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Abstract

Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from
[llumina sequencing data has proven to be a challenge with current bioinformatic tools. In this
work, we present an improved method to reconstruct E. coli plasmids using short reads. We
developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by
combining the output of three different binary classification tools. We showed that plasmidEC
is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941.
Additionally, we optimised gplas, a graph-based tool that bins plasmid-predicted contigs into
distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large
sequencing coverage variations and can be combined with the output of any binary classifier.
The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and
Fl-score (median=0.812) when reconstructing ARG plasmids and exceeded the binning
capacity of the reference-based method MOB-suite. In the absence of long read data, our
method offers an excellent alternative to reconstruct ARG plasmids in E. coli.
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Data Summary

No new sequencing data have been generated in this study. All genomes used in this research
are publicly available at the GenBank and Sequence Read Archive of the National Center for
Biotechnology Information. Accession numbers are specified in Supplementary Materials.

Scripts to reproduce the results reported in this manuscript can be accessed at
https://gitlab.com/jpaganini/ecoli-binary-classifier. The ensemble classifier, plasmidEC, is
publicly available at https://gitlab.com/mmb-umcu/plasmidEC (release 1.3.1), and gplas2
(release 1.0.0) can be found at https://gitlab.com/mmb-umcu/gplas?2.

Impact Statement

Escherichia coli has emerged as a highly pervasive multidrug resistant pathogen on a global
scale. The dissemination of resistance is significantly influenced by plasmids, mobile genetic
elements that facilitate the transfer of antimicrobial resistance genes within and between diverse
bacterial species. Consequently, precise and high-throughput identification of plasmids is
imperative for effective genomic surveillance of resistance. However, accurate plasmid
reconstruction remains challenging with the use of affordable short-read sequencing data. In
this work, we present a novel method to accurately predict and reconstruct E. coli plasmids
based on Illumina data. Additionally, we demonstrate that our approach outperforms the
reference-based method MOB-suite, especially when reconstructing plasmids carrying
antimicrobial resistance genes.

Introduction

Escherichia coli is a commensal gram-negative bacterium inhabiting the gastrointestinal tract
but is also the leading cause of bloodstream and urinary tract infections in humans [1,2]. In
recent years, the emergence and spread of multidrug resistant E. coli lineages limits the
treatment options for such infections [3,4]. Moreover, a recent assessment of the global burden
of antimicrobial resistance (AMR) estimated that AMR E. coli infections accounted for more
than 250,000 deaths in 2019, placing E. coli as one of the most prevalent AMR pathogens
worldwide [5].

Horizontal gene transfer is one of the main drivers behind the rapid spread of AMR [6-8].
Antibiotic resistance genes (ARGs) are commonly associated with mobile genetic elements
(MGESs), which facilitate their mobility across bacteria [9,10]. Out of these MGEs, plasmids
play a pivotal role by disseminating AMR in clinical settings as well as in other environments
[11-13]. Plasmids are frequently transmitted among bacteria of the same species, but they can
also be shared between bacteria of different species or even different genera [14-17]. Given
their relevance in the spread of AMR genes, it is critical to develop high-throughput methods
to identify plasmids in a precise, fast and accessible manner.

Bacterial genomes have been massively studied using short-read sequencing platforms.
However plasmids tend to contain repetitive elements that cannot be spanned by short-reads
and thus their sequence is usually fragmented into several contigs and mingled with other
genomic elements. This makes it hard to reconstruct complete plasmids from short-read
sequencing data [18].

Several fully-automated bioinformatic tools are currently available to predict plasmids from
short-read sequencing data. They can be broadly categorised into two groups: (i) tools that
produce a binary classification of contigs as either plasmid- or chromosome-derived, predicting
the total plasmid content of a bacterial strain, often referred to as the ‘plasmidome’ (without
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77  reconstructing individual plasmids), and (ii) tools that aim to recover complete sequences for
78  individual plasmids [19]. The latter group, termed plasmid reconstruction tools, provides a more
79  suitable output for plasmid epidemiology studies.

80  We recently evaluated the performance of several plasmid reconstruction tools for use with E.
81  coli short-read data [19]. We found that the best performing tool, MOB-suite [20], only
82 achieved the correct reconstruction of 50.2% of the plasmids. Moreover, all tools
83  underperformed when attempting to reconstruct plasmids containing antibiotic resistance genes
84  (ARG-plasmids), ranging from 3.4% to 27.9% correct ARG-plasmid reconstructions. These
85  results emphasised the need to improve current methods to predict ARG-plasmids in E. coli.

86  Here, we present a new high-throughput method to reconstruct E. coli plasmids from short-read
87  sequencing data. Firstly, we optimised gplas [23], a plasmid binning tool, to compute walks in
88  the assembly graph corresponding to plasmids with a pronounced coverage variation. Secondly,
89 we developed an ensemble classifier, plasmidEC, combining multiple existing binary
90 classification tools (Plascope [21], RFplasmid [22], Platon [23] and mlplasmids [24]) to predict
91 plasmid-derived contigs. Coupling plasmidEC with gplas2 allowed to accurately bin plasmid-
92  derived contigs into separate components corresponding to individual plasmid sequences. Our
93  method outperforms all currently available plasmid reconstruction tools for E. coli, especially
94  for predicting ARG-plasmids.

95 Methods

96  All scripts used to reproduce the analyses can be found at gitlab.com/jpaganini/ecoli-binary-
97  classifier. R version 3.6.1. was used for all R scripts.

98  Benchmark datasets

99 A dataset of 240 complete E. coli genomes from 8 different phylogroups and 117 sequence
100  types (STs), carrying 631 plasmids, was selected as previously described in Paganini et al. [19].
101  Samples were isolated from animals, humans and the environment, resulting in a diverse dataset
102  with respect to phylogeny and plasmid content. All genome sequences were completed by the
103  combination of short- and long-read sequencing data. Short-read sequences and complete
104  genomes were downloaded from NCBI using SRA tools (v2.10.9) and ncbi-genome-download
105  (v0.2.10) (https://github.com/kblin/ncbi-genome-download), respectively. Genomes present in
106 the training datasets or reference databases of existing plasmid classification tools (mlplasmids,
107  PlaScope, Platon and/or RFPlasmid) were removed (n=26). The remaining 214 samples,
108 carrying 542 plasmids, were used to benchmark the binary classifiers (Supplementary Data 1).
109 From these, 15 genomes (Supplementary Data 2) were randomly selected for optimisation of
110  the gplas algorithm and excluded from later comparisons. The remaining genomes (n=199, 483
111  plasmids) were used to benchmark the plasmid reconstruction methods.

112  Benchmarking binary classification tools and construction of plasmidEC

113 Selection of contigs for benchmarking

114  Short-read sequences of each sample were assembled with bactofidia (v1.1)
115  (https://gitlab.com/aschuerch/bactofidia), a pipeline that relies on SPAdes for genome assembly
116 (v3.11.1)[25]. The resulting contigs (n=18,963) were labelled as chromosome- or plasmid-
117  derived by alignment to their respective complete genomes using QUAST (v5.0.2)[26]. Only
118  contigs larger than 1,000 bp with an alignment of at least 90% the contig length were considered
119  (n=15,020). Of those, contigs aligning to multiple positions in the genome (ambiguously
120  aligned contigs) were included as long as they exclusively aligned to either the chromosome or
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121 to plasmids (n=1,236). The same criterion was used for the inclusion of misassembled contigs
122 (n=1,862). In total, the benchmark dataset included 14,746 contigs (Supplementary Figure S1).

123 Assessment of the individual binary classifiers

124 Contigs were classified by mlplasmids (v2.1.20), PlaScope (v.1.3.121), Platon (v.1.619) and
125  RFPlasmid (v.0.0.1722). All tools were run using default parameters. We assessed the
126  performance of the four binary classifiers by comparing, for each contig, their prediction to the
127  true class of the contig, as described in the section above. For PlaScope, an ‘unclassified’
128  prediction was handled as a negative prediction. Predictions were categorised into: True
129  Positives (TP, prediction = plasmid, class = plasmid), True Negatives (TN, prediction =
130 chromosome, class = chromosome), False Positives (FP, prediction = plasmid, class =
131  chromosome) and False Negatives (FN, prediction = chromosome, class = plasmid). Global
132 performance of the tools was evaluated with the following metrics:

. TP
133 Recall(contlg) = TP+—FN
134 P ision( tig) = P
recision{contrg) = TP + FP

Recall(contig) - Precision(conti
135 F1-Score(contig) = 2 - ( 9 ( 9)

Recall(contig) + Precision(contig)

136  Assessment of the ensemble classifiers

137  To improve the predictions obtained by independent tools, we combined their output into
138  distinct ensemble classifiers that implemented a majority voting system. We tested four
139  different  combinations of individual classifiers:  mlplasmids/PlaScope/Platon,
140  mlplasmids/PlaScope/RFPlasmid, mlplasmids/Platon/RFPlasmid and
141  PlaScope/Platon/RFPlasmid. A final classification of each contig (chromosome or plasmids)
142  was obtained by combining the output of the tools using an R script (provided in the
143  accompanying code repository). The ensemble classifiers were evaluated using the same
144  metrics as described above.

145  Construction of plasmidEC

146 The tool consists of a bash wrapper script that automatically installs and runs all required
147  individual classifiers and combines their results with a majority voting system. Based on the
148  performance for E. coli, the combination of PlaScope/Platon/RFPlasmid was selected as the
149  default. PlasmidEC is publicly available at https://gitlab.com/mmb-umcu/plasmidEC.

150 Benchmarking plasmid reconstruction tools

151  Running plasmid predictions tools

152 Prior to assembly, Illumina raw reads were trimmed using trim-galore (v0.6.6)
153  (https://github.com/FelixKrueger/TrimGalore) to remove bases with a Phred quality score
154  below 20. Unicycler (v0.4.8) [27] was then applied to perform de novo assembly with default
155  parameters. Contigs larger than 1,000 bp were used as input for MOB-suite (v3.0.0) [20], while
156  assembly graphs in GFA format served as input for gplas2 (v2.0.0). To run gplas2, nodes from
157  the graph were first classified as plasmid- or chromosome-derived using either plasmidEC or
158  PlaScope; only nodes larger than 1,000 bp were classified. Output from the tools was modified
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159 to assign probabilities for the classification of each node, which is required by the gplas
160  algorithm. For PlaScope, discrete probabilities were assigned based on the node classification
161  status; if a node was classified as plasmid, a probability of 1 was assigned, while chromosome-
162  predicted nodes were assigned zero. In the case of unclassified nodes, a probability of 0.5 was
163  assigned. By default, plasmidEC assigns probabilities based on the fraction of tools that agreed
164  on the classification. For example, if two out of three tools agreed in classifying a node as
165 plasmid, a probability of 0.66 is assigned.

166  Analysis of the plasmid bin composition

167  To evaluate the bins created by MOB-suite and gplas2, we used QUAST (v5.0.2) [26] to align
168  the contigs of each bin to the respective complete reference genome. We calculated accuracy,
169  completeness and F1-score on the base-pair level, as specified below.

Alignmentlengthagainstreferenceplasmid(bp)

170 A bp) =
ccuracy(bp) Totallengthofpredictedbin(bp)
171 Completeness(bp) _ Alignmentlengthagainstreferencep'lasmid(bp)
Totallengthofreferenceplasmid(bp)
Accuracy(bp) - Completeness(b
172 F1-Score(bp) =2 y(bp) P (bp)

. Accuracy(bp) + Completeness(bp)

173 If a bin was composed of contigs derived from different plasmids, then accuracyp),
174  completenessyp) and F1-scorewp) were reported for each plasmid-bin combination.

175  We also evaluated the number of reference plasmids that were detected by each tool. We
176  consider a reference plasmid as detected when at least a single contig of the plasmid was
177  included into the predictions.

178  To determine combined completeness for each reference plasmid, all bins generated in an isolate
179  were combined as follows:

180 Combinedcompleteness(bp) = Y.1 Completeness(bp) n =
181 Totalnumberofbinsthatcontaincontigsaligningthereferenceplasmid.

182  Antibiotic Resistance Gene (ARG) Prediction

183  Resistance genes were predicted by running Abricate (v1.0.1) against the Resfinder [28]
184  database (database indexed on 19 April 2020) with reference plasmids as query, using 80% as
185  identity and coverage cut-off. The same software and parameters were used to predict the
186  presence of ARGs in the plasmid-predicted contigs bins generated by each of the plasmid
187  reconstruction tools.

188  Evaluation of ARGs binning

189  For bins that carried ARGs, we calculated Recall(ARG) and Precision(ARG) as indicated
190  below.

191

192 Recall(ARG) _ Nr.ofcorrectlypredictedARGSEDbIn

Totalnr.of ARGsereferenceplasmid
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Nr.ofcorrectlypredictedARGSEDbIn
Totalnr.ofARGs€Ebin

193 Precision(ARG) =

194  Evaluating unbinned nodes in gplas predictions

195  Unitigs classified as unbinned by gplas (n=78) were aligned to the corresponding complete
196  reference genome using QUAST (v5.0.2). The results of these alignments were used to
197  determine the origin of the unitig (plasmid or chromosome). For isolates that contained more
198  than one unbinned unitig (n=19), coverage information of all unitigs (bin and unbinned) was
199  extracted from the header of the FASTA files generated after unicycler assembly. From these
200 data, coverage variance for all replicons was calculated and plotted using R (v.3.6.1).

201  Evaluating the recovered fraction for each reference plasmid

202  We calculated the maximum completeness(bp) that can be obtained to reconstruct every
203  reference plasmid using short-read sequencing data. Before applying any classification tool, all
204  nodes from the assembly graph were converted to FASTA format using the ‘extract’” option of
205  gplas2. Nodes smaller than 1,000 bp or smaller than 500 bp were filtered out using seqtk (v1.3)
206  (https://github.com/lh3/seqtk), and remaining nodes were aligned to their respective complete
207  reference genomes using QUAST to obtain the completeness(bp) values. The completeness(bp)
208  value was called the recovered fraction.

209  Read coverage of missing reference plasmids

210 A small number of plasmids were either completely missed or recovered with low completeness
211 after short-read assembly. In order to determine if these sequences were also missing from
212 short-reads, trimmed Illumina reads were aligned to reference genomes using BWA MEM
213 (v.0.7.17)[29] with default parameters. Resulting SAM files were converted to BAM and sorted
214  using SAMtools (v1.9) [30]. Read coverage per base was determined using BEDTOOLS
215 (v2.30.0) [31].

216 Results

217  Optimisation of gplas to improve the reconstruction of E. coli plasmids

218  Gplas is an algorithm that performs de novo reconstruction of plasmids through multiple steps
219  (Figure 1 - Steps 1 to 3) [32]. In short, nodes from the assembly graph are initially classified as
220 plasmid-derived or chromosome-derived by an external binary classification software, which
221  also assigns a probability to the classifications. Then, plasmid-predicted unitigs act as seeds to
222 compute plasmid walks with homogeneous coverage in the assembly graph using a greedy
223 approach. Finally, these unitigs are binned together into individual components based on their
224  co-existence in the computed plasmid walks. A detailed description of the algorithm can be
225 found in the original publication [32]. Given that gplas performed sub-optimally when
226  reconstructing E. coli plasmids in our previous study [19], in gplas2 we introduced two major
227  modifications to the algorithm:

228  A) Expansion of the input options for binary classification

229  Coupling gplas with an accurate binary classifier improves the reconstruction of plasmids, as
230 we previously demonstrated for Enterococcus faecalis and Klebsiella pneumoniae [32,33].
231  Consequently, the gplas2 algorithm accepts predictions from any binary classifier, provided
232 they output classification probabilities and expected file formats.
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233 B) Re-iterating plasmid walks over initially unbinned contigs

234  Gplas constructs plasmid walks over the assembly graph to connect unitigs that potentially
235  originate from the same plasmid (Figure 1 - Step 2). Consequently, plasmid-predicted unitigs
236  that can’t be connected to other unitigs through these walks are classified as unbinned, and are
237  notincluded in the plasmid predictions (Figure 1 - Step 3). Unbinned unitigs seem to originate
238 from reference plasmids that were sequenced with a pronounced coverage variation
239  (Supplementary Figure S2). This sequencing artefact poses a challenge to the gplas algorithm,
240  which builds plasmid walks from unitigs with homogeneous coverage. Consequently, we
241  modified gplas to consider these coverage variations (Figure 1 - Steps 4 & 5). Whenever
242  unbinned unitigs are produced, gplas2 will generate a second round of binning in bold mode by
243 running two additional steps:

244 1) Computation of plasmid walks in bold mode starting from unbinned unitigs

245  If unbinned unitigs are predicted, new bold plasmid walks will be constructed. When creating
246  the bold walks, a higher coverage variance threshold between plasmid-predicted unitigs is
247  allowed. This threshold can be defined by the user and is a multiple of the coverage variance
248  observed for chromosome-predicted unitigs. Only bold plasmid walks that start from unbinned
249  unitigs will be retained to use in the next step, while the rest will be discarded (Figure 1 - Step
250 4).

251 2) Plasmidome network reconstruction and repartitioning

252 Plasmid walks produced during bold mode are merged with plasmid walks from normal mode.
253 Based on these combined data, plasmidome networks are reconstructed and repartitioned
254  (Figure 1 - Step 5) to create new bins, using the same algorithms as in step 3.

255  We optimised the predictions obtained with gplas2 using a subset of 15 E. coli genomes that
256  contained unbinned unitigs and that were excluded from subsequent benchmarking efforts
257  (Supplementary Data 2). For bold walks, we allowed a coverage variance of 5, 10, 15 or 20
258 times the coverage variance observed for the chromosome-predicted unitigs. Plasmid
259  predictions made with gplas2 exhibited consistently higher completeness(bp) values when
260 compared to the original predictions (Supplementary Figure S3 A). Surprisingly, altering the
261  coverage variance threshold above 5 did not impact completeness(bp) values. In contrast,
262  accuracy(bp) values decreased when allowing a higher coverage variance. The highest F1-
263  Score(bp) values (median=0.78, IQR=0.47 - 0.96) were obtained when using a coverage
264  variance threshold of 5. Consequently, 5 was defined as the default value to construct bold
265 plasmid walks. As a single example, we display the plasmid predictions obtained with and
266  without running bold mode for genome GCA 013823335.1 ASM1382333v1 (Supplementary
267  Figure S3 B and S3 C). In this case, the bold walks allowed to recover 7 additional contigs
268  belonging to plasmids CP057179.1 and CP057180.1.

269  Gplas2, including the aforementioned features and a detailed user guide, can be found at
270  https://gitlab.com/mmb-umcu/gplas2.

271  Comparing binary classification methods for E. coli

272 Inorder to combine gplas2 with the best available binary classifier for E. coli, we compared the
273  performance of four different tools (PlaScope, RFPlasmid, mlplasmids and Platon). The
274  benchmark dataset consisted of 14,746 contigs. Of these contigs, 87.3% (n=12,872) were
275  chromosome-derived and 12.7% (n=1,874) were plasmid-derived, as determined by alignment
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276  to complete reference genomes.

277  We evaluated the number of contigs which were correctly and incorrectly classified by each of
278  the tools and calculated recall(contig), precision(contigy and F1-scorecontigy (Supplementary Table
279  S1). Plascope was able to correctly identify the highest number of plasmid-derived contigs
280  (True Positives, n=1,629), while the rest of the tools detected between 1,297 and 1,523 plasmid-
281  derived contigs. Notably, PlaScope also included the least chromosomal contamination in its
282  predictions (False Positives, n=117), closely followed by Platon (n=122). In contrast,
283  mlplasmids and RFPlasmid included a higher amount of chromosome-derived contigs in their
284  plasmidome predictions (n=418 and n=420, respectively). PlaScope was the tool with the
285  highest F1-scorecontig) (0.900) followed by Platon (0.861), RFPlasmids (0.798) and mlplasmids
286  (0.722). For most tools, precisioncontigy Values were higher than recallcontig) values, indicating
287  that the predicted plasmidome mostly consists of true plasmid-derived contigs, but also that
288  plasmid contigs were frequently missed by the tools.

289  We also explored the congruence in contig classifications across tools (Figure 2). All tools
290 agreed on the correct classification of 51.8% of plasmid-derived contigs (True Positives: n=971,
291  Figure 2A), and another 26.5% plasmid-derived contigs were correctly classified by at least
292  three tools (n=497). Also, a high fraction (94.1%) of chromosome-derived contigs were
293  correctly classified by all tools (True Negatives: n=12,116, Figure 2B). Moreover, only a
294  minority of plasmid-derived and chromosome-derived contigs were missed by most of the tools
295 and correctly classified by just a single tool (True Positives: 85/1,874, 4.7%, True Negatives:
296  58/12,872, 0.5% respectively). From these observations, we concluded that contig
297  misclassifications are primarily derived from individual tools (Figure 2C and 2D).

298 PlasmidEC: A voting classifier for improved detection of ARG-plasmid contigs in E. coli.

299  We theorised that discarding software-specific misclassifications, while keeping correct
300 classifications shared by multiple tools, could improve the overall binary classification of E.
301  coli contigs as plasmid- or chromosome-derived. To explore this, we combined the predictions
302  of three individual classifiers and extracted their majority vote as the final classification.

303  After testing all possible combinations of individual classifiers, we found that
304  Platon/PlaScope/RFPlasmid displayed the highest overall performance of voting classifiers
305  with the highest F1-scorecontig) (0.904). This ensemble classifier achieved an F1-scorecontig)
306 similar to PlaScope (0.900) but had a slightly higher recallcontig) (0.884 and 0.869, respectively)
307  (Figure 3 A and B, Supplementary Table S1).

308 Next, we evaluated recallcontig) values for a subset of plasmids (n=114) encoding antibiotic
309 resistance genes (ARG-plasmids) (Figure 3C and 3D, Supplementary Table S2). This dataset
310 consisted of 860 plasmid-derived contigs, derived from 91 E. coli genomes. The recall(contig) 0of
311  individual tools ranged from 0.723 (mlplasmids) to 0.884 (PlaScope), whereas the different
312  combinations of tools in a voting classifier reached recallcontig) vValues ranging from 0.883
313  (mlplasmids/Platon/RFPlasmid) to 0.941 (Platon/PlaScope/RFPlasmid).

314  Based on these results, the combination of Platon/PlaScople/RFPlasmid was selected as the
315 ensemble classifier to be implemented in a novel tool termed plasmidEC, which is publicly
316  available at https://gitlab.com/mmb-umcu/plasmidEC.

317 We measured the computational resources used by the ensemble and individual classifiers
318  (Supplementary Figure S4). Binary classifiers showed considerable differences in both CPU
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319 time and memory usage. The average CPU time required per sample was lowest for PlaScope
320 (0.2 mins) and highest for Platon (14.9 mins). Platon also used the largest amount of memory
321  per sample (20.6 Mb). The least amount of memory was required by mlplasmids (2.7 Mb).
322  Because plasmidEC includes the execution of three binary classifiers, time and memory
323  requirements were high, especially when Platon was run. The combination of
324  mlplasmids/PlaScope/RFPlasmid required the least number of resources (CPU time = 4.5 mins,
325 memory = 9.0 Mb) and PlaScope/Platon/RFPlasmid the most (CPU time = 21.5 mins, memory
326 =21.4 Mb).

327  Exploiting the information from the assembly graph improves correct binning of ARG
328  plasmids

329  Toreconstruct individual E. coli plasmids, gplas2 was combined with plasmidEC and PlaScope,
330 and performance was compared against MOB-suite, which was the best-performing plasmid
331  reconstruction tool for E. coli in our recent benchmark study [19]. To retain comparability with
332  the aforementioned study, we started with the same dataset and removed 26 genomes that were
333  present in the PlaScope database and 15 genomes that were used to improve the gplas2
334  algorithm. Consequently, our benchmark dataset consisted of 199 complete E. coli genomes,
335  which carried 483 plasmids. A total of 213 (44.1%) plasmids were classified as small plasmids
336  (smaller than 18,000 bp), while the remaining 270 (55.9%) were large plasmids [19]. Given
337  our interest in predicting ARG-plasmids, and the fact that most ARGs are encoded on large
338 plasmids (n=382/387, 98.7%), we analysed performance separately for large ARG-plasmids
339  (n=96) and large non-ARG-plasmids (n=174).

340  When evaluating the reconstruction of ARG-plasmids, we found that the F1-Scorewyp) values of
341  gplas2 combined with either plasmidEC (gplas2 plasmidEC) or PlaScope (gplas2 PlaScope)
342  were similar (Figure 4A, Table 1). However, gplas2 plasmidEC (median=0.81, IQR=0.53 -
343 0.93) performed slightly better than gplas2 PlaScope (median=0.76, IQR=0.52 - 0.94).
344  Notably, both gplas2 methods outperformed MOB-suite, which presented a lower F1-Scorey)
345 (median=0.44, IQR=0.18 - 0.87). As accuracy(p) values were nearly identical across tools, the
346  disparity in F1-Scoresp) can be explained due to the differences in completenessyp). In contrast,
347 combined completenessyp) distributions were virtually identical among tools. These results
348  suggested that all methods had a similar capacity to detect contigs derived from ARG-plasmids,
349  but gplas2 performed better at binning these contigs together into individual predictions. This
350 hypothesis was confirmed by analysing the number of bins into which each reference plasmids
351  was fragmented (Figure 4B). For ARG plasmids, we found that MOB-suite fragmented 49% of
352  plasmids into multiple predictions, while both gplas2 methods did so in only 14% of the cases.

353  All tools identified a similar number of plasmid-derived ARGs (Figure 4C). MOB-suite and
354  gplas2 plasmidEC detected 331 (86.6%) ARGs and gplas2 PlaScope 327 (85.6%). Moreover,
355  all tools successfully detected all ARGs present in small plasmids (n=5, 100%). In concordance
356  with previous results, recallarg) values (Figure 4D) for gplas2 predictions were higher than
357 those obtained with MOB-suite (Table 1). This indicates that gplas2 performs better at correctly
358  binning ARGs together into the same bin. However, plasmid predictions made with gplas2 also
359 included a higher number of chromosome-derived ARGs (Figure 4C, Table 1).

360 Interestingly, tools performed similarly well when evaluating the reconstruction of extended
361 spectrum beta-lactamase (ESBL) plasmids (n=42). MOB-suite reconstructions were
362  characterised by having higher accuracywp) and gplas2 methods reconstructed ESBL-plasmids
363  with higher completenessp) (Supplementary Figure S5A). Despite these differences, all tools
364  exhibited similar F1-Scorep) values. Additionally, the number of plasmid-borne ESBL genes
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365  detected were almost identical across tools (Supplementary Figure S5B). Nevertheless, gplas2
366 methods performed slightly better at binning ARGs into the same prediction (Supplementary
367  Figure S5C).

368  For small plasmids (n=213), all tools displayed similar performance across the three metrics,
369 obtaining near-perfect reconstructions in all cases, with Fl-scorewp) medians of 1
370  (Supplementary Figure S6A, Table 1). This is likely due to most small plasmids being
371 assembled into a single contig (n=196, 92.0%) (Supplementary Figure S6B), and consequently
372  the identification of these contigs as plasmid-derived generally leads to obtaining high values
373  for all metrics. We therefore evaluated the number of small (and large) plasmids detected by
374  each of'the tools (Supplementary Figure S6C, Table 1). Interestingly, gplas2 PlaScope detected
375 196 (92.0%) small plasmids, and gplas2 plasmidEC performed similarly, detecting 184
376  (86.4%). Both gplas2-methods outperformed MOB-suite, which detected 174 (81.79%) small
377  plasmids.

378  Finally, we tested the effect of using different contig size cut-offs for plasmid reconstruction.
379  We found no significant differences in performance of the tools when using 500 bp or 1,000 bp
380 as the minimum contig size. A more detailed description of the results from this analysis can
381  be found in the Supplementary Materials and in Supplementary Figures S7 - S10.
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382 Discussion

383  Accurately reconstructing E. coli plasmids from Illumina reads has proven to be a challenge,
384  especially in the context of ARG-plasmids. In this work, we developed a new high-throughput
385 method to reconstruct E. coli plasmids de novo from short-read sequencing data. Our method
386 relies on an accurate identification of plasmid-derived nodes in the assembly graph, followed
387 by the binning of these nodes using sequencing coverage and node connectivity information.
388 We proved that our method outperforms other plasmid prediction tools available for E. coli,
389  especially when reconstructing ARG-plasmids.

390 To improve the identification of plasmid-derived contigs, we built plasmidEC, an ensemble
391 classifier that combines predictions from three individual binary classifiers and implements a
392  majority voting system. Voting classifiers have been successfully applied in other fields of
393  biology [35-38], but so far not for the problem of plasmidome identification. PlasmidEC
394  correctly identified a large fraction of contigs derived from ARG-plasmids
395  (Recall(contig=0.941), and considerably outperformed all individual classifiers. Thus, we believe
396 that plasmidEC will be especially useful for plasmidome research that focuses on antibiotic
397 resistance. Notably, all binary classifiers presented higher recallcontig) for classifying contigs
398 from ARG plasmids than from non-ARG plasmids, suggesting that these sequences might be
399  overrepresented in reference databases which are directly or indirectly used by all tools.

400 When comparing the performance of the tools using the entire benchmark dataset, we found
401  that plasmidEC and PlaScope performed very similarly in terms of F1-Score(contig). However,
402  plasmidEC showed a higher recallcontigy but used more computational resources and took a
403  longer time to complete the predictions. Reference-based methods, like PlaScope, are expected
404  to perform well for species like E. coli which are abundant in public databases [39]. Supporting
405 this hypothesis, a recent study by Shaw et al. [40] discovered very few novel plasmid sequences
406  in a dataset that included more than 2,000 plasmids from Enterobacteriaceae isolates. PlaScope
407  was built around Centrifuge [41], a metagenomic classifier to predict the origin of contigs based
408 on custom databases. Recently, it was also shown that the usage of Kraken [42], another
409 metagenomic classifier using customised databases, outperformed other binary classifiers in
410  Klebsiella pneumoniae [41,43]. It would be interesting to explore how tools perform at
411  classifying contigs from species with a limited number of complete genomes in databases. We
412  speculate that in those cases, plasmidEC, which combines tools with diverse computational
413  approaches, could improve predictions to a larger extent.

414  PlasmidEC could be further optimised by (i) multithreading the predictions of the individual
415  tools, which would reduce the computational time to generate the results, (ii) including the
416  possibility to predict the origin of contigs from other species, as long as those are supported by
417  the binary classifiers, and (iii) improving its accuracy by using weighted votes, where a high
418  confidence prediction will contribute more to the final result than a low confidence prediction.

419  Weintegrated plasmidEC (and PlaScope) with gplas2 to reconstruct individual E. coli plasmids.
420  We then compared the performance of gplas2 combined with those classifiers against MOB-
421  suite. Interestingly, the most pronounced differences in performance were observed when
422  reconstructing ARG-plasmids. Although combined completenessp) values indicated that the
423  three tools identified similar fractions of ARG-plasmids, MOB-suite more frequently
424  fragmented ARG-plasmids into multiple bins, yielding low completenesswyp) and F1-Scorep).
425  Incontrast, gplas2 (either with plasmidEC or PlaScope) was more successful at binning together
426  contigs into individual plasmid predictions, thus achieving considerably higher values for the
427  aforementioned metrics. Accuracy(p) values for all tools were very similar, indicating a similar
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428  degree of chimeric predictions. Interestingly, both gplas2 methods performed similarly to
429  MOB-suite when reconstructing plasmids that carry ESBL genes, which suggests that these
430 plasmids might be overrepresented in the database used by MOB-suite to make predictions.

431  We recently described that ARG plasmids from E. coli are particularly difficult to reconstruct
432  from short-read data [18], and we suggested that the modular nature of these plasmids could
433  complicate their reconstruction using strict reference-based methods, such as MOB-suite. The
434  results we obtained here seem to confirm this hypothesis. Additionally, we improved the
435  reconstruction of ARG-plasmids by using coverage and node connectivity information. Yet,
436  our study also proves that enriching the assembly graph with accurate information on the origin
437  of contigs (plasmid/chromosome) is equally important. A previous version of gplas, which used
438 mlplasmids as a binary classifier, performed significantly worse at predicting ARG-plasmids in
439  E. coli [19]. Moreover, using a simpler graph-based approach that mainly relies on coverage
440  differences to identify plasmids is also insufficient. This approach, applied by plasmidSPAdes,
441  frequently leads to the inclusion of chromosomal contamination [18,19], due to the low copy
442  number that ARG-plasmids often exhibit.

443  We envision that gplas2 could be combined with different binary classification tools to obtain
444  accurate de novo plasmid reconstructions for multiple bacterial species. This means that gplas2
445  could, in theory, also be applied to the reconstruction of plasmids in metagenomic samples.
446  However, since a greater number of plasmid-predicted unitigs is expected on metagenomes, the
447  construction of plasmid walks will probably require parallelization in order to keep the
448  computation time within practical limits.

449  Although our method constitutes a considerable improvement of the reconstruction of ARG-
450 plasmids, some limitations should be noted. First, gplas2 does not include insertion sequences
451  (and other repeated elements) into plasmid predictions. This facilitates the process of finding
452  plasmid walks with homogeneous coverages and simplifies the resulting plasmidome network.
453  However, insertion sequences play an important role in the structure and genomic plasticity of
454  plasmids [44], and they are frequently involved in the mobility of ARGs [9,45,46].
455  Additionally, the localization of these MGEs can influence the expression levels of ARGs
456  [47,48], thereby impacting the resulting resistance phenotypes. Consequently, including IS
457  elements would certainly improve the completeness and relevance of plasmid predictions.
458  Some graph-based plasmid reconstruction methods, like HyAsP [49], include repeated elements
459  into predictions. This tool also constructs plasmid walks, and uses coverage information to
460  predict IS copy numbers, thus allowing the same IS to be present in multiple replicons. In the
461  gplas algorithm, considering repeated elements during the construction of the plasmid walks
462  would lead to more entangled plasmidome networks and would complicate the subsequent
463  partitioning step. As an alternative, we could envision adding labels to unitigs after the binning
464  step, and then implementing a label propagation algorithm on the original assembly graph to
465  determine to which bin the different IS elements belong. A similar approach is implemented by
466  the tool GraphBin2 [50], which refines binning results of metagenomics samples. A second
467  disadvantage of our method is the formation of chimeras, which are bins composed of nodes
468  from distinct replicons. As previously mentioned, accurate identification of plasmid derived
469 nodes reduces the number of chromosome-plasmid chimeras. However, preventing the
470  formation of plasmid-plasmid chimeras is more challenging, especially for isolates carrying
471  multiple large plasmids with similar copy numbers. Separating these chimeras could be possible
472  with the use of a plasmid-backbone reference database.

473  To conclude, in this work we presented a new plasmidome prediction tool, named plasmidEC,
474  and optimised gplas to accurately bin predicted plasmid sequences. Compared to existing binary
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475  classifiers, plasmidEC achieves increased recallcontig), €specially for contigs that derive from
476 ARG plasmids. The integration of plasmidEC with gplas2 substantially improved the
477  reconstruction of ARG plasmids in E. coli. Our method exceeded the binning capacity of the
478  reference-based method MOB-suite, while retaining similar accuracyp) values. The presented
479  approach constitutes the best alternative to accurately predict and reconstruct ARG plasmids de
480  novo in the absence of long-read data.
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Figures and Tables

Table 1. Performance summary of three plasmid prediction tools, for the prediction of different plasmid types.

MOB-suite

gplas2_plasmidEC

gplas2_PlaScope

ILarge Plasmids (n=270)

Nr. of detected plasmids*
ARG-Plasmids (n=96)
F1-Score(bp) (median, IQR)
Completeness(bp) (median, IQR)
Accuracy(bp) (median, IQR)

Nr. plasmid-borne ARGs detected
Nr. chromosome-derived ARGs
Recall (ARG) (median, IQR)
Precision (ARG) (median, IQR)
Non-ARG-Plasmids (n=174)
F1-Score(bp) (median, IQR)

Completeness(bp) (median, IQR)

263 (97.4%)

0.421 (0.172 - 0.860)
0.317 (0.114- 0.803)
0.883 (0.591 - 0.982)
331 (86.6%)
64
1(0.42- 1)

1(0.82-1)

0.910 (0.378 - 0.977)

0.879 (0.245 - 0.967)

253 (93.7%)

0.812 (0.529 - 0.934)
0.818 (0.520 - 0.924)
0.979 (0.564 - 1)
331 (86.6%)

75
1(0.86- 1)

1(0.75-1)

0.921 (0.596 - 0.983)

0.915 (0.618 - 0.972)

254 (94.1%)

0.758 (0.520 - 0.936)
0.818 (0.531 - 0.924)
0.979 (0.520 - 1)
327 (85.6%)

75
1(0.86- 1)

1(0.77- 1)

0.912 (0.571 - 0.983)

0.918 (0.614 - 0.972)

Accuracy(bp) (median, IQR) 0.978 (0.904 - 1) 1(0.958-1) 1 (0.796- 1)
ISmall Plasmids (n=213)

Nr. of detected plasmids* 174 (81.8%) 184 (86.4%) 196 (92.0%)
F1-Score(bp) (median, IQR) 1(0.985-1) 1(0.991-1) 1(0.990-1)
Completeness(bp) (median, IQR) 1(0.976-1) 1(0.996 - 1) 1(0.990- 1)
Accuracy(bp) (median, IQR) 1(1-1) 1(1-1) 1(1-1)
Nr. plasmid-borne ARGs detected 5 (100%) 5 (100%) 5 (100%)

*A plasmid is considered detected if at least 1 contig is included in the plasmid predictions
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633 Figure 1. Schematics on gplas2 algorithm. The steps 4 and 5 were added to gplas2 in order to recover unbinned
634  unitigs.
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635  Figure 2. Upset diagrams showing congruence in contig classification by different binary prediction tools
636 (absolute counts). True Positives (TP; prediction=plasmid, class=plasmid), True Negatives (TN; prediction =
637 chromosome, class=chromosome), False Positives (FP; prediction=plasmid, class=chromosome), False Negatives
638  (FN, prediction=chromosome, class=plasmid). Bar colours indicate the number of tools that concur in the

639 classification of the contigs.
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640 Figure 3. Performance of individual binary classifiers and plasmidEC combinations, measured by recallicontig),
641 precisioncontigy and Fl-scorewcontigy A) Individual classifiers evaluated using full dataset (n=214 genomes). B)
642 PlasmidEC combinations evaluated using full dataset C) Individual classifiers evaluated using a dataset of ARG-
643 plasmids (n=114 plasmids). D) PlasmidEC combinations evaluated using a dataset of ARG-plasmids.
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Figure 4. Benchmarking of plasmid reconstruction methods. A) Recall(bp) , Precision(bp), F1-score(bp) and
Combined Recall(bp) values for predictions corresponding to large ARG-plasmids (n=96) and large non-ARG-
plasmids (n=174). B) Percentage of reference plasmids that were recovered with different fragmentation degrees
(i.e. If contigs belonging to a reference plasmid are assigned to three different predictions, then the fragmentation
degree equals three). C) Absolute count of ARGs included (detected) in plasmid predictions, missing ARGs (not
detected) and chromosome-derived ARGs incorrectly included (Chromosome). D) Recall(ARG) and
Precision(ARG) value.
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