

1 A Two-Step Activation Mechanism Enables Mast Cells to Differentiate their 2 Response between Extracellular and Invasive Enterobacterial Infection

3
4 Christopher von Beek¹, Anna Fahlgren², Petra Geiser¹, Maria Letizia Di Martino¹, Otto
5 Lindahl¹, Grisna I. Prensa¹, Erika Mendez-Enriquez¹, Jens Eriksson¹, Jenny Hallgren¹, Maria
6 Fällman², Gunnar Pejler^{1*}, Mikael E. Sellin^{1,3*}

7 8 **Affiliations**

9 ¹Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.

10 ²Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS),
11 Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

12 ³Science for Life Laboratory, Uppsala, Sweden.

13
14 Correspondence: G.P. gunnar.pejler@imbim.uu.se; M.E.S. mikael.sellin@imbim.uu.se

15 16 **Abstract**

17 Mast cells (MCs) localize to mucosal tissues and contribute to innate immune defenses against
18 infection. How MCs sense, differentiate between, and respond to bacterial pathogens remains a
19 topic of ongoing debate. Using the prototype enteropathogen *Salmonella* Typhimurium (S.Tm) and
20 other closely related enterobacteria, we here demonstrate that MCs can regulate their cytokine
21 secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-
22 invasive S.Tm and MCs colocalize in the *Salmonella*-infected mouse gut. Toll-like Receptor 4 (TLR4)
23 sensing of extracellular S.Tm, or pure LPS, causes a slow and modest induction of MC cytokine
24 transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-
25 1)-dependent S.Tm invasion of both mouse and human MCs triggers rapid and potent inflammatory
26 gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE,
27 and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of
28 effector translocation, which combines with TLR activation to promote the full-blown MC response.
29 Supernatants from S.Tm-infected MCs boost macrophage survival and maturation from bone-
30 marrow progenitors. Taken together, this study shows that MCs can differentiate between
31 extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune
32 their inflammatory output accordingly.

33 **Introduction**

34 Mast cells (MCs) are innate immune cells found all over the body, but particularly enriched in barrier
35 tissues, including the skin, the lung and intestinal mucosae. In addition to their well-known
36 involvement in allergy, MCs take part in the host response to a wide variety of infections ^{1–5}. Their
37 strategic localization makes them frequent early responders to pathogens that disrupt epithelial
38 linings.

39 In analogy with other immune cells, MCs can sense bacterial pathogen-associated molecular
40 patterns (PAMPs) via Toll-like receptors (TLRs), e.g. TLR2 and TLR4, which detect cell wall
41 components and lipopolysaccharide (LPS), respectively ^{6–9}. Other receptors present in certain MC
42 subsets include the peptidoglycan sensor Nod1 ¹⁰, and the Mas-related G-protein coupled receptor
43 X2 (MRGPRX2) that detects bacterial quorum sensing molecules ¹¹. Moreover, studies of diverse
44 infections have demonstrated that MCs can detect assault by bacterial cytolytic toxins ^{12–16}. Based on
45 the latter studies, a common theme emerges, in which MCs respond vigorously to sublytic
46 membrane perturbation that precedes toxin-mediated lysis ^{16,17}. It is unclear whether this mode of
47 sensing also extends to other membrane-interfering events, such as the docking of bacterial
48 secretion machineries to the plasma membrane.

49 Upon IgE-crosslinking of Fc ϵ RI receptors, or in response to some infectious stimuli, MCs
50 degranulate rapidly and release pre-stored mediators including histamine, proteases, and pro-
51 inflammatory cytokines ¹⁸. Activated MCs also exhibit *de novo* biosynthesis of lipid mediators
52 secreted within minutes, as well as cytokines and chemokines reaching detectable levels within hours
53 ¹⁹. The processes of MC degranulation and cytokine/chemokine production and secretion may occur
54 in parallel, but often appear uncoupled during infection. It remains poorly understood how MCs
55 coordinate their different modes of bacterial sensing, and tune the nature and magnitude of their
56 response to match the stimulus.

57 An additional controversy concerns the capacity MCs have to internalize bacteria. It has been
58 proposed that bacteria, in contrast to viruses, are not internalized by MCs, and that this may explain
59 why specifically viral infection generates a potent type I interferon response in MCs ⁶. However,
60 other studies offer contradicting results, showing that *Staphylococcus aureus* can be internalized by
61 murine bone-marrow-derived MCs (BMMCs), human cultured MC models and nasal polyp MCs *in*
62 *vivo* ^{20–23}. Further, evidence exists for some degree of MC uptake/phagocytosis also of other bacteria,
63 e.g. non-opsonized or serum-opsonized *Escherichia coli* (*E. coli*) ^{24,25}, *Streptococcus faecium* ²⁶, and
64 *Chlamydia trachomatis* ²⁷. Thus far, no consensus has emerged on how the bacterial location affects
65 the subsequent MC response.

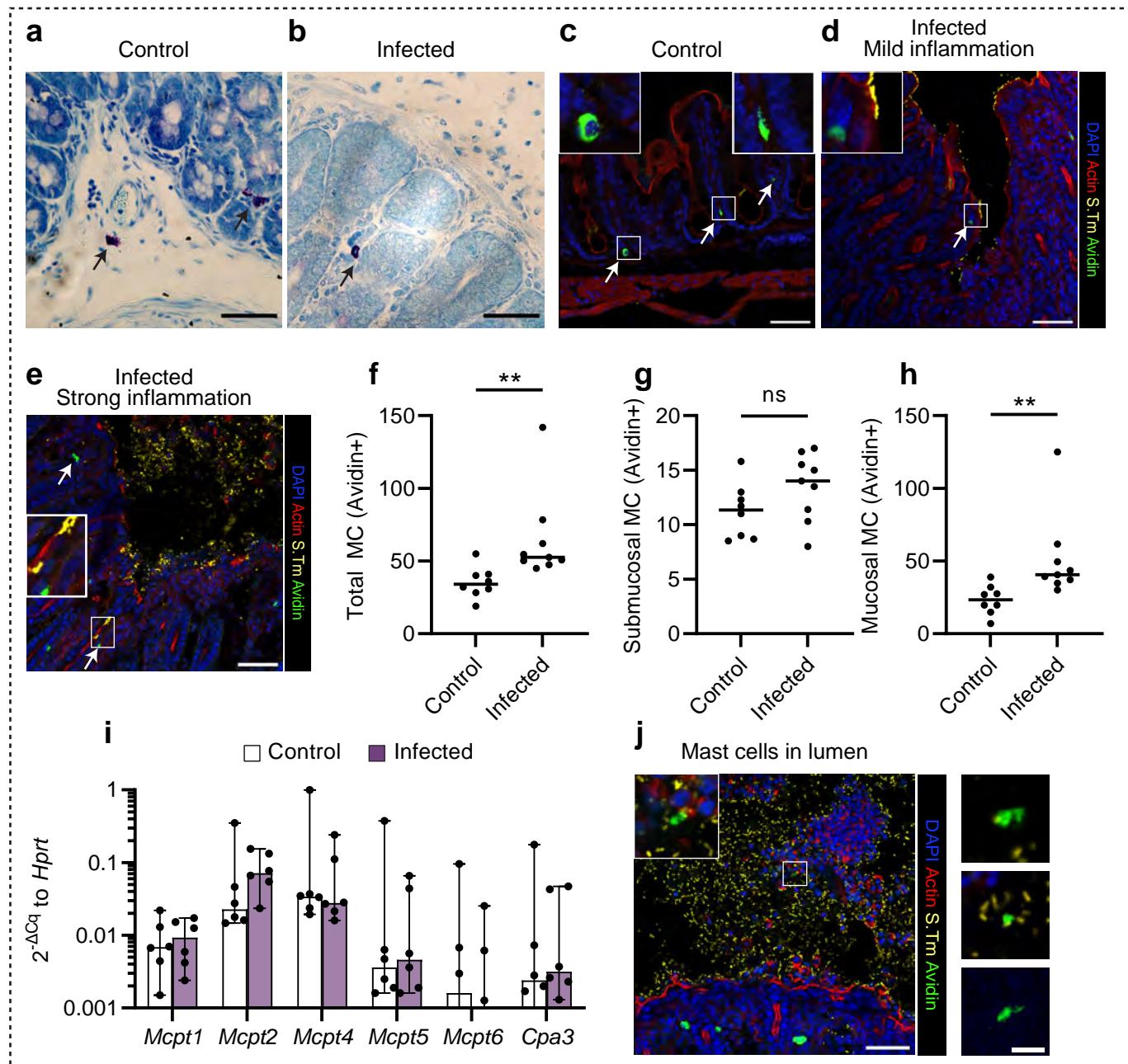
66 Enterobacterial infections of the intestine represent one of the most prevalent classes of
67 infectious diseases, with estimates of >600 million yearly disease cases ²⁸. These infections are
68 caused by closely related gram-negative bacteria within e.g. the *Escherichia*, *Shigella*, *Yersinia* and
69 *Salmonella* genera. *Salmonella enterica* serovar Typhimurium (S.Tm) is a globally significant pathogen
70 and a model bacterium for studies of enterobacterial pathogenesis ²⁹. S.Tm employs flagella to swim
71 towards the intestinal epithelium and a type-three-secretion-system (TTSS-1) to translocate effectors
72 into targeted host cells. These effectors activate multiple Rho- and Arf-GTPases and formins, and
73 induce actin-dependent bacterial uptake ^{29,30}. By this means, S.Tm efficiently invades intestinal
74 epithelial cells, but also many other non-phagocytic and phagocytic cell types ³¹⁻³⁵. Both S.Tm and the
75 other related enterobacteria can, however, also prevail in the extracellular environment, raising the
76 question how our immune cells react to such disparate microbial behaviors.

77 Here, we have explored the MC interaction with S.Tm and related enterobacteria across a panel
78 of experimental models, combining bacterial genetics with readouts for MC activation. We find that
79 TTSS-1-proficient S.Tm efficiently invade MCs, whereas S.Tm grown under non-TTSS-1-inducing
80 conditions, or genetically deleted for TTSS-1 components, do not. Remarkably, the MCs can tune
81 their cytokine response to accomplish slow and low-level cytokine production when detecting
82 extracellular enterobacteria, but swift and full-blown cytokine production in response to invasive
83 S.Tm strains. This can be explained by a two-step MC activation mechanism, whereby extracellular
84 bacteria only fuel a TLR signal, while for invasive S.Tm this signal combines with additional signal(s),
85 elicited by the TTSS-1 effectors SopB/SopE/SopE2 and involving Akt pathway stimulation. This
86 illustrates how MCs can cater their cytokine secretion response to inform their surrounding about
87 the virulence behavior of a bacterial intruder.

88

89 **Results**

90 **Mast cells and *Salmonella* coexist in the infected murine gut**


91 To investigate the distribution of MCs in the bacterium-infected gut, we utilized a mouse model of
92 *Salmonella enterocolitis* ³⁶. Mice were infected per oral gavage with 3.0-7.5x10⁶ colony forming units
93 (CFU) of S.Tm^{wt} (SL1344) for 48h. Toluidine blue staining of caecal tissue sections confirmed the
94 presence of MCs in the mucosa and submucosa of uninfected controls and S.Tm-infected animals
95 (**Figure 1A-B**). When co-staining for S.Tm LPS and avidin (for MCs), we reproduced the MC tissue
96 distribution in uninfected controls (**Figure 1C**), and detected MCs close to S.Tm-infested regions of
97 the intestinal epithelium (**Figure 1D-E, S1A**), as well as in the deeper mucosa (**Figure 1E, S1A**), of
98 infected animals. Total number of tissue MCs showed a modest elevation upon infection (**Figure 1F**),
99 predominantly explained by increased mucosal MC numbers (**Figure 1G, H**). Next, we quantified

100 transcript levels for MC-specific proteases in caecal tissue (**Figure 1I**). mRNAs encoding the mucosal
101 MC proteases *Mcpt1* and *Mcpt2*, as well as the connective tissue MC protease *Mcpt4*, were relatively
102 highly expressed, while median transcript levels for other connective-tissue MC proteases (*Mcpt5*,
103 *Mcpt6*, *Cpa3*) approached the detection limit (**Figure 1I**). When comparing control and *S.Tm*-infected
104 sample groups, a trend towards elevated *Mcpt2* levels was noted in the latter. Hence, MCs lodge
105 within the mucosa and submucosa of intestinal tissue prior to *S.Tm* infection, and enrich further in
106 the mucosa by 48h post-infection (p.i.). Notably, in infected mice exhibiting significant inflammation,
107 we also detected avidin+ staining in the epithelium-proximal lumen, which at this stage harbors high
108 densities of *S.Tm* mixed with extruded epithelial cells and transmigrated myeloid and lymphoid cells
109 (**Figure 1J, S1A** ^{37,38}). Frequently, luminal avidin+ material did not colocalize with a distinct DAPI+
110 nuclear morphology. This suggests that MCs come in close contact with invasive *S.Tm* in the
111 superficial gut mucosa (distances quantified in **Figure S1B**), and may also enter into and eventually
112 succumb in the *S.Tm*-filled lumen.

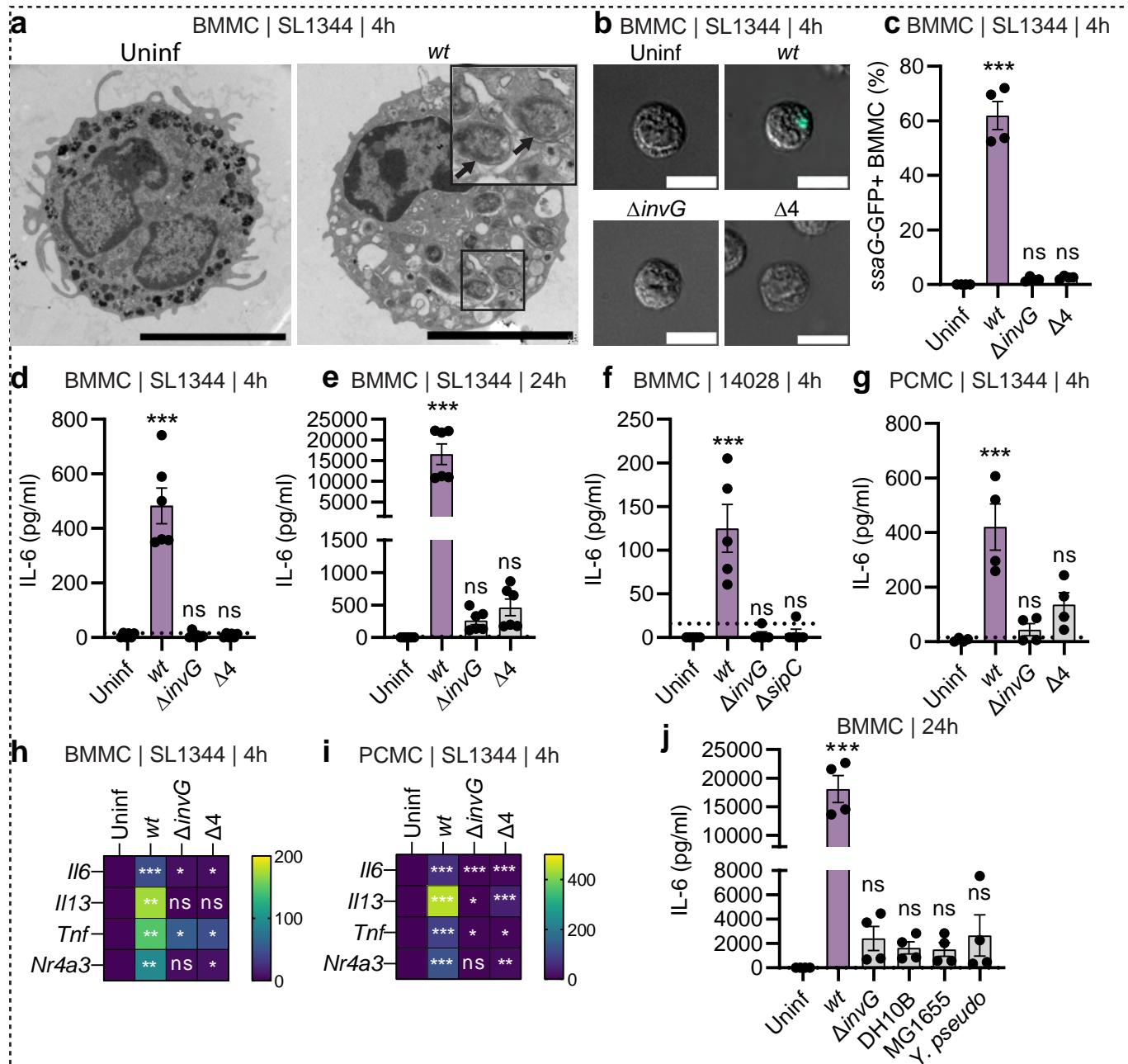
113

114 **Figure 1. Mast cells are found in the *Salmonella*-infected caecum and come in close contact with**
115 **invading bacteria. A-B:** Toluidine blue-stained tissue sections of caecum from uninfected mice and
116 48h after *S.Tm*^{wt} SL1344 infection. Arrows indicate different MC locations such as submucosa (a,
117 bottom) and mucosa (a, top, b). Scale bars: 50µm. **C-E:** Representative IF images for caecum of
118 uninfected mice, or infected mice in different stages of inflammation as indicated in the panel
119 headings. Arrows indicate the position of MCs in healthy mucosa and submucosa (**C**), close to the
120 epithelial layer (**D**) or close to invading bacteria (**E**). Scale bars: 50µm. **F-H:** Quantification of avidin+
121 cells per caecum section as total numbers (**F**), submucosal MCs (**G**) or mucosal MCs (**H**). Every dot
122 indicates the mean of at least three sections for one mouse, n = 8-9. Horizontal lines display median,
123 and significance of Mann-Whitney U test is shown. **I:** RT-qPCR analysis of total caecum tissue for mast
124 cell protease transcripts relative to *Hprt* ($2^{-\Delta Cq}$). A threshold of expression derived from Cq values < 38
125 was chosen. Note that some values fall under the threshold and are therefore not visible. One dot
126 represents transcript levels in one mouse, n = 6. Bars indicate median ± 95% confidence intervals. No
127 significance (p > 0.7) was detected for any comparison by Mann-Whitney U test. **J:** Avidin+ cells
128 present in the lumen of infected caecum tissue sections. Representative overview image (scale bars:
129 50µm) and magnified images from avidin and anti-*S.Tm*-co-staining. Scale bars: 10µm.

Figure 1

131 **TTSS-1-proficient invasive *Salmonella* trigger cytokine secretion from mast cells in the absence of**
132 **degranulation**

133 To assess how MCs respond to tissue-invasive *S.Tm*, we exposed bone-marrow-derived MCs
134 (BMMCs) to *S.Tm*^{wt} at varying multiplicities of infection (MOI) and time frames. The *S.Tm* inoculum
135 was cultured to promote TTSS-1 expression and invasiveness (see Methods and **Figure S2A-B**^{,32,39}),
136 similar to in the gut. BMMCs responded to the infection by secretion of IL-6 protein in a MOI- and
137 time-dependent manner (**Figure S2C-D**). This response was most vigorous at MOI ~25-50, and
138 diminished again at higher MOIs (**Figure S2C**), which may be explained by dose-dependent toxicity at
139 excessive bacterial loads. IL-6 secretion was noted from 2h p.i. and increased considerably by 3-4h
140 p.i. (**Figure S2D**), whereas we detected significantly elevated *Il6* transcript levels already by 1h p.i.
141 (**Figure S2E**). However, only minimal BMMC degranulation could be detected within this time frame,
142 as assayed by β-hexosaminidase release (**Figure S2F**). We also reassessed MC degranulation using
143 another TTSS-1-proficient *S.Tm* strain background (ATCC 14028). Again, neither *S.Tm*^{14028 wt}, nor a
144 *S.Tm*^{14028 ΔsptP} mutant that lacks the SptP effector previously suggested to block MC degranulation⁴⁰,
145 elicited above-background β-hexosaminidase release during the first hour (**Figure S2G**), but the
146 calcium ionophore A23187 (positive control) did (**Figure S2F-G**). Hence, exposure to TTSS-1-primed
147 *S.Tm*^{wt} elicits swift *Il6* transcription and IL-6 protein secretion from BMMCs in the absence of
148 degranulation.


149 Bacterial recognition by MCs has often been accredited to TLRs^{6,9}. However, work by us and
150 others have in addition shown that sublytic levels of bacterial pore-forming toxins can elicit secretion
151 of cytokines, including IL-6, from MCs¹⁴⁻¹⁶. We therefore asked if MC activation by *S.Tm* could be
152 ascribed to i) classical recognition of bacterial PAMPs, ii) membrane-perturbing effects of the TTSS-1
153 translocon (in analogy to pore-forming toxins), or iii) alternative mechanism(s). To address this
154 question, we infected parallel BMMC cultures (MOI 50, 4h) with either *S.Tm*^{wt}, a mutant lacking the
155 structural TTSS-1 component InvG (*S.Tm*^{ΔinvG}), or one that retains the TTSS-1 apparatus and the
156 membrane-interacting translocon, but lacks the host cell invasion effectors SipA, SopB, SopE and
157 SopE2 (*S.Tm*^{Δ4}). First, transmission electron microscopy (TEM) revealed that approximately half of all
158 *S.Tm*^{wt}-infected BMMCs harbored intracellular bacteria (exemplified in **Figure 2A**). The introduction
159 of an *ssaG*-GFP reporter⁴¹ (validated here against a constitutive reporter; **Figure S2B**) allowed us to
160 assess if *S.Tm*^{wt} and the mutant strains could invade and establish an intracellular niche within MCs.
161 In agreement with the TEM, *S.Tm*^{wt} efficiently invaded MCs, whereas the *S.Tm*^{ΔinvG} and *S.Tm*^{Δ4} strains
162 were non-invasive (**Figure 2B-C**). Strikingly, while *S.Tm*^{wt} elicited prompt secretion of IL-6
163 (~500pg/ml), IL-13 (~50pg/ml), and TNF (~50pg/ml) from the BMMCs, *S.Tm*^{ΔinvG} and *S.Tm*^{Δ4} failed to
164 do so (**Figure 2D, S2H-I**). Following a longer 24h infection, *S.Tm*^{ΔinvG} and *S.Tm*^{Δ4} did elicit above-
165 background levels of IL-6 secretion, but still vastly lower than the >15000pg/ml noted for *S.Tm*^{wt}

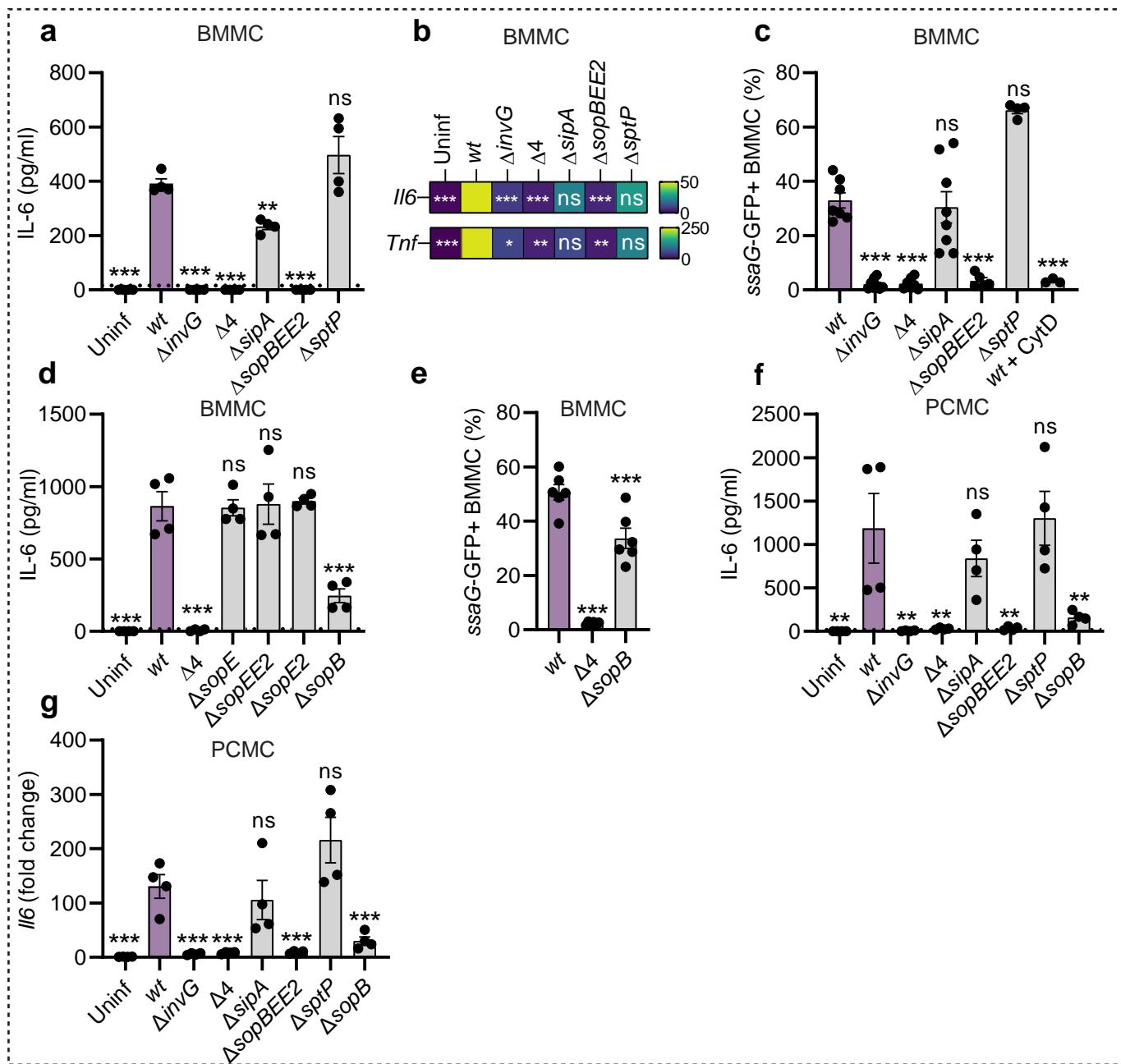
166 (Figure 2E). These findings were generalizable also to infection of BMMCs with invasive and non-
167 invasive *S.Tm*¹⁴⁰²⁸ strains (Figure 2F), and to infections of murine peritoneal-cell-derived mast cells
168 (PCMCs) (Figure 2G). Moreover, *S.Tm*^{wt} induced markedly higher levels of *Il6*, *Il13*, *Tnf*, and *Nr4a3* (a
169 MC transcription factor responsive to other stimuli;^{16,42}) transcripts than *S.Tm*^{ΔinvG} and *S.Tm*^{Δ4}, both
170 in BMMCs (Figure 2H; individual data points shown in Figure S3A-D) and in PCMCs (Figure 2I, S3G-J).
171 It should be noted that some other transcripts, including *Il1b* and *Nlrp3*, were upregulated by all
172 strains (Figure S3E-F, K-L), suggesting the existence of several transcriptional programs that may
173 react to different cues.

174 Finally, the BMMC response to *S.Tm* was contrasted to three other non-invasive enterobacteria,
175 namely the *E. coli* strains DH10B and MG1655, and wild-type *Yersinia pseudotuberculosis* (Y.
176 *pseudotuberculosis*^{wt}; has a TTSS apparatus, but uses it to prevent host cell uptake⁽⁴³⁾). Strikingly, all
177 three *E. coli*/Y. *pseudotuberculosis* strains elicited modest levels of IL-6 secretion, and virtually
178 undetectable IL-13 secretion, thereby phenocopying the *S.Tm*^{ΔinvG} strain (Figure 2J, S2J). By sharp
179 contrast, *S.Tm*^{wt} again elicited a vigorous cytokine response (Figure 2J, S2J). We conclude that TTSS-
180 1-proficient invasive *S.Tm* (*S.Tm*^{wt}) trigger a potent transcriptional and cytokine secretion response in
181 MCs, that is neither recapitulated by related non-invasive enterobacteria, nor by *S.Tm* strains
182 genetically attenuated for invasive behavior (*S.Tm*^{ΔinvG}, *S.Tm*^{Δ4}), even when these retain the
183 membrane-interacting TTSS translocon (*S.Tm*^{Δ4}, Y. *pseudotuberculosis*^{wt}).

184
185 **Figure 2. Mast cells mount a potent immunomodulatory response to *Salmonella* which is triggered**
186 **by TTSS-1 effectors.** **A:** Representative TEM images of BMMCs infected with *S.Tm*^{wt} SL1344 for 4h, as
187 well as uninfected BMMCs. Arrows indicate intracellular bacteria. Scale bar: 5μm. **B-C:**
188 Representative 25 x 25μm images (**B**) and quantification by flow cytometry (**C**) of BMMCs, infected
189 with MOI 50 of *S.Tm*^{wt} SL1344 or the indicated TTSS-mutants for 4h. GFP signal and quantification
190 show vacuolar *S.Tm* within BMMCs. **D-G** Similar conditions as above but analysis of secreted IL-6
191 after 4h (**D**) and 24h (**E**). **F:** Similar setup as in D, but *S.Tm* 14028 strains were used. **G:** Similar setup
192 as in D but PCMCs were used. **H-I:** Heatmap for RT-qPCR-quantified transcript levels for *Il6*, *Il13*, *Tnf*
193 and *Nr4a3* in BMMCs (**H**) and PCMCs (**I**), infected for 4h by the indicated *S.Tm* SL1344 strains. **J:**
194 Secreted IL-6 levels from BMMCs infected with MOI 50 of *S.Tm*^{wt} and *S.Tm*^{ΔinvG} SL1344 as well as *E.*
195 *coli* DH10B, *E. coli* MG1655 and Y. *pseudotuberculosis* for 24h. Every experiment was performed 2-3
196 times and mean ± SEM of pooled biological replicates is shown. Uninfected cells were used for
197 statistical comparisons by ANOVA and Dunnet's posthoc test to all other groups. For *S.Tm* ATCC
198 14028 infections, a *ΔmalX* strain was used as *wt*.

Figure 2

200 **The TTSS-1 effectors SopB, SopE, and SopE2 promote mast cell cytokine secretion upon *Salmonella* 201 infection**


202 Next, we surveyed the impact of individual *S.Tm* TTSS-1 effectors. Deletion of SipA (*S.Tm*^{ΔsipA}) or SptP
203 (*S.Tm*^{ΔsptP}) marginally decreased, respectively marginally increased (non-significant), the levels of
204 *S.Tm*-induced IL-6 secretion from BMMCs by 4h p.i. (**Figure 3A**). By contrast, simultaneous removal of
205 SopB, SopE, and SopE2 (*S.Tm*^{ΔsopBEE2}) phenocopied the *S.Tm*^{Δ4} and *S.Tm*^{ΔinvG} strains (i.e. minimal IL-6
206 secretion at 4h p.i.) (**Figure 3A**). Analysis of *Il6* and *Tnf* transcripts further corroborated these findings
207 (**Figure 3B, S4A-B**). To assess how the effectors influenced BMMC invasion, we again exploited *ssaG*-
208 GFP reporter strains (**Figure 3C**). Flow cytometry showed that *S.Tm*^{wt} and *S.Tm*^{ΔsipA} invaded BMMCs to
209 an equal degree, while *S.Tm*^{ΔsopBEE2} failed to establish intracellularly, analogous to *S.Tm*^{ΔinvG} and
210 *S.Tm*^{Δ4} (**Figure 3C**; MOI-response curves in **Figure S4C**). Moreover, *S.Tm*^{ΔsptP} was hyperinvasive (**Figure**
211 **3C, S4C**). This agrees with earlier findings that this effector can counteract SopE/E2 during host cell
212 invasion⁴⁴. Hence, the ability of *S.Tm* strains to trigger a cytokine response in murine BMMCs
213 correlate with their respective ability to invade these cells.

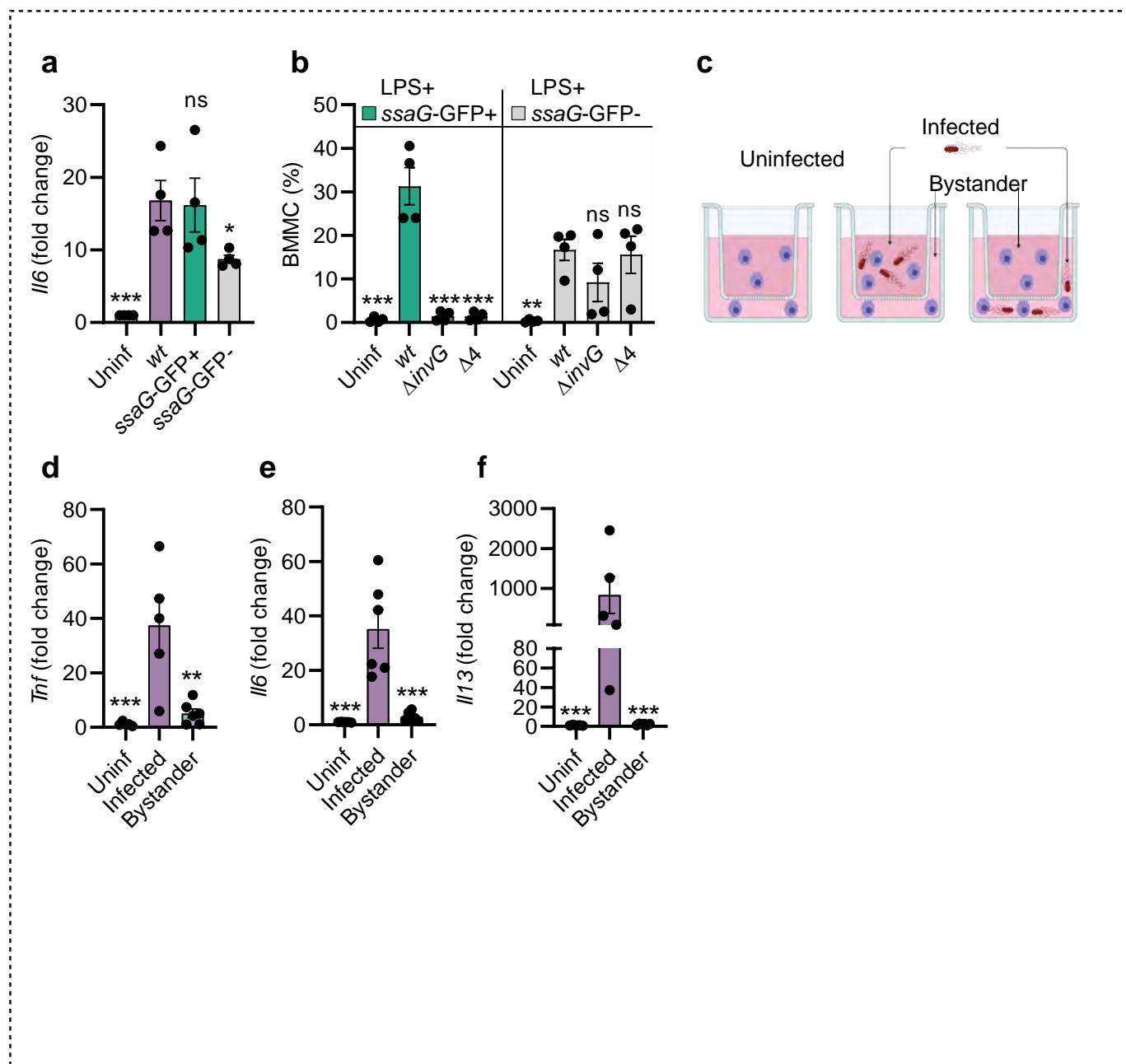
214 We next asked whether these observations generalize to human MCs, therefore turning to the
215 untransformed MC line LUVA⁴⁵. LUVA cells did not secrete IL-6 (<16pg/ml), but rather appreciable
216 amounts of TNF (~700pg/ml) upon *S.Tm*^{wt} infection (**Figure S4D**). Most importantly, both this
217 cytokine response, and the capacity of *S.Tm* to invade LUVA cells, was dramatically attenuated by
218 SopB/E/E2 deletion (**Figure S4D-E**), in full agreement with the data above.

219 As the *S.Tm*^{ΔsopBEE2} strain failed to promote invasion and cytokine secretion in murine and human
220 MCs, the individual roles of SopB, SopE and SopE2 were explored further. Deletion of only SopE or
221 SopE2 in isolation, or SopE/E2 in combination, had no effect on *S.Tm*'s capacity to elicit IL-6
222 secretion from BMMCs (**Figure 3D**). However, single deletion of SopB resulted in a drop in IL-6
223 secretion (**Figure 3D**). The number of BMMCs harboring intracellular (*ssaG*-GFP+) *S.Tm* was also
224 modestly (~2-fold) reduced by SopB deletion (**Figure 3E**; MOI-response curves in **Figure S4F**). This
225 hints towards a role for SopB in stimulating MC cytokine secretion, and a less prominent role in
226 driving MC invasion. Also in the PCMCs, the *S.Tm*^{ΔsopB} strain elicited lower IL-6 protein secretion and
227 *Il6* transcript levels at 4h.p.i. (**Figure 3F-G**). It should, however, be noted that in BMMC cultures from
228 another wild-type mouse strain (C57BL/6J; Jackson), *S.Tm*^{ΔsopBEE2} again triggered negligible IL-6
229 secretion, while we could not substantiate a non-redundant role for SopB (**Figure S4G**). Taken
230 together, these data demonstrate that the TTSS-1 effectors SopB/E/E2, working in partial redundancy
231 with each other, promote a swift and full-blown MC cytokine secretion response to *S.Tm* infection.

232 **Figure 3. The TTSS-1 effectors SopB, SopE, and SopE2 induce mast cells cytokine expression and**
233 **secretion upon *Salmonella* infection. A-G:** BMMCs (A-E) or PCMCs (F-G), infected with MOI 50 of
234 S.Tm^{wt} SL1344 or the indicated TTSS-mutants of for 4h. **A, D, F** show IL-6 secretion, **B** shows a
235 heatmap for RT-qPCR-quantified transcript levels of *Il6* and *Tnf* in BMMCs, **G** shows *Il6* transcript
236 levels in PCMCs. **C** and **E** show percentage of BMMCs harboring vacuolar (*ssaG*-GFP+) S.Tm. Every
237 experiment was performed 2-4 times and mean ± SEM of pooled biological replicates is shown.
238 S.Tm^{wt}-infected cells were used for statistical comparisons by ANOVA and Dunnet's posthoc test to
239 all other groups.

Figure 3

241 **Salmonella-invaded mast cells comprise the source of cytokine production**


242 Based on results above, it appeared likely that *S.Tm*-invaded MCs were specifically responsible for
243 cytokine production. However, cross-talk between invaded host cells and non-infected bystanders,
244 which respond by cytokine secretion, has been described in other contexts^{21,46,47}, and could not be
245 ruled out. To distinguish between these possibilities, we turned to GFP-based flow cytometry sorting
246 of BMMCs, following infection with *S.Tm*^{wt}/*ssaG*-GFP (**Figure 4A**). The *ssaG*-GFP+ BMMC fraction
247 expressed elevated *Il6* transcript levels, similar to the total unsorted population, and significantly
248 higher than the *ssaG*-GFP- BMMC fraction (**Figure 4A**). The difference between *ssaG*-GFP+ and *ssaG*-
249 GFP- fractions was, however, relatively modest (**Figure 4A**). This might be explained by either that 1)
250 bystander BMMCs also express appreciable levels of *Il6*, or that 2) the *ssaG*-GFP- fraction contains
251 some invaded BMMCs where the *S.Tm* had not turned on the reporter. Staining infected BMMCs for
252 *Salmonella* LPS revealed option 2 to be true (**Figure 4B, S5A-D**; further supported by comparisons in
253 **Figure S2B**).

254 To separate invaded and bystander BMMCs by more definite means, we conducted infections in
255 transwell plates with filters of 0.4 µm pore size. BMMCs were added to both top and bottom well
256 compartments, but *S.Tm*^{wt} was only inoculated in one of the compartments (either top or bottom;
257 **Figure 4C**). Strikingly, BMMCs in the *S.Tm*-inoculated compartment responded with vigorous
258 production of *Il6*, *Il13* and *Tnf* transcripts (**Figure 4D-F**). In the non-infected compartment, BMMCs
259 can still be exposed to diffusible bacterial PAMPs, secreted BMMC factors, or DAMPs released from
260 dying MCs, but this only led to marginally elevated cytokine transcription (**Figure 4D-F**). Transcript
261 levels were in fact ~7.5-fold (*Tnf*), ~12-fold (*Il6*), to even ~400-fold (*Il13*) higher in the *S.Tm*-infected
262 than in the bystander compartment (**Figure 4D-F**). Hence, bacterium-invaded MCs are the main
263 cytokine responders upon infection with TTSS-1-proficient invasive *S.Tm*.

264

265 **Figure 4. *Salmonella*-invaded mast cells are the main source of cytokines.** **A:** BMMCs were infected
266 with *S.Tm*^{wt} SL1344 carrying the *pssaG*-GFP reporter for 4h and sorted to enrich the *ssaG*-GFP-
267 population. *Il6* transcript levels for both fractions as well as uninfected and unsorted *S.Tm*-infected
268 BMMCs are shown. **B:** BMMCs were infected with *S.Tm*^{wt} SL1344 for 4h and stained for *Salmonella*
269 LPS. Relative population sizes of MC positive for LPS and/or vacuolar (*ssaG*-GFP+) *S.Tm*. **C:**
270 Experimental setup for analysis of the source of soluble factors secreted by MCs **D-F**. MCs were
271 infected with *S.Tm*^{wt} in one compartment while separated from MCs in the other compartment not
272 coming in direct contact with the bacteria. RT-qPCR-quantified transcript levels for *Tnf*, *Il6* and *Il13*,
273 respectively, in the aforementioned transwell compartments. Experiments were performed 2-3 times
274 and mean ± SEM of pooled biological replicates is shown. For A, C-F; *S.Tm*^{wt}-infected cells were used
275 for statistical comparison by ANOVA and Dunnet's posthoc test to all other groups. For B, two-way
276 ANOVA with Dunnet's posthoc test was used to compare *S.Tm*^{wt}-infected cells within each
277 subpopulation to all other groups. Figure 4C was created with BioRender.com.

Figure 4

279 **Combined TLR4 and SopBEE2 signals fuel cytokine secretion from *Salmonella*-infected mast cells**
280 *S.Tm* express TLR ligands, most notably the TLR4 agonist LPS and the TLR5 agonist flagellin, which
281 could contribute to MC activation. Measurable levels of TLR4 were detected on BMMCs (**Figure S6A**).
282 Accordingly, BMMCs responded with IL-6 secretion upon stimulation with pure *E. coli* LPS, but not
283 flagellin (**Figure S6B**). The LPS response was blocked by preincubating with the TLR4 inhibitor TAK242
284 (**Figure S6B**). Notably, the levels of IL-6 secretion elicited by LPS alone was still >25-fold lower than
285 for a *S.Tm*^{wt} infection (compare **Figure S6B** and **Figure 3A**). As shown in **Figure S6C**, TAK242
286 preincubation also attenuated the IL-6 response of BMMCs to *S.Tm*^{wt} infection by ~40%, without
287 significantly affecting the number of BMMC-associated *S.Tm* (**Figure S6D**). Hence, TLR4 activation
288 contributes to, but is on its own insufficient to account for the total cytokine secretion response of
289 *S.Tm*-invaded MCs. This makes sense considering that both invasive and non-invasive *S.Tm* strains
290 carry LPS, while only the former elicit full-blown MC cytokine secretion (**Figure 2-3**).

291 To test the relationship between *S.Tm* invasion, the TTSS-1 effectors SopB, SopE, and SopE2, and
292 MC cytokine secretion, we next analyzed the effect of blocking bacterial internalization. Cytochalasin
293 D (Cyto D) treatment prior to infection decreased the number of *S.Tm*^{wt} invasion events (i.e. % *ssaG*-
294 GFP+ BMMCs) in a dose-dependent manner (**Figure 5A**). Still, these BMMCs secreted IL-6 to a similar
295 extent as in the absence of Cyto D pretreatment (**Figure 5B**). This suggests that while TTSS-1 and
296 SopB/E/E2 fuel full-blown cytokine secretion (**Figure 2-3**), internalization of *S.Tm* into the MCs is not
297 strictly required.

298 Translocated SopB has in other cell types been shown to trigger the PI3-kinase-Akt pathway⁴⁸⁻⁵⁰
299 which can be a potent pro-inflammatory signal. In line with this, *S.Tm*^{wt} elicited highly elevated levels
300 of phosphorylated Akt (P-Akt) in BMMCs, in sharp contrast to *S.Tm*^{ΔsopB}, *S.Tm*^{Δ4} and *S.Tm*^{ΔinvG} strains
301 that all fail to express or translocate SopB (**Figure 5C, E**). Elevated P-Akt levels were also observed in
302 Cyto D-pretreated *S.Tm*^{wt}-infected BMMCs (**Figure S6E**), again uncoupling this response from
303 bacterial internalization. Both baseline P-Akt levels, and the elevated levels of P-Akt induced by
304 *S.Tm*^{wt} could be abrogated by the selective Akt inhibitor MK2206 (**Figure 5D, F**). Pretreatment with
305 this inhibitor also notably reduced IL-6 secretion from *S.Tm*^{wt}-infected BMMCs (**Figure S6F**). Since
306 lower levels of IL-6 were still detectable under this condition (**Figure S6F**), we hypothesized that
307 TLR4-dependent (downstream of LPS sensing) and Akt-dependent (downstream of the *S.Tm* TTSS-1
308 effectors) signals may combine to elicit cytokine secretion. The experimental data supported this
309 notion; pretreatment with TAK242 + MK2206 caused more pronounced reduction of IL-6 secretion
310 from *S.Tm*^{wt}-infected BMMCs than either of the inhibitors alone (**Figure 5G**).

311 From these data, we postulated a two-step activation mechanism whereby extracellular *S.Tm* can
312 be sensed by TLR4, generating a slow and weak MC cytokine response. Upon *S.Tm* invasion on the
313 other hand, this TLR4 signal combines with signals elicited by the TTSS-1 effectors SopB/E/E2

314 (including SopB-triggered Akt phosphorylation), leading to swift and full-blown MC cytokine
315 secretion. To formally test this model, we established BMMCs from *Tlr4*^{-/-} (C57BL/6J) mice. As
316 expected, *S.Tm* invaded WT and *Tlr4*^{-/-} BMMCs with similar proficiency and in a TTSS-1-dependent
317 manner (**Figure 5H**). At 4h p.i., *S.Tm*^{wt} and *S.Tm* single-effector mutants could still elicit IL-6 secretion
318 also from *Tlr4*^{-/-} BMMCs, but *S.Tm*^{ΔinvG}, *S.Tm*^{Δ4} and *S.Tm*^{ΔsopBEE2} did not (**Figure S6G**). When extending
319 the time frame considerably (analysis at 24h p.i.), *Tlr4*^{-/-} BMMCs were found to produce ~2-3-fold
320 lower levels of IL-6 than WT BMMCs in response to *S.Tm*^{wt} (**Figure 5I**). Strikingly, the non-invasive
321 *S.Tm* strains essentially failed to elicit a response altogether in the absence of TLR4 (**Figure 5I-J**). We
322 conclude that MCs can use a two-step activation mechanism and tune their cytokine secretion
323 output to differentiate between a non-invasive vs. invasive *S.Tm* encounter.

324

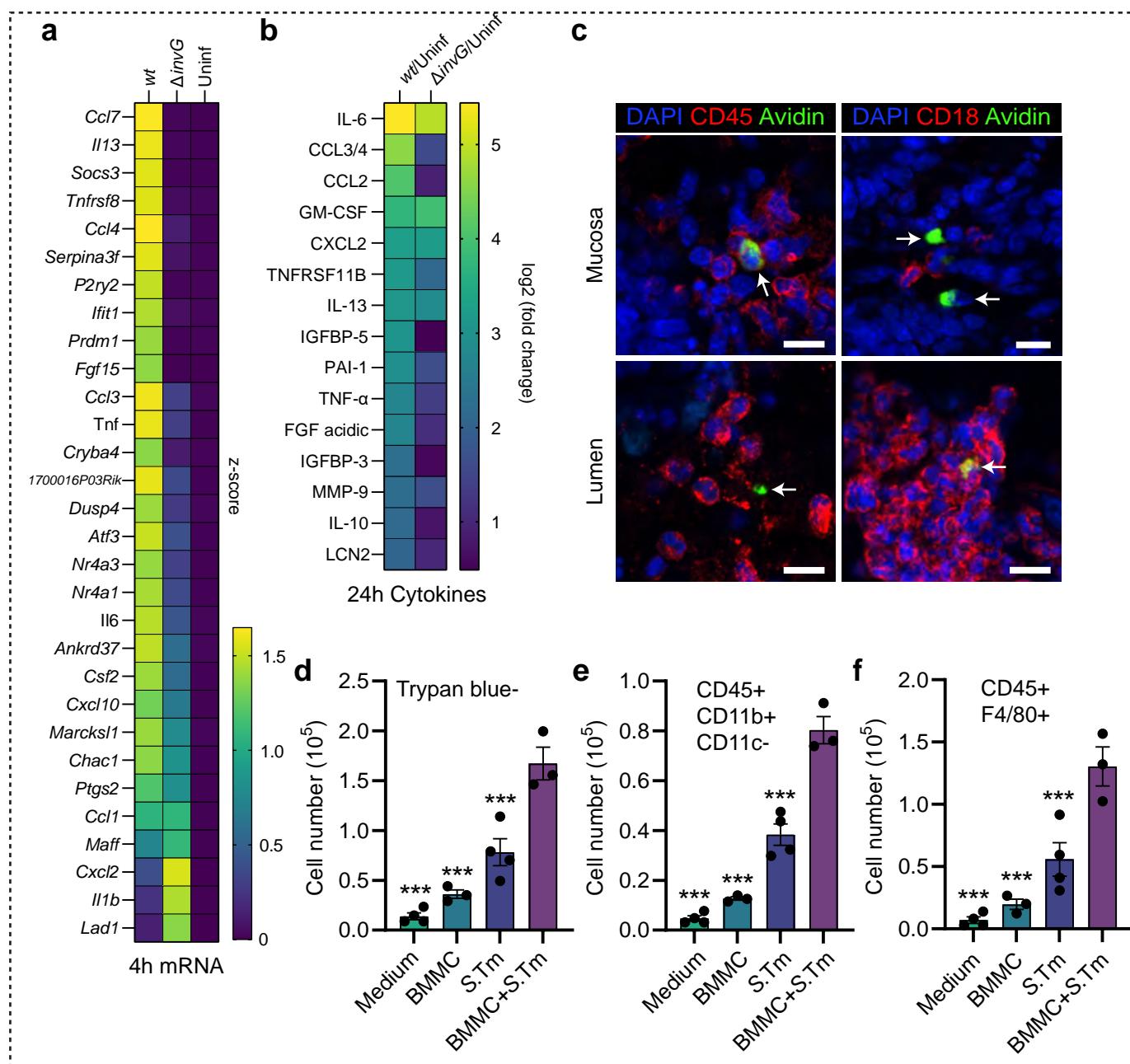
325 **Figure 5. TLR4 and Sop effectors drive cytokine secretion from *Salmonella*-invaded mast cells. A:**
326 BMMCs were pre-treated for 1h with the Cyto D concentrations indicated, and infected with MOI 50
327 of *S.Tm*^{wt} SL1344 carrying the *pssAG*-GFP reporter. After 4h, BMMCs harboring vacuolar *S.Tm* were
328 quantified. **B:** Similar setup as in A, but IL-6 secretion was measured. **C:** BMMCs were left uninfected
329 or infected with MOI 50 of *S.Tm*^{wt} SL1344 or the indicated TTSS-mutants. After 1h, cells were
330 harvested and analyzed by immunoblot for P-Akt and Akt. **D:** BMMCs were pre-treated with MK-2206
331 for 1h, infected with MOI 50 of *S.Tm*^{wt}, and analyzed as in C. L = ladder. **E-F:** Quantification of C-D. **G:**
332 BMMCs were pre-treated with TAK-242 and/or MK-2206 for 30-45min and infected with MOI 50 of
333 *S.Tm*^{wt}. After 4h, IL-6 secretion was measured. **H-I:** BMMCs from TLR4 KO mice and corresponding
334 WT BMMCs were left uninfected, or infected with MOI 50 of *S.Tm*^{wt} SL1344 or the indicated TTSS-
335 mutants. After 4h, BMMCs harboring vacuolar *S.Tm* were quantified (**H**), and after 24h IL-6 secretion
336 was measured (**I-J**). **J** depicts an enlargement of **I** with independent statistical analysis (two-way
337 ANOVA and Sidak's posthoc test for both). Experiments were performed 2-3 times and mean ± SEM
338 of pooled biological replicates is shown. Data was statistically analyzed with ANOVA and Dunnet's
339 posthoc test, using *S.Tm*^{wt}-infected cells for comparisons to all other groups (A-B, E-G). For H-I, TLR4
340 KO BMMCs were compared with corresponding WT BMMC groups by two-way ANOVA with Sidak's
341 posthoc test.

Figure 5

343 **The broad scale cytokine response from *Salmonella*-infected mast cells can promote myeloid cell
344 survival and differentiation**

345 To define the global MC gene expression changes elicited by invasive and non-invasive *S.Tm*, we next
346 performed RNA Sequencing (RNASeq) of BMMCs left uninfected, exposed to *S.Tm*^{wt}, or to *S.Tm*^{ΔinvG}
347 (MOI 50; analysis at 4h p.i.). Principal component analysis (PCA; based on all transcripts) illustrated a
348 clear separation of the three sample groups along the PC1 axis (**Figure S7A**). Pairwise comparisons of
349 either *S.Tm*^{wt}-infected vs. uninfected MCs, or *S.Tm*^{wt}- vs *S.Tm*^{ΔinvG}-infected MCs, showed that invasive
350 infection brought about pronounced upregulation of a large panel of transcripts (**Figure S7A-F**; 3471
351 transcripts significantly upregulated between *S.Tm*^{wt}-infected and uninfected samples). Among these
352 were mRNAs encoding IL-6, TNF, and IL-13, hence validating our results by qPCR and ELISA (**Figure 2-4**). Additional cytokine/chemokine transcripts induced by invasive infection were e.g. *Ccl3*, *Ccl4*, *Ccl7*,
354 *Cxcl10*, and *Csf2* (encoding GM-CSF) (**Figure 6A**). Another set of transcripts exemplified by *Il1b*
355 showed equal levels of induction by *S.Tm*^{wt} and *S.Tm*^{ΔinvG} (**Figure 6A**), again corroborating the earlier
356 qPCR results (**Figure S3E,K**).

357 In a subsequent approach, a semi-quantitative array detecting 111 cytokines was used to screen
358 supernatants of BMMCs either left uninfected, exposed to *S.Tm*^{wt}, or to *S.Tm*^{ΔinvG} (MOI 50; analysis at
359 24h p.i.) (**Figure 6B**). 15 cytokines showed a >4-fold increase between *S.Tm*^{wt}-infected and uninfected
360 BMMCs, while 5 were also >4-fold increased between *S.Tm*^{ΔinvG}-infected and uninfected samples
361 (**Figure 6B**). The highest fold-change between *S.Tm*^{wt}-infected and uninfected BMMCs was seen for
362 IL-6, followed by CCL3, CCL2, GM-CSF, and then by IL-13 and TNF, in full agreement with our previous
363 ELISA analyses (**Figure S2C-D, H-J**). Overall, this cytokine profile can be interpreted as a mixed pro-
364 inflammatory (e.g. IL-6, TNF) and immunomodulatory (e.g. IL-10, PAI-1) output that may foster
365 recruitment of granulocytes (e.g. CCL3, CXCL2), dendritic cells and monocytes (e.g. CCL2, CCL3), as
366 well as promote survival and differentiation of macrophages (e.g. GM-CSF). Indeed, when further
367 scrutinizing gut tissue harvested from *S.Tm*-infected mice, mucosal and luminal MCs were found to
368 be surrounded by high densities of CD45 (broad blood cell marker) and CD18 (marker for monocytes,
369 macrophages, and granulocytes) positive cells (**Figure 6C**).


370 In light of these observations, we finally examined the functional capacity of infected MC
371 secretions, by culturing nucleated mouse bone marrow cells for 7 days in a base medium (see
372 Materials and methods) that on its own failed to support cell survival (**Figure 6D**). The base medium
373 was mixed with 24h conditioned supernatants from either uninfected BMMCs, the *S.Tm*^{wt} inoculum
374 alone, or *S.Tm*^{wt}-infected BMMCs. Supernatants from naïve BMMCs had minimal impact on the bone
375 marrow cells, but *S.Tm*-conditioned supernatants enhanced cell survival and macrophage
376 differentiation to some extent (**Figure 6 D-F**; flow cytometry gating shown in **Figure S8**). However,
377 both of these stimulatory effects were drastically higher for supernatants harvested from *S.Tm*^{wt}-

378 infected BMMCs. We conclude that cytokines and other soluble factors secreted by BMMCs upon
379 *S.Tm* infection enhance survival of bone marrow-derived progenitors and may act in concert with
380 soluble *S.Tm* components to promote myeloid cell differentiation.

381

382 **Figure 6. *Salmonella* induces a broad transcriptional and cytokine secretion response in mast cells**
383 **with functional consequences on myeloid cells. A:** RNA sequencing of BMMCs left uninfected, or
384 infected with MOI 50 of *S.Tm*^{wt} or *S.Tm*^{ΔinvG} SL1344 for 4h, presented as the top 30 significantly
385 upregulated genes between *S.Tm*^{wt}-infected and uninfected control, displayed as a z-score-
386 transformed heatmap. Genes are sorted by the formula “*S.Tm*^{wt} - *S.Tm*^{ΔinvG}” to highlight differences
387 between those two groups. **B:** Heatmap of relative log2 fold changes between the indicated groups,
388 derived from a cytokine array of 24h supernatants from BMMCs infected with MOI 50 of *S.Tm*^{wt} or
389 *S.Tm*^{ΔinvG} SL1344. **C:** Representative IF images of MCs in close contact to CD45+ and CD18+ immune
390 cells in the *S.Tm*^{wt} SL1344 -infected intestinal mucosa and lumen at 48h p.i.. Arrows indicate MCs,
391 scale bars: 10 µm. **D:** Trypan blue-based live cell counts of bone marrow nucleated cells, cultured for
392 7 days in base medium supplemented with either medium alone, 24h uninfected BMMC
393 supernatant, *S.Tm* inoculum-conditioned supernatant, or supernatant of BMMCs infected with
394 *S.Tm*^{wt} for 24h. **E-F:** Similar setup as in C, but quantification of the total number of CD45+ CD11b+
395 CD11c- cells (containing monocytes) (**E**) and CD45+ F4/80+ cells (containing macrophages) (**F**) in bone
396 marrow cultures treated with the indicated supernatants, or base medium alone. For C-E, data was
397 statistically analyzed with ANOVA and Dunnet's posthoc test, using “BMMC+*S.Tm*” for comparisons
398 to all other groups.

Figure 6

400 **Discussion**

401 This work establishes that MCs, common innate immune cells of mucosal tissues, can tune their
402 cytokine response to extracellular vs. invasive forms of the prototype enterobacterium *S.Tm* and close
403 relatives. Prior studies have shown that MCs respond to PAMPs of both gram-negative and -positive
404 bacteria through TLRs⁶⁻⁹. We corroborate these findings, showing that *E. coli* LPS, or non-invasive *S.Tm*
405 strains, trigger a TLR4-dependent cytokine response. Importantly however, this weak response,
406 observed also upon exposure to non-invasive *E. coli* and *Y. pseudotuberculosis* strains, vastly
407 undershoots the maximal capacity of MCs to initiate *de novo* transcription and cytokine production.
408 Instead, a full-blown MC response requires a second activation step directly linked to TTSS-1-
409 dependent *S.Tm* invasion effectors. Through this wiring, MCs appear capable of informing their
410 surrounding of a bacterium's virulence potential. Experiments separating *S.Tm*-infected from
411 neighboring MCs localized the vigorous MC response specifically to the bacterium-invaded cell
412 population. This excludes that the second MC activation step is elicited by DAMP release from cells
413 damaged by the infection (further supported by¹⁶). Moreover, an *S.Tm* strain that retains TTSS-1
414 translocon function in the absence of TTSS-1 effectors (*S.Tm*^{Δ4}) did not recapitulate the MC response
415 to *S.Tm*^{wt}. This also excludes that the second activation step comprises sensing of plasma membrane
416 perturbation, as has been noted for MCs exposed to bacterial cytolysins¹⁴⁻¹⁶. Rather, *S.Tm* single- and
417 multiple gene mutant infections, and pharmacological inhibition assays, point to the translocated TTSS-
418 1 effectors SopB, SopE, and SopE2 as responsible for the invasion-linked signal(s). These effectors have
419 previously been linked to proinflammatory transcription in epithelial cells⁴⁸. SopB alters plasma
420 membrane phosphatidylinositol phosphate (PIP) pools to generate e.g. PI(3,4)P₂, through phosphatase
421 and phosphotransferase activities^{51,52}. This recruits multiple kinases and promotes
422 phosphorylation/activation of Akt, with consequences on host cell transcription and cell survival<sup>48-
50,53</sup>. We found that MCs exposed to *S.Tm*^{wt} exhibited elevated levels of phospho-Akt, while this was
424 not observed for strains incapable of SopB translocation (*S.Tm*^{ΔinvG}, *S.Tm*^{Δ4}, *S.Tm*^{ΔsopB}). MC
425 pretreatment with the Akt inhibitor MK2206 also attenuated the MC cytokine response. Notably,
426 however, the magnitude of the SopB contribution varied between MC models, whereas a *S.Tm*^{ΔsopBEE2}
427 triple mutant consistently elicited a similar low response as the TTSS-1-deficient strains. SopE/E2 can,
428 in partial redundancy with SopB, activate Rho GTPases such as Rac1 and Cdc42, which promote *S.Tm*
429 invasion, but may also elicit proinflammatory transcription through MAP kinase and/or Nod1 pathways
430^{48,54,55}. It therefore seems most likely that invasive *S.Tm* spark a mixed transcription-stimulating signal
431 in MCs through translocated SopB/E/E2, triggering both Akt activation, and additional pathways
432 redundantly activated by the three effectors.

433 Our study also weighs in on the question if MCs permit bacterial internalization. Previous reports
434 suggested that enterobacteria like *S.Tm* are not efficiently taken up by MCs, and thereby fuel a more
435 restricted MC response than for example *Staphylococcus aureus*^{6,21}. However, we demonstrate here
436 that *S.Tm*^{wt} grown under TTSS-1-inducing conditions efficiently invade and establish an intracellular
437 niche (evident by *ssaG*-GFP expression and TEM analyses) within both mouse (BMMC, PCMC) and
438 human (LUVA) MC models. By contrast, genetically TTSS-1-deficient bacteria (*S.Tm*^{Δ*invG*}), or *S.Tm*^{wt}
439 grown under non-TTSS-1-inducing conditions (overnight culture in LB with vigorous shaking) had an
440 essentially non-invasive phenotype in cultured MCs. The discrepancy between our and previous
441 findings are likely explained by how the *S.Tm* inoculum was prepared. In either case, our results favor
442 the conclusions that i) MCs have a minimal inherent capacity for phagocytosis of enterobacteria, but
443 that ii) they are highly susceptible to TTSS-1-mediated active *S.Tm* invasion.

444 According to the two-step activation mechanism proposed here, MCs are capable of a graded
445 response to bacterial infection that depends on the pathogen's invasive capacity. Notably, this
446 response does not include overt degranulation. IgE-mediated activation of Fc ϵ RI-receptors elicits
447 prompt MC degranulation⁵⁶, but this is typically not seen upon bacterial detection, although some
448 reports have linked degranulation to certain microbial stimuli^{57,58}. Our data do not exclude that the
449 *S.Tm* TTSS-1 effector SptP can have a MC degranulation-suppressing effect "in trans", that is when
450 degranulation is stimulated by other means, as has been proposed by others⁴⁰. However, neither
451 *S.Tm*^{wt}, nor *S.Tm*^{ΔsptP}, elicited above-background degranulation of cultured MCs, suggesting that
452 degranulation plays a minimal role in the immediate MC response to this bacterium. Instead,
453 extracellular *S.Tm*, *E. coli*, or *Y. pseudotuberculosis*, or pure *E. coli* LPS sensed through TLR4, gave rise
454 to a weak production of cytokines and chemokines. Upon two-step detection of invasive *S.Tm* through
455 both TLR4- and SopBEE2-elicited pathways, this cytokine/chemokine response was both faster and
456 more vigorous. While not the main focus of this study, we also detected type I interferons in response
457 to *S.Tm*^{wt}, which is in line with earlier proposals linking intracellular localization of a pathogen to
458 boosted type I interferon production⁶. Among the secreted proteins strongly stimulated by invasive
459 *S.Tm* were both typical pro-inflammatory (e.g. IL-6, TNF) and immunomodulatory (e.g. IL-10) cytokines,
460 chemokines linked to granulocyte (e.g. CCL3, CXCL2) and monocyte (e.g. CCL2, CCL3) recruitment, and
461 growth factors (e.g. FGF, GM-CSF). Indeed, we could also substantiate that MCs in the *S.Tm*-infected
462 gut frequently colocalize with a variety of other immune cell types, and that supernatants from *S.Tm*^{wt}-
463 infected MCs boosted immune cell progenitor survival, as well as myeloid cell differentiation.

464 How can this MC response be integrated into the current understanding of enterobacterial infection
465 *in vivo*? In the mouse model experiments, MCs were found in the intestinal submucosa and mucosa
466 prior to per-oral infection, and the mucosal MC population expanded further in the infected group.
467 We also found evidence for MCs transmigrating into the *S.Tm*-filled lumen, coming in direct contact

468 with dense bacterial populations in the process. It is well established that *S.Tm* express TTSS-1 in the
469 lumen and use this to invade intestinal epithelial cells and elicit acute inflammation through epithelial
470 inflammasome activation^{29,59}. During transition across the intestinal mucosa, TTSS-1 expression is
471 gradually downregulated⁶⁰, generating a stealthier *S.Tm* phenotype within deeper tissues. Hence, it
472 appears most plausible that a two-step sensing of TTSS-1-proficient *S.Tm* by MCs is predominantly
473 relevant in the bacterium-laden gut mucosa and lumen, and that this generates a secretory MC output
474 that helps shape the local microenvironment. The triggering of inflammation is a double-edged sword
475 during enterobacterial infection. In the case of *S.Tm*, the acute host response to bacterial invasion can
476 restrict pathogen translocation across the gut mucosa, but when dysregulated also disrupt the
477 epithelial barrier and promote pathogen overgrowth^{61,62}. During intraperitoneal *S.Tm* infection, MC-
478 derived TNF was in fact found to worsen disease outcome and fuel bacterial colonization⁶³. Hence, it
479 seems critical for MCs (as well as other mucosal cell types) to carefully adjust their inflammation-
480 modulatory output to the properties of the intruder and thereby foster a protective, rather than
481 deleterious, counter response. This study provides proof-of-principle evidence that MCs can indeed
482 grade their cytokine output by combining classical PAMP sensing with effector-triggered immunity^{64,65},
483 which enables them to differentiate between non-invasive and invasive enterobacterial infection.

484

485 **Materials and Methods**

486 **Mice for mast cell culture**

487 For experiments involving *Tlr4*^{-/-} BMMCs, B6(Cg)-*Tlr4*^{tm1.2Karp}/J (#029015) and corresponding C57BL/6J
488 WT controls (#000664), 8 weeks old mice were purchased from The Jackson Laboratory. For all other
489 experiments involving bone marrow or BMMCs, C57BL/6 WT mice (8-14 weeks old), bred and
490 maintained at the National Veterinary Institute (SVA, Uppsala, Sweden) were used. The experimental
491 procedures were approved by the local animal ethics committee (Uppsala djurförskötskliga nämnd,
492 Dnr 5.8.18-05357/2018). Whenever possible, remaining bones from WT C57BL/6 mice used as
493 controls in other experiments were acquired for culturing BMMCs.

494

495 **Mouse infections**

496 Eight-week-old female CBA mice (Charles River) were acclimatized to the new environment for one
497 week before infection. 24h before infection, mice were pretreated with 20mg streptomycin per oral
498 gavage. Mice were deprived of food and water for 4h prior to infection by oral gavage with 3.0-
499 7.5x10⁶ CFU *S.Tm* in 100µl Dulbecco's phosphate-buffered saline (PBS). For infection, *S.Tm* were
500 grown in LB overnight, diluted 1:20 and re-grown for 4h before diluting bacteria in PBS for infection.
501 The infection dose was confirmed by viable counts on streptomycin plates. Mice were monitored

502 frequently for signs of unhealth. The experiments were approved by the local animal ethics
503 committee (Umeå djurförsöksetiska nämnd, Dnr A27-17) and mice were housed in accordance with
504 the Swedish National Board for Laboratory Animals guidelines.

505

506 **Cryosectioning of caecum, immunofluorescence, and toluidine staining of paraffin sections**

507 For preservation in paraffin, tissues were fixed in 4% PFA for 6-12h at room temperature, rinsed in
508 PBS and 70% ethanol, and immediately dehydrated and paraffinized in *Tissue-Tek®VIP* (SAKURA).
509 Tissues were embedded with *HistowaxTM* paraffin (Histolab) with *Tissue-Tek®TEC* (SAKURA) and kept
510 at 4°C until sectioning. For cryo-embedding, tissue pieces were placed in 4% PFA/ 4% sucrose/ PBS
511 solution for 6-12h at room temperature followed by incubation in 20% sucrose/ PBS (overnight 4°C).
512 Excess liquid was removed, tissue placed in OCT, flash frozen in liquid N₂ and stored at -80°C.
513 Cryosections of 20 µm were cut on a *Cryostat CryoStar NX70* (Epredia) with at least 40µm distance
514 between sections, placed on *Superfrost Plus Adhesion Microscope Slides* (Thermo Fisher Scientific,
515 #J1800AMNT) and dried >16h. Sections were rehydrated in PBS (Gibco, #70013-016 or #14190144)
516 for 5min and permeabilized for 3min in PBS/ 0.1% Triton TX-100. Slides were stained with 2.5µg/ml
517 DAPI (Sigma-Aldrich, #D9542), 4U/ml phalloidin-A647 (Thermo Fisher Scientific, #A22287) and
518 10µg/ml avidin-A488 (Thermo Fisher Scientific, #A23170) for 40min. After washing 3x in PBS for
519 3min, mounting was done with *Mowiol 4-88* (Sigma-Aldrich, #81381) and slides were dried overnight
520 before storing at 4°C. MCs were counted as avidin+ cells per caecum section. For staining of *S.Tm*,
521 slides were blocked in 10% normal goat serum (Sigma-Aldrich, #G9023) in PBS for 30min after the
522 permeabilization step, followed by 40min incubation with *Salmonella* O Antiserum Factor 5, Group B
523 in blocking buffer. After washing, slides were stained as described above but including Goat-α-rabbit-
524 IgG(H+L)-Cy3 (Molecular probes, #A10520) 1:200 in PBS. For staining with CD18 and CD45, Goat-α-
525 Rat-IgG(H+L)-AF647 (Invitrogen, #10666503) was used without phalloidin instead. For staining of
526 *Salmonella*, all washing steps were performed only for 1min to avoid loss of bacteria. For toluidine
527 stained tissue sections, 5µm paraffin tissue sections were cut in *Microm HM360* (Zeiss), placed on
528 *SuperFrost* slides and dried (50°C for one hour or overnight at 37°C). Sections were deparaffinized
529 in xylene at 60°C (3 x 10min) and rehydrated through a graded series of alcohol. Sections were
530 incubated with 0.1% toluidine in 1% NaCl pH 2.3-2.5, water, 95% ethanol, and mounted in
531 dibutylphthalate xylene (DPX) (Sigma-Aldrich) after dehydration in 99% ethanol and xylene. All primary
532 antibodies and their dilutions used in this study are shown in **S4 Table**.

533

534 **Bone marrow-derived mast cell culture**

535 Bone marrow from tibiae and femurae of one mouse per culture was flushed out with PBS, washed
536 1x at 300 x g for 7min and filtered through a 70µm cell strainer. Cells were resuspended in 50ml

537 BMMC culture medium consisting of 90% DMEM (Fisher Scientific, #31966047), 10% heat-inactivated
538 FBS (Thermo Fisher Scientific, #D5671) and supplemented with Penicillin-Streptomycin (100U/ml,
539 100 μ g/ml, Sigma-Aldrich, #P0781) and 10ng/ml recombinant IL-3 (Peprotech, #213-13). Medium was
540 changed every 3-4 days to a fresh flask in the first 4 weeks of culture, maintaining a cell density of 0.5
541 x 10 6 cells/ml. Afterwards, medium was changed every 3-7 days. BMMCs were used during 4-10
542 weeks of culture. *Tlr4*^{-/-} BMMCs were used up to 4 months of culture. Cell numbers were determined
543 by trypan blue (Thermo Fisher Scientific, #15250-061) exclusion and quantified by an automated cell
544 counter (CountessTMII FL, Life Technologies).

545

546 **Mouse bone marrow cell culture**

547 Mouse bone marrow was extracted as described above until the cell strainer filtering step.
548 Erythrocytes were lysed by resuspending the pellet in 3ml of RBC Lysis Buffer (eBioscience, #00-4333-
549 57) and incubating for 3min on ice. Nucleated bone marrow cells were washed in PBS and
550 resuspended to 10 6 cells/ml in BMMC culture medium. 900 μ l conditioned medium was placed in a 12
551 well plate and 100 μ l of bone marrow cells were added. After 7 days, cells were harvested with cell
552 lifters (Corning, #3008) and stained for flow cytometry as described below.

553

554 **Peritoneal cell-derived mast cell culture**

555 After euthanizing the mouse, the abdomen was washed with 70% ethanol. The abdominal cavity was
556 carefully cut open and the abdomen was rinsed with 5ml ice cold PBS by injecting and gently shaking
557 the mouse. Lavage from each mouse was collected individually to avoid possible contamination.
558 After collection, the lavage was centrifuged for 8min, 300 x g and resuspended in PCMC culture
559 medium (BMMC culture medium with 50 μ M 2-Mercaptoethanol (Sigma-Aldrich, #M6250), 20 ng/ml
560 SCF (Peprotech, #250-03) and IL-3. On the next day, cells were observed under the microscope and
561 cells from separate mice were pooled into one culture. Medium was changed every 3-4 days and the
562 cell density was adjusted to 0.5 x 10 6 cells/ml.

563

564 **LUVA cell culture**

565 LUVA cells (⁴⁵; Kerafast, #EG1701-FP) are derived from untransformed CD34+ enriched mononuclear
566 hematopoietic progenitor cells, obtained from a blood donor and cultured in the presence of IL-3, IL-
567 6 and SCF. The cells were maintained in complete StemProTM-34 SFM (Thermo Fisher Scientific,
568 #10639011), supplemented with 2mM L-glutamine and Penicillin-Streptomycin and subcultured
569 every 3-4 days.

570

571 **Salmonella strains, plasmids, and culture conditions**

572 All strains and plasmids used in this study can be found in **S1 and S2 Table**, respectively. In **Figure 2**
573 **and S2**, wild-type and mutant strains of *Salmonella enterica* serovar Typhimurium ATCC 14028
574 background were included⁶⁶. All other strains used in this study were of a SL1344 background
575 (SB300; streptomycin resistant)⁶⁷. The *S.Tm*^{ΔsptP} mutant was generated via transfer of a previously
576 described deletion⁶⁶ from a *S.Tm* 14028 strain (C1172) to the SL1344 background by P22
577 transduction. For infections, *S.Tm* cultures were grown overnight at 37°C for 12h in LB 0.3 M NaCl
578 with appropriate antibiotics on a rotating wheel incubator to optimize aeration, followed by
579 subculturing in the same medium without antibiotics at a 1:20 dilution for 4h at 37°C. For non-
580 virulence inducing conditions, *S.Tm* was grown for 20h at 37°C in LB under 190rpm shaking. Prior to
581 infection, 1ml was spun down for 4min at 12000 x g and reconstituted in co-cultivation medium (cell-
582 specific standard culture medium without IL-3 and antibiotics). *E. coli* strains were grown overnight
583 in LB at 37°C and subcultured in LB for 2h at 37°C prior infection. *Y. pseudotuberculosis* were grown
584 overnight in LB at 26°C. Bacteria were subcultured for 1h at 26°C in LB, containing 50 mM of CaCl₂,
585 followed by 1h shifting to 37°C. When using different bacterial species, ODs were adjusted to equal
586 bacterial concentrations, based on CFU numbers. After infection, inocula were diluted 1:10⁶ and 50µl
587 were plated onto agar plates with antibiotics when appropriate to enumerate colony forming units
588 (CFU).

589

590 **Infection of mast cells with *S.Tm***

591 For all infections, mast cells (BMMCs, PCMCs or LUVA) were washed twice in PBS and resuspended in
592 the respective culture medium without antibiotics (co-cultivation medium). In experiments
593 performed for ELISA or RT-qPCR analysis, if not indicated otherwise, 500µl of 1 x 10⁶ mast cells/ml
594 were added to 24 well plates (Sarstedt) and infected with 25µl inoculum, resulting in a multiplicity of
595 infection (MOI) of 50, for 30min in 37°C, 5% CO₂. Afterwards, gentamicin was added to a final
596 concentration of 90µg/ml, leaving the intracellular bacteria intact. After an additional 3.5h, wells
597 were harvested in tubes, centrifuged for 5min at 400 x g and supernatants and pellets were frozen
598 separately. For degranulation assays, the incubation after addition of gentamicin was reduced to
599 30min and phenol red-free DMEM (Gibco, #31053028) was used in the co-cultivation medium. To
600 generate samples for immunoblots, 1-2ml of cells were infected in 12- or 6 well plates with identical
601 concentrations of gentamicin and bacteria but only 30min incubation after addition of gentamicin
602 and prior to freezing, the pellets were washed with PBS. For experiments involving flow cytometry,
603 180µl of 0.556 x 10⁶ mast cells/ml were added to 96 well round bottom plates (Thermo Fisher
604 Scientific, #163320) and infected by adding 20µl of bacteria to the indicated MOIs. After 30min

605 incubation as above, plates were gently centrifuged for 3min, 200 x g, supernatants were discarded
606 and the plates vortexed gently before adding 200µl/well of co-cultivation medium, containing
607 100µg/ml gentamicin. Plates were incubated for further 3.5h, washed 1x in 1% BSA (Sigma-Aldrich #
608 A9418) in PBS (200 x g, 3min) and fixed in 2% PFA (Sigma-Aldrich, #158127) in the dark for 20-30min.
609 After 1x washing, cells were resuspended in 1% BSA in PBS and stored at 4°C until flow cytometry
610 analysis of mCherry or GFP-positive MCs. MK-2206 (Selleck chemicals, #S1078), TAK-242 (Sigma-
611 Aldrich, #614316) or Cyto D (Sigma-Aldrich #C8273) were added diluted in medium 30-45min prior to
612 infection. *E. coli* LPS (Sigma-Aldrich, #L4516) and flagellin (Sigma-Aldrich #SRP8029) were added
613 diluted in medium and used as indicated in the respective figure legend. Transwell plates were from
614 Sigma-Aldrich (#CLS3470).

615

616 **Microscopy**

617 For fluorescence microscopy, 400µl of fixed BMMCs (0.5×10^6 cells/ml) in 1% BSA in PBS were added
618 to 24-well glass bottom plates (High performance #1.5 cover glass, Cellvis, #P24-1.5P). Images were
619 acquired on a custom-built microscope, based on a Nikon Eclipse Ti2 body, in differential
620 interference contrast (DIC) and green fluorescence channels with a Prime 95B (Photometrics) camera
621 through a 100X/1.45 NA Plan Apochromatic objective (Nikon), using a X-light V2 L-FOV spinning disk
622 (Crest Optics, Italy) and a Spectra-X light engine (Lumencor). Micro Manager was used for controlling
623 the microscope (μ Manager plugin ⁶⁸). For TEM, BMMCs infected with *S.Tm* MOI 50 for 4h (gentamicin
624 present after 30min), or left uninfected, were fixed in 2.5% Glutaraldehyde (Ted Pella) + 1 %
625 Paraformaldehyde (Merck) in PIPES pH 7.4 and stored at 4°C until further processed. Samples were
626 rinsed with 0.1M PB for 10min prior to 1h incubation in 1% osmium tetroxide (TAAB) in 0.1M PB.
627 After rinsing in 0.1M PB, samples were dehydrated using increasing concentrations of ethanol (50 %,
628 70 %, 95 % and 99.9 %) for 10min at each step, followed by 5min incubation in propylene oxide
629 (TAAB). The samples were then placed in a mixture of Epon Resin (Ted Pella) and propylene oxide
630 (1:1) for 1h, followed by 100% resin and left overnight. Subsequently, samples were embedded in
631 capsules in newly prepared Epon resin and left for 1-2h and then polymerized at 60°C for 48h.
632 Ultrathin sections (60-70nm) were cut in an EM UC7 Ultramicrotome (Leica) and placed on a grid. The
633 sections were subsequently contrasted with 5% uranyl acetate and Reynold's lead citrate and
634 visualized with Tecnai™ G2 Spirit BioTwin transmission electron microscope (Thermo Fisher/FEI) at
635 80kV with an ORIUS SC200 CCD camera and Gatan Digital Micrograph software (both from Gatan
636 Inc.). Cecal tissue cryosections stained for fluorescence microscopy were imaged using a LSM700
637 (Zeiss) confocal microscope, equipped with a Plan-Apochromat 40x/0.95 Korr M27 objective with

638 pinhole set to 1 AU for each wave length, at the BioVis platform of Uppsala University. Fiji⁶⁹ was
639 used for image analysis and distance measurements.

640

641 **Supernatant analyses by ELISA and β -hexosaminidase assays**

642 BMMC and PCMC supernatants were analyzed by ELISA for IL-6, TNF and IL-13 (Invitrogen, # 88-7064-
643 76, #88-7324-88, #88-7137-88). LUVA supernatants were assayed for IL-6 and TNF (Invitrogen, #88-
644 7066-88, #88-7346-88). β -hexosaminidase was measured in fresh supernatants by transferring 20 μ l
645 sample/well to a 96 well plate (Sarstedt) and adding 80 μ l of 1mM 4-Nitrophenyl N-acetyl- β -D-
646 glucosaminide (Sigma-Aldrich, #N9376) in citrate buffer with pH 4.5. After 1h incubation at 37°C, the
647 reaction was stopped with 200 μ l Na₂CO₃ buffer at pH 10 and absorption was measured at 405nm.
648 Total β -hexosaminidase content was acquired by lysis with 1% Triton X-100 (Sigma-Aldrich, T8787)
649 prior to the assay and for the respective infection experiment. MCs treated with 2mM calcium
650 ionophore A23187 (Sigma-Aldrich, #C7522), were included as positive control for β -hexosaminidase
651 release.

652

653 **Real-time quantitative PCR**

654 Total RNA was isolated from frozen pellets and caecum tissue using the NucleoSpin RNA extraction
655 kit (Machery-Nagel, #740955.5) or the RNeasy Plus Mini Kit (Qiagen, #74134). Equal concentrations
656 of RNA (measured by NanoDrop and 1 μ g for the caecum tissue) were reverse transcribed to cDNA
657 using the iScript™ cDNA Synthesis Kit (Bio-Rad, #1708891) and stored at -20°C. cDNA was diluted 1:5
658 (for caecum 1:1 or 1:10) and qPCR was performed on a CFX384 Touch™ (Bio-Rad) with iTaq Universal
659 SYBR (Bio-Rad, #1725121) using 1 μ l of cDNA and 200 nM of reverse and forward primers (sequences
660 are listed in **S3 Table**). PCR was performed according to the manufacturer's instruction. If not
661 indicated otherwise, data is shown as fold change ($2^{-\Delta\Delta Cq}$) to uninfected MCs, normalized to *Hprt*
662 transcription. Statistics were calculated based on ΔCq values.

663

664 **Flow cytometry**

665 For detection of TLR4, 1 \times 10⁶ BMMCs were resuspended in 2% BSA (Sigma-Aldrich) in PBS, containing
666 0.5 μ g/ml of Fc-block anti-CD16/32 (BD Life Sciences, #553142) and incubated for 5min at RT. The
667 cells (100 μ l each) were either left unstained, or stained with 5 μ g/ml anti-CD284 (TLR4) antibody
668 (clone UT41) conjugated with Alexa Fluor 488 (Invitrogen, #53-9041-82) or identical amount of
669 mouse IgG1 kappa isotype control (Invitrogen, #MG120). After 30min incubation on ice, the cells
670 were washed and resuspended in 2% BSA in PBS. For LPS staining, fixed cells were resuspended in
671 100 μ l of 0.1% saponin (VWR, Calbiochem, #558255), 1% BSA and 1:250 of *Salmonella* anti-serum in

672 PBS and incubated for 1h at RT in the dark. After washing in 0.1% saponin, 1% BSA in PBS, the cells
673 were incubated for 30min with 1:200 Goat- α -rabbit-IgG(H+L)-Cy3 in the dark and washed in 0.1%
674 saponin again. Flow cytometry was performed using a MACSQuant VYB (Miltenyibiotec). For bone
675 marrow analysis, cells were collected in 2% FBS in PBS containing fluorophore-conjugated antibodies
676 targeting the following surface markers: CD45, CD11b, CD11c, F4/80. After 30min incubation, the
677 cells were washed twice with 2% FBS in PBS, and resuspended in the same buffer for analysis. Flow
678 cytometry was performed on a Cytoflex LX (Beckman Coulter). Data analysis was performed using
679 FlowJo (BD Biosciences) version 10.8.1. Detailed information of all primary antibodies can be found in
680 **S4 Table.**

681

682 **Cell sorting**

683 After infection of BMMCs as described above for 4h, cells were washed in 1% BSA in PBS and
684 resuspended in cold MACSQuant® Tyto® Running Buffer (Miltenyi Biotech, #130-107-207) to a
685 concentration of 0.5×10^6 cells/ml. All further steps were performed at 4°C. Cells were sorted on
686 *ssaG*-GFP- expression in a MACS® GMP Tyto® Cartridge (Miltenyi Biotech #170-076-011) until purity
687 of GFP- cells reached 99%. This procedure isolated GFP- BMMCs and enriched for GFP+ cells. After
688 sorting, cells were washed in 1% BSA in PBS, pelleted and frozen until RNA extraction.

689

690 **Protein extraction and immunoblotting**

691 Frozen pellets were resuspended in cold lysis buffer consisting of RIPA buffer (ThermoScientific,
692 #89900) with protease inhibitors (Roche, #4693132001) and PhosSTOP™ (Roche, #4906845001),
693 using 75 μ l per 1×10^6 cells. After 30min incubation on ice, samples were centrifuged for 20min at 4°C
694 max. speed to remove debris. Supernatants were transferred in fresh tubes, measured with the
695 bicinchoninic acid assay (Pierce, #23227) and frozen until further use. Equal concentrations of protein
696 (10-25 μ g) were mixed with 4x Laemmli buffer (Bio-Rad, #1610747) containing 5% 2-
697 mercaptoethanol, boiled for 5min at 95 °C and loaded together with 5 μ l of ladder (Bio-Rad,
698 #1610373) on 4–20% Mini-PROTEAN® TGX Stain-Free™ Protein Gels (Bio-Rad, #4568094 or
699 #4568096). Gels were run for 25min at 200V and transferred to nitrocellulose (Bio-Rad, #1704158)
700 with a Trans-Blot Turbo Transfer System (Bio-Rad), using the program for intermediate molecular
701 weight. 1min activation of the gel and imaging of total protein on the blot was performed by a Gel
702 Doc EZ Imager (Bio-Rad). Blots were blocked in Intercept blocking buffer (PBS, Li-cor, #927-70001) for
703 1h at RT, incubated 2h on RT or overnight at 4°C with antibodies for Akt (1:1000, Cell signaling,
704 #9272) or P-Akt (Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (1:2000, Cell signaling, #4060) diluted
705 in blocking buffer. After 3x washing in PBS-Tween (0.05%), blots were incubated with Goat- α -rabbit-

706 IgG-HRP (1:10,000, Cell Signaling, #7074) for 1h at RT. After washing, blots were incubated with ECL
707 Prime (Cytiva, #GERPN2232) for 5min at RT under shaking and imaged with a ChemiDoc MP (Bio-
708 Rad). Two blots were run in parallel for Akt and P-Akt, antibody signal was normalized to total
709 protein on the membrane respectively, and data was displayed as P-Akt of total Akt, normalized to
710 untreated cells.

711

712 **RNA sequencing**

713 Sequencing libraries were prepared from 500ng total RNA using the TruSeq stranded mRNA library
714 preparation kit (Illumina Inc., #20020595,) including polyA selection. Unique dual indexes (Illumina
715 Inc., 20022371) were used. The library preparation was performed according to the manufacturers'
716 protocol (#1000000040498). The quality of the libraries was evaluated using the Fragment Analyzer
717 from Advanced Analytical Technologies, Inc. using the DNF-910 dsDNA kit. The adapter-ligated
718 fragments were quantified by qPCR using the Library quantification kit for Illumina (KAPA Biosystems)
719 on a CFX384 Touch instrument (Bio-Rad) prior to cluster generation and sequencing. Library
720 preparation and sequencing was performed by the SNP&SEQ Technology Platform, a national unit
721 within the National Genomics Infrastructure (NGI), hosted by Science for Life Laboratory, in Uppsala,
722 Sweden (scilifelab.se/units/ngiuppsala). Sequencing was carried out on an Illumina NovaSeq 6000
723 instrument (NSCS v 1.7.5/ RTA v 3.4.4) according to the manufacturer's instructions. Demultiplexing
724 and conversion to FASTQ format was performed using the bcl2fastq2 (2.20.0.422) software, provided
725 by Illumina. Additional statistics on sequencing quality were compiled with an in-house script from
726 the FASTQ-files, RTA and BCL2FASTQ2 output files. The RNA-seq data were analyzed using the best
727 practice pipeline nf-core/rnaseq. Detailed information about the analysis pipeline can be found here:
728 ngisweden.scilifelab.se/bioinformatics/rna-seq-analysis and nf-co.re/sarek. For differential
729 expression analysis, DESeq2 1.38.3 in combination with R 4.2.2 and RStudio 2022.12.0+353 were
730 used. Transcriptome data can be accessed at Gene Expression Omnibus under GSE223601.

731

732 **Cytokine array**

733 Proteome Profiler Mouse XL Cytokine Array (Bio-Techne, #ARY028) was used, following the
734 manufacturer's instruction for fluorescent detection with IRDye® 800CW Streptavidin (LI-COR, #926-
735 32230) on an Odyssey CLx Infrared Imager. Raw images were cropped, converted to 16 bit with
736 ImageJ and dot intensities were analyzed with Image Lab 6.1 (Bio-RAD). Ratios of log2 fold changes
737 between groups were calculated.

738 **Statistical analysis**

739 If not indicated otherwise, all graphs were plotted with Prism 9.5.1 (GraphPad) and statistical analysis
740 was performed either with one-way analysis of variance (ANOVA) and Sidak's posthoc test or two-
741 factor ANOVA with Dunnett's posthoc test in order to compare groups to either control or WT-
742 infected MCs as indicated in the figure legends. Whenever appropriate, paired or unpaired t-tests or
743 for data using mice, the Mann-Whitney U test were used. Significance levels were: * p < 0.05, ** p <
744 0.01 and *** p < 0.001. If not indicated otherwise, for every n, the mean of all MC wells infected with
745 an individual subculture derived from an individual overnight culture serves as a single datapoint. If
746 not indicated otherwise, every experiment was performed at least twice on different days.

747

748 **Acknowledgements**

749 We thank members of the Sellin and Pejler laboratories for helpful discussions. We are grateful for
750 support regarding TEM and fluorescence microscopy from BioVis, Uppsala University. This work was
751 supported by the Knut and Alice Wallenberg Foundation (KAW 2016.0063 to MF and MES), the
752 Swedish Research Council (2018-02223 to MES; 2016-00803 to JH), a Lennart Philipson Award
753 (MOLPS, 2018, to MES), and the SciLifeLab Fellows program.

754

755 **Contributions**

756 Conceptualization: CvB, GP, MES; Methodology: CvB, AF, PG, MLD, EM-E, JE; Investigation: CvB, AF,
757 OL, GIP, EM-E; Formal analysis: CvB, AF, EM-E; Interpretation: CvB, AF, PG, MLD, OL, EM-E, JH, MF,
758 GP, MES; Resources: JH, MF, GP, MES; Supervision: JH, MF, GP, MES; Funding acquisition: JH, MF, GP,
759 MES; Visualization: CvB, MLD; Writing - original Draft: CvB, MES; Writing - reviewing & editing: all
760 authors.

761

762 **Data availability statement**

763 The RNA seq data generated in this study have been deposited in the GEO under accession number
764 GSE223601. The rest of the data are available in the article, Supplementary Information, or Source
765 Data file. Source data are provided with this paper.

766

767 **Conflict of interest statement**

768 The authors declare no conflicting interests.

769 **References**

- 770 1. Arifuzzaman, M. *et al.* MRGPR-mediated activation of local mast cells clears cutaneous bacterial
771 infection and protects against reinfection. *Sci Adv* **5**, 1–14 (2019).
- 772 2. Gendrin, C. *et al.* Mast cell chymase decreases the severity of group B Streptococcus infections. *J.*
773 *Allergy Clin. Immunol.* **142**, 120–129.e6 (2018).
- 774 3. Graham, A. C., Hilmer, K. M., Zickovich, J. M. & Obar, J. J. Inflammatory Response of Mast Cells
775 during Influenza A Virus Infection Is Mediated by Active Infection and RIG-I Signaling. *The Journal*
776 *of Immunology* **190**, 4676–4684 (2013).
- 777 4. Ono, H. K. *et al.* Submucosal mast cells in the gastrointestinal tract are a target of staphylococcal
778 enterotoxin type A. *FEMS Immunology & Medical Microbiology* **64**, 392–402 (2012).
- 779 5. Starkl, P. *et al.* IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host
780 Defense against *Staphylococcus aureus*. *Immunity* **53**, 793–804.e9 (2020).
- 781 6. Dietrich, N. *et al.* Mast cells elicit proinflammatory but not type I interferon responses upon
782 activation of TLRs by bacteria. *PNAS* **107**, 8748–8753 (2010).
- 783 7. McCurdy, J. D., Lin, T.-J. & Marshall, J. S. Toll-like receptor 4-mediated activation of murine mast
784 cells. *Journal of Leukocyte Biology* **70**, 977–984 (2001).
- 785 8. Saturnino, S. F., Prado, R. O., Cunha-Melo, J. R. & Andrade, M. V. Endotoxin tolerance and cross-
786 tolerance in mast cells involves TLR4, TLR2 and FcepsilonR1 interactions and SOCS expression:
787 perspectives on immunomodulation in infectious and allergic diseases. *BMC Infect. Dis.* **10**, 240
788 (2010).
- 789 9. Supajatura, V. *et al.* Protective Roles of Mast Cells Against Enterobacterial Infection Are
790 Mediated by Toll-Like Receptor 4. *The Journal of Immunology* **167**, 2250–2256 (2001).
- 791 10. Enoksson, M., Ejendal, K. F. K., McAlpine, S., Nilsson, G. & Lunderius-Andersson, C. Human Cord
792 Blood-Derived Mast Cells Are Activated by the Nod1 Agonist M-TriDAP to Release Pro-
793 Inflammatory Cytokines and Chemokines. *JIN* **3**, 142–149 (2011).
- 794 11. Pundir, P. *et al.* A Connective Tissue Mast-Cell-Specific Receptor Detects Bacterial Quorum-
795 Sensing Molecules and Mediates Antibacterial Immunity. *Cell Host & Microbe* **26**, 114–122.e8
796 (2019).
- 797 12. Cruse, G. *et al.* Human Lung Mast Cells Mediate Pneumococcal Cell Death in Response to
798 Activation by Pneumolysin. *The Journal of Immunology* **184**, 7108–7115 (2010).
- 799 13. Fritscher, J. *et al.* Mast Cells Are Activated by *Streptococcus pneumoniae* In Vitro but
800 Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In
801 Vivo. *Front. Immunol.* **9**, 550 (2018).
- 802 14. Gekara, N. O. *et al.* The multiple mechanisms of Ca²⁺ signalling by listeriolysin O, the cholesterol-
803 dependent cytolysin of *Listeria monocytogenes*. *Cellular Microbiology* **9**, 2008–2021 (2007).
- 804 15. Krämer, S. *et al.* Selective Activation of Human Intestinal Mast Cells by *Escherichia coli*
805 Hemolysin. *The Journal of Immunology* **181**, 1438–1445 (2008).
- 806 16. von Beek, C. *et al.* Streptococcal sagA activates a proinflammatory response in mast cells by a
807 sublytic mechanism. *Cell. Microbiol.* e13064 (2019) doi:10.1111/cmi.13064.
- 808 17. Draberova, L., Tumova, M. & Draber, P. Molecular Mechanisms of Mast Cell Activation by
809 Cholesterol-Dependent Cytolysins. *Front. Immunol.* **0**, 670205 (2021).
- 810 18. Wernersson, S. & Pejler, G. Mast cell secretory granules: armed for battle. *Nat Rev Immunol* **14**,
811 478–494 (2014).
- 812 19. Piliponsky, A. M. & Romani, L. The contribution of mast cells to bacterial and fungal infection
813 immunity. *Immunological Reviews* **282**, 188–197 (2018).

814 20. Abel, J. *et al.* *Staphylococcus aureus* Evades the Extracellular Antimicrobial Activity of Mast Cells
815 by Promoting Its Own Uptake. *JIN* **3**, 495–507 (2011).

816 21. Goldmann, O. *et al.* Cytosolic Sensing of Intracellular *Staphylococcus aureus* by Mast Cells Elicits
817 a Type I IFN Response That Enhances Cell-Autonomous Immunity. *The Journal of Immunology*
818 (2022) doi:10.4049/jimmunol.2100622.

819 22. Hayes, S. M. *et al.* Intracellular residency of *Staphylococcus aureus* within mast cells in nasal
820 polyps: A novel observation. *Journal of Allergy and Clinical Immunology* **135**, 1648–1651.e5
821 (2015).

822 23. Rocha-de-Souza, C. M., Berent-Maoz, B., Mankuta, D., Moses, A. E. & Levi-Schaffer, F. Human
823 Mast Cell Activation by *Staphylococcus aureus*: Interleukin-8 and Tumor Necrosis Factor Alpha
824 Release and the Role of Toll-Like Receptor 2 and CD48 Molecules. *Infect Immun* **76**, 4489–4497
825 (2008).

826 24. Zabucchi, G., Trevisan, E., Vita, F., Soranzo, M. R. & Borelli, V. NOD1 and NOD2 Interact with the
827 Phagosome Cargo in Mast Cells: A Detailed Morphological Evidence. *Inflammation* **38**, 1113–
828 1125 (2015).

829 25. Kulka, M., Fukuishi, N. & Metcalfe, D. D. Human mast cells synthesize and release angiogenin, a
830 member of the ribonuclease A (RNase A) superfamily. *Journal of Leukocyte Biology* **86**, 1217–
831 1226 (2009).

832 26. Arock, M. *et al.* Phagocytic and Tumor Necrosis Factor Alpha Response of Human Mast Cells
833 following Exposure to Gram-Negative and Gram-Positive Bacteria. *Infection and Immunity* **66**,
834 6030–6034 (1998).

835 27. Mayavannan, A., Shantz, E., Haidl, I. D., Wang, J. & Marshall, J. S. Mast cells selectively produce
836 inflammatory mediators and impact the early response to Chlamydia reproductive tract
837 infection. *Frontiers in Immunology* **14**, (2023).

838 28. Kirk, M. D. *et al.* World Health Organization Estimates of the Global and Regional Disease Burden
839 of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. *PLOS Medicine*
840 **12**, e1001921 (2015).

841 29. Fattinger, S. A., Sellin, M. E. & Hardt, W.-D. *Salmonella* effector driven invasion of the gut
842 epithelium: breaking in and setting the house on fire. *Current Opinion in Microbiology* **64**, 9–18
843 (2021).

844 30. Hume, P. J., Singh, V., Davidson, A. C. & Koronakis, V. Swiss Army Pathogen: The *Salmonella* Entry
845 Toolkit. *Frontiers in Cellular and Infection Microbiology* **7**, 348 (2017).

846 31. Di Martino, M. L., Ek, V., Hardt, W.-D., Eriksson, J. & Sellin, M. E. Barcoded Consortium Infections
847 Resolve Cell Type-Dependent *Salmonella enterica* Serovar Typhimurium Entry Mechanisms. *mBio*
848 **10**, e00603-19 (2019).

849 32. Fattinger, S. A. *et al.* *Salmonella* Typhimurium discreet-invasion of the murine gut absorptive
850 epithelium. *PLOS Pathogens* **16**, e1008503 (2020).

851 33. Frost, A. J., Bland, A. P. & Wallis, T. S. The Early Dynamic Response of the Calf Ileal Epithelium to
852 *Salmonella* typhimurium. *Vet Pathol* **34**, 369–386 (1997).

853 34. Geddes, K., Iii, F. C. & Heffron, F. Analysis of Cells Targeted by *Salmonella* Type III Secretion In
854 Vivo. *PLOS Pathogens* **3**, e196 (2007).

855 35. Zhang, S. *et al.* Molecular Pathogenesis of *Salmonella enterica* Serotype Typhimurium-Induced
856 Diarrhea. *Infection and Immunity* **71**, 1–12 (2003).

857 36. Barthel, M. *et al.* Pretreatment of Mice with Streptomycin Provides a *Salmonella enterica*
858 Serovar *Typhimurium* Colitis Model That Allows Analysis of Both Pathogen and Host. *Infect. Immun.* **71**, 2839–2858 (2003).

860 37. Maier, L. *et al.* Granulocytes Impose a Tight Bottleneck upon the Gut Luminal Pathogen
861 Population during *Salmonella Typhimurium* Colitis. *PLOS Pathogens* **10**, e1004557 (2014).

862 38. Sellin, M. E. *et al.* Epithelium-Intrinsic NAIP/NLRC4 Inflammasome Drives Infected Enterocyte
863 Expulsion to Restrict *Salmonella* Replication in the Intestinal Mucosa. *Cell Host & Microbe* **16**,
864 237–248 (2014).

865 39. Ibarra, J. A. *et al.* Induction of *Salmonella* pathogenicity island 1 under different growth
866 conditions can affect *Salmonella*–host cell interactions in vitro. *Microbiology* **156**, 1120–1133
867 (2010).

868 40. Choi, H. W. *et al.* *Salmonella typhimurium* impedes innate immunity with a mast-cell-suppressing
869 protein tyrosine phosphatase, SptP. *Immunity* **39**, 1108–1120 (2013).

870 41. Hapfelmeier, S. *et al.* The *Salmonella* Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion
871 Systems Allow *Salmonella* Serovar *typhimurium* to Trigger Colitis via MyD88-Dependent and
872 MyD88-Independent Mechanisms1. *The Journal of Immunology* **174**, 1675–1685 (2005).

873 42. Rönnberg, E., Guss, B. & Pejler, G. Infection of Mast Cells with Live *Streptococci* Causes a Toll-Like
874 Receptor 2- and Cell-Cell Contact-Dependent Cytokine and Chemokine Response. *Infect Immun*
875 **78**, 854–864 (2010).

876 43. Rosqvist, R., Bölin, I. & Wolf-Watz, H. Inhibition of phagocytosis in *Yersinia pseudotuberculosis*: a
877 virulence plasmid-encoded ability involving the Yop2b protein. *Infection and Immunity* **56**, 2139–
878 2143 (1988).

879 44. Fu, Y. & Galán, J. E. A *Salmonella* protein antagonizes Rac-1 and Cdc42 to mediate host-cell
880 recovery after bacterial invasion. *Nature* **401**, 293–297 (1999).

881 45. Laidlaw, T. M. *et al.* Characterization of a novel human mast cell line that responds to stem cell
882 factor and expresses functional Fc ϵ RI. *Journal of Allergy and Clinical Immunology* **127**, 815–
883 822.e5 (2011).

884 46. Dolowschiak, T. *et al.* Potentiation of Epithelial Innate Host Responses by Intercellular
885 Communication. *PLOS Pathogens* **6**, e1001194 (2010).

886 47. Kasper, C. A. *et al.* Cell-Cell Propagation of NF- κ B Transcription Factor and MAP Kinase Activation
887 Amplifies Innate Immunity against Bacterial Infection. *Immunity* **33**, 804–816 (2010).

888 48. Bruno, V. M. *et al.* *Salmonella Typhimurium* Type III Secretion Effectors Stimulate Innate Immune
889 Responses in Cultured Epithelial Cells. *PLOS Pathogens* **5**, e1000538 (2009).

890 49. Roppenser, B. *et al.* Multiple Host Kinases Contribute to Akt Activation during *Salmonella*
891 Infection. *PLOS ONE* **8**, e71015 (2013).

892 50. Steele-Mortimer, O. *et al.* Activation of Akt/Protein Kinase B in Epithelial Cells by the *Salmonella*
893 *typhimurium* Effector SigD *. *Journal of Biological Chemistry* **275**, 37718–37724 (2000).

894 51. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required
895 for virulence of *Salmonella dublin*, is an inositol phosphate phosphatase. *Proceedings of the*
896 *National Academy of Sciences* **95**, 14057–14059 (1998).

897 52. Walpole, G. F. W. *et al.* Kinase-independent synthesis of 3-phosphorylated phosphoinositides by
898 a phosphotransferase. *Nat Cell Biol* **24**, 708–722 (2022).

899 53. Knodler, L. A., Finlay, B. B. & Steele-Mortimer, O. The *Salmonella* Effector Protein SopB Protects
900 Epithelial Cells from Apoptosis by Sustained Activation of Akt*. *Journal of Biological Chemistry*
901 **280**, 9058–9064 (2005).

902 54. Hardt, W.-D., Chen, L.-M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. S. *typhimurium* Encodes an
903 Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells.
904 *Cell* **93**, 815–826 (1998).

905 55. Keestra, A. M. *et al.* Manipulation of small Rho GTPases is a pathogen-induced process detected
906 by NOD1. *Nature* **496**, 233–237 (2013).

907 56. Dahlin, J. S. *et al.* The ingenious mast cell: Contemporary insights into mast cell behavior and
908 function. *Allergy* 83–99 (2021) doi:10.1111/all.14881.

909 57. Ackermann, L., Pelkonen, J. & Harvima, I. T. Staphylococcal enterotoxin B inhibits the production
910 of interleukin-4 in a human mast-cell line HMC-1. *Immunology* **94**, 247–252 (1998).

911 58. Tan, R.-J. *et al.* A 21-35 kDa Mixed Protein Component from *Helicobacter pylori* Activates Mast
912 Cells Effectively in Chronic Spontaneous Urticaria. *Helicobacter* **21**, 565–574 (2016).

913 59. Fattinger, S. A., Sellin, M. E. & Hardt, W.-D. Epithelial inflammasomes in the defense against
914 *Salmonella* gut infection. *Current Opinion in Microbiology* **59**, 86–94 (2021).

915 60. Hausmann, A. *et al.* Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the
916 adapted pathogen *Salmonella Typhimurium* due to site-specific bacterial PAMP expression.
917 *Mucosal Immunol* **13**, 530–544 (2020).

918 61. Stecher, B. *et al.* *Salmonella enterica* Serovar *Typhimurium* Exploits Inflammation to Compete
919 with the Intestinal Microbiota. *PLOS Biology* **5**, e244 (2007).

920 62. Fattinger, S. A. *et al.* Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory
921 destruction of the gut epithelial barrier in *Salmonella*-infected mice. *Mucosal Immunol* **14**, 615–
922 629 (2021).

923 63. Piliponsky, A. M. *et al.* Mast cell-derived TNF can exacerbate mortality during severe bacterial
924 infections in C57BL/6-KitW-sh/W-sh mice. *Am. J. Pathol.* **176**, 926–938 (2010).

925 64. Lopes Fischer, N., Naseer, N., Shin, S. & Brodsky, I. E. Effector-triggered immunity and pathogen
926 sensing in metazoans. *Nat Microbiol* **5**, 14–26 (2020).

927 65. Remick, B. C., Gaidt, M. M. & Vance, R. E. Effector-Triggered Immunity. *Annual Review of
928 Immunology* **41**, 453–481 (2023).

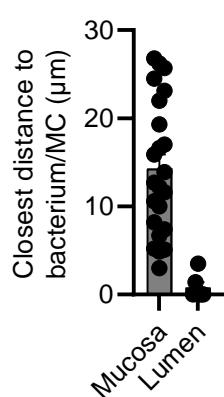
929 66. Porwollik, S. *et al.* Defined Single-Gene and Multi-Gene Deletion Mutant Collections in
930 *Salmonella enterica* sv *Typhimurium*. *PLOS ONE* **9**, e99820 (2014).

931 67. Hoiseth, S. K. & Stocker, B. a. D. Aromatic-dependent *Salmonella typhimurium* are non-virulent
932 and effective as live vaccines. *Nature* **291**, 238–239 (1981).

933 68. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer Control of Microscopes
934 Using μ Manager. *Current Protocols in Molecular Biology* **92**, 14.20.1-14.20.17 (2010).

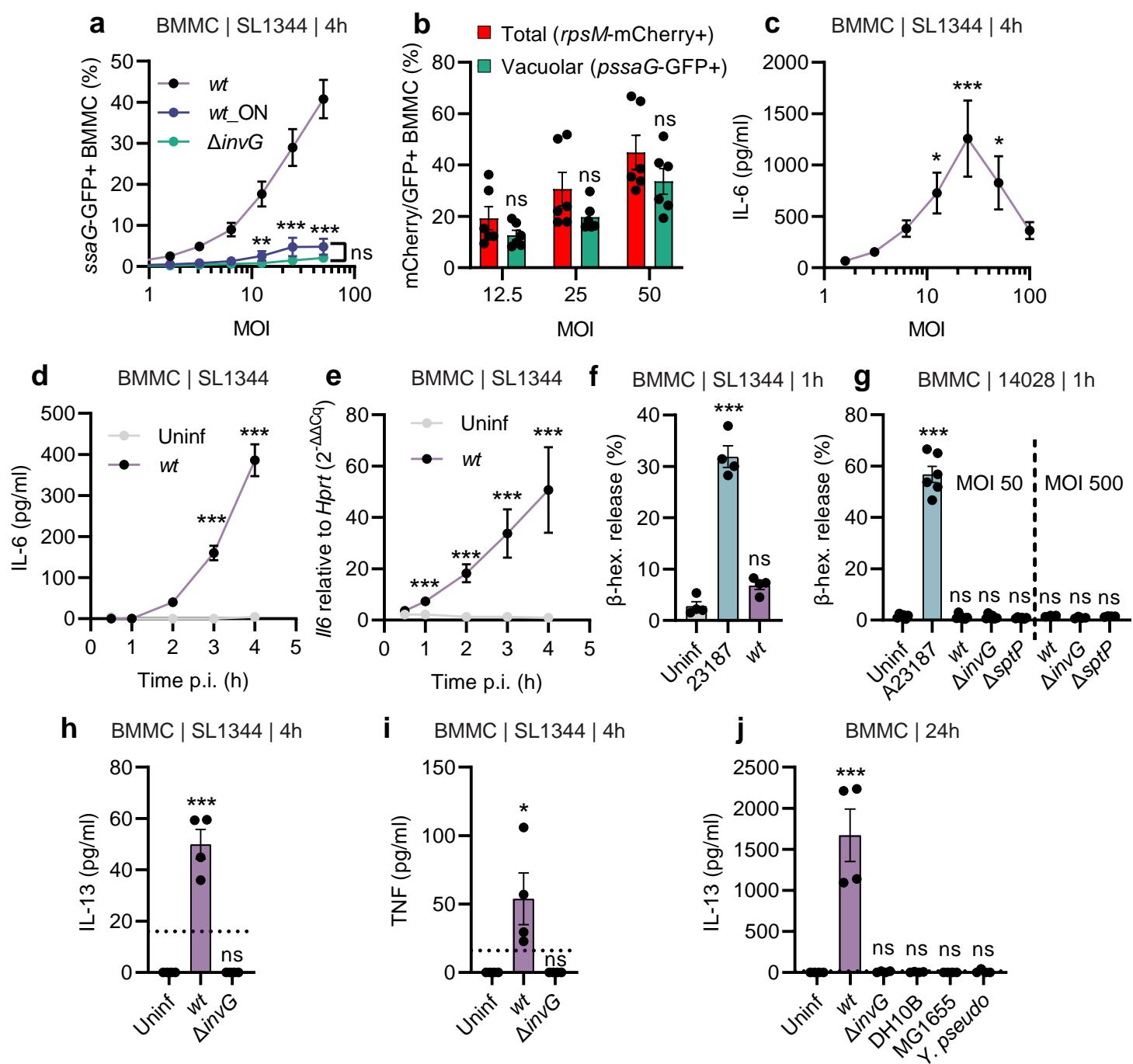
935 69. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nature Methods* **9**,
936 676–682 (2012).

937

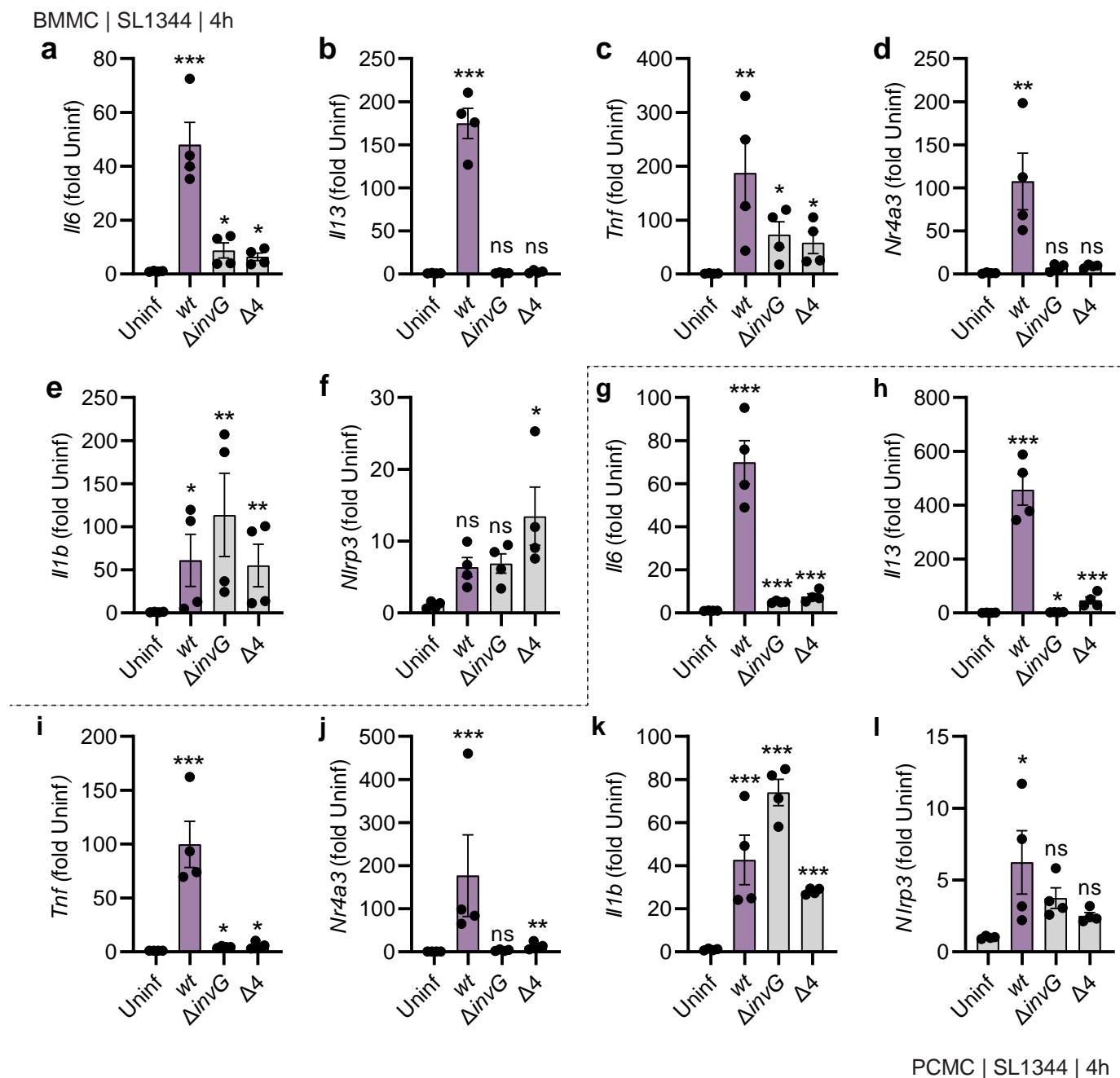

938 **S1 Figure. Mast cells can be found in close proximity to *S.Tm*.** **A:** Representative IF images used in
939 quantification of the distances of MCs to their closest bacterium. Scale bars are 100 μ m.
940 Magnifications are in 50x50 μ m for the top left image and 25x25 μ m for the other two images. Arrows
941 indicate magnified MCs. **B:** Quantification of distances to closes bacteria for individual MCs within
942 fields of view containing both MCs and *S.Tm*. For individual MCs (23 in mucosa and 6 in the lumen), a
943 straight line was drawn to the closes bacterium and the distance measured. Bars show mean \pm SEM.

S1 Figure

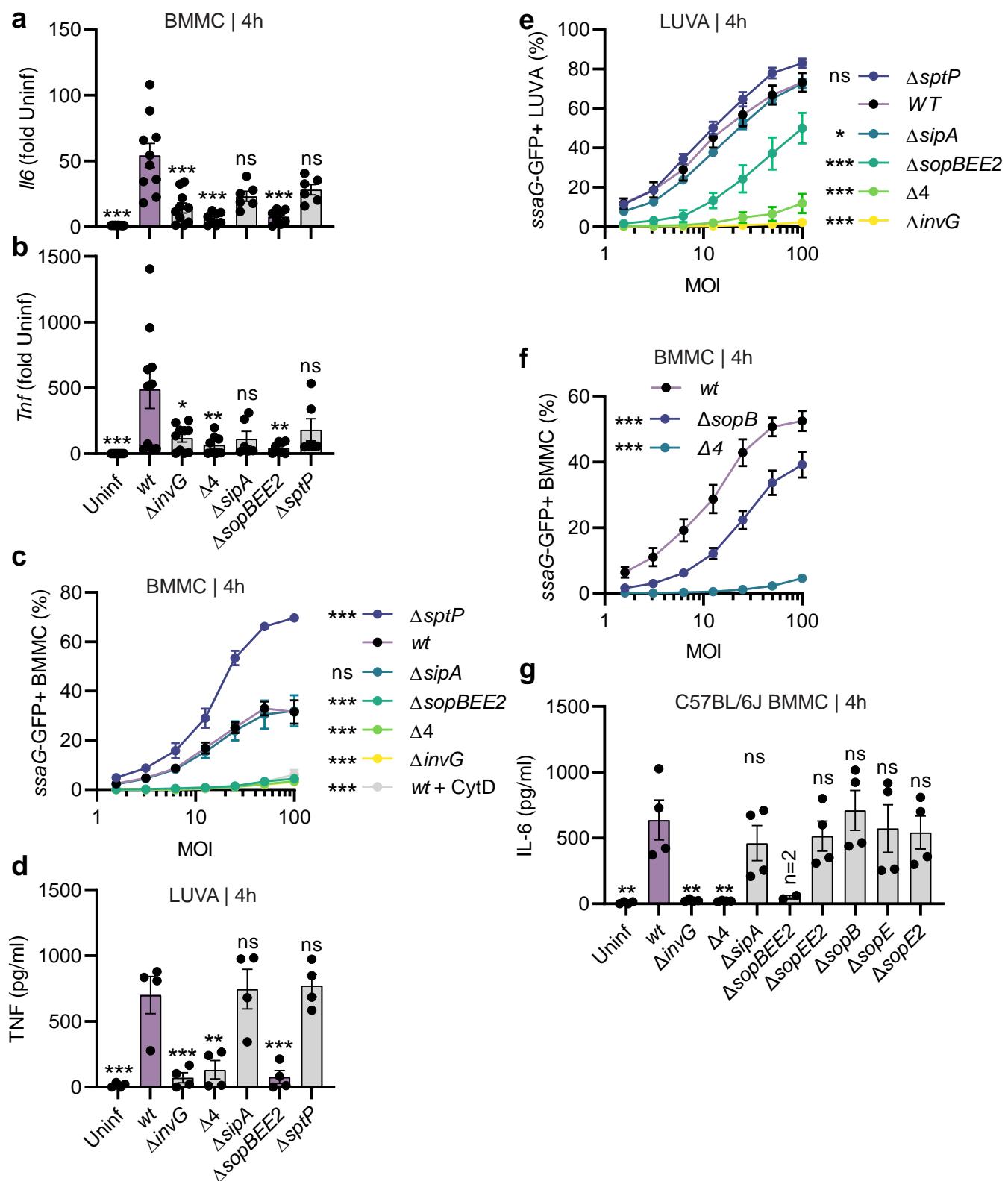
a



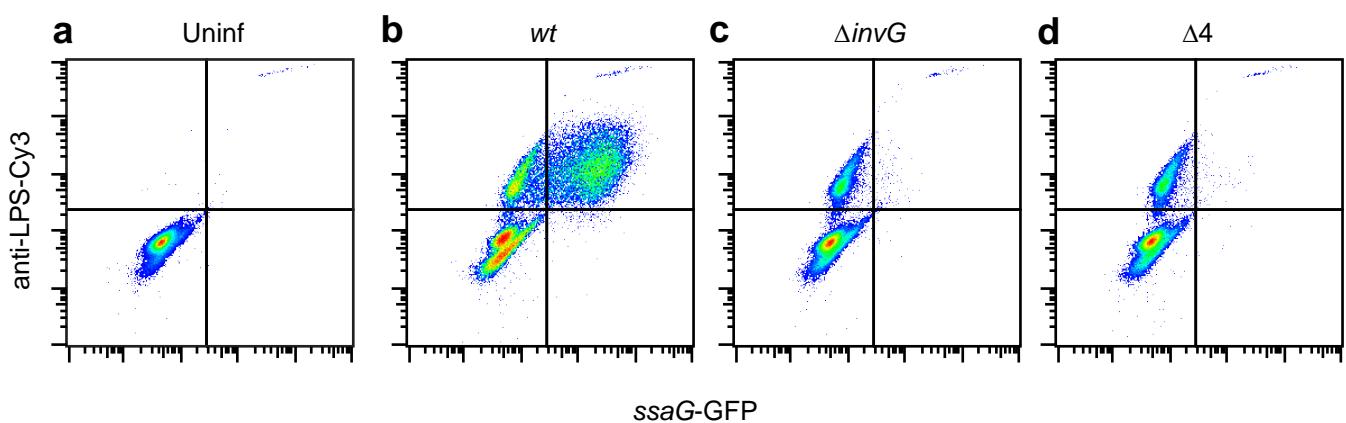
b


945 **S2 Figure. Mast cells respond to invasive *Salmonella* infection by cytokine gene transcription and**
946 **secretion, but negligible degranulation, within the first hours. A:** MOI-dependent quantification of
947 BMMCs, harboring vacuolar S.Tm. “ON” indicates that the S.Tm inoculum is grown as an over-night
948 stationary phase culture **B:** Quantification of BMMCs bound to or invaded by S.Tm (red bars)
949 compared to BMMCs harboring vacuolar S.Tm (green bars).. **C:** MOI-dependent quantification of IL-6
950 secretion by BMMCs, infected with the indicated S.Tm SL1344 strains for 4h. **D-E:** IL-6 secretion (**D**)
951 and *Il6* transcript levels (**E**) of BMMCs left uninfected or infected with MOI 50 of S.Tm^{wt} SL1344 for
952 the indicated time frames. **F:** β -hexosaminidase release from BMMCs as an indicator of degranulation
953 1h after infection with MOI 50 of S.Tm^{wt} SL1344. A23187 served as positive control. **G:** Similar setup
954 as in E, but with S.Tm^{wt} or the indicated TTSS-mutants of strain 14028, at MOI 50 and MOI 500. **H-I:**
955 IL-13 (**H**) and TNF (**I**) secretion from BMMCs, 4h after infection with MOI 50 of S.Tm^{wt} SL1344 or the
956 indicated TTSS-mutants. **J:** Secreted IL-13 of BMMCs infected with MOI 50 of S.Tm^{wt} and S.Tm ^{Δ invG}
957 SL1344 as well as *E. coli* DH10B, *E. coli* MG1655 and *Y. pseudotuberculosis* for 24h. Every experiment
958 was performed 2-3 times and mean \pm SEM of pooled biological replicates is shown. Groups in A were
959 statistically analyzed with two-way ANOVA and Tukey’s posthoc test (every group for each MOI to
960 “wt” group). For C, F-I; one-way ANOVA together with Dunnet’s posthoc test was used with
961 uninfected cells (in case of A “MOI 0”) were used for statistical comparison to all other groups. For D-
962 E, two-way ANOVA with Sidak’s posthoc test was used to compare uninfected cells with S.Tm^{wt}-
963 infected cells within each time point. For ATCC 140828 infections, a Δ malX strain was used as *wt*.

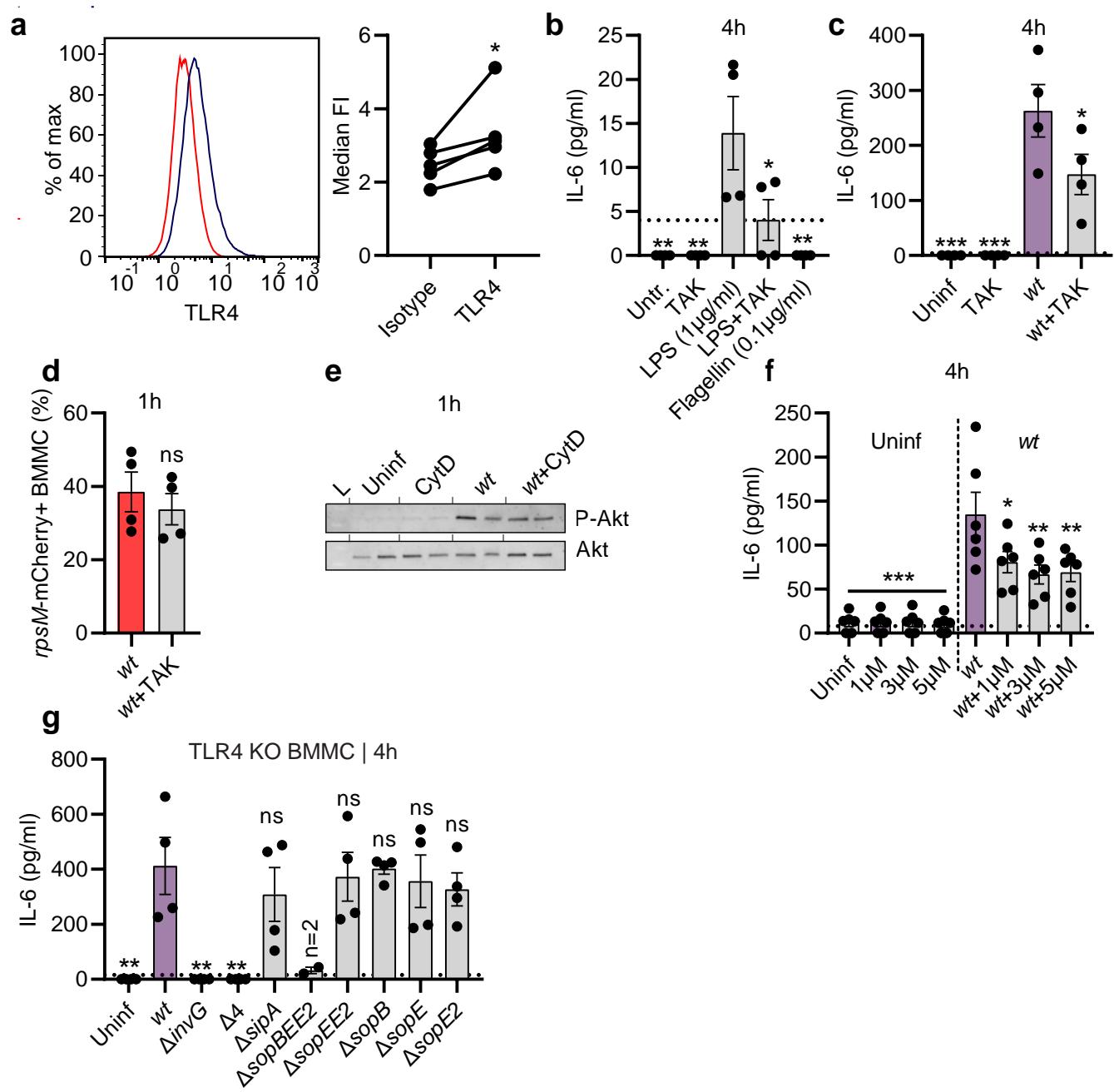
S2 Figure


965 **S3 Figure. Distinct transcriptional profiles of mast cells infected with invasive vs. non-invasive**
966 ***Salmonella*. A-F** RT-qPCR quantification of transcript levels in BMMCs, 4h after infection with MOI 50
967 of *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants. **G-I:** Similar as in A-F, but PCMCs were used. Every
968 experiment was performed 2-3 times and mean \pm SEM of pooled replicates is shown. Data was
969 statistically analyzed with ANOVA and Dunnet's posthoc test, using uninfected infected cells for
970 comparisons to all other groups. A selection of these data (A-D, G-J) are also summarized in
971 heatmaps in Figure 2H-I.

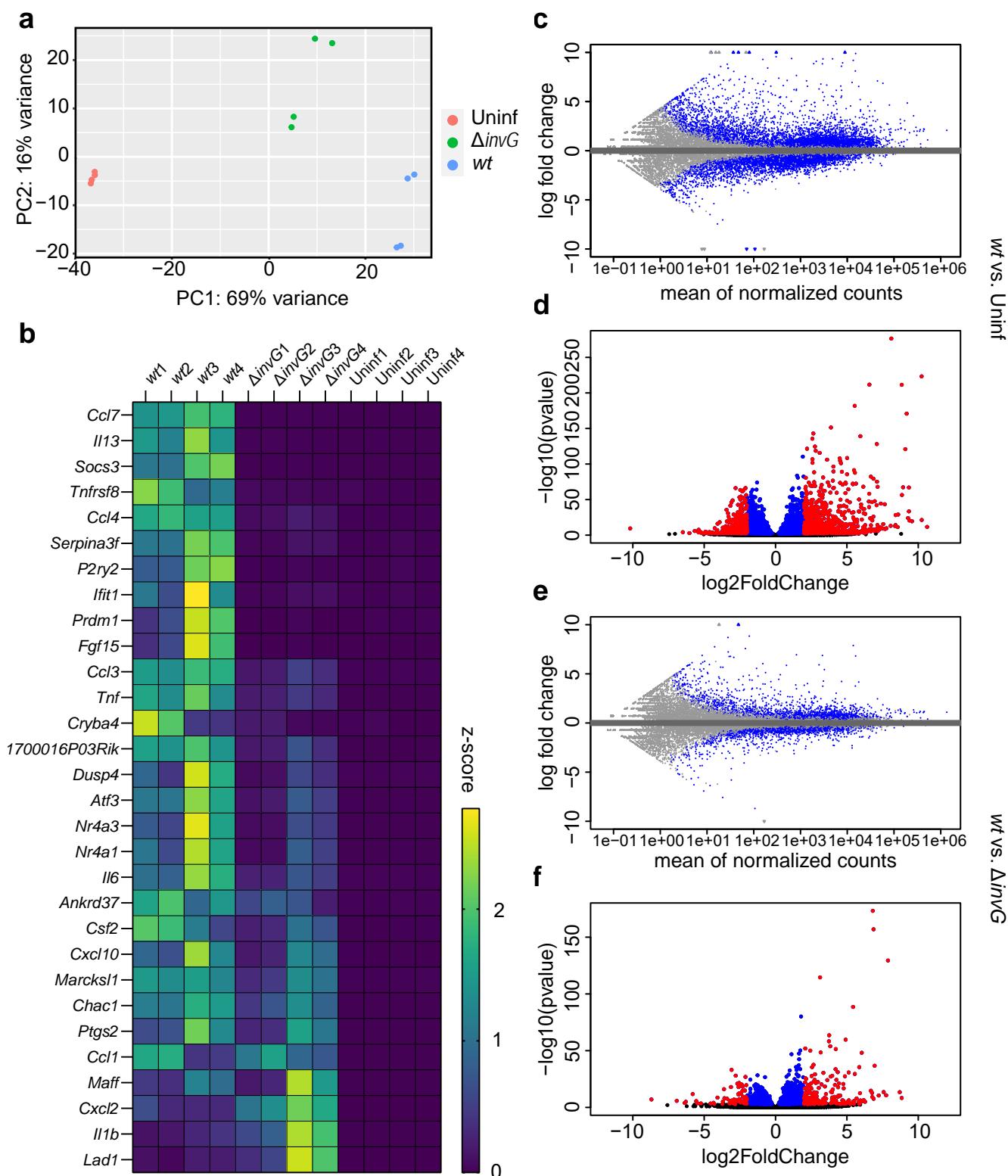
S3 Figure


973 **S4 Figure. The TTSS-1 effectors SopB, SopE, and SopE2 promote murine and human mast cell**
974 **cytokine secretion upon *Salmonella* infection. A-B:** RT-qPCR quantification of *Il6* (**A**) and *Tnf* (**B**)
975 transcript levels in BMMCs infected with MOI 50 of *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants for
976 4h. **C, F:** Quantification of the MOI-dependent frequency of BMMCs harboring vacuolar bacteria, 4h
977 after infection with MOI 50 of *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants. For actin inhibition,
978 BMMCs were pretreated with 1µM of Cyto D for 1h. **D:** TNF secretion from LUVA cells, infected with
979 MOI 50 of *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants for 4h. **E:** Quantification of the MOI-
980 dependent frequency of LUVA cells harboring vacuolar bacteria, 4h after infection with MOI 50 of
981 *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants **G:** IL-6 secretion from C57BL/6J (Jackson) BMMCs
982 infected with MOI 50 of *S.Tm^{wt}* SL1344 or the indicated TTSS-mutants for 4h. Every experiment was
983 performed 2-3 times and mean ± SEM of pooled biological replicates is shown. For A, B, D and G, data
984 was statistically analyzed with ANOVA and the Dunnet's posthoc test, using *S.Tm^{wt}*-infected cells for
985 comparison to all other groups. For C, E, and F, two-way ANOVA was used with Sidak's posthoc test
986 to compare the respective mutants and *S.Tm^{wt}*.

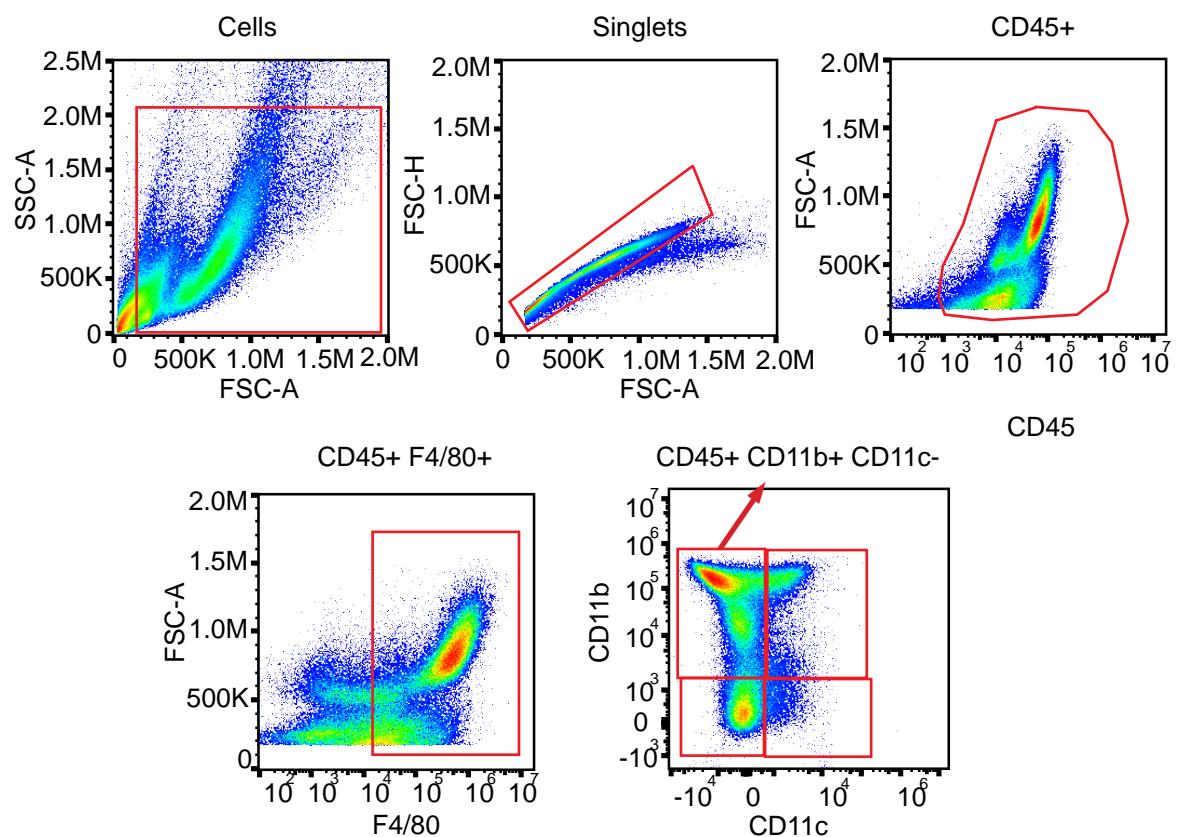
S4 Figure


988 **S5 Figure. Flow cytometry gating for data shown in Figure 4B. A-D:** Representative flow cytometry
989 gating for quantification of MCs positive for vacuolar *S.Tm* (*ssaG*-GFP+) and/or *S.Tm* LPS. BMMCs
990 were infected with MOI 50 of *S.Tm*^{wt} SL1344 or the indicated TTSS-mutants for 4h prior to analysis by
991 flow cytometry.

S5 Figure


993 **S6 Figure. Mast cells express surface TLR4 and react to *Salmonella* through pathways involving**
994 **TLR4 and Akt. A:** Representative surface detection of TLR4 (blue) and isotype control (red) in
995 BMMCs. Pairwise comparisons shown in right panel. **B:** IL-6 secretion from BMMCs 4h after
996 treatment with LPS or recombinant flagellin and/or pretreatment for 30-45min with TAK-242. **C:** IL-6
997 secretion from BMMCs 4h after infection with MOI 50 of *S.Tm*^{wt} SL1344 and/or pretreatment with
998 TAK-242. **D:** Quantification of BMMCs harboring intracellular *S.Tm* 30min after infection. The
999 indicated group was pretreated with TAK-242. **E:** P-Akt and Akt immunoblots of BMMCs after 1h
1000 infection with MOI 50 of *S.Tm*^{wt} SL1344 and/or pretreatment with 200nM Cyto D. L = ladder. **F:** IL-6
1001 secretion from BMMCs after 4h infection with MOI 50 of *S.Tm*^{wt} SL1344 and/or pretreatment with
1002 MK-2206 for 30-45min. **G:** IL-6 secretion from *Tlr4*^{-/-}-BMMCs infected with MOI 50 of *S.Tm*^{wt} SL1344 or
1003 the indicated TTSS-mutants for 4h. Every experiment was performed 2-5 times and mean ± SEM of
1004 pooled biological replicates is shown. E shows the results from 1 immunoblot. For A (paired) and D
1005 (unpaired) t-tests were used. For B, C, F and G, data was statistically analyzed with ANOVA and the
1006 Dunnet's posthoc test, using *S.Tm*^{wt}-infected cells (or LPS in case of B) for comparison to all other
1007 groups.

S6 Figure


1009 **S7 Figure. Mast cells react to invasive vs. non-invasive *Salmonella* with distinct transcriptional**
1010 **responses. A:** Principal component analysis plot of the RNA sequencing data described in Figure 6A.
1011 **B:** Complete heatmap corresponding to Figure 6A, but showing z-scores for all four biological
1012 replicates in each group. Replicates “1” and “2” stem from one experiment, while “3” and “4” stem
1013 from a separate experiment, performed on a different day. **C-F:** Bland–Altman (**C, E**) and volcano (**D,**
1014 **F**) plots for comparisons between *S.Tm*^{WT} and uninfected cells (**C, D**), or between *S.Tm*^{WT} and *S.Tm*^{ΔinvG}
1015 (**E, F**).

S7 Figure

1017 **S8 Figure. Flow cytometry gating for data shown in Figure 6D-E.** Representative flow cytometry
1018 gating strategy, depicting one of the bone marrow nucleated cell samples, cultured for 7 days in base
1019 medium supplemented with supernatant from BMMCs infected with *S.Tm*^{wt} for 24h.

S8 Figure

Supplementary Tables for “A Two-Step Activation Mechanism Enables Mast Cells to Differentiate their Response between Extracellular and Invasive Enterobacterial Infection”

S1 Table. Bacterial strains and mutants used in this study. Indicated resistances as “Sm” for streptomycin, “Cml” for chloramphenicol, “Km” for kanamycin, “Tet” for tetracycline, and “Nal” for nalidixic acid. Strains marked with “*” prior the genotype were also used with the pssaG-GFP reporter plasmid (S2 Table). The pFPV-mCherry plasmid (S2 Table) was used together with SL1344 S.Tm^{wt}.

Strain	Genotype	Reference
S.Tm ^{wt}	*SL1344, wt (SB300; Sm ^R)	1
S.Tm ^{ΔinvG}	*SL1344, ΔinvG (SB161; Sm ^R)	2
S.Tm ^{ΔsipA}	*SL1344, ΔsipA (M714; Sm ^R)	3
S.Tm ^{ΔsopB}	*SL1344, WITS17, ΔsopB (Sm ^R , Km ^R , Cml ^R),	4
S.Tm ^{ΔsopE}	SB300 WITS2, ΔsopE (Sm ^R , Cml ^R)	4
S.Tm ^{ΔsopE2}	SB300 WITS19, ΔsopE2 (Sm ^R , Km ^R , Cml ^R)	4
S.Tm ^{ΔsptP}	*SB300 ΔsptP (Sm ^R , Km ^R)	This study
S.Tm ^{ΔsopEE2}	SB300 WITS2, ΔsopEE2 (Sm ^R , Km ^R , Cml ^R)	4
S.Tm ^{ΔsopBEE2}	*SL1344, ΔsopB, sopE::aphT, sopE2::tet (M516; Sm ^R , Kan ^R , Tet ^R)	5
S.Tm ^{ΔsipA sopBEE2 (Δ4)}	*SL1344, ΔsipA, ΔsopB, ΔsopE, ΔsopE2 (M566; Sm ^R , Km ^R)	6
S.Tm ^{“wt” 14028}	14028, ΔmalX (Kan ^R)	7
S.Tm ^{ΔinvG 14028}	14028, ΔinvG (Kan ^R)	7
S.Tm ^{ΔsipC 14028}	14028, ΔsipC (Kan ^R)	7
E. coli MG1655	Nal ^R	8
E. coli DH10B	K12 DH10B (Sm ^R)	Thermo Fisher, #EC0113
Y. pseudotuberculosis	YPIII	9

S2 Table. Plasmids used in this study.

Plasmid	Reference
pFPV-mCherry	10
pssaG-GFPmut2 high copy	11

S3 Table. Primers used for RT-qPCR in this study.

Target	Name	Sequence	Efficiency (%)	Conc.(nM)
<i>Cpa3</i>	CPA3 F	GAA AGT TGC AAG GAT TGC CAC	99	200
<i>Cpa3</i>	CPA3 R	TTG TGG ATG CTA TTG GGC CGT	99	200
<i>Mcpt1</i>	mMcpt1 F	TCC TGA TGG CAC TTC TCT TGC	107	200
<i>Mcpt1</i>	mMcpt1 R	TCC ACT ACA GTG TGC AGC AGT	107	200
<i>Mcpt2</i>	mMcpt2 F	TGT GTG ATA GTG TGG CCC ATG	112	200
<i>Mcpt2</i>	mMcpt2 R	TCT GAC TCA GGC TGG TTA GGC	112	200
<i>Mcpt4</i>	mMcpt4 F	GCA GTC TTC ACC CGA ATC TC	83	200
<i>Mcpt4</i>	mMcpt4 R	CAG GAT GGA CAC ATG CTT TG	83	200
<i>Mcpt5</i>	mMcpt5 F	TCC CAC TCT CTG CCA ACT TCA	103	200
<i>Mcpt5</i>	mMcpt5 R	TGG CTC ATT CAC GTT TGT TCT	103	200
<i>Mcpt6</i>	mMcpt6 F	TGG CAT GCT GTG TGC TGG AAA	105	200
<i>Mcpt6</i>	mMcpt6 R	AGG TAC CCT TCA CTT TGC AGA	105	200
<i>Il6</i>	il6 F	AAGGGCTGCTTCCAAACCTTT	95	200
<i>Il6</i>	il6 R	TGCCTGAAGCTCTGTTGATG	95	200
<i>Tnf</i>	tnf F	GAGCCCCAGTCTGTATCCTT	102	200
<i>Tnf</i>	tnf R	CCTGAGTTCTGCAAAGGGAGA	102	200
<i>Nr4a3</i>	nr4a3 F	TCACCATCACCACATCACCA	89	200
<i>Nr4a3</i>	nr4a3 R	AAGGCGGAGACTGCTTGAAGT	89	200
<i>Il1b</i>	il1b F	AAGGGCTGCTTCCAAACCTTT	85	200
<i>Il1b</i>	il1b R	TGCCTGAAGCTCTGTTGATG	85	200
<i>Il13</i>	il13 F	AGG AGC TTA TTG AGG AGC TGA	95	200
<i>Il13</i>	il13 R	TGG AGA TGT TGG TCA GGG AAT	95	200
<i>Nlrp3</i>	nlrp3 F	ATTACCCGCCGAGAAAGG	88	200
<i>Nlrp3</i>	nlrp3 R	TCGCAGCAAAGATCCACACAG	88	200
<i>Hprt</i>	hprt F	CCTAAGATGAGCGCAAGTTGAA	95	200
<i>Hprt</i>	hprt R	CCACAGGACTAGAACACCTGCTAA	95	200

Supplementary Tables for “A Two-Step Activation Mechanism Enables Mast Cells to Differentiate their Response between Extracellular and Invasive Enterobacterial Infection”

S4 Table. Primary antibodies used in this study, with unique identifiers (RRID).

Antigen	RRID	Conjugate	Host	Catalogue no	Clone	Provider	Dilution
Salmonella O Antiserum Factor 5	NA	NA	Rabbit	BD-226601	Polyclonal	Difco/MicLev	1:250
Akt	AB_329827	NA	Rabbit	9272	Polyclonal	Cell Signaling	1:1000
Phospho-Akt (Ser473)	AB_2315049	NA	Rabbit	4060	D9E	Cell Signaling	1:2000
CD16/32	AB_394657	NA	Rat	553142	2.4G2	BD Biosciences	1:1000
TLR4	AB_469944	Alexa Fluor 488	Mouse	53-9041-82	UT41	Invitrogen	1:100
Mouse IgG1 Isotype Control	NA	Alexa Fluor 488	Mouse	MG120	Polyclonal	Invitrogen	1:100
CD45	AB_1645208	Alexa Fluor 700	Rat	560510	30-F11	BD Biosciences	1:100
CD11b	AB_468714	PE-Cy5	Rat	15-0112-82	M1/70	eBioscience	1:100
CD11c	AB_469590	PE-Cy7	Armenian hamster	25-0114-82	N418	eBioscience	1:100
F4/80	AB_465923	PE	Rat	12-4801-82	BMB	Invitrogen	1:100
CD45	AB_470499	NA	Rat	ab25386	I3/2.3	AbCam	1:50
CD18	AB_396701	NA	Rat	557437	M18/2	BD Biosciences	1:50

References

1. Hoiseth, S. K. & Stocker, B. a. D. Aromatic-dependent *Salmonella typhimurium* are non-virulent and effective as live vaccines. *Nature* **291**, 238–239 (1981).
2. Kaniga, K., Bossio, J. C. & Galán, J. E. The *Salmonella typhimurium* invasion genes *invF* and *invG* encode homologues of the AraC and PuLD family of proteins. *Molecular Microbiology* **13**, 555–568 (1994).
3. Hapfelmeier, S. *et al.* Role of the *Salmonella* pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in *Salmonella enterica* subspecies 1 serovar *Typhimurium* colitis in streptomycin-pretreated mice. *Infect Immun* **72**, 795–809 (2004).
4. Di Martino, M. L., Ek, V., Hardt, W.-D., Eriksson, J. & Sellin, M. E. Barcoded Consortium Infections Resolve Cell Type-Dependent *Salmonella enterica* Serovar *Typhimurium* Entry Mechanisms. *mBio* **10**, e00603-19 (2019).
5. Mirold, S. *et al.* *Salmonella* Host Cell Invasion Emerged by Acquisition of a Mosaic of Separate Genetic Elements, Including *Salmonella* Pathogenicity Island 1 (SPI1), SPI5, and sopE2. *Journal of Bacteriology* **183**, 2348–2358 (2001).
6. Ehrbar, K., Friebel, A., Miller, S. I. & Hardt, W.-D. Role of the *Salmonella* Pathogenicity Island 1 (SPI-1) Protein InvB in Type III Secretion of SopE and SopE2, Two *Salmonella* Effector Proteins Encoded Outside of SPI-1. *Journal of Bacteriology* **185**, 6950–6967 (2003).
7. Porwollik, S. *et al.* Defined Single-Gene and Multi-Gene Deletion Mutant Collections in *Salmonella enterica* sv *Typhimurium*. *PLOS ONE* **9**, e99820 (2014).
8. Freed, N. E., Bumann, D. & Silander, O. K. Combining *Shigella* Tn-seq data with gold-standard *E. coli* gene deletion data suggests rare transitions between essential and non-essential gene functionality. *BMC Microbiology* **16**, 203 (2016).
9. Fahlgren, A., Avican, K., Westermark, L., Nordfelth, R. & Fällman, M. Colonization of Cecum Is Important for Development of Persistent Infection by *Yersinia pseudotuberculosis*. *Infection and Immunity* **82**, 3471–3482 (2014).
10. Drecktrah, D. *et al.* Dynamic Behavior of *Salmonella*-Induced Membrane Tubules in Epithelial Cells. *Traffic* **9**, 2117–2129 (2008).
11. Hapfelmeier, S. *et al.* The *Salmonella* Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow *Salmonella* Serovar *typhimurium* to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms1. *The Journal of Immunology* **174**, 1675–1685 (2005).