

1 **SenePy: Unveiling the Cell-Type Specific Landscape of Cellular Senescence through**
2 **Single-Cell Analysis in Living Organisms**

3

4 Mark A. Sanborn^{1,2}, Xinge Wang^{1,2,3}, Shang Gao^{1,2,3}, Yang Dai^{2,3}, Jalees Rehman^{1,2,3,4}

5

6 **Affiliations:**

7 ¹ Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine,
8 Chicago, Illinois, USA

9 ² Center for Bioinformatics and Quantitative Biology, University of Illinois at Chicago, Chicago, Illinois,
10 USA

11 ³ Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, Illinois,
12 USA

13 ⁴ University of Illinois Cancer Center, Chicago, Illinois, USA

14

15 Please address correspondence to:

16 Jalees Rehman, MD (jalees@uic.edu)

17 Department of Biochemistry and Molecular Genetics

18 The University of Illinois, College of Medicine,

19 900 S. Ashland Ave (M/C 669), Chicago, IL, 60607

20 Phone: (312) 996-7670, Fax: (312) 413-0353

21

22

23 **ABSTRACT**

24

25 Senescent cells accumulate in tissues with organismal age and contribute causally to multiple chronic
26 diseases. *In vivo* senescent cell phenotypes are heterogeneous because cellular context and stressors
27 vary by cell type and tissue. Due to the variability of senescence programs, there is no universal
28 method to identify senescent cells and even widely used markers, such as *CDKN2A*, are not
29 ubiquitous. Therefore, we interrogated the *Tabula Muris Senis* mouse single-cell aging atlas and an
30 array of single-cell datasets from human donors that spanned many ages to find cell-specific signatures
31 of cellular senescence. We derived 75 mouse and 65 human senescence signatures from individual
32 cell populations. *CDKN2A* and other markers of senescence were overrepresented in these signatures
33 but there were many novel senescence genes present at higher rates. Within individual cell
34 populations, we observed multiple programs of senescence with distinct temporal and transcriptional
35 characteristics. We packaged the signatures along with a single-cell scoring method into an open-
36 source package: *SenePy*. *SenePy* signatures better recapitulate cellular senescence than available
37 methods when tested on multiple *in vivo* RNA-seq datasets and a *p16^{ink4a}* reporter single-cell dataset.
38 We used *SenePy* to map the kinetics of senescent cell accumulation across 97 cell types from humans
39 and mice. *SenePy* also generalizes to disease-associate senescence and we used it to identify an
40 increased burden of senescent cells in COVID-19 and myocardial infarction. This work provides a
41 significant advancement towards our ability to identify and characterize *in vivo* cellular senescence.

42

43 INTRODUCTION

44 Aging is a key risk factor for many chronic diseases¹. One biological manifestation of organismal
45 aging is cellular senescence (CS), a phenomenon characterized by permanent cell cycle arrest, impaired
46 homeostatic cellular function, and activation of the senescence-associated secretory phenotype (SASP)
47 which involves the release of pro-inflammatory proteins, proteases, and other bioactive paracrine
48 factors². Senescent cells accumulate in tissues with increasing organismal age, but senescent cells are
49 found even in young organisms and can accrue prematurely due to exogenous stressors^{3,4}. Accumulated
50 senescent cells contribute to sterile inflammation, tissue remodeling, and local dysfunction which
51 ultimately drives various pathologies⁵. CS contributes to a wide array of chronic diseases, including
52 cardiovascular disease, neurodegeneration and diabetes⁶⁻⁸. The senescent cell burden in aged
53 organisms also contributes to runaway inflammation and poor outcomes in acute diseases, such as those
54 from coronavirus infection⁹. Targeted clearance of senescent cells with senolytics can mitigate disease
55 severity and increase healthspan⁷⁻¹⁰, but in some contexts their elimination may exacerbate disease¹¹.
56 Despite the growing understanding of the role of cellular senescence in aging and various diseases, *in*
57 *vivo* cellular senescence remains poorly phenotypically and mechanistically characterized^{2, 12}. The
58 majority of CS markers have been identified in cultured cells subjected to experimental conditions that
59 may not accurately represent a living system. More comprehensive sets of markers are required to
60 robustly study cellular senescence in living systems.

61 One of the biggest challenges in studying *in vivo* cellular senescence is the high degree of
62 heterogeneity in which it presents². Senescence has been observed in numerous cell types across all
63 major organs. Senescent cells partially lose their pre-senescence identities and phenotypes but this
64 suggests that the mechanistic paths to the senescent states varies between cell types^{13, 14}. Cells are also
65 subject to various cell-intrinsic and extrinsic stressors which drive senescence. Telomere attrition is a
66 well-known senescence trigger, but telomere-independent DNA damage, oxidative stress, and oncogenic
67 signaling can also induce cellular senescence⁵. Paracrine factors released in the SASP state and cell-
68 surface signaling from senescent cells can induce secondary senescence among otherwise healthy cells

69 in close proximity^{15, 16}. Drivers of senescence shift the transcriptional landscape of senescent cells^{13, 14},
70 but this has been primarily studied in cultured cells. The tissue context or cell identity-specific
71 transcriptional landscapes of cellular senescence have not been fully defined. For example, it is not clear
72 whether the senescence transcriptional programs in skin fibroblasts exposed to UV light differ from the
73 senescence programs of fibroblasts in internal organs protected from light. The heterogeneity arising
74 from different stressors, tissues, and cell types makes it difficult to broadly apply transcriptional signatures
75 of senescence derived from *in vitro* cultured cells which have been removed from their *in situ* tissue
76 environment. There is no universal signature or marker of CS exists². Even the cell cycle arrest inducer
77 p16^{ink4a}, which is widely accepted as one of the most specific markers of cellular senescence, is not
78 always required for senescence induction and its use as a sole marker in transcriptomics data is
79 confounded by the fact that the corresponding *CDKN2A* locus encodes for multiple genes with
80 overlapping sequence identity¹⁷⁻¹⁹. Other markers of senescence may be constitutively expressed in
81 some cell types or upregulated in general with organismal age or inflammation. Recent work has utilized
82 literature screening and transcriptomics to find a gene set that is broadly differentially abundant in
83 senescent cells²⁰, but this does not account for tissue-, cell-, or stress-specific heterogeneity and may
84 not capture all programs of cellular senescence. There remains a need to identify and characterize tissue-
85 and cell-specific cellular senescence programs²¹.

86 In this study, we aggregate and interrogate large-scale single-cell RNA-sequencing datasets
87 across tissues and ages, both in mice and humans to define *in vivo* cellular senescence heterogeneity.
88 We developed a novel algorithmic approach to identify cell-type-specific senescence signatures. We
89 used a p16^{ink4a} reporter mouse model dataset along with other transcriptomics datasets to validate our
90 approach. We have generated the open-source Python package *SenePy*
91 (<https://github.com/jaleesr/senepy>). *SenePy* allowed us to map the kinetics of cellular senescence in
92 many tissues and cell types with respect to organismal age and in the context of disease. Using *SenePy*
93 we were able to identify senescent cells across several tissues and examine similarities as well as tissue-
94 specific and cell-type-specific signatures of cellular senescence.

95

96 **RESULTS**

97 **Known senescence markers are cell-type-specific and poorly characterize *in vivo* cellular**
98 **senescence.** We examined the expression of established CS markers in comprehensive mouse and

99 human single-cell atlases to determine their dynamics with age and their cell-type-specificity. For mouse

100 data, we utilized the *Tabula Muris Senis*²² resource which is comprised of 328K cells from 19 tissues

101 collected between 1 and 30 months of age (**Sup Fig 1A**). The human data utilized in this study are from

102 7 studies²³⁻²⁹ that span 37 tissues from individuals ranging in age from 1 to 92 years old, altogether

103 comprising 1.6M cells (**Sup Fig 1B**). We took the union of *SenMayo*²⁰ (n = 125), which is a recently

104 published list of senescence-associated genes, and a novel curated senescence gene set (n = 110) to

105 establish a panel of 181 experimentally validated CS marker genes (n= 52, hypergeometric p = 6.4x10⁻

106 ⁹⁴). This panel of known or validated senescence markers served as a starting point for our downstream

107 analyses.

108 To assess how this set of senescence markers overlapped with cell-specific and universal

109 organismal aging genes in mice, we compared them to a study that identified 76 cell-specific signatures

110 and a universal aging signature (n = 330 genes) from *Tabula Muris Senis*³⁰ (**Fig 1A**). Only the CS markers

111 *Cd9*, *Ctnnb1*, and *Jun* were present in the universal organismal aging signature (defined by genes

112 upregulated with age in half of the cell types), which can be explained by random chance (hypergeometric

113 p = 0.58). *CDKN2A* (p16^{ink4a} encoding gene), which is widely accepted as one of the most universal and

114 specific markers of CS, was not present in any of the cell-specific organismal aging signatures.

115 Furthermore, only 15 of the 76 cell-specific aging signatures were enriched for CS markers (**Sup**

116 **Fig2A,B**). This observed cell-type-specific CS enrichment is not explainable by known CS dynamics and

117 was negatively correlated to population-specific proliferation, as determined by the proportion of *Mki67*+

118 cells (Pearson's R = -0.24, p = 0.04) (**Sup Fig 2C**). These findings suggest that a universal CS signature

119 may be obfuscated by cellular heterogeneity and that differential expression between subpopulations of

120 cells is not suitable to extract cell-type specific CS markers. Instead, we show that the proportions of cells

121 positive for *Cdkn2a* and other CS markers increase significantly with age in *Tabula Muris Senis* (**Fig 1B**),
122 thus indicating that changes in cell positivity is a more useful metric for identifying dynamic CS genes.

123 We next analyzed the aging dynamics of CS markers across all tissues and cell types in the
124 mouse and human datasets with respect to the proportion of positive cells. Some of the most widely used
125 markers of CS, such as *Cdkn2a* and *Cxcl13*, showed an overall increase in the proportion of cells
126 expressing these genes with age but had tropism for specific tissue and cell types (**Fig 1C,D, Sup Fig**
127 **3A**). Human skin from the face, for example, had appreciable levels of *CDKN2A*⁺ cells in young
128 individuals and a large increase with age (**Sup Fig 3B**). However, other important markers of CS, such
129 as *CDKN1A* (p21^{cip1} encoding gene), were more constitutively expressed in both young and old mice and
130 humans (**Sup Fig 3C**).

131 We examined the dynamics of cellular senescence in 60 mouse and 50 human cell types. Overall,
132 the landscape of all CS markers was highly heterogeneous when stratified by tissue and cell type in both
133 species (**Fig 1E,F**). Only 16 of 1,770 pairwise combinations of cell types showed significant senescence
134 marker gene overlap (Hypergeometric, FDR $p < 0.05$), thus highlighting how senescence program
135 transcription profiles differ widely between tissues and cell types. Cells from the same tissue were most
136 likely to have significant marker overlap (Chi-square, $p = 3.2 \times 10^{-10}$). While fibroblasts from different
137 tissues showed some overlap in senescent cell transcriptional profiles, this was not statistically enriched
138 (Chi-square, $p = 0.2$). The marker found to increase dynamically with age in the largest number of human
139 cell types was *CCL4*, but this marker was only dynamic in 21 of 50 (42%) cell populations. *Ccl5* and *Ccl8*
140 were the most universally dynamic in mice, but only in 33% of cell types. *CDKN2A* was one of the most
141 enriched markers of senescence in both humans and mice, but it was only dynamic in 26% of human
142 and 32% of mouse cell types. These data indicate that there is no universal senescence marker gene set
143 for all tissues and cell types, and that each cell type within each tissue takes distinct transcriptional paths
144 to the senescence state. Instead, our data maps the suitability of known senescence markers in different
145 organisms, tissues, and cells.

146

147 **De novo cell-type specific signatures derived algorithmically from single-cell transcriptomes.** We
148 used an unbiased computational method to identify putative senescence signatures in distinct mouse
149 and human cell populations (**Fig 2A**). These signatures were derived from 47 mouse and 50 human cell
150 types that spanned wide organismal ages. We leveraged the prior biological knowledge that senescent
151 cells accumulate with increasing organismal age but remain a minority population and this allowed us to
152 identify genes that were dynamic with increasing organismal age within each cell population. Using cell-
153 by-gene positivity matrixes with the selected genes and cells, we constructed networks with hubs of
154 genes likely to be expressed in the same cells. Genes not associated with hubs were removed as they
155 likely represented noise or stochastic processes which increase with organismal age but are not directly
156 related to cellular senescence. Some cell types were comprised of multiple distinct signatures which
157 separated during network analysis (**Fig 2B**). In total, we derived 75 mouse and 65 human putative CS
158 cell-type signatures. The signatures contained both genes as well as values which indicate the degree of
159 correlation they have to other genes within the same signature.

160 Cell-type signatures were highly heterogenous but several known markers of CS were enriched
161 in selected cell types, although not in a consistent manner (**Fig 2C,D**). Importantly, similar gene
162 expression signatures (Hypergeometric FDR < 0.05) were more likely to be found between cells from the
163 same tissue (Chi-square, $p = 2.6 \times 10^{-9}$) than between cells of the same cell type (Chi-square, $p = 0.001$).
164 However, there were some exceptions in which signatures from cell types found in multiple tissues shared
165 high similarity. For example, senescent fibroblasts found in mouse lungs were most similar to senescent
166 fibroblasts from mouse tracheas and happened to also share the overall highest similarity between any
167 two mouse senescent cell type signatures. However, fibroblast signatures taken from all of the tissues
168 were not more likely to similar to each other (Chi-square, $p = 0.3$). Overall, the signatures did not form
169 distinct clades when clustered based on similarity, emphasizing heterogeneity and suggesting tissue-
170 specific influences on CS signatures may be more influential than universal drivers of CS (**Sup Fig 4**).

171 Many cell-type signatures contained overlapping genes despite the high degree of overall
172 signature heterogeneity (**Fig 2E**). There were 387 of 1081 (36%) mouse cell-type-signature pairs that

173 shared significant overlap compared to 16 out of 1770 (0.9%) when using established markers. Based
174 on their genetic profile, cell-type signatures clustered distinctly with each other but not with organismal
175 aging signatures. Importantly, the previously defined set of unspecific senescence markers was more
176 closely associated with the newly derived signatures and fell within the same neighborhood cluster.
177 These observations indicate that the signatures we derived share some underlying genetic characteristics
178 despite being highly distinct and that these signatures likely represent bonified *in vivo* CS programs.
179 Therefore, we developed the open-source *SenePy* Python software package to score single-cells based
180 on their expression of these CS signature genes. *SenePy* rapidly processes thousands of cells and
181 provides relative senescent scores for every cell within a given population.

182

183 **Distinct modes and phenotypes of senescence exist within the same cell populations.** Cell
184 populations are exposed to multiple stressors and therefore may harbor multiple independent modes of
185 senescence. We observed that multiple cell-type signatures consisted of correlated gene hubs that
186 clustered during network analysis (**Fig 2B, 3A**). Of the 46 mouse cell populations with derived cell-type
187 signatures, 24 contained multiple gene hubs. From 47 human cell populations, 14 signatures were
188 comprised of multiple hubs. Multiple signature hubs likely represent modes of CS with distinct kinetics
189 and gene expression patterns. For example, aging mouse tongue keratinocytes consisted of two hubs,
190 both enriched in established CS marker genes (**Fig 3A**). Gene enrichment analysis indicated different
191 phenotypes and functional roles between cells expressing these separate hubs (**Fig 3B,C**). One of the
192 tongue keratinocyte hubs was more proinflammatory in nature and primarily enriched for immune cell
193 chemotaxis, cytokine, and TNF signaling pathways, typical of the senescence-associated secretory
194 phenotype. We have termed this “type-A” senescence. The other, “type-B”, was enriched for innate
195 immune processes and pathways that typically respond to pathogenic stimuli, for example, the NOD-like
196 receptor signaling pathway (Fisher’s Exact FDR $p = 10^{-8}$). These observations suggest that these
197 different modes of senescence drive different inflammatory pathways and may contribute differentially to
198 sterile inflammation. Both type-A/B tongue keratinocyte gene hubs were most similar to gene signatures

199 from tongue basal cells, further emphasizing the importance of tissue context on the modes of
200 senescence. However, they were similar to other hubs from multiple tissues and cell types (**Fig 3D**),
201 either presenting as type-A or type-B senescence hubs but not both, suggesting this multimodal pattern
202 is not restricted to tongue keratinocytes. Next, we used *SenePy* to score tongue keratinocytes based on
203 these type-A and type-B signatures. The number of cells that were outliers ($> 3\sigma + \mu$) in their signature-
204 specific distributions increased significantly as a function of organismal age (**Fig 3E,F**), indicating a higher
205 number of senescent keratinocytes in old mouse tongues compared to young. The increase in senescent
206 cells with age followed a similar pattern in both CS programs but the type-B senescent cells appeared
207 before type-A senescent cells temporally and also reached higher percentages.

208 We next examined senescent fibroblasts from three different tissues to determine the CS
209 characteristics of similar cell types in different contexts. The mouse fibroblasts from hearts, lungs, and
210 tracheas each had two distinct CS signature hubs. Most fibroblast hub signatures shared little genetic
211 similarity and high cosine distance (**Fig 3G**). The senescent cell gene hubs with the highest pairwise
212 similarities were present in the cells of the lungs and trachea, possibly indicative of the spatial proximity
213 and function in the respiratory system may have resulted in similar senescence phenotypes. Functionally,
214 these similar hubs in lungs and trachea shared common biological processes, such as inflammatory
215 response, cytokine signaling, and immune cell chemotaxis (**Fig 3H**). However, the trachea hub was
216 uniquely and highly enriched for genes involved in B-cell signaling, neutrophil activation, and lymphocyte
217 proliferation. When the fibroblast populations were scored with *SenePy*, they showed distinct temporal
218 kinetics (**Fig 3I**). In all cell populations, there was a small proportion of senescent cells in young mice and
219 a drastic increase in old mice. The biggest increase in the proportion of senescent cells occurred between
220 the ages of 18 and 24 months. Interestingly, cells identified using the most similar trachea and lung hubs
221 had comparable temporal kinetics and nearly identical high proportions of senescent cells in 24-month-
222 old mice. Senescent fibroblast populations in the heart and lungs also followed parallel kinetics despite
223 greater gene and ontological distance. Together, these results suggest multiple modes of senescence
224 even within the same populations and that these modes are temporally and phenotypically distinct.

225

226 **Cell-specific signatures are unique but share common stress response and inflammatory**
227 **pathways.** We explored the senescence markers we derived for gene and ontological commonality to
228 determine whether there are universal senescence signatures. No gene was present in every signature
229 or hub, but selected genes were statistically overrepresented (random permutations) in the signatures
230 (**Fig 4A**). There were 29 genes with greater than 25% prevalence ($n \geq 12$, $p \leq 0.0014$) in the 47 mouse
231 cell types tested. The most common gene, and the only one above 50% prevalence, was *Hba-a1*, which
232 was present in 28 (60%, $p = 5 \times 10^{-5}$) of the 47 signatures. For comparison, *Cdkn2a* (gene that encodes
233 p16) was also overrepresented in the data but only present in 12 signatures (25.5%, $p = 0.0014$). Among
234 other known senescence markers, multiple Bcl2 family genes, which are common senolytic targets, were
235 overrepresented in these data. Interestingly, along with *Hba-a1*, the hemoglobin subunits *Hba-a2*, *Hbb-*
236 *b1*, and *Hbb-b2* were among these most representative genes, despite the absence of erythrocytes in
237 the upstream analysis. Genes present in 8 or more signatures ($n = 141$, $p < 0.01$ by random permutation)
238 were enriched for multiple biological processes involved in inflammation, immunity, cytokine signaling,
239 and chemotaxis (**Fig 4B**). The NF-kappa B signaling pathway, a known driver of cell senescence, was
240 among the most commonly enriched pathways (KEGG, BH-corrected $p = 0.0004$), emphasizing that NF-
241 kappa B plays an important role in some programs of *in vivo* senescence. However, only 9 of the 47
242 signatures were individually enriched for NF-kappa B signaling, indicating that it is far from universal (**Fig**
243 **4C**). Therefore, to test for transcription factors that might be active, we tested our signatures for TF
244 binding enrichment in their gene promoters (**Fig 4D**). The most universally enriched binding motif was
245 RREB1, which was enriched in 38 of 47 signatures. Additionally, we found 46 other transcription factors
246 enriched in over 50% of the mouse signatures.

247 In human cells, only two genes were present in >25% of the human senescence signatures (**Fig**
248 **4E**): Myosin light chain 9 (*MYL9*) and matrix metallopeptidase 9 (*MMP9*). *MMP9* is a known SASP
249 component and is present in our curated set of senescence markers. In comparison, *CDKN2A* was only
250 present in 8 of 51 signatures but still higher than what would be expected by random chance ($p = 0.01$).

251 There were an additional 222 genes present in 8 or more of the cell types. Genes present in more
252 signatures than expected by chance ($p < 0.05$) were enriched for DNA replication and repair, chemokine
253 signaling, cell cycle inhibition, NF-kappa B signaling, and other biological pathways (**Fig 4F**). When
254 signatures were tested individually, the most commonly enriched pathways included neutrophil-mediated
255 immunity, platelet degranulation, cytokine signaling pathways, and other inflammation and immune
256 pathways (**Fig 4G**), consistent with SASP.

257 The most universal genes and pathways active in the cell-type signatures from both species
258 shared some characteristics. There were 46 common genes that were enriched in both the mouse and
259 human cell-type signatures. This was only a marginal overrepresentation compared to random chance
260 (Hypergeometric, $p = 0.09$), suggesting low gene-wise concordance between species. *CDKN2A*, *CXCR2*,
261 and *CCL3* were the only common genes that were previously established senescence markers. However,
262 the pathway concordance between species was high and both sets of common genes were enriched for
263 32 common pathways, such as NF-kappa B signaling, AGE-RAGE signaling, and chemokine signaling.
264 Likewise, eight of the top 20 most commonly enriched transcription factors from mouse signatures were
265 also commonly enriched in human signatures (**Fig 4H**). This suggests that core senescence pathways
266 between species are conserved but the individual genes that are enriched in senescent cells show a high
267 degree of genetic variation. Together, these data indicate that our *de novo* cell-type signatures are
268 enriched for known senescence phenotypes and share some commonality between cell types and
269 species despite their high degree of heterogeneity.

270

271 **The cell-specific kinetics of senescent cell accumulation with organismal age.** We next used
272 *SenePy* to determine the proportion of senescent cells in distinct populations from young and old
273 organisms. The numbers and proportions of cells identified as senescent increased drastically with age
274 in both mice (**Fig 5A**) and humans (**Fig 5B**) overall but showed distinct cellular tropism and kinetics.
275 Within the tested mouse cells, kidney epithelial cells had the highest proportion of senescent cells at old
276 age, followed by tracheal fibroblasts (**Fig 5C**). Out of the 47 tested cell populations in humans with

277 appreciable senescence signatures, type II pneumocytes had the highest percentage of senescent cells
278 reaching a level of greater than 11% in patients aged 68-77. This was followed by several other
279 populations of skin and lung cells (**Fig 5D**). However, in the human cells we observed temporal
280 heterogeneity between patients. For example, cardiomyocytes from a patient in the 58-year age bin were
281 7.6% senescent while a patient in the 68-year bin had only 0.4% senescent cardiomyocytes. This
282 disparate pattern of fewer senescent heart cells in the older patient persisted in every other heart cell
283 type except adipocytes, suggesting patient-specific differences are important drivers for whole-tissue
284 senescence. In younger individuals (ages 40-60), the heart cell type with the highest proportion of
285 senescent cells was invariably lymphoid cells (**Fig 5E**). Conversely, there was a large increase in the
286 proportion of senescent cells within solid tissue cell types taken from most 60-year+ donors. One 68-
287 year-old patient in particular had a surprisingly high proportion of cardiomyocytes and fibroblasts with
288 high senescence scores. But in the oldest heart tested, there was a relatively low proportion of senescent
289 cells in all cell types except for lymphocytes. These data could be indicative of how circulating cells may
290 be able to promote tissue senescence after transmigrating into tissues or have reduced efficacy in
291 clearing senescent cells.

292 The proportions of cells within populations predicted to be senescent by *SenePy* were not
293 correlated to the replicative potential in their respective populations (**Sup Fig 5A,B**). Surprisingly,
294 replicative populations, such as large intestine enterocytes, had minimal increases in the proportion of
295 senescent cells with age. This is corroborated by an undetectable change in the number of *Cdkn2a*+

296 enterocytes with age and the general lack of correlation between *Cdkn2a*+ cells in replicative populations.
297 Likewise, we did not observe a negative correlation between the population-level expression of
298 telomerase and the calculated senescence burden (**Sup Fig 5C,D**). Thus, indicating that the well-known
299 driver of *in vitro* senescence, telomere attrition, is not the primary driver of senescence within organisms.
300

301 **SenePy identifies ground-truth *in vivo* senescence more robustly than established markers of**
302 **senescence.** To test *SenePy*'s ability to robustly detect senescent cells in additional datasets, we utilized

303 single-cell RNA-seq data from p16-Cre^{ERE2}-tdTomato reporter mice in which p16+ cells become red
304 fluorescent³¹. We first performed differential expression analysis between the tdTomato+ and tdTomato-
305 kidney cells (**Fig 6A**). The mRNAs that were differentially abundant in tdTomato+ cells were enriched for
306 kidney-specific signatures derived in this study. Our kidney-specific signatures were more enriched than
307 previously defined gene sets or a senescence gene panel derived from the AI model GPT-4 that was
308 tasked to identify senescence signatures (n = 100 genes, “senGPT”) (**Fig 6B**). A notable shift was
309 observed in the distribution of cells scored with *SenePy* using kidney-specific signatures but not in a heart
310 endothelial cell hub (**Fig 6C**). Likewise, the mRNAs more abundant in tdTomato+ liver cells were more
311 enriched for *SenePy*’s liver Kupffer cell signature than any other gene sets (**Fig 6D**). These data indicate
312 that *SenePy*’s senescence signatures and derived senescence scores identify cells that become p16+.

313 We also examined the ability of *SenePy* signatures to identify transcriptional changes due to
314 senolytic treatment as well as those seen in experimental conditions that induce senescence in multiple
315 *in vivo* and *in vitro* models. The genes downregulated in mouse lungs following therapeutic senolysis
316 were enriched for multiple *SenePy* lung- or airway-specific signatures (**Fig 6E**). *SenePy* signatures were
317 more enriched than cell-type agnostic gene sets. *SenePy* does not contain a specific skeletal muscle
318 senescence signature due to data availability, yet mRNA less abundant in mouse muscle tissue following
319 senolytic treatment was enriched for multiple *SenePy* signatures, including one from myocytes (**Sup Fig**
320 **6A**). Multiple *SenePy* endothelial signatures were enriched in mRNA more abundant after radiation-
321 induced senescence of human endothelial cells but the advantage of *SenePy* over other gene sets was
322 diminished in this *in vitro* context (**Fig 6F, Sup Fig 6B**). The discrepancy between the *in vitro* and *in vivo*
323 efficacy of *SenePy* was even more apparent in models of senescent fibroblasts in culture (**Fig 6G,H**). In
324 these *in vitro* contexts, *SenePy* was outperformed. These data suggest that *SenePy* recapitulates *in vivo*
325 cellular senescence and that gene sets derived primarily through previous *in vitro* experiments do not.

326 We next tested the marker suitability of genes that encode for p16^{ink4a} and p21^{cip1} in the p16-
327 Cre^{ERE2}-tdTomato liver cells (**Fig 6I**). Only 8% of p16^{high} cells, as indicated by tdTomato, had detectable
328 levels of *Cdkn2a* RNA (p16 encoding gene) (**Fig 6J**). This indicates that either *Cdkn2a* expression was

329 not detectable due to single-cell dropout or the expression of *Cdkn2a* is transitory in the majority of these
330 senescent cells. Another important marker of cellular senescence, *Cdkn1a* (p21 encoding gene), was
331 found in the majority of both tdTomato+ and tdTomato- cells, making its binary expression an inadequate
332 metric because it's more universally expressed in non-senescent cells (**Fig 6K, L**). These data represent
333 a striking example of why sole reliance on known cellular senescence genes like p16 and p21 is not
334 sufficient, especially in single-cell transcriptomics because of low single-cell resolution, dropout, and
335 marker-independent senescence programs.

336

337 **SenePy predicts elevated senescence burden in severe disease.** We posited that *SenePy* could be
338 applied to datasets to quantify the burden of senescence in disease. We first used *SenePy* to analyze a
339 single-cell RNAseq lung dataset of 19 individuals who died from COVID-19 and 7 age-matched controls³²
340 (**Fig 7A**). There were senescent lung cells in both control and COVID-19 patients but there was an
341 observable increase in the senescence of lung epithelial cells among COVID-19 patients (**Fig 7B**).
342 COVID-19 mortality was significantly associated with an increased proportion of senescent lung epithelial
343 cells and were present in AT1, AT2, and general airway epithelial cell populations (Mann-Whitney, $p =$
344 0.004) (**Fig 7C**). The proportions of senescence in non-epithelial cells, such as immune cells, fibroblasts,
345 and endothelial cells, were not significantly associated with COVID-19 mortality (**Fig 7D**). Some of the
346 deceased patients had relatively elevated senescence burdens in multiple cell types (**Fig 7E**).

347 Next, we used *SenePy* to score spatiotemporally resolved mouse transcriptomics data following
348 myocardial infarction³³. We used the hub signatures we previously derived from mouse hearts to score
349 the spatially resolved spots (**Fig 7F**). Senescent loci were found even in the control heart, corroborating
350 earlier observations that even young organisms have baseline levels of cellular senescence. However,
351 since the spatially resolved spots consist of multiple single cells, the number of single senescent cells in
352 these data are unknowable. The proportion of spots with high senescence burden was highest at day 7
353 but the change was not statistically significant, likely due to the small sample size (ANOVA, $n \leq 3$). We
354 observed a strong spatial association between spots with high senescence burden and heart fibrosis

355 after MI (**Fig 7G**). Senescent-like spots strongly colocalized in regions of the hearts expressing fibrotic
356 markers such as *Col1a1*. This correlation becomes readily apparent by 7 days post-MI but was not
357 observed in the control heart or hearts shortly after MI. The 8 hubs used to score the spots contributed
358 to the overall senescence burden with distinct temporal patterns (**Fig 7H**). The endothelial cell hub had
359 the highest contribution at day one but continued to decrease up to day 14. The score from a myocyte
360 hub jumped from baseline on day 7 then dropped back down. Other senescence gene programs
361 remained otherwise unperturbed by MI.

362 Additionally, we observed strong spatial autocorrelation between the spatially-resolved spots with
363 high senescence burden (**Fig 7F, I**). Only one of 9 samples did not have highly significant spatial
364 clustering of senescent-like spots. Unsurprisingly, this same day 14 sample has low senescent spot
365 association to *Col1a1* as well as the lowest overall senescence burden. To further investigate this finding
366 of senescent cell clustering and to see if this phenomenon is apparent in other tissues, we utilized spatial
367 transcriptomics data from mouse brains before and after inflammatory insult (**Fig 7J**). The control brains
368 had a small number of senescent-like spots which prevented significant autocorrelation; however, the
369 brains from LPS-treated animals had amplified senescence signatures and highly significant clustering
370 of senescent-like spots. These data indicate that senescent cells are more likely to be found in close
371 proximity across multiple *in vivo* systems.

372

373 **DISCUSSION**

374 There is a paucity of tissue- and cell-specific markers for senescent cells due to the heterogeneity
375 of cells that undergo cellular senescence (CS). This is especially challenging in single-cell transcriptomics
376 because the high rate of dropout and limited sequencing depth of the technology poses a challenge for
377 using classical senescence markers such as *Cdkn2a* and *Cdkn1a* as sole indicators of cell senescence.
378 Furthermore, the cell-specific heterogeneity of cellular senescence represents a major challenge for the
379 development of a universal senescence signature gene panel. Therefore, in this study, we took an
380 unbiased large-data approach to identify cell-specific programs of cellular senescence and created

381 SenePy as an open-source platform (<https://github.com/jaleesr/SenePy>) to identify senescent cells in
382 single-cell transcriptomic data. We validated the SenePy approach using single-cell RNA-seq data in p16
383 reporter mice and applied SenePy to determine the kinetics and heterogeneity of senescence across
384 several human and mouse cell types in aging and disease.

385 Previous studies have generated transcriptomic signatures of cellular senescence based on the
386 generation of senescence in controlled *in vitro* environments^{13, 20}. While these signatures have helped
387 advance the mechanistic understanding of cellular senescence, it is challenging to use such signatures
388 for highly variable *in vivo* contexts. We show that cells express many of these genes at higher rates with
389 age at the organism or tissue level, but none of the genes obtained from such senescence panels were
390 applicable in the majority of cell types tested. Even the widely used marker *CDKN2A* was identified in
391 senescent cells in less than a third of mouse and human cell types. The lack of universality of such
392 senescence marker genes is likely multifactorial, arising from true biological variation and compounded
393 by technical limitations. For example, many SASP genes are also genes that increase with inflammation
394 and organismal aging. A transcript more abundant with age in all tested cells of a population would not
395 be a suitable marker for a phenomenon that is present in only a minority of cells. Furthermore, our
396 analysis of the p16-Cre^{ERE2}-tdTomato mouse cells highlights the limits of using a small number of markers
397 such as p16^{ink4a} or *Cdkn2a* in transcriptomics data. While the tdTomato+ cells likely represented bona
398 fide senescent cells³¹, only a small proportion of individual cells had detectable levels of *Cdkn2a* at the
399 time of tissue harvest and sequencing. This likely arose from the transient expression of p16 earlier on
400 in the senescence program in combination with gene dropout inherent in single-cell sequencing.
401 Nevertheless, many highly visible and impactful studies are forced to rely on a small unspecific set of
402 markers because better alternatives did not exist. In addition to finding novel cell-specific signature
403 genes, we provide a cell type suitability map for well-known senescence markers.

404 Our approach focused on markers specific to individual populations that would not be confounded
405 by transcriptional differences with age. We were able to extract sub-population level programs of CS by
406 setting kinetic thresholds based on the prior knowledge that senescent cells increase with age but are

407 present in the minority of cells and by examining single-cell co-expression as opposed to differential
408 expression. Unsurprisingly, many of our computationally-derived signatures contained and were
409 statistically enriched for pre-established CS markers. However, these comprised the minority and most
410 genes have not been previously thought of as senescence markers. While we did find well-known
411 senescence genes like *CDKN2A*, *BCL2*-family genes, and various SASP factors to be statistically
412 common within our signatures, the most universal markers were novel ones. For example, in mice, the
413 most common signature gene we identified was the alpha hemoglobin subunit. Hemoglobin has been
414 previously reported as a response gene to oxidative stress in non-erythrocytes^{34, 35}, but has yet to be
415 reported in CS. Interestingly, in human signatures there was no significant overrepresentation of globin
416 genes. We observed this and other important differences between mouse and human signatures,
417 suggesting organism-specific CS marker panels to be more specific. Additionally, we used our signatures
418 to map the kinetics of senescent cell accumulation in many different tissues and cell types. Recent work
419 has mapped the abundance of senescent marker mRNA in 13 different tissues as a function of mouse
420 age and in a progeria model³⁶. This work, however, was agnostic of cell type and relied on a small set of
421 senescence markers. To our knowledge, this study is the first that comprehensively maps the increase
422 in senescent cells in many different mouse and human tissues with respect to cell type.

423 The CS marker genes identified in this study may contain novel and cell-specific targets for
424 senolytics. Senolytics have been effective in treating age-associated disease and at extending
425 healthspan in model organisms⁷⁻¹⁰. Many senolytics inhibit anti-apoptotic factors such as *BCL2*-family
426 proteins³⁷, and we indeed found numerous *BCL2*-family protein genes as markers in many of our cell-
427 specific signatures. Therefore, this indicates that our methodology was able to extract actual senolytic
428 targets. Our data will also inform which tissues and cell types *BCL2*-family inhibitors and other senolytics
429 are likely more effective. Recent work has used a computational approach to identify a novel surface
430 marker on senescent cells to direct targeted CAR-T senolysis³⁸, expanding the potential field of senolytic
431 targets and emphasizing the importance of the novel markers found in our study. Furthermore, clearance
432 of senescent cells is not beneficial in every context and cell-specific targeting of senescent cells may be

433 warranted in some scenarios. For example, liver regeneration is dependent on hepatic stellate cell
434 senescence but is hindered by senescence of the liver parenchyma³⁹. Our work uncovers potential cell-
435 specific targets for specific senolytic therapy.

436 Senescent cells contribute to cardiovascular pathology^{6, 40}, but their role in disease has never
437 been spatiotemporally characterized. We show that senescent cells localize at sites of heart fibrosis. The
438 proportion of senescent cells in each heart throughout the time series did not significantly change and
439 were present even in the control heart. We also observed highly significant spatial clustering of senescent
440 foci in the hearts and brains of mice which may be supporting evidence for an *in vivo* bystander effect¹⁵.
441 The spatial distributions of senescent cells have been previously examined from spatially resolved
442 transcriptomics data in aged mouse brains⁴¹. Their results show that *Cdkn2a*+ spots are adjacent to
443 activated microglia but no spatial clustering of *Cdkn2a*+ spots. Though, their methodology relies on a
444 narrow definition of CS which may not translate to actual p16^{ink4a} and does not account for *Cdkn2a*
445 dropout or p16-independent forms of senescence. These and other data would greatly benefit from a
446 reexamination with more comprehensive gene sets, such as those proposed herein.

447 Here we report that senescence burden in human lung endothelium is associated with COVID-19
448 mortality. Senolytic treatment prior to infection with betacoronavirus has been shown to reduce mortality
449 in mice suggesting that pre-existing senescent cells increase disease risk⁹. In humans, deceased patients
450 infected with SARS-CoV-2 had an increased number of mucosal cells expressing senescence markers
451 and infection itself can induce senescence⁴. Their transcriptomics data also showed CS marker
452 abundance to be highest in epithelial cells relative to other mucosal cell types. Taken together, these
453 studies support our findings that senescent epithelial cells contribute to COVID-19 mortality.

454 By design, our methodology removes genes that are constitutively expressed at baseline or in
455 aged cells to maintain a distinction from organismal aging. Inherently, this discounts genes that may be
456 part of the senescence program which overlap with the transcriptional shift with age. We also do not
457 account for genes that are downregulated in senescent cells. Negative markers of senescence would
458 add extra information to better identify senescent cells, but to find negative correlations in all pairwise

459 combinations of genes with this methodology was computationally limiting. The comprehensiveness of
460 our signature panel is also limited by the data available at the time of study and the exact set of tissues
461 and cells tested influences any conclusions of universality or comparison between species. We do not
462 expect our signatures to negate the need for large scale future efforts such as SenNet²¹. We instead
463 expect our work to be complementary and assist these efforts.

464 This work comprehensively identified gene expression programs and signatures of senescent
465 cells that are stratified by species, tissue, and cell type and used them to broadly characterize senescent
466 cells in mice and humans. We created *SenePy*: a computational platform that assigns a senescence
467 score to individual cells in single-cell transcriptomic data, which can serve as a resource to uncover cell-
468 type and tissue-specific mechanisms of cellular senescence *in vivo*.

469
470
471

472 METHODS

473 Data collection

474 Single-cell RNA mouse data were collected from the *Tabula Muris Senis* atlas (ref). *Tabula Muris Senis*
475 consists of single-cells from 30 mice from 1 to 30 months of age taken from 19 tissues. Human single-
476 cell data were collected from 7 studies. The liver data were obtained from five donors ranging from 21 to
477 65 years old²⁹. Single skin cells were obtained from 6 patients ranging in age from 18 to 48 years old²⁵.
478 Lung data were collected from 17 donors ranging from 21 to 72 years old²⁸. Human heart cells were taken
479 from 14 patients ranging from 40 to 75 years old²⁶. Human hippocampal cells were collected from 37
480 patients ranging from newborn to 92 years old²³. These tissue-specific datasets were given priority for
481 downstream analysis in their respective tissues, but we used additional multi-tissue atlases. Cells from
482 the *Human Cell Landscape* came from 51 donors ranging from 21 to 66 years old and from 25 different
483 tissues²⁷. Cells from *Tabula Sapiens* came from 15 patients ranging from 22 to 74 years of age²⁴.

484

485 Data annotation

486 The data were available in a range of formats from fastq to processed and annotated count data. Data
487 from *Tabula Muris Senis*, *Tabula Sapiens*, and the human heart study were provided with cell type
488 annotations. The Lung and hippocampal studies provided unannotated counts. Fastq data were
489 processed through 10x CellRanger or the Dropseq protocol (<https://mccarrolllab.org/dropseq/>) depending
490 on the technology used to prepare the libraries. All fastqs were aligned to GRCh38. Processed single-
491 cell counts were handled with Scanpy⁴². Cells were filtered out if they had a relatively low or high number
492 of detected genes or high relative proportion of mitochondrial reads (thresholds varied based on dataset
493 distribution). We used a variety of methods to annotate cell types. Since the *Human Cell Landscape*
494 contained many tissues and cell types, we transferred the annotations from *Tabula Sapiens* using
495 scANVI⁴³ after processing the raw data with scVI-tools⁴⁴. If a cluster, which was called by the Leiden
496 algorithm on the scVI embeddings, had lower than 85% cell-type agreement, those cells were not used
497 in downstream analysis. Cell types from the liver, skin, and lung studies were annotated similarly but
498 clusters with poor label transfer were instead manually annotated using known cell-type markers⁴⁵. For
499 lack of a reference dataset, the hippocampal data were annotated exclusively using known markers.
500 Annotations were harmonized across datasets (e.g., “kidney endothelial cell” changed to “endothelial
501 cell”) and mapped back on to the raw counts. Cells lacking annotations because they failed QC or label
502 transfer were discarded. For total dataset visualizations, the species-specific raw data were integrated
503 using scVI and the embeddings were projected via UMAP.

504

505 **Mouse cell-type specific age-dynamic genes**

506 Mouse data came from mice aged 1, 3, 18, 21, 24, 30 months (m) but age availability varied by tissue.
507 Cells were stratified by tissue, age, and cell type. The starting baseline was chosen as 3m if there were
508 at least 200 3m cells, if not the starting baseline was aggregated with 1m cells. Likewise, 30m was
509 prioritized for old cells if at least 200 were present, otherwise the old baseline fell back to 24m. The
510 proportion of cells expressing one or more UMI copies of a gene was determined in each population
511 (**Equation 1**). Zero values at 3m or 1m were imputed with the inverse of the cell count ($p_{age} =$

512 $n_{total\ cells}^{-1}$). Young cells were used as baselines and the ratios in old cells were determined relative to
513 them (**Equation 2**). Genes were only considered dynamic if they were found in less than 5% of young
514 cells ($p_{3m|1m} < 0.05$), found in less than 20% of old cells ($p_{24m|30m} < 0.2$), were in greater than 1% of old
515 cells ($p_{24m|30m} > 0.01$), increased at least 0.5% ($p_{24m|30m} - p_{3m|1m} > 0.005$), and the old to young ratio
516 was greater than 2.5 or the gain was greater than 5% ($r_{24m|30m} > 2.5 \mid p_{24m|30m} - p_{3m|1m} > 0.05$). These
517 thresholds assume that the proportions of cells expressing senescence marker increase with age but
518 remain in the minority. Dynamic genes are cell-specific markers and do not account for small changes to
519 baseline levels of constitutively expressed genes, which may be senescence-associated genes but are
520 not specific markers.

521

522
$$p_{age} = n_{gene^+ cells} / n_{total\ cells}$$

523 (**Equation 1**) p_{age} : the proportion of cells positive for a gene at a given age. Where $p_{age} = n_{gene^+ cells}$ is
524 the number of cells positive for a given gene and $n_{total\ cells}$ is the number of total cells in the same
525 population.

526
$$r_{30m|24m} = p_{30m|24m} / p_{3m|1m}$$

527 (**Equation 2**) $r_{30m|24m}$: ratio of old cells positive for a gene relative to young cells. Where $p_{30m|24m}$
528 represents the proportion of cells positive for a gene in cells from 30- or 24-month-old mice and $p_{3m|1m}$
529 are the proportion of cells positive for the gene from 3- or 1-month mice.

530

531

532 Human cell-type specific age-dynamic genes

533 Human ages were binned into 10-year bins to account for the continuous range of human ages. Bins
534 ranged from 8 (8-17 years old) to 88 (88-97 years old). To be considered for further analysis a cell-type
535 population must 1) have three unique bins with at least 100 cells in each bin or a bin ≤ 28 and a bin ≥ 58
536 with at least 100 cells and 2) have a bin ≥ 48 with at least 100 cells. These criteria were required in

537 individual datasets because downstream analysis avoids confounding effect from multiple studies. Cells
538 were stratified by dataset, tissue, age bin, and cell type. The proportions of cells expressing genes were
539 calculated for each age bin (**Equation 1**). The young starting populations were selected from the 8, 18,
540 or 28 10-year bins if one was present, else the starting proportion was calculated by regressing the age
541 and known proportion values and solving for 18 years (**Equation 3**). The old ending populations were
542 selected from the oldest age bin (p_{old}). Genes were only considered dynamic if their age by proportion
543 slope was positive (**Equation 4**), their maximum positivity was less than 25% ($p_{max} < 0.25$), their starting
544 proportion was less than 5% ($p_{young} < 0.05$), their gain was greater than 1.5% ($p_{old} - p_{young} > 0.015$),
545 the maximum proportion was not two times higher than the ending proportion ($2p_{max} < p_{old}$), and the
546 maximum proportion had to be in the 48 year bin or higher ($\max(p_{48+}) = p_{max}$).

547

548
$$\text{cov}(\text{age}, p) = \frac{\sum(\text{age}_i - \bar{\text{age}})(p_i - \bar{p})}{n}$$

549
$$\text{var}(\text{age}) = \frac{(\text{age}_i - \bar{\text{age}})^2}{n}$$

550
$$p_{18} = \frac{18 \cdot \text{cov}(\text{age}, p)}{\text{var}(\text{age})} + \bar{p} - \frac{\bar{\text{age}} \cdot \text{cov}(\text{age}, p)}{\text{var}(\text{age})}$$

551 (**Equation 3**) p_{18} : extrapolated proportion of cells positive in the 18-year bin. Where $\text{cov}(\text{age}, p)$
552 represents the covariance between age and proportion p , $\text{var}(\text{age})$ is the variance of age, and n is the
553 sample size.

554
$$m = \frac{\text{cov}(\text{age}, p)}{\text{var}(\text{age})}$$

555 (**Equation 4**) m : slope of the linear regression line for the proportions of a given gene with age. See
556 equation 3.

557

558

559 **Identifying novel senescence signatures from mice**

560 Age-dynamic genes for each tissue-cell-type were found as described earlier. Count data were subset
561 by these genes and further subset to only include cells from mice >21m. Subsets with fewer than 100
562 cells were not tested further. The count matrixes were binarized to represent cell by gene positivity. Every
563 pairwise combination of genes was tested for Pearson's correlation (**Equation 5**). To test the statistical
564 significance, each pairwise comparison was randomly permuted 500 times. Pairwise correlations were
565 kept if they had a positive r value and if their r value was at least 0.05 higher than the respective q99 r
566 value from the random permutations (**Equation 6**). The filtered correlations were used to construct
567 networks with NetworkX (<https://networkx.org/>). The Louvain algorithm was used to group genes into
568 clusters. Network clusters with fewer than 5 genes or genes with no correlations were removed. Genes
569 loosely connected to clusters were removed if they had fewer than $\log(n_{cluster\ genes})$ (Where $n_{cluster\ genes}$
570 is the number of genes in a Louvain cluster) connections to other genes in the network. The cleaned
571 clusters are hereby referred to as hubs and the aggregated hubs for each cell type as a cell-specific
572 signatures.

573

574

$$r_{i,j} = \frac{\sum_{k=1}^n (x_{k,i} - \bar{x}_i)(x_{k,j} - \bar{x}_j)}{\sqrt{\sum_{k=1}^n (x_{k,i} - \bar{x}_i)^2} \sqrt{\sum_{k=1}^n (x_{k,j} - \bar{x}_j)^2}}$$

575 (**Equation 5**) $r_{i,j}$: Pearson's correlation coefficient for dynamic genes i and j . Where $x_{k,i}$ represents the
576 binary expression value of gene i in cell k ; $x_{k,j}$ is the binary expression value of gene j in cell k ; and n is
577 the total number of cells in the population.

578

$$t = q_{99}(r_{perm(i,j)}) + 0.05$$

579

$$r_{i,j} > t \text{ and } r_{i,j} > 0$$

580 (**Equation 6**) t : significance threshold. Where $r_{perm(i,j)}$ represents the distribution of correlation
581 coefficients for 500 random permutations of gene i and k . q_{99} represents the 99th percentile value of this
582 distribution. The inequality depicts one criteria of gene selection based on t .

583

584 **Identifying novel senescence signatures from humans**

585 Age-dynamic genes for each dataset-tissue-cell-type were found as described earlier. Count data were
586 then subset by these genes and further subset to only include cells from patients 48 years of age or older.
587 Significant correlations, networks, hubs, and signatures were generated similarly to those from mice.

588

589 **Novel signature comparison**

590 Each signature or hub has a set of genes and corresponding weights for how many connections a gene
591 shares with other genes. Pairwise cosine similarity was calculated by comparing the union of each gene
592 list and imputing 0s (**Equation 7**). For pairwise hypergeometric similarity between two signatures, the
593 cumulative distribution function for two lists of genes was determined using the genes present in the
594 original species aggregated counts as the background list (**Equation 8**). For signature network analysis,
595 all pairwise hypergeometric *sf* values (i.e., p-values) were corrected with the Bonferroni method,
596 converted to $-\log_{10} sf_{corrected}$, and used as similarity scores between signatures if they were significant.

597 To find genes represented in the signatures more than expected by chance, we used a random
598 permutation method. A set of hubs with random genes identical in size to the original signatures were
599 generated 1000 times from the background set of expressed genes in the dataset. A distribution was
600 created representing the number of times a gene was found in each of the 1000 permutations. The actual
601 number of signatures a gene was found in was compared to this distribution to determine significance.

602

603
$$\text{cosine}(L_i, L_j) = \frac{\sum_{k=1}^n a_{i,k} a_{j,k}}{\sqrt{\sum_{k=1}^n a_{i,k}^2} \sqrt{\sum_{k=1}^n a_{j,k}^2}}, \text{ where } a_{i,k} = \begin{cases} w_i k & \text{if } g_k \in L_i \\ 0, & \text{otherwise} \end{cases}$$

604 (**Equation 7**) $\text{cosine}(L_i, L_j)$: cosine distance between two signatures L_i and L_j . Where $a_{i,k}$ represent the
605 weight of gene k in gene list i , and is equal to the corresponding connection value $w_i k$ if gene g_k is in

606 gene list i , or 0 otherwise. Where n represents the total number of genes in the union of signatures L_i
607 and L_j .

608

$$sf = 1 - P(|L_i \cap L_j| - 1, |N|, |L_i|, |L_j|) = 1 - \sum_{k=0}^{x-1} \frac{\binom{L_j}{k} \binom{N-L_j}{L_i-k}}{\binom{N}{L_i}}$$

609 **(Equation 8)** sf : survival function of the hypergeometric distribution $P(x, N, I, j)$. Where L_i and L_j
610 represent two gene lists and N represents the background gene list. x is equal to the cardinality of the L_i
611 and L_j intersection minus 1.

612

613 **Gene set enrichment – GO, KEGG, transcription factor binding**

614 We used the Enrichr python API gseapy⁴⁶ for gene set enrichment against the GO and KEGG databases
615 (refs). The background set of genes used came from all expressed genes from their respective datasets.
616 Only FDR-corrected p-values below 0.05 were considered significant. A custom “senescence” gene set
617 was added which was comprised of the union between all literature-based senescence markers collected
618 for this study and senMayo²⁰.

619 For transcription factor binding analysis, the regions 1000 bp upstream and 500 bp downstream
620 of the transcription start sites were extracted for each gene in a gene list. JASPAR 2020 core vertebrate
621 non-redundant position frequency matrices were used as the input motifs (ref). The extracted regions were
622 examined for relative motif enrichment using the MEME-suite simple enrichment analysis.
623 Only Benjamini-Hochberg-corrected p-values below 0.05 were considered significant.

624

625 **Scoring cells using SenePy**

626 Gene signatures are comprised of genes and their respective number of edges in their network (termed
627 importance value). We developed SenePy, a lightweight and fast scoring algorithm specific for our gene
628 sets that borrows from Seurat’s AddModuleScore() and Scanpy’s tl.score_genes(). SenePY is built in
629 python and integrates well with scanpy and anndata. SenePy has four core functions: load_hubs(),

630 translator(), score_hub(), and score_all_cells(). The load_hubs() function initializes the hub object which
631 includes the hubs themselves along with additional metadata, such as each hub's enrichment for known
632 senescence genes. Depending on the input data and its respective reference, the optional translator()
633 function can be used to harmonize gene symbols based on known gene aliases. The score_hub()
634 function takes one input hub and anndata and returns a list of scores for each cell. The score_all_cells()
635 takes one input hub and anndata and stratifies the data based on input categories, for example, to score
636 individual cell types separately to avoid confounding the score.

637 The scoring happens in multiple steps. First, the mean is calculated for each gene in the dataset
638 across all cells (**Equation 9**). All genes are ranked by their mean and split into n_{bins} (default: 25)
639 expression bins (**Equation 10**). Next, n_{ctrl_size} (default: 50) background genes are selected for each input
640 signature gene from its corresponding expression bin (**Equation 11**). The counts data are then optionally
641 binarized (default: True) to represent the binary senescence cellular state and the gene-cell positivity
642 from which the underlying networks were derived . Next, the counts are optionally amplified (Default:
643 True) by their corresponding importance value from the input signature (e.g., if $[Cdkn2a, 2]$ is in the
644 signature all $Cdkn2a$ values would be multiplied by 2) (**Equation 12**). Then the cell-by-signature-gene
645 matrix is averaged across the cell axis and subtracted from the mean of the cell-by-background matrix
646 also averaged across the cell axis (**Equation 13**).

647

648

$$m_j = (1/n) \sum_{i=1}^n X_{ij}$$

649 (**Equation 9**) Where X is a matrix which contains the expression level of gene j in cell i and m_j is the
650 average expression of gene j across all cells.

651 $B_1, B_2, \dots, B_{n_bins}$

652 (**Equation 10**) Where B_{n_bins} is the number of bins used to categorize every gene based on their mean
653 expression.

654 $s \in B_k, \quad \text{for } s \in S$

655 $BG_s = \{g \mid g \in B_k^{(n_{ctrl\ size})}\}, g \neq s$

656 $BG = \bigcup_{s \in S} BG_s$

657 **(Equation 11)** BG : background gene set. Where S is the gene signature and s is a gene within S . B_k is a
658 subset of genes that fall within the k -th expression bin based on their mean expression. Where g is a
659 background gene selected from expression bin B_k and $n_{ctrl\ size}$ is the number of background genes
660 selected for each signature gene s from the corresponding expression bin. Where BG_s is a set of
661 background genes randomly selected from the same expression bin B_k as the signature gene s . BG is
662 the union of all background genes selected for each signature gene s .

663 $Y_{ij} = \{1 \text{ if } X_{ij} > 0, 0 \text{ otherwise}\}$

664 $Z_{ij} = Y_{ij} * I_j$

665 **(Equation 12)** Z_{ij} : modified expression matrix. Where Y_{ij} is the optionally binarized expression matrix X_{ij}
666 and I_j represents the optional importance values for gene j .

667 $\overline{Y_{i,S}} = \frac{1}{|S|} \sum_{s \in S} Z_{i,s}, \quad \text{for } i \in \text{all cells}$

668 $\overline{Y_{i,BG}} = \frac{1}{|BG|} \sum_{g \in BG} Z_{i,g}, \quad \text{for } i \in \text{all cells}$

669 $\text{Score}_i = \overline{Y_{i,S}} - \overline{Y_{i,BG}}, \quad \text{for } i \in \text{all cells}$

670 **(Equation 13)** Score_i : SenePy score for cell i . Where $|S|$ and $|BG|$ are the cardinality (number of
671 elements in the set) of gene signatures S and BG . Where $Z_{i,s}$ and $Z_{i,g}$ represent the optionally amplified
672 expression values of the genes in the gene signature S and background gene set BG , respectively.

673
674
675 **Senescence burden in spatially resolved transcriptomics**

676 Data was preprocessed in Scanpy and pots with fewer than 1000 detected genes were removed. Cells
677 were normalized to 10,000 counts and log converted. The 8 heart-specific mouse hub signatures were
678 used to score the spatially resolved mouse hearts independently using `senepy.score_hub()` with a
679 translator() and with binarize and importance set to False because Visium data has higher gene counts
680 than single-cell data. Outlier spots were identified in each sample if they fell 3 standard deviations outside
681 the mean for their respective sample distribution in addition to a combined sample distribution ($Outlier >$
682 $\mu + 3\sigma$). The outliers from each signature were merged to determine if any given spot was an outlier.
683 Relative senescence burden is presented as the proportion of outlier spots. For the mouse brains, we
684 used the top 150 most common genes in all the signatures because we had no specific mouse brain
685 signatures. To determine spatial autocorrelation, we used the ESDA python package
686 (<https://pysal.org/esda/>). The weights of the autocorrelation were weighted by the inverse of the
687 Euclidean distance between two spots with a value of 1 to denote an outlier and 0 for normal spots. Three
688 is used as a maximum value for Euclidean distance and the weights for distances beyond three are set
689 to 0 (**Equation 14**).

$$690 I = \frac{n \sum_i \sum_j \left(\frac{1}{d(i,j)} \right) \cdot \delta(d(i,j) \leq 3)(x_i - \bar{x})(x_j - \bar{x})}{\sum_i \sum_j \left(\frac{1}{d(i,j)} \right) \cdot \delta(d(i,j) \leq 3) \sum_i (x_i - \bar{x})^2}, \text{p-value} = 1 - (\Phi(I))$$

691 (**Equation 14**) I : Moran's I. Where n is the number of spots; $d(i,j)$ is the Euclidean distance between
692 spot i and spot j ; $\delta(d(i,j) \leq 3)$ is 1 if the distance is greater or equal to 3 and otherwise 0; and x_i and x_j
693 are the values at spot i and spot j . $\Phi(I)$ is the CDF of the standard normal distribution at the Moran's I
694 value.

695

696 **Senescence burden in COVID-19 mortality**

697 Single-cell lung data from 20 patients that died from COVID-19 and 7 control patients were collected from
698 an available atlas³². Doublets were removed from each individual sample using SOLO⁴⁷ in combination
699 with SCVI-tools. Cells with low counts or high mitochondrial reads were removed. SCVI-tools was used

700 to integrate the 27 samples, using sample ID as a categorical covariate and mitochondrial read percent,
701 ribosomal read percent, and total counts as continuous covariates. Cell types were manually annotated
702 using known cell-type markers (PanglaoDB). Cell types were scored with respective cell type hubs from
703 SenePY (e.g., epithelial cells were scored with ciliated epithelial, basal cell, club cell, and pneumocyte
704 hubs) using the `senePY.score_all_cells()` function. Cells were divided and scored as individual subtypes
705 (e.g., AT1, AT2, airway epithelium). Cell outliers were identified in each sample if they fell 3 standard
706 deviations outside the mean within every respective cell-type distribution ($Outlier > \mu + 3\sigma$). Outliers
707 were merged across hubs to identify all cells with potential senescence burden and output as a proportion
708 of total cells.

709
710

711 REFERENCES

- 712 1. Niccoli T, Partridge L. Ageing as a risk factor for disease. *Curr Biol*. 2012;22(17):R741-52. doi:
713 10.1016/j.cub.2012.07.024. PubMed PMID: 22975005.
- 714 2. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. *Trends Cell Biol*.
715 2018;28(6):436-53. Epub 20180221. doi: 10.1016/j.tcb.2018.02.001. PubMed PMID: 29477613.
- 716 3. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related
717 disease: from mechanisms to therapy. *Nat Med*. 2015;21(12):1424-35. doi: 10.1038/nm.4000. PubMed
718 PMID: 26646499; PMCID: PMC4748967.
- 719 4. Lee S, Yu Y, Trimpert J, Benthani F, Mairhofer M, Richter-Pechanska P, Wyler E, Belenki D,
720 Kaltenbrunner S, Pammer M, Kausche L, Firsching TC, Dietert K, Schotsaert M, Martinez-Romero C,
721 Singh G, Kunz S, Niemeyer D, Ghanem R, Salzer HJF, Paar C, Mulleder M, Uccellini M, Michaelis EG,
722 Khan A, Lau A, Schonlein M, Habringer A, Tomasits J, Adler JM, Kimeswenger S, Gruber AD,
723 Hoetzenegger W, Steinkellner H, Purfurst B, Motz R, Di Pierro F, Lamprecht B, Osterrieder N, Landthaler
724 M, Drosten C, Garcia-Sastre A, Langer R, Ralser M, Eils R, Reimann M, Fan DNY, Schmitt CA. Virus-
725 induced senescence is a driver and therapeutic target in COVID-19. *Nature*. 2021;599(7884):283-9.
726 Epub 20210913. doi: 10.1038/s41586-021-03995-1. PubMed PMID: 34517409.
- 727 5. van Deursen JM. The role of senescent cells in ageing. *Nature*. 2014;509(7501):439-46. doi:
728 10.1038/nature13193. PubMed PMID: 24848057; PMCID: PMC4214092.
- 729 6. Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B,
730 Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to
731 premature cardiac aging and heart failure. *Circ Res*. 2003;93(7):604-13. Epub 20030904. doi:
732 10.1161/01.RES.0000093985.76901.AF. PubMed PMID: 12958145.
- 733 7. Aguayo-Mazzucato C, Andle J, Lee TB, Jr., Midha A, Talemal L, Chipashvili V, Hollister-Lock J, van
734 Deursen J, Weir G, Bonner-Weir S. Acceleration of beta Cell Aging Determines Diabetes and Senolysis

735 Improves Disease Outcomes. *Cell Metab.* 2019;30(1):129-42 e4. Epub 20190530. doi:
736 10.1016/j.cmet.2019.05.006. PubMed PMID: 31155496; PMCID: PMC6610720.

737 8. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K,
738 Bohr VA, Misra Sen J, Gorospe M, Mattson MP. Senolytic therapy alleviates Abeta-associated
739 oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. *Nat
740 Neurosci.* 2019;22(5):719-28. Epub 20190401. doi: 10.1038/s41593-019-0372-9. PubMed PMID:
741 30936558; PMCID: PMC6605052.

742 9. Camell CD, Yousefzadeh MJ, Zhu Y, Prata L, Huggins MA, Pierson M, Zhang L, O'Kelly RD,
743 Pirtskhalava T, Xun P, Ejima K, Xue A, Tripathi U, Espindola-Netto JM, Giorgadze N, Atkinson EJ, Inman
744 CL, Johnson KO, Cholensky SH, Carlson TW, LeBrasseur NK, Khosla S, O'Sullivan MG, Allison DB,
745 Jameson SC, Meves A, Li M, Prakash YS, Chiarella SE, Hamilton SE, Tchkonia T, Niedernhofer LJ, Kirkland
746 JL, Robbins PD. Senolytics reduce coronavirus-related mortality in old mice. *Science.* 2021;373(6552).
747 Epub 20210608. doi: 10.1126/science.abe4832. PubMed PMID: 34103349; PMCID: PMC8607935.

748 10. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB,
749 Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM. Naturally occurring p16(INK4a)-positive
750 cells shorten healthy lifespan. *Nature.* 2016;530(7589):184-9. Epub 20160203. doi:
751 10.1038/nature16932. PubMed PMID: 26840489; PMCID: PMC4845101.

752 11. Born E, Lipskaia L, Breau M, Houssaini A, Beaulieu D, Marcos E, Pierre R, Do Cruzeiro M, Lefevre
753 M, Derumeaux G, Bulavin DV, Delcroix M, Quarck R, Reen V, Gil J, Bernard D, Flaman JM, Adnot S, Abid
754 S. Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression.
755 *Circulation.* 2023;147(8):650-66. Epub 20221214. doi: 10.1161/CIRCULATIONAHA.122.058794. PubMed
756 PMID: 36515093.

757 12. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M,
758 Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L,
759 Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M.
760 Cellular Senescence: Defining a Path Forward. *Cell.* 2019;179(4):813-27. doi:
761 10.1016/j.cell.2019.10.005. PubMed PMID: 31675495.

762 13. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking
763 Transcriptional Heterogeneity in Senescent Cells. *Curr Biol.* 2017;27(17):2652-60 e4. Epub 20170830.
764 doi: 10.1016/j.cub.2017.07.033. PubMed PMID: 28844647; PMCID: PMC5788810.

765 14. Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature
766 of cellular senescence. *Nucleic Acids Res.* 2019;47(14):7294-305. doi: 10.1093/nar/gkz555. PubMed
767 PMID: 31251810; PMCID: PMC6698740.

768 15. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T. A senescent
769 cell bystander effect: senescence-induced senescence. *Aging Cell.* 2012;11(2):345-9. Epub 20120209.
770 doi: 10.1111/j.1474-9726.2012.00795.x. PubMed PMID: 22321662; PMCID: PMC3488292.

771 16. Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, Kiourtis C, Muller M,
772 Green AR, Adams PD, Acosta JC, Bird TG, Kirschner K, Neretti N, Chandra T. Notch Signaling Mediates
773 Secondary Senescence. *Cell Rep.* 2019;27(4):997-1007 e5. doi: 10.1016/j.celrep.2019.03.104. PubMed
774 PMID: 31018144; PMCID: PMC6486482.

775 17. Prieur A, Besnard E, Babled A, Lemaitre JM. p53 and p16(INK4A) independent induction of
776 senescence by chromatin-dependent alteration of S-phase progression. *Nat Commun.* 2011;2:473.
777 Epub 20110913. doi: 10.1038/ncomms1473. PubMed PMID: 21915115.

778 18. Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their
779 relevance to cancer. *Biochemistry*. 2011;50(25):5566-82. Epub 20110606. doi: 10.1021/bi200642e.
780 PubMed PMID: 21619050; PMCID: PMC3127263.

781 19. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H. Oncogene-induced
782 senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. *J Invest
783 Dermatol*. 2009;129(8):1983-91. Epub 20090212. doi: 10.1038/jid.2009.5. PubMed PMID: 19212341.

784 20. Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, Pignolo RJ, Robbins PD,
785 Niedernhofer LJ, Ikeno Y, Jurk D, Passos JF, Hickson LJ, Xue A, Monroe DG, Tchkonia T, Kirkland JL, Farr
786 JN, Khosla S. A new gene set identifies senescent cells and predicts senescence-associated pathways
787 across tissues. *Nat Commun*. 2022;13(1):4827. Epub 20220816. doi: 10.1038/s41467-022-32552-1.
788 PubMed PMID: 35974106; PMCID: PMC9381717.

789 21. SenNet C. NIH SenNet Consortium to map senescent cells throughout the human lifespan to
790 understand physiological health. *Nat Aging*. 2022;2(12):1090-100. Epub 20221220. doi:
791 10.1038/s43587-022-00326-5. PubMed PMID: 36936385; PMCID: PMC10019484.

792 22. Tabula Muris C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.
793 *Nature*. 2020;583(7817):590-5. Epub 20200715. doi: 10.1038/s41586-020-2496-1. PubMed PMID:
794 32669714; PMCID: PMC8240505.

795 23. Zhou Y, Su Y, Li S, Kennedy BC, Zhang DY, Bond AM, Sun Y, Jacob F, Lu L, Hu P, Viaene AN, Helbig
796 I, Kessler SK, Lucas T, Salinas RD, Gu X, Chen HI, Wu H, Kleinman JE, Hyde TM, Nauen DW, Weinberger
797 DR, Ming GL, Song H. Molecular landscapes of human hippocampal immature neurons across lifespan.
798 *Nature*. 2022;607(7919):527-33. Epub 20220706. doi: 10.1038/s41586-022-04912-w. PubMed PMID:
799 35794479; PMCID: PMC9316413.

800 24. Tabula Sapiens C, Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N,
801 Bulthaup B, Brown P, Harper W, Hemenez M, Ponnusamy R, Salehi A, Sanagavarapu BA, Spallino E,
802 Aaron KA, Concepcion W, Gardner JM, Kelly B, Neidlinger N, Wang Z, Crasta S, Kolluru S, Morri M, Pisco
803 AO, Tan SY, Travaglini KJ, Xu C, Alcantara-Hernandez M, Almanzar N, Antony J, Beyersdorf B, Burhan D,
804 Calcuttawala K, Carter MM, Chan CKF, Chang CA, Chang S, Colville A, Crasta S, Culver RN, Cvijovic I,
805 D'Amato G, Ezran C, Galdos FX, Gillich A, Goodyer WR, Hang Y, Hayashi A, Houshdaran S, Huang X,
806 Irwin JC, Jang S, Juanico JV, Kershner AM, Kim S, Kiss B, Kolluru S, Kong W, Kumar ME, Kuo AH, Leylek R,
807 Li B, Loeb GB, Lu WJ, Mantri S, Markovic M, McAlpine PL, de Morree A, Morri M, Mrouj K, Mukherjee S,
808 Muser T, Neuhofer P, Nguyen TD, Perez K, Phansalkar R, Pisco AO, Puluca N, Qi Z, Rao P, Raquer-McKay
809 H, Schaum N, Scott B, Seddighzadeh B, Segal J, Sen S, Sikandar S, Spencer SP, Steffes LC, Subramaniam
810 VR, Swarup A, Swift M, Travaglini KJ, Van Treuren W, Trimm E, Veizades S, Vijayakumar S, Vo KC,
811 Vorperian SK, Wang W, Weinstein HNW, Winkler J, Wu TTH, Xie J, Yung AR, Zhang Y, Detweiler AM,
812 Mekonen H, Neff NF, Sit RV, Tan M, Yan J, Bean GR, Charu V, Forgo E, Martin BA, Ozawa MG, Silva O,
813 Tan SY, Toland A, Vemuri VNP, Afik S, Awayan K, Botvinnik OB, Byrne A, Chen M, Dehghannasiri R,
814 Detweiler AM, Gayoso A, Granados AA, Li Q, Mahmoudabadi G, McGeever A, de Morree A, Olivieri JE,
815 Park M, Pisco AO, Ravikumar N, Salzman J, Stanley G, Swift M, Tan M, Tan W, Tarashansky AJ,
816 Vanheusden R, Vorperian SK, Wang P, Wang S, Xing G, Xu C, Yosef N, Alcantara-Hernandez M, Antony J,
817 Chan CKF, Chang CA, Colville A, Crasta S, Culver R, Dethlefsen L, Ezran C, Gillich A, Hang Y, Ho PY, Irwin
818 JC, Jang S, Kershner AM, Kong W, Kumar ME, Kuo AH, Leylek R, Liu S, Loeb GB, Lu WJ, Maltzman JS,
819 Metzger RJ, de Morree A, Neuhofer P, Perez K, Phansalkar R, Qi Z, Rao P, Raquer-McKay H, Sasagawa K,
820 Scott B, Sinha R, Song H, Spencer SP, Swarup A, Swift M, Travaglini KJ, Trimm E, Veizades S,
821 Vijayakumar S, Wang B, Wang W, Winkler J, Xie J, Yung AR, Artandi SE, Beachy PA, Clarke MF, Giudice

822 LC, Huang FW, Huang KC, Idoyaga J, Kim SK, Krasnow M, Kuo CS, Nguyen P, Quake SR, Rando TA, Red-
823 Horse K, Reiter J, Relman DA, Sonnenburg JL, Wang B, Wu A, Wu SM, Wyss-Coray T. The Tabula
824 Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. *Science*.
825 2022;376(6594):eabl4896. Epub 20220513. doi: 10.1126/science.abl4896. PubMed PMID: 35549404;
826 PMCID: PMC9812260.

827 25. Zou Z, Long X, Zhao Q, Zheng Y, Song M, Ma S, Jing Y, Wang S, He Y, Esteban CR, Yu N, Huang J,
828 Chan P, Chen T, Izpisua Belmonte JC, Zhang W, Qu J, Liu GH. A Single-Cell Transcriptomic Atlas of
829 Human Skin Aging. *Dev Cell*. 2021;56(3):383-97 e8. Epub 20201124. doi: 10.1016/j.devcel.2020.11.002.
830 PubMed PMID: 33238152.

831 26. Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski
832 K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B,
833 Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H,
834 Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA.
835 Cells of the adult human heart. *Nature*. 2020;588(7838):466-72. Epub 20200924. doi: 10.1038/s41586-
836 020-2797-4. PubMed PMID: 32971526; PMCID: PMC7681775.

837 27. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, Zhou Y, Ye F, Jiang
838 M, Wu J, Xiao Y, Jia X, Zhang T, Ma X, Zhang Q, Bai X, Lai S, Yu C, Zhu L, Lin R, Gao Y, Wang M, Wu Y,
839 Zhang J, Zhan R, Zhu S, Hu H, Wang C, Chen M, Huang H, Liang T, Chen J, Wang W, Zhang D, Guo G.
840 Construction of a human cell landscape at single-cell level. *Nature*. 2020;581(7808):303-9. Epub
841 20200325. doi: 10.1038/s41586-020-2157-4. PubMed PMID: 32214235.

842 28. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R,
843 Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ,
844 Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M,
845 Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall
846 SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M,
847 Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-
848 Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary
849 Fibrosis. *Am J Respir Crit Care Med*. 2019;199(12):1517-36. doi: 10.1164/rccm.201712-2410OC.
850 PubMed PMID: 30554520; PMCID: PMC6580683.

851 29. MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J,
852 Linares I, Gupta R, Cheng ML, Liu LY, Camat D, Chung SW, Seliga RK, Shao Z, Lee E, Ogawa S, Ogawa M,
853 Wilson MD, Fish JE, Selzner M, Ghanekar A, Grant D, Greig P, Sapisochin G, Selzner N, Winegarden N,
854 Adeyi O, Keller G, Bader GD, McGilvray ID. Single cell RNA sequencing of human liver reveals distinct
855 intrahepatic macrophage populations. *Nat Commun*. 2018;9(1):4383. Epub 20181022. doi:
856 10.1038/s41467-018-06318-7. PubMed PMID: 30348985; PMCID: PMC6197289.

857 30. Zhang MJ, Pisco AO, Darmanis S, Zou J. Mouse aging cell atlas analysis reveals global and cell
858 type-specific aging signatures. *Elife*. 2021;10. Epub 20210413. doi: 10.7554/elife.62293. PubMed
859 PMID: 33847263; PMCID: PMC8046488.

860 31. Omori S, Wang TW, Johmura Y, Kanai T, Nakano Y, Kido T, Susaki EA, Nakajima T, Shichino S,
861 Ueha S, Ozawa M, Yokote K, Kumamoto S, Nishiyama A, Sakamoto T, Yamaguchi K, Hatakeyama S,
862 Shimizu E, Katayama K, Yamada Y, Yamazaki S, Iwasaki K, Miyoshi C, Funato H, Yanagisawa M, Ueno H,
863 Imoto S, Furukawa Y, Yoshida N, Matsushima K, Ueda HR, Miyajima A, Nakanishi M. Generation of a
864 p16 Reporter Mouse and Its Use to Characterize and Target p16(high) Cells In Vivo. *Cell Metab*.
865 2020;32(5):814-28 e6. Epub 20200918. doi: 10.1016/j.cmet.2020.09.006. PubMed PMID: 32949498.

866 32. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro AF, Amin AD,
867 Schapiro D, Frangieh CJ, Luoma AM, Filliol A, Fang Y, Ravichandran H, Clausi MG, Alba GA, Rogava M,
868 Chen SW, Ho P, Montoro DT, Kornberg AE, Han AS, Bakhoum MF, Anandasabapathy N, Suarez-Farinias
869 M, Bakhoum SF, Bram Y, Borczuk A, Guo XV, Lefkowitch JH, Marboe C, Lagana SM, Del Portillo A, Tsai
870 EJ, Zorn E, Markowitz GS, Schwabe RF, Schwartz RE, Elemento O, Saqi A, Hibshoosh H, Que J, Izar B. A
871 molecular single-cell lung atlas of lethal COVID-19. *Nature*. 2021;595(7865):114-9. Epub 20210429. doi:
872 10.1038/s41586-021-03569-1. PubMed PMID: 33915568; PMCID: PMC8814825.

873 33. Yamada S, Ko T, Hatsuse S, Nomura S, Zhang B, Dai Z, Inoue S, Kubota M, Sawami K, Yamada T,
874 Sassa T, Katagiri M, Fujita K, Katoh M, Ito M, Harada M, Toko H, Takeda N, Morita H, Aburatani H,
875 Komuro I. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at
876 the border zone in remodeling after myocardial infarction. *Nature Cardiovascular Research*.
877 2022;1(11):1072-83. doi: 10.1038/s44161-022-00140-7.

878 34. Liu W, Baker SS, Baker RD, Nowak NJ, Zhu L. Upregulation of hemoglobin expression by
879 oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. *PLoS One*.
880 2011;6(9):e24363. Epub 20110912. doi: 10.1371/journal.pone.0024363. PubMed PMID: 21931690;
881 PMCID: PMC3171444.

882 35. Nishi H, Inagi R, Kato H, Tanemoto M, Kojima I, Son D, Fujita T, Nangaku M. Hemoglobin is
883 expressed by mesangial cells and reduces oxidant stress. *J Am Soc Nephrol*. 2008;19(8):1500-8. Epub
884 20080430. doi: 10.1681/ASN.2007101085. PubMed PMID: 18448584; PMCID: PMC2488266.

885 36. Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, Bank MP, Gurkar AU,
886 McGuckian CA, Calubag MF, Kato JI, Burd CE, Robbins PD, Niedernhofer LJ. Tissue specificity of
887 senescent cell accumulation during physiologic and accelerated aging of mice. *Aging Cell*.
888 2020;19(3):e13094. Epub 20200125. doi: 10.1111/acel.13094. PubMed PMID: 31981461; PMCID:
889 PMC7059165.

890 37. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T,
891 Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of
892 a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. *Aging Cell*.
893 2016;15(3):428-35. Epub 20160318. doi: 10.1111/acel.12445. PubMed PMID: 26711051; PMCID:
894 PMC4854923.

895 38. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X,
896 Giavridis T, Kulick A, Houlihan S, Peerschke E, Friedman SL, Ponomarev V, Piersigilli A, Sadelain M, Lowe
897 SW. Senolytic CAR T cells reverse senescence-associated pathologies. *Nature*. 2020;583(7814):127-32.
898 Epub 20200617. doi: 10.1038/s41586-020-2403-9. PubMed PMID: 32555459; PMCID: PMC7583560.

899 39. Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-
900 6 and ligands of CXCR2. *JCI Insight*. 2022;7(14). Epub 20220616. doi: 10.1172/jci.insight.158207.
901 PubMed PMID: 35708907; PMCID: PMC9431681.

902 40. Roos CM, Zhang B, Palmer AK, Ogorodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith
903 LA, Casablang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD. Chronic senolytic
904 treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. *Aging Cell*.
905 2016;15(5):973-7. Epub 20160805. doi: 10.1111/acel.12458. PubMed PMID: 26864908; PMCID:
906 PMC5013022.

907 41. Kiss T, Nyul-Toth A, DelFavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C,
908 Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csizsar A. Spatial transcriptomic analysis
909 reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey

910 matter in the aged mouse brain. *Geroscience*. 2022;44(2):661-81. Epub 20220131. doi:
911 10.1007/s11357-022-00521-7. PubMed PMID: 35098444; PMCID: PMC9135953.

912 42. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis.
913 *Genome Biol*. 2018;19(1):15. Epub 20180206. doi: 10.1186/s13059-017-1382-0. PubMed PMID:
914 29409532; PMCID: PMC5802054.

915 43. Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and
916 annotation of single-cell transcriptomics data with deep generative models. *Mol Syst Biol*.
917 2021;17(1):e9620. doi: 10.15252/msb.20209620. PubMed PMID: 33491336; PMCID: PMC7829634.

918 44. Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, Wu K, Jayasuriya M,
919 Mehlman E, Langevin M, Liu Y, Samaran J, Misrachi G, Nazaret A, Clivio O, Xu C, Ashuach T, Gabitto M,
920 Lotfollahi M, Svensson V, da Veiga Beltrame E, Kleshchevnikov V, Talavera-Lopez C, Pachter L, Theis FJ,
921 Streets A, Jordan MI, Regier J, Yosef N. A Python library for probabilistic analysis of single-cell omics
922 data. *Nat Biotechnol*. 2022;40(2):163-6. doi: 10.1038/s41587-021-01206-w. PubMed PMID: 35132262.

923 45. Franzen O, Gan LM, Bjorkegren JLM. PanglaoDB: a web server for exploration of mouse and
924 human single-cell RNA sequencing data. *Database (Oxford)*. 2019;2019. doi: 10.1093/database/baz046.
925 PubMed PMID: 30951143; PMCID: PMC6450036.

926 46. Fang Z, Liu X, Peltz G. GSEApY: a comprehensive package for performing gene set enrichment
927 analysis in Python. *Bioinformatics*. 2023;39(1). doi: 10.1093/bioinformatics/btac757. PubMed PMID:
928 36426870; PMCID: PMC9805564.

929 47. Bernstein NJ, Fong NL, Lam I, Roy MA, Hendrickson DG, Kelley DR. Solo: Doublet Identification
930 in Single-Cell RNA-Seq via Semi-Supervised Deep Learning. *Cell Syst*. 2020;11(1):95-101 e5. Epub
931 20200626. doi: 10.1016/j.cels.2020.05.010. PubMed PMID: 32592658.

932

1 **Figure 1. Known senescence markers are cell-type-specific and poorly characterize *in vivo***
2 **cellular senescence.** (A) There is an insignificant overlap between a universal organismal aging
3 signature and previously reported senescence markers ($p = 0.58$, Hypergeometric). The universal
4 signature are genes present in at least 50% of the cell-specific gene sets elucidated by differential
5 expression between young and old cells previously. (B) A histogram depicting the 3-month to 24-month
6 ratio of all cells expressing every gene in the *Tabula Muris Senis* dataset. The top 5% of the distribution
7 is marked by the dashed line and known senescence markers above this are labeled. (C, D) UMAPs
8 (left) representing *CDKN2A*+ ($p16^{ink4a}$ encoding gene) cells from the mouse and human datasets. Cells
9 from 24-, and 30-month mice are denoted old while 1-, and 3-month mice are young. UMAPs (right)
10 showing all cells in the datasets and are labeled by broad cell classifications. Bar graphs show the
11 percentage of *CDKN2A*+ cells relative to all cells in the respective datasets. (E, F) Cell-specific maps of
12 marker dynamics in mice and humans. Vertical dashed lines represent the start of a tissue and cell
13 types from that tissue are classified and depicted by shape. Multiple cell types belonging to the same
14 class are overplotted. Gain represents the percent increase of cells expressing the marker relative to
15 young organisms. Bar plots depict the percentage of cell populations which the respective gene is a
16 suitable marker and they are colored by senescence-associated function.

17
18 **Figure 2. *De novo* cell-type specific signatures derived algorithmically from single-cell**
19 **transcriptomes.** (A) Overview of the algorithm used to define cell-specific signatures from mice and
20 humans (see methods). Workflow ends with a cosine signature comparison used to determine
21 signature similarity. (B) Example signatures derived from mouse cardiomyocytes and human
22 hippocampal choroid plexus cells. Each node represents a gene and the connections represent positive
23 cell co-positivity. Connections are weighted by Pearson's R. The colors represent distinct hub
24 signatures within the overall cell signatures. (C, D) Representative diagram of all derived signatures
25 from mouse and humans. Each dot represents a signature and is sized by its number of genes. The dot
26 color is the respective enrichment for each signature compared to previously known senescence

27 markers (Hypergeometric). Each signature is connected to its most similar signature and the color of
28 the connection is based on the cosine similarity. (E) Network similarity analysis of mouse cell-specific
29 novel senescence signatures and organismal aging signatures. Each shape represents a signature and
30 lines represent significant similarity between them. Similarity (strength of connections) is defined as -
31 $\log_{10}(\text{BH-corrected Hypergeometric P})$. Network is clustered and colored by Louvain's algorithm.
32 .

33 **Figure 3. Multiple modes of senescence exist within the same cell populations.** (A) Signature
34 derived from mouse tongue keratinocytes. Each node represents a gene and the connections represent
35 positive cell co-positivity. Connections are weighted by Pearson's R. Nodes are colored by Louvain-
36 based assignment to distinct hub signatures. (B) GO and (C) KEGG gene set enrichment of the two
37 keratinocytes hub signatures. The “senescence” gene set is the pre-defined senescence markers used
38 in this study. Horizontal dashed line represents FDR $p = 0.05$. (D) Pairwise enrichment of the two
39 keratinocyte hubs against all other senescence signatures. (E) The strip plot depicts the score of each
40 keratinocyte determined by *SenePy* using the forementioned hubs. Horizontal dashed lines represent
41 three standard deviations above the mean. (F) Temporal kinetics of the proportion of cells scored three
42 standard deviations above the mean by *SenePy* for the two keratinocyte hubs. (G) Hierarchical
43 clustering of fibroblast hub signatures from mouse lungs, tracheas, and hearts based on cosine
44 similarity. (H) Temporal kinetics of the proportion of lung, trachea, and heart fibroblast cells scored high
45 by *SenePy* using their respective signatures. (I) GO gene set enrichment of the most similar trachea
46 and lung fibroblast hubs. Gene sets specific to the trachea hub are colored. All enrichment plots use
47 BH-corrected Fisher's Exact P values.
48

49 **Figure 4. Cell-specific signatures are unique but share some genes and biological pathways.** (A)
50 Plot depicting the most commonly found genes from the novel mouse cell-specific signatures.
51 Significance was determined from 1000 random sets of signatures equal in size from the background
52 set of genes. (B) The 12 most enriched KEGG pathways from a “universal” signature comprised of

53 genes with a high mouse signature prevalence ($p < 0.01$). **(C)** The most commonly enriched KEGG and
54 GO gene sets in every mouse signature. The bars note the percent of signatures enriched for the given
55 pathway. **(D)** The most commonly enriched transcription factor motifs in the promotores of signature
56 genes from mice. Bars represent the percent of signatures enriched for the given pathway. **(E)** Plots
57 depicting the most commonly found genes from the novel human cell-specific signatures. **(F)** The 12
58 most enriched KEGG pathways from a “universal” signature comprised of genes with a high human
59 signature prevalence ($p < 0.04$). **(G)** The most commonly enriched KEGG and GO gene sets in every
60 human signature. The bars note the percent of signatures enriched for the given pathway. **(D)** The most
61 commonly enriched transcription factor motifs in the promotores of signature genes from humans. Bars
62 represent the percent of signatures enriched for the given pathway.

63

64 **Figure 5. The cell-specific kinetics of senescent cell accumulation with organismal age.** UMAPs
65 of **(A)** mouse and **(B)** human cells depicting broad cell classification and overlayed with cells which
66 were outliers determined by their *SenePy* score. **(C)** The proportional increase of *SenePy* outlier cells in
67 old mice (24- or 30-month) relative to 3-month-old mice. **(D)** The proportion of *SenePy* human outlier
68 cells in across age bins. Each row represents 0-16% and grey rectangles note that no data is available.
69 **(E)** The fraction of *SenPy* outliers in individual cell types stratified by heart tissue donor. Age increases
70 along the x-axis from left to right.

71

72 **Figure 6. *SenePy* identifies ground-truth *in vivo* senescence more robustly than established**
73 **markers of senescence.** **(A)** UMAPs of single-cells from the kidney which were enriched for td-
74 Tomato+ cells. **(B)** Enrichment analysis of differentially abundant genes in the td-Tomato+ kidney cells.
75 Gene sets were derived in this study and we also include the SenMayo signature. **(C)** Density plots
76 depicting *SenePy* score distributions calculated in kidney cells using kidney-specific *SenePy*
77 signatures. **(D)** Enrichment analysis of differentially abundant genes in the td-Tomato+ liver cells. **(E)**
78 Enrichment analysis of lung tissue genes downregulated after senolytic treatment in mice. Blue lables

79 indicate SenePy signatures. **(F)** Enrichment analysis of gene mRNAs more abundant in irradiated
80 endothelial cells and **(G)** fibroblasts. **(H)** Enrichment analysis of gene mRNAs more abundant in
81 replicative fibroblast senescence. **(I)** UMAPs of single-cells from the liver which were enriched for td-
82 Tomato+ cells. **(J)** UMAP and representative bar graph of td-Tomato+ cells with *Cdkn2a*+ cells labeled.
83 **(K)** UMAPs and representative bar graphs of td-Tomato+ and **(L)** td-Tomato- cells with *Cdkn1a*+ cells
84 labeled.

85

86 **Figure 7. SenePy predicts elevated senescence burden in severe disease** **(A)** UMAP showing cells
87 from uninfected control lungs (n = 7) and patients who died from COVID-19 (n = 22). **(B)** UMAP of
88 control cells (left) and COVID-19 cells (right) with SenePy outlier cells labeled. **(C)** Proportion cells
89 identified with SenePy from AT1, AT2, and airway epithelial cells ($p = 0.004$, Mann-Whitney). **(D)**
90 Distributions of SenePy score from the major cell lung cell classes. **(E)** Heatmap with the relative
91 senescence burden of each cell type in each patient. **(F)** Representative whole heart H&E staining
92 overlayed with spatially resolved 10x Visium spots. Yellow spots are identified as senescence outliers
93 from their SenePy score. Box plot (right) shows the proportion of identified spots at each time point ($p =$
94 0.30, one-way ANOVA) **(G)** The bottom images represent post-MI fibrosis via normalized *Col1a1*
95 expression. Scale bars represent 100 μ M. The correlation between senescence-like spots and *Col1a1*
96 expression for each sample is shown by the right box plot (-log₁₀[Pearson's R p-value]). **(H)** The relative
97 contribution to the overall calculated senescence burden from the 8 hubs used to score the spots **(I)**
98 Spatial clustering of the senescence-like spots (-log₁₀[Moran's I p-value]). Horizontal line represents $p =$
99 0.05. **(J)** Representative H&E image of coronal sections spatially resolved by 10x Visium which were
100 taken from mice 24h after exposure to LPS. Yellow spots are identified as senescence outliers from
101 their SenePy score. Summary plot (right) depicts spatial autocorrelation of spots in LPS and saline
102 treated mice (-log₁₀[Moran's I p-value]).

103

104 **Supplemental figure 1. (A, B)** UMAPs of all mouse and human cells used that are colored by tissue of
105 origin, age, and sex.

106

107 **Supplemental figure 2. (A)** Overview of the senescence marker gene set enrichment analysis. Cell-
108 specific organismal aging signatures determined in a previous study were compared to a curated set of
109 senescence markers taken from multiple studies. **(B)** The statistical enrichment of every organismal
110 aging signature for senescence markers. Color represents the significance of enrichment
111 (Hypergeometric, BH-corrected) and the size of the bar represents the percentage of senescence
112 markers present in the aging signature. The aligned plot on the right shows the proportion of cells in
113 each population that were expressing the proliferation marker Ki-67. **(C)** There is a negative correlation
114 between senescence gene set enrichment and the proliferation state of a population ($p = 0.038$,
115 Pearson's R).

116

117 **Supplemental Figure 3. (A)** UMAP representing *Cxcl13*⁺ cells in all mouse cells. **(B)** UMAP (top) of
118 human skin cells colored by cell type. UMAP (bottom) of human skin cells positive for *CDKN2A* from
119 young (age 18-34) and old (age 34-58) donors. Dot plot depicts the percentage of *CDKN2A*⁺ cells from
120 old and young human skin cells. **(C)** UMAP representing *CDKN1A*⁺ (gene that encodes p21^{cip1}) cells in
121 all mouse and human cells.

122

123 **Supplemental Figure 4.** Hierarchical clustering of signatures based on gene-set similarity. Similarity is
124 defined as the inverse of $\log_{10}(\text{BH-corrected Hypergeometric } P)$ for each pairwise comparison

125

126 **Supplemental Figure 5. (A)** The proportion of mouse cells expressing Tert and **(B)** Ki67. **(C,D)** The
127 relationship between cell types expressing Tert and Ki67 with their gain in SenePy identified cells.

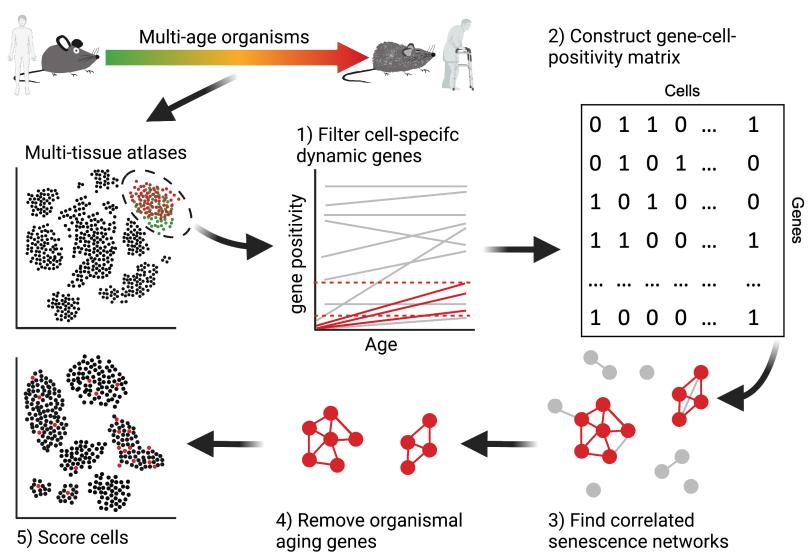
128

129 **Supplemental Figure 6. (A)** Enrichment analysis of gene mRNAs less abundant in mouse muscle
130 tissue after treatment with a senolytic. Blue labels indicate *SenePy* signatures. **(B)** Enrichment analysis
131 of gene mRNAs more abundant after irradiation induced senescence of cultured endothelial cells.

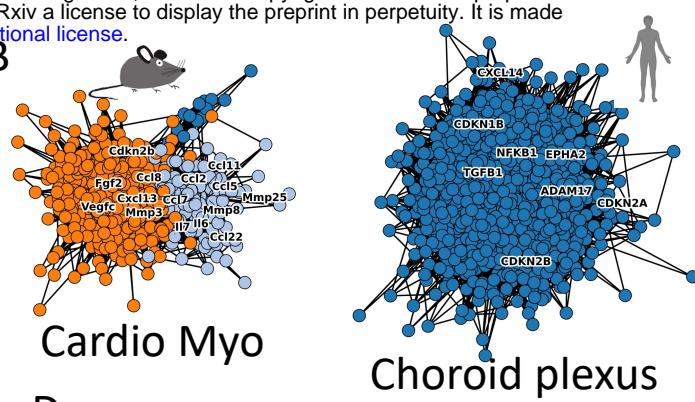


Fig 1 Known senescence markers are cell-type-specific and poorly characterize in vivo cellular senescence.

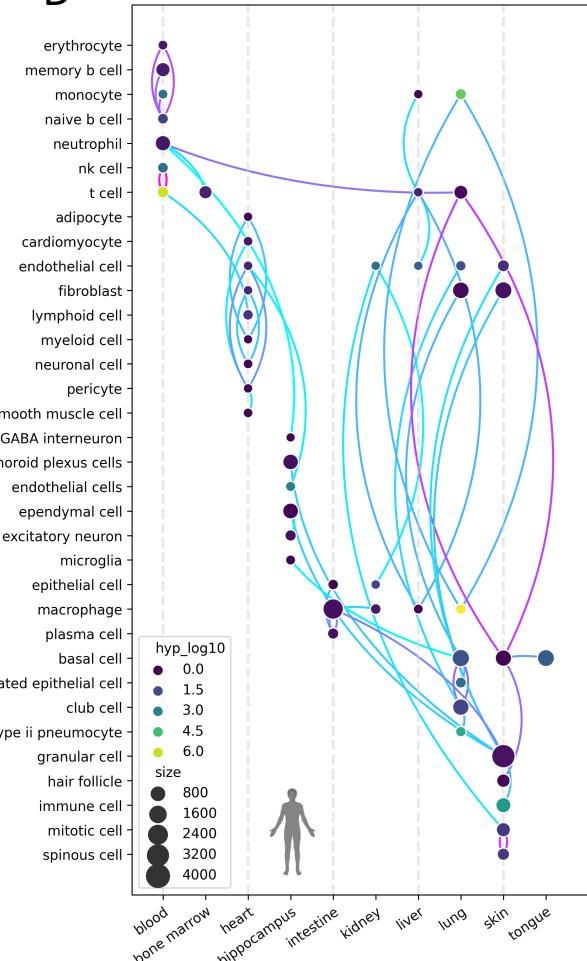
A



ratio
B



D



E

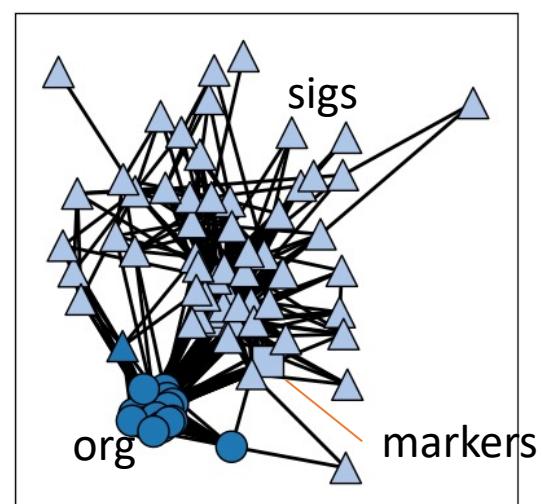


Fig 2 *De novo* cell-type specific signatures derived algorithmically from single-cell transcriptomes.

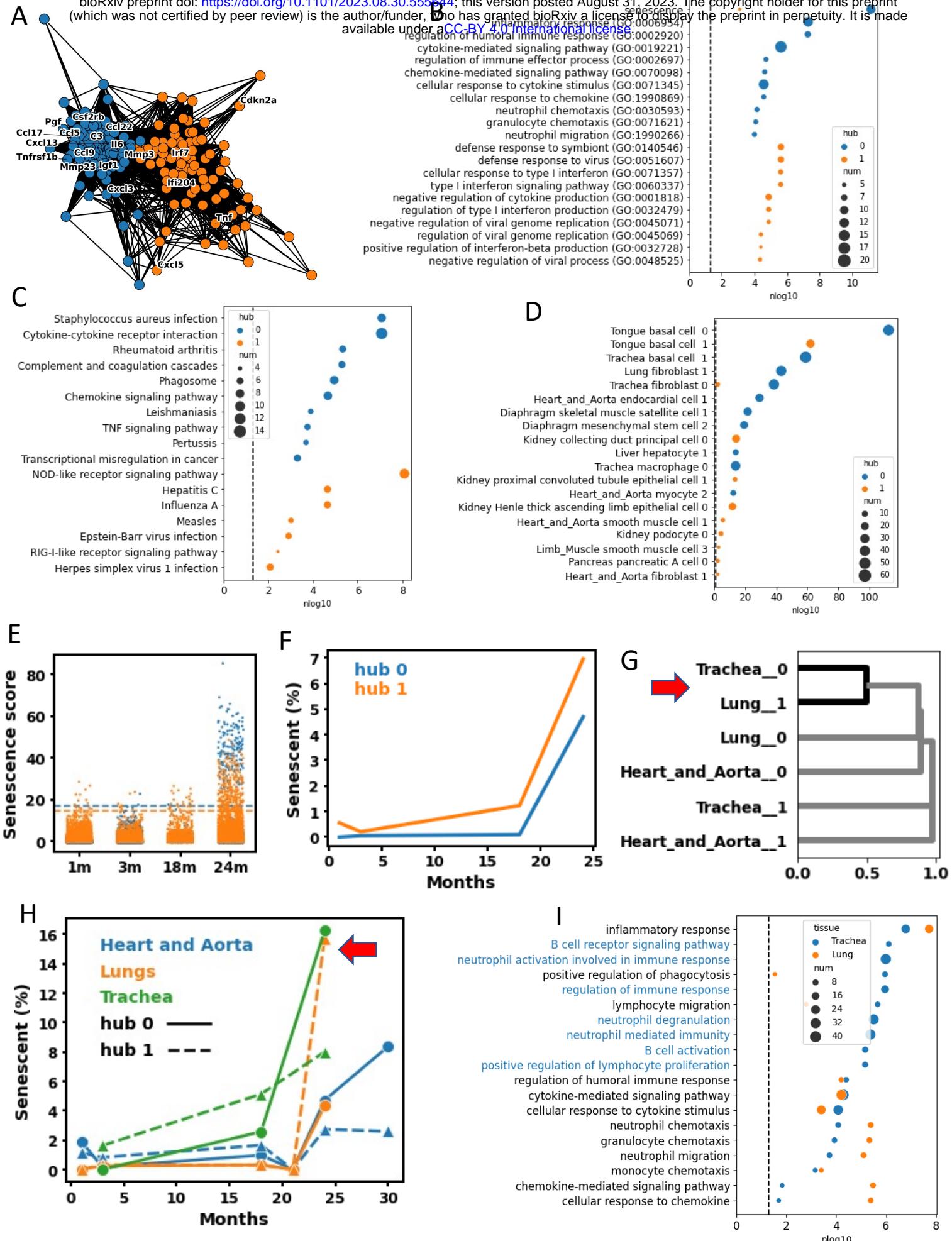
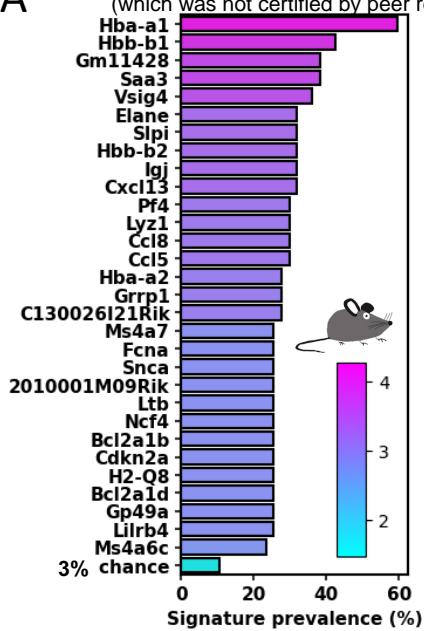
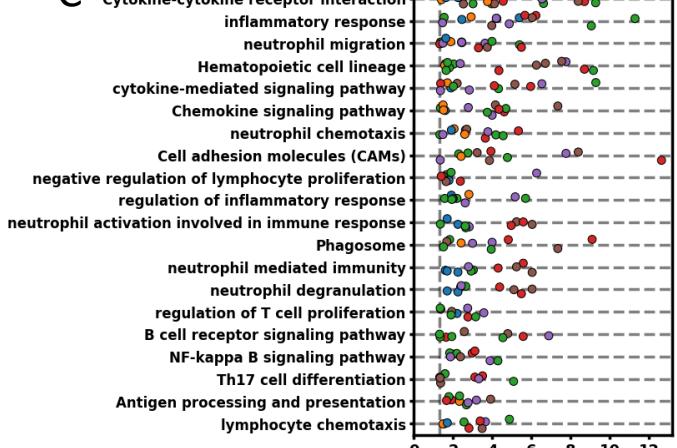


Fig 3 Distinct modes and phenotypes of senescence exist within the same cell populations

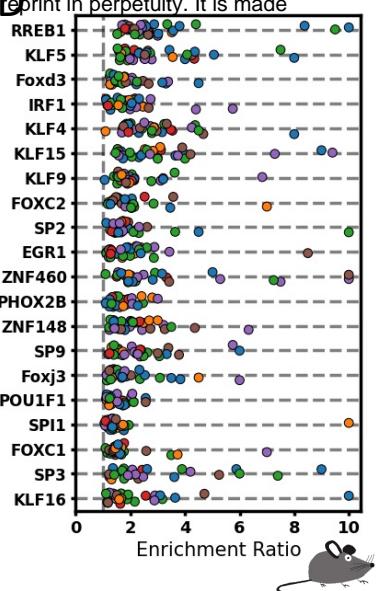
A



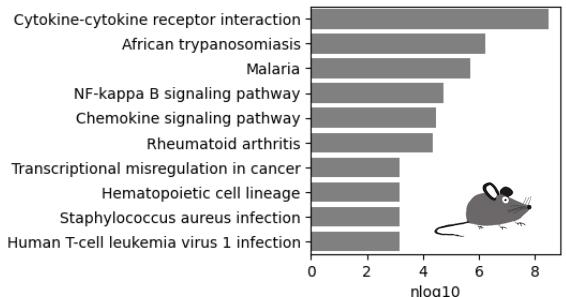
C cytokine-cytokine receptor interaction



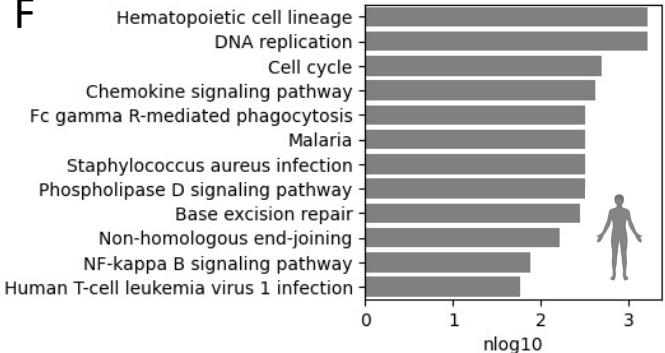
D



B

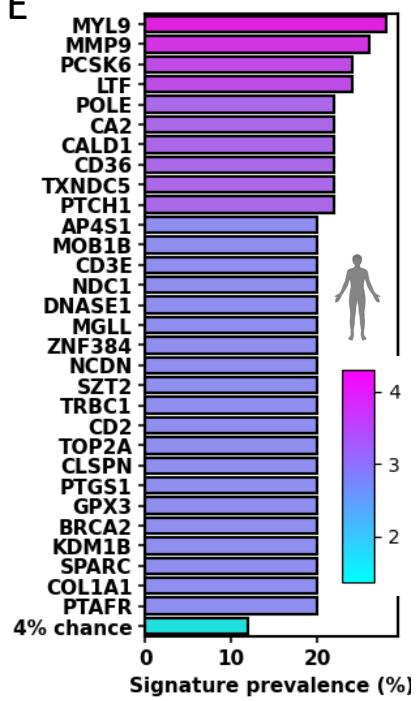


F

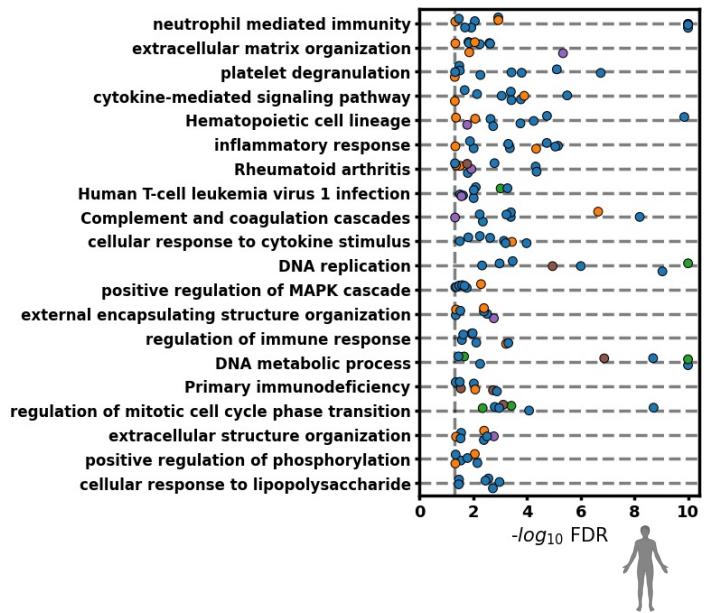


immune
endothelial
parenchymal
stromal
epithelial
progenitor

E



G



H

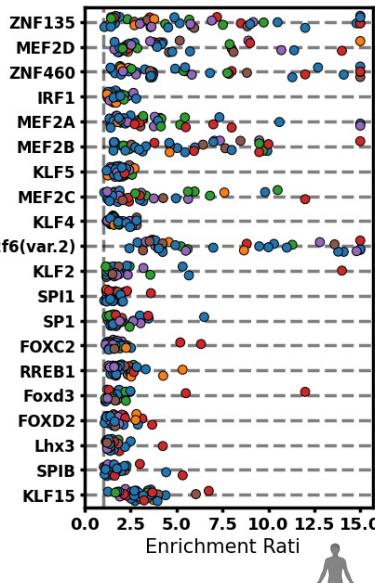
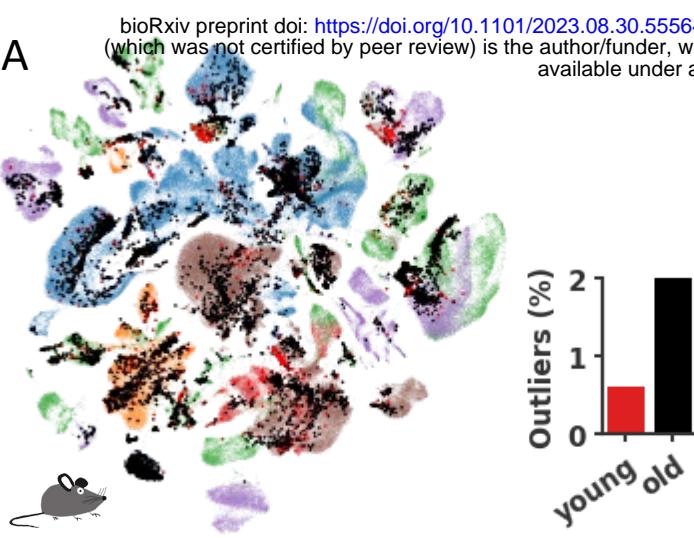
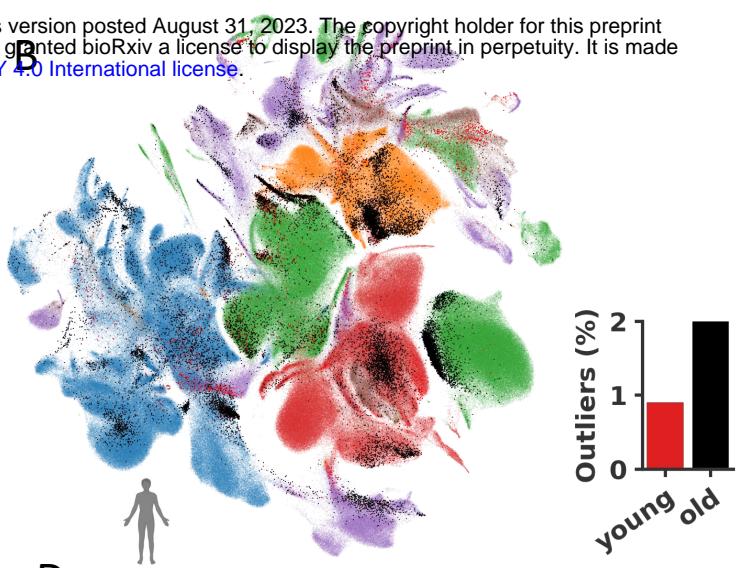


Fig 4 Cell-specific signatures are unique but share common stress response and inflammatory pathways

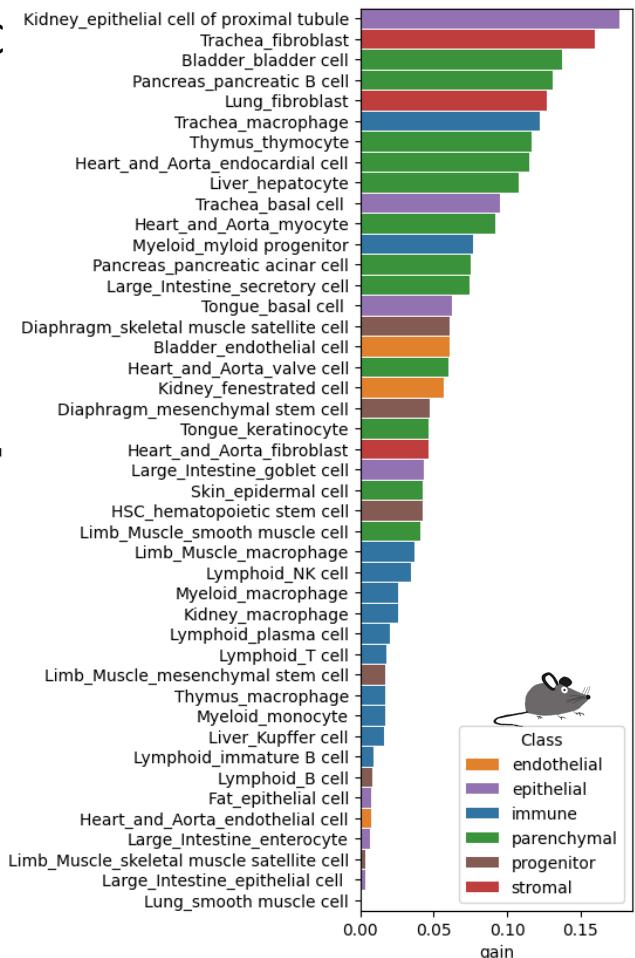
A



B



C



D

E

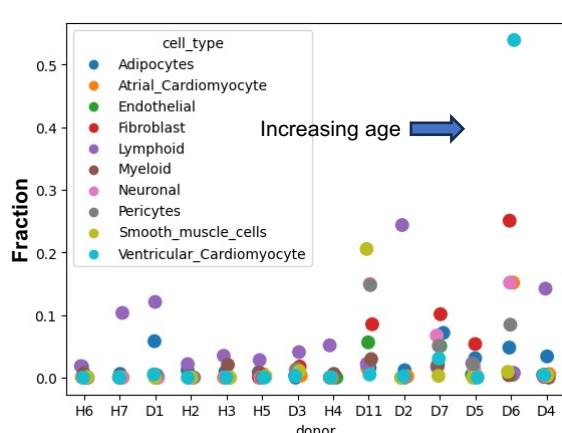
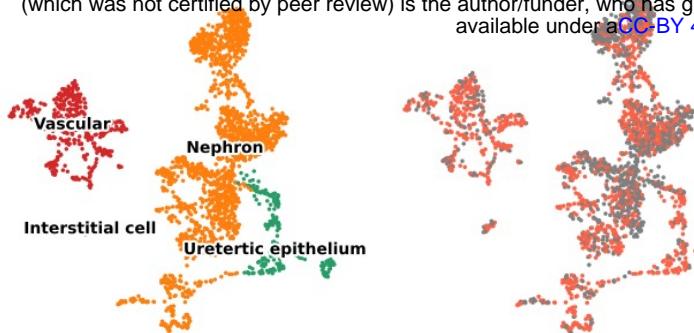
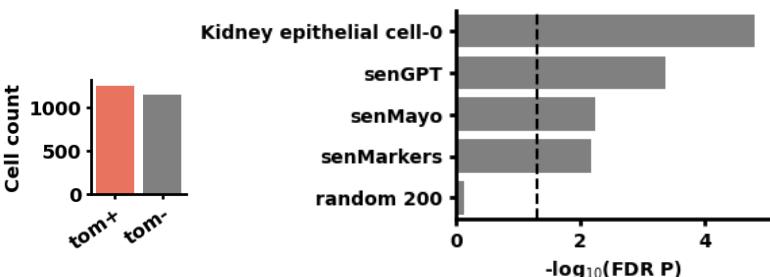


Fig 5 The cell-specific kinetics of senescent cell accumulation with organismal age

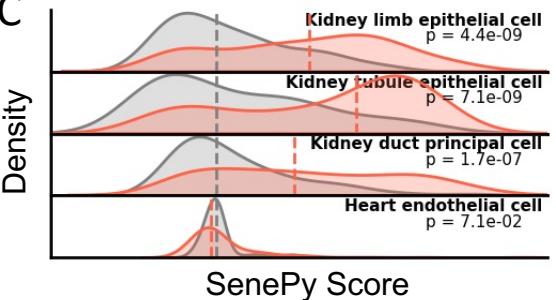
A



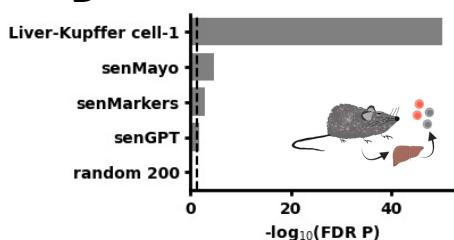
B



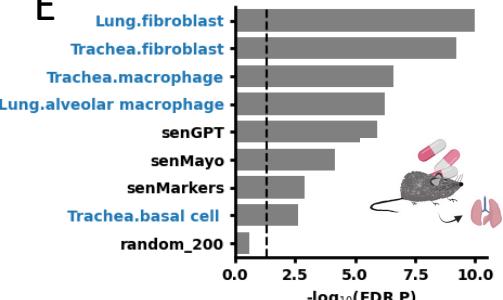
C



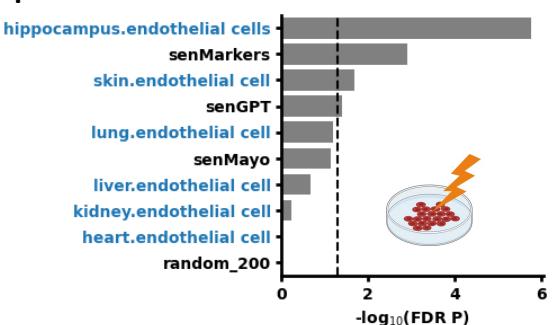
D



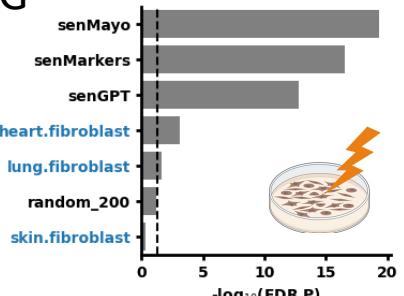
E



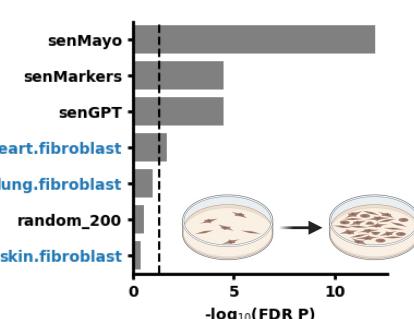
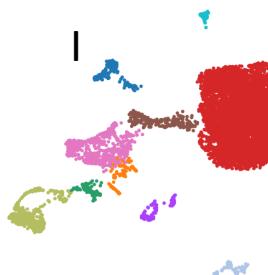
F



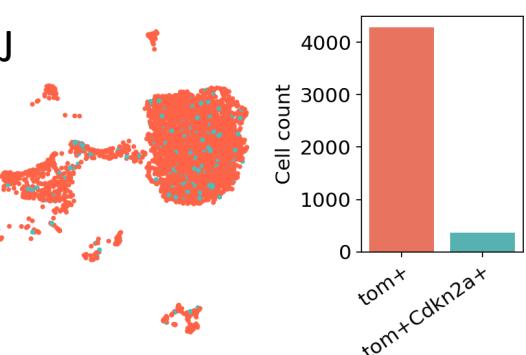
G



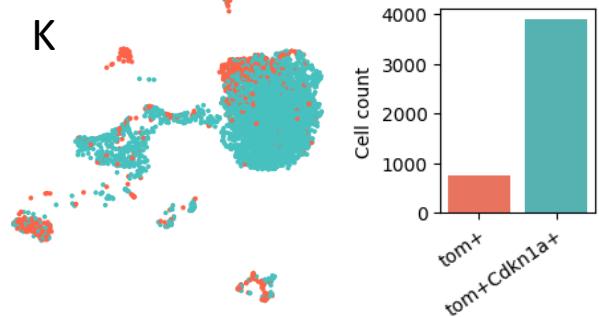
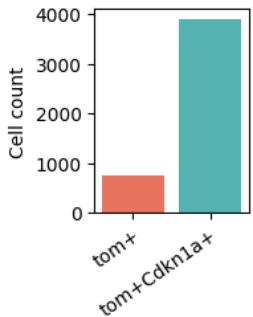
H



● B cell
● Dendritic cell
● Dividing cell
● Endothelial cell
● HSC
● Kupffer cell
● Macrophage
● Neutrophil
● Plasma cell
● T cell



K



L

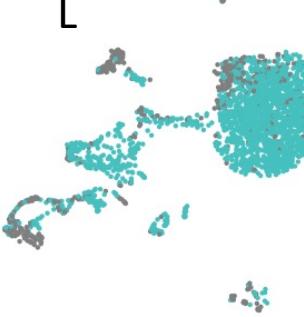
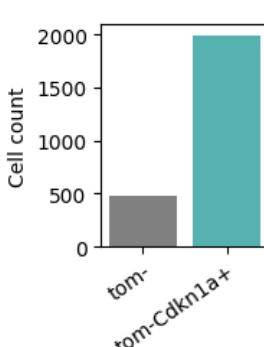
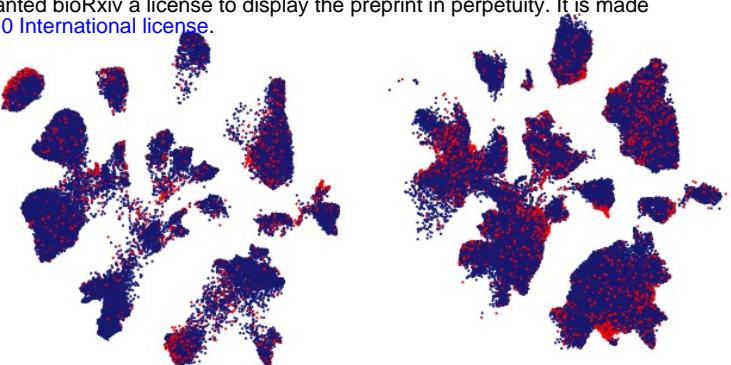


Fig 6 SenePy identifies ground-truth in vivo senescence more robustly than established markers of senescence.

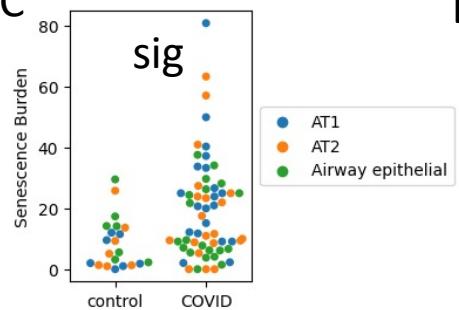
A



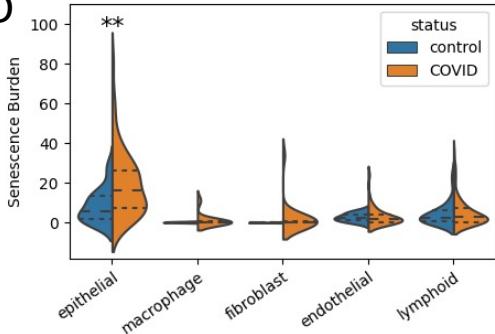
B



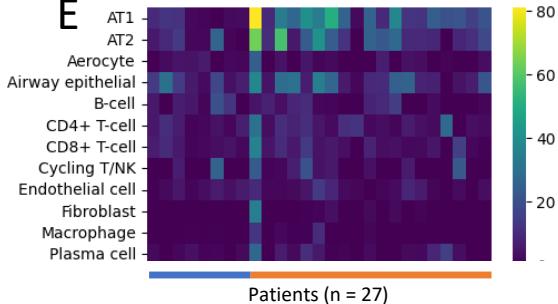
C



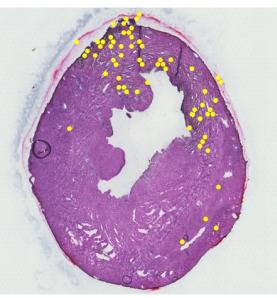
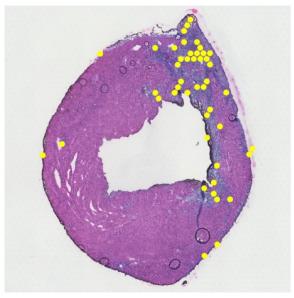
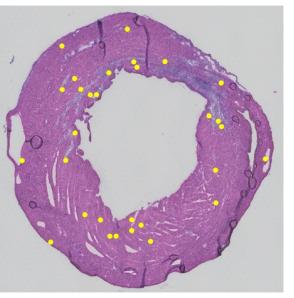
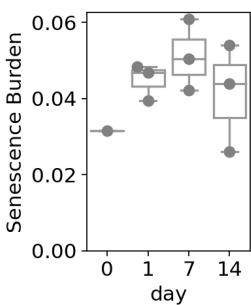
D



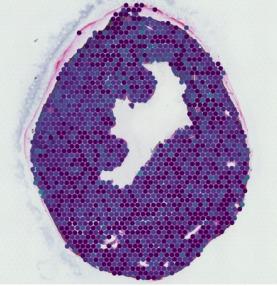
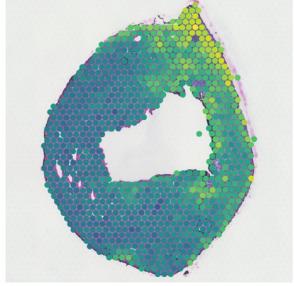
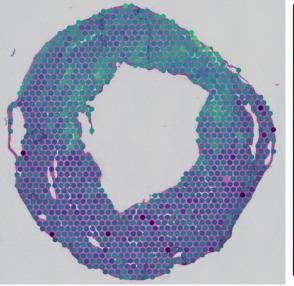
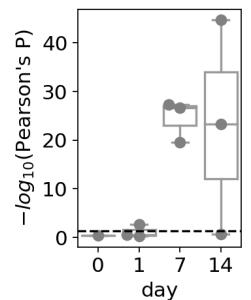
E



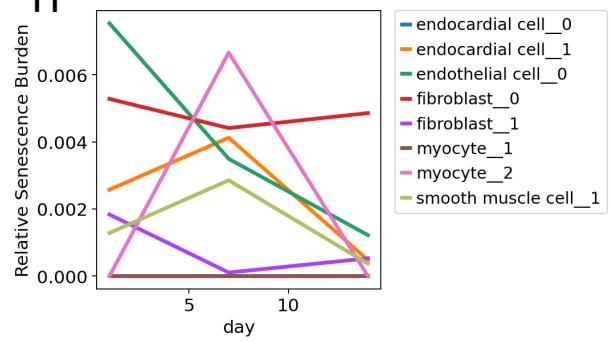
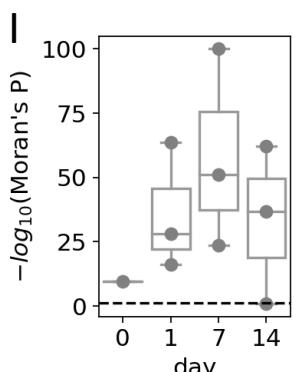
F



G



H



I

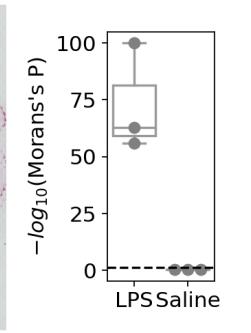


Fig 7 SenePy predicts elevated senescence burden in severe disease

age

tissue2

tissue

sex

age

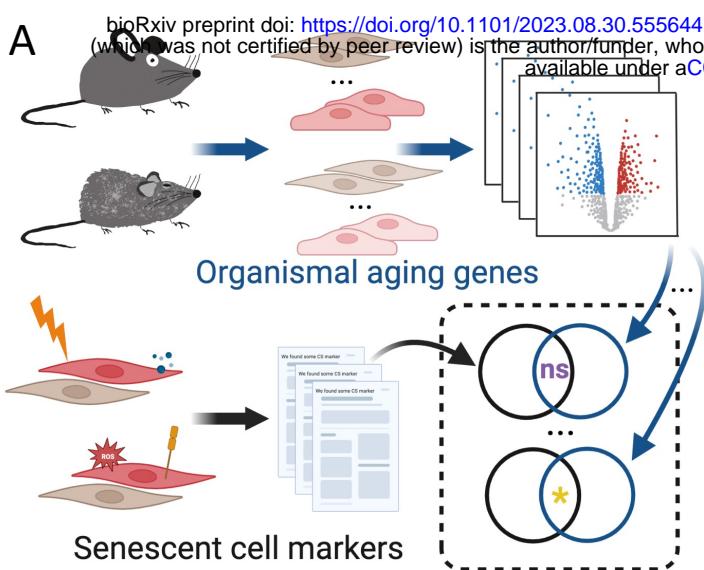
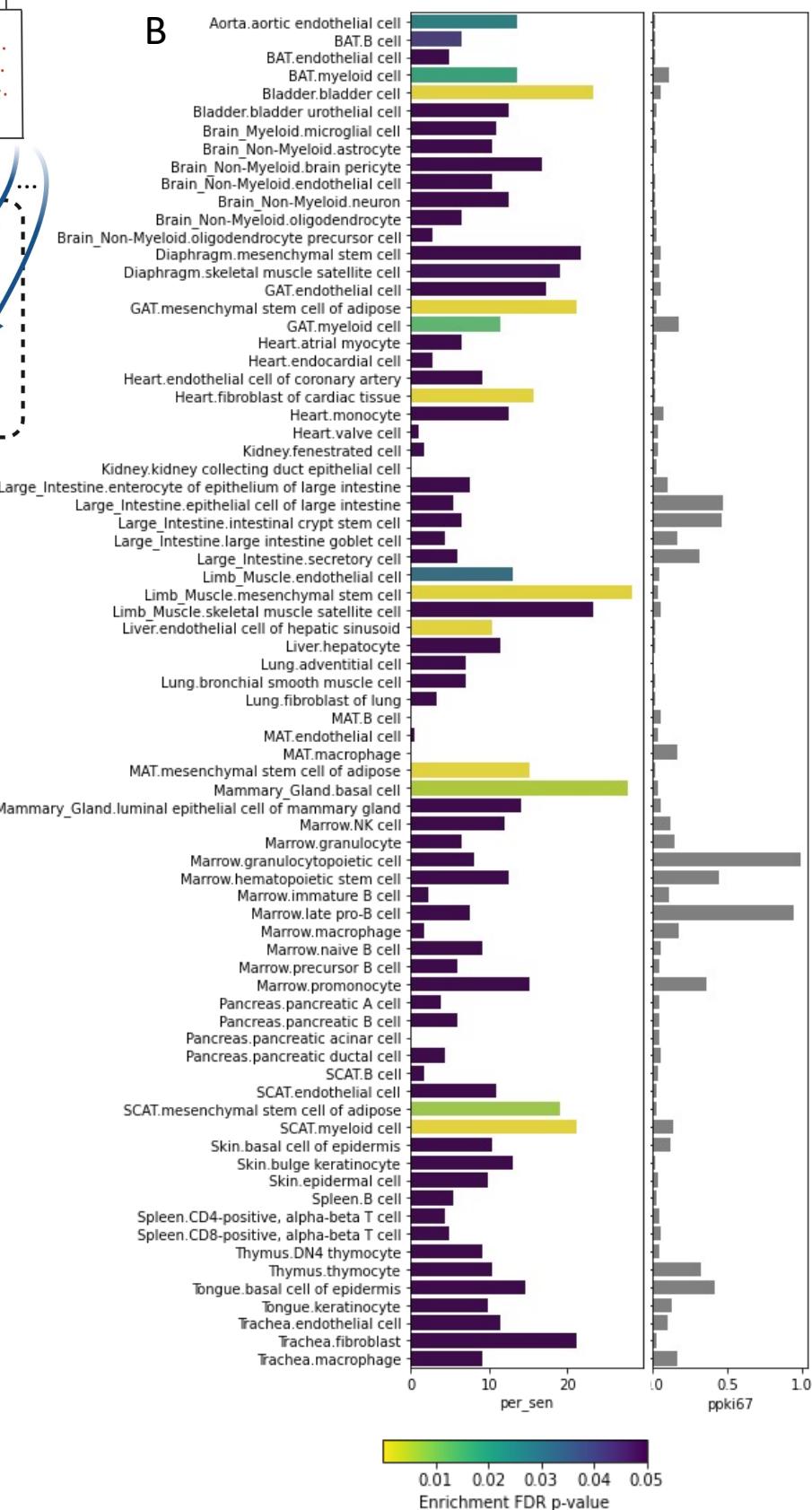
tissue2

tissue

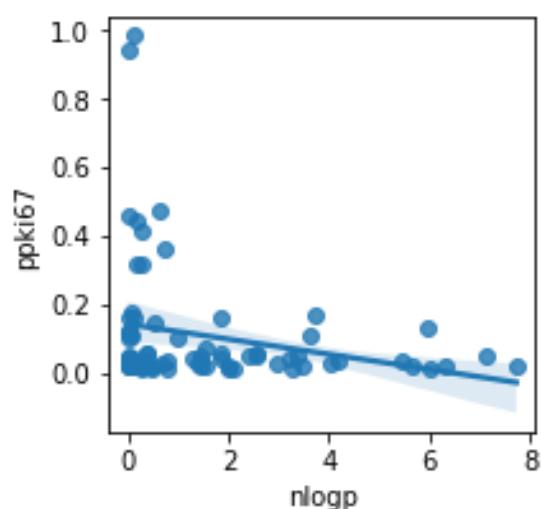
sex

age

tissue

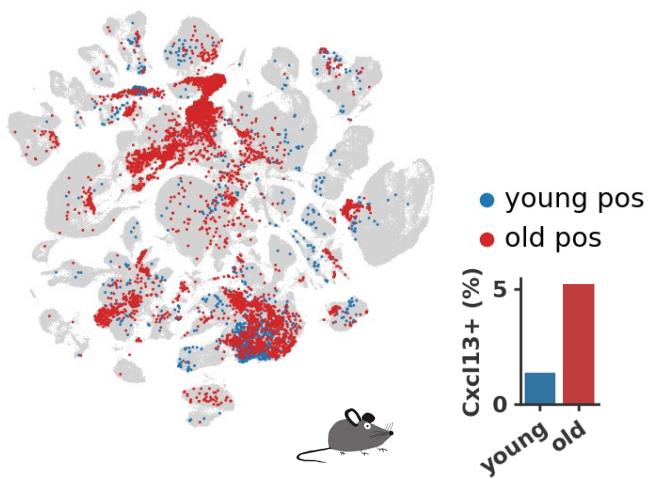


C

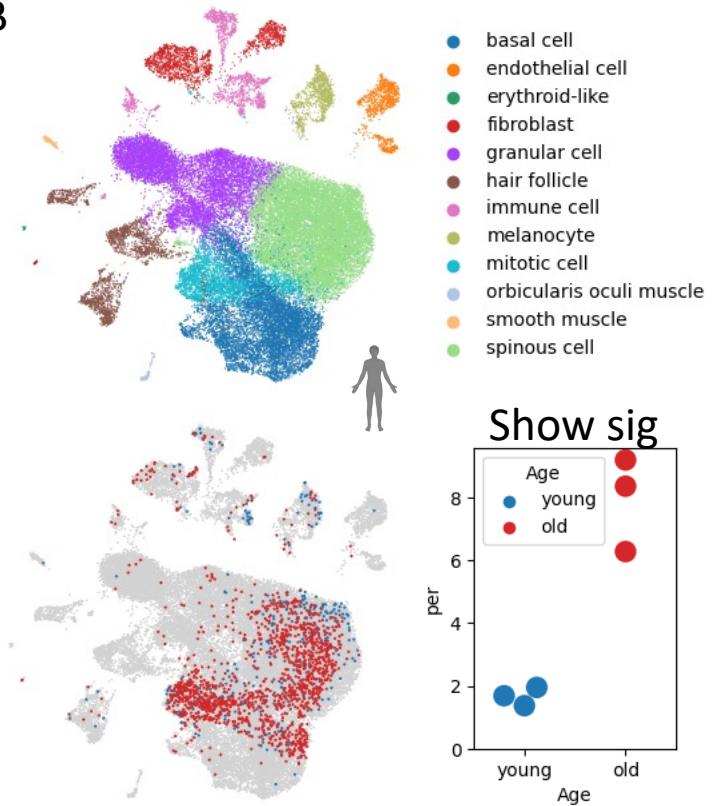


Supplemental Figure 2

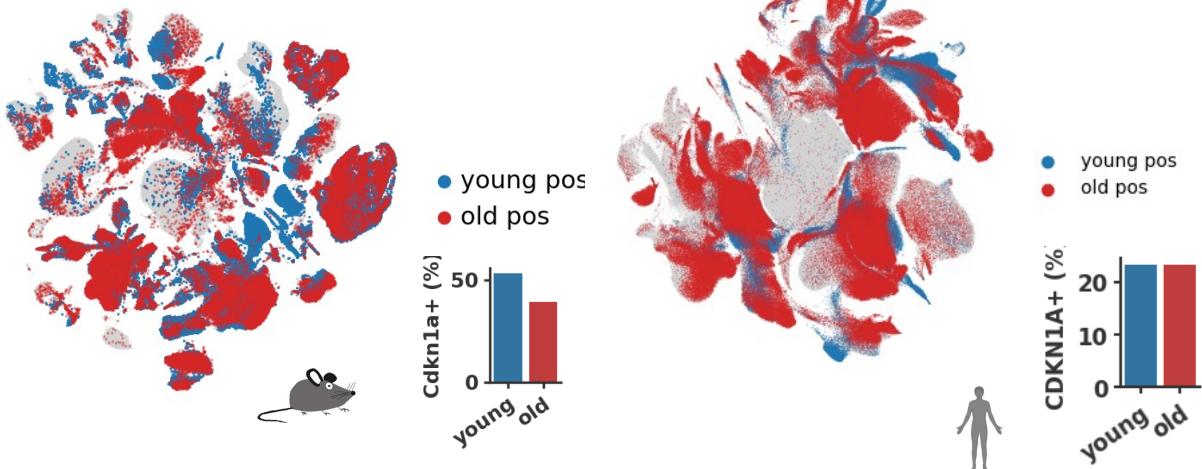
A



B



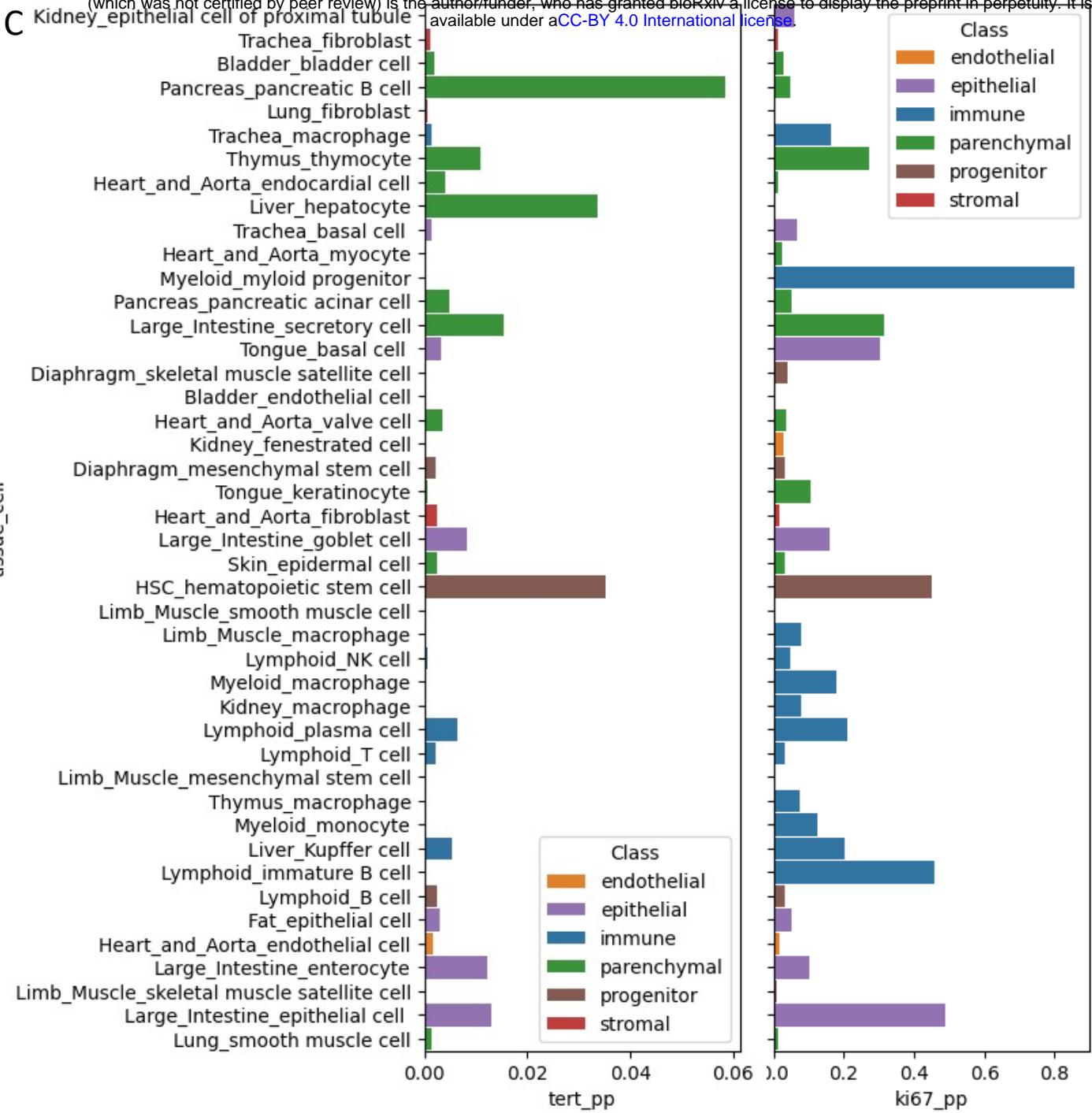
C



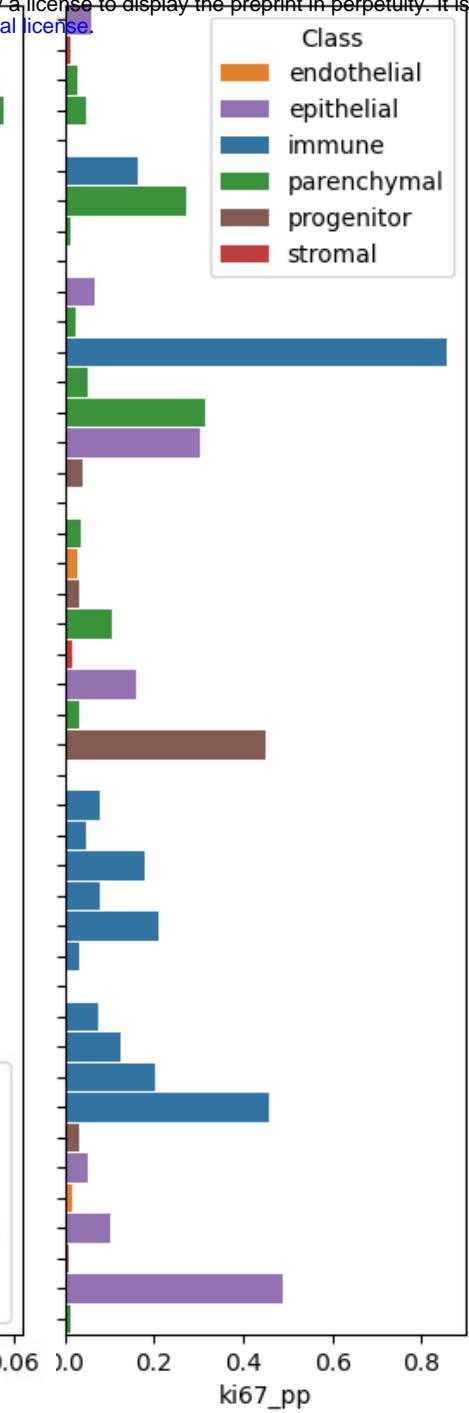
Supplemental figure 3

Supplemental Figure 4

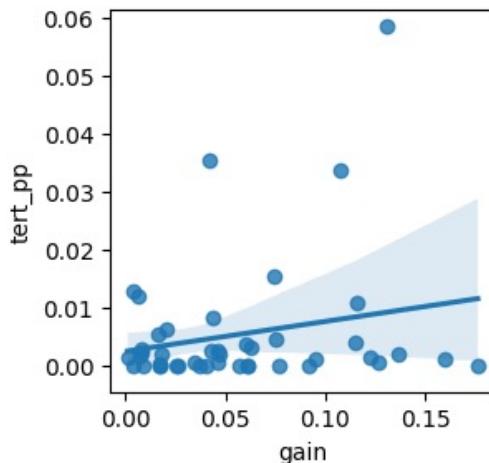
C Kidney_epithelial cell of proximal tubule



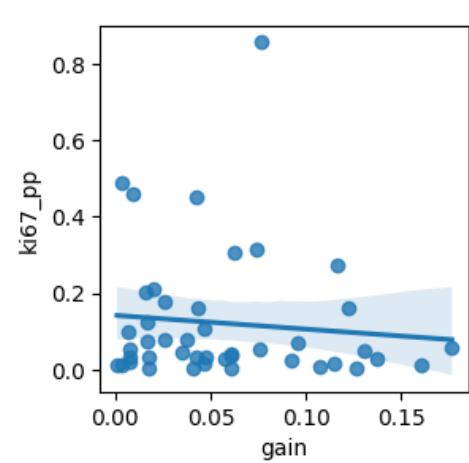
A



D

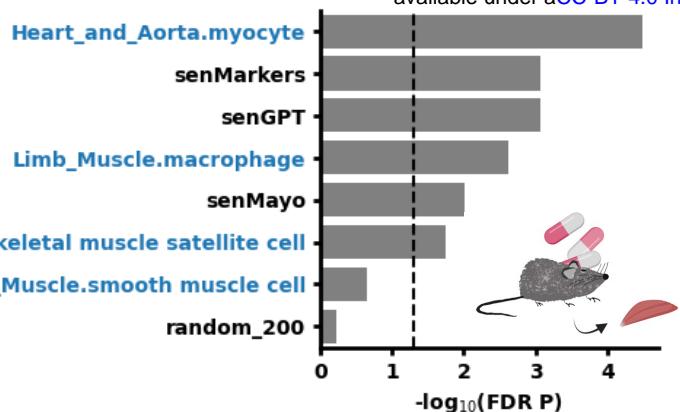


B

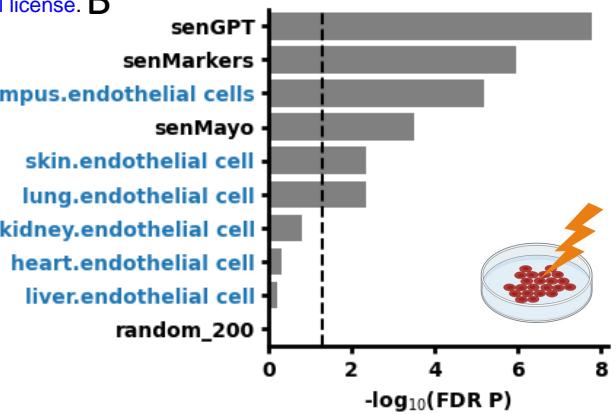


Supplemental Figure 5

A



B



Supplemental Figure 6