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Abstract 
Summary: The Omix pipeline offers an integration and analysis framework for multi-
omics intended to preprocess, analyse, and visualise multimodal data flexibly to 
address various research questions. From biomarker discovery and patient 
stratification to the investigation of complex biological processes, Omix empowers 
researchers to derive valuable insights from omics data. Using Alzheimer's Disease 
(AD) bulk proteomics and transcriptomics datasets generated from two distinct 
regions derived from post-mortem brains, we demonstrate the utility of Omix in 
generating an integrated pseudo-temporal multi-omics profile of AD. 
Availability and Implementation: Omix is implemented as a software package in R. 
The code for the Omix package is available at https://github.com/eleonore-
schneeg/Omix. Reference documentation and online tutorials are available at 
https://eleonore-schneeg.github.io/Omix. All code is open-source and available 
under the GNU General Public License v3.0 (GPL-3). 
Contact: eleonore.schneegans17@imperial.ac.uk, johanna.jackson@imperial.ac.uk   
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1 Introduction  
 
Recent advancements in high-throughput omics techniques have transformed biomedical 
research by enabling the comprehensive capture of biological information across multiple 
molecular layers. This progress has led to groundbreaking discoveries in understanding 
biological systems. However, analysing individual omic layers offers only a partial glimpse into 
the complexity of these systems. Multi-omics integration unveils the interplay between 
molecular layers, providing comprehensive mechanistic insights into health and disease 
(Subramanian et al., 2020). For instance, integrating proteomic and bulk transcriptomic data 
provides a powerful tool for studying biological processes, identifying disease markers, and 
understanding dysregulated pathways. By combining information on transcription factor 
targets, protein abundance, and gene expression levels, researchers can gain insights into 
regulatory mechanisms and the functional consequences of altered gene expression in 
disease states.  
 
Integrating multiple omics layers poses a significant challenge across various stages, including 
data processing, modelling, and the biological interpretation of results. The complexity 
inherent in omics data necessitates the use of diverse processing methods, often requiring 
the combination of multiple software tools and extensive computational expertise.  More so, 
the rapid evolution of integration tools introduces obstacles to reproducibility and hampers 
the achievement of FAIR principles (Findability, Accessibility, Interoperability, and Reusability) 
of multi-omics efforts (Krassowski et al., 2020). Currently, this is driving the demand for more 
end-to-end pipelines, which will ultimately widen the adoption of multi-omics approaches 
within the research community. 
 
To tackle these challenges, we developed Omix, an efficient R software package that 
processes, integrates, and analyses multi-omic data (transcriptomic and proteomic in this 
instance) in an end-to-end manner. Omix provides a wide range of cutting-edge processing 
functions, integrative models, and quality control features. It allows researchers to easily 
explore different integration strategies, enhancing the speed, scalability, and flexibility of 
multi-omics analyses. What sets Omix apart from existing R packages like Miodin (Ulfenborg, 
2019) or Movics (Lu et al., 2020) is its comprehensive range of model choices and inclusion of 
both pre- and post-integration steps, along with visualisations to aid in the biological 
interpretation of results (Table 1). Omix is suitable for various research objectives, including 
biomarker discovery, patient stratification, and elucidating biological mechanisms, whereas 
other tools often focus on specific areas. The modular framework of Omix enables the storage 
of analysis parameters and results from different algorithms (both single-omic and integrative) 
within the same object, facilitating easy comparison of outputs. This design also allows for the 
incorporation of additional integrative models as the field progresses. While the current 
version of Omix primarily focuses on bulk transcriptomics and proteomics, future versions will 
encompass a broader range of omics types, expanding the software's applicability and 
usefulness. 
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Table 1. Multi-omics integration softwares landscape 
Biomarker Discovery (BD), Biological Mechanisms (BM), Sample stratification (STR) 

 

2 Implementation 
 
2.1 Package Overview 
The Omix pipeline offers an integration and analysis framework for multi-omics intended to 
pre-process, analyse, and visualise multimodal data flexibly to address research questions. 
Omix is built on four consecutive blocks, (1) preparation of the multimodal container, (2) 
processing and quality control, (3) single omic analyses, and (4) multi-omics vertical 
integration, presented in Figure 1.  
 
The Omix R package is stored in a publicly accessible Github repository with version control. 
To ensure reproducibility, continuous integration (CI) Github Actions perform build and 
functionality tests, as well as rebuild package vignettes using a small test dataset after 
updates. Upon successful completion, a version-tagged Docker image is generated using a 
Docker file that installs required software and system-level dependencies. This enables users 
to conduct end-to-end reproducible analyses without explicitly configuring package 
dependencies. The Docker image is uploaded to a Docker registry named Omix. 
 
2.2 Multimodal container 
The Omix multimodal container uses the Bioconductor MultiAssayExperiment format, a 
widely recognised format for managing multiple omics datasets and associated metadata 
(Ramos et al., 2017). The MultiassayExperiment serves as a comprehensive storage unit for all 
raw and processed data, as well as the associated parameters for processing and analysis, 
quality control metrics, and results. 
 
2.3 Processing and quality control 
Each omics layer is independently processed using established protocols, such as DESeq2 for 
bulk transcriptomics (Love et al., 2014), or Probatch for proteomics (Čuklina et al., 2021). 
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Users have the flexibility to choose which parameters and steps of the modular sequence they 
want to execute, based on their analysis requirements. The available op9ons include feature 
filtering, normalisa9on, transforma9on, batch correc9on, denoising, and sample outlier 
removal. Furthermore, automa9c ontology detec9on enables the transla9on of features 
between different ontologies, such as a single gene name from Ensembl ID or UniProt ID, 
thereby facilita9ng the interpreta9on of results.  
 
2.4 Single omic models 
Omix presents a range of analy9cal tools, such as Differen9al Analysis (DE), which is a 
conven9onal method for iden9fying transcripts/proteins that display differen9al expression 
between dis9nct grouping variables or with regression. Addi9onally, the Weighted Gene 
Correla9on Network Analysis (WGCNA) is available to iden9fy gene modules that are 
associated with specific disease covariates (Langfelder & Horvath, 2008). The Sparse Par9al 
Least Squares (sPLS) method is also offered as an op9on to define a concise set of omics 
features (a so called “molecular signature”), that can describe the most explanatory feature 
variables (Lê Cao, 2011). 
 
2.5 Mul3-omics ver3cal integra3on 
Omix offers advanced algorithms for sample-level mul9-omics integra9on, designed to 
accommodate various research scenarios. MOFA and its temporal extension MEFISTO provide 
a lower-dimensional representa9on of data by inferring a common latent space, enabling 
correla9ons between factors and biologically relevant covariates (Argelaguet et al., 2020). 
iClusterBayes (Mo et al., 2018) is an effec9ve tool for sample stra9fica9on. DIABLO and its 
con9nuous counterparts, such as sparse mul9-block PLS from mixOmics, facilitate variable 
selec9on and biomarker panel iden9fica9on (Singh et al., 2019). To ensure standardised 
integra9ve results across different algorithms, Omix employs the custom integra9ve_results() 
func9on. This func9on extracts mul9-omics signatures from the model results, using a custom 

Figure 1. The Omix pipeline 
The pipeline is organised around four building blocks, producing standardised outputs that can be visualised in interac:ve 
reports. 
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strategy tailored to the specific model employed. In MOFA, the signature comprises features 
with the highest weights from a factor strongly correlated with clinical variables of interest. 
For multiblock PLS, the signature relies on features with the highest set of loadings. In the 
case of multi-omics clustering, the signature consists of differentially expressed features 
between clusters. These signatures serve as inputs for downstream analyses, including multi-
omics networks, module analysis, as well as functional, cell-type, and transcription factor-
target enrichment tests. Omix also allows users to query external software and databases such 
as OpenTargets (Ochoa et al., 2021) or Enrichr (Chen et al., 2013) using built-in functions. 
 

3 Usage 
 
3.1 Pipeline  
The core Omix pipeline is organised around wrapper functions that receive and return a 
MultiassayExperiment object. Relevant results are appended to the object's metadata, 
enabling users to perform multiple parallel integrative analyses and store the structured 
integration results within the same object. In terms of model choice, iCluster can be used for 
sample stratification, DIABLO/MBPLS for biomarker discovery, and MOFA/MEIFESTO for 
unsupervised integration to explore molecular mechanisms. To demonstrate the 
comprehensive workflow of an Omix analysis, we provide an example that involves two 
rounds of integration using two distinct algorithms: MOFA and sparse multiblock PLS. This 
object-oriented structure, combined with wrapper functions greatly enhance the user-
friendliness of the analysis, reducing it from thousands of lines of code to approximately 10 
(see code implementation in Fig 1). 
 
3.2 Pipeline outputs 
Omix's core functions operate on the MultiAssay object, taking it as input and producing 
processed omics data, analysis outputs, and a log of selected parameters, all organised within 
the same object's structured metadata slots. This approach offers users the flexibility to 
directly explore the object's contents, while also providing the option to generate interactive 
HTML reports using Omix's pre-designed templates. These include a quality control report, a 
single omic report, and a multi-omics integration report, which display publication-quality 
plots, tables, and a comprehensive record of the chosen parameters. For reference, sample 
reports are accessible on the Omix website.  
 
3.3 Application 
We detailed the use of Omix in the Supplementary Material by a case study using Alzheimer's 
Disease (AD) bulk proteomics and transcriptomics datasets. We used Omix to generate an 
integrated pseudo-temporal multi-omics profile of AD pathology. We employed the non-
supervised integration method MOFA to project post-mortem samples from different brain 
regions into a latent space, revealing non-linear inference of AD pathology progression along 
shared transcriptomics and proteomics variation. This approach identified glial cell activation 
as a known mechanism of AD pathology progression. Additionally, integrated analysis of 
proteomics and gene expression uncovered disease progression-specific transcription factor 
regulatory mechanisms.  

4 Conclusions 
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Omix is an R package that can be applied in an agnos9c manner to integrate bulk 
transcriptomics and untargeted proteomics datasets. By offering a user-friendly and versa9le 
solu9on for mul9-omics analyses, Omix empowers both experts and non-experts to harness 
the full poten9al of mul9-modal data, in a reproducible fashion, thereby enabling rapid 
advances in integra9ve mul9-omics research. 
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