** EICs for m/z 199.1340, corresponding to becyp#2, bemeth#2, and structural isomers of
 1024 $\text{C}_{11}\text{H}_{19}\text{O}_3^-$, in extracts of WT and *acdh-11(n5878)* mixed-stage cultures reared on WT *E. coli*, *E.*
 1025 *coli* Δ *acfa* supplemented with 20 μM LBA (see **Fig. 2**), or *E. coli* Δ *acfa*, as indicated. becyp#2 is
 1026 strongly enriched in *acdh-11* mutants fed WT *E. coli*, abolished in animals fed *E. coli* Δ *acfa*, and
 1027 partially restored in animals fed *E. coli* Δ *acfa* supplemented with 20 μM LBA, whereas bemeth#2
 1028 is unaffected. An unknown isomer is marked with an asterisk. Y-axes are scaled as indicated to
 1029 clearly show traces.


1030 **B)** EICs for m/z 213.1123, corresponding to becyp#4, bemeth#321, and structural isomers of
 1031 $\text{C}_{11}\text{H}_{17}\text{O}_4^-$, in extracts of WT and *acdh-11(n5878)* mixed-stage cultures reared on the same diets
 1032 as above. Levels of becyp#4 are partially restored by feeding LBA, whereas bemeth#321 is
 1033 unaffected. An unknown isomer is marked with an asterisk. Y-axes are scaled as indicated to
 1034 clearly show traces.

1036 **Extended Data Fig. 3. FAT-7::GFP is not induced in *hac-1* mutants nor following**
 1037 **supplementation with bemeth#2.**

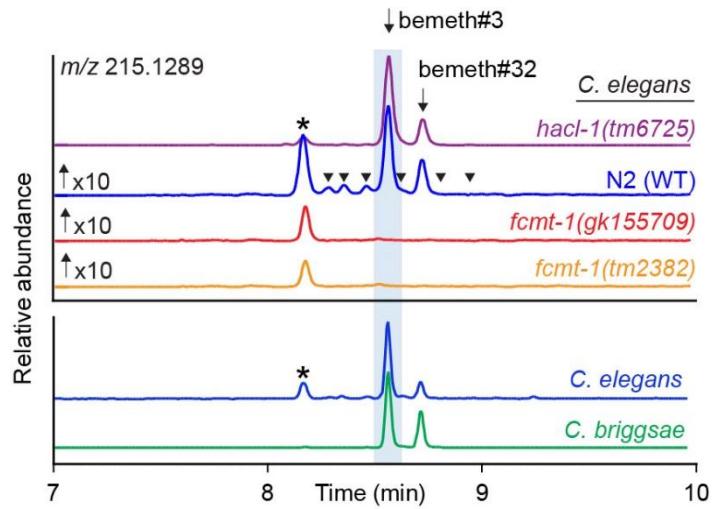
1038 **A)** Representative brightfield and GFP fluorescence micrographs of *P_{fat-7}::fat-7::GFP* and *hac-1(tm6725);P_{fat-7}::fat-7::GFP* adults reared at 25 °C supplemented with vehicle (0.5% ethanol),
 1039 bemeth#1, or bemeth#2, as indicated. Scale bar represents 0.1 mm. Supplementation with
 1040 bemeth#2 does not cause overt changes in the abundance of FAT-7::GFP in either genotype.
 1041

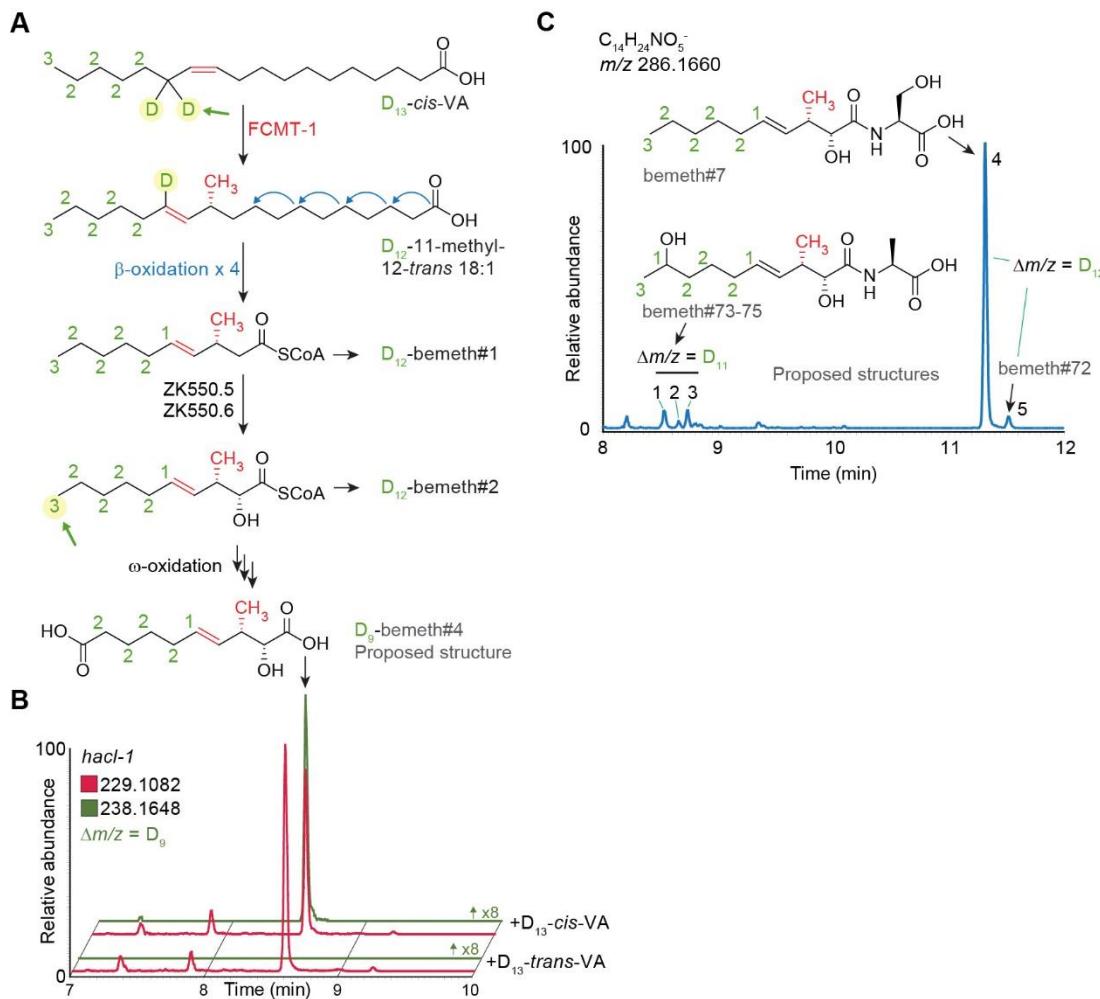

1042 **B)** Chemical structures of bemeth#1 and its α -hydroxylated derivative, bemeth#2. Several α -
 1043 hydroxylated β MFAs accumulate in *hac-1* mutants, but do not cause increased *fat-7*
 1044 expression.

1045

1046 **Extended Data Fig. 4. bemeth#1 supplement does not change FAT-6::GFP.**

1047 Representative brightfield and fluorescence micrographs of $P_{fat-6}::fat-6::GFP$ animals reared on
1048 BW25113 (WT), JW1653-1 (Δcfa), or JW1653-1 supplemented with 100 μ M bemeth#1. No FAT-
1049 6::GFP induction was observed under supplementation conditions. The scale bar represents 0.1
1050 mm.

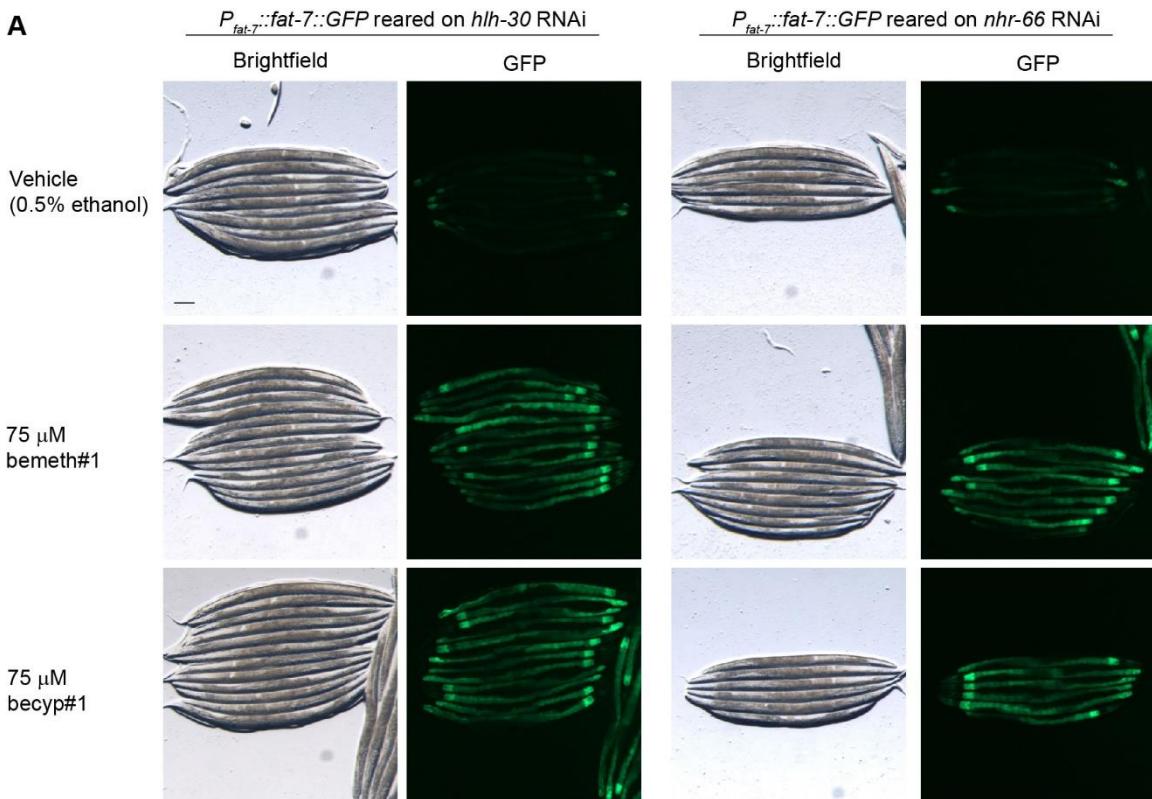



1051

1052 **Extended Data Fig. 5. D₃-methyl is incorporated in βMFAs.**

1053 **A)** EICs for m/z 215.1289 and 218.1477, corresponding to $C_{11}H_{19}O_4^-$ and $D_3-C_{11}H_{16}O_4^-$, from
 1054 exo-metabolome extracts of *hac1-1(tm6725)* larvae supplemented with methionine (Met) or D₃-
 1055 methyl-methionine (D₃-Met). Red dashed lines highlight bemeth#3 stereoisomers with D₃-
 1056 enrichment. EIC Y-axis for m/z 218.1477 is scaled 50-fold to clearly show traces for labeled
 1057 features. Asterisks mark unrelated features present in both Met- and D₃-Met-supplemented
 1058 samples.

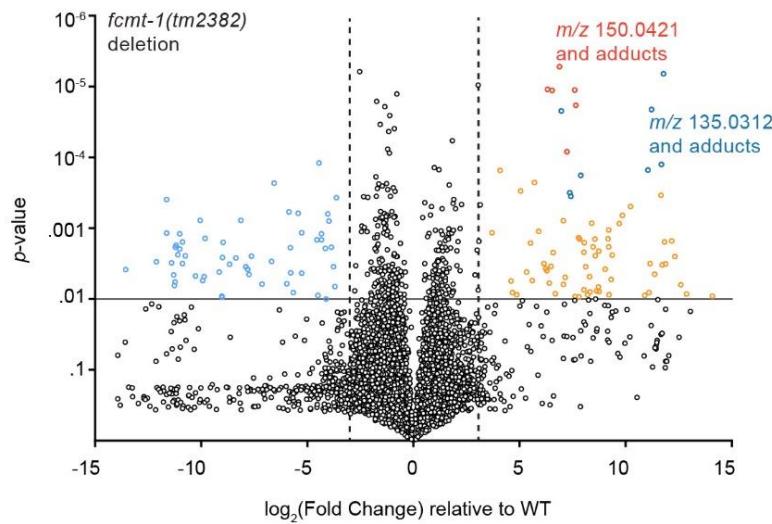
1059 **B)** EICs for m/z 183.1391 and 186.1579, corresponding to $C_{11}H_{19}O_2^-$ and $D_3-C_{11}H_{16}O_2^-$, from
 1060 endo-metabolome extracts of *hac1-1(tm6725)* larvae supplemented with Met or D₃-Met. Under
 1061 these chromatographic conditions, bemeth#1 elutes as a shoulder of an unidentified isobaric
 1062 compound (undecenoic acid). Blue box highlights D₃-enrichment in later-eluting bemeth#1,
 1063 which was resolved from the earlier metabolite via method optimization (see **Fig. 3B**).

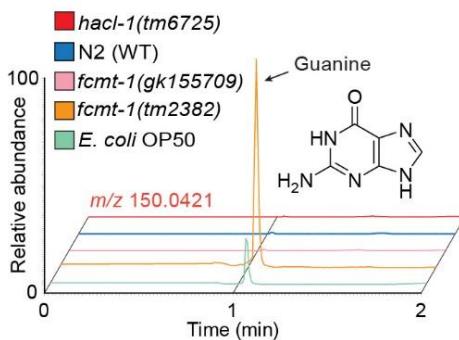

1073

1074 **Extended Data Fig. 7. Isotopic enrichment from *cis*-D₁₃-vaccenic acid supplement**

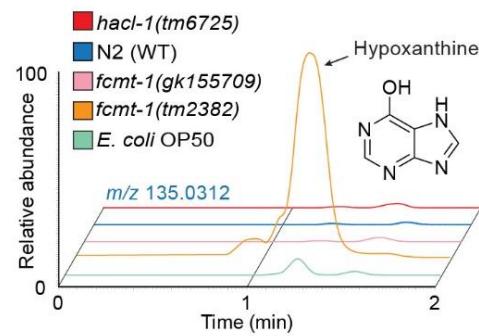
1075 **A)** Proposed biosynthesis of bemeth#1 based on isotopically labeled D₁₃-VA feeding experiment
1076 (see **Fig. 5B**). The number of deuterium atoms on each carbon is labeled green. Methyl transfer
1077 results in abstraction of one deuterium atom (highlighted with green arrow) and distal oxidation
1078 (highlighted with green arrow) results in metabolites with a diagnostic number of deuterium
1079 atoms remaining.

1080 **B)** EICs for *m/z* 229.1082 and 238.1648, corresponding to bemeth#4 and D₉-bemeth#4,
1081 respectively, in extracts of *hac-1* mixed-stage cultures supplemented with D₁₃-*cis*- or D₁₃-*trans*-
1082 VA. Oxidation of the ω -carbon results in the loss of three additional deuterium atoms, for a total
1083 loss of four deuterium atoms and a diagnostic isotope label. Y-axis for *m/z* 238.1648 is scaled 8-
1084 fold to clearly show traces for labelled features.


1085 **C)** EIC for *m/z* 286.1660, corresponding to C₁₄H₂₅NO₅⁻, in extract of N2 (WT) mixed-stage
1086 culture supplemented with D₁₃-*cis*-VA. Earlier eluting isomers are D₁₁-enriched (bemeth#7,
1087 bemeth#72), whereas later eluting isomers are D₁₂-enriched (bemeth#73-75). Representative
1088 structures proposed based on isotope labeling and MS/MS fragmentation.


1089 **Extended Data Fig. 8. FAT-7::GFP induction is independent of *hlh-30* and *nhr-66*.**

1090 **A)** Representative brightfield and fluorescence micrographs of $P_{fat-7}::fat-7::GFP$ animals reared
1091 on *hlh-30* or *nhr-66* RNAi and supplemented with vehicle only (0.5% ethanol), 75 μ M bemeth#1,
1092 or 75 μ M becyp#1. Animals were supplemented in parallel with animals reared on control RNAi,
1093 see **Fig. 5**. Scale bar represents 0.1 mm.


A

B

C

1095

1096 **Extended Data Fig. 9. Unique metabolites enriched in *fcmt-1(tm2382)***

1097 **A)** Volcano plot for subset of features detected by HPLC-MS (negative ion) in the exo-
1098 metabolome of *fcmt-1(tm2382)* relative to wildtype (N2) control. Red points represent *m/z*
1099 150.0421, including isotopes and adducts, corresponding to guanine; blue points represent *m/z*
1100 135.0312, corresponding to hypoxanthine; both confirmed by commercial standards.

1101 **B)** Representative EICs for *m/z* 150.0421, corresponding to guanine, in exo-metabolome
1102 extracts of synchronized adult N2 (WT), *hac-1(tm6725)*, *fcmt-1(gk155709)*, and *fcmt-1(tm2382)*
1103 animals, or from extract of *E. coli* OP50 only (bacterial diet).

1104 **C)** Representative EICs for *m/z* 135.0312, corresponding to hypoxanthine, in exo-metabolome
1105 extracts of synchronized adult N2 (WT), *hac-1(tm6725)*, *fcmt-1(gk155709)*, and *fcmt-1(tm2382)*
1106 animals, or from extract of *E. coli* OP50 only (bacterial diet).