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ABSTRACT 

 

Dynamic and rapid reconfigurations of neural activation patterns, known as brain states, support 

cognition. Recent analytic advances applied to functional magnetic resonance imaging now 

enable the quantification of brain states, which offers a substantial methodological improvement 

in characterizing spatiotemporal dynamics of activation over previous functional connectivity 

methods. Dysfunction to the persistence and temporal transitions between discrete brain states 

may be proximal factors reflecting neurophysiological disruptions in Alzheimer’s disease, 

although this has not yet been established. Here, we identified six distinct brain states, 

representing spatiotemporal trajectories of coactivation at single time points, in older adults across 

the Alzheimer’s disease continuum. Critically, we identified a pathological brain state that reflects 

coactivation within limbic regions. Higher persistence within and transitions to this limbic state, at 

the expense of other brain states, is associated with an increased likelihood of a clinically impaired 

diagnosis, worse cognitive performance, greater Alzheimer’s pathology, and neurodegeneration. 

Together, our results provide compelling evidence that neural activity settling into a pathological 

limbic state reflects the progression to Alzheimer’s disease. As brain states have recently been 

shown to be modifiable targets, this work may inform the development of novel neuromodulation 

techniques to reduce limbic state persistence. This application would be an innovative clinical 

approach to rescue cognitive decline in the early stages of Alzheimer’s disease.      
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INTRODUCTION 
 

The brain is a dynamical system – rapidly responding to external cues and internal goals. 

Coordinated activation within cortical networks is a highly dynamic process, with specialized 

networks coming online and interacting in a fluid manner that is related to cognitive and task 

demands2,8–11. These transient whole-brain patterns of coactivation, also known as brain states 

(for a review, see Greene et al., 20231), can now be evaluated non-invasively in humans with 

functional magnetic resonance imaging in combination with sophisticated modeling 

techniques2,8,12–15. This temporal modeling of regional activation space enables vastly richer 

information reflecting dynamics of networks compared to what can be measured with traditional 

measures of static functional connectivity or sliding time window approaches, both of which 

reduce the time dimension and simplify complex interactions among brain regions as pairwise 

correlations3,4.   

While the dynamic nature of the brain provides flexibility and the ability for differential 

processing, it also may confer an inherent vulnerability if these dynamics become dysfunctional. 

In many neuropsychiatric conditions (e.g. major depressive disorder and schizophrenia6,16–20) and 

developmental disorders (e.g. autism spectrum disorder21), the brain has been shown to persist 

(or dwell) in certain patterns of activation, settling into potentially pathological low-energy states. 

Further, the temporal trajectory of how the brain traverses these states can also become 

dysfunctional, with changes to the overall frequency of transitions or probability of transitioning 

between certain states. These differences in persistence and transition probabilities are 

associated with maladaptive behavioral responses, and interventional techniques to manipulate 

brain states have been found to improve function22. 

Time-varying dynamics of brain states have not yet been characterized in 

neurodegenerative diseases such as Alzheimer’s disease. Alzheimer’s disease and related 

dementias are estimated to affect over 55 million people worldwide, and this number is projected 

to rapidly increase in the coming years as the aging population increases23. Alzheimer’s disease 

is characterized by a pathological cascade involving accumulation of aggregated proteins24, 

neurophysiological disruptions25,26, and neurodegeneration27, which together express as memory 

and cognitive impairment28 (for a review, see Knopman et al., 202129). It is well known that aging 

and Alzheimer’s disease is associated with neurophysiological changes such as neuronal 

hyperexcitability25, impaired excitatory-inhibitory balance30, and abnormal static functional 

connectivity between regions31 and large-scale cortical networks32,33.  
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In contrast to the extensive characterization of functional networks in aging and 

Alzheimer’s disease using static metrics of functional networks31–33, and to a lesser extent, 

dynamic functional connectivity approaches with sliding time windows34–39, time-varying dynamics 

of brain states, specifically reflecting coactivation patterns at single time points, have not yet been 

investigated. Insight into the rapid spatiotemporal dynamics of brain states would provide a more 

precise understanding of the mechanism underlying how network dysfunction may emerge. For 

example, using brain state analyses, we can probe whether there are specific coactivation 

patterns, or pathological “states”, in which the aging brain transitions to and dwells within that are 

related to neuropathology and cognitive dysfunction. As brain states have recently been shown 

to be modifiable5,6, these pathological states may be ideal targets for intervention. Thus, the 

characterization of brain state dynamics in older adults is critical as it may offer a mechanistic, 

modifiable link between the transition from healthy aging to the onset of Alzheimer’s disease. 

 In the current study, we characterized brain state dynamics in a sample of older adults 

ranging from cognitively unimpaired to patients with mild cognitive impairment and dementia. We 

leverage resting state fMRI with high spatial and temporal resolution combined with a rich dataset 

of clinical, cognitive, and neuropathological measures of Alzheimer’s disease (Alzheimer’s 

Disease Neuroimaging Initiative, ADNI340) to interrogate relationships between brain states and 

dysfunction related to the onset of Alzheimer’s disease. We demonstrate that increased 

persistence and transitions to a brain state reflecting limbic coactivation is associated with worse 

clinical outcomes, greater Alzheimer’s disease pathology and neurodegeneration, and worse 

cognitive performance, suggesting time varying dynamics of brain states are a key contributor to 

Alzheimer’s disease pathophysiology.  

 

Six distinct brain states represent spatiotemporal coactivation patterns in older adults 
To investigate how brain states may relate to the progression from healthy aging to 

Alzheimer’s disease, we analyzed 334 high resolution resting state fMRI scans from 201 

participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI340), spanning from 

cognitively unimpaired (n=188 scans, 56.3%), mild cognitive impairment (n=115 scans, 34.4%), 

and dementia (n=31 scans, 9.3%) (age range 49-97, mean 73.9 years old, 50.9% female; for 

further demographic information, see Extended Data Table 1; Methods). To derive dynamic 

brain states from resting state fMRI data, we performed k-means clustering on the mean BOLD 

time series from 218 cortical regions of interest2 (see Methods). A clustering solution 

corresponding to six brain states was selected using data-driven approaches (Extended Data 
Figure 1). These brain states, depicted in Figure 1a, represent distinct patterns of high and low 
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amplitude coactivation at single time points that consistently co-occur across participants and the 

course of the scan. Critically, brain state centroids were not influenced by potential confounding 

factors such as motion or scan ramp-up effects (see Methods) and demonstrated high split-half 

reliability and robustness compared to several null data models (Extended Data Figures 2 and 
3). Each spatial pattern of coactivation (Figure 1a) was compared to canonical resting state 

networks41 using cosine similarity to facilitate interpretation of each state (Figure 1b).  

Six brain states were identified that corresponded to patterns of: (1) high amplitude default 

mode network coactivation, with secondary low amplitude dorsal attention, ventral attention, and 

somatomotor network coactivation (DMN+ state); (2) high amplitude coactivation in somatomotor 

regions, with secondary low amplitude coactivation in default mode network regions (SOM+ 

state); (3) high amplitude limbic coactivation, with minimal and non-specific low amplitude 

coactivation (LIM+ state); (4) low amplitude limbic coactivation, with minimal and non-specific high 

amplitude coactivation (LIM- state); (5) high amplitude visual network coactivation, with secondary 

low amplitude coactivation of default mode and limbic networks (VIS+ state); and (6) low 

amplitude visual network coactivation, with secondary high amplitude coactivation of default mode 

and frontoparietal networks (VIS- state). Interestingly, each primary brain state component had a 

high amplitude and low amplitude version, with DMN+/SOM+, LIM+/LIM-, and VIS+/VIS- patterns 

resembling inverse spatial patterns.  

As part of the brain state clustering solution, each time point (TR) across the scan was 

assigned to one of the six brain states (Figure 1c). For each scan, we quantified three persistence 

features of brain states (Figure 1c; see Methods): fractional occupancy, or the percentage of the 

scan occupied by the state; appearance rate, or how often the state occurred on average per 

minute; and dwell time, or how long on average the state persisted once it was entered. Group 

average values and correlations of persistence features between states are depicted in Extended 
Data Figure 4. We also modeled the transition probability, or the likelihood of transitioning from 

one state to another state (Figure 1c, see Methods). Using this dynamic information from our 

identified brain states, we next aimed to determine how these persistence features and transition 

probabilities reflected clinical outcomes, cognitive performance, and Alzheimer’s disease 

pathophysiology. 
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Figure 1. Visualization of brain states and derivation of brain state persistence features and transition probabilities. (a) Six 

distinct brain states reflecting spatiotemporal patterns of whole brain coactivation were identified with a k-means clustering approach. 

The spatial pattern of coactivation in each brain state was compared to canonical resting state networks using cosine similarity, 

depicted in the polar plots in (b) The outer circle boundary represents cosine similarity of 0.6, while the inner circle represents a cosine 

similarity value of 0.4. The resting state network with the more similar high amplitude (yellow, +) or low amplitude (blue, -) coactivation 

pattern was used to assign each brain state a name in (a), however, brain states tend to reflect coactivation across resting state 

networks. (c) In the k-means clustering approach, each time point (TR, y-axis) of each scan (x-axis) was assigned to a state. For a 

single scan’s time series, the progression of states can be represented over time (top right). We characterized three persistence 

features for each state, demonstrated for the LIM+ state in the example scan’s time series: fractional occupancy, or the overall 

percentage of time spent in that state; appearance rate, or how often a state occurred per minute; and dwell time, or how long on 

average a state persisted in seconds. We also characterized state transition probability from each state at time t to the state at time 

point t + 1. DMN+, default mode network high amplitude state; SOM+, somatomotor network high amplitude state; LIM+, limbic network 

high amplitude state; LIM-, limbic network low amplitude state; VIS+, visual network high amplitude state; VIS-, visual network low 

amplitude state; DAN, dorsal attention network, DMN, default mode network, FPN, frontoparietal network, LIM, limbic network, SOM, 

somatomotor network; VAN, ventral attention network; VIS, visual network. 
 

Brain state persistence features predict clinical and cognitive outcomes 
To test whether persistence features of brain states provided sensitive and meaningful 

information about clinical and cognitive outcomes, we entered all 18 persistence features 

(fractional occupancy, appearance rate, and dwell time for each state) into a second level of k-

means clustering to determine brain state profiles, or common patterns of brain state persistence 
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features across subjects. Four distinct brain state profiles emerged, with unique combinations of 

high, medium, or low levels of each feature (Figure 2a; see Extended Data Figure 5 for selection 

of k=4 profiles). For example, Profile 1 demonstrated high DMN+/SOM+/VIS state and low LIM 

state persistence features, while in contrast, Profile 4 demonstrated high LIM state and low 

DMN+/SOM+/VIS state persistence features. These profiles reliably emerged across different 

clustering methods and significantly differed from shuffled data (Extended Data Figure 5).  

We next tested whether clinical and cognitive outcomes differed across brain state profiles 

with distinct feature loadings (Figure 2b). Profiles significantly differed by age (F(3) = 10.9, 

p<0.001), likelihood of a clinically impaired diagnosis (cognitively unimpaired vs. MCI or dementia; 

X2(3) = 7.86, p=0.049), CDR-SB score indicating clinical dysfunction (CDR-SB >0 vs. 0; X2(3) = 

8.36, p=0.04), and MoCA score (F(3) = 3.80, p=0.01). Further, profiles significantly differed across 

neuropsychological test performance in composite domains of memory (F(3) = 4.61, p=0.004) 

and executive function (F(3) = 4.14, p=0.007). Planned follow-up pairwise comparisons revealed 

that these differences were driven by impairment in Profiles 3 and 4, which demonstrated older 

age, more clinical impairment, and worse cognitive performance compared to Profiles 1 and 2 

(Figure 2b; see Extended Data Table 2 for pairwise comparison statistics). Profile 1, 

characterized by low LIM persistence and high persistence of other states, had the healthiest 

outcomes compared to other profiles. In contrast, Profile 4, characterized by high LIM persistence 

and low persistence of other states, consistently had the worst outcomes over the tested 

measures, and even demonstrated a significantly lower MoCA and memory composite score 

compared to Profile 3 (Figure 2b; Extended Data Table 1). These results indicated that Profile 

4 may reflect a dysfunctional combination of brain states that contributes to poor clinical and 

cognitive outcomes. 

To further determine which brain states were most strongly contributing to poor outcomes, 

we next tested direct relationships between the fractional occupancy of each state and outcomes 

(Figure 2c). We found that increased fractional occupancy of the LIM+/LIM- states, and to a lesser 

extent, decreased fractional occupancy of the remaining states, was associated with worse 

outcomes (Figure 2c), confirming that high persistence of LIM states may be driving the 

differences between the profiles. Consistent with this finding, Profile 1, the healthiest profile in 

relation to behavioral and diagnostic outcomes, had the lowest LIM state persistence, while Profile 

4, the most impaired profile, had the highest LIM state persistence.  
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Figure 2. Associations between state persistence features and clinical and cognitive outcomes. (a) Using all 18 persistence 

features representing the six brain states, we derived four brain state profiles, or common patterns of brain state persistence features 

across scans. Within each profile, values of each state are represented as bars in the following order: DMN+, SOM+, LIM+, LIM-, 

VIS+, VIS-. (b) Profile 4 (purple) and Profile 3 (blue) had older age, worse clinical outcomes, and worse cognitive performance 

compared to Profile 1 (yellow) and Profile 2 (green). (c) Direct correlations between fractional occupancy of each state with clinical 

and cognitive outcomes revealed that higher LIM state fractional occupancy was the most strongly associated with worse outcomes, 

and may be driving results of the profile analysis in (b). ***p<0.001 **p<0.01 *p<0.05 

 
Increased transition probability to limbic states reflects dysfunction 

To further characterize temporal dynamics of brain states, we modeled the probability of 

transitions between brain states from the state at time t to t+1 (see Methods). There was a higher 

probability of remaining in the same state compared to switching between states, consistent with 

previous work5. To better understand trajectories between distinct states, we modeled transition 

probabilities after removing the effects of autocorrelation to determine transition trajectories 

without influence of persistence features2 (Figure 3a-b; see Methods). At the group level, 
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transitioning from the SOM+ state to the LIM+ state (29.4%), and from the DMN+ state to the LIM- 

state (30.0%), had the highest probability, while transitioning from a high to low amplitude version 

of the same state was the least likely (0.03%-4.5% range).  

We next tested whether state transition probabilities were associated with clinical and 

cognitive outcomes. An increased probability of transitioning into LIM+/LIM- states from 

DMN+/SOM+ or VIS+/VIS- states, and a decreased probability of transitioning between 

DMN+/SOM+ and VIS+/VIS- states, was strongly associated with increased age, greater clinical 

impairment, and worse memory performance (psFDR<0.05; Figure 3c; see Extended Data Figure 
6 for additional outcome variables). Transition probability out of the LIM+/LIM- states to other 

states were not strongly associated with outcomes. Together, these state transition patterns 

suggest that an increased probability of entering into a LIM+/LIM- state at the cost of transitioning 

to a DMN-/SOM+ or VIS+/VIS- state is associated with poor clinical and cognitive outcomes 

(Figure 3d), consistent with the brain settling into a dysfunctional low energy LIM state. 

Finally, we tested the degree to which the current brain state held information about 

transitioning to the next brain state with a measure of normalized mutual information (NMI) 

between lagged state time series (see Methods). Greater NMI was associated with greater 

fractional occupancy of the LIM states, and lower fractional occupancy of the DMN+/SOM+ and 

VIS states (ps<0.001; Figure 3e). Further, greater NMI was associated with older age (r = 0.20, 

p<0.001), lower MoCA score (r = -0.12, p = 0.04), and lower memory performance (r = -0.19, 

p<0.001; Figure 3e). These results are consistent in suggesting that increased persistence of LIM 

states and poor outcomes are associated with a more predictable brain state trajectory that is 

characterized by greater transitions to LIM states.  
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Figure 3. State transition probability and associations with clinical and cognitive outcomes. (a) Group-average transition matrix 

showing the probability (percentage) of transitioning from a state at time t to a state at time t+1. (b) Transition probability results from 

(a) represented as a flow diagram. The highest probability transitions (>25%) are shown as thicker dark red lines, moderately probable 

transitions (<25%) are shown as thinner red lines. Transitions with <5% likelihood (representing transitions from high to low amplitude 

versions of the same state, or vice versa) are not depicted. (c) Associations between age, clinical impairment (MoCA score) and 

memory performance with state transitions. Correlation coefficients are represented as positive (reds) or negative (blues) between 

each transition probability and outcome measure. Significance was corrected for multiple comparisons using FDR correction over 30 

possible transitions. White asterisks represent pFDR <0.05, and white crosses represent punc <0.05. (d) Schematic diagram depicting 

interpretation of results shown in (c). Higher probability of transitions to the LIM states from DMN+/SOM+ or VIS+/VIS- states (red 

arrows), and lower probability of transitions between DMN+/SOM+ and VIS+/VIS- states (blue arrows) are associated with worse 

clinical and cognitive outcomes. (e) Normalized mutual information (NMI), representing the information held about future states from 

the current state, is related to greater LIM state prevalence and less DMN+/SOM+ or VIS state prevalence. Greater NMI is also 

associated with older age, lower MoCA score, and worse memory performance. 
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Limbic state persistence features are related to Alzheimer’s neuropathology 
The development of pathology and neurodegeneration are proximal factors underlying 

clinical and cognitive outcomes in Alzheimer’s disease29. We next tested whether brain state 

persistence features were related to these pathological changes. To assess this, we conducted a 

sparse canonical correlation analysis (see Methods) to test whether brain state persistence 

features were associated with regionally-specific spatial patterns of Alzheimer’s pathology and 

neurodegeneration. Increased persistence of the LIM+ state and decreased persistence of the 

SOM+ state (Figure 4a) were associated with higher tau pathology in medial and inferior temporal 

regions (r = 0.23, p<0.001; Figure 4b), and higher Aβ pathology in inferolateral and posterior 

occipital regions (r = 0.18, p = 0.006; Figure 4b), reflecting patterns of known regional vulnerability 

to pathology. A combination of increased LIM+ state persistence and decreased VIS+/VIS- state 

persistence (Figure 4a) was associated with decreased volume in regions overlapping with 

pathology, particularly in medial and lateral temporal lobe, and medial and lateral parietal lobes (r 

= 0.36, p<0.001; Figure 4b).  

Increases in LIM+ state fractional occupancy showed the strongest and most consistent 

associations with tau, Aβ pathology, and volume using the data-driven approach, while decreases 

in SOM+ and VIS state persistence contributed to pathology and neurodegeneration, respectively. 

To further probe our data-driven results, we next conducted targeted analyses with a priori 

selected outcome measures of pathology. We focused on tau pathology within entorhinal cortex, 

the first cortical region to accumulate tau pathology in aging and preclinical AD24, and within a 

temporal composite region, a set of regions previously shown to be sensitive to AD-related tau 

progression42. Increased LIM+ state fractional occupancy was associated with higher tau in 

entorhinal cortex (r = 0.16, p = 0.02; Figure 4c), and in the temporal composite (r = 0.15, p = 

0.035; Figure 4d), Within cognitively unimpaired older adults, higher LIM+ fractional occupancy 

was more strongly associated with entorhinal tau (r = 0.21, p = 0.026), while lower SOM+ 

fractional occupancy was associated with temporal composite tau (r = -0.24, p = 0.009). These 

relationships did not persist in older adults with cognitive impairment (MCI/Dementia; entorhinal 

& LIM+ fractional occupancy: r = 0.06, p = 0.56; temporal composite tau & SOM+ fractional 

occupancy: r = -0.13, p = 0.24), suggesting these states may more strongly contribute to or 

emerge from the early stages of tau accumulation. To characterize Aβ burden, we compared older 

adults classified as Aβ- versus Aβ+ using a validated threshold and set of composite regions43,44. 

Older adults who were Aβ+ had higher fractional occupancy of the LIM+ state (t(226) = -2.67, p = 

0.008; Figure 4e). Again, this relationship remained significant within the cognitively unimpaired 

older adults (t(133) = -2.09, p = 0.039), but not within cognitively impaired older adults (t(91) = -
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0.56, p = 0.58). Together, these results suggest that increased LIM+ fractional occupancy is highly 

sensitive to pathology in the prodromal phase of Alzheimer’s disease.  

We next investigated direct associations with hippocampal volume as a sensitive marker 

for Alzheimer’s-related neurodegeneration45. Increased LIM+ fractional occupancy was 

associated with decreased hippocampal volume (r = -0.14, p = 0.02; Figure 4f). In contrast to the 

pathology results, relationships between LIM+ fractional occupancy and hippocampal volume 

were strong across the whole sample, though primarily driven by the cognitively impaired 

participants (r = -0.16, p = 0.08) rather than unimpaired (r = -0.03, p = 0.68) participants, 

supporting models of AD in which neurodegeneration follows pathology in later stages of disease. 

Further, across the whole sample, hippocampal volume was more strongly associated with LIM+ 

dwell time (r = -0.18, p = 0.003) rather than appearance rate (r = -0.01, p = 0.84), and with VIS+ 

fractional occupancy (r = 0.21, p<0.001) rather than SOM+ fractional occupancy (r = 0.02, p = 

0.72). 

Associations between transition probabilities and pathology (entorhinal tau and Aβ status) 

did not survive multiple comparison corrections (see Methods), indicating that patterns of 

transitions may not have as strong of a relationship with pathology compared to overall 

persistence of each state (Extended Data Figure 6b). However, lower hippocampal volume was 

significantly associated with more transitions from the LIM+ to LIM- state (r = -0.18, pFDR = 0.002), 

and less transitions from the VIS- to DMN+ state (r = 0.19, pFDR = 0.002; Extended Data Figure 
6b). 
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Figure 4. Associations between brain state persistence features and Alzheimer’s disease neuropathology. To determine 

spatial patterns of tau, Aβ, and volume that reflected brain state persistence features, we conducted sparse canonical correlation 

analyses. Weight loadings for brain state persistence features are shown in (a), with their associated spatial pattern rendered on brain 

images in (b). Increased LIM+ state persistence (hot colors) and decreased SOM+/VIS+ state persistence (cool colors) were 

significantly associated with greater tau and Aβ deposition (hot colors) and decreased regional volume (cool colors) in regionally 

specific patterns mirroring known vulnerability. A priori investigations of (c) entorhinal tau, (d) temporal composite tau, (e) Aβ positivity 

status, and (f) hippocampal volume revealed strong associations with LIM+ fractional occupancy. Scatterplots (c, d, f) show cognitively 

unimpaired in lighter blue circles, and cognitively impaired in darker blue circles. FO, fractional occupancy; DWELL, dwell time; APP, 

appearance rate; *p<0.05, **p<0.01 

 

Limbic state persistence is a strong contributor to memory performance 
To further probe how brain state features may link emerging neuropathology to expression 

of cognitive deficits, we constructed models combining LIM+ fractional occupancy with age and 

neuropathology. In linear regression models predicting to performance on the MoCA (R2 = 0.38, 

p<0.001; Extended Data Table 3) and the memory composite (R2 = 0.34, p<0.001; Extended 
Data Table 3),  LIM+ fractional occupancy was a significant predictor (MoCA: p = 0.01, memory: 

p=0.009), even when common factors such as entorhinal tau, hippocampal volume, and age that 

are known to be strongly related to cognition were also included in the model. Similarly, in logistic 
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regression models predicting to clinical impairment (CDR-SB>0; R2 = 0.33, p<0.001; Extended 
Data Table 3) or diagnosis (CU vs MCI/Dementia; R2 = 0.17, p<0.001; Extended Data Table 3), 

LIM+ fractional occupancy was a significant predictor of clinical impairment (p = 0.004) and a 

trending predictor of diagnosis (p = 0.07) when included in the same model with entorhinal tau, 

hippocampal volume, and age.  

We then constructed mediation models (see Methods) to test potential directional 

relationships between these factors. We found that LIM+ fractional occupancy partially mediated 

the relationship between age and memory performance (indirect effect: β=-0.007, p=0.006, CI [-

0.01, -0.002], 26.7% of total effect; direct effect: β = -0.02, p=0.005, CI [-0.03, -0.01]; total effect: 

β = -0.03, p<0.001, CI [-0.04, -0.01]). Further, the relationship between LIM+ fractional occupancy 

and memory was partially mediated by entorhinal tau (indirect effect: 32.2% of total effect, β = -

1.09 p=0.03, CI [-2.10, -0.09]; direct effect: β = -2.30, p = 0.002, CI [-3.78, -0.82]; total effect: β = 

-3.39, p<0.001, CI [-5.15, -1.63]). These results further support the link between persistence of 

the LIM+ state and worse memory performance in the context of aging and development of tau 

pathology. 

 
Stability and clinical trajectories of brain state persistence features 

While brain state persistence features have been shown to be stable within individuals 

and highly heritable14, these data suggest that particular brain state profiles are sensitive to 

pathological and cognitive change associated with Alzheimer’s disease onset and progression. 

To comprehensively evaluate their sensitivity to clinically-meaningful change, we tested the 

stability of remaining assigned to the same brain state persistence profile (i.e. Figure 2a) over 

time in participants with at least two scans, comparing profile assignment at time t compared to 

profile assignment at time t + 1 (Extended Data Figure 7). The overall distribution of profile 

transition probabilities significantly differed from chance (X2 = 35.30, p<0.001), suggesting an 

inherent pattern of how participants stay within or transition between profiles. There was an 

above-chance probability of staying within the original profile assignment (ps<0.05; Extended 
Data Figure 7). The probability of staying in an unhealthy profile (Profiles 3 and 4; 61.8%, n=55) 

was greater than staying in a healthy profile (Profiles 1 and 2; 38.2%, n=34; Cohen’s h = 2.23, p 

= 0.02), which is consistent with the decreased likelihood of clinical or cognitive improvement in 

the course of aging and Alzheimer’s disease. 

Next, to further understand progression across brain state profiles, we tested whether 

certain profile transitions were more likely than chance. From Profile 1, the healthiest profile 

characterized by low LIM persistence, the probability of transitioning to any of the other three 
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profiles was equivalent (17.7%) and not greater than chance (ps>0.71), indicating that if one was 

to leave Profile 1, there was no preferential next profile for transition. In contrast, from Profile 4, 

the unhealthiest profile characterized by high LIM persistence, the probability of a transition to 

Profile 1 (the healthiest profile), was significantly below chance (5.7%; Cohen’s h = -2.63, p = 

0.007), again supporting the low likelihood of improvement. Collapsing across healthy (Profiles 1 

and 2) and unhealthy (Profiles 3 and 4) profiles, the probability of transitioning from a healthy to 

an unhealthy profile (61.4%, n=27) was higher than transitioning from an unhealthy to healthy 

profile (38.6%, n=17), though this comparison did not reach statistical significance (Cohen’s h = 

1.51, p = 0.09) in part due to limited sample size with multiple time points.  

 

Correspondence with traditional measures of static functional connectivity 
Traditional investigations of static functional connectivity changes in aging and 

Alzheimer’s disease provide complementary information to the study of brain states33. To help 

interpret our findings in the context of previous static functional connectivity analyses, we 

additionally conducted ROI-to-ROI functional connectivity analyses (see Methods). We 

calculated within-network connectivity, between-network connectivity, and system segregation of 

the seven canonical resting state cortical networks41 (RSNs). We then correlated fractional 

occupancy of each brain state with these metrics representing the RSNs (Extended Data Figure 
8). Overall, higher LIM state fractional occupancy was associated with decreased between-

network connectivity and increased system segregation of the canonical limbic RSN (pFDRs 

<0.05), while simultaneously associated with decreased within-network FC and decreased 

segregation of the other RSNs (pFDRs <0.05). This is consistent with our interpretation of the 

LIM+ state persistence metrics, reflecting a LIM+ state that is more segregated from the 

fluctuations of other networks and may act as a low energy state. In contrast, DMN+/SOM+ state 

fractional occupancy was overall associated with increased within-network connectivity, 

increased between-network connectivity, and decreased system segregation of the RSNs, while 

VIS+/VIS- state fractional occupancy was associated with increased within-network connectivity, 

decreased between-network connectivity, and increased system segregation across RSNs (psFDR 

<0.05; Extended Data Figure 8). 

 

 

DISCUSSION 
Brain states, reflecting rapid spatiotemporal dynamics of cortical coactivation patterns, 

reflect the pathophysiology of Alzheimer’s disease and clinical outcomes. Our study has identified 
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a pathological limbic brain state in older adults, predominantly characterized by coactivation within 

limbic regions at rest. We demonstrate that increased persistence and transitions to this limbic 

brain state, at the cost of persisting in and transitioning to default mode network and visual states, 

is associated with clinical impairment, Alzheimer’s neuropathology, and memory and executive 

function deficits. These findings provide evidence for a compelling mechanism explaining network 

dysfunction and neurophysiological changes in the progression towards Alzheimer’s disease, and 

highlights the potential for prevention of dysfunctional limbic states as an innovative treatment 

option. 

Our results suggest that the limbic brain state may reflect a pathological attractor state, in 

which the brain settles into and has trouble escaping, which leads to poor outcomes. We 

demonstrate that higher persistence, and particularly dwell time, is associated with poor 

outcomes. Critically, this is driven by an altered spatiotemporal trajectory that results in increased 

transitions into the limbic state, as opposed to out of the limbic state. This increased limbic 

persistence, driven by increased transitions into the limbic state, has proximal consequences. 

Limbic regions, and particularly the medial and anterior temporal lobe, are critical for memory 

encoding, consolidation, and recollection46, and are particularly susceptible to the development 

of pathology24. While it may seem counterintuitive that more time spent in limbic states is 

associated with worse memory, our results are consistent with accounts of medial temporal lobe 

hyperactivation being maladaptive for memory performance47–50. Further, our findings that greater 

persistence of limbic states are related to pathology in a spatial pattern reflecting known 

vulnerability24 is consistent with both animal and human imaging studies demonstrating that 

hyperactivity patterns may have a causal role in the accumulation of pathological proteins51–53.  

Our results provide a mechanistic framework in which existing accounts of functional 

network changes can be interpreted. Prior investigations of age and Alzheimer’s disease network 

changes based on static31–33 and dynamic34–39 functional connectivity have proposed compelling 

models characterized by failures, strength changes, and disconnections between networks. While 

the previous studies were not able to leverage the moment-to-moment reconfiguration of 

unconstrained brain states1 due to methodological limitations3,4, they provide complementary 

information to our highly dynamic coactivation approach. For example, accounts that functional 

disconnection between medial temporal lobe and posterior midline regions drive medial temporal 

lobe hyperexcitability31 is consistent with our finding that increases in LIM state persistence 

features are related to increased segregation of the canonical limbic resting state network, 

supporting its disconnected and dysfunctional nature. Further, our results support an imbalance 

between networks, demonstrating a shift of processing from default mode and visual states to a 
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predominantly limbic state, consistent with accounts of cascading failures to large-scale 

networks32. The temporal persistence and spatiotemporal trajectories of coactivation patterns 

revealed in our study will provide a new foundation for future activation and functional connectivity 

work in aging and Alzheimer’s disease. 

The current study derived brain states from data acquired while participants were at “rest”, 

which, counterintuitively to its name, is a highly dynamic process characterized by spontaneous 

mental states such as mind wandering, future planning, retrospection, and visual imagery54, 

mapping onto default mode network, limbic, and visual states we observed. It is important to note 

that the six states identified here are not a discrete measure of all possible states the brain can 

visit during rest, and we focused on states that commonly co-occurred between participants. 

Using resting state, as opposed to task-based fMRI, as a method to capture dysfunctional brain 

state dynamics has tangible advantages, as resting state acquisition can be harmonized across 

research or clinical sites. Critically, resting state is feasible to acquire in patient populations in 

which performing a cognitive task in the scanner may range from difficult to impossible.   

Future investigations in older adults should additionally test how brain state dynamics shift 

while performing different tasks, as well as reconfiguration of states between rest and task2,55. 

During active tasks, different brain states (such as frontoparietal network, dorsal/ventral attention 

networks, salience networks, etc.) related to those particular task goals may appear, and 

“dysfunctional” states and transitions may shift to networks opposed to task goals56,57. Critically, 

because brain states are modeled moment-to-moment, brain state analyses are an optimal 

method to reflect the human conscious experience, where real time changes in behavior could be 

precisely mapped to real time changes in neural dynamics. Further, the study of brain states is 

not limited to functional MRI, but can be applied to any rich dataset with dynamical spatial and 

temporal sampling of the brain, such as electroencephalography (EEG)1. Future work combining 

the precise spatial information gained from functional MRI with the fast-sampling rate of EEG may 

reveal more insight into time-varying dynamics and state transitions, especially when mapped to 

contemporaneous behavioral tasks.  

The vast majority of clinical interventions for Alzheimer’s disease have focused on 

preventing or reducing proteinopathies with immunotherapies, with little success to date of 

restoring cognitive performance while simultaneously risking harmful cerebrovascular side 

effects58,59. In contrast, targeting the dynamics of large-scale cortical networks may have more 

proximal relationships to restoring cognitive function, and be used as a complementary approach 

to current anti-pathology treatments. Our finding of a dysfunctional limbic state, reflecting higher 

persistence and transitions, strongly suggests that a modifiable treatment strategy to reduce 
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occurrence of this limbic state may ameliorate some aspects of cognitive decline. Brain states 

can be dynamically modulated with strategies to input energy into specific nodes in the system, 

with in silico models changing between states such as sleep and wakefulness5 and 

pharmacological manipulations demonstrating changes in the amount of energy needed to switch 

states6. In parallel to closed-loop stimulation studies, in which neurofeedback dynamically 

regulates disorders such as temporal lobe epilepsy60, brain states could be conceptualized to be 

modified in a similar fashion, with brain state dependent brain stimulation61 being applied when 

dysfunctional states are identified. Further, non-invasive neuromodulation techniques, such as 

transcranial magnetic stimulation62,63, vagus nerve stimulation64, closed-loop neurofeedback 

using neuroimaging65, and gamma-band entrainment66 (but see also Soula et al., 202367), may 

offer other avenues to directly manipulate brain states. While still speculative and highly 

experimental7, future studies should take concrete steps to determine if manipulating brain states 

would in fact be a viable strategy. 

 In summary, we provide the first comprehensive investigation of brain states, representing 

spatiotemporal dynamics of coactivation at single timepoints, in the context of the progression 

from aging to Alzheimer’s disease. We provide a mechanistic account of how dysfunctional 

dynamics, namely increased persistence and transitions to a pathological state reflecting limbic 

coactivation, may be a proximal factor to the expression of clinical impairment, Alzheimer’s 

neuropathology, and cognitive performance. Our results provide compelling evidence suggesting 

targeted interventions to reduce abnormally high limbic coactivation may be an intriguing clinical 

application to ameliorate cognitive dysfunction associated with Alzheimer’s disease, which should 

be an active focus of future research.  
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METHODS 

 

Data Source 
Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as 

a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). Ethical approval was obtained by the ADNI investigators at each 

participating ADNI site in accordance with relevant guidelines and regulations, and all participants 

provided written informed consent. 

 

Structural and Functional MRI Acquisition and Processing 

Structural and functional MRI data was downloaded in January 2023. As of that date, 405 

advanced protocol resting state functional MRI scans (“Axial MB rsfMRI”) were identified. 34 

scans were excluded after downloading due to inconsistent acquisition parameters (n=28; ADNI 

sites 037 and 177) or incomplete acquisitions (n=6), resulting in a total of 371 scans meeting 

criteria for preprocessing and quality control. Included scans had the following acquisition 

parameters: 3T Siemens Prisma or Prisma Fit; TR/TE 607/32 ms; 2.5mm3 resolution; flip angle = 

50 degrees, 976 volumes; 704x704 matrix. The associated T1-weighted magnetization prepared 

rapid acquisition gradient echo (MPRAGE) scan collected at the same session as rsfMRI was 

also downloaded. T1 scans had the following acquisition parameters: echo time (TE) = 2.98 ms, 

repetition time (TR) = 2300 ms, inversion time = 900ms, flip angle = 10◦, field of view (FOV) = 

208×240×256 mm3, acquired resolution = 1×1×1 mm. Additional information on MRI protocols 

can be found at:  http://adni.loni.usc.edu/methods/documents/mri-protocols/.  

Preprocessing of functional and structural images was performed using the CONN 

toolbox68 (version 21a) implemented in MATLAB version 2019b (MathWorks). Structural MRI was 

first segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

compartments. Structural MRI was then normalized to 1mm MNI space, and the resulting 

transformations were applied to GM/WM/CSF segments. Resting state functional data was 

realigned and coregistered to the T1 structural image, and the structural normalization parameters 

were applied to obtain 2mm MNI space functional images. No spatial smoothing was applied to 

preserve the high spatial resolution of the functional data. 
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All structural and functional images were intensively quality checked. The ART REPAIR 

toolbox, implemented in CONN, was used to detect outlier frames in the functional scans using a 

<0.5mm motion threshold and z-score >3. We excluded subjects who had outlier volumes greater 

than 2 standard deviations above the median value of the sample (threshold of 28.86% outlier 

volumes; median = 2.46%, SD = 13.2%). This resulted in the exclusion of 28 scans (7.5% of 

sample). See Extended Data Figure 9 and Extended Data Table 4 for the distribution of outlier 

volumes and framewise displacement69 in included and excluded subjects. Of the remaining 

scans, 4 were excluded for poor scan quality (e.g. incomplete field of view, artifacts) and 5 were 

excluded due to poor coregistration and warp quality. This resulted in a final analysis sample of 

334 rsfMRI scans corresponding to 201 unique participants. 

Mean BOLD time series were extracted from 218 regions of interest (ROIs) from the 

Brainnetome Atlas70. We included all cortical ROIs, as well as subcortical structures such as 

hippocampus and amygdala that are critical to memory and Alzheimer’s disease. Template space 

Brainnetome ROIs were masked with subject-specific gray matter masks prior to times series 

extraction to ensure signal was contained within gray matter.  

Denoising was then performed on the 334 functional scans using CONN. First, despiking 

was applied to minimize effects of large spikes due to motion or other confounding factors. 

Despiking, rather than other methods such as scrubbing69, was applied because dynamic 

functional connectivity analyses require continuous samples for temporal sequencing analyses 

such as transition probabilities. The effects of six realignment parameters and their first-order 

derivatives (translations and rotations), anatomic CompCor71 (first five components of time series 

signal from white matter and CSF), and the potential “ramp up” effects at the beginning of the 

scan were regressed from the time series, and linear detrending was then applied to the residual 

time series. Finally, a bandpass filter (0.008-0.1 Hz) was applied after regression using a Fast 

Fourier Transformation (FFT) based procedure. 

 

Brain State Cluster Identification 
The identification of brain states and quantification of brain state features and transition 

probabilities was performed using code based upon Cornblath et al. 20202 (available at 

https://github.com/ejcorn/brain_states). 

First, the denoised mean BOLD signal at each temporal volume (TR) for each scan was 

extracted for each of the 218 ROIs and entered into a data matrix, resulting in a 325,984 (334 

scans x 976 temporal volumes) by 218 (ROIs) matrix.  
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To facilitate initialization of centroids, we created an exemplar matrix with about 5% of 

volumes identified to have the highest variance across ROIs for each subject. For each scan, 

volumes reflecting local maxima in variance (“peaks”) were identified from the full sample of 

volumes. We then removed successive peaks (i.e. two volumes in a row) to prevent redundancy 

and increased autocorrelation, and peaks that corresponded to a volume with a framewise 

displacement69 value over 0.25mm. This process resulted in 4.63% of observations within the 

initial data matrix being selected for the exemplar matrix, consistent in value with previous work72. 

This exemplar matrix was entered into k-means clustering algorithm (random centroid 

initialization, 20 replications, 500 iterations each for convergence), and the resulting cluster 

medians were entered as the initial centroids for full k-means clustering.  

Next, k-means clustering was applied to the full data matrix using the cluster medians from 

the exemplar matrix for centroid initialization (k=2 to k=10, correlation distance metric, 20 

replications, 500 iterations each for convergence). For each level of k, the variance explained 

(between cluster variance / [between within cluster variance + within cluster variance]) and 

silhouette scores73,74 were calculated. For additional validation, we performed sub-sample 

validation on the centroids for each level of k. We randomly sub-sampled 80% of the full dataset 

500 times and submitted these subsampled matrices to k-means clustering to quantify the 

percentage of volumes that were assigned to the same brain state as in the original solution75 to 

assess reliability.  

The optimal number of clusters was picked by considering a number of factors: variance 

explained, within cluster consistency (silhouette score), consensus clustering (reliability across 

random and unique data sub-samples), and ensuring no absent states in any of the scans. Elbow 

criterion were used to determine the highest k level before any additional clusters accounted for 

less than 1% variance explained gain2,76 (<1% gain from cluster k to cluster k+1). Silhouette 

scores were used to quantify the degree of similarity between datapoints and their assigned 

cluster compared to neighboring clusters, with values approaching 1 indicating high similarity to 

the assigned cluster, and approaching -1 indicating high similarity to the neighboring clusters. We 

also considered consensus clustering score to ensure reliability of clusters at each level of k. 

Finally, to enable comparison of brain state dynamics across subjects, we ensured the selected 

k value allowed each subject to experience each brain state at least once (i.e., no absent states 

across subjects). Based on these criteria, k=6 was selected for subsequent analyses (71.5% 

variance explained). The transition from k=6 to k=7 resulted in an <1% gain in variance explained 

(0.07%)2. Additionally, k=6 demonstrated a high silhouette score (mean = 0.064, SD = 0.052) 
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compared to additional levels of k, a high average subsample validation score (99.45%), and no 

absent states across scans (see Extended Data Figure 1). 

 

Brain State Cluster Validation 
Using k=6 clusters, we next performed rigorous validation of the real clusters compared 

to null data models. Surrogate matrices for null hypothesis testing were generated for the following 

control models (Extended Data Figure 2a): (1) Independent Phase Randomization (IPR) model, 

which preserves the autocorrelation within each region but destroys covariance between 

regions2,77; (2) Iterative Amplitude Adjusted Fourier Transform (iAAFT) model, which preserves 

both the linear structure and the amplitude distribution autocorrelation function, resulting in 

equivalent second-order properties to the original data78, and (3) Random Gaussian model, which 

generates values from a normal distribution with the same mean and standard deviation as the 

real data.  

For each null data model, k-means clustering was performed using k=6 and equivalent 

parameters as the real data (null data exemplar matrix centroid initialization, 20 replications, 500 

iterations each for convergence). Silhouette scores were calculated for each null data model 

(Extended Data Figure 2b). Silhouette scores of the real data were significantly higher compared 

to IPR (IPR silhouette score = 0.031 ± 0.030; t(651,966) = 310.45, p = 0, CI = [0.0323-0.0327]), 

iAAFT (iAAFT silhouette score = 0. 0.061 ± 0.05; t(651,966) = 20.42, p = 1.22e-92, CI = [0.0023-

0.0028]), and Random Gaussian models (Random Gaussian silhouette score = 0.005 ± 0.0004; 

t(651,966) = 650.28, p = 0, CI = [0.0588-0.0592]). These comparisons are visualized in Extended 
Data Figure 2c. These results support the validity of the real clustering solution. 

We also tested the effect of removing high motion frames (framewise displacement >0.25 

mm) in generating the real centroids for k=6, and found that the spatial correlation between the 

original centroids and the motion scrubbed centroids was r >0.99, indicating that the presence of 

high motion frames did not influence the centroid selection. We next also tested the effect of 

removing the initial 10 frames of the scan (~1%) on centroid selection to correct for any potential 

“ramping up” effects of the scanner. This control similarly resulted in an r  >0.99 spatial correlation 

between original and initial-frame dropped centroids. Finally, we conducted split half validation of 

our sample. Data was split into equal training and test groups and k-means clustering was run on 

each subsample. This process was iterated 500 times. This control resulted in r >0.99 median 

spatial correlation between original and split-half generated centroids (see Extended Data Figure 
3a). Split half validation was also applied to test consistency of transition probability (median r 

>0.98) and persistence probability (median r = 0.72; see Extended Data Figure 3b-c). 
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Brain State Persistence and Transition Probability Analyses 
As part of the k-means clustering solution, each volume (TR) for each scan was assigned 

into the most similar brain state cluster. Using this information, we calculated three state 

persistence metrics (Figure 1c; Extended Data Figure 4): (1) fractional occupancy, or the 

percentage of volumes that were assigned to each state across the scan; (2) appearance rate, or 

the average rate at which the state appeared per minute; and (3) dwell time, or the average 

continuous time spent in a state when it appeared (in seconds). This analysis resulted in three 

metrics per state, for a total of 18 persistence features. Group-level distributions of values as well 

as persistence feature correlations across states are depicted in Extended Data Figure 4. 
To determine whether there was a meaningful pattern of brain state persistence features 

across scans, we performed another level of clustering on the 18 persistence features. Each 

persistence feature was first normalized to enable comparisons across the different metrics 

(fractional occupancy, dwell time, appearance rate). Next all 18 persistence features were entered 

into a k-means algorithm (random centroid initialization, k=2 to k=8, Euclidean distance metric, 

20 replications, 500 iterations each for convergence). Consistent with the initial brain state 

clustering, we derived variance explained and performed consensus clustering on the resulting 

clusters (Extended Data Figure 5a). Based upon these criteria, k=4 was chosen as the ideal 

number of profiles. To validate our profile analyses, we reran clustering using a Gaussian Mixture 

Model approach with k=4, which resulted in highly similar patterns of profiles to the original k-

means approach Extended Data Figure 5b-c). Further, to compare our results to a null model, 

persistence data was shuffled, and k-means clustering was performed on the shuffled data using 

the same parameters as the original k-means approach. This control resulted in profiles that were 

not distinguishable from each other (Extended Data Figure 5d), confirming that the k-means 

clustering performed on the real data was capturing real variance in the data. 

Transition probabilities between brain states were calculated by comparing the probability 

of transition from a state at time t to a state at time t+12. First, we calculated the transition 

probabilities using the full temporal sequence of states represented at each timepoint, which 

demonstrated that states are likely to persist rather than change to a distinct state. Second, we 

removed repeating states from the temporal sequence to calculate the probability of transitioning 

from one state to another distinct state to control for effects of state persistence2. Because this 

second approach better characterized trajectories of state transitions, this was used in our primary 

analyses to relate state transitions to other outcome measures. Normalized mutual information, 

reflecting how much information the current state holds in predicting the subsequent state, was 
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calculated by comparing NMI between the original brain state time series and a brain state time 

series lagged by one element2. This was performed on the brain state time series with repeated 

states removed to control for effects of state persistence and focus on trajectories between distinct 

states. 

 

Control LIM State Analyses 
Due to the spatial pattern of the LIM brain states overlapping with regions known to be 

vulnerable to signal drop out in fMRI, we investigated this possibility to ensure it was not 

influencing our results. For the LIM+ brain state, characterized by higher amplitude coactivation 

in anterior and medial temporal regions, we identified the top contributing Brainnetome ROIs with 

positive signal (23 ROIs or about the top 10%). Using these ROIs, we extracted the mean signal 

of each participant’s preprocessed functional image, masking the LIM ROIs with subject specific 

gray matter masks that were used to obtain the regional signal used in the brain states analysis.  

LIM+ state fractional occupancy was correlated with the mean signal across the strongest 

LIM state contributor ROIs (r = -0.22, p<0.001), with higher LIM signal associated with less time 

spent in the LIM+ state. However, participants with the lowest signal did not overwhelmingly have 

high LIM+ fractional occupancy values. Within those with LIM+ mean signal below the median 

value, there was no correlation with LIM+ FO (n=166; r = -0.004, p = 0.96). This discrepancy does 

not provide convincing evidence that LIM+ FO is alone driven by signal drop out within these 

regions. 

Further, to comprehensively reject the possibility that LIM signal drop out is driving our 

primary results, we tested whether our major outcome measures (age, clinical status, memory, 

etc.) were associated with LIM signal, and if controlling for LIM signal affected correlations 

between variables of interest and LIM+ FO. First, LIM signal was not significantly associated with 

major outcome measures such as age (r = 0.02, p = 0.66), diagnosis (CN vs. MCI/dementia, 

t(332) = 0.48, p = 0.64), CDR-SB status (0 vs. >0; t(326) = -0.18, p = 0.86), or memory 

performance (r = -0.02, p = 0.74). Second, LIM+ FO was still significantly associated with these 

factors while controlling for LIM signal: age (r = 0.33, p<0.001), diagnosis (F(1) = 6.94, p = 0.009), 

CDR-SB (F(1) = 10.7, p = 0.001), and memory (r = -0.24, p<0.001). Taken together, this is 

sufficient evidence that our brain state results are not driven by signal drop out.  

 

Static Resting State Network Analysis 
To better interpret brain state persistence features in the context of traditional measures of static 

functional connectivity (FC), we calculated within-network FC, between-network FC, and system 
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segregation33,79 of each of the canonical Yeo resting state networks41. This was performed across 

ROIs previously identified as members of these networks (i.e. visual network, somatomotor 

network, dorsal attention network, ventral attention network, limbic network, frontoparietal 

network, default mode network), and was independent from regions identified in our brain state 

clustering solution. ROI-to-ROI static functional connectivity was calculated using the CONN 

toolbox and ROIs from the Brainnetome Atlas70, and the Fisher’s z-transformed correlation 

coefficient was extracted between each ROI pair. First, for each network, within-network FC was 

calculated by taking the mean correlation value across ROIs contained within that resting state 

network. Second, for each network, between-network FC was calculated by taking the mean 

correlation value between each ROI contained in that network with all ROIs not contained within 

that network. Finally, for each network, system segregation was calculated as the difference 

between the networks within-network FC and between-network FC, divided by within-network FC. 

 

Pathology and Neurodegeneration Data 
 To assess relationships between Alzheimer’s pathology and brain state characteristics, 

we obtained positron emission tomography (PET) data from ADNI3, using 18F-Flortaucipir (FTP) 

for tau pathology and either 18F-Florbetapir (FBP) or 18F-Florbetaben (FBB) for amyloid-beta 

pathology (depending on availability and time match to rsfMRI). All PET data was preprocessed 

by the ADNI PET Core at UC Berkeley. Full acquisition and processing details are available on 

ADNI website (https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3_PET-Tech-

Manual_V2.0_20161206.pdf).  

In brief, FTP data was analyzed between 80-100 min post-injection across four 5-minute 

frames, partial volume corrected using a modified Rousset approach, and normalized using an 

inferior cerebellum gray reference region80–82. The mean standardized uptake value ratio (SUVR) 

values of regions corresponding to the FreeSurfer atlas (version 7.1.1 processing) were used for 

analyses. For the sparse canonical correlation analysis, all bilateral cortical regions contained 

within Braak I-IV regions83 (excluding the hippocampus due to off-target binding effects, and 

thalamus) were used. For a priori analyses, we focused on the mean SUVR of the entorhinal 

cortex and temporal meta-ROI42 (composite of the entorhinal, parahippocampal cortex, amygdala, 

fusiform, medial temporal, inferior temporal). 

FBP data was analyzed between 50-70 min post-injection, while FBB data were analyzed 

90-110 min post-injection. both across four 5-minute frames.  Both FBP and FBB were normalized 

using a whole cerebellum reference region. Global amyloid-beta was calculated using a cortical 

summary region consisting of Freesurfer-defined (version 7.1.1 processing) frontal, 
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anterior/posterior cingulate, lateral parietal, and lateral temporal regions43,44.  To enable 

combination of the two tracers, regional and global FBP and FBB values were converted to the 

centiloid scale, and a threshold of 18 centiloids was used on the cortical summary region to 

determine amyloid-beta positivity84. For the sparse canonical correlation analysis, all bilateral 

cortical regions contained within Braak I-IV regions were included to be consistent with the tau 

analyses, with the addition of the hippocampus, with values represented in centiloids. For a priori 

analyses, we focused on amyloid-beta positive versus negative status. 

For analyses assessing neurodegeneration, we used mean bilateral volume values from 

the FreeSurfer Cross-sectional version 6.0 processing pipeline in ADNI. Regional values were 

normalized by intracranial volume prior to analyses. For the sparse canonical correlation analysis, 

all cortical regions contained within Braak I-IV regions were used to be consistent with the tau 

analyses, with the addition of the hippocampus. For a priori analyses, we focused on the 

hippocampal volume, as this measure is known to be a sensitive marker of AD-related 

neurodegeneration. 

Each tau-PET and Aβ-PET scan were time-matched to the nearest rsfMRI scan. Each 

PET measurement was only matched with one rsfMRI session to ensure no duplicate values were 

included in the analyses. Further, we excluded PET scans collected over 18 months from the 

rsfMRI visit. This resulted in 206 tau-PET/rsfMRI matches (mean 60 ± 98.3 days from rsfMRI) and 

228 Aβ-PET/rsfMRI matches (mean 56 ± 94.4 days from rsfMRI). Direct correlations between 

state persistence features and PET measures controlled for rsfMRI-PET time interval. Freesurfer 

volumes were restricted to the same session as rsfMRI, resulting in 285 volume/rsfMRI matches 

used in analyses for the respective domains. 

 
Clinical and Cognitive Data 

Clinical and cognitive data was obtained from ADNI3. Diagnosis was based upon ADNI’s 

criteria of cognitively normal (cognitively unimpaired, CU), mild cognitive impairment (MCI), or 

dementia. Due to the relatively small proportion of dementia diagnoses in our sample (n=31, 

9.3%), we combined MCI and dementia into an cognitively impaired (CI) group. To characterize 

clinical impairment, we used the Sum of Boxes score from Clinical Dementia Rating (CDR-SB), 

which is a structured interview assessing cognitive, behavioral, and functional impairment across 

six domains: memory, orientation, judgment and problem solving, community affairs, home and 

hobbies, and personal care85. We dichotomized our sample into no clinical impairment (CDR-

SB=0) versus any observable clinical impairment (CDR-SB>0). For another sensitive measure of 
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clinical impairment that may better reflect the preclinical stage of Alzheimer’s disease, we used 

the Montreal Cognitive Assessment86 (MoCA).  

To assess cognitive performance, we used composite scores based upon 

neuropsychological measures that were created for domains of episodic memory (“ADNI_MEM”) 

and executive function (“ADNI_EF”). Specific neuropsychological measures and methods for the 

calculation of the composite scores are detailed at: 

https://ida.loni.usc.edu/download/files/study/c042fcbc-61b5-402c-b20c-

23892e3c8cd0/file/adni/ADNI_Methods_UWNPSYCHSUM_March_2020.pdf.  To further probe 

episodic memory, we also used the immediate recall score from the Rey Auditory Verbal Learning 

Test87 (RAVLT), which is a word-list learning task that probes verbal memory that is commonly 

used across laboratories. Because this measure of memory is more specific for recall and 

episodic processes than some of the measures included in the ADNI memory composite, we 

replicated all associations with RAVLT immediate recall, which showed very similar, if not more 

robust, associations to the ADNI memory composite (e.g. profile comparison F(3) = 4.61, p = 

0.004; see Extended Data Figure 10 for all data). 

 

Statistical Analyses 
 Statistical analyses were conducted using MATLAB version 2019b, jamovi version 

1.6.23.0, and R version 4.0.4. Correlations between factors were performed using Pearson’s r, 

and differences between groups were performed using independent samples t-tests for 

continuous variables and Chi-square analysis for discrete variables. Differences in outcomes 

between brain state profiles were tested using ANOVA models, testing for a main effect of profile 

(p<0.05). Planned follow-up pairwise comparisons were performed for significant ANOVA models, 

using p<0.05 (two-tailed) for post-hoc significance. Multiple comparison corrections were applied 

to the brain state transition probabilities (30 comparisons per matrix) and for comparisons of static 

FC (42 corrections per matrix) with the Benjamini & Hochberg FDR-correction88, using the p.adjust 

function from the “stats” package in R. Sparse canonical correlation analyses were performed 

using the “Penalized Multivariate Analysis (PMA)” R package89, using a 50% sparsity threshold 

and restricting PET values as positive loadings, and volume values as negative loadings to 

increase interpretability90. The first dimension was selected for interpretation. Mediation models, 

performed in jamovi, were considered significant when confidence intervals did not cross zero. 

Data visualization was performed with Matlab and R. Brain state renderings were 

performed using Surf Ice (https://www.nitrc.org/projects/surfice/). Sparse canonical correlations 

were visualized with the “ggseg” package in R. General plots were created using “ggplot” in R. 
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State transition pathways were created with the “qgraph” package in R. Figure panels 1c and 2d 

were created with Biorender.com, while all other figures were assembled with Adobe Illustrator.  
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EXTENDED DATA 
 
 
 

 
 
 
 
 
 
 
 
 
 
  

EXTENDED DATA FIGURE 1. Criteria used for selection of k brain state clusters. (a) Elbow plot showing the 
total variance (R2) explained for each clustering solution. (b) Plot showing change in variance explained with 
progression to a higher k-value. Red line indicates 1% threshold. Moving from k=6 to k=7 results in <1% additional 
variance explained. (c) Silhouette score for each clustering solution, with higher scores indicating more similarity to 
the assigned cluster compared to neighboring clusters. (d-f) Consensus clustering was performed to determine 
subject validation of clustering solution across all levels of k. 80% of the full dataset was randomly sub-sampled 500 
times and submitted to k-means clustering to quantify the percentage of frames (TRs) that were assigned the same 
brain state in the original solution and in the random sub-sample. The average (d), median (e), and mode (f) of the 
consensus clustering is shown for each level of k, with k=6 demonstrating a high % TR match. 
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EXTENDED DATA FIGURE 2. Comparison of real data and clusters to null surrogate datasets and clusters. 
(a) Surrogate datasets were created for null hypothesis testing with the following models: (1) Independent Phase 
Randomization (IPR) model, which preserves the autocorrelation within each region but destroys covariance 
between regions; (2) Iterative Amplitude Adjusted Fourier Transform (iAAFT) model, which preserves both the linear 
structure and the amplitude distribution autocorrelation function, resulting in equivalent second-order properties to 
the original data, and (3) Random Gaussian model, which generates values from a normal distribution with the same 
mean and standard deviation as the real data. (b) Silhouette values for k=6 clusters for the real data and each 
surrogate dataset. (c) Comparison of all silhouette values for real data (blue) compared to the IPR, iAAFT, and 
Random Gaussian clusters (orange). The real data had significantly higher (better) silhouette values compared to 
each null model.  
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EXTENDED DATA FIGURE 3. Split-halves validation of the chosen k (k = 6). The real data matrix of the study 
sample was randomly split in half (n=167 for training data, n=167 for test data) 500 unique times. K-means 
clustering was run separately for each half and correlation was used to quantify similarity between the centroid 
locations (a), transition probabilities (b), and persistence probabilities (c).  
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EXTENDED DATA FIGURE 4. Group-level brain state persistence features. (a) Distributions of values for 
fractional occupancy (left), appearance rate (center), and dwell time (right). (b) Correlations between state features 
for fractional occupancy (left), appearance rate (center), and dwell time (right). (c) Cross-correlations between 
fractional occupancy and appearance rate (left), fractional occupancy and dwell time (center), and appearance rate 
and dwell time (right). FO, fractional occupancy; APP, appearance rate; DWELL, dwell time; DMN+, default mode 
network high amplitude coactivation state; SOM+, somatomotor high amplitude coactivation state; LIM+, limbic high 
amplitude coactivation state; LIM-, limbic low amplitude coactivation state; VIS+, visual high amplitude coactivation 
state; VIS-, visual low amplitude coactivation state. 
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EXTENDED DATA FIGURE 5. Selection and control models for brain state profiles. (a) Based upon converging 
results the inflection point of the elbow plot (left), variance (R2) gained from k to k+1 (center), and subclustering 
validation (right), k=4 was chosen as the optimal number of profiles (shaded region). (b) Results of k-means 
clustering (k=4), demonstrating distinct patterns of fractional occupancy (left), appearance rate (center), and dwell 
time (right) of the profiles. (c) Clustering solution of a Gaussian Mixture Model using four clusters revealed very 
similar patterns of profiles to the k-means clustering approach. (d) Shuffled data applied to k-means clustering (k=4) 
does not demonstrate dissociable patterns of persistence features between profiles. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.555617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
  EXTENDED DATA FIGURE 6. Additional associations with brain state transitions. Associations between state 

transition probabilities with (a) clinical and cognitive features and (b) Alzheimer’s neuropathology. Correlation 
coefficients are represented as positive (reds) or negative (blues) between each transition probability and outcome 
measure. Significance was corrected for multiple comparisons using FDR correction over 30 possible transitions 
(ignoring autocorrelation). White stars represent pFDR <0.05, and white crosses represent punc <0.05. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.555617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  

EXTENDED DATA FIGURE 7. Stability and transitions between profiles over time. The probability of 
transitioning from a Profile at time point t (y-axis) to either the same or different Profile at time point t + 1 (x-axis). 
Stability of profile transitions was most likely across all Profiles. Profile 1 (the healthiest profile) was equally likely to 
transition to any other profile, while Profile 4 (the unhealthiest profile) was very unlikely to transition to Profile 1 (the 
healthiest profile). 
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 EXTENDED DATA FIGURE 8. Associations between brain state fractional occupancy and static measures 

of functional connectivity. Static functional connectivity (FC) was calculated between ROIs included in the 
Brainnetome Atlas. For each canonical Yeo resting state network (RSN), we calculated within-network FC (a), 
between-network FC (b), and system segregation (c). Associations between the fractional occupancy of each brain 
state and the static FC of the various RSNs are depicted as correlation matrices. Static RSNs: VIS RSN, visual 
network; SOM, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, limbic 
network; FPN, frontoparietal network; DMN, default mode network; Brain states: DMN+, default mode network high 
amplitude brain state; SOM+, somatomotor high amplitude brain state; LIM+, limbic high amplitude brain state; LIM-
, limbic low amplitude brain state; VIS+, visual high amplitude brain state; VIS-, visual low amplitude brain state. 
White asterisks indicate pFDR <0.05 (corrected for 42 comparisons), while white crosses indicate punc <0.05. 
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EXTENDED DATA FIGURE 9. Distribution of motion and thresholds for exclusion. (a) Distribution of outlier 
volumes based upon a conservative threshold of <0.5mm framewise displacement and global z-score <3. The dotted 
red line indicates the exclusion threshold (<28.86%), calculated as two standard deviations above the median value. 
Red vales on the histogram represent scans excluded by falling over this threshold. (b) Distribution of framewise 
displacement (FWD) as calculated by Power et al., 2012. Red values on the histogram represented excluded scans 
based upon the outlier volume threshold applied in (a). 
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EXTENDED DATA FIGURE 10. Replication of primary memory results using Rey Auditory Verbal Learning 
Test (RAVLT) immediate recall score. (a) Profile comparison indicating decreased RAVLT immediate score in all 
groups compared to Profile 1. (b) Direct correlations between fractional occupancy of each state and RAVLT 
immediate score. (c) Associations between state transition probabilities and RAVLT immediate score. White 
asterisks indicate pFDR <0.05 (for 30 comparisons), while white crosses indicate punc <0.05. 
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EXTENDED DATA TABLE 1. Demographics and key outcomes of the sample. 
 

 Cognitively Unimpaired  
(CU; n=188) 

Cognitively Impaired*  
(CI; n=146) 

CU vs. CI 

t or X2 p 

Age (years) 72.8 (7.9) 75.3 (8.0) -2.85 0.005 

Sex (n, % female) 115 (61.2%) 55 (37.7%) 18.2 <0.001 

Education (years) 16.8 15.7 3.94 <0.001 

Race (n, % White) 159 (84.6%) 118 (80.8%) 3.41 0.49 

Ethnicity (n, % Non-
Hispanic/Latino) 

176 (93.6%) 134 (91.8%) 1.19 0.76 

CDR-SB 0.05 2.14 -13.58 <0.001 

MMSE 29.0 (1.11) 26.7 (3.63) 7.82 <0.001 

MoCA 26.0 (2.54) 22.0 (4.30) 9.03 <0.001 

Memory Composite 1.11 (0.77) 0.16 (0.86) 10.45 <0.001 

Executive Function 
Composite 

1.12 (0.84) 0.29 (0.95) 8.17 <0.001 

RAVLT Immediate 
Recall 

45.7 (11.8) 33.5 (11.1) 9.36 <0.001 

EC FTP SUVR 1.80 (0.34) 2.31 (0.79) -6.18 <0.001 

MetaTemporal FTP 
SUVR 

1.59 (0.29) 1.97 (0.72) -5.11 <0.001 

Aβ Status (% 
positive) 

39 (28.9%) 56 (60.2%) 22.20 <0.001 

Global Aβ (centiloids) 21.1 (31.2) 46.3 (42.4) -5.16 <0.001 

HC Volume (cm3, 
normalized) 

2.51 (0.32) 2.28 (0.34) 5.98 <0.001 

 
*CI group composed of patients with mild cognitive impairment (n=115) and dementia (n=31); Race, n=14 missing 
values; Ethnicity, n=17 missing values; Clinical Dementia Rating Sum of Boxes score (CDR-SB), n=6 missing values; 
Mini Mental State Exam (MMSE), n=15 missing values; Montreal Cognitive Assessment (MoCA), n=23 missing 
values; Memory Composite, n=15 missing values; Executive Function Composite, n=19 missing values; Rey Auditory 
Verbal Learning Test (RAVLT) immediate, n=17 missing values; 18F-Flortaucipir (FTP), n=128 missing values; EC, 
entorhinal cortex; MetaTemporal composite, composite of regions within the medial and lateral temporal lobe; SUVR, 
standardized uptake value ratio; Aβ, amyloid-beta as measured by 18F-florbetapir or 18F-florbetaben, n = 106 
missing values; Aβ positivity defined as >18 centiloids; HC, hippocampus (normalized by intracranial volume), n=49 
missing values. 
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EXTENDED DATA TABLE 2. Brain state profile clinical and cognitive comparisons.  
 

 Profile 1 vs 2 Profile 1 vs 3 Profile 1 vs 4 Profile 2 vs 3 Profile 2 vs 4 Profile 3 vs 4 
 t / X2 p t / X2 p t / X2 p t / X2 p t / X2 p t / X2 p 

Age -0.97 0.33 -3.46 <0.001 -4.81 <0.001 -2.84 0.005 -4.36 <0.001 -1.24 0.22 
Dx 0.01 0.93 -3.47 0.06 2.98 0.09 -4.77 0.03 4.25 0.04 0.7 0.80 

CDR-SB 0.99 0.32 -3.95 0.047 6.88 0.009 -1.40 0.24 3.54 0.06 0.33 0.57 
MoCA 1.46 0.15 1.31 0.19 3.27 0.001 -0.10 0.92 1.99 0.047 2.00 0.046 

Memory 1.97 0.049 2.61 0.009 3.63 <0.001 0.78 0.44 1.81 0.07 0.93 0.35 
EF -0.02 0.98 0.71 0.48 2.78 0.006 0.80 0.43 3.11 0.002 2.15 0.03 

RAVLT 2.33 0.02 2.75 0.006 4.15 <0.001 0.55 0.58 1.98 0.048 1.33 0.18 
 
Dx, cognitively unimpaired versus cognitively impaired (mild cognitive impairment/dementia) diagnosis; Clinical 
Dementia Rating Sum of Boxes score (CDR-SB); Montreal Cognitive Assessment (MoCA); Memory, Memory 
Composite score; EF, Executive Function Composite score; Rey Auditory Verbal Learning Test (RAVLT) immediate 
score. 
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EXTENDED DATA TABLE 3. Results of linear and logistic regression analyses with LIM+ 
fractional occupancy as a predictor.  

 
Model     
Memory (R2 = 0.33, p<0.001) estimate SE t p 

Intercept 1.59 0.93 1.71 0.09 
Age -0.006 0.008 -0.79 0.43 
EC FTP -0.68 0.10 -7.12 <0.001 
HC volume 0.49 0.19 2.64 0.009 
LIM+ FO -1.77 0.79 -2.24 0.026 

MoCA (R2 = 0.38, p<0.001) estimate SE t p 
Intercept 36.02 4.18 8.61 <0.001 
Age -0.03 0.04 -0.86 0.39 
EC FTP -3.63 0.44 -8.32 <0.001 
HC volume -0.40 0.84 -0.47 0.64 
LIM+ FO -8.79 3.52 -2.49 0.01 

CDR-SB (R2 = 0.20, p<0.001) estimate SE t p 
Intercept 0.010 3.04 0.003 0.99 
Age 0.03 0.03 0.96 0.34 
EC FTP -1.51 0.38 -3.94 <0.001 
HC volume 1.14 0.61 1.87 0.06 
LIM+ FO -7.77 2.68 -2.90 0.004 

Diagnosis (R2 = 0.17, p<0.001) estimate SE t p 
Intercept 0.16 2.96 0.06 0.96 
Age -0.01 0..03 -0.38 0.70 
EC FTP 1.26 0.36 3.54 <0.001 
HC volume -1.25 0.60 -2.08 0.04 
LIM+ FO 4.56 2.53 1.80 0.07 

 
Diagnosis, cognitively unimpaired versus cognitively impaired (mild cognitive impairment/dementia) diagnosis; 
Clinical Dementia Rating Sum of Boxes score (CDR-SB); Montreal Cognitive Assessment (MoCA); Memory, Memory 
Composite score; SE, standard error. 
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EXTENDED DATA TABLE 4. Motion outliers and framewise displacement. 
 

  
  

Original Sample  
(N = 371) 

 Motion Inclusion  
(N = 343) 

 Final Sample  
(N = 334) 

  outliers FWD  outliers FWD  outliers FWD 

Mean 7.62% 0.15  4.42% 0.13  4.36% 0.13 

Median 2.46% 0.12  2.25% 0.12  2.20% 0.12 

SD 13.20% 0.09  5.63% 0.06  5.59% 0.06 

Max 82.07% 0.62  26.95% 0.31  26.95% 0.31 

Min 0.00% 0.03  0.00% 0.03  0.00% 0.03 

 
Original sample, all downloaded scans from ADNI meeting criteria for preprocessing and quality control; Motion Inclusion, all scans 
passing the data driven motion threshold of less than 2SD below the median outlier value (<28.86%); Final Sample, final scans 
included in analyses after further exclusion for image warp quality and artifacts. Outliers, outlier frames identified by ART Repair 
toolbox based on conservative thresholds of <0.5mm framewise displacement and global intensity z-score <3; FWD, framewise 
displacement as calculated by Power et al., 2012.  
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