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Predictable modulation of transgene expression levels in mosquito cells
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Abstract (150 words)

The ability to control gene expression is pivotal in genetic engineering and synthetic biology. However,
in most non-model and pest insect species, empirical evidence for predictable modulation of gene
expression levels is lacking. This knowledge gap is critical for genetic control systems, particularly in
mosquitoes, where transgenic methods offer novel routes for pest control. Commonly, the choice of
RNA polymerase Il promoter (Pol Il) is the primary method for controlling gene expression, but the

options are limited.

To address this, we developed a systematic approach to characterize modifications in translation
initiation sequences (TIS) and 3' untranslated regions (UTR) of transgenes, enabling the creation of a
toolbox for gene expression modulation in mosquitoes and potentially other insects. The approach
demonstrated highly predictable gene expression changes across various cell lines and promoter

sequences, representing a significant advancement in mosquito synthetic biology gene expression.

tools.
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Introduction

The ability to control the strength of expression of transgenes in a species of interest has underpinned
genetic engineering and synthetic biology from their conception. There is, however, a lack of robust,
empirical evidence for predictable modulation of gene expression levels in most non-model and pest
insect species 2. In mosquitoes, transgenic methods afford novel routes for pest control however,
genetic control systems depend on precise gene expression, so this lack of information is a critical gap
in our technical capability. Commonly the selection of RNA polymerase Il promoter (Pol Il) can dictate
the amount, timing, and spatial specificity of gene transcription. A limited number of promoters of
viral origin are sometimes used, as these are active across a range of insect species, however there
are applications for characterising endogenous promoters of varying activity. The choice of promoter
is often determined by a requirement for specific spatial and/or temporal regulation, with few options

for controlling expression level by this route beyond bespoke analysis of endogenous promoters.

Other methods commonly employed for modulating gene expression involve modifications to the
MRNA sequences of the 5" and 3’ untranslated regions (UTR), flanking the coding sequence of a
transgene. Although these regions do not contribute to the final protein, they play crucial roles in
mRNA stability and translation efficiency. In particular, the translation initiation sequence (TIS), a short
(~10nt) segment within the 5’ UTR just upstream of the start codon, has been shown to significantly
impact translation efficiency in both vertebrates and invertebrates®®. By using different TIS sequences,

predictable changes in transgene expression can be achieved®®”:

The 3’UTR is more closely associated with mediating the termination of translation and ensuring
efficient recycling of the translation complex, enabling multiple translations from the same mRNA
molecule®®. In insect transgenesis, exogenous 3’UTR sequences are routinely used, including the viral-
derived simian virus 40 (SV40) 3’UTR!, the P10 baculovirus 3’ UTR from Autographa californica

)12

nucleopolyhedrovirus (AcNPV)!2 and the 3’UTR of the K10 gene from Drosophila melanogaster®3.

Despite the widespread use of these 3’UTR sequences, their relative efficacies are often based on
anecdotal evidence. Strategically manipulating these untranslated regions provides a valuable

approach to finely tune and optimize transgene expression in insect transgenesis.

We developed a systematic approach to characterising TIS and 3’UTR modifications to transgenes to
build a toolbox for modulating gene expression in mosquitoes, and potentially other insects, when
combined with viral or endogenous culicine promoter sequences. This toolbox provides an efficient
way of expanding available Pol Il promoters and affords routes to generating better regulation of

activity of promoters across the species barrier. We initially tested the activities of the viral promoter
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HR5-IE1%° with a fully factorial combination of TIS and 3’UTR sequences in Aedes aegypti, Aedes
albopictus, Culex quinquefasciatus and Spodoptera frugiperda cell lines. We then developed this
further by taking the TIS/3’UTR combinations that produced the highest, lowest and median
expression levels and demonstrated the highly replicable gene expression modulation effects in a

panel of promoters.

We found that gene expression changes are highly predictable across a wide range of cell lines and
promoter sequences. In conjunction with the characterisation of several endogenous culicine
promoters, this represents a significant advance in the available gene expression tools for mosquito

synthetic biology.
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Results and Discussion

We first measured the activity of five translation initiation sequences (TIS) (Table S1; BmLo, Syn21,
Kozak, BmHi and Lep)*>** and three different 3’UTRs (K10, SV40, P10)'*13 in a fully factorial design all
downstream of the HR5-IE1 promoter. In total, we produced 15 different constructs and tested these
in five different insect cell lines, from three disease relevant Culicine mosquito species (A. aegypti
(Aag2), A. albopictus (U4.4 & C6.36) and C. quinquefasciatus (Hsu)) and one Lepidopteran species (S.
frugiperda (5f9)).

We found a highly replicable pattern of gene expression modulation across all five tested cell lines
(Figure 1). Averaged across cell lines, the choice of TIS could produce up to a 2.55 relative-fold change
in luciferase expression (95% Cl 2.28-2.84; Table S2), while the choice of 3’UTR produced up to a 4.88

relative-fold change in luciferase expression (95% Cl 4.52-5.26; Table S2).

The estimates from our analysis indicate that TIS sequences are mainly insensitive to cell type and
behave remarkably consistently (Fis518 = 11, P <0.001; Table S3). By contrast, the effect of the 3’UTR
sequence on transgene expression was much more strongly affected by cell type (Fss1s = 250, P <0.001;
Table S3). Expression from constructs with P10 had notably higher expression than expected in Sf9
cells and much lower in both C6/36 and U4.4 cells. Significant interactions between TIS sequences and
3’UTR sequences were small (Fss1s = 20, P <0.001; Table S3) therefore transcriptional activity appears
to be primarily an additive effect when pairing TIS and 3’UTR sequences. This makes the “plug and
play” notion of pairing different synthetic components together highly attractive, as effects on

transgene expression are highly predictable.

The TIS/3’UTR combinations with the lowest (BmLo-K10) and highest (Lep-P10) expressions (18.2 (95%
Cl 13-22) relative-fold expression difference); were the same across all cell lines (Figure 1). To
generalise our results, we decided to expand the range of promoter sequences tested by taking the
BmLo-K10, Lep-P10 and Kozak-SV40 combinations and testing them with additional promoter
sequences. In total, we tested seven regulatory sequences from four endogenous promoters from
Culicine mosquitoes: two variants of the hsp83 promoter'® (1.4kb & 888bp) (AAEL011708), from A.
aegypti with the large (c.4.2kb) intronic sequence of the 5’UTR truncated to retain minimal acceptor
and donor regions, three engineered variants of the Polyubiquitin promoter (AAELO03888) from A.
aegyptit’, along with Polyubiquitin from C. quinquefasciatus (CP1J010919) and we demonstrate the
first use case for a new endogenous promoter A. albopictus derived Polyubiquitin (AALF002118).

These, along with OplE2 were tested in Aag2 and U4.4 cells.
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As expected, promoters of viral origin behaved very consistently across both cell lines, while
endogenous promoters responded in a more cell-specific manner (Figure 2, Table S4). The hsp83
promoter sequences produced equivalent levels of gene expression to OplE2 when in Aag2 cells, but
this was lower in U4.4 cells. Shortening this sequence by removing c.500bp upstream produced no
significant reduction in gene expression. Polyubiquitin-derived promoter sequences generally
produced the highest levels of gene expression; fluctuations in the strength of expression across cell
lines may reflect the evolutionary origins of each sequence (C. quinquefasciatus derived sequence

displayed lower activity than A. albopictus for example).

The effects of TIS/3’UTR modification on gene expression were remarkably consistent for all promoter
sequences. We found minimal differences in the responses between different regulatory sequences
and TIS/3’UTR combinations (Promoter: Fg 1207 =354.91, P <0.001; TIS/3’UTR: F2,1207 = 509.96, P <0.001;
Interaction effect: Fis1103 = 7.26, P <0.001; Figure 2, Table S5), indicating that these act largely

independently.

We have demonstrated a straightforward method for modulating transgene expression in Culicine
mosquitoes in a combinatorial approach that allows fine-scale manipulation. In these experiments,
we have shown that TIS and 3’UTR sequences have highly predictable outcomes on transgene
expression regardless of promoter sequence or cell line. These findings will likely translate well to
whole-organism transgene expression?, and we anticipate this will provide a valuable resource to

those working in synthetic biology, genetic modification, and mosquito genetic control.
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Figure 1. Combinations of translation initiation sequences (TIS) and 3’UTRs produce highly replicable gene expression
across a range of insect cell lines. Ratios of FF luciferase compared to a RL control were used to measure activity, UTRs are
organised left to right by average relative activity and nested within TIS also organised left to right by average relative activity.
Large symbols and error bars represent mean and associated approximate 95% confidence intervals estimated with a
generalized linear mixed model with a Gamma error distribution, raw data is shown as small open circles.
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Figure 2. Fine-scale modulation of transgene expression with TIS/3’UTR combinations is highly replicable across a range
of synthetic and endogenous promoters in two Culicine mosquito cell lines A) Aag2 (A. aegypti) cells B) A. albopictus-
derived U4.4 cells. Ratios of FF luciferase compared to a RL control were used to measure activity, TIS/3’UTR combinations
are organised left to right by average relative activity. Large solid symbols and error bars represent mean and associated
approximate 95% confidence intervals estimated with a generalized linear mixed model with a Gamma error distribution;
raw data is shown as open symbols. Lines connect promoters of the same origin.
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Methods

Plasmids, cells, transfections and luciferase assay

Cells were seeded in 96-well plates one day before transfection with TransIT-PRO transfection kit
(Mirus Bio, Madison, WI, US) according to manufacturer’s recommendations. Master mixes were
prepared for eight wells of a 96-well plate, as replicate wells per experimental construct. This was
repeated in three replicate experiments. Per well, transfection amounts are listed for each cell line in
Supporting Information. Complete plasmid sequences are currently available on Github and will be

available through NCBI.

Two days after transfection, cells were washed twice with ion-free PBS, lysed with 1X Passive Lysis
Buffer then analysed using the Dual-Luciferase Assay kit on a GloMax multi+ plate reader (Promega,

Southampton, UK).

General cell maintenance and plasmid information is described in Supporting Information (Tables S6-

59).
Data Analysis

Scripts and raw data can be found at Github (https://github.com/Philip-Leftwich/Pol2-promoters).

Complete information on analyses can be found in Supporting Information.
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