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Abstract 19 

Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from 20 
Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this 21 
work, we present an improved method to reconstruct E. coli plasmids using short reads. We 22 
developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by 23 
combining the output of three different binary classification tools. We showed that plasmidEC 24 
is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. 25 
Additionally, we optimised gplas, a graph-based tool that bins plasmid-predicted contigs into 26 
distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large 27 
sequencing coverage variations and can be combined with the output of any binary classifier. 28 
The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and 29 
F1-score (median=0.812) when reconstructing ARG plasmids and exceeded the binning 30 
capacity of the reference-based method MOB-suite. In the absence of long read data, our 31 
method offers an excellent alternative to reconstruct ARG plasmids in E. coli.   32 
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Data Summary 33 

No new sequencing data have been generated in this study. All genomes used in this research 34 
are publicly available at the GenBank and Sequence Read Archive of the National Center for 35 
Biotechnology Information. Accession numbers are specified in Supplementary Materials. 36 

Scripts to reproduce the results reported in this manuscript can be accessed at 37 
https://gitlab.com/jpaganini/ecoli-binary-classifier. The ensemble classifier, plasmidEC, is 38 
publicly available at https://gitlab.com/mmb-umcu/plasmidEC (release 1.3.1), and gplas2 39 
(release 1.0.0) can be found at https://gitlab.com/mmb-umcu/gplas2. 40 

Impact Statement 41 

Escherichia coli has emerged as a highly pervasive multidrug resistant pathogen on a global 42 
scale. The dissemination of resistance is significantly influenced by plasmids, mobile genetic 43 
elements that facilitate the transfer of antimicrobial resistance genes within and between diverse 44 
bacterial species. Consequently, precise and high-throughput identification of plasmids is 45 
imperative for effective genomic surveillance of resistance. However, accurate plasmid 46 
reconstruction remains challenging with the use of affordable short-read sequencing data. In 47 
this work, we present a novel method to accurately predict and reconstruct E. coli plasmids 48 
based on Illumina data. Additionally, we demonstrate that our approach outperforms the 49 
reference-based method MOB-suite, especially when reconstructing plasmids carrying 50 
antimicrobial resistance genes. 51 

Introduction 52 
Escherichia coli is a commensal gram-negative bacterium inhabiting the gastrointestinal tract 53 
but is also the leading cause of bloodstream and urinary tract infections in humans [1,2]. In 54 
recent years, the emergence and spread of multidrug resistant E. coli lineages limits the 55 
treatment options for such infections [3,4]. Moreover, a recent assessment of the global burden 56 
of antimicrobial resistance (AMR) estimated that AMR E. coli infections accounted for more 57 
than 250,000 deaths in 2019, placing E. coli as one of the most prevalent AMR pathogens 58 
worldwide [5]. 59 

Horizontal gene transfer is one of the main drivers behind the rapid spread of AMR [6–8]. 60 
Antibiotic resistance genes (ARGs) are commonly associated with mobile genetic elements 61 
(MGEs), which facilitate their mobility across bacteria [9,10]. Out of these MGEs, plasmids 62 
play a pivotal role by disseminating AMR in clinical settings as well as in other environments 63 
[11–13]. Plasmids are frequently transmitted among bacteria of the same species, but they can 64 
also be shared between bacteria of different species or even different genera [14–17]. Given 65 
their relevance in the spread of AMR genes, it is critical to develop high-throughput methods 66 
to identify plasmids in a precise, fast and accessible manner. 67 

Bacterial genomes have been massively studied using short-read sequencing platforms. 68 
However  plasmids tend to contain repetitive elements that cannot be spanned by short-reads 69 
and thus their sequence is usually fragmented into several contigs and mingled with other 70 
genomic elements. This makes it hard to reconstruct complete plasmids from short-read 71 
sequencing data [18].  72 

Several fully-automated bioinformatic tools are currently available to predict plasmids from 73 
short-read sequencing data. They can be broadly categorised into two groups: (i) tools that 74 
produce a binary classification of contigs as either plasmid- or chromosome-derived, predicting 75 
the total plasmid content of a bacterial strain, often referred to as the ‘plasmidome’ (without 76 
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reconstructing individual plasmids), and (ii) tools that aim to recover complete sequences for 77 
individual plasmids [19]. The latter group, termed plasmid reconstruction tools, provides a more 78 
suitable output for plasmid epidemiology studies. 79 

We recently evaluated the performance of several plasmid reconstruction tools for use with E. 80 
coli short-read data [19]. We found that the best performing tool, MOB-suite [20], only 81 
achieved the correct reconstruction of 50.2% of the plasmids. Moreover, all tools 82 
underperformed when attempting to reconstruct plasmids containing antibiotic resistance genes 83 
(ARG-plasmids), ranging from 3.4% to 27.9% correct ARG-plasmid reconstructions. These 84 
results emphasised the need to improve current methods to predict ARG-plasmids in E. coli.  85 

Here, we present a new high-throughput method to reconstruct E. coli plasmids from short-read 86 
sequencing data. Firstly, we optimised gplas [23], a plasmid binning tool, to compute walks in 87 
the assembly graph corresponding to plasmids with a pronounced coverage variation. Secondly, 88 
we developed an ensemble classifier, plasmidEC, combining multiple existing binary 89 
classification tools (Plascope [21], RFplasmid [22], Platon [23] and mlplasmids [24]) to predict 90 
plasmid-derived contigs. Coupling plasmidEC with gplas2 allowed to accurately bin plasmid-91 
derived contigs into separate components corresponding to individual plasmid sequences. Our 92 
method outperforms all currently available plasmid reconstruction tools for E. coli, especially 93 
for predicting ARG-plasmids. 94 

Methods 95 

All scripts used to reproduce the analyses can be found at gitlab.com/jpaganini/ecoli-binary-96 
classifier. R version 3.6.1. was used for all R scripts. 97 

Benchmark datasets 98 

A dataset of 240 complete E. coli genomes from 8 different phylogroups and 117 sequence 99 
types (STs), carrying 631 plasmids, was selected as previously described in Paganini et al. [19]. 100 
Samples were isolated from animals, humans and the environment, resulting in a diverse dataset 101 
with respect to phylogeny and plasmid content. All genome sequences were completed by the 102 
combination of short- and long-read sequencing data. Short-read sequences and complete 103 
genomes were downloaded from NCBI using SRA tools (v2.10.9) and ncbi-genome-download 104 
(v0.2.10) (https://github.com/kblin/ncbi-genome-download), respectively. Genomes present in 105 
the training datasets or reference databases of existing plasmid classification tools (mlplasmids, 106 
PlaScope, Platon and/or RFPlasmid) were removed (n=26). The remaining 214 samples, 107 
carrying 542 plasmids, were used to benchmark the binary classifiers (Supplementary Data 1). 108 
From these, 15 genomes (Supplementary Data 2) were randomly selected for optimisation of 109 
the gplas algorithm and excluded from later comparisons. The remaining genomes (n=199, 483 110 
plasmids) were used to benchmark the plasmid reconstruction methods.  111 

Benchmarking binary classification tools and construction of plasmidEC 112 

Selection of contigs for benchmarking 113 

Short-read sequences of each sample were assembled with bactofidia (v1.1) 114 
(https://gitlab.com/aschuerch/bactofidia), a pipeline that relies on SPAdes for genome assembly 115 
(v3.11.1)[25]. The resulting contigs (n=18,963) were labelled as chromosome- or plasmid-116 
derived by alignment to their respective complete genomes using QUAST (v5.0.2)[26]. Only 117 
contigs larger than 1,000 bp with an alignment of at least 90% the contig length were considered 118 
(n=15,020). Of those, contigs aligning to multiple positions in the genome (ambiguously 119 
aligned contigs) were included as long as they exclusively aligned to either the chromosome or 120 
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to plasmids (n=1,236). The same criterion was used for the inclusion of misassembled contigs 121 
(n=1,862). In total, the benchmark dataset included 14,746 contigs (Supplementary Figure S1). 122 

Assessment of the individual binary classifiers  123 

Contigs were classified by mlplasmids (v2.1.20), PlaScope (v.1.3.121), Platon (v.1.619) and 124 
RFPlasmid (v.0.0.1722). All tools were run using default parameters. We assessed the 125 
performance of the four binary classifiers by comparing, for each contig, their prediction to the 126 
true class of the contig, as described in the section above. For PlaScope, an ‘unclassified’ 127 
prediction was handled as a negative prediction. Predictions were categorised into: True 128 
Positives (TP, prediction = plasmid, class = plasmid), True Negatives (TN, prediction = 129 
chromosome, class = chromosome), False Positives (FP, prediction = plasmid, class = 130 
chromosome) and False Negatives (FN, prediction = chromosome, class = plasmid). Global 131 
performance of the tools was evaluated with the following metrics: 132 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 133 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 134 

𝐹𝐹1– 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 2 ⋅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 135 

Assessment of the ensemble classifiers  136 

To improve the predictions obtained by independent tools, we combined their output into 137 
distinct ensemble classifiers that implemented a majority voting system. We tested four 138 
different combinations of individual classifiers: mlplasmids/PlaScope/Platon, 139 
mlplasmids/PlaScope/RFPlasmid, mlplasmids/Platon/RFPlasmid and 140 
PlaScope/Platon/RFPlasmid. A final classification of each contig (chromosome or plasmids) 141 
was obtained by combining the output of the tools using an R script (provided in the 142 
accompanying code repository). The ensemble classifiers were evaluated using the same 143 
metrics as described above.  144 

Construction of plasmidEC 145 

The tool consists of a bash wrapper script that automatically installs and runs all required 146 
individual classifiers and combines their results with a majority voting system. Based on the 147 
performance for E. coli, the combination of PlaScope/Platon/RFPlasmid was selected as the 148 
default. PlasmidEC is publicly available at https://gitlab.com/mmb-umcu/plasmidEC.  149 

Benchmarking plasmid reconstruction tools 150 

Running plasmid predictions tools 151 

Prior to assembly, Illumina raw reads were trimmed using trim-galore (v0.6.6) 152 
(https://github.com/FelixKrueger/TrimGalore) to remove bases with a Phred quality score 153 
below 20. Unicycler (v0.4.8) [27] was then applied to perform de novo assembly with default 154 
parameters. Contigs larger than 1,000 bp were used as input for MOB-suite (v3.0.0) [20], while 155 
assembly graphs in GFA format served as input for gplas2 (v2.0.0). To run gplas2, nodes from 156 
the graph were first classified as plasmid- or chromosome-derived using either plasmidEC or 157 
PlaScope; only nodes larger than 1,000 bp were classified. Output from the tools was modified 158 
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to assign probabilities for the classification of each node, which is required by the gplas 159 
algorithm. For PlaScope, discrete probabilities were assigned based on the node classification 160 
status; if a node was classified as plasmid, a probability of 1 was assigned, while chromosome-161 
predicted nodes were assigned zero. In the case of unclassified nodes, a probability of 0.5 was 162 
assigned. By default, plasmidEC assigns probabilities based on the fraction of tools that agreed 163 
on the classification. For example, if two out of three tools agreed in classifying a node as 164 
plasmid, a probability of 0.66 is assigned. 165 

Analysis of the plasmid bin composition 166 

To evaluate the bins created by MOB-suite and gplas2, we used QUAST (v5.0.2) [26] to align 167 
the contigs of each bin to the respective complete reference genome. We calculated accuracy, 168 
completeness and F1-score on the base-pair level, as specified below. 169 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏𝑏𝑏) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑏𝑏𝑏𝑏)  170 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏𝑏𝑏) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑏𝑏𝑏𝑏)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑏𝑏𝑏𝑏)    171 

𝐹𝐹1– 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏𝑏𝑏) = 2 ⋅
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏𝑏𝑏) ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏𝑏𝑏)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏𝑏𝑏) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏𝑏𝑏) 172 

If a bin was composed of contigs derived from different plasmids, then accuracy(bp), 173 
completeness(bp) and F1-score(bp) were reported for each plasmid-bin combination. 174 

We also evaluated the number of reference plasmids that were detected by each tool. We 175 
consider a reference plasmid as detected when at least a single contig of the plasmid was 176 
included into the predictions. 177 

To determine combined completeness for each reference plasmid, all bins generated in an isolate 178 
were combined as follows: 179 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏𝑏𝑏) = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏𝑏𝑏)𝑛𝑛
1   𝑛𝑛 =180 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 181 

Antibiotic Resistance Gene (ARG) Prediction 182 

Resistance genes were predicted by running Abricate (v1.0.1) against the Resfinder [28] 183 
database (database indexed on 19 April 2020) with reference plasmids as query, using 80% as 184 
identity and coverage cut-off. The same software and parameters were used to predict the 185 
presence of ARGs in the plasmid-predicted contigs bins generated by each of the plasmid 186 
reconstruction tools. 187 

Evaluation of ARGs binning 188 

For bins that carried ARGs, we calculated Recall(ARG) and Precision(ARG) as indicated 189 
below. 190 

 191 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∈𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Evaluating unbinned nodes in gplas predictions 194 

Unitigs classified as unbinned by gplas (n=78) were aligned to the corresponding complete 195 
reference genome using QUAST (v5.0.2). The results of these alignments were used to 196 
determine the origin of the unitig (plasmid or chromosome). For isolates that contained more 197 
than one unbinned unitig (n=19), coverage information of all unitigs (bin and unbinned) was 198 
extracted from the header of the FASTA files generated after unicycler assembly. From these 199 
data, coverage variance for all replicons was calculated and plotted using R (v.3.6.1).   200 

Evaluating the recovered fraction for each reference plasmid  201 

We calculated the maximum completeness(bp) that can be obtained to reconstruct every 202 
reference plasmid using short-read sequencing data. Before applying any classification tool, all 203 
nodes from the assembly graph were converted to FASTA format using the ‘extract’ option of 204 
gplas2. Nodes smaller than 1,000 bp or smaller than 500 bp were filtered out using seqtk (v1.3) 205 
(https://github.com/lh3/seqtk), and remaining nodes were aligned to their respective complete 206 
reference genomes using QUAST to obtain the completeness(bp) values. The completeness(bp) 207 
value was called the recovered fraction. 208 

Read coverage of missing reference plasmids 209 

A small number of plasmids were either completely missed or recovered with low completeness 210 
after short-read assembly. In order to determine if these sequences were also missing from 211 
short-reads, trimmed Illumina reads were aligned to reference genomes using BWA MEM 212 
(v.0.7.17) [29] with default parameters. Resulting SAM files were converted to BAM and sorted 213 
using SAMtools (v1.9) [30]. Read coverage per base was determined using BEDTOOLS 214 
(v2.30.0) [31]. 215 

Results 216 

Optimisation of gplas to improve the reconstruction of E. coli plasmids 217 

Gplas is an algorithm that performs de novo reconstruction of plasmids through multiple steps 218 
(Figure 1 - Steps 1 to 3) [32]. In short, nodes from the assembly graph are initially classified as 219 
plasmid-derived or chromosome-derived by an external binary classification software, which 220 
also assigns a probability to the classifications. Then, plasmid-predicted unitigs act as seeds to 221 
compute plasmid walks with homogeneous coverage in the assembly graph using a greedy 222 
approach. Finally, these unitigs are binned together into individual components based on their 223 
co-existence in the computed plasmid walks. A detailed description of the algorithm can be 224 
found in the original publication [32]. Given that gplas performed sub-optimally when 225 
reconstructing E. coli plasmids in our previous study [19], in gplas2 we introduced two major 226 
modifications to the algorithm: 227 

A) Expansion of the input options for binary classification  228 

Coupling gplas with an accurate binary classifier improves the reconstruction of plasmids, as 229 
we previously demonstrated for Enterococcus faecalis and Klebsiella pneumoniae [32,33]. 230 
Consequently, the gplas2 algorithm accepts predictions from any binary classifier, provided 231 
they output classification probabilities and expected file formats. 232 
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B) Re-iterating plasmid walks over initially unbinned contigs 233 

Gplas constructs plasmid walks over the assembly graph to connect unitigs that potentially 234 
originate from the same plasmid (Figure 1 - Step 2). Consequently, plasmid-predicted unitigs 235 
that can’t be connected to other unitigs through these walks are classified as unbinned, and are 236 
not included in the plasmid predictions (Figure 1 - Step 3). Unbinned unitigs seem to originate 237 
from reference plasmids that were sequenced with a pronounced coverage variation 238 
(Supplementary Figure S2). This sequencing artefact poses a challenge to the gplas algorithm, 239 
which builds plasmid walks from unitigs with homogeneous coverage. Consequently, we 240 
modified gplas to consider these coverage variations (Figure 1 - Steps 4 & 5). Whenever 241 
unbinned unitigs are produced, gplas2 will generate a second round of binning in bold mode by 242 
running two additional steps: 243 

1) Computation of plasmid walks in bold mode starting from unbinned unitigs  244 

If unbinned unitigs are predicted, new bold plasmid walks will be constructed. When creating 245 
the bold walks, a higher coverage variance threshold between plasmid-predicted unitigs is 246 
allowed. This threshold can be defined by the user and is a multiple of the coverage variance 247 
observed for chromosome-predicted unitigs. Only bold plasmid walks that start from unbinned 248 
unitigs will be retained to use in the next step, while the rest will be discarded (Figure 1 - Step 249 
4). 250 

2) Plasmidome network reconstruction and repartitioning  251 

Plasmid walks produced during bold mode are merged with plasmid walks from normal mode. 252 
Based on these combined data, plasmidome networks are reconstructed and repartitioned 253 
(Figure 1 - Step 5) to create new bins, using the same algorithms as in step 3.  254 

We optimised the predictions obtained with gplas2 using a subset of 15 E. coli genomes that 255 
contained unbinned unitigs and that were excluded from subsequent benchmarking efforts 256 
(Supplementary Data 2). For bold walks, we allowed a coverage variance of 5, 10, 15 or 20 257 
times the coverage variance observed for the chromosome-predicted unitigs. Plasmid 258 
predictions made with gplas2 exhibited consistently higher completeness(bp) values when 259 
compared to the original predictions (Supplementary Figure S3 A). Surprisingly, altering the 260 
coverage variance threshold above 5 did not impact completeness(bp) values. In contrast, 261 
accuracy(bp) values decreased when allowing a higher coverage variance. The highest F1-262 
Score(bp) values (median=0.78, IQR=0.47 - 0.96) were obtained when using a coverage 263 
variance threshold of 5. Consequently, 5 was defined as the default value to construct bold 264 
plasmid walks. As a single example, we display the plasmid predictions obtained with and 265 
without running bold mode for genome GCA_013823335.1_ASM1382333v1 (Supplementary 266 
Figure S3 B and S3 C). In this case, the bold walks allowed to recover 7 additional contigs 267 
belonging to plasmids CP057179.1 and CP057180.1. 268 

Gplas2, including the aforementioned features and a detailed user guide, can be found at 269 
https://gitlab.com/mmb-umcu/gplas2.  270 

Comparing binary classification methods for E. coli 271 

In order to combine gplas2 with the best available binary classifier for E. coli, we compared the 272 
performance of four different tools (PlaScope, RFPlasmid, mlplasmids and Platon). The 273 
benchmark dataset consisted of 14,746 contigs. Of these contigs, 87.3% (n=12,872) were 274 
chromosome-derived and 12.7% (n=1,874) were plasmid-derived, as determined by alignment 275 
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to complete reference genomes.  276 

We evaluated the number of contigs which were correctly and incorrectly classified by each of 277 
the tools and calculated recall(contig), precision(contig) and F1-score(contig) (Supplementary Table 278 
S1). Plascope was able to correctly identify the highest number of plasmid-derived contigs 279 
(True Positives, n=1,629), while the rest of the tools detected between 1,297 and 1,523 plasmid-280 
derived contigs. Notably, PlaScope also included the least chromosomal contamination in its 281 
predictions (False Positives, n=117), closely followed by Platon (n=122). In contrast, 282 
mlplasmids and RFPlasmid included a higher amount of chromosome-derived contigs in their 283 
plasmidome predictions (n=418 and n=420, respectively). PlaScope was the tool with the 284 
highest F1-score(contig) (0.900) followed by Platon (0.861), RFPlasmids (0.798) and mlplasmids 285 
(0.722). For most tools, precision(contig) values were higher than recall(contig) values, indicating 286 
that the predicted plasmidome mostly consists of true plasmid-derived contigs, but also that 287 
plasmid contigs were frequently missed by the tools. 288 

We also explored the congruence in contig classifications across tools (Figure 2). All tools 289 
agreed on the correct classification of 51.8% of plasmid-derived contigs (True Positives: n=971, 290 
Figure 2A), and another 26.5% plasmid-derived contigs were correctly classified by at least 291 
three tools (n=497). Also, a high fraction (94.1%) of chromosome-derived contigs were 292 
correctly classified by all tools (True Negatives: n=12,116, Figure 2B). Moreover, only a 293 
minority of plasmid-derived and chromosome-derived contigs were missed by most of the tools 294 
and correctly classified by just a single tool (True Positives: 85/1,874, 4.7%, True Negatives: 295 
58/12,872, 0.5% respectively). From these observations, we concluded that contig 296 
misclassifications are primarily derived from individual tools (Figure 2C and 2D). 297 

PlasmidEC: A voting classifier for improved detection of ARG-plasmid contigs in E. coli. 298 

We theorised that discarding software-specific misclassifications, while keeping correct 299 
classifications shared by multiple tools, could improve the overall binary classification of E. 300 
coli contigs as plasmid- or chromosome-derived. To explore this, we combined the predictions 301 
of three individual classifiers and extracted their majority vote as the final classification.  302 

After testing all possible combinations of individual classifiers, we found that 303 
Platon/PlaScope/RFPlasmid displayed the highest overall performance of voting classifiers 304 
with the highest F1-score(contig) (0.904). This ensemble classifier achieved an F1-score(contig) 305 
similar to PlaScope (0.900) but had a slightly higher recall(contig) (0.884 and 0.869, respectively) 306 
(Figure 3 A and B, Supplementary Table S1). 307 

Next, we evaluated recall(contig) values for a subset of plasmids (n=114) encoding antibiotic 308 
resistance genes (ARG-plasmids) (Figure 3C and 3D, Supplementary Table S2). This dataset 309 
consisted of 860 plasmid-derived contigs, derived from 91 E. coli genomes. The recall(contig) of 310 
individual tools ranged from 0.723 (mlplasmids) to 0.884 (PlaScope), whereas the different 311 
combinations of tools in a voting classifier reached recall(contig) values ranging from 0.883 312 
(mlplasmids/Platon/RFPlasmid) to 0.941 (Platon/PlaScope/RFPlasmid).  313 

Based on these results, the combination of Platon/PlaScople/RFPlasmid was selected as the 314 
ensemble classifier to be implemented in a novel tool termed plasmidEC, which is publicly 315 
available at https://gitlab.com/mmb-umcu/plasmidEC. 316 

We measured the computational resources used by the ensemble and individual classifiers 317 
(Supplementary Figure S4). Binary classifiers showed considerable differences in both CPU 318 
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time and memory usage. The average CPU time required per sample was lowest for PlaScope 319 
(0.2 mins) and highest for Platon (14.9 mins). Platon also used the largest amount of memory 320 
per sample (20.6 Mb). The least amount of memory was required by mlplasmids (2.7 Mb). 321 
Because plasmidEC includes the execution of three binary classifiers, time and memory 322 
requirements were high, especially when Platon was run. The combination of 323 
mlplasmids/PlaScope/RFPlasmid required the least number of resources (CPU time = 4.5 mins, 324 
memory = 9.0 Mb) and PlaScope/Platon/RFPlasmid the most (CPU time = 21.5 mins, memory 325 
= 21.4 Mb). 326 

Exploiting the information from the assembly graph improves correct binning of ARG 327 
plasmids 328 

To reconstruct individual E. coli plasmids, gplas2 was combined with plasmidEC and PlaScope, 329 
and performance was compared against MOB-suite, which was the best-performing plasmid 330 
reconstruction tool for E. coli in our recent benchmark study [19]. To retain comparability with 331 
the aforementioned study, we started with the same dataset and removed 26 genomes that were 332 
present in the PlaScope database and 15 genomes that were used to improve the gplas2 333 
algorithm. Consequently, our benchmark dataset consisted of 199 complete E. coli genomes, 334 
which carried 483 plasmids. A total of 213 (44.1%) plasmids were classified as small plasmids 335 
(smaller than 18,000 bp), while the remaining 270 (55.9%) were large plasmids [19].  Given 336 
our interest  in predicting ARG-plasmids, and the fact that most ARGs are encoded on large 337 
plasmids (n=382/387, 98.7%), we analysed performance separately for large ARG-plasmids 338 
(n=96) and large non-ARG-plasmids (n=174).  339 

When evaluating the reconstruction of ARG-plasmids, we found that the F1-Score(bp) values of 340 
gplas2 combined with either plasmidEC (gplas2_plasmidEC) or PlaScope (gplas2_PlaScope) 341 
were similar (Figure 4A, Table 1). However, gplas2_plasmidEC (median=0.81, IQR=0.53 - 342 
0.93) performed slightly better than gplas2_PlaScope (median=0.76, IQR=0.52 - 0.94). 343 
Notably, both gplas2 methods outperformed MOB-suite, which presented a lower F1-Score(bp) 344 
(median= 0.44, IQR= 0.18 - 0.87). As accuracy(bp) values were nearly identical across tools, the 345 
disparity in F1-Scores(bp) can be explained due to the differences in completeness(bp). In contrast, 346 
combined completeness(bp) distributions were virtually identical among tools. These results 347 
suggested that all methods had a similar capacity to detect contigs derived from ARG-plasmids, 348 
but gplas2 performed better at binning these contigs together into individual predictions. This 349 
hypothesis was confirmed by analysing the number of bins into which each reference plasmids 350 
was fragmented (Figure 4B). For ARG plasmids, we found that MOB-suite fragmented 49% of 351 
plasmids into multiple predictions, while both gplas2 methods did so in only 14% of the cases.  352 

All tools identified a similar number of plasmid-derived ARGs (Figure 4C). MOB-suite and 353 
gplas2_plasmidEC detected 331 (86.6%) ARGs and gplas2_PlaScope 327 (85.6%). Moreover, 354 
all tools successfully detected all ARGs present in small plasmids (n=5, 100%). In concordance 355 
with previous results, recall(ARG) values (Figure 4D) for gplas2 predictions were higher than 356 
those obtained with MOB-suite (Table 1). This indicates that gplas2 performs better at correctly 357 
binning ARGs together into the same bin. However, plasmid predictions made with gplas2 also 358 
included a higher number of chromosome-derived ARGs (Figure 4C, Table 1). 359 

Interestingly, tools performed similarly well when evaluating the reconstruction of extended 360 
spectrum beta-lactamase (ESBL) plasmids (n=42). MOB-suite reconstructions were 361 
characterised by having higher accuracy(bp) and gplas2 methods reconstructed ESBL-plasmids 362 
with higher completeness(bp) (Supplementary Figure S5A). Despite these differences, all tools 363 
exhibited similar F1-Score(bp) values. Additionally, the number of plasmid-borne ESBL genes 364 
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detected were almost identical across tools (Supplementary Figure S5B). Nevertheless, gplas2 365 
methods performed slightly better at binning ARGs into the same prediction (Supplementary 366 
Figure S5C).  367 

For small plasmids (n=213), all tools displayed similar performance across the three metrics, 368 
obtaining near-perfect reconstructions in all cases, with F1-score(bp) medians of 1 369 
(Supplementary Figure S6A, Table 1).  This is likely due to most small plasmids being 370 
assembled into a single contig (n=196, 92.0%) (Supplementary Figure S6B), and consequently 371 
the identification of these contigs as plasmid-derived generally leads to obtaining high values 372 
for all metrics. We therefore evaluated the number of small (and large) plasmids detected by 373 
each of the tools (Supplementary Figure S6C, Table 1). Interestingly, gplas2_PlaScope detected 374 
196 (92.0%) small plasmids, and gplas2_plasmidEC performed similarly, detecting 184 375 
(86.4%). Both gplas2-methods outperformed MOB-suite, which detected 174 (81.79%) small 376 
plasmids. 377 

Finally, we tested the effect of using different contig size cut-offs for plasmid reconstruction. 378 
We found no significant differences in performance of the tools when using 500 bp or 1,000 bp 379 
as the minimum contig size. A more detailed description of the results from this analysis can 380 
be found in the Supplementary Materials and in Supplementary Figures S7 - S10.  381 
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Discussion 382 

Accurately reconstructing E. coli plasmids from Illumina reads has proven to be a challenge, 383 
especially in the context of ARG-plasmids. In this work, we developed a new high-throughput 384 
method to reconstruct E. coli plasmids de novo from short-read sequencing data. Our method 385 
relies on an accurate identification of plasmid-derived nodes in the assembly graph, followed 386 
by the binning of these nodes using sequencing coverage and node connectivity information. 387 
We proved that our method outperforms other plasmid prediction tools available for E. coli, 388 
especially when reconstructing ARG-plasmids. 389 

To improve the identification of plasmid-derived contigs, we built plasmidEC, an ensemble 390 
classifier that combines predictions from three individual binary classifiers and implements a 391 
majority voting system. Voting classifiers have been successfully applied in other fields of 392 
biology [35–38], but so far not for the problem of plasmidome identification. PlasmidEC 393 
correctly identified a large fraction of contigs derived from ARG-plasmids 394 
(Recall(contig)=0.941), and considerably outperformed all individual classifiers. Thus, we believe 395 
that plasmidEC will be especially useful for plasmidome research that focuses on antibiotic 396 
resistance. Notably, all binary classifiers presented higher recall(contig) for classifying contigs 397 
from ARG plasmids than from non-ARG plasmids, suggesting that these sequences might be 398 
overrepresented in reference databases which are directly or indirectly used by all tools.  399 

When comparing the performance of the tools using the entire benchmark dataset, we found 400 
that plasmidEC and PlaScope performed very similarly in terms of F1-Score(contig). However, 401 
plasmidEC showed a higher recall(contig) but used more computational resources and took a 402 
longer time to complete the predictions. Reference-based methods, like PlaScope, are expected 403 
to perform well for species like E. coli which are abundant in public databases [39]. Supporting 404 
this hypothesis, a recent study by Shaw et al. [40] discovered very few novel plasmid sequences 405 
in a dataset that included more than 2,000 plasmids from Enterobacteriaceae isolates. PlaScope 406 
was built around Centrifuge [41], a metagenomic classifier to predict the origin of contigs based 407 
on custom databases. Recently, it was also shown that the usage of Kraken [42], another 408 
metagenomic classifier using customised databases, outperformed other binary classifiers in 409 
Klebsiella pneumoniae [41,43]. It would be interesting to explore how tools perform at 410 
classifying contigs from species with a limited number of complete genomes in databases. We 411 
speculate that in those cases, plasmidEC, which combines tools with diverse computational 412 
approaches, could improve predictions to a larger extent. 413 

PlasmidEC could be further optimised by (i) multithreading the predictions of the individual 414 
tools, which would reduce the computational time to generate the results, (ii) including the 415 
possibility to predict the origin of contigs from other species, as long as those are supported by 416 
the binary classifiers, and (iii) improving its accuracy by using weighted votes, where a high 417 
confidence prediction will contribute more to the final result than a low confidence prediction.  418 

We integrated plasmidEC (and PlaScope) with gplas2 to reconstruct individual E. coli plasmids. 419 
We then compared the performance of gplas2 combined with those classifiers against MOB-420 
suite. Interestingly, the most pronounced differences in performance were observed when 421 
reconstructing ARG-plasmids. Although combined completeness(bp) values indicated that the 422 
three tools identified similar fractions of ARG-plasmids, MOB-suite more frequently 423 
fragmented ARG-plasmids into multiple bins, yielding low completeness(bp) and F1-Score(bp). 424 
In contrast, gplas2 (either with plasmidEC or PlaScope) was more successful at binning together 425 
contigs into individual plasmid predictions, thus achieving considerably higher values for the 426 
aforementioned metrics. Accuracy(bp) values for all tools were very similar, indicating a similar 427 
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degree of chimeric predictions. Interestingly, both gplas2 methods performed similarly to 428 
MOB-suite when reconstructing plasmids that carry ESBL genes, which suggests that these 429 
plasmids might be overrepresented in the database used by MOB-suite to make predictions. 430 

We recently described that ARG plasmids from E. coli are particularly difficult to reconstruct 431 
from short-read data [18], and we suggested that the modular nature of these plasmids could 432 
complicate their reconstruction using strict reference-based methods, such as MOB-suite. The 433 
results we obtained here seem to confirm this hypothesis. Additionally, we improved the 434 
reconstruction of ARG-plasmids by using coverage and node connectivity information. Yet, 435 
our study also proves that enriching the assembly graph with accurate information on the origin 436 
of contigs (plasmid/chromosome) is equally important. A previous version of gplas, which used 437 
mlplasmids as a binary classifier, performed significantly worse at predicting ARG-plasmids in 438 
E. coli [19]. Moreover, using a simpler graph-based approach that mainly relies on coverage 439 
differences to identify plasmids is also insufficient. This approach, applied by plasmidSPAdes, 440 
frequently leads to the inclusion of chromosomal contamination [18,19], due to the low copy 441 
number that ARG-plasmids often exhibit.  442 

We envision that gplas2 could be combined with different binary classification tools to obtain 443 
accurate de novo plasmid reconstructions for multiple bacterial species. This means that gplas2 444 
could, in theory, also be applied to the reconstruction of plasmids in metagenomic samples. 445 
However, since a greater number of plasmid-predicted unitigs is expected on metagenomes, the 446 
construction of plasmid walks will probably require parallelization in order to keep the 447 
computation time within practical limits. 448 

Although our method constitutes a considerable improvement of the reconstruction of ARG-449 
plasmids, some limitations should be noted. First, gplas2 does not include insertion sequences 450 
(and other repeated elements) into plasmid predictions. This facilitates the process of finding 451 
plasmid walks with homogeneous coverages and simplifies the resulting plasmidome network. 452 
However, insertion sequences play an important role in the structure and genomic plasticity of 453 
plasmids [44], and they are frequently involved in the mobility of ARGs [9,45,46]. 454 
Additionally, the localization of these MGEs can influence the expression levels of ARGs 455 
[47,48], thereby impacting the resulting resistance phenotypes. Consequently, including IS 456 
elements would certainly improve the completeness and relevance of plasmid predictions. 457 
Some graph-based plasmid reconstruction methods, like HyAsP [49], include repeated elements 458 
into predictions. This tool also constructs plasmid walks, and uses coverage information to 459 
predict IS copy numbers, thus allowing the same IS to be present in multiple replicons. In the 460 
gplas algorithm, considering repeated elements during the construction of the plasmid walks 461 
would lead to more entangled plasmidome networks and would complicate the subsequent 462 
partitioning step. As an alternative, we could envision adding labels to unitigs after the binning 463 
step, and then implementing a label propagation algorithm on the original assembly graph to 464 
determine to which bin the different IS elements belong. A similar approach is implemented by 465 
the tool GraphBin2 [50], which refines binning results of metagenomics samples. A second 466 
disadvantage of our method is the formation of chimeras, which are bins composed of nodes 467 
from distinct replicons. As previously mentioned, accurate identification of plasmid derived 468 
nodes reduces the number of chromosome-plasmid chimeras. However, preventing the 469 
formation of plasmid-plasmid chimeras is more challenging, especially for isolates carrying 470 
multiple large plasmids with similar copy numbers. Separating these chimeras could be possible 471 
with the use of a plasmid-backbone reference database.  472 

To conclude, in this work we presented a new plasmidome prediction tool, named plasmidEC, 473 
and optimised gplas to accurately bin predicted plasmid sequences. Compared to existing binary 474 
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classifiers, plasmidEC achieves increased recall(contig), especially for contigs that derive from 475 
ARG plasmids. The integration of plasmidEC  with gplas2 substantially improved the 476 
reconstruction of ARG plasmids in E. coli. Our method exceeded the binning capacity of the 477 
reference-based method MOB-suite, while retaining similar accuracy(bp) values. The presented 478 
approach constitutes the best alternative to accurately predict and reconstruct ARG plasmids de 479 
novo in the absence of long-read data. 480 
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Figures and Tables 630 
Table 1. Performance summary of three plasmid prediction tools, for the prediction of different plasmid types. 631 

 MOB-suite gplas2_plasmidEC gplas2_PlaScope 

Large Plasmids (n=270)    

Nr. of detected plasmids* 263 (97.4%) 253 (93.7%) 254 (94.1%) 

ARG-Plasmids (n=96)    

F1-Score(bp) (median, IQR) 0.421 (0.172 - 0.860) 0.812 (0.529 - 0.934) 0.758 (0.520 - 0.936) 

Completeness(bp) (median, IQR) 0.317 (0.114- 0.803) 0.818 (0.520 - 0.924) 0.818 (0.531 - 0.924) 

Accuracy(bp) (median, IQR) 0.883 (0.591 - 0.982) 0.979 (0.564 - 1) 0.979 (0.520 - 1) 

Nr. plasmid-borne ARGs detected 331 (86.6%) 331 (86.6%) 327 (85.6%) 

Nr. chromosome-derived ARGs 64 75 75 

Recall (ARG) (median, IQR) 1 (0.42- 1) 1 (0.86- 1) 1 (0.86- 1) 

Precision (ARG) (median, IQR) 1 (0.82 - 1) 1 (0.75 - 1) 1 (0.77 - 1) 

Non-ARG-Plasmids (n=174)    

F1-Score(bp) (median, IQR) 0.910 (0.378 - 0.977) 0.921 (0.596 - 0.983) 0.912 (0.571 - 0.983) 

Completeness(bp) (median, IQR) 0.879 (0.245 - 0.967) 0.915 (0.618 - 0.972) 0.918 (0.614 - 0.972) 

Accuracy(bp) (median, IQR) 0.978 (0.904 - 1) 1 (0.958 - 1) 1 (0.796- 1) 

Small Plasmids (n=213)    

Nr. of detected plasmids* 174 (81.8%) 184 (86.4%) 196 (92.0%) 

F1-Score(bp) (median, IQR) 1 (0.985 - 1) 1 (0.991 - 1) 1 (0.990 - 1) 

Completeness(bp) (median, IQR) 1 (0.976 - 1) 1 (0.996 - 1) 1 (0.990 - 1) 

Accuracy(bp) (median, IQR) 1 (1- 1) 1 (1- 1) 1 (1- 1) 

Nr. plasmid-borne ARGs detected 5 (100%) 5 (100%) 5 (100%) 

*A plasmid is considered detected if at least 1 contig is included in the plasmid predictions  632 
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Figure 1. Schematics on gplas2 algorithm. The steps 4 and 5 were added to gplas2 in order to recover unbinned 633 
unitigs.  634 
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Figure 2. Upset diagrams showing congruence in contig classification by different binary prediction tools 635 
(absolute counts). True Positives (TP; prediction=plasmid, class=plasmid), True Negatives (TN; prediction = 636 
chromosome, class=chromosome), False Positives (FP; prediction=plasmid, class=chromosome), False Negatives 637 
(FN, prediction=chromosome, class=plasmid). Bar colours indicate the number of tools that concur in the 638 
classification of the contigs.  639 
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Figure 3. Performance of individual binary classifiers and plasmidEC combinations, measured by recall(contig), 640 
precision(contig) and F1-score(contig) A)  Individual classifiers evaluated using full dataset (n=214 genomes). B) 641 
PlasmidEC combinations evaluated using full dataset C) Individual classifiers evaluated using a dataset of ARG-642 
plasmids (n=114 plasmids). D) PlasmidEC combinations evaluated using a dataset of ARG-plasmids.   643 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2023. ; https://doi.org/10.1101/2023.08.31.555679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555679
http://creativecommons.org/licenses/by/4.0/


Figure 4. Benchmarking of plasmid reconstruction methods. A) Recall(bp) , Precision(bp), F1-score(bp) and 644 
Combined Recall(bp) values for predictions corresponding to large ARG-plasmids (n=96) and large non-ARG-645 
plasmids (n=174). B) Percentage of reference plasmids that were recovered with different fragmentation degrees 646 
(i.e. If contigs belonging to a reference plasmid are assigned to three different predictions, then the fragmentation 647 
degree equals three). C) Absolute count of ARGs included (detected) in plasmid predictions, missing ARGs (not 648 
detected) and chromosome-derived ARGs incorrectly included (Chromosome). D) Recall(ARG) and 649 
Precision(ARG) value. 650 
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