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ABSTRACT

Senescent cells accumulate in tissues with organismal age and contribute causally to multiple chronic
diseases. In vivo senescent cell phenotypes are heterogeneous because cellular context and stressors
vary by cell type and tissue. Due to the variability of senescence programs, there is no universal
method to identify senescent cells and even widely used markers, such as CDKN2A, are not
ubiquitous. Therefore, we interrogated the Tabula Muris Senis mouse single-cell aging atlas and an
array of single-cell datasets from human donors that spanned many ages to find cell-specific signatures
of cellular senescence. We derived 75 mouse and 65 human senescence signatures from individual
cell populations. CDKN2A and other markers of senescence were overrepresented in these signatures
but there were many novel senescence genes present at higher rates. Within individual cell
populations, we observed multiple programs of senescence with distinct temporal and transcriptional
characteristics. We packaged the signatures along with a single-cell scoring method into an open-
source package: SenePy. SenePy signatures better recapitulate cellular senescence than available
methods when tested on multiple in vivo RNA-seq datasets and a p16™“? reporter single-cell dataset.
We used SenePy to map the kinetics of senescent cell accumulation across 97 cell types from humans
and mice. SenePy also generalizes to disease-associate senescence and we used it to identify an
increased burden of senescent cells in COVID-19 and myocardial infarction. This work provides a

significant advancement towards our ability to identify and characterize in vivo cellular senescence.
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INTRODUCTION

Aging is a key risk factor for many chronic diseases'. One biological manifestation of organismal
aging is cellular senescence (CS), a phenomenon characterized by permanent cell cycle arrest, impaired
homeostatic cellular function, and activation of the senescence-associated secretory phenotype (SASP)
which involves the release of pro-inflammatory proteins, proteases, and other bioactive paracrine
factors?. Senescent cells accumulate in tissues with increasing organismal age, but senescent cells are
found even in young organisms and can accrue prematurely due to exogenous stressors®*. Accumulated
senescent cells contribute to sterile inflammation, tissue remodeling, and local dysfunction which
ultimately drives various pathologies®. CS contributes to a wide array of chronic diseases, including
cardiovascular disease, neurodegeneration and diabetes®®. The senescent cell burden in aged
organisms also contributes to runaway inflammation and poor outcomes in acute diseases, such as those
from coronavirus infection®. Targeted clearance of senescent cells with senolytics can mitigate disease
severity and increase healthspan’°, but in some contexts their elimination may exacerbate disease"".
Despite the growing understanding of the role of cellular senescence in aging and various diseases, in
vivo cellular senescence remains poorly phenotypically and mechanistically characterized® 2. The
majority of CS markers have been identified in cultured cells subjected to experimental conditions that
may not accurately represent a living system. More comprehensive sets of markers are required to
robustly study cellular senescence in living systems.

One of the biggest challenges in studying in vivo cellular senescence is the high degree of
heterogeneity in which it presents®. Senescence has been observed in numerous cell types across all
major organs. Senescent cells partially lose their pre-senescence identities and phenotypes but this
suggests that the mechanistic paths to the senescent states varies between cell types' . Cells are also
subject to various cell-intrinsic and extrinsic stressors which drive senescence. Telomere attrition is a
well-known senescence trigger, but telomere-independent DNA damage, oxidative stress, and oncogenic
signaling can also induce cellular senescence®. Paracrine factors released in the SASP state and cell-

surface signaling from senescent cells can induce secondary senescence among otherwise healthy cells
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in close proximity' '®. Drivers of senescence shift the transcriptional landscape of senescent cells™ ',

but this has been primarily studied in cultured cells. The tissue context or cell identity-specific
transcriptional landscapes of cellular senescence have not been fully defined. For example, it is not clear
whether the senescence transcriptional programs in skin fibroblasts exposed to UV light differ from the
senescence programs of fibroblasts in internal organs protected from light. The heterogeneity arising
from different stressors, tissues, and cell types makes it difficult to broadly apply transcriptional signatures
of senescence derived from in vitro cultured cells which have been removed from their in situ tissue
environment. There is no universal signature or marker of CS exists?. Even the cell cycle arrest inducer
p16™42 which is widely accepted as one of the most specific markers of cellular senescence, is not
always required for senescence induction and its use as a sole marker in transcriptomics data is
confounded by the fact that the corresponding CDKNZ2A locus encodes for multiple genes with
overlapping sequence identity’”"°. Other markers of senescence may be constitutively expressed in
some cell types or upregulated in general with organismal age or inflammation. Recent work has utilized
literature screening and transcriptomics to find a gene set that is broadly differentially abundant in
senescent cells®, but this does not account for tissue-, cell-, or stress-specific heterogeneity and may
not capture all programs of cellular senescence. There remains a need to identify and characterize tissue-
and cell-specific cellular senescence programs?".

In this study, we aggregate and interrogate large-scale single-cell RNA-sequencing datasets
across tissues and ages, both in mice and humans to define in vivo cellular senescence heterogeneity.
We developed a novel algorithmic approach to identify cell-type-specific senescence signatures. We
used a p16™“? reporter mouse model dataset along with other transcriptomics datasets to validate our
approach. We have generated the open-source Python package SenePy

(https://github.com/jaleesr/senepy). SenePy allowed us to map the kinetics of cellular senescence in

many tissues and cell types with respect to organismal age and in the context of disease. Using SenePy
we were able to identify senescent cells across several tissues and examine similarities as well as tissue-

specific and cell-type-specific signatures of cellular senescence.
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RESULTS

Known senescence markers are cell-type-specific and poorly characterize in vivo cellular
senescence. We examined the expression of established CS markers in comprehensive mouse and
human single-cell atlases to determine their dynamics with age and their cell-type-specificity. For mouse
data, we utilized the Tabula Muris Senis?? resource which is comprised of 328K cells from 19 tissues
collected between 1 and 30 months of age (Sup Fig 1A). The human data utilized in this study are from

7 studies®*?°

that span 37 tissues from individuals ranging in age from 1 to 92 years old, altogether
comprising 1.6M cells (Sup Fig 1B). We took the union of SenMayo® (n = 125), which is a recently
published list of senescence-associated genes, and a novel curated senescence gene set (n = 110) to
establish a panel of 181 experimentally validated CS maker genes (n= 52, hypergeometric p = 6.4x10°
%), This panel of known or validated senescence markers served as a starting point for our downstream
analyses.

To assess how this set of senescence markers overlapped with cell-specific and universal
organismal aging genes in mice, we compared them to a study that identified 76 cell-specific signatures
and a universal aging signature (n = 330 genes) from Tabula Muris Senis® (Fig 1A). Only the CS markers
Cd9, Ctnnb1, and Jun were present in the universal organismal aging signature (defined by genes
upregulated with age in half of the cell types), which can be explained by random chance (hypergeometric
p = 0.58). CDKN2A (p16™* encoding gene), which is widely accepted as one of the most universal and
specific markers of CS, was not present in any of the cell-specific organismal aging signatures.
Furthermore, only 15 of the 76 cell-specific aging signatures were enriched for CS markers (Sup
Fig2A,B). This observed cell-type-specific CS enrichment is not explainable by known CS dynamics and
was negatively correlated to population-specific proliferation, as determined by the proportion of Mki67+
cells (Pearson’s R = -0.24, p = 0.04) (Sup Fig 2C). These findings suggest that a universal CS signature

may be obfuscated by cellular heterogeneity and that differential expression between subpopulations of

cells is not suitable to extract cell-type specific CS markers. Instead, we show that the proportions of cells
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positive for Cdkn2a and other CS markers increase significantly with age in Tabula Muris Senis (Fig 1B),
thus indicating that changes in cell positivity is a more useful metric for identifying dynamic CS genes.

We next analyzed the aging dynamics of CS markers across all tissues and cell types in the
mouse and human datasets with respect to the proportion of positive cells. Some of the most widely used
markers of CS, such as Cdkn2a and Cxcl13, showed an overall increase in the proportion of cells
expressing these genes with age but had tropism for specific tissue and cell types (Fig 1C,D, Sup Fig
3A). Human skin from the face, for example, had appreciable levels of CDKN2A+ cells in young
individuals and a large increase with age (Sup Fig 3B). However, other important markers of CS, such
as CDKN1A (p21°'encoding gene), were more constitutively expressed in both young and old mice and
humans (Sup Fig 3C).

We examined the dynamics of cellular senescence in 60 mouse and 50 human cell types. Overall,
the landscape of all CS markers was highly heterogeneous when stratified by tissue and cell type in both
species (Fig 1E,F). Only 16 of 1,770 pairwise combinations of cell types showed significant senescence
marker gene overlap (Hypergeometric, FDR p < 0.05), thus highlighting how senescence program
transcription profiles differ widely between tissues and cell types. Cells from the same tissue were most
likely to have significant marker overlap (Chi-square, p = 3.2x107°). While fibroblasts from different
tissues showed some overlap in senescent cell transcriptional profiles, this was not statistically enriched
(Chi-square, p = 0.2). The marker found to increase dynamically with age in the largest number of human
cell types was CCL4, but this marker was only dynamic in 21 of 50 (42%) cell populations. Ccl/5 and Ccl8
were the most universally dynamic in mice, but only in 33% of cell types. CDKN2A was one of the most
enriched markers of senescence in both humans and mice, but it was only dynamic in 26% of human
and 32% of mouse cell types. These data indicate that there is no universal senescence marker gene set
for all tissues and cell types, and that each cell type within each tissue takes distinct transcriptional paths
to the senescence state. Instead, our data maps the suitability of known senescence markers in different

organisms, tissues, and cells.
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De novo cell-type specific signatures derived algorithmically from single-cell transcriptomes. We
used an unbiased computational method to identify putative senescence signatures in distinct mouse
and human cell populations (Fig 2A). These signatures were derived from 47 mouse and 50 human cell
types that spanned wide organismal ages. We leveraged the prior biological knowledge that senescent
cells accumulate with increasing organismal age but remain a minority population and this allowed us to
identify genes that were dynamic with increasing organismal age within each cell population. Using cell-
by-gene positivity matrixes with the selected genes and cells, we constructed networks with hubs of
genes likely to be expressed in the same cells. Genes not associated with hubs were removed as they
likely represented noise or stochastic processes which increase with organismal age but are not directly
related to cellular senescence. Some cell types were comprised of multiple distinct signatures which
separated during network analysis (Fig 2B). In total, we derived 75 mouse and 65 human putative CS
cell-type signatures. The signatures contained both genes as well as values which indicate the degree of
correlation they have to other genes within the same signature.

Cell-type signatures were highly heterogenous but several known markers of CS were enriched
in selected cell types, although not in a consistent manner (Fig 2C,D). Importantly, similar gene
expression signatures (Hypergeometric FDR < 0.05) were more likely to be found between cells from the
same tissue (Chi-square, p = 2.6x10°) than between cells of the same cell type (Chi-square, p = 0.001).
However, there were some exceptions in which signatures from cell types found in multiple tissues shared
high similarity. For example, senescent fibroblasts found in mouse lungs were most similar to senescent
fibroblasts from mouse tracheas and happened to also share the overall highest similarity between any
two mouse senescent cell type signatures. However, fibroblast signatures taken from all of the tissues
were not more likely to similar to each other (Chi-square, p = 0.3). Overall, the signatures did not form
distinct clades when clustered based on similarity, emphasizing heterogeneity and suggesting tissue-
specific influences on CS signatures may be more influential than universal drivers of CS (Sup Fig 4).

Many cell-type signatures contained overlapping genes despite the high degree of overall

signature heterogeneity (Fig 2E). There were 387 of 1081 (36%) mouse cell-type-signature pairs that
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shared significant overlap compared to 16 out of 1770 (0.9%) when using established markers. Based
on their genetic profile, cell-type signatures clustered distinctly with each other but not with organismal
aging signatures. Importantly, the previously defined set of unspecific senescence markers was more
closely associated with the newly derived signatures and fell within the same neighborhood cluster.
These observations indicate that the signatures we derived share some underlying genetic characteristics
despite being highly distinct and that these signatures likely represent bonified in vivo CS programs.
Therefore, we developed the open-source SenePy Python software package to score single-cells based
on their expression of these CS signature genes. SenePy rapidly processes thousands of cells and

provides relative senescent scores for every cell within a given population.

Distinct modes and phenotypes of senescence exist within the same cell populations. Cell
populations are exposed to multiple stressors and therefore may harbor multiple independent modes of
senescence. We observed that multiple cell-type signatures consisted of correlated gene hubs that
clustered during network analysis (Fig 2B, 3A). Of the 46 mouse cell populations with derived cell-type
signatures, 24 contained multiple gene hubs. From 47 human cell populations, 14 signatures were
comprised of multiple hubs. Multiple signature hubs likely represent modes of CS with distinct kinetics
and gene expression patterns. For example, aging mouse tongue keratinocytes consisted of two hubs,
both enriched in established CS marker genes (Fig 3A). Gene enrichment analysis indicated different
phenotypes and functional roles between cells expressing these separate hubs (Fig 3B,C). One of the
tongue keratinocyte hubs was more proinflammatory in nature and primarily enriched for immune cell
chemotaxis, cytokine, and TNF signaling pathways, typical of the senescence-associated secretory
phenotype. We have termed this “type-A” senescence. The other, “type-B”, was enriched for innate
immune processes and pathways that typically respond to pathogenic stimuli, for example, the NOD-like
receptor signaling pathway (Fisher's Exact FDR p = 10-8). These observations suggest that these
different modes of senescence drive different inflammatory pathways and may contribute differentially to

sterile inflammation. Both type-A/B tongue keratinocyte gene hubs were most similar to gene signatures
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from tongue basal cells, further emphasizing the importance of tissue context on the modes of
senescence. However, they were similar to other hubs from multiple tissues and cell types (Fig 3D),
either presenting as type-A or type-B senescence hubs but not both, suggesting this multimodal pattern
is not restricted to tongue keratinocytes. Next, we used SenePy to score tongue keratinocytes based on
these type-A and type-B signatures. The number of cells that were outliers (> 3c + p) in their signature-
specific distributions increased significantly as a function of organismal age (Fig 3E,F), indicating a higher
number of senescent keratinocytes in old mouse tongues compared to young. The increase in senescent
cells with age followed a similar pattern in both CS programs but the type-B senescent cells appeared
before type-A senescent cells temporally and also reached higher percentages.

We next examined senescent fibroblasts from three different tissues to determine the CS
characteristics of similar cell types in different contexts. The mouse fibroblasts from hearts, lungs, and
tracheas each had two distinct CS signature hubs. Most fibroblast hub signatures shared little genetic
similarity and high cosine distance (Fig 3G). The senescent cell gene hubs with the highest pairwise
similarities were present in the cells of the lungs and trachea, possibly indicative of the spatial proximity
and function in the respiratory system may have resulted in similar senescence phenotypes. Functionally,
these similar hubs in lungs and trachea shared common biological processes, such as inflammatory
response, cytokine signaling, and immune cell chemotaxis (Fig 3H). However, the trachea hub was
uniquely and highly enriched for genes involved in B-cell signaling, neutrophil activation, and lymphocyte
proliferation. When the fibroblast populations were scored with SenePy, they showed distinct temporal
kinetics (Fig 3l). In all cell populations, there was a small proportion of senescent cells in young mice and
a drastic increase in old mice. The biggest increase in the proportion of senescent cells occurred between
the ages of 18 and 24 months. Interestingly, cells identified using the most similar trachea and lung hubs
had comparable temporal kinetics and nearly identical high proportions of senescent cells in 24-month-
old mice. Senescent fibroblast populations in the heart and lungs also followed parallel kinetics despite
greater gene and ontological distance. Together, these results suggest multiple modes of senescence

even within the same populations and that these modes are temporally and phenotypically distinct.
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Cell-specific signatures are unique but share common stress response and inflammatory
pathways. We explored the senescence markers we derived for gene and ontological commonality to
determine whether there are universal senescence signatures. No gene was present in every signature
or hub, but selected genes were statistically overrepresented (random permutations) in the signatures
(Fig 4A). There were 29 genes with greater than 25% prevalence (n >= 12, p <= 0.0014) in the 47 mouse
cell types tested. The most common gene, and the only one above 50% prevalence, was Hba-a1, which
was present in 28 (60%, p =5 x 107°) of the 47 signatures. For comparison, Cdkn2a (gene that encodes
p16) was also overrepresented in the data but only present in 12 signatures (25.5%, p = 0.0014). Among
other known senescence markers, multiple Bcl2 family genes, which are common senolytic targets, were
overrepresented in these data. Interestingly, along with Hba-a7, the hemoglobin subunits Hba-a2, Hbb-
b1, and Hbb-b2 were among these most representative genes, despite the absence of erythrocytes in
the upstream analysis. Genes present in 8 or more signatures (n = 141, p < 0.01 by random permutation)
were enriched for multiple biological processes involved in inflammation, immunity, cytokine signaling,
and chemotaxis (Fig 4B). The NF-kappa B signaling pathway, a known driver of cell senescence, was
among the most commonly enriched pathways (KEGG, BH-corrected p = 0.0004), emphasizing that NF-
kappa B plays an important role in some programs of in vivo senescence. However, only 9 of the 47
signatures were individually enriched for NF-kappa B signaling, indicating that it is far from universal (Fib
4C). Therefore, to test for transcription factors that might be active, we tested our signatures for TF
binding enrichment in their gene promoters (Fig 4D). The most universally enriched binding motif was
RREB1, which was enriched in 38 of 47 signatures. Additionally, we found 46 other transcription factors
enriched in over 50% of the mouse signatures.

In human cells, only two genes were present in >25% of the human senescence signatures (Fig
4E): Myosin light chain 9 (MYL9) and matrix metallopeptidase 9 (MMP9). MMP9 is a known SASP
component and is present in our curated set of senescence markers. In comparison, CDKN2A was only

present in 8 of 51 signatures but still higher than what would be expected by random chance (p = 0.01).
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There were an additional 222 genes present in 8 or more of the cell types. Genes present in more
signatures than expected by chance (p < 0.05) were enriched for DNA replication and repair, chemokine
signaling, cell cycle inhibition, NF-kappa B signaling, and other biological pathways (Fig 4F). When
signatures were tested individually, the most commonly enriched pathways included neutrophil-mediated
immunity, platelet degranulation, cytokine signaling pathways, and other inflammation and immune
pathways (Fig 4G), consistent with SASP.

The most universal genes and pathways active in the cell-type signatures from both species
shared some characteristics. There were 46 common genes that were enriched in both the mouse and
human cell-type signatures. This was only a marginal overrepresentation compared to random chance
(Hypergeometric, p = 0.09), suggesting low gene-wise concordance between species. CDOKN2A, CXCR2,
and CCL3 were the only common genes that were previously established senescence markers. However,
the pathway concordance between species was high and both sets of common genes were enriched for
32 common pathways, such as NF-kappa B signaling, AGE-RAGE signaling, and chemokine signaling.
Likewise, eight of the top 20 most commonly enriched transcription factors from mouse signatures were
also commonly enriched in human signatures (Fig 4H). This suggests that core senescence pathways
between species are conserved but the individual genes that are enriched in senescent cells show a high
degree of genetic variation. Together, these data indicate that our de novo cell-type signatures are
enriched for known senescence phenotypes and share some commonality between cell types and

species despite their high degree of heterogeneity.

The cell-specific kinetics of senescent cell accumulation with organismal age. We next used
SenePy to determine the proportion of senescent cells in distinct populations from young and old
organisms. The numbers and proportions of cells identified as senescent increased drastically with age
in both mice (Fig 5A) and humans (Fig 5B) overall but showed distinct cellular tropism and kinetics.
Within the tested mouse cells, kidney epithelial cells had the highest proportion of senescent cells at old

age, followed by tracheal fibroblasts (Fig 5C). Out of the 47 tested cell populations in humans with
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appreciable senescence signatures, type Il pneumocytes had the highest percentage of senescent cells
reaching a level of greater than 11% in patients aged 68-77. This was followed by several other
populations of skin and lung cells (Fig 5D). However, in the human cells we observed temporal
heterogeneity between patients. For example, cardiomyocytes from a patient in the 58-year age bin were
7.6% senescent while a patient in the 68-year bin had only 0.4% senescent cardiomyocytes. This
disparate pattern of fewer senescent heart cells in the older patient persisted in every other heart cell
type except adipocytes, suggesting patient-specific differences are important drivers for whole-tissue
senescence. In younger individuals (ages 40-60), the heart cell type with the highest proportion of
senescent cells was invariably lymphoid cells (Fig 5E). Conversely, there was a large increase in the
proportion of senescent cells within solid tissue cell types taken from most 60-year+ donors. One 68-
year-old patient in particular had a surprisingly high proportion of cardiomyocytes and fibroblasts with
high senescence scores. But in the oldest heart tested, there was a relatively low proportion of senescent
cells in all cell types except for lymphocytes. These data could be indicative of how circulating cells may
be able to promote tissue senescence after transmigrating into tissues or have reduced efficacy in
clearing senescent cells-

The proportions of cells within populations predicted to be senescent by SenePy were not
correlated to the replicative potential in their respective populations (Sup Fig 5A,B). Surprisingly,
replicative populations, such as large intestine enterocytes, had minimal increases in the proportion of
senescent cells with age. This is corroborated by an undetectable change in the number of Cdkn2a+
enterocytes with age and the general lack of correlation between CkdnZ2a+ cells in replicative populations.
Likewise, we did not observe a negative correlation between the population-level expression of
telomerase and the calculated senescence burden (Sup Fig 5C,D). Thus, indicating that the well-known

driver of in vitro senescence, telomere attrition, is not the primary driver of senescence within organisms.

SenePy identifies ground-truth in vivo senescence more robustly than established markers of

senescence. To test SenePy’s ability to robustly detect senescent cells in additional datasets, we utilized
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single-cell RNA-seq data from p16-CrefR€2-tdTomato reporter mice in which p16+ cells become red

fluorescent®’

. We first performed differential expression analysis between the tdTomato+ and tdTomato-
kidney cells (Fig 6A). The mRNAs that were differentially abundant in tdTomato+ cells were enriched for
kidney-specific signatures derived in this study. Our kidney-specific signatures were more enriched than
previously defined gene sets or a senescence gene panel derived from the Al model GPT-4 that was
tasked to identify senescence signatures (n = 100 genes, “senGPT”) (Fig 6B). A notable shift was
observed in the distribution of cells scored with SenePy using kidney-specific signatures but not in a heart
endothelial cell hub (Fig 6C). Likewise, the mRNAs more abundant in tdTomato+ liver cells were more
enriched for SenePy’s liver Kupffer cell signature than any other gene sets (Fig 6D). These data indicate
that SenePy’s senescence signatures and derived senescence scores identify cells that become p16+.
We also examined the ability of SenePy signatures to identify transcriptional changes due to
senolytic treatment as well as those seen in experimental conditions that induce senescence in multiple
in vivo and in vitro models. The genes downregulated in mouse lungs following therapeutic senolysis
were enriched for multiple SenePy lung- or airway-specific signatures (Fig 6E). SenePy signatures were
more enriched than cell-type agnostic gene sets. SenePy does not contain a specific skeletal muscle
senescence signature due to data availability, yet mMRNA less abundant in mouse muscle tissue following
senolytic treatment was enriched for multiple SenePy signatures, including one from myocytes (Sup Fig
6A). Multiple SenePy endothelial signatures were enriched in mRNA more abundant after radiation-
induced senescence of human endothelial cells but the advantage of SenePy over other gene sets was
diminished in this in vitro context (Fig 6F, Sup Fig 6B). The discrepancy between the in vitro and in vivo
efficacy of SenePy was even more apparent in models of senescent fibroblasts in culture (Fig 6G,H). In
these in vitro contexts, SenePy was outperformed. These data suggest that SenePy recapitulates in vivo
cellular senescence and that gene sets derived primarily through previous in vitro experiments do not.
We next tested the marker suitability of genes that encode for p16™4 and p21°*" in the p16-
CreFRE2-tdTomato liver cells (Fig 61). Only 8% of p16™" cells, as indicated by tdTomato, had detectible

levels of Cdkn2a RNA (p16 encoding gene) (Fig 6J). This indicates that either Cdkn2a expression was
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not detectible due to single-cell dropout or the expression of CdknZ2a is transitory in the majority of these
senescent cells. Another important marker of cellular senescence, Cdkn1a (p21 encoding gene), was
found in the majority of both tdTomato+ and tdTomato- cells, making its binary expression an inadequate
metric because it's more universally expressed in non-senescent cells (Fig 6K, L). These data represent
a striking example of why sole reliance on known cellular senescence genes like p16 and p21 is not
sufficient, especially in single-cell transcriptomics because of low single-cell resolution, dropout, and

marker-independent senescence programs.

SenePy predicts elevated senescence burden in severe disease. We posited that SenePy could be
applied to datasets to quantify the burden of senescence in disease. We first used SenePy to analyze a
single-cell RNAseq lung dataset of 19 individuals who died from COVID-19 and 7 age-matched controls™?
(Fig 7A). There were senescent lung cells in both control and COVID-19 patients but there was an
observable increase in the senescence of lung epithelial cells among COVID-19 patients (Fig 7B).
COVID-19 mortality was significantly associated with an increased proportion of senescent lung epithelial
cells and were present in AT1, AT2, and general airway epithelial cell populations (Mann-Whitney, p =
0.004) (Fig 7C). The proportions of senescence in non-epithelial cells, such as immune cells, fibroblasts,
and endothelial cells, were not significantly associated with COVID-19 mortality (Fig 7D). Some of the
deceased patients had relatively elevated senescence burdens in multiple cell types (Fig 7E).

Next, we used SenePy to score spatiotemporally resolved mouse transcriptomics data following
myocardial infarction®’. We used the hub signatures we previously derived from mouse hearts to score
the spatially resolved spots (Fig 7F). Senescent loci were found even in the control heart, corroborating
earlier observations that even young organisms have baseline levels of cellular senescence. However,
since the spatially resolved spots consist of multiple single cells, the number of single senescent cells in
these data are unknowable. The proportion of spots with high senescence burden was highest at day 7
but the change was not statistically significant, likely due to the small sample size (ANOVA, n <= 3). We

observed a strong spatial association between spots with high senescence burden and heart fibrosis
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after Ml (Fig 7G). Senescent-like spots strongly colocalized in regions of the hearts expressing fibrotic
markers such as Col1a1. This correlation becomes readily apparent by 7 days post-MI but was not
observed in the control heart or hearts shortly after Ml. The 8 hubs used to score the spots contributed
to the overall senescence burden with distinct temporal patterns (Fig 7H). The endothelial cell hub had
the highest contribution at day one but continued to decrease up to day 14. The score from a myocyte
hub jumped from baseline on day 7 then dropped back down. Other senescence gene programs
remained otherwise unperturbed by MI.

Additionally, we observed strong spatial autocorrelation between the spatially-resolved spots with
high senescence burden (Fig 7F, I). Only one of 9 samples did not have highly significant spatial
clustering of senescent-like spots. Unsurprisingly, this same day 14 sample has low senescent spot
association to Col1a1 as well as the lowest overall senescence burden. To further investigate this finding
of senescent cell clustering and to see if this phenomenon is apparent in other tissues, we utilized spatial
transcriptomics data from mouse brains before and after inflammatory insult (Fig 7J). The control brains
had a small number of senescent-like spots which prevented significant autocorrelation; however, the
brains from LPS-treated animals had amplified senescence signatures and highly significant clustering
of senescent-like spots. These data indicate that senescent cells are more likely to be found in close

proximity across multiple in vivo systems.

DISCUSSION

There is a paucity of tissue- and cell-specific markers for senescent cells due to the heterogeneity
of cells that undergo cellular senescence (CS). This is especially challenging in single-cell transcriptomics
because the high rate of dropout and limited sequencing depth of the technology poses a challenge for
using classical senescence markers such as Cdkn2a and Cdkn1a as sole indicators of cell senescence.
Furthermore, the cell-specific heterogeneity of cellular senescence represents a major challenge for the
development of a universal senescence signature gene panel. Therefore, in this study, we took an

unbiased large-data approach to identify cell-specific programs of cellular senescence and created
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SenePy as an open-source platform (https://github.com/jaleesr/SenePy) to identify senescent cells in

single-cell transcriptomic data. We validated the SenePy approach using single-cell RNA-seq data in p16
reporter mice and applied SenePy to determine the kinetics and heterogeneity of senescence across
several human and mouse cell types in aging and disease.

Previous studies have generated transcriptomic signatures of cellular senescence based on the
generation of senescence in controlled in vitro environments ' %, While these signatures have helped
advance the mechanistic understanding of cellular senescence, it is challenging to use such signatures
for highly variable in vivo contexts. We show that cells express many of these genes at higher rates with
age at the organism or tissue level, but none of the genes obtained from such senescence panels were
applicable in the majority of cell types tested. Even the widely used marker CDKN2A was identified in
senescent cells in less than a third of mouse and human cell types. The lack of universality of such
senescence marker genes is likely multifactorial, arising from true biological variation and compounded
by technical limitations. For example, many SASP genes are also genes that increase with inflammation
and organismal aging. A transcript more abundant with age in all tested cells of a population would not
be a suitable marker for a phenomenon that is present in only a minority of cells. Furthermore, our
analysis of the p16-Creff¥2-tdTomato mouse cells highlights the limits of using a small number of markers
such as p16™“ or Cdkn2a in transcriptomics data. While the tdTomato+ cells likely represented bona
fide senescent cells®!, only a small proportion of individual cells had detectible levels of Cdkn2a at the
time of tissue harvest and sequencing. This likely arose from the transient expression of p16 earlier on
in the senescence program in combination with gene dropout inherent in single-cell sequencing.
Nevertheless, many highly visible and impactful studies are forced to rely on a small unspecific set of
markers because better alternatives did not exist. In addition to finding novel cell-specific signature
genes, we provide a cell type suitability map for well-known senescence markers.

Our approach focused on markers specific to individual populations that would not be confounded
by transcriptional differences with age. We were able to extract sub-population level programs of CS by

setting kinetic thresholds based on the prior knowledge that senescent cells increase with age but are
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present in the minority of cells and by examining single-cell co-expression as opposed to differential
expression. Unsurprisingly, many of our computationally-derived signatures contained and were
statistically enriched for pre-established CS markers. However, these comprised the minority and most
genes have not been previously thought of as senescence markers. While we did find well-known
senescence genes like CDKN2A, BCL2-family genes, and various SASP factors to be statistically
common within our signatures, the most universal markers were novel ones. For example, in mice, the
most common signature gene we identified was the alpha hemoglobin subunit. Hemoglobin has been
previously reported as a response gene to oxidative stress in non-erythrocytes®* *°, but has yet to be
reported in CS. Interestingly, in human signatures there was no significant overrepresentation of globin
genes. We observed this and other important differences between mouse and human signatures,
suggesting organism-specific CS marker panels to be more specific. Additionally, we used our signatures
to map the kinetics of senescent cell accumulation in many different tissues and cell types. Recent work
has mapped the abundance of senescent marker mRNA in 13 different tissues as a function of mouse

age and in a progeria model*®

. This work, however, was agnostic of cell type and relied on a small set of
senescence markers. To our knowledge, this study is the first that comprehensively maps the increase
in senescent cells in many different mouse and human tissues with respect to cell type.

The CS marker genes identified in this study may contain novel and cell-specific targets for
senolytics. Senolytics have been effective in treating age-associated disease and at extending
healthspan in model organisms’'°. Many senolytics inhibit anti-apoptotic factors such as BCL2-family
proteins®’, and we indeed found numerous BCL2-family protein genes as markers in many of our cell-
specific signatures. Therefore, this indicates that our methodology was able to extract actual senolytic
targets. Our data will also inform which tissues and cell types BCL2-family inhibitors and other senolytics
are likely more effective. Recent work has used a computational approach to identify a novel surface
marker on senescent cells to direct targeted CAR-T senolysis®, expanding the potential field of senolytic

targets and emphasizing the importance of the novel markers found in our study. Furthermore, clearance

of senescent cells is not beneficial in every context and cell-specific targeting of senescent cells may be
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warranted in some scenarios. For example, liver regeneration is dependent on hepatic stellate cell
senescence but is hindered by senescence of the liver parenchyma®®. Our work uncovers potential cell-
specific targets for specific senolytic therapy.

Senescent cells contribute to cardiovascular pathology® °, but their role in disease has never
been spatiotemporally characterized. We show that senescent cells localize at sites of heart fibrosis. The
proportion of senescent cells in each heart throughout the time series did not significantly change and
were present even in the control heart. We also observed highly significant spatial clustering of senescent
foci in the hearts and brains of mice which may be supporting evidence for an in vivo bystander effect'.
The spatial distributions of senescent cells have been previously examined from spatially resolved
transcriptomics data in aged mouse brains *'. Their results show that Cdkn2a+ spots are adjacent to
activated microglia but no spatial clustering of Cdkn2a+ spots. Though, their methodology relies on a
narrow definition of CS which may not translate to actual p16™* and does not account for Cdkn2a
dropout or p16-independent forms of senescence. These and other data would greatly benefit from a
reexamination with more comprehensive gene sets, such as those proposed herein.

Here we report that senescence burden in human lung endothelium is associated with COVID-19
mortality. Senolytic treatment prior to infection with betacoronavirus has been shown to reduce mortality
in mice suggesting that pre-existing senescent cells increase disease risk®. In humans, deceased patients
infected with SARS-CoV-2 had an increased number of mucosal cells expressing senescence markers
and infection itself can induce senescence®. Their transcriptomics data also showed CS marker
abundance to be highest in epithelial cells relative to other mucosal cell types. Taken together, these
studies support our findings that senescent epithelial cells contribute to COVID-19 mortality.

By design, our methodology removes genes that are constitutively expressed at baseline or in
aged cells to maintain a distinction from organismal aging. Inherently, this discounts genes that may be
part of the senescence program which overlap with the transcriptional shift with age. We also do not
account for genes that are downregulated in senescent cells. Negative markers of senescence would

add extra information to better identify senescent cells, but to find negative correlations in all pairwise
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combinations of genes with this methodology was computationally limiting. The comprehensiveness of
our signature panel is also limited by the data available at the time of study and the exact set of tissues
and cells tested influences any conclusions of universality or comparison between species. We do not
expect our signatures to negate the need for large scale future efforts such as SenNet?'. We instead
expect our work to be complementary and assist these efforts.

This work comprehensively identified gene expression programs and signatures of senescent
cells that are stratified by species, tissue, and cell type and used them to broadly characterize senescent
cells in mice and humans. We created SenePy: a computational platform that assigns a senescence
score to individual cells in single-cell transcriptomic data, which can serve as a resource to uncover cell-

type and tissue-specific mechanisms of cellular senescence in vivo.

METHODS

Data collection

Single-cell RNA mouse data were collected from the Tabula Muris Senis atlas (ref). Tabula Muris Senis
consists of single-cells from 30 mice from 1 to 30 months of age taken from 19 tissues. Human single-
cell data were collected from 7 studies. The liver data were obtained from five donors ranging from 21 to
65 years old®. Single skin cells were obtained from 6 patients ranging in age from 18 to 48 years old®°.
Lung data were collected from 17 donors ranging from 21 to 72 years old®. Human heart cells were taken
from 14 patients ranging from 40 to 75 years old?*®. Human hippocampal cells were collected from 37
patients ranging from newborn to 92 years old®. These tissue-specific datasets were given priority for
downstream analysis in their respective tissues, but we used additional multi-tissue atlases. Cells from
the Human Cell Landscape came from 51 donors ranging from 21 to 66 years old and from 25 different

tissues?’. Cells from Tabula Sapiens came from 15 patients ranging from 22 to 74 years of age®.

Data annotation
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The data were available in a range of formats from fastq to processed and annotated count data. Data
from Tabula Muris Senis, Tabula Sapiens, and the human heart study were provided with cell type
annotations. The Lung and hippocampal studies provided unannotated counts. Fastq data were

processed through 10x CellRanger or the Dropseq protocol (https://mccarrolllab.org/dropseq/) depending

on the technology used to prepare the libraries. All fastgs were aligned to GRCh38. Processed single-
cell counts were handled with Scanpy*2. Cells were filtered out if they had a relatively low or high number
of detected genes or high relative proportion of mitochondrial reads (thresholds varied based on dataset
distribution). We used a variety of methods to annotate cell types. Since the Human Cell Landscape
contained many tissues and cell types, we transferred the annotations from Tabula Sapiens using
scANVI*® after processing the raw data with scVI-tools*. If a cluster, which was called by the Leiden
algorithm on the scVI embeddings, had lower than 85% cell-type agreement, those cells were not used
in downstream analysis. Cell types from the liver, skin, and lung studies were annotated similarly but
clusters with poor label transfer were instead manually annotated using known cell-type markers*®. For
lack of a reference dataset, the hippocampal data were annotated exclusively using known markers.
Annotations were harmonized across datasets (e.g., “kidney endothelial cell” changed to “endothelial
cell’) and mapped back on to the raw counts. Cells lacking annotations because they failed QC or label
transfer were discarded. For total dataset visualizations, the species-specific raw data were integrated

using scVI and the embeddings were projected via UMAP.

Mouse cell-type specific age-dynamic genes

Mouse data came from mice aged 1, 3, 18, 21, 24, 30 months (m) but age availability varied by tissue.
Cells were stratified by tissue, age, and cell type. The starting baseline was chosen as 3m if there were
at least 200 3m cells, if not the starting baseline was aggregated with 1m cells. Likewise, 30m was
prioritized for old cells if at least 200 were present, otherwise the old baseline fell back to 24m. The
proportion of cells expressing one or more UMI copies of a gene was determined in each population

(Equation 1). Zero values at 3m or 1m were imputed with the inverse of the cell count (p,ge =
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Neoral celts ). Young cells were used as baselines and the ratios in old cells were determined relative to
them (Equation 2). Genes were only considered dynamic if they were found in less than 5% of young
cells (p3m)1m < 0.05), found in less than 20% of old cells (pz4m30m < 0.2), were in greater than 1% of old
cells (pzamzom > 0.01), increased at least 0.5% (p24m|30m — P3m|1m > 0.005), and the old to young ratio
was greater than 2.5 or the gain was greater than 5% (r24mzom > 2.5 | P24m|30m — P3mjim > 0.05). These
thresholds assume that the proportions of cells expressing senescence marker increase with age but
remain in the minority. Dynamic genes are cell-specific markers and do not account for small changes to
baseline levels of constitutively expressed genes, which may be senescence-associated genes but are

not specific markers.

Page = ngene+cells/ntotal cells
(Equation 1) p,4.: the proportion of cells positive for a gene at a given age. Where pyge = Ngene+tceus 1S
the number of cells positive for a given gene and n;,tq1 cetrs 1S the number of total cells in the same
population.

T30m|24m = p30m|24-m/p3m|1m
(Equation 2) 73, 24m: ratio of old cells positive for a gene relative to young cells. Where psom|24m
represents the proportion of cells positive for a gene in cells from 30- or 24-month-old mice and psy|1m

are the proportion of cells positive for the gene from 3- or 1-month mice.

Human cell-type specific age-dynamic genes

Human ages were binned into 10-year bins to account for the continuous range of human ages. Bins
ranged from 8 (8-17 years old) to 88 (88-97 years old). To be considered for further analysis a cell-type
population must 1) have three unique bins with at least 100 cells in each bin or a bin <=28 and a bin >=58

with at least 100 cells and 2) have a bin >=48 with at least 100 cells. These criteria were required in
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individual datasets because downstream analysis avoids confounding effect from multiple studies. Cells
were stratified by dataset, tissue, age bin, and cell type. The proportions of cells expressing genes were
calculated for each age bin (Equation 1). The young starting populations were selected from the 8, 18,
or 28 10-year bins if one was present, else the starting proportion was calculated by regressing the age
and known proportion values and solving for 18 years (Equation 3). The old ending populations were
selected from the oldest age bin (p,;4). Genes were only considered dynamic if their age by proportion
slope was positive (Equation 4), their maximum positivity was less than 25% (pner < 0.25), their starting
proportion was less than 5% (pyoung < 0.05), their gain was greater than 1.5% (poiq — Pyoung > 0.015),
the maximum proportion was not two times higher than the ending proportion (2pnex < Poia ), and the

maximum proportion had to be in the 48 year bin or higher (max(psg+) = Pmax)-

Y.(age; —age)(p; — p)

cov(age,p) = -
(age; —age)?
var(age) = —
_18-cov(age,p) , _ age - cov(age,p)
P18 = var(age) p var(age)

(Equation 3) p,g: extrapolated proportion of cells positive in the 18-year bin. Where cov(age,p)
represents the covariance between age and proportion p, var(age) is the variance of age, and n is the
sample size.

_ cov(age,p)
~ wvar(age)

(Equation 4) m: slope of the linear regression line for the proportions of a given gene with age. See

equation 3.

Identifying novel senescence signatures from mice
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Age-dynamic genes for each tissue-cell-type were found as described earlier. Count data were subset
by these genes and further subset to only include cells from mice >21m. Subsets with fewer than 100
cells were not tested further. The count matrixes were binarized to represent cell by gene positivity. Every
pairwise combination of genes was tested for Pearson’s correlation (Equation 5). To test the statistical
significance, each pairwise comparison was randomly permutated 500 times. Pairwise correlations were
kept if they had a positive r value and if their r value was at least 0.05 higher than the respective q99 r
value from the random permutations (Equation 6). The filtered correlations were used to construct

networks with NetworkX (https://networkx.org/). The Louvain algorithm was used to group genes into

clusters. Network clusters with fewer than 5 genes or genes with no correlations were removed. Genes
loosely connected to clusters were removed if they had fewer than log(nciuster genes) (Where nepseer genes

is the number of genes in a Louvain cluster) connections to other genes in the network. The cleaned
clusters are hereby referred to as hubs and the aggregated hubs for each cell type as a cell-specific

signatures.

Yieq (i — %) (%) — X))

\/Z’z§=1(xk,i - 371)2 \/22:1(9%1' - ’71)2

Tij =

(Equation 5) r; ;: Pearson’s correlation coefficent for dynamic genes i and j. Where x,; represents the
binary expression value of gene i in cell k; x; ; is the binary expression value of gene j in cell k; and n is
the total number of cells in the population.
t= qgg(rperm(i,j)) + 0.05
r;>tandr; >0
(Equation 6) t: significance threshold. Where 716m(;j) represents the distribution of correlation
coefficients for 500 random permutations of gene i and k. qq9 represents the 99" percentile value of this

distribution. The inequality depicts one criteria of gene selection based on t.
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Identifying novel senescence signatures from humans
Age-dynamic genes for each dataset-tissue-cell-type were found as described earlier. Count data were
then subset by these genes and further subset to only include cells from patients 48 years of age or older.

Significant correlations, networks, hubs, and signatures were generated similarly to those from mice.

Novel signature comparison
Each signature or hub has a set of genes and corresponding weights for how many connections a gene
shares with other genes. Pairwise cosine similarity was calculated by comparing the union of each gene
list and imputing Os (Equation 7).For pairwise hypergeometric similarity between two signatures, the
cumulative distribution function for two lists of genes was determined using the genes present in the
original species aggregated counts as the background list (Equation 8). For signature network analysis,
all pairwise hypergeometric sf values (i.e., p-values) were corrected with the Bonferroni method,
converted to —log, Sforrected, @nd used as similarity scores between signatures if they were significant.
To find genes represented in the signatures more than expected by chance, we used a random
permutation method. A set of hubs with random genes identical in size to the original signatures were
generated 1000 times from the background set of expressed genes in the dataset. A distribution was
created representing the number of times a gene was found in each of the 1000 permutations. The actual

number of signatures a gene was found in was compared to this distribution to determine significance.

n
k=12, k

(Sher b S

Wik lf Ik (S Li
0, otherwise

cosine(Li,Lj) = ,where a;j = {

(Equation 7) cosine(Li,L]-): cosine distance between two signatures L; and L;. Where q; represent the

weight of gene k in gene list i, and is equal to the corresponding connection value w;k if gene gy is in
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gene list i, or 0 otherwise. Where n represents the total number of genes in the union of signatures L;
and L;.
Lj N-L;j
S OI)
sf=1-P(|L;nLj| = 1,IN| L], |L;]) = 1- Z T)

k=0
Ly

(Equation 8) sf: survival function of the hypergeometric distribution P(x,N,I,j). Where L; and L;
represent two gene lists and N represents the background gene list. x is equal to the cardinality of the L;

and L; intersection minus 1.

Gene set enrichment — GO, KEGG, transcription factor binding

We used the Enrichr python API gseapy*® for gene set enrichment against the GO and KEGG databases
(refs). The background set of genes used came from all expressed genes from their respective datasets.
Only FDR-corrected p-values below 0.05 were considered significant. A custom “senescence” gene set
was added which was comprised of the union between all literature-based senescence markers collected
for this study and senMayo?.

For transcription factor binding analysis, the regions 1000 bp upstream and 500 bp downstream
of the transcription start sites were extracted for each gene in a gene list. JASPAR 2020 core vertebrate
non-redundant position frequency matrices were us as the input motifs (ref). The extracted regions were
examined for relative motif enrichment using the MEME-suite simple enrichment analysis.

Only Benjamini-Hochberg-corrected p-values below 0.05 were considered significant.

Scoring cells using SenePy

Gene signatures are comprised of genes and their respective number of edges in their network (termed
importance value). We developed SenePy, a lightweight and fast scoring algorithm specific for our gene
sets that borrows from Seurat’s AddModuleScore() and Scanpy’s tl.score_genes(). SenePY is built in

python and integrates well with scanpy and anndata. SenePy has four core functions: load_hubs(),
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translator(), score_hub(), and score_all_cells(). The load_hubs() function initializes the hub object which
includes the hubs themselves along with additional metadata, such as each hub’s enrichment for known
senescence genes. Depending on the input data and its respective reference, the optional translator()
function can be used to harmonize gene symbols based on known gene aliases. The score_hub()
function takes one input hub and anndata and returns a list of scores for each cell. The score_all_cells()
takes one input hub and anndata and stratifies the data based on input categories, for example, to score
individual cell types separately to avoid confounding the score.

The scoring happens in multiple steps. First, the mean is calculated for each gene in the dataset
across all cells (Equation 9). All genes are ranked by their mean and split into nuins (default: 25)
expression bins (Equation 10). Next, nei_size (default: 50) background genes are selected for each input
signature gene from its corresponding expression bin (Equation 11). The counts data are then optionally
binarized (default: True) to represent the binary senescence cellular state and the gene-cell positivity
from which the underlying networks were derived . Next, the counts are optionally amplified (Default:
True) by their corresponding importance value from the input signature (e.g., if [Cdkn2a, 2] is in the
signature all Cdkn2a values would be multiplied by 2) (Equation 12). Then the cell-by-signature-gene
matrix is averaged across the cell axis and subtracted from the mean of the cell-by-background matrix

also averaged across the cell axis (Equation 13).

m; = (1/n) ZXU
=1

(Equation 9) Where X is a matrix which contains the expression level of gene j in cell i and m; is the
average expression of gene j across all cells.

By, B2, ..., Bnibins
(Equation 10) Where B, j;,,s is the number of bins used to categorize every gene based on their mean

expression.
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SEB,, forses

BGS — {g |g = Bk(nctrlsize)}’g *s

BG = UBGS

(Equation 11) BG: background gene set. Where S is the gene signature and s is a gene within S. By is a
subset of genes that fall within the k-th expression bin based on their mean expression. Where g is a
background gene selected from expression bin B, and ng;size iS the number of background genes
selected for each signature gene s from the corresponding expression bin. Where BGg is a set of
background genes randomly selected from the same expression bin B, as the signature gene s. BG is
the union of all background genes selected for each signature gene s.
Yij = {1 if Xij > 0,0 otherwise}
Ziy= Y
(Equation 12) Z;;: modified expression matrix. Where Y;; is the optionally binarized expression matrix X;;

and I; represents the optional importance values for gene .

1
Y= mz:zi,s, for i € all cells

SES

1
Y, =—2 Z;,,, forice€allcells
1,BG |B(” 1,9
9gEBG
Score; = Y, s — Y, g, for i € allcells

(Equation 13) Score;: SenePy score for cell i. Where |S| and |BG| are the cardinality (number of
elements in the set) of gene signatures S and BG. Where Z; ; and Z; ; represent the optionally amplified

expression values of the genes in the gene signature S and background gene set BG, respectively.

Senescence burden in spatially resolved transcriptomics
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Data was preprocessed in Scanpy and pots with fewer than 1000 detected genes were removed. Cells
were normalized to 10,000 counts and log converted. The 8 heart-specific mouse hub signatures were
used to score the spatially resolved mouse hearts independently using senepy.score_hub() with a
translator() and with binarize and importance set to False because Visium data has higher gene counts
than single-cell data. Outlier spots were identified in each sample if they fell 3 standard deviations outside
the mean for their respective sample distribution in addition to a combined sample distribution (Outlier >
u + 30). The outliers from each signature were merged to determine if any given spot was an outlier.
Relative senescence burden is presented as the proportion of outlier spots. For the mouse brains, we
used the top 150 most common genes in all the signatures because we had no specific mouse brain
signatures. To determine spatial autocorrelation, we used the ESDA python package

(https://pysal.org/esda/). The weights of the autocorrelation were weighted by the inverse of the

Euclidean distance between two spots with a value of 1 to denote an outlier and 0 for normal spots. Three
is used as a maximum value for Euclidean distance and the weights for distances beyond three are set

to 0 (Equation 14).

nn3 (i) - 8@ < D - D - 2)

1
2% (7075) - 80 ) < 3) Tilxi = 72

,p-value = 1 — (®(D))

(Equation 14) I: Moran’s |. Where n is the number of spots; d(i, j) is the Euclidean distance between
spot i and spot j; 6(d(i,j) < 3) is 1 if the distance is greater or equal to 3 and otherwise 0; and x; and x;
are the values at spot i and spot j. ®(I) is the CDF of the standard normal distribution at the Moran’s |

value.

Senescence burden in COVID-19 mortality
Single-cell lung data from 20 patients that died from COVID-19 and 7 control patients were collected from
an available atlas®?. Doublets were removed from each individual sample using SOLO*" in combination

with SCVI-tools. Cells with low counts or high mitochondrial reads were removed. SCVI-tools was used
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to integrate the 27 samples, using sample ID as a categorical covariate and mitochondrial read percent,
ribosomal read percent, and total counts as continuous covariates. Cell types were manually annotated
using known cell-type markers (PanglaoDB). Cell types were scored with respective cell type hubs from
SenePY (e.g., epithelial cells were scored with ciliated epithelial, basal cell, club cell, and pneumocyte
hubs) using the senepy.score_all_cells() function. Cells were divided and scored as individual subtypes
(e.g., AT1, AT2, airway epithelium). Cell outliers were identified in each sample if they fell 3 standard
deviations outside the mean within every respective cell-type distribution (Outlier > u + 3a). Outliers

were merged across hubs to identify all cells with potential senescence burden and output as a proportion

of total cells.
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Figure 1. Known senescence markers are cell-type-specific and poorly characterize in vivo
cellular senescence. (A) There is an insignificant overlap between a universal organismal aging
signature and previously reported senescence markers (p = 0.58, Hypergeometric). The universal
signature are genes present in at least 50% of the cell-specific gene sets elucidated by differential
expression between young and old cells previously. (B) A histogram depicting the 3-month to 24-month
ratio of all cells expressing every gene in the Tabula Muris Senis dataset. The top 5% of the distribution
is marked by the dashed line and known senescence markers above this are labeled. (C, D) UMAPs
(left) representing CDKN2A+ (p16™4 encoding gene) cells from the mouse and human datasets. Cells
from 24-, and 30-month mice are denoted old while 1-, and 3-month mice are young. UMAPs (right)
showing all cells in the datasets and are labeled by broad cell classifications. Bar graphs show the
percentage of CDKN2A+ cells relative to all cells in the respective datasets. (E, F) Cell-specific maps of
marker dynamics in mice and humans. Vertical dashed lines represent the start of a tissue and cell
types from that tissue are classified and depicted by shape. Multiple cell types belonging to the same
class are overplotted. Gain represents the percent increase of cells expressing the marker relative to
young organisms. Bar plots depict the percentage of cell populations which the respective gene is a

suitable marker and they are colored by senescence-associated function.

Figure 2. De novo cell-type specific signatures derived algorithmically from single-cell
transcriptomes. (A) Overview of the algorithm used to define cell-specific signatures from mice and
humans (see methods). Workflow ends with a cosine signature comparison used to determine
signature similarity. (B) Example signatures derived from mouse cardiomyocytes and human
hippocampal choroid plexus cells. Each node represents a gene and the connections represent positive
cell co-positivity. Connections are weighted by Pearson’s R. The colors represent distinct hub
signatures within the overall cell signatures. (C, D) Representative diagram of all derived signatures
from mouse and humans. Each dot represents a signature and is sized by its number of genes. The dot

color is the respective enrichment for each signature compared to previously known senescence
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markers (Hypergeometric). Each signature is connected to its most similar signature and the color of
the connection is based on the cosine similarity. (E) Network similarity analysis of mouse cell-specific
novel senescence signatures and organismal aging signatures. Each shape represents a signature and
lines represent significant similarity between them. Similarity (strength of connections) is defined as -

log1o(BH-corrected Hypergeometric P). Network is clustered and colored by Louvain’s algorithm.

Figure 3. Multiple modes of senescence exist within the same cell populations. (A) Signature
derived from mouse tongue keratinocytes. Each node represents a gene and the connections represent
positive cell co-positivity. Connections are weighted by Pearson’s R. Nodes are colored by Louvain-
based assignment to distinct hub signatures. (B) GO and (C) KEGG gene set enrichment of the two
keratinocytes hub signatures. The “senescence” gene set is the pre-defined senescence markers used
in this study. Horizonal dashed line represents FDR p = 0.05. (D) Pairwise enrichment of the two
keratinocyte hubs against all other senescence signatures. (E) The strip plot depicts the score of each
keratinocyte determined by SenePy using the forementioned hubs. Horizontal dashed lines represent
three standard deviations above the mean. (F) Temporal kinetics of the proportion of cells scored three
standard deviations above the mean by SenePy for the two keratinocyte hubs. (G) Hierarchical
clustering of fibroblast hub signatures from mouse lungs, tracheas, and hearts based on cosine
similarity. (H) Temporal kinetics of the proportion of lung, trachea, and heart fibroblast cells scored high
by SenePy using their respective signatures. (I) GO gene set enrichment of the most similar trachea
and lung fibroblast hubs. Gene sets specific to the trachea hub are colored. All enrichment plots use

BH-corrected Fisher’s Exact P values.

Figure 4. Cell-specific signatures are unique but share some genes and biological pathways. (A)
Plot depicting the most commonly found genes from the novel mouse cell-specific signatures.
Significance was determined from 1000 random sets of signatures equal in size from the background

set of genes. (B) The 12 most enriched KEGG pathways from a “universal” signature comprised of
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genes with a high mouse signature prevalence (p < 0.01). (C) The most commonly enriched KEGG and
GO gene sets in every mouse signature. The bars note the percent of signatures enriched for the given
pathway. (D) The most commonly enriched transcription factor motifs in the promotors of signature
genes from mice. Bars represent the percent of signatures enriched for the given pathway. (E) Plots
depicting the most commonly found genes from the novel human cell-specific signatures. (F) The 12
most enriched KEGG pathways from a “universal” signature comprised of genes with a high human
signature prevalence (p < 0.04). (G) The most commonly enriched KEGG and GO gene sets in every
human signature. The bars note the percent of signatures enriched for the given pathway. (D) The most
commonly enriched transcription factor motifs in the promotors of signature genes from humans. Bars

represent the percent of signatures enriched for the given pathway.

Figure 5. The cell-specific kinetics of senescent cell accumulation with organismal age. UMAPs
of (A) mouse and (B) human cells depicting broad cell classification and overlayed with cells which
were outliers determined by their SenePy score. (C) The proportional increase of SenePy outlier cells in
old mice (24- or 30-month) relative to 3-month-old mice. (D) The proportion of SenePy human outlier
cells in across age bins. Each row represents 0-16% and grey rectangles note that no data is available.
(E) The fraction of SenPy outliers in individual cell types stratified by heart tissue donor. Age increases

along the x-axis from left to right.

Figure 6. SenePy identifies ground-truth in vivo senescence more robustly than established
markers of senescence. (A) UMAPs of single-cells from the kidney which were enriched for td-
Tomato+ cells. (B) Enrichment analysis of differentially abundant genes in the td-Tomato+ kidney cells.
Gene sets were derived in this study and we also include the SenMayo signature. (C) Density plots
depicting SenePy score distributions calculated in kidney cells using kidney-specific SenePy
signatures. (D) Enrichment analysis of differentially abundant genes in the td-Tomato+ liver cells. (E)

Enrichment analysis of lung tissue genes downregulated after senolytic treatment in mice. Blue lables
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indicate SenePy signatures. (F) Enrichment analysis of gene mMRNAs more abundant in irradiated
endothelial cells and (G) fibroblasts. (H) Enrichment analysis of gene mRNAs more abundant in
replicative fibroblast senescence. (I) UMAPs of single-cells from the liver which were enriched for td-
Tomato+ cells. (J) UMAP and representative bar graph of td-Tomato+ cells with Cdkn2a+ cells labeled.
(K) UMAPs and representative bar graphs of td-Tomato+ and (L) td-Tomato- cells with Cdkn1a+ cells

labeled.

Figure 7. SenePy predicts elevated senescence burden in severe disease (A) UMAP showing cells
from uninfected control lungs (n = 7) and patients who died from COVID-19 (n = 22). (B) UMAP of
control cells (left) and COVID-19 cells (right) with SenePy outlier cells labeled. (C) Proportion cells
identified with SenePy from AT1, AT2, and airway epithelial cells (p = 0.004, Mann-Whitney). (D)
Distributions of SenePy score from the major cell lung cell classes. (E) Heatmap with the relative
senescence burden of each cell type in each patient. (F) Representative whole heart H&E staining
overlayed with spatially resolved 10x Visium spots. Yellow spots are identified as senescence outliers
from their SenePy score. Box plot (right) shows the proportion of identified spots at each time point (p =
0.30, one-way ANOVA) (G) The bottom images represent post-Ml fibrosis via normalized Col1a1
expression. Scale bars represent 100 uM. The correlation between senescence-like spots and Col7a1
expression for each sample is shown by the right box plot (-logio[Pearson’s R p-value]). (H) The relative
contribution to the overall calculated senescence burden from the 8 hubs used to score the spots (I)
Spatial clustering of the senescence-like spots (-logio[Moran’s | p-value]). Horizontal line represents p =
0.05. (J) Representative H&E image of coronal sections spatially resolved by 10x Visium which were
taken from mice 24h after exposure to LPS. Yellow spots are identified as senescence outliers from
their SenePy score. Summary plot (right) depicts spatial autocorrelation of spots in LPS and saline

treated mice (-logio[Moran’s | p-value]).
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Supplemental figure 1. (A, B) UMAPs of all mouse and human cells used that are colored by tissue of

origin, age, and sex.

Supplemental figure 2. (A) Overview of the senescence marker gene set enrichment analysis. Cell-
specific organismal aging signatures determined in a previous study were compared to a curated set of
senescence markers taken from multiple studies. (B) The statistical enrichment of every organismal
aging signature for senescence markers. Color represents the significance of enrichment
(Hypergeometric, BH-corrected) and the size of the bar represents the percentage of senescence
markers present in the aging signature. The aligned plot on the right shows the proportion of cells in
each population that were expressing the proliferation marker Ki-67. (C) There is a negative correlation
between senescence gene set enrichment and the proliferation state of a population (p = 0.038,

Pearson’s R).

Supplemental Figure 3. (A) UMAP representing Cxcl/13+ cells in all mouse cells. (B) UMAP (top) of
human skin cells colored by cell type. UMAP (bottom) of human skill cells positive for CDKN2A from
young (age 18-34) and old (age 34-58) donors. Dot plot depicts the percentage of CDKN2A+ cells from
old and young human skin cells. (C) UMAP representing CDKN1A+ (gene that encodes p21°*") cells in

all mouse and human cells.

Supplemental Figure 4. Hierarchal clustering of signatures based on gene-set similarity. Similarity is

defined as the inverse of log1o(BH-corrected Hypergeometric P) for each pairwise comparison

Supplemental Figure 5. (A) The proportion of mouse cells expressing Tert and (B) Ki67. (C,D) The

relationship between cell types expressing Tert and Ki67 with their gain in SenePy identified cells.
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129  Supplemental Figure 6. (A) Enrichment analysis of gene mRNAs less abundant in mouse muscle
130 tissue after treatment with a senolytic. Blue lables indicate SenePy signatures. (B) Enrichment analysis

131  of gene mMRNAs more abundant after irradiation induced senescence of cultured endothelial cells.
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Fig 1 Known senescence markers are cell-type-specific and poorly
characterize in vivo cellular senescence.
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Fig 2 De novo cell-type specific signatures derived algorithmically from

single-cell transcriptomes.
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Fig 3 Distinct modes and phenotypes of senescence exist within the

same cell populations
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Fig 4 Cell-specific signatures are unique but share common stress response
and inflammatory pathways
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Fig 6 SenePy identifies ground-truth in vivo senescence more robustly than
established markers of senescence.
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