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ABSTRACT 23 

 24 

Senescent cells accumulate in tissues with organismal age and contribute causally to multiple chronic 25 

diseases. In vivo senescent cell phenotypes are heterogeneous because cellular context and stressors 26 

vary by cell type and tissue. Due to the variability of senescence programs, there is no universal 27 

method to identify senescent cells and even widely used markers, such as CDKN2A, are not 28 

ubiquitous. Therefore, we interrogated the Tabula Muris Senis mouse single-cell aging atlas and an 29 

array of single-cell datasets from human donors that spanned many ages to find cell-specific signatures 30 

of cellular senescence. We derived 75 mouse and 65 human senescence signatures from individual 31 

cell populations. CDKN2A and other markers of senescence were overrepresented in these signatures 32 

but there were many novel senescence genes present at higher rates. Within individual cell 33 

populations, we observed multiple programs of senescence with distinct temporal and transcriptional 34 

characteristics. We packaged the signatures along with a single-cell scoring method into an open-35 

source package: SenePy. SenePy signatures better recapitulate cellular senescence than available 36 

methods when tested on multiple in vivo RNA-seq datasets and a p16ink4a reporter single-cell dataset. 37 

We used SenePy to map the kinetics of senescent cell accumulation across 97 cell types from humans 38 

and mice. SenePy also generalizes to disease-associate senescence and we used it to identify an 39 

increased burden of senescent cells in COVID-19 and myocardial infarction. This work provides a 40 

significant advancement towards our ability to identify and characterize in vivo cellular senescence. 41 

  42 
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INTRODUCTION 43 

Aging is a key risk factor for many chronic diseases1. One biological manifestation of organismal 44 

aging is cellular senescence (CS), a phenomenon characterized by permanent cell cycle arrest, impaired 45 

homeostatic cellular function, and activation of the senescence-associated secretory phenotype (SASP) 46 

which involves the release of pro-inflammatory proteins, proteases, and other bioactive paracrine 47 

factors2. Senescent cells accumulate in tissues with increasing organismal age, but senescent cells are 48 

found even in young organisms and can accrue prematurely due to exogenous stressors3, 4. Accumulated 49 

senescent cells contribute to sterile inflammation, tissue remodeling, and local dysfunction which 50 

ultimately drives various pathologies5. CS contributes to a wide array of chronic diseases, including 51 

cardiovascular disease, neurodegeneration and diabetes6-8. The senescent cell burden in aged 52 

organisms also contributes to runaway inflammation and poor outcomes in acute diseases, such as those 53 

from coronavirus infection9. Targeted clearance of senescent cells with senolytics can mitigate disease 54 

severity and increase healthspan7-10, but in some contexts their elimination may exacerbate disease11. 55 

Despite the growing understanding of the role of cellular senescence in aging and various diseases, in 56 

vivo cellular senescence remains poorly phenotypically and mechanistically characterized2, 12. The 57 

majority of CS markers have been identified in cultured cells subjected to experimental conditions that 58 

may not accurately represent a living system. More comprehensive sets of markers are required to 59 

robustly study cellular senescence in living systems. 60 

One of the biggest challenges in studying in vivo cellular senescence is the high degree of 61 

heterogeneity in which it presents2. Senescence has been observed in numerous cell types across all 62 

major organs. Senescent cells partially lose their pre-senescence identities and phenotypes but this 63 

suggests that the mechanistic paths to the senescent states varies between cell types13, 14. Cells are also 64 

subject to various cell-intrinsic and extrinsic stressors which drive senescence. Telomere attrition is a 65 

well-known senescence trigger, but telomere-independent DNA damage, oxidative stress, and oncogenic 66 

signaling can also induce cellular senescence5. Paracrine factors released in the SASP state and cell-67 

surface signaling from senescent cells can induce secondary senescence among otherwise healthy cells 68 
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in close proximity15, 16. Drivers of senescence shift the transcriptional landscape of senescent cells13, 14, 69 

but this has been primarily studied in cultured cells. The tissue context or cell identity-specific 70 

transcriptional landscapes of cellular senescence have not been fully defined. For example, it is not clear 71 

whether the senescence transcriptional programs in skin fibroblasts exposed to UV light differ from the 72 

senescence programs of fibroblasts in internal organs protected from light. The heterogeneity arising 73 

from different stressors, tissues, and cell types makes it difficult to broadly apply transcriptional signatures 74 

of senescence derived from in vitro cultured cells which have been removed from their in situ tissue 75 

environment. There is no universal signature or marker of CS exists2. Even the cell cycle arrest inducer 76 

p16ink4a, which is widely accepted as one of the most specific markers of cellular senescence, is not 77 

always required for senescence induction and its use as a sole marker in transcriptomics data is 78 

confounded by the fact that the corresponding CDKN2A locus encodes for multiple genes with 79 

overlapping sequence identity17-19. Other markers of senescence may be constitutively expressed in 80 

some cell types or upregulated in general with organismal age or inflammation. Recent work has utilized 81 

literature screening and transcriptomics to find a gene set that is broadly differentially abundant in 82 

senescent cells20, but this does not account for tissue-, cell-, or stress-specific heterogeneity and may 83 

not capture all programs of cellular senescence. There remains a need to identify and characterize tissue- 84 

and cell-specific cellular senescence programs21. 85 

 In this study, we aggregate and interrogate large-scale single-cell RNA-sequencing datasets 86 

across tissues and ages, both in mice and humans to define in vivo cellular senescence heterogeneity. 87 

We developed a novel algorithmic approach to identify cell-type-specific senescence signatures. We 88 

used a p16ink4a reporter mouse model dataset along with other transcriptomics datasets to validate our 89 

approach. We have generated the open-source Python package SenePy 90 

(https://github.com/jaleesr/senepy). SenePy allowed us to map the kinetics of cellular senescence in 91 

many tissues and cell types with respect to organismal age and in the context of disease. Using SenePy 92 

we were able to identify senescent cells across several tissues and examine similarities as well as tissue-93 

specific and cell-type-specific signatures of cellular senescence. 94 
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 95 

RESULTS 96 

Known senescence markers are cell-type-specific and poorly characterize in vivo cellular 97 

senescence. We examined the expression of established CS markers in comprehensive mouse and 98 

human single-cell atlases to determine their dynamics with age and their cell-type-specificity. For mouse 99 

data, we utilized the Tabula Muris Senis22 resource which is comprised of 328K cells from 19 tissues 100 

collected between 1 and 30 months of age (Sup Fig 1A). The human data utilized in this study are from 101 

7 studies23-29 that span 37 tissues from individuals ranging in age from 1 to 92 years old, altogether 102 

comprising 1.6M cells (Sup Fig 1B). We took the union of SenMayo20 (n = 125), which is a recently 103 

published list of senescence-associated genes, and a novel curated senescence gene set (n = 110) to 104 

establish a panel of 181 experimentally validated CS maker genes (∩= 52, hypergeometric p = 6.4x10-105 

94). This panel of known or validated senescence markers served as a starting point for our downstream 106 

analyses. 107 

To assess how this set of senescence markers overlapped with cell-specific and universal 108 

organismal aging genes in mice, we compared them to a study that identified 76 cell-specific signatures 109 

and a universal aging signature (n = 330 genes) from Tabula Muris Senis30 (Fig 1A). Only the CS markers 110 

Cd9, Ctnnb1, and Jun were present in the universal organismal aging signature (defined by genes 111 

upregulated with age in half of the cell types), which can be explained by random chance (hypergeometric 112 

p = 0.58). CDKN2A (p16ink4a encoding gene), which is widely accepted as one of the most universal and 113 

specific markers of CS, was not present in any of the cell-specific organismal aging signatures. 114 

Furthermore, only 15 of the 76 cell-specific aging signatures were enriched for CS markers (Sup 115 

Fig2A,B). This observed cell-type-specific CS enrichment is not explainable by known CS dynamics and 116 

was negatively correlated to population-specific proliferation, as determined by the proportion of Mki67+ 117 

cells (Pearson’s R = -0.24, p = 0.04) (Sup Fig 2C). These findings suggest that a universal CS signature 118 

may be obfuscated by cellular heterogeneity and that differential expression between subpopulations of 119 

cells is not suitable to extract cell-type specific CS markers. Instead, we show that the proportions of cells 120 
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positive for Cdkn2a and other CS markers increase significantly with age in Tabula Muris Senis (Fig 1B), 121 

thus indicating that changes in cell positivity is a more useful metric for identifying dynamic CS genes.  122 

We next analyzed the aging dynamics of CS markers across all tissues and cell types in the 123 

mouse and human datasets with respect to the proportion of positive cells. Some of the most widely used 124 

markers of CS, such as Cdkn2a and Cxcl13, showed an overall increase in the proportion of cells 125 

expressing these genes with age but had tropism for specific tissue and cell types (Fig 1C,D, Sup Fig 126 

3A). Human skin from the face, for example, had appreciable levels of CDKN2A+ cells in young 127 

individuals and a large increase with age (Sup Fig 3B). However, other important markers of CS, such 128 

as CDKN1A (p21cip1 encoding gene), were more constitutively expressed in both young and old mice and 129 

humans (Sup Fig 3C).  130 

We examined the dynamics of cellular senescence in 60 mouse and 50 human cell types. Overall, 131 

the landscape of all CS markers was highly heterogeneous when stratified by tissue and cell type in both 132 

species (Fig 1E,F). Only 16 of 1,770 pairwise combinations of cell types showed significant senescence 133 

marker gene overlap (Hypergeometric, FDR p < 0.05), thus highlighting how senescence program 134 

transcription profiles differ widely between tissues and cell types. Cells from the same tissue were most 135 

likely to have significant marker overlap (Chi-square, p = 3.2x10-10). While fibroblasts from different 136 

tissues showed some overlap in senescent cell transcriptional profiles, this was not statistically enriched 137 

(Chi-square, p = 0.2). The marker found to increase dynamically with age in the largest number of human 138 

cell types was CCL4, but this marker was only dynamic in 21 of 50 (42%) cell populations. Ccl5 and Ccl8 139 

were the most universally dynamic in mice, but only in 33% of cell types. CDKN2A was one of the most 140 

enriched markers of senescence in both humans and mice, but it was only dynamic in 26% of human 141 

and 32% of mouse cell types. These data indicate that there is no universal senescence marker gene set 142 

for all tissues and cell types, and that each cell type within each tissue takes distinct transcriptional paths 143 

to the senescence state. Instead, our data maps the suitability of known senescence markers in different 144 

organisms, tissues, and cells.  145 

 146 
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De novo cell-type specific signatures derived algorithmically from single-cell transcriptomes. We 147 

used an unbiased computational method to identify putative senescence signatures in distinct mouse 148 

and human cell populations (Fig 2A). These signatures were derived from 47 mouse and 50 human cell 149 

types that spanned wide organismal ages. We leveraged the prior biological knowledge that senescent 150 

cells accumulate with increasing organismal age but remain a minority population and this allowed us to 151 

identify genes that were dynamic with increasing organismal age within each cell population. Using cell-152 

by-gene positivity matrixes with the selected genes and cells, we constructed networks with hubs of 153 

genes likely to be expressed in the same cells. Genes not associated with hubs were removed as they 154 

likely represented noise or stochastic processes which increase with organismal age but are not directly 155 

related to cellular senescence. Some cell types were comprised of multiple distinct signatures which 156 

separated during network analysis (Fig 2B). In total, we derived 75 mouse and 65 human putative CS 157 

cell-type signatures. The signatures contained both genes as well as values which indicate the degree of 158 

correlation they have to other genes within the same signature.  159 

Cell-type signatures were highly heterogenous but several known markers of CS were enriched 160 

in selected cell types, although not in a consistent manner (Fig 2C,D). Importantly, similar gene 161 

expression signatures (Hypergeometric FDR < 0.05) were more likely to be found between cells from the 162 

same tissue (Chi-square, p = 2.6x10-9) than between cells of the same cell type (Chi-square, p = 0.001).  163 

However, there were some exceptions in which signatures from cell types found in multiple tissues shared 164 

high similarity. For example, senescent fibroblasts found in mouse lungs were most similar to senescent 165 

fibroblasts from mouse tracheas and happened to also share the overall highest similarity between any 166 

two mouse senescent cell type signatures. However, fibroblast signatures taken from all of the tissues 167 

were not more likely to similar to each other (Chi-square, p = 0.3). Overall, the signatures did not form 168 

distinct clades when clustered based on similarity, emphasizing heterogeneity and suggesting tissue-169 

specific influences on CS signatures may be more influential than universal drivers of CS (Sup Fig 4). 170 

Many cell-type signatures contained overlapping genes despite the high degree of overall 171 

signature heterogeneity (Fig 2E). There were 387 of 1081 (36%) mouse cell-type-signature pairs that 172 
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shared significant overlap compared to 16 out of 1770 (0.9%) when using established markers. Based 173 

on their genetic profile, cell-type signatures clustered distinctly with each other but not with organismal 174 

aging signatures. Importantly, the previously defined set of unspecific senescence markers was more 175 

closely associated with the newly derived signatures and fell within the same neighborhood cluster. 176 

These observations indicate that the signatures we derived share some underlying genetic characteristics 177 

despite being highly distinct and that these signatures likely represent bonified in vivo CS programs. 178 

Therefore, we developed the open-source SenePy Python software package to score single-cells based 179 

on their expression of these CS signature genes. SenePy rapidly processes thousands of cells and 180 

provides relative senescent scores for every cell within a given population.  181 

 182 

Distinct modes and phenotypes of senescence exist within the same cell populations. Cell 183 

populations are exposed to multiple stressors and therefore may harbor multiple independent modes of 184 

senescence. We observed that multiple cell-type signatures consisted of correlated gene hubs that 185 

clustered during network analysis (Fig 2B, 3A).  Of the 46 mouse cell populations with derived cell-type 186 

signatures, 24 contained multiple gene hubs. From 47 human cell populations, 14 signatures were 187 

comprised of multiple hubs. Multiple signature hubs likely represent modes of CS with distinct kinetics 188 

and gene expression patterns. For example, aging mouse tongue keratinocytes consisted of two hubs, 189 

both enriched in established CS marker genes (Fig 3A). Gene enrichment analysis indicated different 190 

phenotypes and functional roles between cells expressing these separate hubs (Fig 3B,C). One of the 191 

tongue keratinocyte hubs was more proinflammatory in nature and primarily enriched for immune cell 192 

chemotaxis, cytokine, and TNF signaling pathways, typical of the senescence-associated secretory 193 

phenotype. We have termed this “type-A” senescence. The other, “type-B”, was enriched for innate 194 

immune processes and pathways that typically respond to pathogenic stimuli, for example, the NOD-like 195 

receptor signaling pathway (Fisher’s Exact FDR p = 10-8). These observations suggest that these 196 

different modes of senescence drive different inflammatory pathways and may contribute differentially to 197 

sterile inflammation. Both type-A/B tongue keratinocyte gene hubs were most similar to gene signatures 198 
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from tongue basal cells, further emphasizing the importance of tissue context on the modes of 199 

senescence. However, they were similar to other hubs from multiple tissues and cell types (Fig 3D), 200 

either presenting as type-A or type-B senescence hubs but not both, suggesting this multimodal pattern 201 

is not restricted to tongue keratinocytes. Next, we used SenePy to score tongue keratinocytes based on 202 

these type-A and type-B signatures. The number of cells that were outliers (> 3s + µ) in their signature-203 

specific distributions increased significantly as a function of organismal age (Fig 3E,F), indicating a higher 204 

number of senescent keratinocytes in old mouse tongues compared to young. The increase in senescent 205 

cells with age followed a similar pattern in both CS programs but the type-B senescent cells appeared 206 

before type-A senescent cells temporally and also reached higher percentages. 207 

 We next examined senescent fibroblasts from three different tissues to determine the CS 208 

characteristics of similar cell types in different contexts. The mouse fibroblasts from hearts, lungs, and 209 

tracheas each had two distinct CS signature hubs. Most fibroblast hub signatures shared little genetic 210 

similarity and high cosine distance (Fig 3G). The senescent cell gene hubs with the highest pairwise 211 

similarities were present in the cells of the lungs and trachea, possibly indicative of the spatial proximity 212 

and function in the respiratory system may have resulted in similar senescence phenotypes. Functionally, 213 

these similar hubs in lungs and trachea shared common biological processes, such as inflammatory 214 

response, cytokine signaling, and immune cell chemotaxis (Fig 3H). However, the trachea hub was 215 

uniquely and highly enriched for genes involved in B-cell signaling, neutrophil activation, and lymphocyte 216 

proliferation. When the fibroblast populations were scored with SenePy, they showed distinct temporal 217 

kinetics (Fig 3I). In all cell populations, there was a small proportion of senescent cells in young mice and 218 

a drastic increase in old mice. The biggest increase in the proportion of senescent cells occurred between 219 

the ages of 18 and 24 months. Interestingly, cells identified using the most similar trachea and lung hubs 220 

had comparable temporal kinetics and nearly identical high proportions of senescent cells in 24-month-221 

old mice. Senescent fibroblast populations in the heart and lungs also followed parallel kinetics despite 222 

greater gene and ontological distance. Together, these results suggest multiple modes of senescence 223 

even within the same populations and that these modes are temporally and phenotypically distinct. 224 
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 225 

Cell-specific signatures are unique but share common stress response and inflammatory 226 

pathways. We explored the senescence markers we derived for gene and ontological commonality to 227 

determine whether there are universal senescence signatures. No gene was present in every signature 228 

or hub, but selected genes were statistically overrepresented (random permutations) in the signatures 229 

(Fig 4A). There were 29 genes with greater than 25% prevalence (n >= 12, p <= 0.0014) in the 47 mouse 230 

cell types tested. The most common gene, and the only one above 50% prevalence, was Hba-a1, which 231 

was present in 28 (60%, p = 5 × 10⁻⁵) of the 47 signatures. For comparison, Cdkn2a (gene that encodes 232 

p16) was also overrepresented in the data but only present in 12 signatures (25.5%, p = 0.0014). Among 233 

other known senescence markers, multiple Bcl2 family genes, which are common senolytic targets, were 234 

overrepresented in these data. Interestingly, along with Hba-a1, the hemoglobin subunits Hba-a2, Hbb-235 

b1, and Hbb-b2 were among these most representative genes, despite the absence of erythrocytes in 236 

the upstream analysis. Genes present in 8 or more signatures (n = 141, p < 0.01 by random permutation) 237 

were enriched for multiple biological processes involved in inflammation, immunity, cytokine signaling, 238 

and chemotaxis (Fig 4B). The NF-kappa B signaling pathway, a known driver of cell senescence, was 239 

among the most commonly enriched pathways (KEGG, BH-corrected p = 0.0004), emphasizing that NF-240 

kappa B plays an important role in some programs of in vivo senescence. However, only 9 of the 47 241 

signatures were individually enriched for NF-kappa B signaling, indicating that it is far from universal (Fib 242 

4C). Therefore, to test for transcription factors that might be active, we tested our signatures for TF 243 

binding enrichment in their gene promoters (Fig 4D). The most universally enriched binding motif was 244 

RREB1, which was enriched in 38 of 47 signatures. Additionally, we found 46 other transcription factors 245 

enriched in over 50% of the mouse signatures. 246 

 In human cells, only two genes were present in >25% of the human senescence signatures (Fig 247 

4E): Myosin light chain 9 (MYL9) and matrix metallopeptidase 9 (MMP9). MMP9 is a known SASP 248 

component and is present in our curated set of senescence markers. In comparison, CDKN2A was only 249 

present in 8 of 51 signatures but still higher than what would be expected by random chance (p = 0.01). 250 
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There were an additional 222 genes present in 8 or more of the cell types. Genes present in more 251 

signatures than expected by chance (p < 0.05) were enriched for DNA replication and repair, chemokine 252 

signaling, cell cycle inhibition, NF-kappa B signaling, and other biological pathways (Fig 4F). When 253 

signatures were tested individually, the most commonly enriched pathways included neutrophil-mediated 254 

immunity, platelet degranulation, cytokine signaling pathways, and other inflammation and immune 255 

pathways (Fig 4G), consistent with SASP.  256 

The most universal genes and pathways active in the cell-type signatures from both species 257 

shared some characteristics. There were 46 common genes that were enriched in both the mouse and 258 

human cell-type signatures. This was only a marginal overrepresentation compared to random chance 259 

(Hypergeometric, p = 0.09), suggesting low gene-wise concordance between species. CDKN2A, CXCR2, 260 

and CCL3 were the only common genes that were previously established senescence markers. However, 261 

the pathway concordance between species was high and both sets of common genes were enriched for 262 

32 common pathways, such as NF-kappa B signaling, AGE-RAGE signaling, and chemokine signaling. 263 

Likewise, eight of the top 20 most commonly enriched transcription factors from mouse signatures were 264 

also commonly enriched in human signatures (Fig 4H). This suggests that core senescence pathways 265 

between species are conserved but the individual genes that are enriched in senescent cells show a high 266 

degree of genetic variation. Together, these data indicate that our de novo cell-type signatures are 267 

enriched for known senescence phenotypes and share some commonality between cell types and 268 

species despite their high degree of heterogeneity. 269 

 270 

The cell-specific kinetics of senescent cell accumulation with organismal age. We next used 271 

SenePy to determine the proportion of senescent cells in distinct populations from young and old 272 

organisms. The numbers and proportions of cells identified as senescent increased drastically with age 273 

in both mice (Fig 5A) and humans (Fig 5B) overall but showed distinct cellular tropism and kinetics. 274 

Within the tested mouse cells, kidney epithelial cells had the highest proportion of senescent cells at old 275 

age, followed by tracheal fibroblasts (Fig 5C). Out of the 47 tested cell populations in humans with 276 
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appreciable senescence signatures, type II pneumocytes had the highest percentage of senescent cells 277 

reaching a level of greater than 11% in patients aged 68-77. This was followed by several other 278 

populations of skin and lung cells (Fig 5D). However, in the human cells we observed temporal 279 

heterogeneity between patients. For example, cardiomyocytes from a patient in the 58-year age bin were 280 

7.6% senescent while a patient in the 68-year bin had only 0.4% senescent cardiomyocytes. This 281 

disparate pattern of fewer senescent heart cells in the older patient persisted in every other heart cell 282 

type except adipocytes, suggesting patient-specific differences are important drivers for whole-tissue 283 

senescence. In younger individuals (ages 40-60), the heart cell type with the highest proportion of 284 

senescent cells was invariably lymphoid cells (Fig 5E). Conversely, there was a large increase in the 285 

proportion of senescent cells within solid tissue cell types taken from most 60-year+ donors. One 68-286 

year-old patient in particular had a surprisingly high proportion of cardiomyocytes and fibroblasts with 287 

high senescence scores. But in the oldest heart tested, there was a relatively low proportion of senescent 288 

cells in all cell types except for lymphocytes. These data could be indicative of how circulating cells may 289 

be able to promote tissue senescence after transmigrating into tissues or have reduced efficacy in 290 

clearing senescent cells.  291 

 The proportions of cells within populations predicted to be senescent by SenePy were not 292 

correlated to the replicative potential in their respective populations (Sup Fig 5A,B). Surprisingly, 293 

replicative populations, such as large intestine enterocytes, had minimal increases in the proportion of 294 

senescent cells with age. This is corroborated by an undetectable change in the number of Cdkn2a+ 295 

enterocytes with age and the general lack of correlation between Ckdn2a+ cells in replicative populations. 296 

Likewise, we did not observe a negative correlation between the population-level expression of 297 

telomerase and the calculated senescence burden (Sup Fig 5C,D). Thus, indicating that the well-known 298 

driver of in vitro senescence, telomere attrition, is not the primary driver of senescence within organisms. 299 

 300 

SenePy identifies ground-truth in vivo senescence more robustly than established markers of 301 

senescence. To test SenePy’s ability to robustly detect senescent cells in additional datasets, we utilized 302 
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single-cell RNA-seq data from p16-CreERE2-tdTomato reporter mice in which p16+ cells become red 303 

fluorescent31. We first performed differential expression analysis between the tdTomato+ and tdTomato- 304 

kidney cells (Fig 6A). The mRNAs that were differentially abundant in tdTomato+ cells were enriched for 305 

kidney-specific signatures derived in this study. Our kidney-specific signatures were more enriched than 306 

previously defined gene sets or a senescence gene panel derived from the AI model GPT-4 that was 307 

tasked to identify senescence signatures (n = 100 genes, “senGPT”) (Fig 6B). A notable shift was 308 

observed in the distribution of cells scored with SenePy using kidney-specific signatures but not in a heart 309 

endothelial cell hub (Fig 6C). Likewise, the mRNAs more abundant in tdTomato+ liver cells were more 310 

enriched for SenePy’s liver Kupffer cell signature than any other gene sets (Fig 6D). These data indicate 311 

that SenePy’s senescence signatures and derived senescence scores identify cells that become p16+. 312 

 We also examined the ability of SenePy signatures to identify transcriptional changes due to 313 

senolytic treatment as well as those seen in experimental conditions that induce senescence in multiple 314 

in vivo and in vitro models. The genes downregulated in mouse lungs following therapeutic senolysis 315 

were enriched for multiple SenePy lung- or airway-specific signatures (Fig 6E). SenePy signatures were 316 

more enriched than cell-type agnostic gene sets. SenePy does not contain a specific skeletal muscle 317 

senescence signature due to data availability, yet mRNA less abundant in mouse muscle tissue following 318 

senolytic treatment was enriched for multiple SenePy signatures, including one from myocytes (Sup Fig 319 

6A). Multiple SenePy endothelial signatures were enriched in mRNA more abundant after radiation-320 

induced senescence of human endothelial cells but the advantage of SenePy over other gene sets was 321 

diminished in this in vitro context (Fig 6F, Sup Fig 6B). The discrepancy between the in vitro and in vivo 322 

efficacy of SenePy was even more apparent in models of senescent fibroblasts in culture (Fig 6G,H). In 323 

these in vitro contexts, SenePy was outperformed. These data suggest that SenePy recapitulates in vivo 324 

cellular senescence and that gene sets derived primarily through previous in vitro experiments do not. 325 

 We next tested the marker suitability of genes that encode for p16ink4a and p21cip1 in the p16-326 

CreERE2-tdTomato liver cells (Fig 6I). Only 8% of p16high cells, as indicated by tdTomato, had detectible 327 

levels of Cdkn2a RNA (p16 encoding gene) (Fig 6J). This indicates that either Cdkn2a expression was 328 
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not detectible due to single-cell dropout or the expression of Cdkn2a is transitory in the majority of these 329 

senescent cells. Another important marker of cellular senescence, Cdkn1a (p21 encoding gene), was 330 

found in the majority of both tdTomato+ and tdTomato- cells, making its binary expression an inadequate 331 

metric because it’s more universally expressed in non-senescent cells (Fig 6K, L). These data represent 332 

a striking example of why sole reliance on known cellular senescence genes like p16 and p21 is not 333 

sufficient, especially in single-cell transcriptomics because of low single-cell resolution, dropout, and 334 

marker-independent senescence programs. 335 

 336 

SenePy predicts elevated senescence burden in severe disease. We posited that SenePy could be 337 

applied to datasets to quantify the burden of senescence in disease. We first used SenePy to analyze a 338 

single-cell RNAseq lung dataset of 19 individuals who died from COVID-19 and 7 age-matched controls32 339 

(Fig 7A). There were senescent lung cells in both control and COVID-19 patients but there was an 340 

observable increase in the senescence of lung epithelial cells among COVID-19 patients (Fig 7B). 341 

COVID-19 mortality was significantly associated with an increased proportion of senescent lung epithelial 342 

cells and were present in AT1, AT2, and general airway epithelial cell populations (Mann-Whitney, p = 343 

0.004) (Fig 7C). The proportions of senescence in non-epithelial cells, such as immune cells, fibroblasts, 344 

and endothelial cells, were not significantly associated with COVID-19 mortality (Fig 7D).  Some of the 345 

deceased patients had relatively elevated senescence burdens in multiple cell types (Fig 7E).  346 

Next, we used SenePy to score spatiotemporally resolved mouse transcriptomics data following 347 

myocardial infarction33. We used the hub signatures we previously derived from mouse hearts to score 348 

the spatially resolved spots (Fig 7F). Senescent loci were found even in the control heart, corroborating 349 

earlier observations that even young organisms have baseline levels of cellular senescence. However, 350 

since the spatially resolved spots consist of multiple single cells, the number of single senescent cells in 351 

these data are unknowable. The proportion of spots with high senescence burden was highest at day 7 352 

but the change was not statistically significant, likely due to the small sample size (ANOVA, n <= 3). We 353 

observed a strong spatial association between spots with high senescence burden and heart fibrosis 354 
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after MI (Fig 7G). Senescent-like spots strongly colocalized in regions of the hearts expressing fibrotic 355 

markers such as Col1a1. This correlation becomes readily apparent by 7 days post-MI but was not 356 

observed in the control heart or hearts shortly after MI. The 8 hubs used to score the spots contributed 357 

to the overall senescence burden with distinct temporal patterns (Fig 7H). The endothelial cell hub had 358 

the highest contribution at day one but continued to decrease up to day 14. The score from a myocyte 359 

hub jumped from baseline on day 7 then dropped back down. Other senescence gene programs 360 

remained otherwise unperturbed by MI. 361 

Additionally, we observed strong spatial autocorrelation between the spatially-resolved spots with 362 

high senescence burden (Fig 7F, I). Only one of 9 samples did not have highly significant spatial 363 

clustering of senescent-like spots. Unsurprisingly, this same day 14 sample has low senescent spot 364 

association to Col1a1 as well as the lowest overall senescence burden. To further investigate this finding 365 

of senescent cell clustering and to see if this phenomenon is apparent in other tissues, we utilized spatial 366 

transcriptomics data from mouse brains before and after inflammatory insult (Fig 7J). The control brains 367 

had a small number of senescent-like spots which prevented significant autocorrelation; however, the 368 

brains from LPS-treated animals had amplified senescence signatures and highly significant clustering 369 

of senescent-like spots. These data indicate that senescent cells are more likely to be found in close 370 

proximity across multiple in vivo systems. 371 

 372 

DISCUSSION 373 

There is a paucity of tissue- and cell-specific markers for senescent cells due to the heterogeneity 374 

of cells that undergo cellular senescence (CS). This is especially challenging in single-cell transcriptomics 375 

because the high rate of dropout and limited sequencing depth of the technology poses a challenge for 376 

using classical senescence markers such as Cdkn2a and Cdkn1a as sole indicators of cell senescence. 377 

Furthermore, the cell-specific heterogeneity of cellular senescence represents a major challenge for the 378 

development of a universal senescence signature gene panel. Therefore, in this study, we took an 379 

unbiased large-data approach to identify cell-specific programs of cellular senescence and created 380 
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SenePy as an open-source platform (https://github.com/jaleesr/SenePy) to identify senescent cells in 381 

single-cell transcriptomic data. We validated the SenePy approach using single-cell RNA-seq data in p16 382 

reporter mice and applied SenePy to determine the kinetics and heterogeneity of senescence across 383 

several human and mouse cell types in aging and disease. 384 

Previous studies have generated transcriptomic signatures of cellular senescence based on the 385 

generation of senescence in controlled in vitro environments 13, 20. While these signatures have helped 386 

advance the mechanistic understanding of cellular senescence, it is challenging to use such signatures 387 

for highly variable in vivo contexts. We show that cells express many of these genes at higher rates with 388 

age at the organism or tissue level, but none of the genes obtained from such senescence panels were 389 

applicable in the majority of cell types tested. Even the widely used marker CDKN2A was identified in 390 

senescent cells in less than a third of mouse and human cell types. The lack of universality of such 391 

senescence marker genes is likely multifactorial, arising from true biological variation and compounded 392 

by technical limitations. For example, many SASP genes are also genes that increase with inflammation 393 

and organismal aging. A transcript more abundant with age in all tested cells of a population would not 394 

be a suitable marker for a phenomenon that is present in only a minority of cells. Furthermore, our 395 

analysis of the p16-CreERE2-tdTomato mouse cells highlights the limits of using a small number of markers 396 

such as p16ink4a or Cdkn2a in transcriptomics data. While the tdTomato+ cells likely represented bona 397 

fide senescent cells31, only a small proportion of individual cells had detectible levels of Cdkn2a at the 398 

time of tissue harvest and sequencing. This likely arose from the transient expression of p16 earlier on 399 

in the senescence program in combination with gene dropout inherent in single-cell sequencing. 400 

Nevertheless, many highly visible and impactful studies are forced to rely on a small unspecific set of 401 

markers because better alternatives did not exist. In addition to finding novel cell-specific signature 402 

genes, we provide a cell type suitability map for well-known senescence markers. 403 

Our approach focused on markers specific to individual populations that would not be confounded 404 

by transcriptional differences with age. We were able to extract sub-population level programs of CS by 405 

setting kinetic thresholds based on the prior knowledge that senescent cells increase with age but are 406 
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present in the minority of cells and by examining single-cell co-expression as opposed to differential 407 

expression. Unsurprisingly, many of our computationally-derived signatures contained and were 408 

statistically enriched for pre-established CS markers. However, these comprised the minority and most 409 

genes have not been previously thought of as senescence markers. While we did find well-known 410 

senescence genes like CDKN2A, BCL2-family genes, and various SASP factors to be statistically 411 

common within our signatures, the most universal markers were novel ones. For example, in mice, the 412 

most common signature gene we identified was the alpha hemoglobin subunit. Hemoglobin has been 413 

previously reported as a response gene to oxidative stress in non-erythrocytes34, 35, but has yet to be 414 

reported in CS. Interestingly, in human signatures there was no significant overrepresentation of globin 415 

genes. We observed this and other important differences between mouse and human signatures, 416 

suggesting organism-specific CS marker panels to be more specific. Additionally, we used our signatures 417 

to map the kinetics of senescent cell accumulation in many different tissues and cell types. Recent work 418 

has mapped the abundance of senescent marker mRNA in 13 different tissues as a function of mouse 419 

age and in a progeria model36. This work, however, was agnostic of cell type and relied on a small set of 420 

senescence markers. To our knowledge, this study is the first that comprehensively maps the increase 421 

in senescent cells in many different mouse and human tissues with respect to cell type. 422 

 The CS marker genes identified in this study may contain novel and cell-specific targets for 423 

senolytics. Senolytics have been effective in treating age-associated disease and at extending 424 

healthspan in model organisms7-10. Many senolytics inhibit anti-apoptotic factors such as BCL2-family 425 

proteins37, and we indeed found numerous BCL2-family protein genes as markers in many of our cell-426 

specific signatures. Therefore, this indicates that our methodology was able to extract actual senolytic 427 

targets. Our data will also inform which tissues and cell types BCL2-family inhibitors and other senolytics 428 

are likely more effective. Recent work has used a computational approach to identify a novel surface 429 

marker on senescent cells to direct targeted CAR-T senolysis38, expanding the potential field of senolytic 430 

targets and emphasizing the importance of the novel markers found in our study. Furthermore, clearance 431 

of senescent cells is not beneficial in every context and cell-specific targeting of senescent cells may be 432 
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warranted in some scenarios. For example, liver regeneration is dependent on hepatic stellate cell 433 

senescence but is hindered by senescence of the liver parenchyma39. Our work uncovers potential cell-434 

specific targets for specific senolytic therapy. 435 

 Senescent cells contribute to cardiovascular pathology6, 40, but their role in disease has never 436 

been spatiotemporally characterized. We show that senescent cells localize at sites of heart fibrosis. The 437 

proportion of senescent cells in each heart throughout the time series did not significantly change and 438 

were present even in the control heart. We also observed highly significant spatial clustering of senescent 439 

foci in the hearts and brains of mice which may be supporting evidence for an in vivo bystander effect15. 440 

The spatial distributions of senescent cells have been previously examined from spatially resolved 441 

transcriptomics data in aged mouse brains 41. Their results show that Cdkn2a+ spots are adjacent to 442 

activated microglia but no spatial clustering of Cdkn2a+ spots. Though, their methodology relies on a 443 

narrow definition of CS which may not translate to actual p16ink4a and does not account for Cdkn2a 444 

dropout or p16-independent forms of senescence. These and other data would greatly benefit from a 445 

reexamination with more comprehensive gene sets, such as those proposed herein.  446 

 Here we report that senescence burden in human lung endothelium is associated with COVID-19 447 

mortality. Senolytic treatment prior to infection with betacoronavirus has been shown to reduce mortality 448 

in mice suggesting that pre-existing senescent cells increase disease risk9. In humans, deceased patients 449 

infected with SARS-CoV-2 had an increased number of mucosal cells expressing senescence markers 450 

and infection itself can induce senescence4. Their transcriptomics data also showed CS marker 451 

abundance to be highest in epithelial cells relative to other mucosal cell types. Taken together, these 452 

studies support our findings that senescent epithelial cells contribute to COVID-19 mortality. 453 

 By design, our methodology removes genes that are constitutively expressed at baseline or in 454 

aged cells to maintain a distinction from organismal aging. Inherently, this discounts genes that may be 455 

part of the senescence program which overlap with the transcriptional shift with age. We also do not 456 

account for genes that are downregulated in senescent cells. Negative markers of senescence would 457 

add extra information to better identify senescent cells, but to find negative correlations in all pairwise 458 
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combinations of genes with this methodology was computationally limiting. The comprehensiveness of 459 

our signature panel is also limited by the data available at the time of study and the exact set of tissues 460 

and cells tested influences any conclusions of universality or comparison between species. We do not 461 

expect our signatures to negate the need for large scale future efforts such as SenNet21. We instead 462 

expect our work to be complementary and assist these efforts. 463 

 This work comprehensively identified gene expression programs and signatures of senescent 464 

cells that are stratified by species, tissue, and cell type and used them to broadly characterize senescent 465 

cells in mice and humans. We created SenePy: a computational platform that assigns a senescence 466 

score to individual cells in single-cell transcriptomic data, which can serve as a resource to uncover cell-467 

type and tissue-specific mechanisms of cellular senescence in vivo.  468 

 469 
 470 
 471 

METHODS 472 

Data collection  473 

Single-cell RNA mouse data were collected from the Tabula Muris Senis atlas (ref). Tabula Muris Senis 474 

consists of single-cells from 30 mice from 1 to 30 months of age taken from 19 tissues. Human single-475 

cell data were collected from 7 studies. The liver data were obtained from five donors ranging from 21 to 476 

65 years old29. Single skin cells were obtained from 6 patients ranging in age from 18 to 48 years old25. 477 

Lung data were collected from 17 donors ranging from 21 to 72 years old28. Human heart cells were taken 478 

from 14 patients ranging from 40 to 75 years old26. Human hippocampal cells were collected from 37 479 

patients ranging from newborn to 92 years old23. These tissue-specific datasets were given priority for 480 

downstream analysis in their respective tissues, but we used additional multi-tissue atlases. Cells from 481 

the Human Cell Landscape came from 51 donors ranging from 21 to 66 years old and from 25 different 482 

tissues27. Cells from Tabula Sapiens came from 15 patients ranging from 22 to 74 years of age24. 483 

 484 

Data annotation 485 
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The data were available in a range of formats from fastq to processed and annotated count data. Data 486 

from Tabula Muris Senis, Tabula Sapiens, and the human heart study were provided with cell type 487 

annotations. The Lung and hippocampal studies provided unannotated counts. Fastq data were 488 

processed through 10x CellRanger or the Dropseq protocol (https://mccarrolllab.org/dropseq/) depending 489 

on the technology used to prepare the libraries. All fastqs were aligned to GRCh38. Processed single-490 

cell counts were handled with Scanpy42. Cells were filtered out if they had a relatively low or high number 491 

of detected genes or high relative proportion of mitochondrial reads (thresholds varied based on dataset 492 

distribution). We used a variety of methods to annotate cell types. Since the Human Cell Landscape 493 

contained many tissues and cell types, we transferred the annotations from Tabula Sapiens using 494 

scANVI43 after processing the raw data with scVI-tools44. If a cluster, which was called by the Leiden 495 

algorithm on the scVI embeddings, had lower than 85% cell-type agreement, those cells were not used 496 

in downstream analysis. Cell types from the liver, skin, and lung studies were annotated similarly but 497 

clusters with poor label transfer were instead manually annotated using known cell-type markers45. For 498 

lack of a reference dataset, the hippocampal data were annotated exclusively using known markers. 499 

Annotations were harmonized across datasets (e.g., “kidney endothelial cell” changed to “endothelial 500 

cell”) and mapped back on to the raw counts. Cells lacking annotations because they failed QC or label 501 

transfer were discarded. For total dataset visualizations, the species-specific raw data were integrated 502 

using scVI and the embeddings were projected via UMAP. 503 

 504 

Mouse cell-type specific age-dynamic genes  505 

Mouse data came from mice aged 1, 3, 18, 21, 24, 30 months (m) but age availability varied by tissue. 506 

Cells were stratified by tissue, age, and cell type. The starting baseline was chosen as 3m if there were 507 

at least 200 3m cells, if not the starting baseline was aggregated with 1m cells. Likewise, 30m was 508 

prioritized for old cells if at least 200 were present, otherwise the old baseline fell back to 24m. The 509 

proportion of cells expressing one or more UMI copies of a gene was determined in each population 510 

(Equation 1). Zero values at 3m or 1m were imputed with the inverse of the cell count (𝑝!"# =511 
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	𝑛$%$!&	(#&&)*+). Young cells were used as baselines and the ratios in old cells were determined relative to 512 

them (Equation 2). Genes were only considered dynamic if they were found in less than 5% of young 513 

cells (𝑝,-|+- < 0.05), found in less than 20% of old cells (𝑝/0-|,1- < 0.2), were in greater than 1% of old 514 

cells (𝑝/0-|,1- > 0.01), increased at least 0.5% (𝑝/0-|,1- − 𝑝,-|+- > 0.005), and the old to young ratio 515 

was greater than 2.5 or the gain was greater than 5% (𝑟/0-|,1- > 2.5	|	𝑝/0-|,1- − 𝑝,-|+- > 	0.05). These 516 

thresholds assume that the proportions of cells expressing senescence marker increase with age but 517 

remain in the minority. Dynamic genes are cell-specific markers and do not account for small changes to 518 

baseline levels of constitutively expressed genes, which may be senescence-associated genes but are 519 

not specific markers. 520 

 521 

𝑝!"# = 	𝑛"#2#!(#&&) 𝑛$%$!&	(#&&)⁄  522 

(Equation 1) 𝑝!"#: the proportion of cells positive for a gene at a given age. Where 𝑝!"# = 	𝑛"#2#!(#&&) is 523 

the number of cells positive for a given gene and 𝑛$%$!&	(#&&) is the number of total cells in the same 524 

population. 525 

𝑟,1-|/0- =	𝑝,1-|/0- 𝑝,-|+-⁄  526 

(Equation 2) 𝑟,1-|/0-: ratio of old cells positive for a gene relative to young cells. Where 𝑝,1-|/0- 527 

represents the proportion of cells positive for a gene in cells from 30- or 24-month-old mice and 𝑝,-|+- 528 

are the proportion of cells positive for the gene from 3- or 1-month mice. 529 

 530 

 531 

Human cell-type specific age-dynamic genes 532 

Human ages were binned into 10-year bins to account for the continuous range of human ages. Bins 533 

ranged from 8 (8-17 years old) to 88 (88-97 years old). To be considered for further analysis a cell-type 534 

population must 1) have three unique bins with at least 100 cells in each bin or a bin <=28 and a bin >=58 535 

with at least 100 cells and 2) have a bin >=48 with at least 100 cells. These criteria were required in 536 
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individual datasets because downstream analysis avoids confounding effect from multiple studies. Cells 537 

were stratified by dataset, tissue, age bin, and cell type. The proportions of cells expressing genes were 538 

calculated for each age bin (Equation 1). The young starting populations were selected from the 8, 18, 539 

or 28 10-year bins if one was present, else the starting proportion was calculated by regressing the age 540 

and known proportion values and solving for 18 years (Equation 3). The old ending populations were 541 

selected from the oldest age bin (𝑝%&3). Genes were only considered dynamic if their age by proportion 542 

slope was positive (Equation 4), their maximum positivity was less than 25% (𝑝-!4 	< 	0.25), their starting 543 

proportion was less than 5% (𝑝5%62" 	< 	0.05), their gain was greater than 1.5% (𝑝%&3 − 𝑝5%62" > 0.015), 544 

the maximum proportion was not two times higher than the ending proportion (2𝑝-!4 	< 	 𝑝%&3 	), and the 545 

maximum proportion had to be in the 48 year bin or higher (max(𝑝48+) = 𝑝max).  546 

 547 

cov(age, 𝑝) = 	
∑(age7 − age)(𝑝7 − 𝑝)

𝑛
 548 

var(age) = 	
(age7 − age)/

𝑛
 549 

𝑝+8 =
18 ⋅ cov(ag𝑒, 𝑝)

var(𝑎𝑔𝑒) + 𝑝̅ −
𝑎𝑔𝑒FFFFF ⋅ cov(age, 𝑝)

var(𝑎𝑔𝑒)  550 

(Equation 3) 𝑝+8: extrapolated proportion of cells positive in the 18-year bin. Where cov(𝑎𝑔𝑒, 𝑝) 551 

represents the covariance between age and proportion 𝑝, var(𝑎𝑔𝑒) is the variance of age, and 𝑛 is the 552 

sample size. 553 

𝑚 =	
𝑐𝑜𝑣(𝑎𝑔𝑒, 𝑝)
𝑣𝑎𝑟(𝑎𝑔𝑒)

 554 

(Equation 4) 𝑚: slope of the linear regression line for the proportions of a given gene with age. See 555 

equation 3. 556 

 557 

 558 

Identifying novel senescence signatures from mice 559 
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Age-dynamic genes for each tissue-cell-type were found as described earlier. Count data were subset 560 

by these genes and further subset to only include cells from mice >21m. Subsets with fewer than 100 561 

cells were not tested further. The count matrixes were binarized to represent cell by gene positivity. Every 562 

pairwise combination of genes was tested for Pearson’s correlation (Equation 5). To test the statistical 563 

significance, each pairwise comparison was randomly permutated 500 times. Pairwise correlations were 564 

kept if they had a positive r value and if their r value was at least 0.05 higher than the respective q99 r 565 

value from the random permutations (Equation 6). The filtered correlations were used to construct 566 

networks with NetworkX (https://networkx.org/). The Louvain algorithm was used to group genes into 567 

clusters. Network clusters with fewer than 5 genes or genes with no correlations were removed. Genes 568 

loosely connected to clusters were removed if they had fewer than logL𝑛(&6)$#9 "#2#)M (Where 𝑛(&6)$#9 "#2#) 569 

is the number of genes in a Louvain cluster) connections to other genes in the network. The cleaned 570 

clusters are hereby referred to as hubs and the aggregated hubs for each cell type as a cell-specific 571 

signatures. 572 

 573 

𝑟7,< =
∑ L𝑥=,7 − 𝑥>OML𝑥=,< − 𝑥?OM2
=@+

P∑ L𝑥=,7 − 𝑥>OM
/2

=@+ Q∑ L𝑥=,< − 𝑥?OM
/2

=@+

 574 

(Equation 5) 𝑟7,<: Pearson’s correlation coefficent for dynamic genes 𝑖	and 𝑗. Where 𝑥=,7 represents the 575 

binary expression value of gene 𝑖 in cell 𝑘; 𝑥=,< is the binary expression value of gene 𝑗 in cell 𝑘; and n is 576 

the total number of cells in the population. 577 

𝑡 = 	𝑞AAL𝑟perm(7,<)M + 0.05  578 

𝑟7,< > 𝑡	𝑎𝑛𝑑	𝑟7,< > 0 579 

(Equation 6) 𝑡: significance threshold. Where 𝑟perm(7,<) represents the distribution of correlation 580 

coefficients for 500 random permutations of gene 𝑖 and 𝑘.  𝑞AA represents the 99th percentile value of this 581 

distribution. The inequality depicts one criteria of gene selection based on 𝑡. 582 
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 583 

Identifying novel senescence signatures from humans 584 

Age-dynamic genes for each dataset-tissue-cell-type were found as described earlier. Count data were 585 

then subset by these genes and further subset to only include cells from patients 48 years of age or older. 586 

Significant correlations, networks, hubs, and signatures were generated similarly to those from mice. 587 

 588 

Novel signature comparison 589 

Each signature or hub has a set of genes and corresponding weights for how many connections a gene 590 

shares with other genes. Pairwise cosine similarity was calculated by comparing the union of each gene 591 

list and imputing 0s (Equation 7).For pairwise hypergeometric similarity between two signatures, the 592 

cumulative distribution function for two lists of genes was determined using the genes present in the 593 

original species aggregated counts as the background list (Equation 8). For signature network analysis, 594 

all pairwise hypergeometric sf values (i.e., p-values) were corrected with the Bonferroni method, 595 

converted to − log+1 𝑠𝑓(%99#($#3, and used as similarity scores between signatures if they were significant.  596 

 To find genes represented in the signatures more than expected by chance, we used a random 597 

permutation method. A set of hubs with random genes identical in size to the original signatures were 598 

generated 1000 times from the background set of expressed genes in the dataset. A distribution was 599 

created representing the number of times a gene was found in each of the 1000 permutations. The actual 600 

number of signatures a gene was found in was compared to this distribution to determine significance.  601 

 602 

𝑐𝑜𝑠𝑖𝑛𝑒L𝐿7 , 𝐿<M = 	
∑ 𝑎7,=𝑎<,=2
=@+

Q∑ 𝑎7,=/2
=@+ Q∑ 𝑎<,=/2

=@+

, 𝑤ℎ𝑒𝑟𝑒	𝑎7,= =	 ]
𝑤7𝑘		𝑖𝑓	𝑔= ∈ 	𝐿7
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  603 

(Equation 7) 𝑐𝑜𝑠𝑖𝑛𝑒L𝐿7 , 𝐿<M: cosine distance between two signatures 𝐿7 and 𝐿<. Where 𝑎7,= represent the 604 

weight of gene 𝑘 in gene list 𝑖, and is equal to the corresponding connection value 𝑤7𝑘 if gene 𝑔= is in 605 
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gene list 𝑖, or 0 otherwise. Where n represents the total number of genes in the union of signatures 𝐿7 606 

and 𝐿<. 607 

𝑠𝑓 = 1 − 𝑃L`𝐿7 ∩ 𝐿<` − 1, |𝑁|, |𝐿7|, `𝐿<`M = 	1	–	c
LD"= M d

E*D"
D#*=

e

dED#e

4*+

=@1
 608 

(Equation 8) 𝑠𝑓: survival function of the hypergeometric distribution 𝑃(𝑥, 𝑁, 𝐼, 𝑗). Where 𝐿7 and 𝐿< 609 

represent two gene lists and 𝑁 represents the background gene list. 𝑥 is equal to the cardinality of the 𝐿7 610 

and 𝐿< intersection minus 1.  611 

 612 

Gene set enrichment – GO, KEGG, transcription factor binding 613 

We used the Enrichr python API gseapy46 for gene set enrichment against the GO and KEGG databases 614 

(refs). The background set of genes used came from all expressed genes from their respective datasets. 615 

Only FDR-corrected p-values below 0.05 were considered significant. A custom “senescence” gene set 616 

was added which was comprised of the union between all literature-based senescence markers collected 617 

for this study and senMayo20.  618 

For transcription factor binding analysis, the regions 1000 bp upstream and 500 bp downstream 619 

of the transcription start sites were extracted for each gene in a gene list. JASPAR 2020 core vertebrate 620 

non-redundant position frequency matrices were us as the input motifs (ref). The extracted regions were 621 

examined for relative motif enrichment using the MEME-suite simple enrichment analysis.  622 

Only Benjamini-Hochberg-corrected p-values below 0.05 were considered significant. 623 

 624 

Scoring cells using SenePy 625 

Gene signatures are comprised of genes and their respective number of edges in their network (termed 626 

importance value). We developed SenePy, a lightweight and fast scoring algorithm specific for our gene 627 

sets that borrows from Seurat’s AddModuleScore() and Scanpy’s tl.score_genes(). SenePY is built in 628 

python and integrates well with scanpy and anndata. SenePy has four core functions: load_hubs(), 629 
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translator(), score_hub(), and score_all_cells(). The load_hubs() function initializes the hub object which 630 

includes the hubs themselves along with additional metadata, such as each hub’s enrichment for known 631 

senescence genes. Depending on the input data and its respective reference, the optional translator() 632 

function can be used to harmonize gene symbols based on known gene aliases. The score_hub() 633 

function takes one input hub and anndata and returns a list of scores for each cell. The score_all_cells() 634 

takes one input hub and anndata and stratifies the data based on input categories, for example, to score 635 

individual cell types separately to avoid confounding the score. 636 

 The scoring happens in multiple steps. First, the mean is calculated for each gene in the dataset 637 

across all cells (Equation 9). All genes are ranked by their mean and split into nbins (default: 25) 638 

expression bins (Equation 10). Next, nctrl_size (default: 50) background genes are selected for each input 639 

signature gene from its corresponding expression bin (Equation 11). The counts data are then optionally 640 

binarized (default: True) to represent the binary senescence cellular state and the gene-cell positivity 641 

from which the underlying networks were derived . Next, the counts are optionally amplified (Default: 642 

True) by their corresponding importance value from the input signature (e.g., if [Cdkn2a, 2] is in the 643 

signature all Cdkn2a values would be multiplied by 2) (Equation 12). Then the cell-by-signature-gene 644 

matrix is averaged across the cell axis and subtracted from the mean of the cell-by-background matrix 645 

also averaged across the cell axis (Equation 13).  646 

 647 

𝑚< = (1/𝑛)c𝑋7<

2

7@+

 648 

(Equation 9) Where 𝑋 is a matrix which contains the expression level of gene 𝑗 in cell 𝑖 and 𝑚< is the 649 

average expression of gene 𝑗 across all cells.  650 

B+,  B/,   … ,  BF_HIFJ 651 

(Equation 10) Where 𝐵2_K72) is the number of bins used to categorize every gene based on their mean 652 

expression. 653 
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𝑠 ∈ 𝐵= , 	 for 𝑠 ∈ 𝑆 654 

𝐵𝐺) = {𝑔	|	𝑔 ∈ 𝐵=
(2$%&'	)#*+)}, 𝑔	 ≠ 𝑠	 655 

𝐵𝐺 =r𝐵𝐺)
)∈M

 656 

(Equation 11) 𝐵𝐺: background gene set. Where 𝑆 is the gene signature and 𝑠 is a gene within 𝑆. 𝐵= is a 657 

subset of genes that fall within the k-th expression bin based on their mean expression. Where 𝑔 is a 658 

background gene selected from expression bin 𝐵= and 𝑛($9&	)7N# is the number of background genes 659 

selected for each signature gene 𝑠 from the corresponding expression bin. Where 𝐵𝐺) is a set of 660 

background genes randomly selected from the same expression bin  𝐵= as the signature gene 𝑠. 𝐵𝐺 is 661 

the union of all background genes selected for each signature gene 𝑠.  662 

𝑌7< =	t1	𝑖𝑓	𝑋7< > 	0, 0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒u 663 

𝑍7< =	𝑌7< ∗ 	 𝐼< 664 

(Equation 12) 𝑍7<: modified expression matrix. Where 𝑌7< is the optionally binarized expression matrix 𝑋7< 665 

and 𝐼< represents the optional importance values for gene 𝑗. 666 

𝑌>,MFFFF =
1
|𝑆|

c𝑍7,)
)∈M

, 	 for 𝑖 ∈ all cells 667 

𝑌>,OPFFFFFF =
1

|𝐵𝐺|
c 𝑍7,"
"∈OP

, 	 for 𝑖 ∈ all cells 668 

ScoreI  =  YQ, RFFFFF  −  YQ, STFFFFFF,  	  for  i  ∈  all cells 669 

(Equation 13) Score7: SenePy score for cell 𝑖.  Where |𝑆| and |𝐵𝐺| are the cardinality (number of 670 

elements in the set) of gene signatures 𝑆 and 𝐵𝐺. Where 𝑍7,) and 𝑍7," represent the optionally amplified 671 

expression values of the genes in the gene signature 𝑆 and background gene set 𝐵𝐺, respectively.  672 

 673 

 674 

Senescence burden in spatially resolved transcriptomics 675 
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Data was preprocessed in Scanpy and pots with fewer than 1000 detected genes were removed. Cells 676 

were normalized to 10,000 counts and log converted. The 8 heart-specific mouse hub signatures were 677 

used to score the spatially resolved mouse hearts independently using senepy.score_hub() with a 678 

translator() and with binarize and importance set to False because Visium data has higher gene counts 679 

than single-cell data. Outlier spots were identified in each sample if they fell 3 standard deviations outside 680 

the mean for their respective sample distribution in addition to a combined sample distribution (𝑂𝑢𝑡𝑙𝑖𝑒𝑟 >681 

	𝜇	 + 	3𝜎). The outliers from each signature were merged to determine if any given spot was an outlier. 682 

Relative senescence burden is presented as the proportion of outlier spots. For the mouse brains, we 683 

used the top 150 most common genes in all the signatures because we had no specific mouse brain 684 

signatures. To determine spatial autocorrelation, we used the ESDA python package 685 

(https://pysal.org/esda/). The weights of the autocorrelation were weighted by the inverse of the 686 

Euclidean distance between two spots with a value of 1 to denote an outlier and 0 for normal spots. Three 687 

is used as a maximum value for Euclidean distance and the weights for distances beyond three are set 688 

to 0 (Equation 14). 689 

𝐼 =
𝑛∑ ∑ � 1

𝑑(𝑖, 𝑗)�<7 ⋅ δ(𝑑(𝑖, 𝑗) ≤ 3)(𝑥7 − 𝑥̅)L𝑥< − 𝑥̅M

∑ ∑ � 1
𝑑(𝑖, 𝑗)�<7 ⋅ δ(𝑑(𝑖, 𝑗) ≤ 3)∑ (𝑥7 − 𝑥̅)/7

,	p-value = 1 − LΦ(𝐼)M 690 

(Equation 14) 𝐼: Moran’s I. Where 𝑛 is the number of spots; 𝑑(𝑖, 𝑗) is the Euclidean distance between 691 

spot 𝑖 and spot 𝑗; 𝛿(𝑑(𝑖, 𝑗) ≤ 3) is 1 if the distance is greater or equal to 3 and otherwise 0; and 𝑥7 and 𝑥< 692 

are the values at spot 𝑖 and spot 𝑗. Φ(𝐼) is the CDF of the standard normal distribution at the Moran’s I 693 

value. 694 

 695 

Senescence burden in COVID-19 mortality 696 

Single-cell lung data from 20 patients that died from COVID-19 and 7 control patients were collected from 697 

an available atlas32. Doublets were removed from each individual sample using SOLO47 in combination 698 

with SCVI-tools. Cells with low counts or high mitochondrial reads were removed. SCVI-tools was used 699 
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to integrate the 27 samples, using sample ID as a categorical covariate and mitochondrial read percent, 700 

ribosomal read percent, and total counts as continuous covariates. Cell types were manually annotated 701 

using known cell-type markers (PanglaoDB). Cell types were scored with respective cell type hubs from 702 

SenePY (e.g., epithelial cells were scored with ciliated epithelial, basal cell, club cell, and pneumocyte 703 

hubs) using the senepy.score_all_cells() function. Cells were divided and scored as individual subtypes 704 

(e.g., AT1, AT2, airway epithelium). Cell outliers were identified in each sample if they fell 3 standard 705 

deviations outside the mean within every respective cell-type distribution (𝑂𝑢𝑡𝑙𝑖𝑒𝑟 > 	𝜇	 + 	3𝜎). Outliers 706 

were merged across hubs to identify all cells with potential senescence burden and output as a proportion 707 

of total cells. 708 

 709 
 710 
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Figure 1. Known senescence markers are cell-type-specific and poorly characterize in vivo 1 

cellular senescence. (A) There is an insignificant overlap between a universal organismal aging 2 

signature and previously reported senescence markers (p = 0.58, Hypergeometric). The universal 3 

signature are genes present in at least 50% of the cell-specific gene sets elucidated by differential 4 

expression between young and old cells previously. (B) A histogram depicting the 3-month to 24-month 5 

ratio of all cells expressing every gene in the Tabula Muris Senis dataset. The top 5% of the distribution 6 

is marked by the dashed line and known senescence markers above this are labeled. (C, D) UMAPs 7 

(left) representing CDKN2A+ (p16ink4a encoding gene) cells from the mouse and human datasets. Cells 8 

from 24-, and 30-month mice are denoted old while 1-, and 3-month mice are young. UMAPs (right) 9 

showing all cells in the datasets and are labeled by broad cell classifications. Bar graphs show the 10 

percentage of CDKN2A+ cells relative to all cells in the respective datasets. (E, F) Cell-specific maps of 11 

marker dynamics in mice and humans. Vertical dashed lines represent the start of a tissue and cell 12 

types from that tissue are classified and depicted by shape. Multiple cell types belonging to the same 13 

class are overplotted. Gain represents the percent increase of cells expressing the marker relative to 14 

young organisms. Bar plots depict the percentage of cell populations which the respective gene is a 15 

suitable marker and they are colored by senescence-associated function. 16 

 17 

Figure 2. De novo cell-type specific signatures derived algorithmically from single-cell 18 

transcriptomes. (A) Overview of the algorithm used to define cell-specific signatures from mice and 19 

humans (see methods). Workflow ends with a cosine signature comparison used to determine 20 

signature similarity. (B) Example signatures derived from mouse cardiomyocytes and human 21 

hippocampal choroid plexus cells. Each node represents a gene and the connections represent positive 22 

cell co-positivity. Connections are weighted by Pearson’s R. The colors represent distinct hub 23 

signatures within the overall cell signatures. (C, D) Representative diagram of all derived signatures 24 

from mouse and humans. Each dot represents a signature and is sized by its number of genes. The dot 25 

color is the respective enrichment for each signature compared to previously known senescence 26 
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markers (Hypergeometric). Each signature is connected to its most similar signature and the color of 27 

the connection is based on the cosine similarity. (E) Network similarity analysis of mouse cell-specific 28 

novel senescence signatures and organismal aging signatures. Each shape represents a signature and 29 

lines represent significant similarity between them. Similarity (strength of connections) is defined as -30 

log10(BH-corrected Hypergeometric P). Network is clustered and colored by Louvain’s algorithm. 31 

. 32 

Figure 3. Multiple modes of senescence exist within the same cell populations. (A) Signature 33 

derived from mouse tongue keratinocytes. Each node represents a gene and the connections represent 34 

positive cell co-positivity. Connections are weighted by Pearson’s R. Nodes are colored by Louvain-35 

based assignment to distinct hub signatures. (B) GO and (C) KEGG gene set enrichment of the two 36 

keratinocytes hub signatures. The “senescence” gene set is the pre-defined senescence markers used 37 

in this study. Horizonal dashed line represents FDR p = 0.05. (D) Pairwise enrichment of the two 38 

keratinocyte hubs against all other senescence signatures. (E) The strip plot depicts the score of each 39 

keratinocyte determined by SenePy using the forementioned hubs. Horizontal dashed lines represent 40 

three standard deviations above the mean. (F) Temporal kinetics of the proportion of cells scored three 41 

standard deviations above the mean by SenePy for the two keratinocyte hubs. (G) Hierarchical 42 

clustering of fibroblast hub signatures from mouse lungs, tracheas, and hearts based on cosine 43 

similarity. (H) Temporal kinetics of the proportion of lung, trachea, and heart fibroblast cells scored high 44 

by SenePy using their respective signatures. (I) GO gene set enrichment of the most similar trachea 45 

and lung fibroblast hubs. Gene sets specific to the trachea hub are colored. All enrichment plots use 46 

BH-corrected Fisher’s Exact P values. 47 

 48 

Figure 4. Cell-specific signatures are unique but share some genes and biological pathways. (A) 49 

Plot depicting the most commonly found genes from the novel mouse cell-specific signatures. 50 

Significance was determined from 1000 random sets of signatures equal in size from the background 51 

set of genes. (B) The 12 most enriched KEGG pathways from a “universal” signature comprised of 52 
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genes with a high mouse signature prevalence (p < 0.01). (C) The most commonly enriched KEGG and 53 

GO gene sets in every mouse signature. The bars note the percent of signatures enriched for the given 54 

pathway. (D) The most commonly enriched transcription factor motifs in the promotors of signature 55 

genes from mice. Bars represent the percent of signatures enriched for the given pathway. (E) Plots 56 

depicting the most commonly found genes from the novel human cell-specific signatures. (F) The 12 57 

most enriched KEGG pathways from a “universal” signature comprised of genes with a high human 58 

signature prevalence (p < 0.04). (G) The most commonly enriched KEGG and GO gene sets in every 59 

human signature. The bars note the percent of signatures enriched for the given pathway. (D) The most 60 

commonly enriched transcription factor motifs in the promotors of signature genes from humans. Bars 61 

represent the percent of signatures enriched for the given pathway. 62 

 63 

Figure 5. The cell-specific kinetics of senescent cell accumulation with organismal age. UMAPs 64 

of (A) mouse and (B) human cells depicting broad cell classification and overlayed with cells which 65 

were outliers determined by their SenePy score. (C) The proportional increase of SenePy outlier cells in 66 

old mice (24- or 30-month) relative to 3-month-old mice. (D) The proportion of SenePy human outlier 67 

cells in across age bins. Each row represents 0-16% and grey rectangles note that no data is available. 68 

(E) The fraction of SenPy outliers in individual cell types stratified by heart tissue donor. Age increases 69 

along the x-axis from left to right. 70 

 71 

Figure 6. SenePy identifies ground-truth in vivo senescence more robustly than established 72 

markers of senescence. (A) UMAPs of single-cells from the kidney which were enriched for td-73 

Tomato+ cells. (B) Enrichment analysis of differentially abundant genes in the td-Tomato+ kidney cells. 74 

Gene sets were derived in this study and we also include the SenMayo signature. (C) Density plots 75 

depicting SenePy score distributions calculated in kidney cells using kidney-specific SenePy 76 

signatures. (D) Enrichment analysis of differentially abundant genes in the td-Tomato+ liver cells. (E) 77 

Enrichment analysis of lung tissue genes downregulated after senolytic treatment in mice. Blue lables 78 
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indicate SenePy signatures. (F) Enrichment analysis of gene mRNAs more abundant in irradiated 79 

endothelial cells and (G) fibroblasts. (H) Enrichment analysis of gene mRNAs more abundant in 80 

replicative fibroblast senescence. (I) UMAPs of single-cells from the liver which were enriched for td-81 

Tomato+ cells. (J) UMAP and representative bar graph of td-Tomato+ cells with Cdkn2a+ cells labeled. 82 

(K) UMAPs and representative bar graphs of td-Tomato+ and (L) td-Tomato- cells with Cdkn1a+ cells 83 

labeled. 84 

 85 

Figure 7. SenePy predicts elevated senescence burden in severe disease (A) UMAP showing cells 86 

from uninfected control lungs (n = 7) and patients who died from COVID-19 (n = 22). (B) UMAP of 87 

control cells (left) and COVID-19 cells (right) with SenePy outlier cells labeled. (C) Proportion cells 88 

identified with SenePy from AT1, AT2, and airway epithelial cells (p = 0.004, Mann-Whitney). (D) 89 

Distributions of SenePy score from the major cell lung cell classes. (E) Heatmap with the relative 90 

senescence burden of each cell type in each patient. (F) Representative whole heart H&E staining 91 

overlayed with spatially resolved 10x Visium spots. Yellow spots are identified as senescence outliers 92 

from their SenePy score. Box plot (right) shows the proportion of identified spots at each time point (p = 93 

0.30, one-way ANOVA) (G) The bottom images represent post-MI fibrosis via normalized Col1a1 94 

expression. Scale bars represent 100 µM. The correlation between senescence-like spots and Col1a1 95 

expression for each sample is shown by the right box plot (-log10[Pearson’s R p-value]). (H) The relative 96 

contribution to the overall calculated senescence burden from the 8 hubs used to score the spots (I) 97 

Spatial clustering of the senescence-like spots (-log10[Moran’s I p-value]). Horizontal line represents p = 98 

0.05. (J) Representative H&E image of coronal sections spatially resolved by 10x Visium which were 99 

taken from mice 24h after exposure to LPS. Yellow spots are identified as senescence outliers from 100 

their SenePy score. Summary plot (right) depicts spatial autocorrelation of spots in LPS and saline 101 

treated mice (-log10[Moran’s I p-value]). 102 

 103 
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Supplemental figure 1. (A, B) UMAPs of all mouse and human cells used that are colored by tissue of 104 

origin, age, and sex. 105 

 106 

Supplemental figure 2. (A) Overview of the senescence marker gene set enrichment analysis. Cell-107 

specific organismal aging signatures determined in a previous study were compared to a curated set of 108 

senescence markers taken from multiple studies. (B) The statistical enrichment of every organismal 109 

aging signature for senescence markers. Color represents the significance of enrichment 110 

(Hypergeometric, BH-corrected) and the size of the bar represents the percentage of senescence 111 

markers present in the aging signature. The aligned plot on the right shows the proportion of cells in 112 

each population that were expressing the proliferation marker Ki-67. (C) There is a negative correlation 113 

between senescence gene set enrichment and the proliferation state of a population (p = 0.038, 114 

Pearson’s R). 115 

 116 

Supplemental Figure 3. (A) UMAP representing Cxcl13+ cells in all mouse cells. (B) UMAP (top) of 117 

human skin cells colored by cell type. UMAP (bottom) of human skill cells positive for CDKN2A from 118 

young (age 18-34) and old (age 34-58) donors. Dot plot depicts the percentage of CDKN2A+ cells from 119 

old and young human skin cells. (C) UMAP representing CDKN1A+ (gene that encodes p21cip1) cells in 120 

all mouse and human cells.  121 

 122 

Supplemental Figure 4. Hierarchal clustering of signatures based on gene-set similarity. Similarity is 123 

defined as the inverse of log10(BH-corrected Hypergeometric P) for each pairwise comparison 124 

 125 

Supplemental Figure 5. (A) The proportion of mouse cells expressing Tert and (B) Ki67. (C,D) The 126 

relationship between cell types expressing Tert and Ki67 with their gain in SenePy identified cells. 127 

 128 
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Supplemental Figure 6. (A) Enrichment analysis of gene mRNAs less abundant in mouse muscle 129 

tissue after treatment with a senolytic. Blue lables indicate SenePy signatures. (B) Enrichment analysis 130 

of gene mRNAs more abundant after irradiation induced senescence of cultured endothelial cells.  131 
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A

Fig 1 Known senescence markers are cell-type-specific and poorly 
characterize in vivo cellular senescence. 
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Fig 2 De novo cell-type specific signatures derived algorithmically from 
single-cell transcriptomes.
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Fig 3 Distinct modes and phenotypes of senescence exist within the 
same cell populations
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Fig 4 Cell-specific signatures are unique but share common stress response 
and inflammatory pathways
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Fig 5 The cell-specific kinetics of senescent cell accumulation with organismal 
age
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Fig 6 SenePy identifies ground-truth in vivo senescence more robustly than 
established markers of senescence. 
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Fig 7 SenePy predicts elevated senescence burden in severe disease

Patients (n = 27)
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Supplemental figure 3
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Supplemental Figure 5
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Supplemental Figure 6
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