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Abstract 
Spatial transcriptomics involves capturing the transcriptomic profiles of millions of cells within their spatial 
contexts, enabling the analysis of cell crosstalk in healthy and diseased organs. However, spatial 
transcriptomics also raises new computational challenges for analyzing multidimensional data associated with 
spatial coordinates. 
In this context, we introduce a novel framework called CellsFromSpace. This framework allows users to 
analyze various commercially available technologies without relying on a single-cell reference dataset. Based 
on the independent component analysis, CellsFromSpace decomposes spatial transcriptomic data into 
components that represent distinct cell types or activities. Here, we demonstrate that CellsFromSpace 
outperforms previous reference-free deconvolution tool in term of accuracy and speed, and successfully 
identify spatially distributed cells as well as rare diffuse cells on datasets from the Visium, Slide-seq, 
MERSCOPE, and COSMX technologies. 
The framework provides a user-friendly graphical interface that enables non-bioinformaticians to perform a 
full analysis and to annotate the components based on marker genes and spatial distributions. Additionally, 
CellsFromSpace offers the capability to reduce noise or artifacts by component selection and supports analyses 
on multiple datasets simultaneously. 
 
Graphical abstract 

 
 
 
 
 
 
 
 
Introduction 
 Spatial transcriptomics (ST) have emerged as some of the most promising technologies to 
analyze spatial distribution and context of cell types and activities within tissues1. Commercially 
available technologies are divided into two main categories: spatially barcoded next generation 
sequencing-based (10X Visium1, Slide-seqV2 now Curio Seeker2, Stereo-seq3) and transcript level 
panel-based high throughput in situ hybridization (ISH) or sequencing (ISS) approaches (Vizgen 
MERSCOPE4,  Nanostring CosMX5, 10X Xenium6). The former enables whole or panel 
transcriptome analysis on tissue sections at varying degrees of resolution, from subcellular to quasi 
cellular resolution, depending on the technology. These methods generate highly dimensional, sparse, 
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spatially distributed data, which can be demanding on computational resources, and still requires the 
development of new algorithms to exploit jointly the molecular data, spatial coordinates and tissue 
images7. 
10X Genomic’s Visium technology, currently the most widespread commercial solution by 
publication metrics, outputs manageable data sizes at the cost of lower resolution compared to other 
techniques, with 55µm diameter spots typically encompassing 1-20 cells. Due to the “mini-bulk” 
nature of the technology, classical methods used in single cell analysis are less efficient and will 
cluster spots according to the cell mixture. In the worst-case scenario, such as the complex and 
unevenly spatially distributed tumor tissues, numerous clusters will be generated obfuscating the cell 
composition of each spot. Therefore, a deconvolution/decomposition step is often required to gain 
insight into the mixture of cells populating each spot. These deconvolution methods, at the exception 
of few8, are mostly scRNA-seq reference based9,10–19, with known drawbacks such as the necessity 
for high-quality reference datasets and the loss of information. 
Recently, Miller et al8, with STdeconvolve, proposed a reference free method to decompose the signal 
with Latent Dirichlet Allocation (LDA), a text processing technique, approximating genes to words 
and spot to documents.  Their work presents several interesting developments but the known 
drawbacks of LDA (Sensitivity to noisy and sparse data – Difficulty to detect rare topics – Fixed 
numbed of topics) might limits its performance when applied to ST dataset. Here, we propose a new 
reference free decomposition framework for ST dataset, named CellsFromSpace (CFS) that 
overcomes some of the limitation of LDA. CFS is based on the independent component analysis 
(ICA), a blind source separation technique that attempts to extract signal sources from a mixture of 
these sources20. ICA has been successfully applied to bulk transcriptomic data in hundreds of 
publications and shows the best performance over other methods to detect gene module from bulk 
RNA-seq21. ICA performance is directly dependent on the ratio between the number of sources and 
number of sampled mixtures. With thousands of spots (mixtures) each covering few cell types 
(Sources), we assumed that ICA should perform well to decompose cell types and activities from ST 
data. Additionally, through the biological interpretation and spatial distribution analysis of the 
independent components (ICs), an expert in the field can supervise the removal of noise and artifacts, 
as demonstrated in electroencephalography (EEG), functional magnetic resonance imaging (fMRI), 
and recent advancements in neuroscience22,23. Hence, in ICA latent space of ST data one can select, 
isolate, or remove background noise and parasitic signals, such as cell death, that are not relevant for 
downstream analysis, without altering the signal of interest. Finally, the permissiveness of ICA 
regarding over-decomposition24 is a significant advantage that allows to fix an arbitrary large number 
k with a minimum drawback of generating near identical components, easily corrected by component 
annotations and subsequent merging. Altogether, the characteristics of ICA in combination to an 
expert-supervised annotation and component selection, implemented in the CFS framework, enables: 
i) to avoid dimensionality optimization steps, ii) to select biologically relevant components and to 
remove noise, iii) to study specific cell subtypes in the IC latent space, and iv) to identify conserved 
signal though multi-sample ST datasets.  

When applied to ST analysis, CFS allows a biologically relevant decomposition of the spot mixture 
into its subcomponents responsible for common expression patterns observed within the tissue, such 
as cell type signatures, biological processes and tissue organization.  
CFS consists of a preprocessing pipeline and an easy-to-use Shiny user interface (UI) to analyze, 
annotate, visualize, and subset ST data. CFS was used to fully process sample datasets from multiple 
major sequencing-based ST technologies and was also applied to ISH ST as an intermediary tool for 
sample screening and identification of regions of interest. This highlights the flexibility and 
effectiveness of a semi-supervised ICA-based signal decomposition for the analysis of ST in healthy 
and diseased samples. The companion shiny interface enables non-bioinformaticians to quickly 
perform, without programming, a complete analysis of ST data from Visium, Slide-seq, MERSCOPE 
or CosMX dataset; and to generate Seurat25 objects compatible with subsequent analyses. 
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Methods 
 
CFS overview and use case 
The package is split into two main components: A) the package itself which includes functions to 
preprocess data loaded in Seurat by i) prepare_data which normalizes the count matrix, ii) RunICA 
which runs the fastica algorithm to separate the signal into independent components (IC), corrects 
the signs of ICs (by convention we consistently flip the sign to define the max weight as positive), 
and filters out ICs with a kurtosis below a user-defined threshold (default: 3), iii) Enrich_ICA which 
queries EnrichR databases to run and curate functional enrichment analyzes for individual ICs, and 
iv) in addition, functions to convert ISH ST data into a format compatible with CFS, and B) a Shiny 
UI to run the previously mentioned preprocessing steps and downstream annotation and analysis of 
ICA results. A critical step of CFS’s analytical workflow is the manual annotation of ICs by scientists. 
To improve the ease, speed, and efficacy of this critical step by biologists, clinicians, or any experts, 
CFS’s Shiny UI provides a series of panels to visualize different aspects of the ICs such as: i) global 
gene x IC heatmap of the top contributing genes for all ICs, ii) spatial distribution of ICs and their 
contributing genes, iii) IC-specific gene x IC and gene x spot heatmaps showing the contribution of 
IC-defining genes in ICs and cells, and iv) annotated bar graph visualization of functional enrichment 
analyses from EnrichR of the contributing genes for each ICs.  
Once annotated, relevant ICs can be used to calculate spot clustering and UMAP dimensionality 
reduction. Marker genes for the calculated clusters can also be calculated within the Shiny UI. 
However, an advantage of ICA, that directly captures cell type signatures, is the ability to remain in 
the variable latent space. To interpret the mixture in IC space of each spot, CFS provides spatial and 
UMAP scatter pie chart representations of data. These scatter pie representations allow the 
observation of all or a selected subset of ICs weight on each spot as well as an annotation-based 
categorical representation of these ICs. Due to the assumptions of ICA, scaling between ICs is not 
meaningful. Therefore, it is important to note that scatterpie does not represent proportion itself. 
Instead, for each IC, it represents the centered weight among all the spots. We believe that this 
limitation does not hinder the CFS analysis. In our opinion, when dealing with spots of 55µm spaced 
110µm apart (and thus lacking information about neighboring cells), identifying the presence of cells 
is more relevant than inferring their exact composition.  
The Shiny UI allows for a complete analysis workflow from the loading of SpaceRanger output to 
the easy exporting of publication-ready figures of all visualizations in png, jpeg, pdf or svg format. 
Data generated within the application can also be exported in rds format integrally or subsetted from 
within the tool. The resulting Seurat objects containing all curated annotations, calculated metadata 
and dimensionality reductions can be loaded directly in R for more complex downstream analyses 
with compatible workflows.  
 
Samples used 
The package efficiency was assessed using Visium reference sample datasets of Mouse Brain Coronal 
Section, Human Breast Cancer and Human Prostate Cancer. Slide-seqV2 mouse hippocampus sample 
dataset was obtained through the SeuratData package. MERSCOPE sample dataset MERFISH 
Mouse Brain Receptor Map was obtained from Vizgen (https://info.vizgen.com/mouse-brain-data). 
CosMX sample datasets and annotations of formalin-fixed paraffin-embedded (FFPE) human non-
small cell lung cancer were obtained from nanostring (https://nanostring.com/products/cosmx-
spatial-molecular-imager/ffpe-dataset/) 
 
Preprocessing pipeline 
All samples were pre-processed using the CFS package and the following pipeline. Samples were 
normalized using Seurat’s sctransform function. Using the ICASpatial function, 100 ICs were 
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calculated for the ICA analysis with 600 iterations using the Icafast method. Only leptokurtic ICs 
(kurtosis > 3) were retained for downstream processing and analysis. By convention, IC sign 
correction was then applied by flipping signs to define max IC weights as positive. The sign doesn't 
alter the interpretation of ICs, but we have empirically observed that this correction improves the 
interpretation of ICs by experts and better fit with the biology. Functional enrichment analysis of IC-
contributing genes (defined as genes with feature loading absolute z-score ≥ 3) was done using the 
enrichR package’s Show_Enrich function for the desired databases 
 
Pseudotime analysis 
Pseudotimes, branches and diffusion maps were computed from the independent components 
annotated as tumor, only for the spot overlapping tumor cells, using the corresponding functions of 
the destiny 2.0 package26.  
 
ISH data pseudospot binning 
To process ISH technologies’ datasets within CFS, samples first needed to be converted into a pseudo-
spot format. To do so, a count matrix was recreated using the reported detected transcript table from 
standard output using CFS’s Create_vizgen_seurat or Create_CosMX_seurat functions 
(detected_transcript.csv for MERSCOPE and tx_file.csv for CosMX) with transcripts placed in grids 
of variable bin sizes (40x40 µm for MERSCOPE, 200x200 px or 24x24 µm for CosMX). Each 
pseudo-spot of this grid was then treated similarly to a Visium spot with the corresponding associated 
transcript pseudo-counts. A Seurat object was then created using this matrix as count matrix input 
and the pre-processing pipeline was run as described previously. For the MERSCOPE sample, 
pseudospots with less than five total transcripts detected were filtered out.  
 
Comparative performance with STDeconvolve 
Visium Mouse brain and breast cancer and CosMX NSCLC datasets were deconvoluted using the 
standard STdeconvolve workflow. Briefly,  all pseudospots previously filtered by feature count were 
processed. Genes used for the analysis were restricted using restrictCorpus function to restrict over-
dispersed genes. Genes above 5% and under 100% of pseudospots were thus included. Latent Diri-
chlet allocation (LDA) was applied to find K latent topics. For each sample, the K value with mini-
mum perplexity was kept: 38 for 10x mouse brain, 30 for 10x breast cancer, 22 for 10x prostate 
cancer, and 57 for integrated CosMX NSCLC. 
Comparative annotation performance assessment was conducted first by extracting ground truth cell 
annotations from the Giotto-processed object of the NSCLC dataset and attributed by pseudospot. 
Spatial composition and gene signature correlations were computed using Pearson’s r coefficient. For 
error calculations, ground truth cell types were mapped to ICs and topics by their gene signature, 
simulating perfect feature annotation. For this, mean gene expression for each ground truth cell type 
was correlated using Pearson’s r coefficient with gene weights by feature and z-score was calculated 
for all features per cell type. Features with z-score values > 2 were annotated and collapsed to the 
designated cell type. Relative cell type composition for each modality was calculated by pseudospot, 
with features contributing to <5% being filtered out for Stdeconvolve and CFS. Isomeric log ratio 
transformation (ILR)27 was applied to compositional data and root-mean-square error (RMSE) values 
calculated with 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅% = 	(
∑(+,-.+/,-)1

2
  

Where N is the number of pseudospots, yAi the predicted proportion for ILR dimension A and ŷAi 
the ground truth proportion for this dimension. One-tailed Diebold-Mariano test28 was used to 
compare overall RMSE between algorithms. 
 
 
Results 
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Visium reference data analysis 
The efficiency of the CFS workflow was first assessed by analyzing Spatial Gene Expression 

Visium datasets available from 10x Genomics. Visium fresh frozen and FFPE samples of adult mouse 
brain and human tumors were thus analyzed using our standard coding-free methodology directly in 
the Shiny application. 

For the FFPE mouse brain sample, after standard preprocessing with CFS (see Methods), 92 
ICs passed the kurtosis threshold for downstream analysis. Taking advantage of the annotation tools 
included in the Shiny app, in half a day, 75 ICs were manually annotated by a biologist as relevant 
based on their distribution pattern or gene signature (Table S1). Most ICs were directly associated 
with well-defined brain structures, demonstrating the direct capture by ICs of spatially distributed 
gene co-expression. Interestingly, ICA also captured ICs associated with diffuse or infiltrating cell 
populations such as microglia or oligodendrocytes (Fig. 1a) as defined by the contributing genes 
(Table S2). This confirms the capacity of ICA to isolate cell type specific signal to enable reference-
free signal decomposition. Then, from the Shiny app, spot clustering using a Louvain algorithm 
(resolution = 3.8) based on these 75 dimensions generated 37 clusters closely recapitulating the layers 
and substructures of the mouse brain as compared to the Allen mouse brain atlas reference for the 
same coronal layer (position 269, Fig. 1b). For instance, cortical layers or Ammon’s horn pyramidal 
layer sections are clearly defined, within the limits of Visium’s spot resolution, as distinct clusters 
since most layers are explained by specific ICs. The distribution of clustered spot in the UMAP 
embedding (Fig. 1c) demonstrated the unambiguous spot cluster assignment emphasizing the benefits 
of the expert annotation and the exclusion of ICs considered as noise or specific to one spot.  
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Figure 1. CFS can deconvolute Visium spatial transcriptomics data using independant component analysis. (a-c) Visium 
FFPE mouse brain analysis using CFS showing (a) H&E reference slide of the sample (top left) and examples of ICs 
associated to various brain substructures and diffuse cell types each with their top 4 contributive genes (See Supp. Table 
2 for full list of contributive genes), and spatial feature example of contributive genes for IC 9: Dentate gyrus. (b) reference 
slide from the Allen mouse brain Atlas (left) and identified substructures following spot clustering using Louvain 
algorithm at a 3.8 resolution with filtered and annotated ICs as input (right) showing excellent substructure resolution. (c) 
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2 dimensional UMAP projection of spots after clustering with corresponding brain zones annotated. CNU: Cerebral 
nuclei, CTX: Cortex, DG: Dentate gyrus, FT: Fiber tracts, HPF: Hippocampus, HY: Hypothalamus, TH: Thalamus. (d-n) 
Visium FFPE human breast cancer analysis using CFS. (d) Reference H&E slide with pathologist annotations from 10X 
Genomics. (e) Sample spatial projection of ICs related to distinct tumor stromal cells (See Supp. Table 4 for full list of 
contributive genes). Spatial (f) and UMAP (g) projections of spot clustering using Louvain algorithm at a 1.2 resolution 
with all filtered and annotated ICs as input with cancer-associated clusters highlighted in the UMAP projection. (h) Kernel 
density projection on the spatial embedding of Cancer-associated signal (based on sum of cancer IC weights, see fig. S1 
for tumor stroma components kernels) allowing for automatic subsetting of cancer-associated spots within CFS. Spatial 
(i) and UMAP (j) projections of cancer spots following manual subsetting within CFS colored after reclustering using 
Louvain algorithm at a 1.0 resolution with only cancer-associated ICs as input. Scatterpie representation of cancer IC 
weights in spatial (k) and UMAP (l) projections allows for the rapid visualization of the ICs associated with distinct spot 
clusters and their respective annotations within CFS. Spatial projection of pseudotime calculation (m) and distinct 
branches (n) following trajectory inference with Destiny’s DPT algorithm (see fig. S2) showing three clear cancer 
subpopulations within the sample. (o-v) Visium FFPE human prostate cancer analysis using CFS. (o) Reference H&E 
slide with pathologist annotations from 10X Genomics. Spatial (p) and UMAP (q) projections of spot clustering using 
Louvain algorithm at a 0.5 resolution with all filtered and annotated ICs as input with cancer-associated clusters 
highlighted in the UMAP projection. Spatial (r) and UMAP (s) projections of cancer spots following manual subsetting 
within CFS colored after reclustering using Louvain algorithm at a 0.5 resolution with only cancer-associated ICs as input. 
Scatterpie representation of cancer IC weights in spatial (t) and UMAP (u) projections allows for the rapid visualization 
of the ICs associated with distinct spot clusters and their respective annotations within CFS. UMAP projection of 
pseudotime calculation (v) following trajectory inference with Destiny’s DPT algorithm (see fig. S3) showing cancer 
subpopulations within the sample. 

 
Efficient for healthy brain, a well-regionalized organ, CFS capturing both regionalized and 

isolated cells should fit to medical research projects, where we frequently strive to characterize small 
groups of cells exhibiting distinct behaviors. This is of particular interest for the analysis of spatially 
heterogeneous tissues with invasive cells such as tumors. We thus used CFS’ Shiny UI to analyze 
FFPE breast cancer (Fig. 1d, Table S3-4) and prostate cancer (Fig. 1o, Table S5-6) samples from 10X 
Genomics to determine the cell type composition and biological activities within spots of tumor 
tissues. After IC annotation and filtering, 46 ICs (Fig. 1e, Table S3) were used for spot clustering of 
breast cancer (Figs 1f,g), and 36 ICs for clustering of prostate cancer (figs 1p,q), yielding clusters 
closely mapping to the pathologist annotations for each tissue. Due to the size of Visium spots, most 
are composed of multiple cell types in such tissues. 2D embedding and clustering thus tend to be 
driven by cellular mixture rather than real identity. However, using the interpretable ICA latent space, 
distinct cell types can directly be mapped both spatially and onto the UMAP embedding. CFS also 
allows for kernel density mapping of IC categories to easily visualize the distribution of signal 
associated to broad cell types of interest such as cancer cells (Fig 1h), lymphoid, myeloid or stromal 
cells within tumors (supp. Fig. 1). This constitutes a semi-supervised strategy implemented within 
CFS to subset spots of interest with specific annotation. Alternatively, spot subsetting can be done 
manually based on cluster identity following clustering, for instance to isolate spots with a cancer 
signature based on IC enrichment (Figs 1i,r). Spot reclustering of the subsetted object using only 
cancer-associated ICs allows for a finer dissection of cancer phenotypes within samples (Figs 1j,s). 
To analyze further, CFS integrates multiple visualization tools to interrogate the cellular composition 
and distribution within samples. For instance, scatter pie representation allows for visual breakdown 
of cellular composition for particular cell populations based on IC annotation both in spatial (Figs 
1k,t) and UMAP (Figs 1l,u) embeddings. The isolation of spots and ICs specific to cell types and their 
export in a Seurat object (directly from the Shiny app) enables downstream analysis using any other 
compatible packages. For instance, a trajectory inference analysis of the breast cancerous spots was 
done using the Destiny package directly on the IC latent space (fig 1m & s2a) and revealed 3 distinct 
phenotypic branches (Figs 1n, s2b,c). Genes associated with each branch were extracted using glmnet 
(alpha 0.02, Figs s2d,e) and revealed a subpopulation characterized by high IGFBP5, GSTP1 and 
GNAT3 and low SERF2 expression, a second with high TGM2, SERPINA3, IL32, UBD and ICAM1 
and low SCGB1D2, SCGB2A2, AZGP1, MUCL1 and DBI expression, and a third with high SOD2 
and low SCGB1D2 AZGP1 and DBI expression. 
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For the prostate cancer sample, the same trajectory inference methodology (Figs 1u, s3a) also 
identified 3 branches (Figs s3b,c,d), although less defined, and a glmnet analysis revealed the genes 
associated with these phenotypic paths and distinguished by their expression of ODC1, SPON2, 
ADGRF1, TSPAN8, CLDN3 and KRT8 among others (Figs s3e,f). 

 
With ICA, CFS efficiently identified distinct cancerous cell phenotypes within a tumor. 

Furthermore, it identified and distinguished stromal signatures such as immune infiltrates without the 
use of prior knowledge about the sample or reliance on external reference single cell datasets, which 
is particularly relevant for highly heterogeneous tissues such as cancer where reference atlases might 
not faithfully recapitulate the patient’s cancer phenotype or tumor composition. 
 
Slide-seqV2 data analysis 
 To demonstrate the compatibility of CFS with other technologies, we analyzed the ssHippo 
mouse hippocampus Slide-seqV2 reference data from the SeuratData package using CFS’s standard 
pipeline. Despite Slide-seqV2 enabling near-single cell resolution (10µm diameter spots), the regular 
grid of spot still captures mixture of cells. Therefore, ICA should remain very efficient to identify 
structure and cell type-specific signal. Of the 100 computed ICs, none were thresholded out by 
kurtosis value and 70 were kept after manual annotation (Table S7-8). Thirty ICs were removed after 
thorough annotation by a biologist because the signal had no biological meaning (considered as 
“noise”), or was explained by only one or few spots. The remaining ICs were found to be associated 
to both A) brain ontologies (ex. IC 8: dentate gyrus granule cell layer, IC 10: Ammon’s horn field 1 
pyramidal layer,  IC 18: Hippocampal stratum oriens & radiatum and molecular and polymorph layers 
of the dentate gyrus, IC 37: Ammon’s horn field 2 pyramidal layer and Fasciola cinerea, Fig 2a), and 
B) distinct cell types (ex. IC 5: ependymal cells, IC 7: ventricular and leptomeningeal cells (VLMC), 
7 varieties of neurons, including IC 13: interneurons, and IC 69: proliferating neural stem cells, Fig 
2a). Spot clustering based on these ICs allowed for a detailed mapping of the mouse hippocampal 
region with comparable resolution to the Allen mouse brain atlas reference (Fig. 2b). Indeed, of the 
48 recovered clusters obtained with Louvain resolution of 0.95, 45 could be directly annotated based 
on IC representation (Fig. 2c). Of note, using this approach we were able to successfully identify a 
cluster of spots (Fig 2c; cluster 14) associated to the small CA2 pyramidal layer (pl) which is typically 
missed by other algorithms. Once identified, differential expression of CA2pl spots in comparison 
with CA1pl and CA3pl (clusters 10 and 13 respectively) revealed lower expression levels of calcium 
channel-related genes such as calmodulin 2 (Calm2), ATPase plasma membrane Ca2+ transporting 1 
(Atp2b1), Protein phosphatase 3 catalytic subunit alpha (Ppp3ca), neurogranin (Nrgn), protein kinase 
C beta (Prkcb) and an increase in Purkinje cell protein 4 (Pcp4) a modulator of calmodulin activity.   
Interestingly, distinct clusters were found to be associated to either brain ontologies such as the 
dentate gyrus, 3rd ventricle or thalamus, or to more diffuse cell populations like neurons, microglia, 
oligodendrocytes or astrocytes. Multiple subclusters for these diffuse populations are often identified 
with specific transcriptional signatures. Probably, for this diffuse cell population, each spot not 
covering only a single cell, CFS captured a mixture containing transcripts associated to both a cell 
and its immediate microenvironment. These results again highlighted the limits of clustering-based 
methods in sequencing-based ST. Limits circumvented by remaining in the ICA latent space where 
the IC weight is a direct proxy of the presence of a cell type in each spot. Moreover, these results 
underlined the complexity of biological tissues, even those as organized as the brain where infiltrating 
cells are abundant and potentially highly relevant to biologists.  
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Figure 2. High resolution Slide-seqV2analysis using CFS allows for fine substructure definition and signal deconvolution. 
(a) Allen brain atlas reference for region of interest. (b) Spatial (top) and UMAP (bottom) projection of spots clustered 
using Louvain algorithm at a 0.95 resolution using all filtered and annotated ICs as input with detailed and broad (shading) 
cluster annotations. (c) Sample spatial projections of substructure- or cell type-associated ICs with their 6 most 
contributive genes (see Supp table 8 for full list of gene contribution by IC and Supp table 7 for IC annotations) Ast : 
Astrocytes, CA : Ammon’s horn, CTX : Cortex, DG: Dentate gyrus, Endo: Endothelial, Ep: Ependyme, FC: Fasciola 
cinerea, HPF: Hippocampal formation, Men: Meningeal substructure, Mg: Microglia, MH: Medial habenula, mo: 
Molecular layer, Neu: Neuron, NSC: Neural stem cell, Olig: Oligodendrocyte, OPC: Oligodendrocyte progenitor cell, 
Per: Pericyte, po: Polymorph layer, sm: Stria medullaris, so: Stria oriens, sr: Stria radiatum, TH: Thalamus, V3: 3rd 
Ventricle, VLMC: vascular and leptomeningeal cell. 
 
ISH-based ST data analysis 
ISH-based ST approaches are emerging as powerful technologies for detailed characterization of 
transcript expression. Commercial solutions are now available for the detection of hundreds to 
thousands of gene transcripts via multiplexed panels at subcellular resolutions with centimeter-scale 
capture areas, leading to the generation of enormous datasets with considerable computational and 
analytical challenges. One such challenge is the identifications of regions of interest (ROI) with a 
more manageable size for detailed analysis. We thus propose the use of CFS for FISH-based ST 
screening and ROI identification by signal binning. To that end, we tested the approach on both 
Vizgen MERSCOPE Mouse Brain Receptor Map and Nanostring CosMX FFPE human non-small 
cell lung cancer reference datasets. 
ISH-based ST analysis with CFS requires a user-defined pseudo-spot generation step to ensure 
compatibility with the standard CFS workflow. This step was conducted as described in the Methods 
section and illustrated in Figure 3a. The choice of the pseudo-spot area size aims at striking a balance 
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between signal resolution and computational cost. As show in Figure 3b, IC kurtosis distribution, 
used as a descriptor of IC super Gaussianity, decreased with the increases in pseudo-spot size, and 
their number. We found that for the MERSCOPE mouse brain dataset 40 µm bin sizes (1600 µm2 
bins) stroke the right balance between resolution and computational resources use for pre-screening 
application (Fig. 3b). Interestingly, the total number of IC-defining genes was observed to increase 
with decreasing pseudo-spot sizes, ranging from 219 to 302 unique contributing genes, with 10 and 
450 µm bin sizes respectively, out of the 649 probed genes for this dataset (Fig. 3c). Without surprise, 
a higher resolution increased the number and resolution of clusters (Fig. s4). Most bin sizes between 
20 and 90 µm appeared usable while, interestingly, a 10 µm resolution appeared unstable and over-
clustered in addition to being computationally intensive.  
Despite the relatively low number of genes probed in FISH-based approach compared to whole 
transcriptome sequencing approaches, CFS was able to isolate structure and cell type-specific signal 
in the analyzed samples. For instance, the MERSCOPE mouse brain dataset at a 40 µm bin size 
yielded 100 leptokurtic ICs (min 12,78, max 588.60, Fig. 3d, Table S9-10), of which manual curation 
retained 63 with highly specific signals for cell types – IC 4: astrocytes, IC 5: microglia (Fig. 3e top), 
IC 14: endothelial cells – and brain ontologies – IC 8: pons, IC 25: dentate gyrus granule cell layer 
(Fig 3e bottom), IC 87: cerebral aqueduct (Table S9). The use of a limited set of targeted genes in 
ISH-based methods as opposed to whole transcriptome thus does not appear to impair the ability of 
ICA to identify cell- and ontology- specific signal (Table S10). The interpretation of the ICs can 
however be more imprecise based on the limited number of contributive genes (Fig. 3f). 
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Figure 3. CFS allows for the analysis of ISH-based spatial transcriptomics data at varying degrees of resolution. (a) 
Schematic of the methodology behind the ‘Create_vizgen_Seurat()’  function of CFS which generates pseudospot of user-
defined m x m pixel size containing transcripts tabulated by the MERSCOPE technology to generate a count matrix input 
for the initiation of a Seurat object to input into the CFS Shiny application. (b) Recapitulative table of the impact of bin 
size m on object size, processing time, number of total contributive genes and kurtosis distribution of ICs (See Supp figure 
4 for spatial and UMAP projections at different resolutions). (c) Venn diagram of contributive gene showing that 92% or 
more of contributive genes are detected in at least 2 levels of resolution with 225/254 (88.6%) contributive genes at m = 
40 µm found in 3 or all 4 resolution levels (bold). (d-e) Sample analysis using CFS’s Shiny application for ICA signal 
deconvolution and annotation. (d) Spatial (left) and UMAP (right) projection of 40x40 µm pseudospots clustered using 
Louvain algorithm at a 1.0 resolution using all filtered and annotated ICs as input, generating 41 distinct pseudospot 
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clusters. (e) Examples of spatial (left) and UMAP (center) projections of ICs associated to microglia (IC 5, top) and 
dentate gyrus substructe (IC 25, bottom) showing their distinct localization on the UMAP space, suggesting this level of 
resolution is sufficient to limit cell mixtures within pseudospots and capture specific cell populations. (f) Heatmap of 
contributive genes associated to the ICs in (e) from the 649 genes probed in the MERSCOPE experiment. 
   
The distribution of publicly available cancer datasets from the CosMX SMI platform by Nanostring 
also allowed for the evaluation of the modified CFS pipeline on FISH-based non-structured tumor 
tissue to assess the ability of ICA to deconvolute spatial signals of a more restricted dimensional 
nature (980 probed genes). The CosMX NSCLC dataset is comprised of multiple samples from 
distinct presentations of non-small cell lung cancer from different donors (5 donors, 8 samples) 
allowing for integrated sample analysis using the CFS workflow. Simply, samples were first binned 
as described previously (Fig 3a, Methods) using the Create_CosMX_seurat function with a 200x200 
px (24x24 µm) pseudospot resolution. All 8 Seurat objects were then merged into a single 114 724 
pseudospot object and processed simultaneously with the pre-processing pipeline (See Methods). All 
100 ICs obtained passed the kurtosis threshold and 81 were kept following manual annotation (Table 
S11-12). Of the 980 genes assayed, 355 were used to define annotation-filtered ICs as contributive 
genes (36.2%). The filtered ICs describe common parenchymal and immune signatures for the tumor 
stroma, and common tumor programs between samples while uncovering phenotypical variations 
between tumors, as described by sample-enriched ICs (fig. s5). 
Pseudospot clustering and annotation allowed the identification of multiple immune and stromal 
populations along with cancer-specific clusters (fig. 4a). Without surprise, while most cancer clusters 
were found to be patient-specific, immune and stromal clusters were found in more than one patient, 
such as IgD and IgG secreting B cells, macrophages, fibroblasts and erythrocytes (fig. 4b, s6). Of 
note, a neutrophil population with high expression of olfactomedin 4 (OLFM4) was found to be 
present in all samples. Spatial projection of these clusters (fig. 4c) allows for the rapid identification 
of these shared (or distinct) populations of interest for further analyses at a transcript level with other 
software solutions.  
Interestingly, CFS demonstrated ability to characterize intra and inter patient tumor heterogeneity 
when performing multi-sample integration analysis: While samples from different patients were well 
distinguished in the UMAP projection, cancer-associated pseudospots from both samples from patient 
9, taken in different parts fo the same tumor, clustered closely while remaining locally distinguishable 
(fig. 4a, black and muted red clusters), allowing for the interrogation of the intratumoral heterogeneity 
in a spacially resolved manner. Both tumor sections show IgG B cell infiltration and fibroblast & 
pericyte stromal components (Fig. 4c yellow and dark teal clusters). Using ICA, we identified 9 ICs 
associated to the cancer component of these tumors with some shared between both samples (ex. IC 
22) and others specific to one or the other (ex. ICs 12, 14 and 18, fig. 4d). Analysis of contributive 
genes to these ICs (Fig. 4e) revealed that SRY-box transcription factor 4 (SOX4) is expressed 
exclusively in patient 9 by all cancer cells, but sample 9_1 is characterized notably by the expression 
of calmodulin 2 (CALM2) while sample 9_2 cancer cells are enriched in secretory leukocyte peptidase 
inhibitor (SLPI) and N-myc downstream regulated 1 (NDRG1). 
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Figure 4. CFS enables the integration of multiple datasets to identify common and sample or patient specific gene 
signatures. After applying pseudospot generation methodology and sample merging of the Nanostring CosMX Lung 
cancer dataset, the combined object was analyzed using the standard CFS pipeline. (a) UMAP projection of 24 x 24 µm 
pseudospot clustered using Louvain algorithm at a 1.0 resolution and annotated using top contributive ICs (see Fig. S6 
for UMAP coloring by sample). (b) Stacked bar plot illustrating the distribution of clusters between samples. * indicate 
clusters with >25% of pseudospots found in multiple patients (note that patient 5 has 3 samples and patient 9 has 2 
samples). (c) Spatial distribution of pseudospot clusters calculated in (a) showing the relative composition in shared (i.e. 
B cells IgG : yellow, Macrophages : magenta, OLFM4 multiple tumor : light blue grey) vs sample-specific clusters, 
notably in both samples of patient 9 (Lung_9_1 & Lung_9_2, bottom left). (d-e) Detailed interrogation of common and 
distinct transcriptomic signatures between samples of patient 9. (d) Spatial projection of 4/9 Lung_9 cancer-associated 
ICs (see Supp table 11 for all IC annotations) on sample Lung_9_1 (left) and Lung_9_2 (right). (e) Spatial (Lung_9_1 : 
left, Lung_9_2 : center) and UMAP (right) projections of top common (SOX4, top) and sample-specific genes (CALM2, 
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SLPI, NDRG1, bottom 3) as determined by IC contribution and differential gene expression analysis between clusters 
defined in (a). 

CFS Reference-free deconvolution performance assessment  
Reference-free unsupervised signal deconvolution is becoming an important aspect of ST analysis 
due to the limitations of single-cell reference-based approaches. Some of these limitations include the 
lack of relevant high quality single cell atlases for pathologic conditions or difficult-to-process tis-
sues, or cell capture bias leading to missing cellular identities. The performance of supervised ap-
proaches is also deeply dependant on the quality of the reference’s annotation. At the time of writing, 
according to the benchmark by Li et al9, the best published tool for reference-free deconvolution 
being STdeconvolve which uses an LDA modelling approach for an optimized K number of topics 
for each dataset. We thus used it as a reference to evaluate CFS’s signal deconvolution performance.  
On the highly structured mouse brain sample from 10X Visium, we obtained 45 high quality ICs 
using the CFS pipeline while STdeconvolve found the K=38 condition to be optimal. All STdecon-
volve topics were recapitulated by one or more ICs both by spatial distribution and contributive gene 
weight (figs 5a left and s7a left respectively). In most cases, such as in topics 13 or 9 (fig. 5a blue and 
green outlines respectively), CFS was able to further decompose the signal into 4 and 2 major com-
ponents, often with a higher spatial definition (fig s7b). Similarly, for the heterogeneous 10X Visium 
breast cancer dataset, CFS yielded 46 ICs to STdeconvolve’s 30 topics (fig 5b left), with CFS com-
ponents often appearing more spatially defined (fig 5b blue and green outlines & fig s7c).  
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Figure 5. Comparative analysis of reference-free deconvolution results from CFS and STdeconvolve. (a,b) Correlation 
analysis based on feature-defining genes of reference-free deconvolution tools CFS and STdeconvolve (left) with 2 
highlighted examples (blue and green outlines) of STdeconvolve topics vs CFS ICs for a specific structure in the 10X 
brain (a) and 10X breast cancer (b) samples. See supplementary figure S7 for more examples. (c) Gene signature signal 
correlation of CFS ICs and STdeconvolve topics vs. ground truth (left and right, respectively) displaying all Pearson’s 
correlations r values > 0.3. IC names in red indicate ICs that were rejected by manual annotation (fig4), but were kept for 
unsupervised performance assessment, note IC_51 with high correlation with most cell types. See supplementary figure 
S8 for pseudospot compositional correlations (d) Root-mean-square-error (RMSE) of the deconvolved compositions 
using CFS or STdeconvolve (n = 112 822 pseudospots) compared to ground truth after ILR-transformation. One-tailed 
Diebold-Mariano p value 1.473 x 10-5. (e) Processing time comparison between CFS (red) and STdeconvolve (teal) shows 
the exponential benefit of CFS in processing time with increased dataset size. “n Features represents” the number of user-
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defined features (ICs for CFS, topics for STdeconvolve) for each processing run, with * indicating the optimal K value 
defined by STdeconvolve for this sample. 
 
Comparative assessment of deconvolution performance was conducted using the CosMX NSCLC 
dataset with cell annotations as ground truth. Gene signature correlations showed that ICs generated 
with CFS tended to be associated to a unique cell type while all STdeconvolve topics correlated with 
multiple of cell types (fig 5c). Spot composition correlation of ICs and topics to the ground truth 
indicates that for both algorithms, most features correlate with a unique cell type (fig. s8). However, 
STdeconvolve topics showed a higher rate of mixed topics, i.e. topics associated with multiple cell 
types (9/57 vs. 4/81 for CFS ICs, fig. s8). With both methods however, most lymphoid populations 
(T CD8 naive and memory, NK and Treg) showed poor correlation with deconvolution features. Ba-
sed on gene signature correlations, the root-mean-square error (RMSE) relative to ground truth of 
cellular proportions in each pseudospot, after ILR-transformation, was calculated for both CFS and 
STdeconvolve (fig. 5d). Results show that the CFS pipeline recapitulated the cellular composition 
with higher accuracy than using STdeconvolve topics (One-tailed Diebold-Mariano p value 1.473 x 
10-5). 
Finally, the computing efficiency and scalability of CFS’ ICA also proved to be a major improvement 
over STdeconvolve’s LDA method. Processing times for STdeconvolve for a single optimal K value 
ranged from 54 to 576 times longer than with CFS. For instance, processing the integrated CosMX 
NSCLC dataset (fig. 4) of 114 724 pseudospots with 980 probed genes took STdeconvolve 2657 
minutes (1.85 days) to process vs. 4.6 minutes with CFS (benchmark does not consider the K op-
timization step of STdeconvolve).  
 
Discussion 
In this paper we presented CellsFromSpace or CFS, a user-friendly and reference-free analytical 
framework for spatial transcriptomics data that leverages independent component analysis to 
deconvolute and integrate ST data. We have demonstrated that CFS extracts spatially distributed 
signatures as well as diffuse cell signatures. 
The cornerstone of the CFS pipeline is the facilitated manual curation and annotation of ICs generated 
by the pipeline. While time consuming, this critical step not only allows for the elimination of non-
specific noise, but also consists of the main data interpretation step. To facilitate and enhance this 
crucial step, we created an easy-to-use Shiny UI to provide any user (clinician, biologist, 
bioinformatician) with all the analytical and visualization tools to easily and confidently annotate and 
interpret the data generated with any major ST technology currently commercially available. Manual 
IC annotation enables the rapid and reference-free identification of cell types and states within 
samples and, among other things, the identification of genes with similar spatial distributions, defined 
as IC contributive genes. Manual curation also allows for the elimination of non-specific, over-
specific, redundant, artifactual or uninterpretable ICs, thus denoising the dataset with a minimal loss 
of relevant signals thanks to the independent property of ICA. While we believe in remaining in the 
latent ICA space for data interpretation and analysis, CFS also implements the traditional workflow 
used in single cell transcriptomics and ST, which collapses the latent dimensions into clusters and 
two-dimensional projections for easy data visualization (UMAP, t-SNE, etc.) and downstream 
differential gene expression analysis. 
ICA has seen a steady rise in popularity in the last few decades in a wide variety of application fields, 
each time with specific interpretations of the algorithm tailored to the signals and sources present. In 
the special case of ST data however, where ICs signal sources are defined biological entities (i.e. 
individual cells) our application seemed to reveal particular properties of ICA in the context of cellular 
biology, namely 1) the importance of signal sign, where the long tail of the IC distribution is 
associated to the cellular source identity, 2) relative positive ICs weights can directly be used as proxy 
for cellular abundance within sources (spots) for direct proportional deconvolution of signal. The 
latter enhancing ICA’s performance as a reference-free signal deconvolution approach. 
Unsupervised reference-free signal deconvolution methods present considerable advantages over 
reference-based methodologies relying on single cell atlases. Beyond the independence from the 
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availability of high quality reference datasets, reference-free methods are unaffected by single cell 
methods’ limitations such as compositional or transcriptional processing artifacts29,30 or the quality 
of single cell atlas annotations which can propagate cell misclassifications. Reference-free ap-
proaches are also useful for conditions for which single cell atlases might not be able to recapitulate 
unique phenotypes, such as for cancer cells with a high inter-patient heterogeneity. Finally, by avoi-
ding the identification and processing of a high-quality reference dataset sample processing is made 
simpler and more accessible. 
Performance assessment shows that CFS outperforms STdeconvolve with a higher specificity and 
log-scale acceleration of the processing time. Unlike STdeconvolve, CFS does not attempt to di-
rectly infer cell types proportions in each spot. We aim at minimizing assumptions regarding the ex-
tracted components as they do not always represent cell types but sometimes describe cell activities 
or cell-to-cell interactions and as such can represent complementary signal to cellular composition. 
This approach allows users, who are experts in their respective fields, the freedom to concentrate 
their ST data analysis on the signal they consider relevant. 
Further development of CFS is currently underway for downstream analysis of IC interplay within 
tissues. Cross-correlation of 2D signal remains an unresolved area of data analysis with great potential 
for ST experiments in order, for instance, to identify co-localizing, mutually exclusive, or interfacing 
signals. For example, such analyses would be of great value to map cellular interactions between 
tumor and effector cells to identify potential mechanisms of tumor rejection or evasion and identify 
key molecular drivers of these interactions via ligand-receptor analyses.  
 
Conclusion 
In this work, we presented a new framework and tool for the analysis of spatial transcriptomics data. 
CellsFromSpace is versatile with its support for all commercially available ST technologies, 
independent of high-quality reference datasets, easy to use with its Shiny UI, compatible with other 
single cell and ST analysis packages, and easily allows for the integrated analysis of multiple samples. 
We hope CFS will increase the accessibility and ease of ST data analysis to researchers and improve 
data interpretation. 
 
Software availability 
CFS is an R package which can be downloaded in R using the devtools package from github directly 
at https://github.com/gustaveroussy/CFS. Tutorial, examples and documentation can be found at 
https://codimd.univ-rouen.fr/s/w0oZMV6fz.   
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Figure legends 

Figure 1. CFS can deconvolute Visium spatial transcriptomics data using independant component 
analysis. (a-c) Visium FFPE mouse brain analysis using CFS showing (a) H&E reference slide of the 
sample (top left) and examples of ICs associated to various brain substructures and diffuse cell types 
each with their top 4 contributive genes (See Supp. Table X for full list of contributive genes), and 
spatial feature example of contributive genes for IC 9 : Dentate gyrus. (b) reference slide from the 
Allen mouse brain Atlas (left) and identified substructures following spot clustering using louvain 
algorithm at a 3.8 resolution with filtered and annotated ICs as input (right) showing excellent 
substructure resolution. (c) 2 dimensional UMAP projection of spots after clustering with 
corresponding brain zones annotated. CNU: Cerebral nuclei, CTX: Cortex, DG: Dentate gyrus, FT: 
Fiber tracts, HPF: Hippocampus, HY: Hypothalamus, TH: Thalamus. (d-n) Visium FFPE human 
breast cancer analysis using CFS. (d) Reference H&E slide with pathologist annotations from 10X 
Genomics. (e) Sample spatial projection of ICs related to distinct tumor stromal cells (See Supp. Table 
Y for full list of contributive genes). Spatial (f) and UMAP (g) projections of spot clustering using 
louvain algorithm at a 1.2 resolution with all filtered and annotated ICs as input with cancer-
associated clusters highlighted in the UMAP projection. (h) Kernel density projection on the spatial 
embedding of Cancer-associated signal (based on sum of cancer IC weights, see fig. S1 for tumor 
stroma components kernels) allowing for automatic subsetting of cacner-associated spots within CFS. 
Spatial (i) and UMAP (j) projections of cancer spots following manual subsetting within CFS colored 
after reclustering using louvain algorithm at a 1.0 resolution with only cancer-associated ICs as input. 
Scatterpie representation of cancer IC weights in spatial (k) and UMAP (l) projections allows for the 
rapid visualisation of the ICs associated with distinct spot clusters and their respective annotations 
within CFS. Spatial projection of pseudotime calculation (m) and distinct branches (n) following 
trajectory inference with Destiny’s DPT algorithm (see fig. S2) showing 3 clear cancer subpopulations 
within the sample. (o-v) Visium FFPE human prostate cancer analysis using CFS. (o) Reference H&E 
slide with pathologist annotations from 10X Genomics. Spatial (p) and UMAP (q) projections of spot 
clustering using louvain algorithm at a 0.5 resolution with all filtered and annotated ICs as input with 
cancer-associated clusters highlighted in the UMAP projection. Spatial (r) and UMAP (s) projections 
of cancer spots following manual subsetting within CFS colored after reclustering using louvain 
algorithm at a 0.5 resolution with only cancer-associated ICs as input. Scatterpie representation of 
cancer IC weights in spatial (t) and UMAP (u) projections allows for the rapid visualisation of the 
ICs associated with distinct spot clusters and their respective annotations within CFS. UMAP 
projection of pseudotime calculation (v) following trajectory inference with Destiny’s DPT algorithm 
(see fig. S3) showing cancer subpopulations within the sample. 
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Figure 2. High resolution Slide-seqV2analysis using CFS allows for fine substructure definition and 
signal deconvolution. (a) Allen brain atlas reference for region of interest. (b) Spatial (top) and UMAP 
(bottom) projection of spots clustered using louvain algorithm at a 0.95 resolution using all filtered 
and annotated ICs as input with detailed and broad (shading) cluster annotations. (c) Sample spatial 
projections of substructure- or cell type-associated ICs with their top 6 contributive genes (see Supp 
table X for full list of conributive genes by IC and Supp table Y for IC annotations) Ast : Astrocytes, 
CA : Ammon’s horn, CTX : Cortex, DG : Dentate gyrus, Endo : Endothelial, Ep : Ependyme, FC : 
Fasciola cinerea, HPF : Hippocampal formation, Men : Meningeal substructure, Mg : Microglia, MH 
: Medial habenula, mo : Molecular layer, Neu : Neuron, NSC : Neural stem cell, Olig : 
Oligodendrocyte, OPC : Oligodendrocyte progenitor cell, Per : Pericyte, po : Polymorph layer, sm : 
Stria medullaris, so : Stria oriens, sr : Stria radiatum, TH : Thalamus, V3 : 3rd Ventricle, VLMC : 
vascular and leptomeningeal cell. 

Figure 3. CFS allows for the analysis of ISH-based spatial transcriptomics data at varying degrees of 
resolution. (a) Schematic of the methodology behind the Create_vizgen_Seurat() function of CFS 
which generates pseudospot of user-defined m x m pixel size containing transcripts tabulated by the 
MERSCOPE technology to generate a count matrix input for the initiation of a Seurat object to input 
into the CFS shiny application. (b) Recapitulative table of the impact of bin size m on object size, 
processing time, number of total contributive genes and kurtosis distribution of ICs (See Supp figure 
X for spatial and UMAP projections at different resolutions). (c) Venn diagram of contributive gene 
showing that 92% or more of contributive genes are detected in at least 2 levels of resolution with 
225/254 (88,6%) contributive genes at m = 40 µm found in 3 or all 4 resolution levels (bold). (d-e) 
Sample analysis using CFS’s shiny application for ICA signal deconvolution and annotation. (d) 
Spatial (left) and UMAP (right) projection of 40x40 µm pseudospots clustered using louvain 
algorithm at a 1.0 resolution using all filtered and annotated ICs as input, generating 41 distinct 
pseudospot clusters. (e) Exemples of spatial (left) and UMAP (center) projections of ICs associated 
to microglia (IC 5, top) and dentate gyrus substructe (IC 25, bottom) showing their distinct 
localisation on the UMAP space, suggesting this level of resolution is sufficient to limit cell mixtures 
within pseudospots and capture specific cell populations. (f) Heatmap of contributive genes 
associated to the ICs in (e) from the 649 genes probed in the MERSCOPE experiment. 

Figure 4. CFS enables the integration of multiple datasets to identify common and sample or patient 
specific gene signatures. After applying pseudospot generation methodology and sample merging of 
the Nanostring CosMX Lung cancer dataset, the combined object was analysed using the standard 
CFS pipeline. (a) UMAP projection of 24 x 24 µm pseudospot clustered using louvain algorithm at a 
1.0 resolution and annotated using top contributive ICs (see fig. S6 for UMAP coloring by sample). 
(b) Stacked barplot illustrating the distribution of clusters between samples. * indicate clusters with 
>25% of pseudospots found in multiple patients (note that patient 5 has 3 samples and patient 9 has 
2 samples). (c) Spatial distribution of pseudospot clusters calculated in (a) showing the relative 
composition in shared (i.e. B cells IgG : yellow, Macrophages : magenta, OLFM4 multiple tumor : 
light bluegrey) vs sample-specific clusters, notably in both samples of patient 9 (Lung_9_1 & 
Lung_9_2, bottom left). (d-e) Detailed interrogation of common and distinct transcriptomic 
signatures between samples of patient 9. (d) Spatial projection of 4/9 Lung_9 cancer-associated ICs 
(see Supp table X for all IC annotations) on sample Lung_9_1 (left) and Lung_9_2 (right). (e) Spatial 
(Lung_9_1 : left, Lung_9_2 : center) and UMAP (right) projections of top common (SOX4, top) and 
sample-specific genes (CALM2, SLPI, NDRG1, bottom 3) as determined by IC contribution and 
differential gene expression analysis between clusters defined in (a). 

Figure 5. Comparative analysis of reference-free deconvolution results from CFS and STdeconvolve. 
(a,b) Correlation analysis based on feature-defining genes of reference-free deconvolution tools CFS 
and STdeconvolve (left) with 2 highlighted examples (blue and green outlines) of STdeconvolve to-
pics vs CFS ICs for a specific structure in the 10X brain (a) and 10X breast cancer (b) samples. See 
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supplementary figure S7 for more examples. (c) Gene signature signal correlation of CFS ICs and 
STdeconvolve topics vs. ground truth (left and right, respectively) displaying all Pearson’s correla-
tions r values > 0.3. IC names in red indicate ICs that were rejected by manual annotation (fig4), but 
were kept for unsupervised performance assessment, note IC_51 with high correlation with most cell 
types. See supplementary figure S8 for pseudospot compositional correlations (d) Root-mean-square-
error (RMSE) of the deconvolved compositions using CFS or STdeconvolve (n = 112 822 pseudos-
pots) compared to ground truth after ILR-transformation. One-tailed Diebold-Mariano p value 1.473 
x 10-5. (e) Processing time comparison between CFS (red) and STdeconvolve (teal) shows the expo-
nential benefit of CFS in processing time with increased dataset size. “n Features represents” the 
number of user-defined features (ICs for CFS, topics for STdeconvolve) for each processing run, with 
* indicating the optimal K value defined by STdeconvolve for this sample 

 

Supplementary Figure legends 

Figure S1. Signal density of tumor samples’ stromal components. Kernel density representation of 
the sum of lymphoid (left), myeloid (middle), and non-immune stroma (right) ICs in the Visium FFPE 
Breast cancer sample (top) and FFPE Prostate cancer sample (bottom) showing the global spatial 
localisation of each cellular component. 

Figure S2. Trajectory inference of breast tumor’s cancerous regions. (a) UMAP projection of 
pseudotime calculated with Destiny’s DPT method. (b-c) projection of the distinct phenotypic 
branches identified by DPT on the first two diffusion components of the diffusion map calculated by 
DPT (b) and on the UMAP embedding calculated with cancer-related ICs (c). (d) heatmap 
representation of the expression levels of genes identified by glmnet for their association with 
branches 1 (top), 2 (middle) and 3 (bottom). (e) Spatial projection of expression levels of some of the 
genes identified in (d) for each branch. 

Figure S3. Trajectory inference of prostate tumor’s cancerous regions. (a) Spatial projection of 
pseudotime calculated with Destiny’s DPT method. (b-d) projection of the distinct phenotypic 
branches identified by DPT on the first two diffusion components of the diffusion map calculated by 
DPT (b), on the spatial distribution (c), and on the UMAP embedding calculated with cancer-related 
ICs (d). (e) heatmap representation of the expression levels of genes identified by glmnet for their 
association with branches 1 (top), 2 (middle) and 3 (bottom). (f) Spatial projection of expression 
levels of some of the genes identified in (e) for each branch. 

Figure S4. Impact of pseudospot size on resolution on clustering in ISH-based methods. Spatial (left) 
and UMAP (right) projections of pseudospot clustering at each pseudospot size evaluated. Clusters 
and UMAP embedding were calculated using all leptokurtic ICs for each condition with a constant 
louvain resolution of 1.2 for cluster identification and default UMAP parameters with a spread of 3 
in all cases. The number of total clusters calculated is indicated for each condition. Note that the 
UMAP and number of clusters for the 40 µm bin size is different than presented in figure 3d because 
here all 100 ICs were used for calculation, while the calculations were done using 63 of those ICs 
after manual annotation and curation for the data presented in figure 3d. 

Figure S5. Sample distribution of ICs in the integrated CosMX Lung tumors dataset. Dotplot 
displaying the distribution of spots above 90th percentile weight value for each IC and the respective 
IC annotation (right). Color scale indicates the row-scaled value of the 90th percentile of IC weight 
for each IC per sample and point size is calculated based on the % of spots in each sample to be above 
the 90th percentile for each IC, with a minimum value of 10% below which points are censored for 
increased readability. ICs which are found in multiple samples (ex ICs 5, 13, 20, 26, 47, etc.) are often 
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stroma-associated while sample- or donor-specific ICs are often cancer-related (ex. ICs 1, 4, 12, 28, 
etc.), but some cancer ICs were also found to be shared between samples (ex. ICs 32, 37, 42, 59, etc.). 
Note that samples 5_1, 5_2, and 5_3 are highly similar as they are serial cuts of the same tumor 
section, which explains why no sample-specific signal is found for this donor. ICs with no or 
incomplete annotations were filtered out in downstream analysis because they were either 
uninterpretable, redundant or artifactual. 

Figure S6. Sample of origin for each pseudospot of integrated analysis of CosMX Lung tumors 
dataset. UMAP embedding of all integrated pseudospots colored by sample of origin. 

Figure S7. (a) Correlation of defining gene weight correlations between STdeconvolve topics and 
CFS ICs for the 10X brain (left) and 10X breast cancer (right) samples. (b-c) supplementary de-
tailed examples of CFS ICs (blue-yellow scale) corresponding to interesting STdeconvolve topics 
(black-yellow scale) in 10X Visium samples of mouse brain (b) and breast cancer (c). Highlights 
the general ability of CFS to dissect topics into more ICs and for structure-related ICs to be less dif-
fuse than associated topics. 
 
Figure S8. Pseudospot compositional correlation of CFS ICs and STdeconvolve topics vs. ground 
truth (left and middle, respectively), and CFS ICs vs. STdeconvolve topics (right) showing all Pear-
son’s correlations r values > 0.2. 

 

Supplementary Table legends 

Table S1: Annotations of the independent components for the mouse brain Visium dataset. 

Table S2: Most contributing genes to the independent components for the mouse brain Visium dataset. 

Table S3: Annotations of the independent components for the breast DCIS Visium dataset. 

Table S4: Most contributing genes to the independent components for the breast DCIS Visium dataset. 

Table S5: Annotations of the independent components for the prostate cancer Visium dataset. 

Table S6: Most contributing genes to the independent components for the prostate cancer Visium 
dataset. 

Table S7: Annotations of the independent components for the ssHippocampus Slide-seq V2 dataset. 

Table S8: Most contributing genes to the independent components for the the ssHippocampus Slide-
seq V2 dataset. 

Table S9: Annotations of the independent components for the mouse brain MERSCOPE dataset. 

Table S10: Most contributing genes to the independent components for the mouse brain MERSCOPE 
dataset. 

Table S11: Annotations of the independent components for the integration of the lung cancer COSMX 
dataset. 
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Table S12: Most contributing genes to the independent for the integration of the lung cancer COSMX 
dataset. 

 

 

Figure S1  
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 

 

Figure S7 
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Figure S8 
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