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ABSTRACT

Dynamic and rapid reconfigurations of neural activation patterns, known as brain states, support
cognition. Recent analytic advances applied to functional magnetic resonance imaging now
enable the quantification of brain states, which offers a substantial methodological improvement
in characterizing spatiotemporal dynamics of activation over previous functional connectivity
methods. Dysfunction to the persistence and temporal transitions between discrete brain states
may be proximal factors reflecting neurophysiological disruptions in Alzheimer's disease,
although this has not yet been established. Here, we identified six distinct brain states,
representing spatiotemporal trajectories of coactivation at single time points, in older adults across
the Alzheimer’s disease continuum. Critically, we identified a pathological brain state that reflects
coactivation within limbic regions. Higher persistence within and transitions to this limbic state, at
the expense of other brain states, is associated with an increased likelihood of a clinically impaired
diagnosis, worse cognitive performance, greater Alzheimer’s pathology, and neurodegeneration.
Together, our results provide compelling evidence that neural activity settling into a pathological
limbic state reflects the progression to Alzheimer’s disease. As brain states have recently been
shown to be modifiable targets, this work may inform the development of novel neuromodulation
techniques to reduce limbic state persistence. This application would be an innovative clinical

approach to rescue cognitive decline in the early stages of Alzheimer’s disease.
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INTRODUCTION

The brain is a dynamical system — rapidly responding to external cues and internal goals.
Coordinated activation within cortical networks is a highly dynamic process, with specialized
networks coming online and interacting in a fluid manner that is related to cognitive and task

2811 These transient whole-brain patterns of coactivation, also known as brain states

demands
(for a review, see Greene et al., 2023"), can now be evaluated non-invasively in humans with
functional magnetic resonance imaging in combination with sophisticated modeling
techniques®®'2-"5. This temporal modeling of regional activation space enables vastly richer
information reflecting dynamics of networks compared to what can be measured with traditional
measures of static functional connectivity or sliding time window approaches, both of which
reduce the time dimension and simplify complex interactions among brain regions as pairwise
correlations®*.

While the dynamic nature of the brain provides flexibility and the ability for differential
processing, it also may confer an inherent vulnerability if these dynamics become dysfunctional.
In many neuropsychiatric conditions (e.g. major depressive disorder and schizophrenia®'®?°) and
developmental disorders (e.g. autism spectrum disorder?'), the brain has been shown to persist
(or dwell) in certain patterns of activation, settling into potentially pathological low-energy states.
Further, the temporal trajectory of how the brain traverses these states can also become
dysfunctional, with changes to the overall frequency of transitions or probability of transitioning
between certain states. These differences in persistence and transition probabilities are
associated with maladaptive behavioral responses, and interventional techniques to manipulate
brain states have been found to improve function?.

Time-varying dynamics of brain states have not yet been characterized in
neurodegenerative diseases such as Alzheimer’'s disease. Alzheimer's disease and related
dementias are estimated to affect over 55 million people worldwide, and this number is projected
to rapidly increase in the coming years as the aging population increases®. Alzheimer’s disease
is characterized by a pathological cascade involving accumulation of aggregated proteins®,

25,26

neurophysiological disruptions?>?%, and neurodegeneration®”, which together express as memory

t28

and cognitive impairment?® (for a review, see Knopman et al., 2021%°). It is well known that aging

and Alzheimer's disease is associated with neurophysiological changes such as neuronal
hyperexcitability®>, impaired excitatory-inhibitory balance®, and abnormal static functional

connectivity between regions®' and large-scale cortical networks®*33.
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In contrast to the extensive characterization of functional networks in aging and

31-3 and to a lesser extent,

Alzheimer’s disease using static metrics of functional networks
dynamic functional connectivity approaches with sliding time windows®*~%, time-varying dynamics
of brain states, specifically reflecting coactivation patterns at single time points, have not yet been
investigated. Insight into the rapid spatiotemporal dynamics of brain states would provide a more
precise understanding of the mechanism underlying how network dysfunction may emerge. For
example, using brain state analyses, we can probe whether there are specific coactivation
patterns, or pathological “states”, in which the aging brain transitions to and dwells within that are
related to neuropathology and cognitive dysfunction. As brain states have recently been shown
to be modifiable®®, these pathological states may be ideal targets for intervention. Thus, the
characterization of brain state dynamics in older adults is critical as it may offer a mechanistic,
modifiable link between the transition from healthy aging to the onset of Alzheimer’s disease.

In the current study, we characterized brain state dynamics in a sample of older adults
ranging from cognitively unimpaired to patients with mild cognitive impairment and dementia. We
leverage resting state fMRI with high spatial and temporal resolution combined with a rich dataset
of clinical, cognitive, and neuropathological measures of Alzheimer's disease (Alzheimer’'s
Disease Neuroimaging Initiative, ADNI3*) to interrogate relationships between brain states and
dysfunction related to the onset of Alzheimer's disease. We demonstrate that increased
persistence and transitions to a brain state reflecting limbic coactivation is associated with worse
clinical outcomes, greater Alzheimer’'s disease pathology and neurodegeneration, and worse
cognitive performance, suggesting time varying dynamics of brain states are a key contributor to

Alzheimer’s disease pathophysiology.

Six distinct brain states represent spatiotemporal coactivation patterns in older adults

To investigate how brain states may relate to the progression from healthy aging to
Alzheimer’s disease, we analyzed 334 high resolution resting state fMRI scans from 201
participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI3*°), spanning from
cognitively unimpaired (n=188 scans, 56.3%), mild cognitive impairment (n=115 scans, 34.4%),
and dementia (n=31 scans, 9.3%) (age range 49-97, mean 73.9 years old, 50.9% female; for
further demographic information, see Extended Data Table 1; Methods). To derive dynamic
brain states from resting state fMRI data, we performed k-means clustering on the mean BOLD
time series from 218 cortical regions of interest’ (see Methods). A clustering solution
corresponding to six brain states was selected using data-driven approaches (Extended Data

Figure 1). These brain states, depicted in Figure 1a, represent distinct patterns of high and low


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

amplitude coactivation at single time points that consistently co-occur across participants and the
course of the scan. Critically, brain state centroids were not influenced by potential confounding
factors such as motion or scan ramp-up effects (see Methods) and demonstrated high split-half
reliability and robustness compared to several null data models (Extended Data Figures 2 and
3). Each spatial pattern of coactivation (Figure 1a) was compared to canonical resting state
networks*' using cosine similarity to facilitate interpretation of each state (Figure 1b).

Six brain states were identified that corresponded to patterns of: (1) high amplitude default
mode network coactivation, with secondary low amplitude dorsal attention, ventral attention, and
somatomotor network coactivation (DMN+ state); (2) high amplitude coactivation in somatomotor
regions, with secondary low amplitude coactivation in default mode network regions (SOM+
state); (3) high amplitude limbic coactivation, with minimal and non-specific low amplitude
coactivation (LIM+ state); (4) low amplitude limbic coactivation, with minimal and non-specific high
amplitude coactivation (LIM- state); (5) high amplitude visual network coactivation, with secondary
low amplitude coactivation of default mode and limbic networks (VIS+ state); and (6) low
amplitude visual network coactivation, with secondary high amplitude coactivation of default mode
and frontoparietal networks (VIS- state). Interestingly, each primary brain state component had a
high amplitude and low amplitude version, with DMN+/SOM+, LIM+/LIM-, and VIS+/VIS- patterns
resembling inverse spatial patterns.

As part of the brain state clustering solution, each time point (TR) across the scan was
assigned to one of the six brain states (Figure 1¢). For each scan, we quantified three persistence
features of brain states (Figure 1¢; see Methods): fractional occupancy, or the percentage of the
scan occupied by the state; appearance rate, or how often the state occurred on average per
minute; and dwell time, or how long on average the state persisted once it was entered. Group
average values and correlations of persistence features between states are depicted in Extended
Data Figure 4. We also modeled the transition probability, or the likelihood of transitioning from
one state to another state (Figure 1¢, see Methods). Using this dynamic information from our
identified brain states, we next aimed to determine how these persistence features and transition
probabilities reflected clinical outcomes, cognitive performance, and Alzheimer's disease

pathophysiology.
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Figure 1. Visualization of brain states and derivation of brain state persistence features and transition probabilities. (a) Six
distinct brain states reflecting spatiotemporal patterns of whole brain coactivation were identified with a k-means clustering approach.
The spatial pattern of coactivation in each brain state was compared to canonical resting state networks using cosine similarity,
depicted in the polar plots in (b) The outer circle boundary represents cosine similarity of 0.6, while the inner circle represents a cosine
similarity value of 0.4. The resting state network with the more similar high amplitude (yellow, +) or low amplitude (blue, -) coactivation
pattern was used to assign each brain state a name in (a), however, brain states tend to reflect coactivation across resting state
networks. (c) In the k-means clustering approach, each time point (TR, y-axis) of each scan (x-axis) was assigned to a state. For a
single scan’s time series, the progression of states can be represented over time (top right). We characterized three persistence
features for each state, demonstrated for the LIM+ state in the example scan’s time series: fractional occupancy, or the overall
percentage of time spent in that state; appearance rate, or how often a state occurred per minute; and dwell time, or how long on
average a state persisted in seconds. We also characterized state transition probability from each state at time { to the state at time
point t + 1. DMN+, default mode network high amplitude state; SOM+, somatomotor network high amplitude state; LIM+, limbic network
high amplitude state; LIM-, limbic network low amplitude state; VIS+, visual network high amplitude state; VIS-, visual network low
amplitude state; DAN, dorsal attention network, DMN, default mode network, FPN, frontoparietal network, LIM, limbic network, SOM,
somatomotor network; VAN, ventral attention network; VIS, visual network.

Brain state persistence features predict clinical and cognitive outcomes

To test whether persistence features of brain states provided sensitive and meaningful
information about clinical and cognitive outcomes, we entered all 18 persistence features
(fractional occupancy, appearance rate, and dwell time for each state) into a second level of k-

means clustering to determine brain state profiles, or common patterns of brain state persistence
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features across subjects. Four distinct brain state profiles emerged, with unique combinations of
high, medium, or low levels of each feature (Figure 2a; see Extended Data Figure 5 for selection
of k=4 profiles). For example, Profile 1 demonstrated high DMN+/SOM+/VIS state and low LIM
state persistence features, while in contrast, Profile 4 demonstrated high LIM state and low
DMN+/SOM+/VIS state persistence features. These profiles reliably emerged across different
clustering methods and significantly differed from shuffled data (Extended Data Figure 5).

We next tested whether clinical and cognitive outcomes differed across brain state profiles
with distinct feature loadings (Figure 2b). Profiles significantly differed by age (F(3) = 10.9,
p<0.001), likelihood of a clinically impaired diagnosis (cognitively unimpaired vs. MCI or dementia;
X3(3) = 7.86, p=0.049), CDR-SB score indicating clinical dysfunction (CDR-SB >0 vs. 0; X*(3) =
8.36, p=0.04), and MoCA score (F(3) = 3.80, p=0.01). Further, profiles significantly differed across
neuropsychological test performance in composite domains of memory (F(3) = 4.61, p=0.004)
and executive function (F(3) = 4.14, p=0.007). Planned follow-up pairwise comparisons revealed
that these differences were driven by impairment in Profiles 3 and 4, which demonstrated older
age, more clinical impairment, and worse cognitive performance compared to Profiles 1 and 2
(Figure 2b; see Extended Data Table 2 for pairwise comparison statistics). Profile 1,
characterized by low LIM persistence and high persistence of other states, had the healthiest
outcomes compared to other profiles. In contrast, Profile 4, characterized by high LIM persistence
and low persistence of other states, consistently had the worst outcomes over the tested
measures, and even demonstrated a significantly lower MoCA and memory composite score
compared to Profile 3 (Figure 2b; Extended Data Table 1). These results indicated that Profile
4 may reflect a dysfunctional combination of brain states that contributes to poor clinical and
cognitive outcomes.

To further determine which brain states were most strongly contributing to poor outcomes,
we next tested direct relationships between the fractional occupancy of each state and outcomes
(Figure 2c). We found that increased fractional occupancy of the LIM+/LIM- states, and to a lesser
extent, decreased fractional occupancy of the remaining states, was associated with worse
outcomes (Figure 2c¢), confirming that high persistence of LIM states may be driving the
differences between the profiles. Consistent with this finding, Profile 1, the healthiest profile in
relation to behavioral and diagnostic outcomes, had the lowest LIM state persistence, while Profile

4, the most impaired profile, had the highest LIM state persistence.
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Figure 2. Associations between state persistence features and clinical and cognitive outcomes. (a) Using all 18 persistence
features representing the six brain states, we derived four brain state profiles, or common patterns of brain state persistence features
across scans. Within each profile, values of each state are represented as bars in the following order: DMN+, SOM+, LIM+, LIM-,
VIS+, VIS-. (b) Profile 4 (purple) and Profile 3 (blue) had older age, worse clinical outcomes, and worse cognitive performance
compared to Profile 1 (yellow) and Profile 2 (green). (c) Direct correlations between fractional occupancy of each state with clinical
and cognitive outcomes revealed that higher LIM state fractional occupancy was the most strongly associated with worse outcomes,

and may be driving results of the profile analysis in (b). ***p<0.001 **p<0.01 *p<0.05

Increased transition probability to limbic states reflects dysfunction

To further characterize temporal dynamics of brain states, we modeled the probability of
transitions between brain states from the state at time t to {+7 (see Methods). There was a higher
probability of remaining in the same state compared to switching between states, consistent with
previous work®. To better understand trajectories between distinct states, we modeled transition
probabilities after removing the effects of autocorrelation to determine transition trajectories

without influence of persistence features? (Figure 3a-b; see Methods). At the group level,
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transitioning from the SOM+ state to the LIM+ state (29.4%), and from the DMN+ state to the LIM-
state (30.0%), had the highest probability, while transitioning from a high to low amplitude version
of the same state was the least likely (0.03%-4.5% range).

We next tested whether state transition probabilities were associated with clinical and
cognitive outcomes. An increased probability of transitioning into LIM+/LIM- states from
DMN+/SOM+ or VIS+/VIS- states, and a decreased probability of transitioning between
DMN+/SOM+ and VIS+/VIS- states, was strongly associated with increased age, greater clinical
impairment, and worse memory performance (psror<0.05; Figure 3c; see Extended Data Figure
6 for additional outcome variables). Transition probability out of the LIM+/LIM- states to other
states were not strongly associated with outcomes. Together, these state transition patterns
suggest that an increased probability of entering into a LIM+/LIM- state at the cost of transitioning
to a DMN-/SOM+ or VIS+/VIS- state is associated with poor clinical and cognitive outcomes
(Figure 3d), consistent with the brain settling into a dysfunctional low energy LIM state.

Finally, we tested the degree to which the current brain state held information about
transitioning to the next brain state with a measure of normalized mutual information (NMI)
between lagged state time series (see Methods). Greater NMI was associated with greater
fractional occupancy of the LIM states, and lower fractional occupancy of the DMN+/SOM+ and
VIS states (ps<0.001; Figure 3e). Further, greater NMI was associated with older age (r = 0.20,
p<0.001), lower MoCA score (r = -0.12, p = 0.04), and lower memory performance (r = -0.19,
p<0.001; Figure 3e). These results are consistent in suggesting that increased persistence of LIM
states and poor outcomes are associated with a more predictable brain state trajectory that is

characterized by greater transitions to LIM states.
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Figure 3. State transition probability and associations with clinical and cognitive outcomes. (a) Group-average transition matrix
showing the probability (percentage) of transitioning from a state at time ¢ to a state at time {+1. (b) Transition probability results from
(a) represented as a flow diagram. The highest probability transitions (>25%) are shown as thicker dark red lines, moderately probable
transitions (<25%) are shown as thinner red lines. Transitions with <5% likelihood (representing transitions from high to low amplitude
versions of the same state, or vice versa) are not depicted. (c) Associations between age, clinical impairment (MoCA score) and
memory performance with state transitions. Correlation coefficients are represented as positive (reds) or negative (blues) between
each transition probability and outcome measure. Significance was corrected for multiple comparisons using FDR correction over 30
possible transitions. White asterisks represent pror <0.05, and white crosses represent punc <0.05. (d) Schematic diagram depicting
interpretation of results shown in (c). Higher probability of transitions to the LIM states from DMN+/SOM+ or VIS+/VIS- states (red
arrows), and lower probability of transitions between DMN+/SOM+ and VIS+/VIS- states (blue arrows) are associated with worse
clinical and cognitive outcomes. (e) Normalized mutual information (NMI), representing the information held about future states from
the current state, is related to greater LIM state prevalence and less DMN+/SOM+ or VIS state prevalence. Greater NMI is also
associated with older age, lower MoCA score, and worse memory performance.
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Limbic state persistence features are related to Alzheimer’s neuropathology

The development of pathology and neurodegeneration are proximal factors underlying
clinical and cognitive outcomes in Alzheimer's disease®. We next tested whether brain state
persistence features were related to these pathological changes. To assess this, we conducted a
sparse canonical correlation analysis (see Methods) to test whether brain state persistence
features were associated with regionally-specific spatial patterns of Alzheimer’s pathology and
neurodegeneration. Increased persistence of the LIM+ state and decreased persistence of the
SOM+ state (Figure 4a) were associated with higher tau pathology in medial and inferior temporal
regions (r = 0.23, p<0.001; Figure 4b), and higher AB pathology in inferolateral and posterior
occipital regions (r=0.18, p = 0.006; Figure 4b), reflecting patterns of known regional vulnerability
to pathology. A combination of increased LIM+ state persistence and decreased VIS+/VIS- state
persistence (Figure 4a) was associated with decreased volume in regions overlapping with
pathology, particularly in medial and lateral temporal lobe, and medial and lateral parietal lobes (r
= 0.36, p<0.001; Figure 4b).

Increases in LIM+ state fractional occupancy showed the strongest and most consistent
associations with tau, AB pathology, and volume using the data-driven approach, while decreases
in SOM+ and VIS state persistence contributed to pathology and neurodegeneration, respectively.
To further probe our data-driven results, we next conducted targeted analyses with a priori
selected outcome measures of pathology. We focused on tau pathology within entorhinal cortex,
the first cortical region to accumulate tau pathology in aging and preclinical AD**, and within a
temporal composite region, a set of regions previously shown to be sensitive to AD-related tau
progression*?. Increased LIM+ state fractional occupancy was associated with higher tau in
entorhinal cortex (r = 0.16, p = 0.02; Figure 4c¢), and in the temporal composite (r = 0.15, p =
0.035; Figure 4d), Within cognitively unimpaired older adults, higher LIM+ fractional occupancy
was more strongly associated with entorhinal tau (r = 0.21, p = 0.026), while lower SOM+
fractional occupancy was associated with temporal composite tau (r = -0.24, p = 0.009). These
relationships did not persist in older adults with cognitive impairment (MCl/Dementia; entorhinal
& LIM+ fractional occupancy: r = 0.06, p = 0.56; temporal composite tau & SOM+ fractional
occupancy: r = -0.13, p = 0.24), suggesting these states may more strongly contribute to or
emerge from the early stages of tau accumulation. To characterize AB burden, we compared older
adults classified as AB- versus AR+ using a validated threshold and set of composite regions***4.
Older adults who were AB+ had higher fractional occupancy of the LIM+ state (t(226) = -2.67, p =
0.008; Figure 4e). Again, this relationship remained significant within the cognitively unimpaired
older adults (t(133) = -2.09, p = 0.039), but not within cognitively impaired older adults (t(91) = -
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0.56, p = 0.58). Together, these results suggest that increased LIM+ fractional occupancy is highly
sensitive to pathology in the prodromal phase of Alzheimer’s disease.

We next investigated direct associations with hippocampal volume as a sensitive marker
for Alzheimer's-related neurodegeneration*®. Increased LIM+ fractional occupancy was
associated with decreased hippocampal volume (r = -0.14, p = 0.02; Figure 4f). In contrast to the
pathology results, relationships between LIM+ fractional occupancy and hippocampal volume
were strong across the whole sample, though primarily driven by the cognitively impaired
participants (r = -0.16, p = 0.08) rather than unimpaired (r = -0.03, p = 0.68) participants,
supporting models of AD in which neurodegeneration follows pathology in later stages of disease.
Further, across the whole sample, hippocampal volume was more strongly associated with LIM+
dwell time (r = -0.18, p = 0.003) rather than appearance rate (r = -0.01, p = 0.84), and with VIS+
fractional occupancy (r = 0.21, p<0.001) rather than SOM+ fractional occupancy (r = 0.02, p =
0.72).

Associations between transition probabilities and pathology (entorhinal tau and A status)
did not survive multiple comparison corrections (see Methods), indicating that patterns of
transitions may not have as strong of a relationship with pathology compared to overall
persistence of each state (Extended Data Figure 6b). However, lower hippocampal volume was
significantly associated with more transitions from the LIM+ to LIM- state (r =-0.18, pror = 0.002),
and less transitions from the VIS- to DMN+ state (r = 0.19, pror = 0.002; Extended Data Figure
6b).
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Figure 4. Associations between brain state persistence features and Alzheimer’s disease neuropathology. To determine
spatial patterns of tau, AB, and volume that reflected brain state persistence features, we conducted sparse canonical correlation
analyses. Weight loadings for brain state persistence features are shown in (a), with their associated spatial pattern rendered on brain
images in (b). Increased LIM+ state persistence (hot colors) and decreased SOM+/VIS+ state persistence (cool colors) were
significantly associated with greater tau and AR deposition (hot colors) and decreased regional volume (cool colors) in regionally
specific patterns mirroring known vulnerability. A priori investigations of (c) entorhinal tau, (d) temporal composite tau, (e) AB positivity
status, and (f) hippocampal volume revealed strong associations with LIM+ fractional occupancy. Scatterplots (c, d, f) show cognitively
unimpaired in lighter blue circles, and cognitively impaired in darker blue circles. FO, fractional occupancy; DWELL, dwell time; APP,

appearance rate; *p<0.05, **p<0.01

Limbic state persistence is a strong contributor to memory performance

To further probe how brain state features may link emerging neuropathology to expression
of cognitive deficits, we constructed models combining LIM+ fractional occupancy with age and
neuropathology. In linear regression models predicting to performance on the MoCA (R? = 0.38,
p<0.001; Extended Data Table 3) and the memory composite (R? = 0.34, p<0.001; Extended
Data Table 3), LIM+ fractional occupancy was a significant predictor (MoCA: p = 0.01, memory:
p=0.009), even when common factors such as entorhinal tau, hippocampal volume, and age that

are known to be strongly related to cognition were also included in the model. Similarly, in logistic


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

regression models predicting to clinical impairment (CDR-SB>0; R? = 0.33, p<0.001; Extended
Data Table 3) or diagnosis (CU vs MCl/Dementia; R? = 0.17, p<0.001; Extended Data Table 3),
LIM+ fractional occupancy was a significant predictor of clinical impairment (p = 0.004) and a
trending predictor of diagnosis (p = 0.07) when included in the same model with entorhinal tau,
hippocampal volume, and age.

We then constructed mediation models (see Methods) to test potential directional
relationships between these factors. We found that LIM+ fractional occupancy partially mediated
the relationship between age and memory performance (indirect effect: B=-0.007, p=0.006, CI [-
0.01, -0.002], 26.7% of total effect; direct effect: B = -0.02, p=0.005, CI [-0.03, -0.01]; total effect:
B =-0.03, p<0.001, CI [-0.04, -0.01]). Further, the relationship between LIM+ fractional occupancy
and memory was partially mediated by entorhinal tau (indirect effect: 32.2% of total effect, = -
1.09 p=0.03, CI [-2.10, -0.09]; direct effect: p =-2.30, p = 0.002, CI [-3.78, -0.82]; total effect: B =
-3.39, p<0.001, CI [-5.15, -1.63]). These results further support the link between persistence of
the LIM+ state and worse memory performance in the context of aging and development of tau

pathology.

Stability and clinical trajectories of brain state persistence features

While brain state persistence features have been shown to be stable within individuals
and highly heritable', these data suggest that particular brain state profiles are sensitive to
pathological and cognitive change associated with Alzheimer’s disease onset and progression.
To comprehensively evaluate their sensitivity to clinically-meaningful change, we tested the
stability of remaining assigned to the same brain state persistence profile (i.e. Figure 2a) over
time in participants with at least two scans, comparing profile assignment at time t compared to
profile assignment at time ¢t + 7 (Extended Data Figure 7). The overall distribution of profile
transition probabilities significantly differed from chance (X? = 35.30, p<0.001), suggesting an
inherent pattern of how participants stay within or transition between profiles. There was an
above-chance probability of staying within the original profile assignment (ps<0.05; Extended
Data Figure 7). The probability of staying in an unhealthy profile (Profiles 3 and 4; 61.8%, n=55)
was greater than staying in a healthy profile (Profiles 1 and 2; 38.2%, n=34; Cohen’s h = 2.23, p
= 0.02), which is consistent with the decreased likelihood of clinical or cognitive improvement in
the course of aging and Alzheimer’s disease.

Next, to further understand progression across brain state profiles, we tested whether
certain profile transitions were more likely than chance. From Profile 1, the healthiest profile

characterized by low LIM persistence, the probability of transitioning to any of the other three
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profiles was equivalent (17.7%) and not greater than chance (ps>0.71), indicating that if one was
to leave Profile 1, there was no preferential next profile for transition. In contrast, from Profile 4,
the unhealthiest profile characterized by high LIM persistence, the probability of a transition to
Profile 1 (the healthiest profile), was significantly below chance (5.7%; Cohen’s h = -2.63, p =
0.007), again supporting the low likelihood of improvement. Collapsing across healthy (Profiles 1
and 2) and unhealthy (Profiles 3 and 4) profiles, the probability of transitioning from a healthy to
an unhealthy profile (61.4%, n=27) was higher than transitioning from an unhealthy to healthy
profile (38.6%, n=17), though this comparison did not reach statistical significance (Cohen’s h =

1.51, p = 0.09) in part due to limited sample size with multiple time points.

Correspondence with traditional measures of static functional connectivity

Traditional investigations of static functional connectivity changes in aging and
Alzheimer’'s disease provide complementary information to the study of brain states®. To help
interpret our findings in the context of previous static functional connectivity analyses, we
additionally conducted ROI-to-ROI functional connectivity analyses (see Methods). We
calculated within-network connectivity, between-network connectivity, and system segregation of
the seven canonical resting state cortical networks*' (RSNs). We then correlated fractional
occupancy of each brain state with these metrics representing the RSNs (Extended Data Figure
8). Overall, higher LIM state fractional occupancy was associated with decreased between-
network connectivity and increased system segregation of the canonical limbic RSN (pFDRs
<0.05), while simultaneously associated with decreased within-network FC and decreased
segregation of the other RSNs (pFDRs <0.05). This is consistent with our interpretation of the
LIM+ state persistence metrics, reflecting a LIM+ state that is more segregated from the
fluctuations of other networks and may act as a low energy state. In contrast, DMN+/SOM+ state
fractional occupancy was overall associated with increased within-network connectivity,
increased between-network connectivity, and decreased system segregation of the RSNs, while
VIS+/VIS- state fractional occupancy was associated with increased within-network connectivity,
decreased between-network connectivity, and increased system segregation across RSNs (psror
<0.05; Extended Data Figure 8).

DISCUSSION
Brain states, reflecting rapid spatiotemporal dynamics of cortical coactivation patterns,

reflect the pathophysiology of Alzheimer’s disease and clinical outcomes. Our study has identified
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a pathological limbic brain state in older adults, predominantly characterized by coactivation within
limbic regions at rest. We demonstrate that increased persistence and transitions to this limbic
brain state, at the cost of persisting in and transitioning to default mode network and visual states,
is associated with clinical impairment, Alzheimer’s neuropathology, and memory and executive
function deficits. These findings provide evidence for a compelling mechanism explaining network
dysfunction and neurophysiological changes in the progression towards Alzheimer’s disease, and
highlights the potential for prevention of dysfunctional limbic states as an innovative treatment
option.

Our results suggest that the limbic brain state may reflect a pathological attractor state, in
which the brain settles into and has trouble escaping, which leads to poor outcomes. We
demonstrate that higher persistence, and particularly dwell time, is associated with poor
outcomes. Critically, this is driven by an altered spatiotemporal trajectory that results in increased
transitions into the limbic state, as opposed to out of the limbic state. This increased limbic
persistence, driven by increased transitions into the limbic state, has proximal consequences.
Limbic regions, and particularly the medial and anterior temporal lobe, are critical for memory
encoding, consolidation, and recollection*®, and are particularly susceptible to the development
of pathology®*. While it may seem counterintuitive that more time spent in limbic states is
associated with worse memory, our results are consistent with accounts of medial temporal lobe

4750 Further, our findings that greater

hyperactivation being maladaptive for memory performance
persistence of limbic states are related to pathology in a spatial pattern reflecting known
vulnerability®* is consistent with both animal and human imaging studies demonstrating that
hyperactivity patterns may have a causal role in the accumulation of pathological proteins®'—>3.
Our results provide a mechanistic framework in which existing accounts of functional
network changes can be interpreted. Prior investigations of age and Alzheimer’s disease network

31-33 and dynamic®*~*° functional connectivity have proposed compelling

changes based on static
models characterized by failures, strength changes, and disconnections between networks. While
the previous studies were not able to leverage the moment-to-moment reconfiguration of
unconstrained brain states’ due to methodological limitations®*, they provide complementary
information to our highly dynamic coactivation approach. For example, accounts that functional
disconnection between medial temporal lobe and posterior midline regions drive medial temporal
lobe hyperexcitability®' is consistent with our finding that increases in LIM state persistence
features are related to increased segregation of the canonical limbic resting state network,
supporting its disconnected and dysfunctional nature. Further, our results support an imbalance

between networks, demonstrating a shift of processing from default mode and visual states to a
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predominantly limbic state, consistent with accounts of cascading failures to large-scale
networks®?. The temporal persistence and spatiotemporal trajectories of coactivation patterns
revealed in our study will provide a new foundation for future activation and functional connectivity
work in aging and Alzheimer’s disease.

The current study derived brain states from data acquired while participants were at “rest”,
which, counterintuitively to its name, is a highly dynamic process characterized by spontaneous
mental states such as mind wandering, future planning, retrospection, and visual imagery®,
mapping onto default mode network, limbic, and visual states we observed. It is important to note
that the six states identified here are not a discrete measure of all possible states the brain can
visit during rest, and we focused on states that commonly co-occurred between participants.
Using resting state, as opposed to task-based fMRI, as a method to capture dysfunctional brain
state dynamics has tangible advantages, as resting state acquisition can be harmonized across
research or clinical sites. Critically, resting state is feasible to acquire in patient populations in
which performing a cognitive task in the scanner may range from difficult to impossible.

Future investigations in older adults should additionally test how brain state dynamics shift
while performing different tasks, as well as reconfiguration of states between rest and task®®°.
During active tasks, different brain states (such as frontoparietal network, dorsal/ventral attention
networks, salience networks, etc.) related to those particular task goals may appear, and
“dysfunctional” states and transitions may shift to networks opposed to task goals®®*’. Critically,
because brain states are modeled moment-to-moment, brain state analyses are an optimal
method to reflect the human conscious experience, where real time changes in behavior could be
precisely mapped to real time changes in neural dynamics. Further, the study of brain states is
not limited to functional MRI, but can be applied to any rich dataset with dynamical spatial and
temporal sampling of the brain, such as electroencephalography (EEG)". Future work combining
the precise spatial information gained from functional MRI with the fast-sampling rate of EEG may
reveal more insight into time-varying dynamics and state transitions, especially when mapped to
contemporaneous behavioral tasks.

The vast majority of clinical interventions for Alzheimer's disease have focused on
preventing or reducing proteinopathies with immunotherapies, with little success to date of
restoring cognitive performance while simultaneously risking harmful cerebrovascular side
effects®®>°. In contrast, targeting the dynamics of large-scale cortical networks may have more
proximal relationships to restoring cognitive function, and be used as a complementary approach
to current anti-pathology treatments. Our finding of a dysfunctional limbic state, reflecting higher

persistence and transitions, strongly suggests that a modifiable treatment strategy to reduce
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occurrence of this limbic state may ameliorate some aspects of cognitive decline. Brain states
can be dynamically modulated with strategies to input energy into specific nodes in the system,
with in silico models changing between states such as sleep and wakefulness® and
pharmacological manipulations demonstrating changes in the amount of energy needed to switch
states®. In parallel to closed-loop stimulation studies, in which neurofeedback dynamically
regulates disorders such as temporal lobe epilepsy®’, brain states could be conceptualized to be
modified in a similar fashion, with brain state dependent brain stimulation®’ being applied when
dysfunctional states are identified. Further, non-invasive neuromodulation techniques, such as

6283 vagus nerve stimulation®, closed-loop neurofeedback

transcranial magnetic stimulation
using neuroimaging®, and gamma-band entrainment® (but see also Soula et al., 2023°"), may
offer other avenues to directly manipulate brain states. While still speculative and highly
experimental’, future studies should take concrete steps to determine if manipulating brain states
would in fact be a viable strategy.

In summary, we provide the first comprehensive investigation of brain states, representing
spatiotemporal dynamics of coactivation at single timepoints, in the context of the progression
from aging to Alzheimer’s disease. We provide a mechanistic account of how dysfunctional
dynamics, namely increased persistence and transitions to a pathological state reflecting limbic
coactivation, may be a proximal factor to the expression of clinical impairment, Alzheimer’'s
neuropathology, and cognitive performance. Our results provide compelling evidence suggesting
targeted interventions to reduce abnormally high limbic coactivation may be an intriguing clinical
application to ameliorate cognitive dysfunction associated with Alzheimer’s disease, which should

be an active focus of future research.
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METHODS

Data Source

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Ethical approval was obtained by the ADNI investigators at each
participating ADNI site in accordance with relevant guidelines and regulations, and all participants

provided written informed consent.

Structural and Functional MRI Acquisition and Processing

Structural and functional MRI data was downloaded in January 2023. As of that date, 405
advanced protocol resting state functional MRI scans (“Axial MB rsfMRI”) were identified. 34
scans were excluded after downloading due to inconsistent acquisition parameters (n=28; ADNI
sites 037 and 177) or incomplete acquisitions (n=6), resulting in a total of 371 scans meeting
criteria for preprocessing and quality control. Included scans had the following acquisition
parameters: 3T Siemens Prisma or Prisma Fit; TR/TE 607/32 ms; 2.5mm? resolution; flip angle =
50 degrees, 976 volumes; 704x704 matrix. The associated T1-weighted magnetization prepared
rapid acquisition gradient echo (MPRAGE) scan collected at the same session as rsfMRI was
also downloaded. T1 scans had the following acquisition parameters: echo time (TE) = 2.98 ms,
repetition time (TR) = 2300 ms, inversion time = 900ms, flip angle = 10-, field of view (FOV) =
208%240x256 mm3, acquired resolution = 1x1x1 mm. Additional information on MRI protocols
can be found at: http://adni.loni.usc.edu/methods/documents/mri-protocols/.

Preprocessing of functional and structural images was performed using the CONN
toolbox®® (version 21a) implemented in MATLAB version 2019b (MathWorks). Structural MRI was
first segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
compartments. Structural MRl was then normalized to 1mm MNI space, and the resulting
transformations were applied to GM/WM/CSF segments. Resting state functional data was
realigned and coregistered to the T1 structural image, and the structural normalization parameters
were applied to obtain 2mm MNI space functional images. No spatial smoothing was applied to

preserve the high spatial resolution of the functional data.
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All structural and functional images were intensively quality checked. The ART REPAIR
toolbox, implemented in CONN, was used to detect outlier frames in the functional scans using a
<0.5mm motion threshold and z-score >3. We excluded subjects who had outlier volumes greater
than 2 standard deviations above the median value of the sample (threshold of 28.86% outlier
volumes; median = 2.46%, SD = 13.2%). This resulted in the exclusion of 28 scans (7.5% of
sample). See Extended Data Figure 9 and Extended Data Table 4 for the distribution of outlier
volumes and framewise displacement® in included and excluded subjects. Of the remaining
scans, 4 were excluded for poor scan quality (e.g. incomplete field of view, artifacts) and 5 were
excluded due to poor coregistration and warp quality. This resulted in a final analysis sample of
334 rsfMRI scans corresponding to 201 unique participants.

Mean BOLD time series were extracted from 218 regions of interest (ROIs) from the
Brainnetome Atlas™®. We included all cortical ROls, as well as subcortical structures such as
hippocampus and amygdala that are critical to memory and Alzheimer’s disease. Template space
Brainnetome ROIs were masked with subject-specific gray matter masks prior to times series
extraction to ensure signal was contained within gray matter.

Denoising was then performed on the 334 functional scans using CONN. First, despiking
was applied to minimize effects of large spikes due to motion or other confounding factors.
Despiking, rather than other methods such as scrubbing®, was applied because dynamic
functional connectivity analyses require continuous samples for temporal sequencing analyses
such as transition probabilities. The effects of six realignment parameters and their first-order
derivatives (translations and rotations), anatomic CompCor’” (first five components of time series
signal from white matter and CSF), and the potential “ramp up” effects at the beginning of the
scan were regressed from the time series, and linear detrending was then applied to the residual
time series. Finally, a bandpass filter (0.008-0.1 Hz) was applied after regression using a Fast

Fourier Transformation (FFT) based procedure.

Brain State Cluster Identification

The identification of brain states and quantification of brain state features and transition
probabilities was performed using code based upon Cornblath et al. 2020% (available at
https://github.com/ejcorn/brain_states).

First, the denoised mean BOLD signal at each temporal volume (TR) for each scan was
extracted for each of the 218 ROIs and entered into a data matrix, resulting in a 325,984 (334

scans x 976 temporal volumes) by 218 (ROls) matrix.
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To facilitate initialization of centroids, we created an exemplar matrix with about 5% of
volumes identified to have the highest variance across ROIs for each subject. For each scan,
volumes reflecting local maxima in variance (“peaks”) were identified from the full sample of
volumes. We then removed successive peaks (i.e. two volumes in a row) to prevent redundancy
and increased autocorrelation, and peaks that corresponded to a volume with a framewise
displacement®® value over 0.25mm. This process resulted in 4.63% of observations within the
initial data matrix being selected for the exemplar matrix, consistent in value with previous work?.
This exemplar matrix was entered into k-means clustering algorithm (random centroid
initialization, 20 replications, 500 iterations each for convergence), and the resulting cluster
medians were entered as the initial centroids for full k-means clustering.

Next, k-means clustering was applied to the full data matrix using the cluster medians from
the exemplar matrix for centroid initialization (k=2 to k=10, correlation distance metric, 20
replications, 500 iterations each for convergence). For each level of k, the variance explained
(between cluster variance / [between within cluster variance + within cluster variance]) and

silhouette scores™7*

were calculated. For additional validation, we performed sub-sample
validation on the centroids for each level of k. We randomly sub-sampled 80% of the full dataset
500 times and submitted these subsampled matrices to k-means clustering to quantify the
percentage of volumes that were assigned to the same brain state as in the original solution” to
assess reliability.

The optimal number of clusters was picked by considering a number of factors: variance
explained, within cluster consistency (silhouette score), consensus clustering (reliability across
random and unique data sub-samples), and ensuring no absent states in any of the scans. Elbow
criterion were used to determine the highest k level before any additional clusters accounted for

less than 1% variance explained gain®® (

<1% gain from cluster k to cluster k+1). Silhouette
scores were used to quantify the degree of similarity between datapoints and their assigned
cluster compared to neighboring clusters, with values approaching 1 indicating high similarity to
the assigned cluster, and approaching -1 indicating high similarity to the neighboring clusters. We
also considered consensus clustering score to ensure reliability of clusters at each level of k.
Finally, to enable comparison of brain state dynamics across subjects, we ensured the selected
k value allowed each subject to experience each brain state at least once (i.e., no absent states
across subjects). Based on these criteria, k=6 was selected for subsequent analyses (71.5%
variance explained). The transition from k=6 to k=7 resulted in an <1% gain in variance explained

(0.07%)?. Additionally, k=6 demonstrated a high silhouette score (mean = 0.064, SD = 0.052)
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compared to additional levels of k, a high average subsample validation score (99.45%), and no

absent states across scans (see Extended Data Figure 1).

Brain State Cluster Validation

Using k=6 clusters, we next performed rigorous validation of the real clusters compared
to null data models. Surrogate matrices for null hypothesis testing were generated for the following
control models (Extended Data Figure 2a): (1) Independent Phase Randomization (IPR) model,
which preserves the autocorrelation within each region but destroys covariance between
regions®’’; (2) lterative Amplitude Adjusted Fourier Transform (IAAFT) model, which preserves
both the linear structure and the amplitude distribution autocorrelation function, resulting in
equivalent second-order properties to the original data’®, and (3) Random Gaussian model, which
generates values from a normal distribution with the same mean and standard deviation as the
real data.

For each null data model, k-means clustering was performed using k=6 and equivalent
parameters as the real data (null data exemplar matrix centroid initialization, 20 replications, 500
iterations each for convergence). Silhouette scores were calculated for each null data model
(Extended Data Figure 2b). Silhouette scores of the real data were significantly higher compared
to IPR (IPR silhouette score = 0.031 + 0.030; t(651,966) = 310.45, p = 0, Cl = [0.0323-0.0327]),
iIAAFT (IAAFT silhouette score = 0. 0.061 + 0.05; t(651,966) = 20.42, p = 1.22e%, Cl = [0.0023-
0.0028]), and Random Gaussian models (Random Gaussian silhouette score = 0.005 + 0.0004;
1(651,966) = 650.28, p = 0, Cl = [0.0588-0.0592]). These comparisons are visualized in Extended
Data Figure 2c. These results support the validity of the real clustering solution.

We also tested the effect of removing high motion frames (framewise displacement >0.25
mm) in generating the real centroids for k=6, and found that the spatial correlation between the
original centroids and the motion scrubbed centroids was r >0.99, indicating that the presence of
high motion frames did not influence the centroid selection. We next also tested the effect of
removing the initial 10 frames of the scan (~1%) on centroid selection to correct for any potential
“ramping up” effects of the scanner. This control similarly resulted in an r >0.99 spatial correlation
between original and initial-frame dropped centroids. Finally, we conducted split half validation of
our sample. Data was split into equal training and test groups and k-means clustering was run on
each subsample. This process was iterated 500 times. This control resulted in r >0.99 median
spatial correlation between original and split-half generated centroids (see Extended Data Figure
3a). Split half validation was also applied to test consistency of transition probability (median r

>(0.98) and persistence probability (median r = 0.72; see Extended Data Figure 3b-c).
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Brain State Persistence and Transition Probability Analyses

As part of the k-means clustering solution, each volume (TR) for each scan was assigned
into the most similar brain state cluster. Using this information, we calculated three state
persistence metrics (Figure 1c; Extended Data Figure 4): (1) fractional occupancy, or the
percentage of volumes that were assigned to each state across the scan; (2) appearance rate, or
the average rate at which the state appeared per minute; and (3) dwell time, or the average
continuous time spent in a state when it appeared (in seconds). This analysis resulted in three
metrics per state, for a total of 18 persistence features. Group-level distributions of values as well
as persistence feature correlations across states are depicted in Extended Data Figure 4.

To determine whether there was a meaningful pattern of brain state persistence features
across scans, we performed another level of clustering on the 18 persistence features. Each
persistence feature was first normalized to enable comparisons across the different metrics
(fractional occupancy, dwell time, appearance rate). Next all 18 persistence features were entered
into a k-means algorithm (random centroid initialization, k=2 to k=8, Euclidean distance metric,
20 replications, 500 iterations each for convergence). Consistent with the initial brain state
clustering, we derived variance explained and performed consensus clustering on the resulting
clusters (Extended Data Figure 5a). Based upon these criteria, k=4 was chosen as the ideal
number of profiles. To validate our profile analyses, we reran clustering using a Gaussian Mixture
Model approach with k=4, which resulted in highly similar patterns of profiles to the original k-
means approach Extended Data Figure 5b-c). Further, to compare our results to a null model,
persistence data was shuffled, and k-means clustering was performed on the shuffled data using
the same parameters as the original k-means approach. This control resulted in profiles that were
not distinguishable from each other (Extended Data Figure 5d), confirming that the k-means
clustering performed on the real data was capturing real variance in the data.

Transition probabilities between brain states were calculated by comparing the probability
of transition from a state at time t to a state at time t+72. First, we calculated the transition
probabilities using the full temporal sequence of states represented at each timepoint, which
demonstrated that states are likely to persist rather than change to a distinct state. Second, we
removed repeating states from the temporal sequence to calculate the probability of transitioning
from one state to another distinct state to control for effects of state persistence?. Because this
second approach better characterized trajectories of state transitions, this was used in our primary
analyses to relate state transitions to other outcome measures. Normalized mutual information,

reflecting how much information the current state holds in predicting the subsequent state, was
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calculated by comparing NMI between the original brain state time series and a brain state time
series lagged by one element?. This was performed on the brain state time series with repeated
states removed to control for effects of state persistence and focus on trajectories between distinct

states.

Control LIM State Analyses

Due to the spatial pattern of the LIM brain states overlapping with regions known to be
vulnerable to signal drop out in fMRI, we investigated this possibility to ensure it was not
influencing our results. For the LIM+ brain state, characterized by higher amplitude coactivation
in anterior and medial temporal regions, we identified the top contributing Brainnetome ROIs with
positive signal (23 ROIs or about the top 10%). Using these ROIs, we extracted the mean signal
of each participant’s preprocessed functional image, masking the LIM ROls with subject specific
gray matter masks that were used to obtain the regional signal used in the brain states analysis.

LIM+ state fractional occupancy was correlated with the mean signal across the strongest
LIM state contributor ROIs (r = -0.22, p<0.001), with higher LIM signal associated with less time
spent in the LIM+ state. However, participants with the lowest signal did not overwhelmingly have
high LIM+ fractional occupancy values. Within those with LIM+ mean signal below the median
value, there was no correlation with LIM+ FO (n=166; r =-0.004, p = 0.96). This discrepancy does
not provide convincing evidence that LIM+ FO is alone driven by signal drop out within these
regions.

Further, to comprehensively reject the possibility that LIM signal drop out is driving our
primary results, we tested whether our major outcome measures (age, clinical status, memory,
etc.) were associated with LIM signal, and if controlling for LIM signal affected correlations
between variables of interest and LIM+ FO. First, LIM signal was not significantly associated with
major outcome measures such as age (r = 0.02, p = 0.66), diagnosis (CN vs. MCl/dementia,
t(332) = 0.48, p = 0.64), CDR-SB status (0 vs. >0; t(326) = -0.18, p = 0.86), or memory
performance (r = -0.02, p = 0.74). Second, LIM+ FO was still significantly associated with these
factors while controlling for LIM signal: age (r = 0.33, p<0.001), diagnosis (F(1) = 6.94, p = 0.009),
CDR-SB (F(1) = 10.7, p = 0.001), and memory (r = -0.24, p<0.001). Taken together, this is

sufficient evidence that our brain state results are not driven by signal drop out.

Static Resting State Network Analysis
To better interpret brain state persistence features in the context of traditional measures of static

functional connectivity (FC), we calculated within-network FC, between-network FC, and system
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33.79 of each of the canonical Yeo resting state networks*'. This was performed across

segregation
ROIs previously identified as members of these networks (i.e. visual network, somatomotor
network, dorsal attention network, ventral attention network, limbic network, frontoparietal
network, default mode network), and was independent from regions identified in our brain state
clustering solution. ROI-to-ROI static functional connectivity was calculated using the CONN
toolbox and ROIls from the Brainnetome Atlas’™, and the Fisher's z-transformed correlation
coefficient was extracted between each ROI pair. First, for each network, within-network FC was
calculated by taking the mean correlation value across ROls contained within that resting state
network. Second, for each network, between-network FC was calculated by taking the mean
correlation value between each ROI contained in that network with all ROIs not contained within
that network. Finally, for each network, system segregation was calculated as the difference

between the networks within-network FC and between-network FC, divided by within-network FC.

Pathology and Neurodegeneration Data

To assess relationships between Alzheimer’s pathology and brain state characteristics,
we obtained positron emission tomography (PET) data from ADNI3, using 18F-Flortaucipir (FTP)
for tau pathology and either 18F-Florbetapir (FBP) or 18F-Florbetaben (FBB) for amyloid-beta
pathology (depending on availability and time match to rsfMRI). All PET data was preprocessed
by the ADNI PET Core at UC Berkeley. Full acquisition and processing details are available on
ADNI website (https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3_PET-Tech-
Manual_V2.0_20161206.pdf).

In brief, FTP data was analyzed between 80-100 min post-injection across four 5-minute
frames, partial volume corrected using a modified Rousset approach, and normalized using an
inferior cerebellum gray reference region®*®2. The mean standardized uptake value ratio (SUVR)
values of regions corresponding to the FreeSurfer atlas (version 7.1.1 processing) were used for
analyses. For the sparse canonical correlation analysis, all bilateral cortical regions contained
within Braak I-IV regions®® (excluding the hippocampus due to off-target binding effects, and
thalamus) were used. For a priori analyses, we focused on the mean SUVR of the entorhinal
cortex and temporal meta-ROI*? (composite of the entorhinal, parahippocampal cortex, amygdala,
fusiform, medial temporal, inferior temporal).

FBP data was analyzed between 50-70 min post-injection, while FBB data were analyzed
90-110 min post-injection. both across four 5-minute frames. Both FBP and FBB were normalized
using a whole cerebellum reference region. Global amyloid-beta was calculated using a cortical

summary region consisting of Freesurfer-defined (version 7.1.1 processing) frontal,
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4344 To enable

anterior/posterior cingulate, lateral parietal, and lateral temporal regions
combination of the two tracers, regional and global FBP and FBB values were converted to the
centiloid scale, and a threshold of 18 centiloids was used on the cortical summary region to
determine amyloid-beta positivity®*. For the sparse canonical correlation analysis, all bilateral
cortical regions contained within Braak I-IV regions were included to be consistent with the tau
analyses, with the addition of the hippocampus, with values represented in centiloids. For a priori
analyses, we focused on amyloid-beta positive versus negative status.

For analyses assessing neurodegeneration, we used mean bilateral volume values from
the FreeSurfer Cross-sectional version 6.0 processing pipeline in ADNI. Regional values were
normalized by intracranial volume prior to analyses. For the sparse canonical correlation analysis,
all cortical regions contained within Braak I-IV regions were used to be consistent with the tau
analyses, with the addition of the hippocampus. For a priori analyses, we focused on the
hippocampal volume, as this measure is known to be a sensitive marker of AD-related
neurodegeneration.

Each tau-PET and AB-PET scan were time-matched to the nearest rsfMRI scan. Each
PET measurement was only matched with one rsfMRI session to ensure no duplicate values were
included in the analyses. Further, we excluded PET scans collected over 18 months from the
rsfMRI visit. This resulted in 206 tau-PET/rsfMRI matches (mean 60 + 98.3 days from rsfMRI) and
228 AB-PET/rsfMRI matches (mean 56 + 94.4 days from rsfMRI). Direct correlations between
state persistence features and PET measures controlled for rsfMRI-PET time interval. Freesurfer
volumes were restricted to the same session as rsfMRI, resulting in 285 volume/rsfMRI matches

used in analyses for the respective domains.

Clinical and Cognitive Data

Clinical and cognitive data was obtained from ADNI3. Diagnosis was based upon ADNI’s
criteria of cognitively normal (cognitively unimpaired, CU), mild cognitive impairment (MCI), or
dementia. Due to the relatively small proportion of dementia diagnoses in our sample (n=31,
9.3%), we combined MCI and dementia into an cognitively impaired (Cl) group. To characterize
clinical impairment, we used the Sum of Boxes score from Clinical Dementia Rating (CDR-SB),
which is a structured interview assessing cognitive, behavioral, and functional impairment across
six domains: memory, orientation, judgment and problem solving, community affairs, home and
hobbies, and personal care®®. We dichotomized our sample into no clinical impairment (CDR-

SB=0) versus any observable clinical impairment (CDR-SB>0). For another sensitive measure of
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clinical impairment that may better reflect the preclinical stage of Alzheimer’s disease, we used
the Montreal Cognitive Assessment®® (MoCA).

To assess cognitive performance, we used composite scores based upon
neuropsychological measures that were created for domains of episodic memory (“ADNI_MEM”)
and executive function (“ADNI_EF”). Specific neuropsychological measures and methods for the
calculation of the composite scores are detailed at:
https://ida.loni.usc.edu/download/files/study/c042fcbc-61b5-402c-b20c-
23892e3c8cdO/file/adni/ADNI_Methods UWNPSYCHSUM_March_2020.pdf. To further probe
episodic memory, we also used the immediate recall score from the Rey Auditory Verbal Learning

Test®’

(RAVLT), which is a word-list learning task that probes verbal memory that is commonly
used across laboratories. Because this measure of memory is more specific for recall and
episodic processes than some of the measures included in the ADNI memory composite, we
replicated all associations with RAVLT immediate recall, which showed very similar, if not more
robust, associations to the ADNI memory composite (e.g. profile comparison F(3) = 4.61, p =

0.004; see Extended Data Figure 10 for all data).

Statistical Analyses

Statistical analyses were conducted using MATLAB version 2019b, jamovi version
1.6.23.0, and R version 4.0.4. Correlations between factors were performed using Pearson’s r,
and differences between groups were performed using independent samples t-tests for
continuous variables and Chi-square analysis for discrete variables. Differences in outcomes
between brain state profiles were tested using ANOVA models, testing for a main effect of profile
(p<0.05). Planned follow-up pairwise comparisons were performed for significant ANOVA models,
using p<0.05 (two-tailed) for post-hoc significance. Multiple comparison corrections were applied
to the brain state transition probabilities (30 comparisons per matrix) and for comparisons of static
FC (42 corrections per matrix) with the Benjamini & Hochberg FDR-correction®®, using the p.adjust
function from the “stats” package in R. Sparse canonical correlation analyses were performed
using the “Penalized Multivariate Analysis (PMA)” R package®®, using a 50% sparsity threshold
and restricting PET values as positive loadings, and volume values as negative loadings to
increase interpretability®®. The first dimension was selected for interpretation. Mediation models,
performed in jamovi, were considered significant when confidence intervals did not cross zero.

Data visualization was performed with Matlab and R. Brain state renderings were
performed using Surf Ice (https://www.nitrc.org/projects/surfice/). Sparse canonical correlations

were visualized with the “ggseg” package in R. General plots were created using “ggplot” in R.
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State transition pathways were created with the “qgraph” package in R. Figure panels 1¢ and 2d

were created with Biorender.com, while all other figures were assembled with Adobe lllustrator.

DATA AVAILABILITY
The data that support the findings of this study are available from The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) upon registration and compliance

with the data usage agreement.

CODE AVAILABILITY
The code generated during the current study is available from the corresponding author on

reasonable request.

ACKNOWLEGMENTS

Data collection and sharing for this project was funded by the Alzheimer's Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U0O1 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’'s
Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
Eurolmmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.;
Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research and Education, and the study is
coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of

Southern California.


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The opinions and assertions herein do not necessarily reflect the official policy or position
of the Uniformed Services University, the Department of Defense or the Henry M. Jackson

Foundation for the Advancement of Military Medicine. No conflicts of interest are reported.

AUTHOR CONTRIBUTIONS

Conceptualization, J.N.A. & M.A.Y; Methodology & Software, J.N.A.,, SMK.,, M.G.C.F., Y.E,
L.A.S., P.E.R.; Formal Analysis, J.N.A.; Writing - Original Draft, J.N.A.; Writing - Reviewing and
Editing, all authors.

COMPETING INTERESTS
M.AY. is Co-founder and Chief Scientific Officer of Augnition Labs, L.L.C. All other authors

declare no competing interests.


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

EXTENDED DATA

a b
Variance Explained R2 Gain from k-1 to k
-
L 4
ol 2od 0.08
0.7 ¥ c
N » 5 0.06
rd
4 e (U]
/ ‘x 0.04
0.65}
1 0.02
!
O—————0
0
2 3456 7 8 910 3 45 6 7 8 910
k k
d e
Average ) Median
0.98 m
ﬁ £0.98
© ©
5 0.96 E
= = 0.96
X R
0.94
0.94
2 3456 7 8 910 2 345 6 7 8 910

k

k

0.1‘ Silhouette score
20.09
o
bt
20.08
=
[0}
3
£0.07
=

0.06

2345678 910
k
Mode
l%

£0.98
©
S
£ 0.96
<

0.94

2 3 456 7 8 910
k

EXTENDED DATA FIGURE 1. Criteria used for selection of k brain state clusters. (a) Elbow plot showing the
total variance (R?) explained for each clustering solution. (b) Plot showing change in variance explained with
progression to a higher k-value. Red line indicates 1% threshold. Moving from k=6 to k=7 results in <1% additional
variance explained. (c) Silhouette score for each clustering solution, with higher scores indicating more similarity to
the assigned cluster compared to neighboring clusters. (d-f) Consensus clustering was performed to determine
subject validation of clustering solution across all levels of k. 80% of the full dataset was randomly sub-sampled 500
times and submitted to k-means clustering to quantify the percentage of frames (TRs) that were assigned the same
brain state in the original solution and in the random sub-sample. The average (d), median (e), and mode (f) of the
consensus clustering is shown for each level of k, with k=6 demonstrating a high % TR match.
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EXTENDED DATA FIGURE 2. Comparison of real data and clusters to null surrogate datasets and clusters.
(a) Surrogate datasets were created for null hypothesis testing with the following models: (1) Independent Phase
Randomization (IPR) model, which preserves the autocorrelation within each region but destroys covariance
between regions; (2) Iterative Amplitude Adjusted Fourier Transform (iIAAFT) model, which preserves both the linear
structure and the amplitude distribution autocorrelation function, resulting in equivalent second-order properties to
the original data, and (3) Random Gaussian model, which generates values from a normal distribution with the same
mean and standard deviation as the real data. (b) Silhouette values for k=6 clusters for the real data and each
surrogate dataset. (c) Comparison of all silhouette values for real data (blue) compared to the IPR, iAAFT, and
Random Gaussian clusters (orange). The real data had significantly higher (better) silhouette values compared to

each null model.


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a (o]
Centroid similarity Transition Probability Persistence Probability
Median r = 0.99 Median r = 0.983 Median r = 0.724
i 40 M
w» 500 80 |
‘© " " SR
2400 ) @ 30 I
o 260 <
£300 £ & -0
c 7] 40 wn
()] Y— Y
© 200 o o
Y E-3 H
o 10
£ 100 H | 20
0 0 0
0.9 0.95 1 0.9 0.95 1 0 0.5 1
Correlation Correlation Correlation

EXTENDED DATA FIGURE 3. Split-halves validation of the chosen k (k = 6). The real data matrix of the study
sample was randomly split in half (n=167 for training data, n=167 for test data) 500 unique times. K-means
clustering was run separately for each half and correlation was used to quantify similarity between the centroid
locations (a), transition probabilities (b), and persistence probabilities (c).
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EXTENDED DATA FIGURE 4. Group-level brain state persistence features. (a) Distributions of values for
fractional occupancy (left), appearance rate (center), and dwell time (right). (b) Correlations between state features
for fractional occupancy (left), appearance rate (center), and dwell time (right). (c¢) Cross-correlations between
fractional occupancy and appearance rate (left), fractional occupancy and dwell time (center), and appearance rate
and dwell time (right). FO, fractional occupancy; APP, appearance rate; DWELL, dwell time; DMN+, default mode
network high amplitude coactivation state; SOM+, somatomotor high amplitude coactivation state; LIM+, limbic high
amplitude coactivation state; LIM-, limbic low amplitude coactivation state; VIS+, visual high amplitude coactivation
state; VIS-, visual low amplitude coactivation state.
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EXTENDED DATA FIGURE 5. Selection and control models for brain state profiles. (a) Based upon converging
results the inflection point of the elbow plot (left), variance (R2) gained from k to k+1 (center), and subclustering
validation (right), k=4 was chosen as the optimal number of profiles (shaded region). (b) Results of k-means
clustering (k=4), demonstrating distinct patterns of fractional occupancy (left), appearance rate (center), and dwell
time (right) of the profiles. (c) Clustering solution of a Gaussian Mixture Model using four clusters revealed very
similar patterns of profiles to the k-means clustering approach. (d) Shuffled data applied to k-means clustering (k=4)
does not demonstrate dissociable patterns of persistence features between profiles.
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EXTENDED DATA FIGURE 6. Additional associations with brain state transitions. Associations between state
transition probabilities with (a) clinical and cognitive features and (b) Alzheimer's neuropathology. Correlation
coefficients are represented as positive (reds) or negative (blues) between each transition probability and outcome
measure. Significance was corrected for multiple comparisons using FDR correction over 30 possible transitions
(ignoring autocorrelation). White stars represent prpr <0.05, and white crosses represent punc <0.05.
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EXTENDED DATA FIGURE 7. Stability and transitions between profiles over time. The probability of
transitioning from a Profile at time point t (y-axis) to either the same or different Profile at time point { + 7 (x-axis).
Stability of profile transitions was most likely across all Profiles. Profile 1 (the healthiest profile) was equally likely to
transition to any other profile, while Profile 4 (the unhealthiest profile) was very unlikely to transition to Profile 1 (the
healthiest profile).
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EXTENDED DATA FIGURE 8. Associations between brain state fractional occupancy and static measures
of functional connectivity. Static functional connectivity (FC) was calculated between ROlIs included in the
Brainnetome Atlas. For each canonical Yeo resting state network (RSN), we calculated within-network FC (a),
between-network FC (b), and system segregation (c). Associations between the fractional occupancy of each brain
state and the static FC of the various RSNs are depicted as correlation matrices. Static RSNs: VIS RSN, visual
network; SOM, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, limbic
network; FPN, frontoparietal network; DMN, default mode network; Brain states: DMN+, default mode network high
amplitude brain state; SOM+, somatomotor high amplitude brain state; LIM+, limbic high amplitude brain state; LIM-
, limbic low amplitude brain state; VIS+, visual high amplitude brain state; VIS-, visual low amplitude brain state.
White asterisks indicate prpr <0.05 (corrected for 42 comparisons), while white crosses indicate pync <0.05.
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EXTENDED DATA FIGURE 9. Distribution of motion and thresholds for exclusion. (a) Distribution of outlier
volumes based upon a conservative threshold of <0.5mm framewise displacement and global z-score <3. The dotted
red line indicates the exclusion threshold (<28.86%), calculated as two standard deviations above the median value.
Red vales on the histogram represent scans excluded by falling over this threshold. (b) Distribution of framewise
displacement (FWD) as calculated by Power et al., 2012. Red values on the histogram represented excluded scans
based upon the outlier volume threshold applied in (a).


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a *
b c
DMN+
024 = - 03
0 SOM+
= *
2% g 001 r T LW
: £ 2
22 s & L
] 03
-0.2 Elh VIS+
10
vis-
) — 231134 DMN+ SOM+ LIM+ LIM- VIS+ VIS
S=0n 9 - -
123 4 20553535 State at £ + 1

EXTENDED DATA FIGURE 10. Replication of primary memory results using Rey Auditory Verbal Learning
Test (RAVLT) immediate recall score. (a) Profile comparison indicating decreased RAVLT immediate score in all
groups compared to Profile 1. (b) Direct correlations between fractional occupancy of each state and RAVLT
immediate score. (c) Associations between state transition probabilities and RAVLT immediate score. White
asterisks indicate prpr <0.05 (for 30 comparisons), while white crosses indicate punc <0.05.
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EXTENDED DATA TABLE 1. Demographics and key outcomes of the sample.

Cognitively Unimpaired Cognitively Impaired*® CUvs. Cl
(CU; n=188) (Cl; n=146)
t or X? P
I

Age (years) 72.8 (7.9) 75.3 (8.0) -2.85 0.005
Sex (n, % female) 115 (61.2%) 55 (37.7%) 18.2 <0.001
Education (years) 16.8 15.7 3.94 <0.001
Race (n, % White) 159 (84.6%) 118 (80.8%) 3.41 0.49
Ethnicity (n, % Non- 176 (93.6%) 134 (91.8%) 1.19 0.76
Hispanic/Latino)
CDR-SB 0.05 214 -13.58 <0.001
MMSE 29.0 (1.11) 26.7 (3.63) 7.82 <0.001
MoCA 26.0 (2.54) 22.0 (4.30) 9.03 <0.001
Memory Composite 1.11 (0.77) 0.16 (0.86) 10.45 <0.001
Executive Function 1.12 (0.84) 0.29 (0.95) 8.17 <0.001
Composite
RAVLT Immediate 45.7 (11.8) 33.5(11.1) 9.36 <0.001
Recall
EC FTP SUVR 1.80 (0.34) 2.31(0.79) -6.18  <0.001
MetaTemporal FTP 1.59 (0.29) 1.97 (0.72) -5.11  <0.001
SUVR
AB Status (% 39 (28.9%) 56 (60.2%) 2220 <0.001
positive)
Global AB (centiloids) 21.1 (31.2) 46.3 (42.4) -5.16  <0.001
HC Volume (cm3, 2.51(0.32) 2.28 (0.34) 5.98 <0.001

normalized)

*Cl group composed of patients with mild cognitive impairment (n=115) and dementia (n=31); Race, n=14 missing
values; Ethnicity, n=17 missing values; Clinical Dementia Rating Sum of Boxes score (CDR-SB), n=6 missing values;
Mini Mental State Exam (MMSE), n=15 missing values; Montreal Cognitive Assessment (MoCA), n=23 missing
values; Memory Composite, n=15 missing values; Executive Function Composite, n=19 missing values; Rey Auditory
Verbal Learning Test (RAVLT) immediate, n=17 missing values; 18F-Flortaucipir (FTP), n=128 missing values; EC,
entorhinal cortex; MetaTemporal composite, composite of regions within the medial and lateral temporal lobe; SUVR,
standardized uptake value ratio; A3, amyloid-beta as measured by 18F-florbetapir or 18F-florbetaben, n = 106
missing values; AR positivity defined as >18 centiloids; HC, hippocampus (normalized by intracranial volume), n=49
missing values.


https://doi.org/10.1101/2023.08.30.555617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555617; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

EXTENDED DATA TABLE 2. Brain state profile clinical and cognitive comparisons.

Profile 1 vs 2 Profile 1 vs 3 Profile 1 vs 4 Profile 2 vs 3 Profile 2 vs 4 Profile 3 vs 4

t/X? p t/X? p t/X? p t/X? p t/X? p t/X? p
Age -0.97 0.33 -3.46 <0.001 -4.81 <0.001 -2.84 0.005 -4.36 <0.001 -1.24 0.22
Dx 0.01 093 -3.47 0.06 2.98 0.09 -4.77 0.03 4.25 0.04 0.7 0.80
CDR-SB 0.99 032 -395 0.047 6.88 0.009 -140 0.24 3.54 0.06 0.33 0.57
MoCA 1.46 0.15 1.31 0.19 3.27 0.001 -0.10 0.92 199 0.047 2.00 0.046
Memory 1.97 0.049 261 0.009 3.63 <0.001 0.78 044 1.81 0.07 0.93 0.35
EF -0.02 0.98 0.71 0.48 278 0.006 0380 043 3.1 0.002 2.15 0.03
RAVLT 2.33 002 275 0.006 415 <0.001 055 0.58 198 0.048 1.33 0.18

Dx, cognitively unimpaired versus cognitively impaired (mild cognitive impairment/dementia) diagnosis; Clinical
Dementia Rating Sum of Boxes score (CDR-SB); Montreal Cognitive Assessment (MoCA); Memory, Memory

Composite score; EF, Executive Function Composite score; Rey Auditory Verbal Learning Test (RAVLT) immediate

score.
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EXTENDED DATA TABLE 3. Results of linear and logistic regression analyses with LIM+
fractional occupancy as a predictor.

Model

Memory (R? = 0.33, p<0.001) estimate SE t p
Intercept 1.59 0.93 1.71 0.09
Age -0.006 0.008 -0.79 0.43
ECFTP -0.68 0.10 -7.12 <0.001
HC volume 0.49 0.19 2.64 0.009
LIM+ FO -1.77 0.79 -2.24 0.026

MoCA (R? = 0.38, p<0.001) estimate SE t p
Intercept 36.02 418 8.61 <0.001
Age -0.03 0.04 -0.86 0.39
ECFTP -3.63 0.44 -8.32 <0.001
HC volume -0.40 0.84 -0.47 0.64
LIM+ FO -8.79 3.52 -2.49 0.01

CDR-SB (R? = 0.20, p<0.001) estimate SE t p
Intercept 0.010 3.04 0.003 0.99
Age 0.03 0.03 0.96 0.34
ECFTP -1.51 0.38 -3.94 <0.001
HC volume 1.14 0.61 1.87 0.06
LIM+ FO -1.77 2.68 -2.90 0.004

Diagnosis (R? = 0.17, p<0.001) estimate SE t p
Intercept 0.16 2.96 0.06 0.96
Age -0.01 0..03 -0.38 0.70
ECFTP 1.26 0.36 3.54 <0.001
HC volume -1.25 0.60 -2.08 0.04
LIM+ FO 4.56 2.53 1.80 0.07

Diagnosis, cognitively unimpaired versus cognitively impaired (mild cognitive impairment/dementia) diagnosis;
Clinical Dementia Rating Sum of Boxes score (CDR-SB); Montreal Cognitive Assessment (MoCA); Memory, Memory
Composite score; SE, standard error.
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EXTENDED DATA TABLE 4. Motion outliers and framewise displacement.

Original Sample Motion Inclusion Final Sample
(N = 371) (N = 343) (N = 334)
outliers FWD outliers FWD outliers FWD
Mean 7629  0.15 4.42% 013 4.36% 013
Median 5 46%  0.12 225%  0.12 220%  g.12
SD 13.20%  0.09 563%  0.06 559% (.06
Max 82.07%  0.62 26.95%  0.31 26.95% (.31

Min 0.00% 0.03 0.00%  0.03 0.00% (.03

Original sample, all downloaded scans from ADNI meeting criteria for preprocessing and quality control; Motion Inclusion, all scans
passing the data driven motion threshold of less than 2SD below the median outlier value (<28.86%); Final Sample, final scans
included in analyses after further exclusion for image warp quality and artifacts. Outliers, outlier frames identified by ART Repair
toolbox based on conservative thresholds of <0.5mm framewise displacement and global intensity z-score <3; FWD, framewise
displacement as calculated by Power et al., 2012.
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