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Abstract 
Summary: SpaDal transcriptomics has changed our way to study Dssue structure and cellular 
organizaDon. However, there are sDll limitaDons in its resoluDon, and most available plaXorms do not 
reach a single cell resoluDon. To address this issue, we introduce SpaDalDDLS, a fast neural network-
based algorithm for cell type deconvoluDon of spaDal transcriptomics data. SpaDalDDLS leverages 
single-cell RNA sequencing (scRNA-seq) data to simulate mixed transcripDonal profiles with 
predefined cellular composiDon, which are subsequently used to train a fully-connected neural 
network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art 
spaDal deconvoluDon methods, we demonstrate that SpaDalDDLS is an accurate and faster alternaDve 
to the available state-of-the art tools. 
Availability and implementa5on: The R package SpaDalDDLS is available via CRAN-The 
Comprehensive R Archive Network: haps://CRAN.R-project.org/package=SpaDalDDLS. A detailed 
manual of the main funcDonaliDes implemented in the package can be found at 
haps://diegommcc.github.io/SpaDalDDLS. 
Contact: fscabo@cnic.es  
Supplementary informa5on: Supplementary data are available at BioinformaDcs online. 
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Introduc)on  
Single-cell omics have represented one of the main technological advances towards the 
understanding of physiological and pathological states. However, the spaDal context and 
localizaDon of the cells are key elements with funcDonal relevance that are missing with these 
techniques. In the last few years, spaDal transcriptomics have revoluDonized our ability to 
invesDgate biological processes by providing an unbiased way to understand Dssue structure, 
cellular interacDon, and funcDon. Rather than studying cells as isolated and independent 
enDDes, it incorporates context through the spaDal dimension while preserving the powerful 
informaDon provided by whole transcriptome sequencing. However, due to the limitaDons of 
most available techniques, which fail to achieve single-cell resoluDon, computaDonal methods 
are needed to idenDfy the precise combinaDon of cells within each spot. DeconvoluDon 
methods have been previously applied to bulk RNA-seq data in order to disentangle the 
cellular composiDon of samples from whole Dssues or organs (Avila Cobos et al., 2018). For 
example, being able to quanDfy the different types of infiltrated lymphocytes in a given tumor 
starDng from RNA-seq of the whole sample can serve as a very accurate method to predict 
the Dme-to-death from colorectal or breast cancer paDents (Torroja and Sanchez-Cabo, 2019). 
A natural extension of these methods is to apply them to deconvolute the transcriptomics 
data from each sequenced spot in spaDal transcriptomics to idenDfy their exact cellular 
composiDon. There is a broad spectrum of tools which follow different approaches to solve 
this problem (Li et al., 2022), but most uDlize single-cell RNA-seq (scRNA-seq) datasets from 
the same biological context as references, thereby presenDng the issue as a supervised task. 
However, they usually rely on predefined markers defined either manually or through 
differenDal expression analysis, and typically have long running Dmes that pose challenges for 
their pracDcal applicaDon (Li et al., 2022). 

In this work, we introduce SpaDalDDLS, an R package that provides a fast neural network-
based soluDon for cell type deconvoluDon of spaDal transcriptomics data. The algorithm 
employs scRNA-seq data to simulate mixed transcripDonal profiles with known cell 
composiDon, with which a fully-connected neural network is trained with the aim to uncover 
cell type diversity within each spot (Figure 1). In contrast to other methods which are 

Figure 1: Schema/c overview of Spa/alDDLS. Spa%alDDLS takes both an annotated single-cell RNA-seq dataset 
to be used as reference, and the spa%al transcriptomics datasets wanted to be deconvoluted. Then, it simulates 
mixed transcrip%onal profiles with known cell composi%on and trains a fully-connected neural network able to 
make accurate predic%ons of cell type propor%ons. These cell type propor%ons and the trained model can be 
used for further analyses. 
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computaDonally intensive and rely on a predefined and biased set of cell type markers, 
SpaDalDDLS does not require the definiDon of cell idenDty signatures and has a lightweight 
computaDonal processing. To demonstrate its performance and efficiency, we have 
benchmarked our tool against two state-of-the-art spaDal deconvoluDon methods in two 
different biological contexts: murine lymph nodes upon sDmulaDon (Lopez et al., 2022) and 
murine hippocampus samples  (10x-Genomics, 2020; Saunders et al., 2018). SpaDalDDLS’ 
predicDons reproduced known cell type locaDon paaerns and yielded similar results 
compared to other methods, while reducing the computaDonal Dmes by 1.8-14 fold, thereby 
making it a compeDDve alternaDve to already available tools. 
 
 
Spa)alDDLS 
SpaDalDDLS is an extension of our deconvoluDon tool for bulk RNA-seq (Torroja and Sanchez-
Cabo, 2019) implemented in the R package digitalDLSorteR (Mañanes et al., 2022). The 
algorithm uses scRNA-seq to simulate mixed transcripDonal profiles for training neural 
network models capable of esDmaDng the cell proporDons of new mixed transcripDonal 
profiles typically present in spaDal transcriptomics data. It consists of three main steps (Figure 
1): 
 
1. SimulaDon of mixed transcripDonal profiles with known cellular proporDons. SpaDalDDLS 

begins by using a pre-idenDfied scRNA-seq dataset that is parDDoned into training and test 
cell subsets. Then, cell proporDons are simulated from each labelled subset of cells by 
using different approaches (see Supplementary Methods). Once the cellular composiDon 
matrix is generated, training and test mixed transcripDonal profiles with those cell 
proporDons are simulated. 

2. Neural network training and evaluaDon. A neural network model is trained and evaluated 
using the simulated mixed profiles. Thanks to the inclusion of a test subset, this workflow 
allows for an assessment of whether the model is correctly idenDfying the transcripDonal 
features of every cell type considered in the reference. 

3. DeconvoluDon of spaDal transcriptomics datasets. Once the model is trained, it is capable 
of making whole transcriptome-based predicDons of cell type proporDons in new samples, 
enabling the deconvoluDon of whole spaDal transcriptomics datasets. 

 
All these steps are implemented using the S4 object-oriented programming system of R to 
centralize all intermediate data generated during the workflow and provide a user-friendly 
usage. Regarding its implementaDon, SpaDalDDLS makes use of the keras (Allaire and Chollet, 
2021) and tensorflow (Allaire and Tang, 2021) R packages for all deep learning-related tasks, 
and S4-classes from the Bioconductor’s environment (Huber et al., 2015) for the storage of 
gene expression matrices (scRNA-seq and spaDal transcriptomics). Therefore, it can be 
enDrely integrated into the typical workflow used for the analysis of transcriptomics data in R. 
In addiDon, the possibility to work with The Hierarchical Data Format version 5 (HDF5) files as 
back-end has been implemented at each step of the workflow by using the DelayedArray 
(Pagès, 2021a) and HDF5Array (Pagès, 2021b) R packages to provide a way to handle large 
amounts of data on RAM-constrained machines. For a detailed explanaDon of each step with 
code and examples, see the website of the package 
(haps://diegommcc.github.io/SpaDalDDLS). 
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Results 
To assess the performance of SpaDalDDLS, we decided to analyze samples from two different 
biological contexts that exhibit clear spaDal paaerns in their cell type distribuDon: mouse 
hippocampus (Figure S1a) (Saunders et al., 2018) and mouse lymph node (Figure S3a) (Lopez 
et al., 2022) samples. 
 
Firstly, we evaluated the model training and performance by using simulated mixed 
transcripDonal profiles from these two experiments. As shown in Figures S1b and S3b, the 
trained models achieved excellent performance on simulated data of both datasets (R ≥ 0.98 
(Pearson’s correlaDon coefficient) and CCC ≥ 0.96 (concordance correlaDon coefficient) for all 
cell types), indicaDng that they effecDvely detected biological signals for every cell type. 
 
Next, we benchmarked SpaDalDDLS against two state-of-the-art methods in the spaDal 
transcriptomics field: cell2locaDon (Kleshchevnikov et al., 2022) and RCTD (Cable et al., 2022). 
We chose these tools because of their high performance in different recently published 
benchmarks (Li et al., 2022, 2023; Yan and Sun, 2023). In both experiments, SpaDalDDLS 
generated similar predicDons to those of cell2locaDon and RCTD. This agreement was 
confirmed by hierarchical clustering of Pearson’s correlaDon coefficients between the 
esDmaDons made by each method for each cell type, showing that they were mostly clustered 
by cell type rather than the method used (Figure S1c and S3c). Then, we ploaed the 
esDmaDons of the most representaDve cell types of each dataset together with the expression 
of classical markers (Table S1) to observe their spaDal locaDon (Figure S2 and S4). The three 
methods yielded similar spaDal paaerns that co-localized with the expression of their markers, 
although also some differences were observed for specific cell types. In parDcular, SpaDalDDLS 
tended to predict higher proporDons of endothelial cells and astrocytes in the hippocampus 
sample than cell2locaDon, which is in line with the expression of their markers and RCTD 
predicDons (Figure S2). In the lymph node dataset, CD8+ T cells were underesDmated by 
SpaDalDDLS, although CD4+ T cell and migratory dendriDc cell signals were beaer captured 
compared with RCTD esDmaDons (Figure S4). Overall, this demonstrates a high agreement 
between the three methods but the presence of specific tendencies, making their predicDons 
complementary to each other. 
 
Importantly, despite these similar results, SpaDalDDLS exhibited a significant improvement in 
running Dme compared with the other two tools (Table S2). While cell2locaDon showed the 
worst performance in both datasets, RCTD kept good running Dmes in the hippocampus 
samples. However, when the number of spots considered increased as in the lymph node 
samples, the algorithm did not scale well compared with SpaDalDDLS, which kept similar 
running Dmes in both datasets. 
 
 
Conclusion 
SpaDalDDLS is a flexible spaDal deconvoluDon tool of easy use fully integrated in the 
R/Bioconductor ecosystem. We have demonstrated that it generates comparable results to 
those of two state-of-the-art methods while keeps shorter running Dmes. All these features 
make it a robust alternaDve to exisDng methods. In addiDon, SpaDalDDLS does not need the 
definiDon of a set of markers for each cell type and performs whole-transcriptome predicDons. 
We think that this fact can be useful in the context of paired scRNA-seq and spaDal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2023. ; https://doi.org/10.1101/2023.08.31.555677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/


SpaDalDDLS 

transcriptomics datasets, as SpaDalDDLS could account for specific transcripDonal features 
that cell types can undergo depending on the biological context. 
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Supplementary Methods 

SpatialDDLS overview 

SpatialDDLS is an R package which provides a user-friendly approach to deconvoluting spatial 
transcriptomics data. The package offers several functionalities for effectively handling large 
datasets through the utilization of HDF5 files and streamlines the overall process with a few 
simple function calls. It tries to offer a framework in which deconvolution of spatial 
transcriptomics data using neural networks is easy and flexible depending on the 
particularities of each problem. The algorithm comprises three main steps.  

1 - Loading data 

SpatialDDLS operates within a supervised framework, requiring thus both the spatial 
transcriptomics wanted to be deconvoluted and a reference single-cell RNA-seq (scRNA-seq) 
dataset with pre-identified cell types. The goal is to consider only those genes that are 
relevant in both types of data for further steps. To do so, it starts by applying two filters to 
reduce the number of original dimensions. These filters must be modified according to the 
particularities of the data (number of cells, sequencing depth, etc.):  

1. Minimum count cutoff for N cells. 
2. Minimum non-zero average count cutoff per cell type, only applied to the scRNA-

seq.  

Then, only genes shared between both modalities are retained. In addition, if multiple spatial 
transcriptomics slides are provided, SpatialDDLS offers the option to keep only those genes 
present in a specified number of slides. These steps aim to expedite subsequent steps by 
avoiding the consideration of the entire noisy expression matrix. Notably, when working with 
massive amounts of data, single-cell profiles can be provided as HDF5 files. SpatialDDLS 
handles this format by using the DelayedArray (Pagès, 2021a) and HDF5Array (Pagès, 2021b) 
R packages.  

2 - Simulation of mixed transcriptional profiles 

The second step consists of the generation of mixed transcriptional profiles with known cell 
compositions. This is achieved by the genMixedCellProp function, which generates the cell 
composition matrix, and simMixedProfiles, which simulates the mixed profiles and saves 
them in the SpatialDDLS object. SpatialDDLS is again able to accommodate these simulated 
samples using HDF5 files as back-end, but this option is not necessary for most situations.  

In the cell composition generation process, the package initially partitions the single-cell 
profiles into training and test subsets (default split ratio of 0.66). The cell proportions for each 
simulated profile are then determined using three different approaches:  

1. Random profiles: In this approach, profiles are generated by randomly sampling from 
a Dirichlet distribution. To introduce sparsity in the cell proportions, the prob.sparity 
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parameter is used, controlling the probability of having missing cell types in each 
simulated profile instead of a mixture of all cell types.  

2. Pure profiles: This approach involves aggregating a specified number of cells from the 
same cell type to create pure profiles. These samples aim to generate less noisy 
representations for each cell type considered in the experiment, as opposed to 
directly using the single-cell profiles.  

3. Forced-sparse profiles: This approach enforces a minimum number of missing cell 
types, resulting in sparse samples (min.zero.prop parameter). Proportions for the 
remaining cell types are then generated using a Dirichlet distribution.  

These methods are designed to introduce greater sparsity in terms of cell type composition, 
enabling the neural network to learn to detect scenarios where certain cell types may be 
missed. For analyses similar to those presented in this article, we recommend generating a 
total of 15,000-25,000 mixed transcriptional profiles (num.sim.spots). The percentage of 
profiles generated by each method can be controlled using the proportion.method 
parameter, but the default values are suitable for most situations. Each sample comprises a 
specific number of aggregated cells with a default of 50 single-cell profiles per sample. Finally, 
in cases where certain cell types are underrepresented, SpatialDDLS provides the option to 
simulate new single-cell profiles using the ZINB-WaVE framework (Risso et al., 2018) by the 
estimateZinbwaveParams and simSCProfiles functions. This feature enables the increase of 
cell type-specific signals, thereby increasing their representation through an augmentation-
based approach.  

In the simulation step, single-cell profiles can be aggregated using different strategies, but 
aggregating raw counts by summing them up is the preferred one. Then, mixed transcriptional 
profiles are normalized to account for sequencing depth using counts per million and log2-
transformed.  

3 - Training the neural network model and deconvolution of spatial transcriptomics datsets 

Once the SpatialDDLS object contains the normalized mixed transcriptional profiles, a neural 
network model is trained using the training subset. To address potential issues arising from 
variations in gene scales, the profiles are feature-wise rescaled between 0 and 1. While 
alternative transformations are available, this rescaling strategy is the default choice.  

The package implements a default architecture for the neural network model, but users have 
the flexibility to fully customize it based on the specific characteristics of their datasets. 
However, we recommend considering the following parameters as a starting point, although 
they may vary depending on the complexity of the dataset being deconvoluted (number of 
cell types, similarity between them, etc.):  

• Architecture: Two hidden layers with 300 neurons each.  
• Activation function for hidden layers: Sigmoid function as the activation function.  
• Optimization function: Kullback-Leibler divergence, which is suitable for modeling 

probability distributions.  
• Batch size: 64 samples.  
• Number of epochs: 60-80.  
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• Dropout regularization: One dropout layer with a rate of 25% to every hidden layer to 
prevent overfitting.  

• Activation function for the last layer: Softmax function, enabling the neural network 
to predict probabilities that can be interpreted as cell type proportions.  

After training, the model becomes capable of predicting the cell composition of new samples 
based solely on their transcriptional features. Additionally, the package also includes several 
functions for inspecting and evaluating the model’s predictive performance. These functions 
allow users to assess whether their models are effectively learning patterns associated with 
specific cell types, and thus determining if adjustments to the hyperparameters are required.  

 

scRNA-seq and spatial transcriptomics datasets 

For the mouse hippocampus analysis, the scRNA-seq dataset used as reference is sourced 
from Saunders et al. 2018 and was downloaded from the Broad Institute’s Single Cell Portal 
(SCP948 study). The spatial transcriptomics dataset was obtained from the 10x Genomics 
website (10x-Genomics, 2020). In the case of the mouse lymph node analysis, the scRNA-seq 
and spatial transcriptomics data were obtained from Lopez et al. 2022 and are available at 
the Gene Expression Omnibus database under the accession number GSE173778.  

Both datasets were analyzed and visualized using Seurat v4.1 (Hao et al., 2021). In brief, most 
variable genes were taken and used as input for principal component analysis (PCA). Then, 
first 15 principal components were used for visualization through Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP) using default parameters 
implemented in Seurat.  

 

Deconvolution of spatial transcriptomics datasets 

Unless stated, the parameters used for each model presented in this article are the ones the 
package has by default.  

1 - Mouse hippocampus  

Only genes shared between the single-cell reference and the spatial transcriptomics dataset 
were used with no further filtering, resulting in 273 genes. Then, 15,000 mixed transcriptional 
profiles were simulated and 66.6% of them used to train for 60 epochs a neural network of 
two hidden layers with 300 neurons each.  

2 - Mouse lymph node  

In the scRNA-seq dataset, genes were filtered setting a cutoff of three counts in five cells and 
a cutoff of non-negative average expression of three. Spatial transcriptomics dataset genes 
were filtered setting a cutoff of one count in one spot. Then, only shared genes between both 
modalities were considered for further analysis, resulting in a total of 1,300 genes. Then, 
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15,000 mixed transcriptional profiles were simulated and 66,6% of them used to train for 60 
epochs a neural network model of two hidden layers with 300 neurons each.  

 

Comparison with cell2location and RCTD 

For the analyses conducted using cell2location and RCTD, the default parameters and tutorial 
recommendations were used. Particularly:  

• cell2location: We followed the tutorials available on the cell2location documentation 
website: https://cell2location.readthedocs.io. The single-cell regression model was 
trained with parameters max_epochs=250, lr=0.002. The cell2location model was 
obtained with parameters max_epochs=30,000. Then, cell2location’s predictions in each 
spot were divided by the maximum to treat them as cellular proportions.  

• RCTD: We followed the tutorials present in the GitHub repository (https://github.com/ 
dmcable/spacexr.git). The ”full” mode was selected.  

To compare the three methods, estimated cell proportions of each tool were analyzed by 
calculating the Pearson’s correlation coefficients of estimated cell proportions per method 
and cell type. Then, Pearson’s correlation coefficients were clustered using hierarchical 
clustering and plotted as a heatmap using the ComplexHeatmap R package (Gu et al., 2016). 
All deconvolution analyses (including SpatialDDLS) were performed with an Intel(R) Core(TM) 
i5-10500U CPU @ 3.80 GHz with 32 GB of RAM.  

 

Expression of classic markers 

To determine if the predicted cell type proportions are consistent with the expression levels 
of established cell type markers, we computed the mean Z-score expression levels of a 
manually selected set of markers for each cell type (see Table S1). This analysis was performed 
primarily to visualize the spatial distribution of specific cell types and not for quantitative 
comparison purposes.  

 

Code availability 

The source code for SpatialDDLS is available at https://github.com/diegommcc/SpatialDDLS, 
and it is also available on CRAN https://CRAN.R-project.org/package=SpatialDDLS. 
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Supplementary Figures and Tables 
 

 
Figure S11: Mouse hippocampus dataset. a. UMAP representation of scRNA-seq data from Saunders 
et al., 2018. b. Correlation between expected and predicted cell proportions of simulated mixed 
transcriptional profiles for every cell type. c. Heatmap of Pearson’s correlation coefficients between 
cell type proportions estimated by each method in hippocampus spatial transcriptomics data (10x-
Genomics, 2020). Abbreviations: CA: cornu ammonis.  
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Figure S2: Estimated cell type proportions mapped to the spatial coordinates in the mouse 
hippocampus dataset. Endothelial cells and hippocampus proper were generated by adding up 
predicted proportions of: Endothelial cells = Endothelial stalk + Endothelial tip; Hippocampus proper 
= CA1 + CA3 + Dendate.  
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Figure S3: Mouse lymph node dataset. a. UMAP representation of scRNA-seq data from Lopez et al., 
2022. b. Correlation between expected and predicted cell proportions of simulated mixed 
transcriptional profiles for every cell type. c. Heatmap of Pearson’s correlation coefficients between 
cell type proportions estimated by each method in lymph node spatial transcriptomics data (Lopez et 
al., 2022). Abbreviations: cDC: conventional dendritic cells; GD: gamma-delta; DCs: dendritic cells; 
pDCs: plasmacytoid dendritic cells; Tregs: T regulatory cells. 
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Figure S4: Estimated cell type proportions of representative cell types mapped to the spaptial 
coordinates in the mouse lymph node dataset. Abbreviations: DCs: dendritic cells. 
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Dataset Cell type Markers 
Hippocampus Astrocyes Slc1a2 Apoe Aldoc 
Hippocampus Hippocampus proper Nrgn Ywhaz 
Hippocampus Endothelial cells Sparcl1 Ptgds Gpm6a 
Hippocampus Oligodendrocytes Mbp Cnp Ptgds 
Lymph node B cells Cd74 Cd19 Cd79a Cd79b Ly6d 
Lymph node CD4+ T cells Cd4 Lef1 Fyb 
Lymph node CD8+ T cells Cd8b1 Cd8a Trac 
Lymph node Migratory DCs Ccl5 Anxa3 Fscn1 

Table S1: Cell type markers used to check spatial location of main cell types.  
 
 
 
 
 

Dataset Hippocampus (313 spots) Lymph node (1092 spots) 
SpaJalDDLS 
(including model training) 14.54 20.96 

SpaJalDDLS 
(only deconvolu5on) 1.21 1.399 

cell2locaJon 
(default parameters) 32.14 301.1 

RCTD 
(full mode) 3.2 37.93 

Table S2: Running times (minutes) of benchmarked deconvolution algorithms on mouse hippocampus 
and lymph node samples.  
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