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Abstract

Summary: Spatial transcriptomics has changed our way to study tissue structure and cellular
organization. However, there are still limitations in its resolution, and most available platforms do not
reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-
based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages
single-cell RNA sequencing (scRNA-seq) data to simulate mixed transcriptional profiles with
predefined cellular composition, which are subsequently used to train a fully-connected neural
network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art
spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and faster alternative
to the available state-of-the art tools.

Availability and implementation: The R package SpatialDDLS is available via CRAN-The
Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS. A detailed
manual of the main functionalities implemented in the package can be found at
https://diegommcc.github.io/Spatial DDLS.

Contact: fscabo@cnic.es

Supplementary information: Supplementary data are available at Bioinformatics online.
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Single-cell omics have represented one of the main technological advances towards the
understanding of physiological and pathological states. However, the spatial context and
localization of the cells are key elements with functional relevance that are missing with these
techniques. In the last few years, spatial transcriptomics have revolutionized our ability to
investigate biological processes by providing an unbiased way to understand tissue structure,
cellular interaction, and function. Rather than studying cells as isolated and independent
entities, it incorporates context through the spatial dimension while preserving the powerful
information provided by whole transcriptome sequencing. However, due to the limitations of
most available techniques, which fail to achieve single-cell resolution, computational methods
are needed to identify the precise combination of cells within each spot. Deconvolution
methods have been previously applied to bulk RNA-seq data in order to disentangle the
cellular composition of samples from whole tissues or organs (Avila Cobos et al., 2018). For
example, being able to quantify the different types of infiltrated lymphocytes in a given tumor
starting from RNA-seq of the whole sample can serve as a very accurate method to predict
the time-to-death from colorectal or breast cancer patients (Torroja and Sanchez-Cabo, 2019).
A natural extension of these methods is to apply them to deconvolute the transcriptomics
data from each sequenced spot in spatial transcriptomics to identify their exact cellular
composition. There is a broad spectrum of tools which follow different approaches to solve
this problem (Li et al., 2022), but most utilize single-cell RNA-seq (scRNA-seq) datasets from
the same biological context as references, thereby presenting the issue as a supervised task.
However, they usually rely on predefined markers defined either manually or through
differential expression analysis, and typically have long running times that pose challenges for
their practical application (Li et al., 2022).
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Figure 1: Schematic overview of SpatialDDLS. SpatialDDLS takes both an annotated single-cell RNA-seq dataset
to be used as reference, and the spatial transcriptomics datasets wanted to be deconvoluted. Then, it simulates
mixed transcriptional profiles with known cell composition and trains a fully-connected neural network able to
make accurate predictions of cell type proportions. These cell type proportions and the trained model can be
used for further analyses.

In this work, we introduce SpatialDDLS, an R package that provides a fast neural network-
based solution for cell type deconvolution of spatial transcriptomics data. The algorithm
employs scRNA-seq data to simulate mixed transcriptional profiles with known cell
composition, with which a fully-connected neural network is trained with the aim to uncover
cell type diversity within each spot (Figure 1). In contrast to other methods which are
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computationally intensive HARCFHPBACT HradeHEl "SI BIddEd et of cell type markers,
SpatialDDLS does not require the definition of cell identity signatures and has a lightweight
computational processing. To demonstrate its performance and efficiency, we have
benchmarked our tool against two state-of-the-art spatial deconvolution methods in two
different biological contexts: murine lymph nodes upon stimulation (Lopez et al., 2022) and
murine hippocampus samples (10x-Genomics, 2020; Saunders et al., 2018). SpatialDDLS’
predictions reproduced known cell type location patterns and vyielded similar results
compared to other methods, while reducing the computational times by 1.8-14 fold, thereby
making it a competitive alternative to already available tools.

SpatialDDLS

SpatialDDLS is an extension of our deconvolution tool for bulk RNA-seq (Torroja and Sanchez-
Cabo, 2019) implemented in the R package digitalDLSorteR (Mafianes et al., 2022). The
algorithm uses scRNA-seq to simulate mixed transcriptional profiles for training neural
network models capable of estimating the cell proportions of new mixed transcriptional
profiles typically present in spatial transcriptomics data. It consists of three main steps (Figure
1):

1. Simulation of mixed transcriptional profiles with known cellular proportions. SpatialDDLS
begins by using a pre-identified scRNA-seq dataset that is partitioned into training and test
cell subsets. Then, cell proportions are simulated from each labelled subset of cells by
using different approaches (see Supplementary Methods). Once the cellular composition
matrix is generated, training and test mixed transcriptional profiles with those cell
proportions are simulated.

2. Neural network training and evaluation. A neural network model is trained and evaluated
using the simulated mixed profiles. Thanks to the inclusion of a test subset, this workflow
allows for an assessment of whether the model is correctly identifying the transcriptional
features of every cell type considered in the reference.

3. Deconvolution of spatial transcriptomics datasets. Once the model is trained, it is capable
of making whole transcriptome-based predictions of cell type proportions in new samples,
enabling the deconvolution of whole spatial transcriptomics datasets.

All these steps are implemented using the S4 object-oriented programming system of R to
centralize all intermediate data generated during the workflow and provide a user-friendly
usage. Regarding its implementation, SpatialDDLS makes use of the keras (Allaire and Chollet,
2021) and tensorflow (Allaire and Tang, 2021) R packages for all deep learning-related tasks,
and S4-classes from the Bioconductor’s environment (Huber et al., 2015) for the storage of
gene expression matrices (scRNA-seq and spatial transcriptomics). Therefore, it can be
entirely integrated into the typical workflow used for the analysis of transcriptomics data in R.
In addition, the possibility to work with The Hierarchical Data Format version 5 (HDF5) files as
back-end has been implemented at each step of the workflow by using the DelayedArray
(Pages, 2021a) and HDF5Array (Pagés, 2021b) R packages to provide a way to handle large
amounts of data on RAM-constrained machines. For a detailed explanation of each step with
code and examples, see the website of the package
(https://diegommecc.github.io/SpatialDDLS).
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Results
To assess the performance of SpatialDDLS, we decided to analyze samples from two different
biological contexts that exhibit clear spatial patterns in their cell type distribution: mouse
hippocampus (Figure S1a) (Saunders et al., 2018) and mouse lymph node (Figure S3a) (Lopez
et al., 2022) samples.

Firstly, we evaluated the model training and performance by using simulated mixed
transcriptional profiles from these two experiments. As shown in Figures S1b and S3b, the
trained models achieved excellent performance on simulated data of both datasets (R > 0.98
(Pearson’s correlation coefficient) and CCC = 0.96 (concordance correlation coefficient) for all
cell types), indicating that they effectively detected biological signals for every cell type.

Next, we benchmarked SpatialDDLS against two state-of-the-art methods in the spatial
transcriptomics field: cell2location (Kleshchevnikov et al., 2022) and RCTD (Cable et al., 2022).
We chose these tools because of their high performance in different recently published
benchmarks (Li et al., 2022, 2023; Yan and Sun, 2023). In both experiments, SpatialDDLS
generated similar predictions to those of cell2location and RCTD. This agreement was
confirmed by hierarchical clustering of Pearson’s correlation coefficients between the
estimations made by each method for each cell type, showing that they were mostly clustered
by cell type rather than the method used (Figure Sic and S3c). Then, we plotted the
estimations of the most representative cell types of each dataset together with the expression
of classical markers (Table S1) to observe their spatial location (Figure S2 and S4). The three
methods yielded similar spatial patterns that co-localized with the expression of their markers,
although also some differences were observed for specific cell types. In particular, SpatialDDLS
tended to predict higher proportions of endothelial cells and astrocytes in the hippocampus
sample than cell2location, which is in line with the expression of their markers and RCTD
predictions (Figure S2). In the lymph node dataset, CD8+ T cells were underestimated by
SpatialDDLS, although CD4+ T cell and migratory dendritic cell signals were better captured
compared with RCTD estimations (Figure S4). Overall, this demonstrates a high agreement
between the three methods but the presence of specific tendencies, making their predictions
complementary to each other.

Importantly, despite these similar results, SpatialDDLS exhibited a significant improvement in
running time compared with the other two tools (Table S2). While cell2location showed the
worst performance in both datasets, RCTD kept good running times in the hippocampus
samples. However, when the number of spots considered increased as in the lymph node
samples, the algorithm did not scale well compared with SpatialDDLS, which kept similar
running times in both datasets.

Conclusion

SpatialDDLS is a flexible spatial deconvolution tool of easy use fully integrated in the
R/Bioconductor ecosystem. We have demonstrated that it generates comparable results to
those of two state-of-the-art methods while keeps shorter running times. All these features
make it a robust alternative to existing methods. In addition, SpatialDDLS does not need the
definition of a set of markers for each cell type and performs whole-transcriptome predictions.
We think that this fact can be useful in the context of paired scRNA-seq and spatial
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transcriptomics datasets, SYPHHEMSAE ESNGHRESINT TEPEPEENE transcriptional features
that cell types can undergo depending on the biological context.

Acknowledgements
The authors thank the Bioinformatics Unit for the support and the insightful discussions about
the project.

Funding

This work was supported by the Ministerio de Ciencia, Innovacién, y Universidades (MCIU)
[grant no. RTI2018-102084-B-I100], by the Ministerio de Ciencia e Innovacién
MCIN/AEI/10.13039/501100011033 [grant no. TED2021-132296B-C54] and by the European
Union NextGenerationEU/PRTR. The CNIC is supported by the Instituto de Salud Carlos Il
(ISCIII), the Ministerio de Ciencia e Innovacion (MCIN) and the Pro CNIC Foundation, and is a
Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by
MCIN/AEI/10.13039/501100011033). DM is supported by a predoctoral grant from the
Spanish Government (grant number PRE2020-092578 MCIN/AEI/10.13039/501100011033).
IRG received the support of a fellowship from “la Caixa” Foundation (ID 100010434,
fellowship code: LCF/BQ/DR20/11790019).

Conflict of Interest: none declared.


https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/

SpatialDDLS

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555677; this version posted September 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
References available under aCC-BY-NC-ND 4.0 International license.

10x-Genomics, 2020. Visium spatial gene expression.
Allaire, J., Chollet, F., 2021. Package keras.
Allaire, J., Tang, Y., 2021. Package tensorflow.

Avila Cobos, F., Vandesompele, J., Mestdagh, P., De Preter, K., 2018. Computational deconvolution of
transcriptomics data from mixed cell populations. Bioinformatics 34, 1969-1979.
https://doi.org/10.1093/bioinformatics/bty019

Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F, Irizarry, R.A., 2022. Robust
decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 40, 517-526.
https://doi.org/10.1038/s41587-021-00830-w

Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C., Davis, S.,
Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K.D., Irizarry, R.A., Lawrence, M., Love, M.I.,
MacDonald, J., Obenchain, V., Oles, A.K., Pages, H., Reyes, A., Shannon, P.,, Smyth, G.K., Tenenbaum,
D., Waldron, L., Morgan, M., 2015. Orchestrating high-throughput genomic analysis with Bioconductor.
Nat Methods 12, 115-121. https://doi.org/10.1038/nmeth.3252

Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, HW.,, Li, T., EImentaite, R., Lomakin, A.,
Kedlian, V., Gayoso, A., Jain, M.S., Park, J.S., Ramona, L., Tuck, E., Arutyunyan, A., Vento-Tormo, R.,
Gerstung, M., James, L., Stegle, O., Bayraktar, O.A., 2022. Cell2location maps fine-grained cell types in
spatial transcriptomics. Nat Biotechnol 40, 661—671. https://doi.org/10.1038/s41587-021-01139-4

Li, B., Zhang, W., Guo, C., Xu, H., Li, L., Fang, M., Hu, Y., Zhang, X., Yao, X., Tang, M., Liu, K., Zhao, X., Lin,
J.,, Cheng, L., Chen, F, Xue, T., Qu, K., 2022. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell type deconvolution. Nat Methods
19, 662—670. https://doi.org/10.1038/s41592-022-01480-9

Li, H., Zhou, J., Li, Z., Chen, S., Liao, X., Zhang, B., Zhang, R., Wang, Y., Sun, S., Gao, X., 2023. A
comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial
transcriptomics. Nat Commun 14, 1548. https://doi.org/10.1038/s41467-023-37168-7

Lopez, R., Li, B., Keren-Shaul, H., Boyeau, P., Kedmi, M., Pilzer, D., Jelinski, A., Yofe, I., David, E., Wagner,
A, Ergen, C., Addadi, Y., Golani, O., Ronchese, F., Jordan, M.I., Amit, I., Yosef, N., 2022. DestVI identifies
continuums of cell types in spatial transcriptomics data. Nat Biotechnol 40, 1360-1369.
https://doi.org/10.1038/s41587-022-01272-8

Mafanes, D., Torroja, C., Sdnchez-Cabo, F., 2022. digitalDLSorteR: Deconvolution of Bulk RNA-Seq Data
Based on Deep Learning.

Pages, H., 2021a. DelayedArray: A unified framework for working transparently with on-disk and in-
memory array-like datasets.

Pages, H., 2021b. HDF5Array: HDF5 backend for DelayedArray objects.

Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., Rivera, H. de, Bien, E., Baum, M.,
Bortolin, L., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S., Kulp, D., McCarroll, S.A.,
2018. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 174,
1015-1030.e16. https://doi.org/10.1016/j.cell.2018.07.028


https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/

SpatialDDLS

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555677; this version posted September 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Torroja, C., Sanchez-Cabo, F., 207160 D181t513{soREN DS LdakTAEPEH KWRRFA-Seq to Deconvolute Gene
Expression Data. Frontiers in Genetics 10.

Yan, L., Sun, X., 2023. Benchmarking and integration of methods for deconvoluting spatial
transcriptomic data. Bioinformatics 39, btac805. https://doi.org/10.1093/bioinformatics/btac805


https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/

SpatialDDLS

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555677; this version posted September 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder who has granted bioRxiv a license to display the preprint in perpetuity. It is made
se.

Supplementary Nfaterial: “SpatiafDDLS" Al R package to
deconvolute spatial transcriptomics data using neural
networks

Diego Mafanes?!, Inés Rivero-Garcial?, Daniel Jimenez-Carretero!, Miguel Torres?, David
Sancho?, Carlos Torroja?, Fatima Sdnchez-Cabo?

1Centro Nacional de Investigaciones Cardiovasculares Carlos Ill (CNIC), 28029 Madrid, Spain.

’Departamento de Ingenieria Biomédica, ETSI de Telecomunicaciones, Universidad
Politécnica de Madrid, 28040 Madrid, Spain.

Table of Contents

Supplementary Methods ........cccccciiiiiiiiiiiiiiiiiiiiiiiiirerrrsesssssrresssssssssssesnssses 9
SPALIAIDDLS OVEIVIBW ..veiiiiiiiiiiieee ettt e ettt e e e st e e e e s sbtae e e e s ssabae e e e s e s sbbaeeaessnsseneeessnnnes 9
R Koo [ = 4o I - [P PP PPPRt 9
2 - Simulation of mixed transcriptional profiles.........ccccovviiiiiiiiiiiiii s 9

3 - Training the neural network model and deconvolution of spatial transcriptomics
(o - 1 £ =] PRSPPI 10
scRNA-seq and spatial transcriptomics datasets ........ccccevvviieeeiiiiiiieeee e 11
Deconvolution of spatial transcriptomics datasets.......cccvveveirriiiiieeiiniiiieee e, 11
1 - MOUSE NiPPOCAMPUS ..eeeviieeeiiiiiiitee e ettt et e s e siite e e e s s sbbreeeeessabaeeeeessnabanaeesssssseeeeessnnnes 11
2 - MOUSE IYMPN NOU..cciiiiiiiiiiiieeeee e e e s s s braeeeee s 11
Comparison with cell2location and RCTD.......cciiiiiiiiiiieeiiiiiiieee e esireee e s ssveeee e s snees 12
EXpression Of Classic MArKErs .......uiiiiiiiiiiee e e s s 12
(6o Yo (oI NV 11 ] o 11 L1 Y2 PRSP PPPPN 12
Supplementary Figures and Tables ........cccciiiirieniiiiiiiiinniiiiniinesseeeee 13

References Supplementary Material .........cccoovvevuiiiiiiinennniennns Error! Bookmark not defined.


https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/

SpatialDDLS

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555677; this version posted September 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
ailabje under aCC-BY-NC-ND 4.0 International license.

Supplementary Methods
SpatialDDLS overview

SpatialDDLS is an R package which provides a user-friendly approach to deconvoluting spatial
transcriptomics data. The package offers several functionalities for effectively handling large
datasets through the utilization of HDF5 files and streamlines the overall process with a few
simple function calls. It tries to offer a framework in which deconvolution of spatial
transcriptomics data using neural networks is easy and flexible depending on the
particularities of each problem. The algorithm comprises three main steps.

1- Loading data

SpatialDDLS operates within a supervised framework, requiring thus both the spatial
transcriptomics wanted to be deconvoluted and a reference single-cell RNA-seq (scRNA-seq)
dataset with pre-identified cell types. The goal is to consider only those genes that are
relevant in both types of data for further steps. To do so, it starts by applying two filters to
reduce the number of original dimensions. These filters must be modified according to the
particularities of the data (number of cells, sequencing depth, etc.):

1. Minimum count cutoff for N cells.
2. Minimum non-zero average count cutoff per cell type, only applied to the scRNA-
seq.

Then, only genes shared between both modalities are retained. In addition, if multiple spatial
transcriptomics slides are provided, SpatialDDLS offers the option to keep only those genes
present in a specified number of slides. These steps aim to expedite subsequent steps by
avoiding the consideration of the entire noisy expression matrix. Notably, when working with
massive amounts of data, single-cell profiles can be provided as HDF5 files. SpatialDDLS
handles this format by using the DelayedArray (Pages, 2021a) and HDF5Array (Pages, 2021b)
R packages.

2 - Simulation of mixed transcriptional profiles

The second step consists of the generation of mixed transcriptional profiles with known cell
compositions. This is achieved by the genMixedCellProp function, which generates the cell
composition matrix, and simMixedProfiles, which simulates the mixed profiles and saves
them in the SpatialDDLS object. SpatialDDLS is again able to accommodate these simulated
samples using HDF5 files as back-end, but this option is not necessary for most situations.

In the cell composition generation process, the package initially partitions the single-cell
profiles into training and test subsets (default split ratio of 0.66). The cell proportions for each
simulated profile are then determined using three different approaches:

1. Random profiles: In this approach, profiles are generated by randomly sampling from
a Dirichlet distribution. To introduce sparsity in the cell proportions, the prob.sparity
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parameter is used,2ERALPONATEthE HHOBIbTRY B rPad Ag Wiissing cell types in each
simulated profile instead of a mixture of all cell types.

2. Pure profiles: This approach involves aggregating a specified number of cells from the
same cell type to create pure profiles. These samples aim to generate less noisy
representations for each cell type considered in the experiment, as opposed to
directly using the single-cell profiles.

3. Forced-sparse profiles: This approach enforces a minimum number of missing cell
types, resulting in sparse samples (min.zero.prop parameter). Proportions for the
remaining cell types are then generated using a Dirichlet distribution.

These methods are designed to introduce greater sparsity in terms of cell type composition,
enabling the neural network to learn to detect scenarios where certain cell types may be
missed. For analyses similar to those presented in this article, we recommend generating a
total of 15,000-25,000 mixed transcriptional profiles (num.sim.spots). The percentage of
profiles generated by each method can be controlled using the proportion.method
parameter, but the default values are suitable for most situations. Each sample comprises a
specific number of aggregated cells with a default of 50 single-cell profiles per sample. Finally,
in cases where certain cell types are underrepresented, SpatialDDLS provides the option to
simulate new single-cell profiles using the ZINB-WaVE framework (Risso et al., 2018) by the
estimateZinbwaveParams and simSCProfiles functions. This feature enables the increase of
cell type-specific signals, thereby increasing their representation through an augmentation-
based approach.

In the simulation step, single-cell profiles can be aggregated using different strategies, but
aggregating raw counts by summing them up is the preferred one. Then, mixed transcriptional
profiles are normalized to account for sequencing depth using counts per million and log2-
transformed.

3 - Training the neural network model and deconvolution of spatial transcriptomics datsets

Once the SpatialDDLS object contains the normalized mixed transcriptional profiles, a neural
network model is trained using the training subset. To address potential issues arising from
variations in gene scales, the profiles are feature-wise rescaled between 0 and 1. While
alternative transformations are available, this rescaling strategy is the default choice.

The package implements a default architecture for the neural network model, but users have
the flexibility to fully customize it based on the specific characteristics of their datasets.
However, we recommend considering the following parameters as a starting point, although
they may vary depending on the complexity of the dataset being deconvoluted (number of
cell types, similarity between them, etc.):

e Architecture: Two hidden layers with 300 neurons each.

e Activation function for hidden layers: Sigmoid function as the activation function.

e Optimization function: Kullback-Leibler divergence, which is suitable for modeling
probability distributions.

e Batch size: 64 samples.

e Number of epochs: 60-80.
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 Dropout regularizatistPUeBrapo it fiyePWRAREMHEBEFER to every hidden layer to
prevent overfitting.

e Activation function for the last layer: Softmax function, enabling the neural network
to predict probabilities that can be interpreted as cell type proportions.

After training, the model becomes capable of predicting the cell composition of new samples
based solely on their transcriptional features. Additionally, the package also includes several
functions for inspecting and evaluating the model’s predictive performance. These functions
allow users to assess whether their models are effectively learning patterns associated with
specific cell types, and thus determining if adjustments to the hyperparameters are required.

scRNA-seq and spatial transcriptomics datasets

For the mouse hippocampus analysis, the scRNA-seq dataset used as reference is sourced
from Saunders et al. 2018 and was downloaded from the Broad Institute’s Single Cell Portal
(SCP948 study). The spatial transcriptomics dataset was obtained from the 10x Genomics
website (10x-Genomics, 2020). In the case of the mouse lymph node analysis, the scRNA-seq
and spatial transcriptomics data were obtained from Lopez et al. 2022 and are available at
the Gene Expression Omnibus database under the accession number GSE173778.

Both datasets were analyzed and visualized using Seurat v4.1 (Hao et al., 2021). In brief, most
variable genes were taken and used as input for principal component analysis (PCA). Then,
first 15 principal components were used for visualization through Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) using default parameters
implemented in Seurat.

Deconvolution of spatial transcriptomics datasets

Unless stated, the parameters used for each model presented in this article are the ones the
package has by default.

1 - Mouse hippocampus

Only genes shared between the single-cell reference and the spatial transcriptomics dataset
were used with no further filtering, resulting in 273 genes. Then, 15,000 mixed transcriptional
profiles were simulated and 66.6% of them used to train for 60 epochs a neural network of
two hidden layers with 300 neurons each.

2 - Mouse lymph node

In the scRNA-seq dataset, genes were filtered setting a cutoff of three counts in five cells and
a cutoff of non-negative average expression of three. Spatial transcriptomics dataset genes
were filtered setting a cutoff of one count in one spot. Then, only shared genes between both
modalities were considered for further analysis, resulting in a total of 1,300 genes. Then,
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15,000 mixed transcription¥PFASTHREFEFPSRTuMdEd 4RI BB)89% BFthem used to train for 60
epochs a neural network model of two hidden layers with 300 neurons each.

Comparison with cell2location and RCTD

For the analyses conducted using cell2location and RCTD, the default parameters and tutorial
recommendations were used. Particularly:

o cell2location: We followed the tutorials available on the cell2location documentation
website: https://cell2location.readthedocs.io. The single-cell regression model was
trained with parameters max_epochs=250, Ir=0.002. The cell2location model was
obtained with parameters max_epochs=30,000. Then, cell2location’s predictions in each
spot were divided by the maximum to treat them as cellular proportions.

e RCTD: We followed the tutorials present in the GitHub repository (https://github.com/
dmcable/spacexr.git). The "full” mode was selected.

To compare the three methods, estimated cell proportions of each tool were analyzed by
calculating the Pearson’s correlation coefficients of estimated cell proportions per method
and cell type. Then, Pearson’s correlation coefficients were clustered using hierarchical
clustering and plotted as a heatmap using the ComplexHeatmap R package (Gu et al., 2016).
All deconvolution analyses (including SpatialDDLS) were performed with an Intel(R) Core(TM)
i5-10500U CPU @ 3.80 GHz with 32 GB of RAM.

Expression of classic markers

To determine if the predicted cell type proportions are consistent with the expression levels
of established cell type markers, we computed the mean Z-score expression levels of a
manually selected set of markers for each cell type (see Table S1). This analysis was performed
primarily to visualize the spatial distribution of specific cell types and not for quantitative
comparison purposes.

Code availability

The source code for SpatialDDLS is available at https://github.com/diegommcc/SpatialDDLS,
and it is also available on CRAN https://CRAN.R-project.org/package=SpatialDDLS.



https://cell2location.readthedocs.io/
https://github.com/diegommcc/SpatialDDLS
https://cran.r-project.org/package=SpatialDDLS
https://doi.org/10.1101/2023.08.31.555677
http://creativecommons.org/licenses/by-nc-nd/4.0/

SpatialDDLS

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555677; this version posted September 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

. ilabl d -RY-NC- .0 i I i .
Supplementary Figu¥es’and Tables " 0 mematonalicense

cAl | cA3 | [ calal Rezius Choroid
/|| A=099,p<226-16] R=0.99, p<22e-1 R=099, p<22e-16

ccc-0983 ccc-0967 .
® Astrocyte o/ Py
CAl
® CA3
Cajal_Retzius e R
® Choroid R=0%9,p<22e-16;| | A=
® Denate cCC=0%89
® Endothelial_Stalk .
N Endothelial_Tip .
% h 3
g @® Entorihinal 8
% 3 Mural | [ Neurogenesis Neuron Sic17a6
© Ependymal @ R=0.8.p<220-165 R=099.p<220-167

cec=0985 X

cccm0982

® Interneuron
Microglia_Macrophages
® Mural

Neurogenesis
® Neuron.Slc17a6

0 025 05075 1 0 025 05075 1 0 025 05 075 1

Oligodendrocyte
® Polydendrocyte

UMAP 1

0 025 05075 1 0 025 05 075 1
c Expected

coefficient
1
0
-1
strocyte _ SpasalDOLS
) Method
Paohelal - SpatalDLS SpallalbDLS
ndothelial Tip - cell2location W celiZiocation
ndothelial Tip - RCTD W RCTD
=
pendymal — Spatial
colZiocation Cell type

Pendymal - ACTD

R Sioocencioore - cetzocaton M Astrocyte

Ofgodendrocyto - ACTD. CAl
patialDDLS

~RCTD

W CA3
Gajal Retzius
I Choroid

- SpatialDDLS
is - cellZlocation

ool - colbocaton Denate
ntorhinal - celliocation B Endothelial Stak
SpatialdoLs Endothelial Tip
M Entorihinal
i Ependymal
M interneuron
Microglia Macrophages
M Mural
Neurogenesis
W Neuron.Sic17a6
Oligodendrocyte
Polydendrocyle

Figure S11: Mouse hippocampus dataset. a. UMAP representation of scRNA-seq data from Saunders
et al.,, 2018. b. Correlation between expected and predicted cell proportions of simulated mixed
transcriptional profiles for every cell type. c. Heatmap of Pearson’s correlation coefficients between
cell type proportions estimated by each method in hippocampus spatial transcriptomics data (10x-
Genomics, 2020). Abbreviations: CA: cornu ammonis.
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Figure S2: Estimated cell type proportions mapped to the spatial coordinates in the mouse
hippocampus dataset. Endothelial cells and hippocampus proper were generated by adding up
predicted proportions of: Endothelial cells = Endothelial stalk + Endothelial tip; Hippocampus proper

= CA1l + CA3 + Dendate.
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Figure S3: Mouse lymph node dataset. a. UMAP representation of scRNA-seq data from Lopez et al.,
2022. b. Correlation between expected and predicted cell proportions of simulated mixed
transcriptional profiles for every cell type. c. Heatmap of Pearson’s correlation coefficients between
cell type proportions estimated by each method in lymph node spatial transcriptomics data (Lopez et
al., 2022). Abbreviations: cDC: conventional dendritic cells; GD: gamma-delta; DCs: dendritic cells;
pDCs: plasmacytoid dendritic cells; Tregs: T regulatory cells.
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Figure S4: Estimated cell type proportions of representative cell types mapped to the spaptial
coordinates in the mouse lymph node dataset. Abbreviations: DCs: dendritic cells.
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Dataset availabbé"Wp')gC—BY—NC—ND 4.0 International mﬁé‘ers
Hippocampus Astrocyes Slcla2 Apoe Aldoc
Hippocampus Hippocampus proper Nrgn Ywhaz

Hippocampus

Endothelial cells

Sparcll Ptgds Gpm6a

Hippocampus

Oligodendrocytes

Mbp Cnp Ptgds

Lymph node B cells Cd74 Cd19 Cd79a Cd79b Ly6d
Lymph node CD4+T cells Cd4 Lefl Fyb

Lymph node CD8+ T cells Cd8b1 Cd8a Trac

Lymph node Migratory DCs Ccl5 Anxa3 Fscnl

Table S1: Cell type markers used to check spatial location of main cell types.

Dataset Hippocampus (313 spots) Lymph node (1092 spots)
SpatialDDLS
(including model training) = 20.96
SpatialDDLS ‘ 191 L399
(only deconvolution)
cell2location
2.14 1.1
(default parameters) = 30
RCTD
(full mode) 3.2 37.93

Table $2: Running times (minutes) of benchmarked deconvolution algorithms on mouse hippocampus

and lymph node samples.
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