

Human hippocampal ripples tune cortical responses in uncertain visual contexts

Darya Frank¹, Stephan Moratti², Johannes Sarnthein^{3,4}, Ningfei Li⁵, Andreas Horn^{5,6,7}, Lukas Imbach^{4,8}, Lennart Stieglitz³, Antonio Gil-Nagel⁹, Rafael Toledano⁹, Karl J. Friston¹⁰, Bryan A. Strange^{1,11}

¹ Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain

² Department of Experimental Psychology, Complutense University of Madrid, Spain

³ Department of Neurosurgery, University Hospital and University of Zurich, Switzerland

⁴ Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland

⁵ Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

⁶ Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States

⁷ Brigham & Women's Hospital, Center for Brain Circuit Therapeutics, Boston, MA, United States

⁸ Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland

⁹ Epilepsy Unit, Department of Neurology, Hospital Ruber Internacional, Madrid, Spain

¹⁰ Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK

¹¹ Reina Sofia Centre for Alzheimer's Research, Madrid, Spain

Corresponding authors: Darya Frank (darya.frank@ctb.upm.es) and Bryan A. Strange (bryan.strange@upm.es)

1 **Abstract**

2 To be able to encode information efficiently, our perceptual system should detect when
3 situations are unpredictable (i.e., informative), and modulate brain dynamics to prepare for
4 encoding. Here we show, with direct recordings from the human hippocampus and visual
5 cortex, that after exposure to unpredictable visual stimulus streams, hippocampal ripple
6 activity increases in frequency and duration prior to stimulus presentation, indicating context
7 and experience-dependent prediction of predictability. Pre-stimulus hippocampal ripples
8 suppress changes in visual (occipital) cortex gamma activity associated with uncertainty, and
9 modulate post-stimulus prediction error gamma responses in higher-level visual (fusiform)
10 cortex to surprising (i.e., unpredicted) stimuli. These results link hippocampal ripples with
11 predictive coding accounts of neuronal message passing—and precision-weighted prediction
12 errors—revealing a mechanism relevant for perceptual synthesis and subsequent memory
13 encoding.

14

15

16 Word count: 126

17

18 An efficient recognition system should be able to prioritise the information that will constrain
19 or inform perceptual representations¹ and, eventually, be accumulated or retained. One way
20 to facilitate this is to continuously generate predictions about upcoming inputs and retain
21 information—i.e., revise beliefs—when these predictions are violated. Prediction is
22 considered central in this account of the brain, by building a generative model of the world to
23 minimise prediction error when sampling the sensorium^{2,3}. In predictive coding formulations,
24 predictions are transmitted in a top-down manner, and when there is a mismatch between the
25 predicted and the observed input, a bottom-up prediction error is returned to update or revise
26 the source of predictions at a higher hierarchical level^{4,5}. Crucially, prediction errors are
27 weighted by the level of uncertainty (i.e., their precision) associated with the given context⁶,
28 balancing top-down and bottom-up information streams to scale the influence of prior
29 predictions and sensory evidence, respectively⁷. This is sometimes framed in terms of
30 precision-weighted prediction errors that instantiate the Kalman gain in Bayesian filtering
31 formulations of predictive coding^{1,8}. The implicit encoding of uncertainty lends a dual aspect
32 to predictive processing that encompasses both the predictions of a particular sensation and
33 predictions of its predictability (i.e., precision) that modulate the influence of the ensuing
34 prediction error^{1,8–12}. Importantly, these generative properties of predictive processing rely on
35 ongoing integration of sensory inputs with internally-generated, experience-dependent
36 sequences, and are therefore thought to involve hippocampal-neocortical interactions^{13–15}.

37

38 A hippocampal role in prediction is likely related to its function in extracting statistical
39 regularities^{16–19}, that can be applied to novel situations^{20,21}. Therefore, the hippocampus
40 should represent the expected information gain of an event before it occurs—as a function of
41 predictability^{15,19}—and estimate the validity of the prediction upon observation of the event²².
42 Indeed, the hippocampus has long been postulated to hold a cognitive map that is used to

43 form predictions about upcoming inputs^{23–26}. Such predictive information might follow
44 successor-like representation^{27,28}, for example in place cell firing²⁹. The cortex may also play
45 its own predictive role through communication between deep layers feeding-back predictions
46 to the superficial layers of preceding regions in the processing hierarchy^{27,28}. Mechanistically,
47 predictions and their violation have been associated with spiking activity³⁰ and oscillatory
48 dynamics in the cortex^{31,32}. Specifically, gamma-band activity has been associated with
49 bottom-up prediction errors (reflecting surprise signals from primary sensory cortices), and
50 alpha/beta oscillations with top-down predictions (from higher-level regions such as
51 prefrontal cortex)^{33–35}.

52

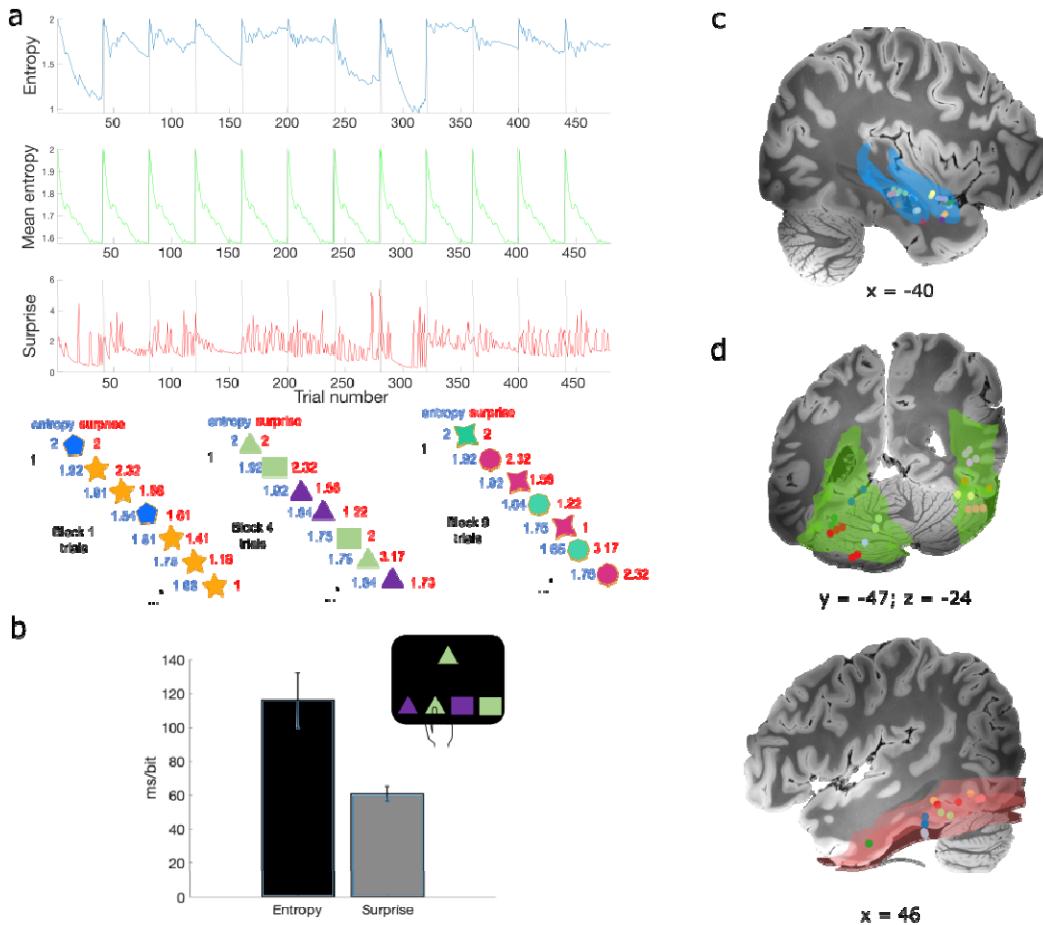
53 However, the mechanism through which predictions of predictability about upcoming
54 sensory inputs are generated in the hippocampus and communicated to the cortex is still
55 unclear¹⁵. Irrespective of these mechanisms, they should manifest in terms of a differential
56 modulation of prediction error responses in visual cortex depending upon the predictability of
57 the current context, which we hypothesise is itself recognised and broadcast via hippocampal
58 processing. Specifically, when upcoming stimuli are unpredictable, they are inherently
59 informative; in the sense they resolve uncertainty when observed (technically, they have a
60 greater expected information gain). This leads to the hypothesis that the hippocampus plays a
61 role in precision-weighting by modulating the electrophysiological correlates of prediction
62 errors—i.e., event related gamma activity in the visual hierarchy—as a function of
63 predictability (or entropy).

64

65 Hippocampal sharp-wave ripples (ripples henceforth) are found in every investigated
66 mammalian brain and consist of sharp waves (large-amplitude, negative-polarity activity
67 resulting from synchrony in the apical dendritic layer of CA1 pyramidal neurons) and ripples

68 (~140-200/s in rodents, resulting from interactions between excitatory and inhibitory neurons
69 in CA3^{36,37}). They are viewed as a pre-conscious mechanism to explore the organism's
70 options, searching for past experiences to extrapolate and predict future outcomes^{25,38}. This
71 is in addition to their role in replay of past experiences^{39,40}. As prospection relies on past
72 experiences, and is mediated by the hippocampus²⁴, ripples may also underlie anticipation of
73 future outcomes to guide subsequent behaviour. Indeed, ripples have been shown to portend
74 behaviour in the immediate future, in the form of experienced trajectories⁴¹ and novel
75 paths^{42,43}, as well as pre-play of future events during sleep⁴⁴. Specifically, the sequential
76 firing pattern that occurs during rodent SWRs, in addition to 'replay' of spatial trajectories,
77 has been shown to reflect all physically available trajectories within the environment not
78 realised in prior behaviour⁴⁵, and trajectories taken by subjects in subsequent goal-directed
79 navigation⁴⁶. Furthermore, there is evidence that cortical activity is modulated in a peri-ripple
80 manner, both through enhancement and inhibition of activity^{47,48}, and as fluctuations in
81 resting-state networks⁴⁹. This is in line with predictive processing frameworks in which
82 predictions and prediction errors are exchanged between levels in cortical hierarchies, with a
83 special role for regions such as the hippocampus in contextualising this exchange^{4,15}. Whilst
84 ripples might represent possible outcomes, there is mixed evidence regarding whether they
85 influence subsequent behaviour⁵⁰⁻⁵². Importantly, the functional role of ripples is often
86 examined using navigational tasks in rodents, which heavily tap episodic memory and are
87 biased by the provision of reward at the goal location. In humans, although there is emerging
88 evidence for ripples supporting memory recall processes⁵³⁻⁵⁵, it remains unclear to what
89 extent they play a role in prediction, in the absence of memory demands.

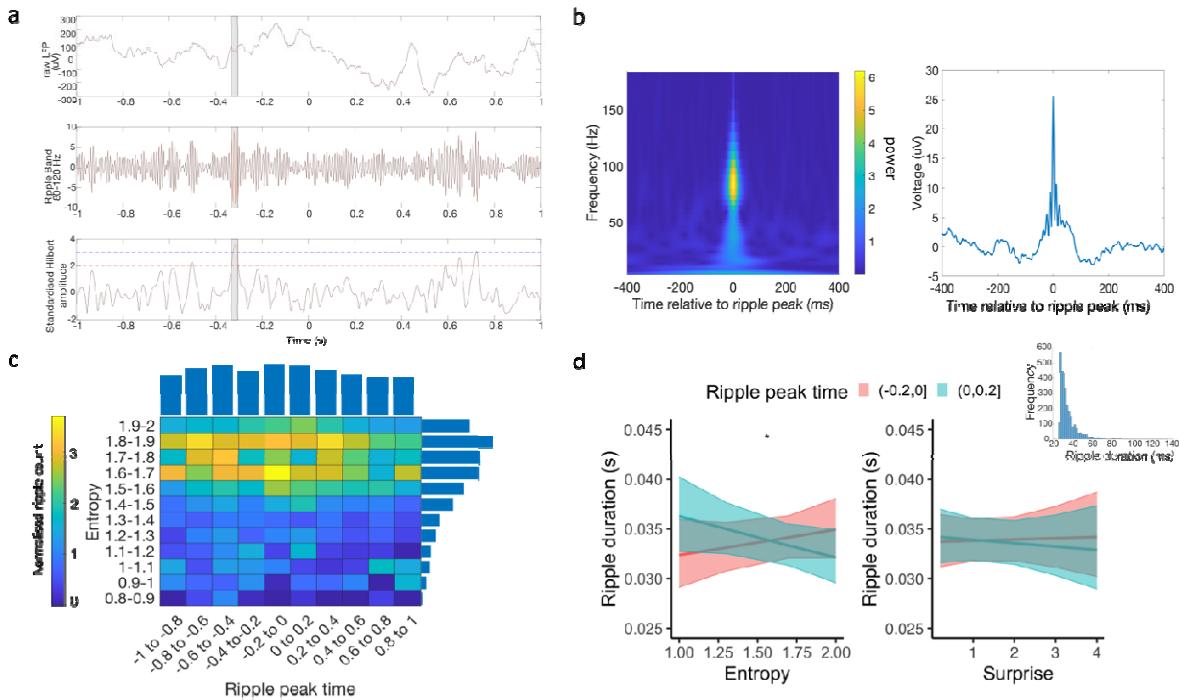
90


91 We hypothesised that high-order predictions—namely, predictions of predictability or
92 precision—would be generated by the hippocampus prior to stimulus presentation, as a

93 function of uncertainty (i.e., predictability), and subsequently modulate cortical processing,
94 or lower-level prediction errors. Ripples are a promising candidate to mediate the requisite
95 precision-weighting of prediction errors. We tested this hypothesis using intracranial local
96 field potential (LFP) recordings from human epilepsy patients, to examine how the
97 hippocampus and ventral visual stream regions (occipital cortex and fusiform) implement
98 predictive processing. We used a simple paradigm—void of any explicit demands on episodic
99 memory—in which participants were presented a sequence of coloured shapes and performed
100 a visuo-motor selection task, given a target stimulus and four options, presented on-screen
101 simultaneously. The probability distribution of stimulus presentation varied across task
102 blocks, allowing us to quantify stimulus-bound information-theoretic measures of entropy
103 (i.e., uncertainty or unpredictability of an outcome before it occurs) and self-information (i.e.,
104 surprise or violation of predictions reflecting the improbability of a particular event) within
105 each block and they can therefore be dissociated with respect to stimulus onset.

106

107 Results


108 Fifteen participants successfully completed the task, with trial-by-trial measures of entropy
109 and surprise modulating reaction time (RT) in accordance with Hick's law⁵⁶. Replicating
110 results from this task in healthy adults¹⁹, participants' RTs increased significantly per bit of
111 surprise ($t(14) = 10.26$, $p < 0.001$, Cohen's $d = 2.64$) and entropy ($t(14) = 4.96$, $p < 0.001$,
112 Cohen's $d = 1.28$; Figure 1b).

113
114 **Figure 1 | Task design and electrode contact localisation.** **a)** Distribution of entropy, mean
115 entropy and surprise values across trials for one example participant. Below, example trials
116 from three of the 12 different blocks, and their associated entropy (blue) and surprise (red)
117 values. Note that the 4 coloured shapes presented were unique to each block, with the
118 probability of occurrence of these 4 stimuli varying between blocks. Participants were asked
119 to perform a visuo-motor selection task, choosing the corresponding coloured shape from
120 four alternatives with a button press, as depicted for block 4 in the current example. **b)** Group
121 average reaction time as an increase in ms per bit of information-theoretic measure. **c-d)**
122 Illustration of contacts in the hippocampus (smoothed hippocampus mask from the
123 Automated Anatomical Labelling atlas for visualization; blue), fusiform (red), and occipital
124 cortex (green) overlaid on a 100- μ m T1 scan of an ex-vivo human brain, acquired on a 7T
125 MRI scanner (<https://openneuro.org/datasets/ds002179/versions/1.1.0>); each colour
126 represents a patient. See Figure S1 for individual patients' contacts. Unless otherwise stated,
127 error bars represent the standard error of the mean.
128

129 *Pre-stimulus ripple frequency and duration increase under uncertainty*
130 In view of a possible generative role for hippocampal ripples in predicting the predictability
131 of future events, we tested whether ripple occurrence was associated with increased

132 uncertainty. Using a previously established ripple detection method⁵¹, a total of 2567
133 hippocampal ripples were detected in all participants while they performed the visuomotor
134 task (Figure 2a). On examining the 2D distribution of ripple peak time as a function of peri-
135 stimulus time and entropy (Figure 2b), we found a large proportion of ripples occurred in
136 high entropy (1.7-1.9 bits) trials between -800 to -400ms pre-stimulus. There was also a peak
137 in ripple probability just before the stimulus onset (-200 to 0ms) for entropy values from 1.6-
138 1.7 and 1.8-1.9 bits. A 2-samples Kolmogorov-Smirnov, showed a significant difference
139 between the ripple distribution and a uniform distribution with the same minimum and
140 maximum counts ($k = 0.183$, $p = 0.038$). We also performed a Spearman's correlation
141 between the observed and permuted distributions to ensure ripple distribution was not
142 correlated with random noise. The correlation between the two was computed in every
143 permutation (1000 permutations in total) per participant, and the mean correlation across
144 participants was compared to 0 using a one-sample t-test. The observed 2D distribution was
145 not correlated with the random permutations ($t(14) = 0.629$, $p = 0.53$). We have also
146 performed a mixed-effects GLM on the normalized count values to identify the bins showing
147 the largest number of ripples. We found a significant interaction between entropy and ripple
148 peak time ($\chi^2(99) = 200.1$, $p < 0.001$), with the five largest estimated marginal means
149 identified around -1000 to -400ms and 1.6-1.8 entropy bins, as well as just before stimulus
150 onset (-0.2 – 0, entropy values 1.8-1.9) and just after stimulus onset (0 – 0.2, entropy values
151 1.8-1.9). This is in line with the visual representation of the 2D distribution shown in Figure
152 2c (all estimated marginal mean values shown in Supplementary Figure S3). Given that we
153 do not see many ripples after 600ms post-stimulus, the pre-stimulus ripples identified are
154 unlikely to reflect post-processing of the previous stimulus (see also Figure S10 showing
155 ripple distribution as a function of surprise from 0-2.2s) .

157
158 **Figure 2 | The frequency and duration of hippocampal ripples increase with uncertainty**
159 **or expected information gain.** a) an example ripple detected using the Vaz et al (2019)
160 method, showing the raw LFP trace (top), the ripple band signal (middle) and the
161 standardised envelope (bottom) b) Grand average peri-ripple wavelet spectrogram (left)
162 and raw field potential centred on ripple peak ($n = 2567$ ripple events from 15 participants).
163 c) Normalized ripple distribution across peri-stimulus time and entropy levels, accounting for
164 the total number of trials in each entropy bin. Normalized ripple count for each time and
165 entropy bin is colour-coded; average counts for each time and entropy bin are plotted as bars
166 above and to the right of the 2D distribution, respectively. The majority of ripples occurred
167 pre-stimulus and in high (but not highest) entropy levels (see Figure S2c for peri-stimulus
168 ripple distribution). d) Ripple duration as a function of peri-stimulus time and information-
169 theoretic measures. Ripple duration increased with entropy (i.e., expected information gain
170 for pre-stimulus ripples, but decreased for post-stimulus ripples). Ripple duration histogram,
171 over all recorded ripples, is shown above right. Shaded areas represent the 95% confidence
172 interval. See Extended Data for replication using a different ripple detection method⁵³.
173

174 The duration of ripples has been shown to be functionally relevant for memory consolidation
175 in rodents⁵⁷. In predictive coding formulations, this rests upon the augmentation of
176 associative (i.e., activity or experience-dependent) plasticity by precision-weighting that
177 increases presynaptic (prediction error) afferents^{58,59}. To test for changes in ripple duration
178 with uncertainty, we next examined the relationship between ripple duration and the
179 information-theoretic measures. As ripple duration followed a right-skewed distribution
180 (Figure 2d), a mixed-effects Gamma regression was employed. First, we tested whether

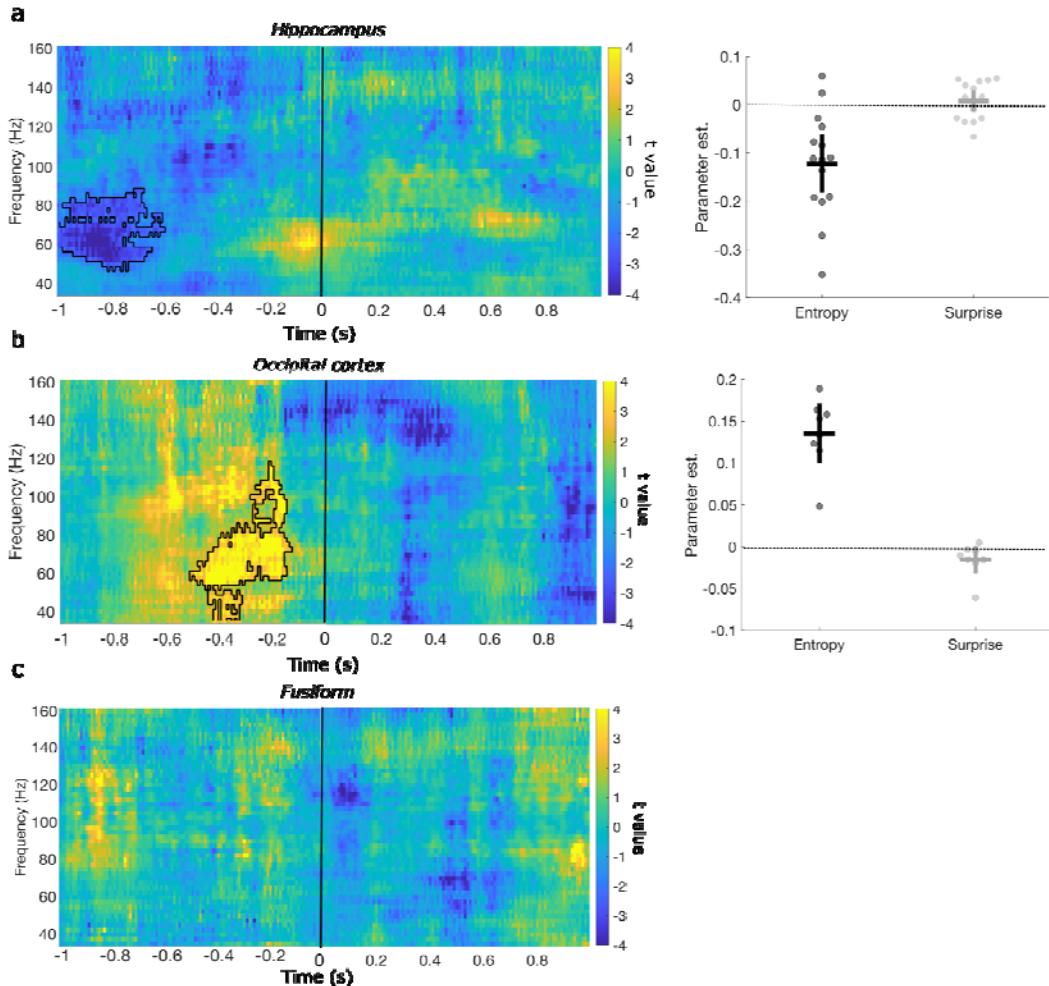
181 ripple duration was modulated by peri-stimulus time, entropy, and surprise. We did not
182 observe any significant main effects (all p 's > 0.219) or interactions (time window by entropy
183 $\chi^2(1) = 0.876$, $p = 0.349$; time window by surprise $\chi^2(1) = 0.264$, $p = 0.607$; see Figure S2g).
184 However, comparing ripples occurring just before (-200 to 0ms; where there was an increase
185 in ripple frequency; Figure 2b) and the corresponding period just after the stimulus (0 to
186 200ms), revealed a significant main effect of peri-stimulus time window ($\chi^2(1) = 5.08$, $p =$
187 0.0241), as well as an interaction between time window and entropy ($\chi^2(1) = 3.97$, $p =$
188 0.0463, Figure 2d). This interaction suggests that as entropy increased, pre-stimulus ripple
189 duration increased, but decreased for post-stimulus ripples. Ripple duration was again not
190 modulated by surprise (main effect $\chi^2(1) = 0.03$, $p = 0.862$; interaction $\chi^2(1) = 2.15$, $p =$
191 0.643), suggesting ripple duration reports predictability (i.e., expected information gain) as
192 opposed to violations of predictions (i.e., observed information gain).

193

194 *Reaction time as a function of pre-stimulus ripples*

195 Given that there is a relationship between entropy and RT^{19,56}, as well as between ripples and
196 entropy, we examined whether the presence of ripples modulates the relationship between RT
197 and entropy—and surprise—on a trial-by-trial basis. To ensure sufficient pre-stimulus ripple
198 trials were included, this analysis was restricted to trials with 1.6 to 1.9 bits of entropy, where
199 most pre-stimulus ripples were observed (50% of pre-stimulus ripple trials and 50% of no
200 ripple trials are within these values). We found a significant main effects of ripple status, with
201 faster responses in trials with a pre-stimulus ripple ($\chi^2(1) = 4.33$, $p = 0.037$). This is an
202 important observation because the precision of prediction errors corresponds to the rate of
203 evidence accumulation that underwrites reaction speed. In other words, prediction errors that
204 are afforded more precision exert their effects on belief updating more rapidly. There was
205 also a main effect of surprise, with faster RTs for lower levels of surprise ($\chi^2(1) = 83.3$, $p <$

206 0.001), as per Hick's law. The interaction between ripple status and surprise, however, was
207 not significant ($\chi^2(1) = 2.24$, $p = 0.134$) indicating that ripples did not modulate the
208 relationship between RT and surprise. There was a trend towards an interaction between
209 entropy and ripple status ($\chi^2(1) = 3.46$, $p = 0.0628$; Figure S2e), with simple slopes of
210 entropy in trials without ripples (estimate = 0.11, $t(14) = 1.29$, $p = 0.2$) and in trials with pre-
211 stimulus ripples (estimate = 0.37, $t(14) = 3.19$, $p = 0.001$) indicating a steeper positive slope
212 in trials with pre-stimulus ripples.


213

214 *Hippocampal and occipital cortex pre-stimulus gamma activity track uncertainty in opposing*
215 *ways*

216 To further characterise hippocampal and cortical correlates of entropy and surprise, we next
217 examined time-resolved spectral responses as a function of these measures. The focus was on
218 two cortical regions: the fusiform gyrus, previously shown with functional MRI to respond to
219 surprise in this task¹⁹, and occipital cortex, lower down in the visual cortical hierarchy than
220 the fusiform and putatively supplying it with bottom-up information (e.g., prediction errors).
221 Hippocampal activity in the gamma range (47.5-97.5 Hz; Figure 3a) was negatively
222 associated with entropy in the pre-stimulus period, around -1000ms to -660ms pre stimulus
223 (summed cluster t value = -1250.4, $p = 0.0074$; smallest t value in cluster = -6.23, $p = 0.0058$,
224 Cohen's d = 1.6), showing reduced gamma power preceding more uncertain outcomes. This
225 time window partly overlaps with peaks in ripple occurrence, although, notably, the gamma
226 power around this time-window was reduced under high entropy. Further examination of the
227 negative association with entropy, as a function of trial in block, showed that the reduction in
228 gamma power was mostly concentrated in the first few trials of the block (Figure S4a), prior
229 to the emergence of pre-stimulus ripples.

230 In occipital cortex, on the other hand, a positive association between gamma activity (35-
231 117.5 Hz; Figure 3c) and entropy was observed around -510ms to -130ms pre-stimulus
232 (summed t value = 1694.1, $p = 0.0078$, largest t value in cluster = 10.67, $p = 0.0078$, Cohen's
233 $d = 3.77$). No significant responses to entropy were found in the fusiform, or in the post-
234 stimulus time period for all three areas (Figure 3). Under the simplifying assumption that
235 gamma activity reflects the amplitude of precision-weighted prediction errors, these results
236 are consistent with an increase in the precision of visual prediction errors, with a concomitant
237 decrease in the precision of hippocampal prediction errors, prior to stimuli with higher
238 expected information gain. This could be read as instantiating the right kind of attentional set,
239 when salient information can be anticipated in advance^{60,61}.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

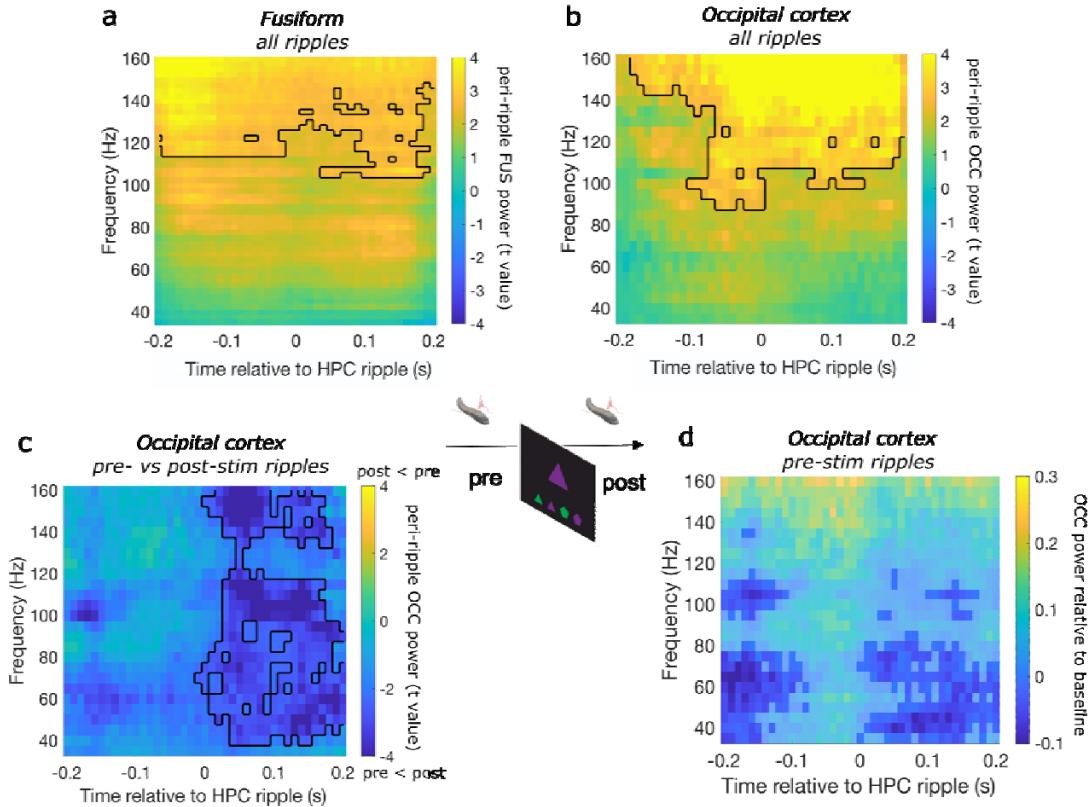
Figure 3 | Hippocampal and occipital cortical gamma activity is modulated by entropy before stimuli are presented. a) Left. Time-resolved spectral power in the hippocampus shows a significant negative association between gamma-power and entropy around 800ms pre-stimulus (significant cluster outlined in black here and in subsequent figures). During highest entropy levels, gamma power was lowest (see Figure S3a for gamma power as a function of trial in block). No significant clusters were found in the post-stimulus time window. Right. Parameter estimates for each predictor within the significant cluster; each point pertains to one patient, horizontal bars the group mean, and vertical error bars represent 95% confidence interval. b) In occipital cortex there was an increase gamma power as entropy increased, around 400ms pre-stimulus. Again, entropy was not associated with changes in the post-stimulus time windows. c) In the fusiform cortex, no effects of entropy were observed either pre- or post-stimulus.

257

Ripple-triggered cortical responses

258

259


Next, we investigated whether ripple occurrence instates a temporal relationship between the hippocampus and visual processing regions in which pre-stimulus modulations of gamma activity were also observed as a function of entropy. First, we compared peri-ripple cortical

260 time-frequency responses, dichotomised by whether the hippocampal ripple occurred before
261 or after stimulus onset (Figure 4a-b). We found an overall increase in high gamma power in
262 the fusiform (-200 to 200ms peri-ripple, 105-160Hz, summed cluster t value = 2171.1, p =
263 0.0156; largest t value in cluster = 4.44, p = 0.0156, Cohen's d = 1.67) as well as in occipital
264 cortex (-180 to 200ms peri-ripple, 95-160Hz, summed cluster t value = 1474, p = 0.0039;
265 largest t value in cluster = 9.15, p = 0.0039, Cohen's d = 3.27) locked to hippocampal ripples.
266 Furthermore, in occipital cortex, pre- and post-stimulus ripples modulated activity differently
267 (-10 to 200ms peri-ripple, 35-160Hz, Figure 4c; summed t value = -1094.5, p = 0.0039;
268 smallest t value in cluster = -8.99, p = 0.0039, Cohen's d = 3.17). Specifically, occipital
269 gamma activity was reduced following pre-stimulus ripples compared to post-stimulus
270 ripples. This effect was partly driven by a power suppression, compared to a baseline period,
271 of occipital gamma around pre-stimulus ripples (Figure 4d shows raw power suppression in
272 relation to baseline). That is, when examining occipital gamma activity in the pre-stimulus
273 period in which a positive association with entropy was found (indicating an overall power
274 increase), there was reduced gamma power in trials with a hippocampal ripple in the period
275 before the significant cluster compared to trials with no ripples ($t(7) = 2.51$, $p = 0.040$,
276 Cohen's d = 0.889; Figure S7a). Taken together, these findings are indicative of a
277 hippocampal pre-stimulus ripple-induced suppression of pre-stimulus gamma power in the
278 occipital cortex. No differences were observed between pre- and post-stimulus ripples
279 modulation of fusiform activity, or in lower frequencies in either cortical region.

280

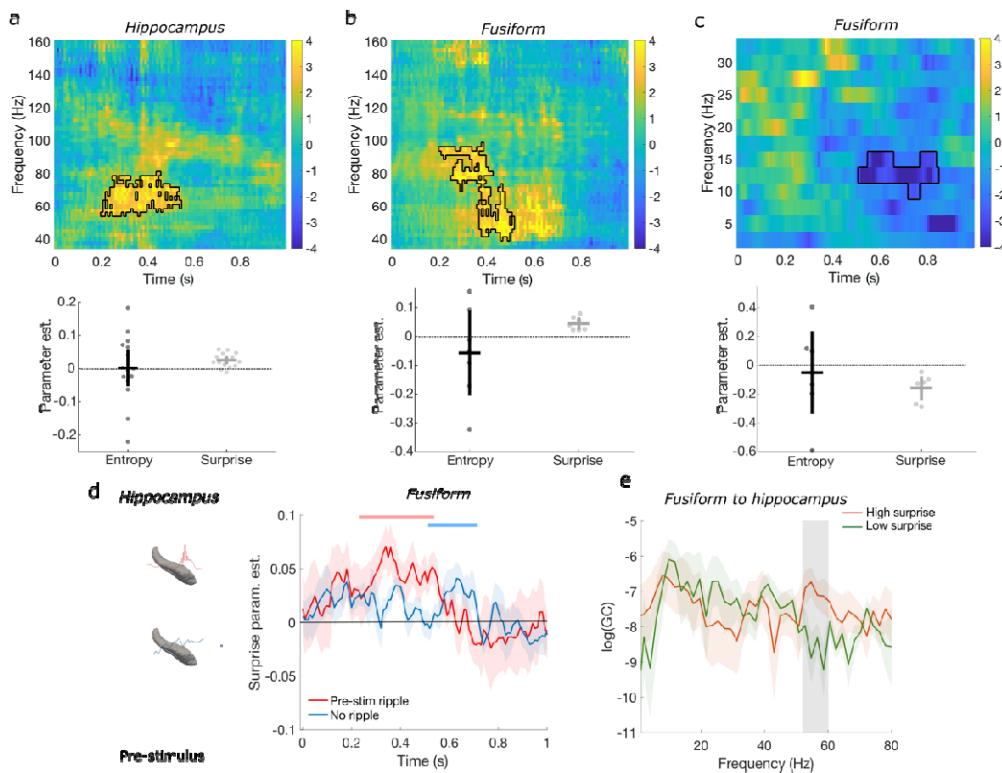
281 Next, we examined whether ripple-modulated cortical activity was correlated with entropy or
282 surprise. There were no significant associations between peri-ripple cortical activity and
283 either information-theoretic measure, suggesting that the hippocampal ripple modulation of
284 cortical response was not affected by uncertainty or surprise, and thus ripples may act as a

285 general mechanism for hippocampal modulation of cortical activity, with context-dependence
286 of this modulation effected by ripple rate or duration.

287
288 **Figure 4 | Peri-hippocampal ripple cortical activity.** Cortical time-frequency analyses
289 time-locked to the hippocampal ripple peak time. Across all ripple trials there was an overall
290 increase in high gamma power in the fusiform (a) and occipital cortex (b) time-locked to
291 hippocampal ripple. c) Comparing trials with pre- versus post-stimulus hippocampal ripples,
292 there was a reduction in occipital gamma power in trials with pre-stimulus ripples, compared
293 to post-stimulus ripples. Further examination of this effect revealed it was driven by a
294 suppression of gamma power relative to baseline in trials with pre-stimulus hippocampal
295 ripples (d) and compared to trials with no ripples (Supplementary Figure 4a). See Extended
296 Data for replication using a different ripple detection method
297

298 *Hippocampal and fusiform – but not occipital – cortex gamma responses to surprise*

299 We expected that prediction error, in the form of surprise, would elicit hippocampal and
300 cortical responses. In line with previous findings, a positive association between surprise and
301 hippocampal activity in the gamma range (55-80 Hz; Figure 5a) was observed around 200 to
302 540ms post-stimulus (summed cluster t value = 638.5, p = 0.0248; largest t value in cluster =


303 4.89, $p = 0.0248$, Cohen's $d = 1.2$). In the fusiform, there was a positive association between
304 surprise and gamma activity (40-95 Hz; Figure 5b) around 200-510 post-stimulus (summed
305 cluster t value = 741.9, $p = 0.0234$, largest t value in cluster = 6.79, $p = 0.0234$, Cohens' $d =$
306 2.56), and a negative association between surprise and alpha/beta power (10-15 Hz; Figure
307 5c) around 510-840ms post-stimulus (summed cluster t value = -199.5, $p < 0.001$; largest
308 negative t value in cluster = -5.41, $p < 0.001$, Cohen's $d = 2.05$). No significant associations
309 between surprise and occipital activity were observed.

310

311 *Pre-stimulus hippocampal ripples modulate prediction error*

312 Under the predictive processing framework, a cardinal function of neural activity is to
313 minimise precision-weighted prediction error⁶². A possible role for hippocampal ripples is to
314 broadcast the predicted precision of forthcoming prediction errors. Specifically, we
315 hypothesised that pre-stimulus ripples would amplify precision-weighted prediction errors,
316 evoked by stimuli in an unpredictable (high entropy) context. To test this hypothesis, we
317 examined whether the occurrence of pre-stimulus hippocampal ripples modulated post-
318 stimulus (0-1s) cortical responses to surprise (e.g. the increase in gamma power in the
319 fusiform). This hypothesis was confirmed in the fusiform cortex. We found an early (250-
320 550ms post stimulus, summed t value = 936.9, $p = 0.0078$) increase in fusiform gamma
321 power (47.5-122.5Hz) in response to higher surprise in trials that were preceded by a pre-
322 stimulus hippocampal ripple. By contrast, a later (510-710ms) increase in gamma power (50-
323 72.5 Hz, summed t value = 473.8, $p = 0.0078$) was observed to higher surprise when there
324 was no pre-stimulus ripple (Figure 5d and Figure S9a-b). The presence of a faster fusiform
325 response to surprise in trials with pre-stimulus ripples could simply reflect a co-occurrence of
326 the two. To rule out this possibility, we examined whether there was a double dissociation of
327 the surprise parameter estimate using a repeated measures ANOVA with ripple status (no

328 ripple, pre-stimulus ripple) and time window (early, later) as factors. This showed a
329 significant interaction ($F(1,6) = 19.6$, $p = 0.004$, $\eta^2_p = 0.766$), confirming the double
330 dissociation (See Figure S9c) such that an early effect of surprise was observed for trials with
331 pre-stimulus ripples, but not for trials without ripples; conversely, a later surprise effect was
332 found in trials without ripples, but not in trials with pre-stimulus ripples. This result suggests
333 that the presence of a pre-stimulus hippocampal ripple modulates the fusiform response to
334 surprise, such that it is faster—and of greater amplitude—compared to trials without a pre-
335 stimulus ripple. The presence of pre-stimulus hippocampal ripples did not modulate post-
336 stimulus occipital responses to surprise.

337
338 **Figure 5 | Surprise driven responses.** a) Hippocampal increase in gamma power as surprise
339 increases. Below: parameter estimates for each predictor within the significant cluster. b)
340 Fusiform gamma power increase as surprise increases. c) Fusiform beta oscillations decrease
341 as surprise increases. d) The increase in fusiform gamma power 40-95 Hz (extracted from
342 significant cluster) occurs earlier in trials with pre-stimulus hippocampal ripples (red)
343 compared to trials without ripples (blue). See Extended Data for replication using a different
344 ripple detection method. e) Directed information flow from fusiform to hippocampus for

345 high (orange) versus low (green) surprise trials was observed in the gamma band (shaded
346 rectangle).
347

348 *Directed information flow during prediction and prediction errors*

349 Lastly, we examined information flow between the hippocampus and fusiform and occipital
350 cortex by testing for Granger causality as a function of surprise and entropy. To do so, a
351 median-split for each information-theoretic measure was applied and a non-parametric
352 spectral Granger causality analysis performed. Guided by the time-frequency effects above,
353 we focused on hippocampus-occipital cortex for entropy, and hippocampus-fusiform for
354 surprise, each centred in time around the observed time-frequency effect (-1000 to -500ms
355 pre-stimulus for entropy, and 150 to 650ms post-stimulus for surprise). For surprise, we
356 found increased bottom-up information flow (fusiform → hippocampus) in the gamma range
357 (52-60 Hz; Figure 5e) for high versus low surprise (summed t value = 13.2, p = 0.0078). To
358 ensure this effect was valid we ran two further analyses; a Granger causality analysis on the
359 time-reversed data, showing an effect in the same frequency ranges in the opposite direction,
360 as expected. And secondly, a partial directed coherence analysis which revealed a significant
361 information flow effect from the fusiform to the hippocampus in high versus low surprise
362 trials for the same frequency range 52-59Hz (cluster t(6) = 4, p < 0.001; Figure S9g). No
363 significant effects were observed in the reverse direction (hippocampus → fusiform) or
364 between the hippocampus and occipital cortex for entropy (Figure S9d-f). As there were few
365 participants with contacts in both cortical regions (N = 4), Granger causality between
366 occipital and fusiform cortex was not examined.

367

368 Discussion

369 We measured hippocampal and cortical activity using depth electrodes in human epilepsy
370 patients as they observed sequences of simple visual stimuli drawn from a block-specific

371 distribution, yielding different levels of stimulus-bound uncertainty and surprise.
372 Electrophysiological intracranial activity was examined pre- and post-stimulus to assess
373 prediction under different levels of uncertainty, and subsequent validation against observed
374 inputs, respectively. Our results highlight an important hippocampal function in generating
375 putative predictions and communicating them downstream to the cortex. Specifically, our
376 findings suggest hippocampal ripples are key in this generative process; ripple probability
377 was highest in the pre-stimulus window when uncertainty was high, but not at its highest
378 levels, and pre-stimulus ripple duration increased with entropy. These pre-stimulus ripples
379 were associated with subsequent faster responses to post-stimulus surprise in the fusiform
380 cortex. This is exactly consistent with a role of hippocampal ripples reporting the
381 predictability of an upcoming stimulus and thereby affording the ensuing prediction errors
382 greater precision, in the context of greater expected information gain (i.e., higher entropy).

383

384 The properties and distribution of ripples as a function of peri-stimulus time and entropy
385 strongly suggest that they play an important role in generating a certain kind of prediction;
386 namely, a prediction of predictability. Previous work in rodents has demonstrated that ripples
387 represent future trajectories of experienced and novel paths^{41–43}, indicative of a generative
388 process. Our results provide support for, and extend, these previous studies by showing
389 increased ripple probability in uncertain contexts before stimulus onset, in awake human
390 patients, as they anticipate upcoming sensory input. Specifically, predictive processing under
391 uncertainty may represent an integral part of the proposed role for SWRs in planning future
392 actions^{63,64}. Our findings are in keeping with a recent synthesis of rodent studies suggesting
393 that SWR trajectories comprise not only the path to be chosen or the path just completed, but
394 many of the potential options available⁶⁵. With an increasing number of options—and
395 implicit unpredictability of ensuing outcomes—the ripple rate would be expected to increase,

396 as observed here. This is also in line with recent fMRI work in humans showing successor-
397 like representations in the hippocampus and visual cortex²⁸. Importantly, our visuo-motor
398 mapping task did not impose memory demands, as both stimulus and response mapping
399 appeared on the screen simultaneously. The key manipulation was the underlying probability
400 of the stimulus distribution within-block, which we argue elicited an increased need for
401 precise predictive processing, and thus more ripple events, with increased uncertainty
402 regarding the upcoming stimulus. This allowed us to elucidate an important functional role
403 that ripples play in anticipation of sensory inputs and associated action planning⁶⁶.

404

405 The increased frequency of pre-stimulus ripples occurred around the same time as the
406 negative association between entropy and gamma power (overlapping in 80-97.5 Hz),
407 namely, around 800ms pre-stimulus. The early hippocampal gamma effect (i.e., negative
408 association with entropy) is—on a predictive coding narrative—consistent with an
409 attenuation of neuronal fluctuations in populations reporting prediction errors (e.g.,
410 superficial pyramidal cells) in proportion to the predicted precision of subsequent (stimulus-
411 bound) prediction errors¹². Such an early effect is consistent with (Bayesian belief) updating
412 of information from the previous trial and broadcasting the ensuing predictions down the
413 cortical hierarchy. This finding also suggests that detected ripples were likely discrete events,
414 dissociable from gamma activity^{12,37,67}. The observed reduction in gamma activity (spanning
415 frequencies lower than that of the ripple activity) occurred in the pre-stimulus period on trials
416 in which pre-stimulus ripples were evident (Figure S5). This co-occurrence might be driven
417 by the opposing effects of acetylcholine on ripple generation and gamma power (increase in
418 ripple rate accompanied by decreased gamma-band activity, and *vice versa*³⁷). This is
419 interesting because acetylcholine has been implicated in the encoding of precision in
420 predictive processing in several computational studies^{3,15-18}.

421

422 To demonstrate that ripples carry predictive information that is subsequently propagated to
423 the cortex, it is important to establish peri-ripple modulation of behaviour or cortical activity,
424 as suggested by predictive processing^{4,15}. There are mixed findings in the literature, with
425 some studies showing no ripple occurrence-related modulation of subsequent behaviour in
426 rodents⁵⁰⁻⁵². We found limited support for ripple modulation of behaviour, with faster
427 responses at high levels of entropy (1.6-1.8) when there were pre-stimulus ripples, but the
428 negative correlation between pre-stimulus ripple rate and decrease in RT (as ms/bit of
429 entropy) did not reach statistical significance (see Figure S2e). Nevertheless, hippocampal
430 ripples did modulate cortical activity in several ways; in line with previous findings from
431 rodents and non-human primates⁴⁷⁻⁴⁹, we found an overall increase in high gamma power in
432 fusiform and occipital cortex around the ripple time, supporting the notion that occurrence of
433 ripples facilitates enhanced interaction between the hippocampus and cortex.

434

435 In addition to the cortical modulation across all ripple trials, a unique modulation of pre-
436 stimulus ripples on cortical processing was observed, in keeping with their predictive role.
437 First, we found a suppression of occipital gamma activity that was time-locked to the
438 hippocampal ripple event. Together with the overall positive association between entropy and
439 occipital gamma power pre-stimulus, this suggests that the ripple-triggered suppression may
440 reflect an override hippocampal signal over lower-level cortical prediction of the upcoming
441 stimulus, or facilitate a sharper representation of the possible outcomes in occipital
442 cortex^{13,68}. Second, the presence of pre-stimulus ripples modulated post-stimulus fusiform
443 activity; whilst there was an overall positive association between trial-wise surprise and
444 gamma power in fusiform around 300ms post-stimulus, when splitting trials based on the
445 presence of pre-stimulus hippocampal ripples, we found a faster fusiform gamma response to

446 surprise, compared to trials without pre-stimulus ripples. Gamma-band activity has been
447 shown to support bottom-up processing^{34,35}, so that the faster response to surprise in the
448 presence of pre-stimulus ripples might indicate that a prior prediction facilitates signalling of
449 prediction errors³⁰, and their propagation up the visual processing hierarchy. Further support
450 for this claim comes from the subsequent increased fusiform to hippocampus information
451 flow in high surprise as reflected in Granger causality for gamma activity from 150 to 650
452 post-stimulus, which we associate with bottom-up prediction error signalling. This is
453 compatible with a view that pre-stimulus hippocampal ripples modulate (or prime) the
454 fusiform to respond at earlier latencies to surprising stimuli (top-down effect), and the
455 fusiform post-stimulus gamma response to surprise feeds back to the hippocampus (bottom-
456 up effect). The nature of hippocampal ripple-triggered changes in cortical state remains to be
457 determined, although the simplicity of the current behavioural task lends itself to further
458 mechanistic interrogation using non-human animal models, where homologous predictive
459 coding mechanisms are evident^{69,70}.

460

461 Finally, we also observed post-stimulus hippocampal ripples, but did not, however, find a
462 relationship between these and behavioural measures or cortical activity. Different cortical
463 effects linked to pre- versus post-stimulus hippocampal ripples could imply that these ripples
464 arise in different neuronal populations whose outputs are routed differently. Therefore, it is
465 possible that post-stimulus ripples serve a different functional role^{40,71}, or facilitate
466 communication with other brain regions, such as the prefrontal cortex^{47,48}.

467

468 In conclusion, our findings speak to an important function of hippocampal ripples in
469 predictive processing, reporting the predictability or expected information gain of stimuli
470 (i.e., prediction errors) before they are encountered; thereby facilitating their propagation

471 through the visual cortex (in the absence of any memory demands). More specifically, our
472 results reveal an increase in ripple events in uncertain trials, prior to stimulus onset, and
473 subsequent modulation of cortical activity, pointing to enhanced hippocampal-cortical
474 communication facilitated by ripples that serves propagation of precise prediction errors.

475 Materials and Methods

476 *Participants*

477 Sixteen medication-resistant presurgical epilepsy patients (mean age = 38.9, SD = 11.5; 7
478 males) with depth electrodes surgically implanted to aid seizure focus localization took part
479 in the experiment. Data were acquired at two epilepsy centres. All patients signed informed
480 consent prior to participating. Implantation sites were chosen solely on the basis of clinical
481 criteria. Patients had normal or corrected-to-normal vision and had no history of head trauma
482 or encephalitis. All patients had electrodes implanted in the hippocampus. For patients
483 showing unilateral hippocampal sclerosis, only the non-pathological side was included in the
484 analysis, otherwise all hippocampi were radiologically normal on pre-operative MRI.

485

486 Of the 16 patients who completed the task, one patient was excluded from any analysis due to
487 poor performance on the task (less than 25% accuracy on all trials). We therefore analysed
488 electrophysiological responses from 15 patients. In total, we analysed contacts in the right
489 hippocampus from seven patients, and eight patients with contacts on the left side. Of these
490 15 patients, eight patients also had electrodes in the occipital cortex, and seven patients also
491 had contacts in the fusiform. Our sample size was not determined prior to the experiment, but
492 it is equal or larger than that reported in previous publications using cognitive tasks with
493 iEEG ^{53,72}. This study has been approved by the local ethics committees of Hospital Ruber
494 Internacional, Madrid, Spain and Kantonale Ethikkommission, Zurich, Switzerland (PB-
495 2016-02055).

496

497 *Stereotactic electrode implantation*

498 A contrast-enhanced MRI was performed pre-operatively under stereotactic conditions to
499 map vascular structures prior to electrode implantation, and to calculate stereotactic

500 coordinates for trajectories using the Neuroplan system (Integra Radionics). For patients
501 whose data was collected in Madrid (N = 12), DIXI Medical Microdeep depth electrodes
502 (multi-contact, semi rigid, diameter of 0.8 mm, contact length of 2 mm, inter-contact isolator
503 length of 1.5 mm) were implanted based on the stereotactic Leksell method. For patients
504 whose data was collected in Zurich (N = 3), the depth electrodes (1.3 mm diameter, 8
505 contacts of 1.6 mm length, and spacing between contact centres 5 mm; Ad-Tech, Racine, WI,
506 www.adtechmedical.com) were stereotactically implanted in the medial temporal lobes
507 (MTL).

508

509 *Data acquisition*

510 In Madrid, intracranial EEG (iEEG) activity was acquired using an XLTEK EMU128FS
511 amplifier (XLTEK, Oakville, Ontario, Canada). iEEG data were recorded at each electrode
512 contact site at a 500Hz sampling rate (online bandpass filter 0.1–150Hz) and referenced to
513 linked mastoid electrodes. For four patients, the data were recorded with a higher sampling
514 rate, but were later down-sampled to 500Hz. In Zurich, data were acquired using a Neuralynx
515 ATLAS system with a sampling rate of 4000Hz (online band-pass filter of 0.5–1000Hz)
516 against a common intracranial reference, and then down-sampled to 500Hz. Data from the
517 two centres were comparable, and we did not observe differences between centres in any of
518 the analysis reported in the main text.

519

520 *Electrode localization – hippocampus*

521 To localize electrodes with contacts in the hippocampus, we used the manual procedure
522 described previously⁷². For each patient, the post-electrode placement CT (post-CT) was co-
523 registered to the pre-operative T1-weighted MRI (pre-MRI). To optimize co-registration,
524 both brain images were first skull-stripped. For CTs this was done by filtering out all voxels

525 with signal intensities between 100 and 1300 HU. Skull stripping of the pre-MRI proceeded
526 by first spatially normalizing the image to MNI space employing the New Segment algorithm
527 in SPM8 (<http://www.fil.ion.ucl.ac.uk/spm>). The resultant inverse normalization parameters
528 were then applied to the brain mask from SPM8, to transform the brain mask into the native
529 space of the pre-MRI. All voxels in the pre-MRI that were outside the brain mask and with a
530 signal value in the top 15% were filtered out. The skull-stripped pre-MRI was then co-
531 registered and re-sliced to the skull-stripped post-CT. Next, the pre-MRI was affine registered
532 to the post-CT, thus transforming the pre-MRI image into native post-CT space. The two
533 images were then overlaid, with the post-CT thresholded such that only electrode contacts
534 were visible. For all patients, only contacts in the hippocampus head and body were selected.
535 For patients with multiple electrodes localised in the hippocampus, only the most anterior
536 contacts were used in the analyses (see Figure 1c). Electrode contacts for each patient are
537 shown in Figure S1.

538

539 *Electrode localization – cortical regions*

540 To localize electrodes with contacts in the occipital cortex and fusiform, we used a semi-
541 automatic procedure utilizing Lead-DBS⁶⁵ (lead-dbs.org). First, the post-operative CT was
542 registered to the pre-operative MRI using a two-stage linear registration (rigid followed by
543 affine) as implemented in Advanced Normalization Tools⁷³. The images were then normalized
544 to the MNI template based on the pre-MRI using the SyN registration approach as
545 implemented in ANTs. To reduce bias introduced by brain shift, the brain shift correction
546 implemented in Lead-DBS was performed on the post-operative CT. Manual pre-
547 reconstruction was then performed, in which the tip of each electrode and another point on
548 the electrode trajectory were marked manually, followed by automatic reconstruction guided
549 by the electrode specification (*i.e.*, number of contacts and spacing between them). The

550 reconstructed electrodes were then visually inspected and refined, and the processes iterated
551 in case of any misalignments. Once all electrodes (for any given patient) have been
552 reconstructed, they were visualized using Lead-Group⁷⁴. Following this process, each
553 electrode contact was associated with MNI coordinates. To identify contacts in our cortical
554 regions of interest, a custom MATLAB code, together with the findStructure function
555 (<https://alivelearn.net/?p=1456>), was used. Each MNI coordinate was associated with a label
556 from the Automated Anatomical Labeling (AAL) atlas. For occipital cortex, MNI coordinates
557 labelled as ‘inferior occipital’ or ‘middle occipital’ were used; for fusiform, the ‘fusiform’
558 label was selected. The selected contacts were then visually inspected with the AAL overlay
559 in MRICron, as well as in native space (see Figure 1d and S1).

560

561 *Behavioural task*

562 Patients performed a visuo-motor mapping task, consisting of 12 blocks with 40 trials per
563 block, using the same design as ¹⁹. Each trial included a brief presentation of a coloured
564 shape, for 500ms, with an inter-stimulus interval of 2200ms. In all trials within a block, two
565 colours and two shapes were combined to form four possible outcomes, with different stimuli
566 presented in the different blocks. Patients were asked to respond to the sampled item by
567 pressing a key to identify the target’s position in the row (Figure 1a). Each trial used an
568 independent sample from a distribution that remained constant within a block, but that varied
569 over blocks. There was no underlying sequence governing stimulus presentation, only the
570 relative proportions of stimuli were varied from block to block. Two information theoretic
571 measures, entropy and surprise, were then calculated (see Figure 1b). Surprise quantifies the
572 improbability of a given event:

573
$$I(x_i) = -\ln p(x_i)$$

574 Entropy quantifies the expected (running average of) surprise over all the trials:

575
$$H(X) = \sum -p(x_i) \ln p(x_i)$$

576 Patients were told the proportion of coloured-shapes presented within block was random, and
577 independent of the other blocks in the task. To account for non-specific time effects within
578 block, the mean entropy over all blocks was calculated for each patient. Trial number is
579 therefore accounted for by the inclusion of mean entropy values which are the same across
580 blocks. Therefore, for each trial, three values of interest were computed: entropy, surprise,
581 and mean entropy. These values were modelled from the perspective of an ideal Bayesian
582 observer, using the Dirichlet distribution ¹⁹. Only correct responses, given within 1s from
583 stimulus onset, were used for subsequent analyses.

584

585 *Electrophysiological data analysis*

586 *Pre-processing.* iEEG data analysis was carried out using the FieldTrip toolbox⁶⁸
587 (<https://www.fieldtriptoolbox.org>⁵⁴) running on MATLAB R2019b (the MathWorks, Natick,
588 MA, USA). For all patient and regions of interest, recordings were transformed to a bipolar
589 derivation by subtracting signal from adjacent electrode contacts within the region of interest
590 (hippocampus, occipital cortex, and fusiform). Previous studies demonstrate that bipolar
591 referencing optimizes estimates of local activity^{76,77} and connectivity patterns between brain
592 regions⁷⁸, as well as for analysis of sharp wave ripples⁵⁴. Data were epoched from -1s to 1s
593 with respect to stimulus onset (a time window selected *a priori*), demeaned and detrended.
594 For each region of interest, every epoch was visually inspected for artefacts caused by
595 epileptic spikes or electrical noise, first in the time domain and then in the time-frequency
596 domain. Trials with artefacts were excluded from all subsequent analyses. Note that for
597 analyses involving more than one region, only trials that were artefact-free in all regions were
598 used.

599

600 *Time-frequency analyses*

601 Time-resolved spectral decomposition was computed for each trial using 7 Slepian multi-
602 tapers for high frequencies ($\geq 35\text{Hz}$) and a single Hann taper for low frequencies ($< 35\text{Hz}$).
603 The selected Slepian tapers for the analysis of high frequencies were based on windows with
604 width of 0.4s and a 10Hz frequency smoothing. The time-resolved spectral estimation was
605 done in steps of 2.5Hz. No baseline correction was performed, given our interest in both pre-
606 and post-stimulus activity. Trial-wise time-frequency estimates were then entered into a
607 GLM; two predictors of interest (entropy, surprise) and a covariate (mean entropy) were used
608 to predict power at each time-frequency point. The parameter estimates for entropy, mean
609 entropy and surprise are proportional to the range these values can assume. This resulted in a
610 ‘first level’ beta-map (with size time x frequency) per predictor. The spectral activity was
611 then averaged over bipolar channels, within each region, for each patient (in some cases,
612 there was only one bipolar channel in each brain region). These beta-maps were then used for
613 statistical inference with a cluster-based permutation test with the maximum number of
614 permutations allowed by our sample size, up to a maximum of 5000 permutations. In each
615 permutation step, clusters were formed by temporal and frequency adjacency using a cluster-
616 forming threshold of $p = 0.05$. In each permutation step, a one sample two-tailed t-test
617 against a value of 0 (equivalent to $H_0: \beta = 0$), using a threshold of $p = 0.025$, was calculated
618 for each time-frequency estimate, separately for low (2.5–32.5Hz) and high (35–160Hz)
619 frequencies, as well as pre-stimulus (-1 to 0s) and post-stimulus (0 to 1s) time windows.
620 Gamma frequency band is used to refer to frequencies 30–100Hz, whereas high gamma refers
621 to effects above 100Hz. The precise frequency ranges (and associated time windows) that we
622 report for each significant effect are derived from a cluster-based permutation correction for
623 multiple comparisons.

624

625 *Sharp wave ripple analyses*

626 Ripples were detected using a previously established method (45; Figure S2a). Following
627 trial-wise artefact rejection and basic pre-processing (described above), the iEEG signal was
628 bandpass filtered between 80-120 Hz using a second-order Butterworth filter. A Hilbert
629 transformation was then applied to the filtered signal, extracting its instantaneous amplitude.
630 Ripples were identified as events with a maximum amplitude three standard deviations above
631 the mean, and with a duration of at least 25 ms. Ripples that were detected within 15 ms of
632 each other were merged. The start, peak and end time of each ripple were noted. To ensure
633 artefacts or interictal epileptiform discharges (IEDs; Figure S2b, S27-28) were not mistakenly
634 classified as ripples, we used an automated procedure as described in ⁵⁴ to identify and reject
635 IEDs. The iEEG signal was high-pass filtered at 200 Hz and a z-score was calculated based
636 on the gradient and amplitude of the filtered signal. Any time-point exceeding a z-score of 5
637 was marked as an IED, together with the 100 ms before and after the event. All IEDs were
638 excluded from the analysis, increasing the likelihood of the detected ripples being
639 physiological ⁵⁴. We have also applied another ripple detection method⁵¹ and replicated our
640 findings (see Extended Data for Figures 2, 4 and 5). For patients who had more than one
641 anterior hippocampal electrodes (e.g. head and body), we examined whether the same ripple
642 was picked up by the different electrodes (within 20ms). In line with previous findings in
643 rodents⁷⁹, we found the vast majority of ripples (96% on average) were not detected in the
644 adjacent electrode along the hippocampal long axis.

645

646 We then examined whether ripple occurrence was influenced by peri-stimulus time and
647 information-theoretic measures. To do so, a 2D histogram of ripple peaks count using peri-
648 stimulus time and entropy/surprise was derived for each patient. We normalised each
649 histogram by the total number of trials per entropy/surprise bin, to account for potential

650 imbalances. The normalised histograms were then averaged across participants and tested
651 against a uniform distribution using a Kolmogorov-Smirnov test. Next, we examined ripple
652 duration, calculated as ripple end point – ripple start point (both determined in the detection
653 algorithm as 2 z-scores above average). To identify the bins with the highest ripple counts,
654 we also performed a mixed-effects Gamma regression on the normalized ripple counts (as
655 they follow a right-skewed distribution). Ripple duration was examined as a function of peri-
656 stimulus time and entropy and surprise. This was done using generalised linear mixed-effects
657 models implemented by the lme4 package⁸⁰ in R (<https://www.r-project.org/>). Because ripple
658 duration follows a right-skewed distribution, we used a model from the Gamma family with a
659 random intercept for patient using the following syntax:

660 model <- glmer(rip_duration ~ entropy * peri_stim_time + surprise * peri_stim_time +
661 mean_entropy + (1|patient), family = Gamma(link=log)).

662 A similar approach using mixed-effects linear regression was used to examine RT, which was
663 normalized using log-transformation. This approach accommodates any individual
664 differences along participants (e.g. the overall ripple rate for each participant).

665

666 *Ripple-modulated cortical activity*

667 To examine the temporal relationship between hippocampal ripples and cortical responses,
668 we extracted time-frequency estimates in occipital cortex and fusiform with respect to peri-
669 ripple peak time (-0.2 to 0.2s, selected *a priori*), as described above for peri-stimulus
670 responses, for high and low frequencies. Due to the shorter time-window, the selected Slepian
671 tapers for the analysis of high frequencies were based on windows with width of 0.2s and a
672 10 Hz frequency smoothing. The time-resolved spectral estimation was done in steps of 5 Hz.
673 These time-frequency estimates were baseline corrected by calculating the relative change
674 with respect to a baseline period of -1.4 to -1s peri-stimulus. Averaged TF estimates across

675 patients were used for statistical inference using cluster-based permutations, as described
676 above. In each permutation step, a one sample two-tailed paired *t*-test was performed between
677 pre- and post-stimulus periods (threshold of $p = 0.025$). Next, to examine whether pre-
678 stimulus hippocampal ripples modulated post-stimulus cortical responses to surprise we used
679 the same GLM approach as that described above, fitting a trial-wise regression at each time-
680 frequency point with entropy, surprise and mean entropy as predictors (see *Time-frequency*
681 *analysis*).

682

683 *Granger causality analyses*

684 Finally, to evaluate the direction of information flow between the hippocampus and our
685 cortical regions of interest, we calculated spectral non-parametric Granger causality (GC) as a
686 measure of directed functional connectivity using the FieldTrip toolbox, on 500ms time-
687 windows centred on the induced responses observed to surprise in the fusiform gyrus and
688 hippocampus, and the induced responses to entropy in the occipital cortex and hippocampus.
689 For patients with multiple bipolar channels in any of the regions, the most medial and anterior
690 channel was used to compute GC. Briefly, time-resolved spectral decomposition was
691 computed using 9 Slepian multi-tapers (frequency range 2 to 80 Hz and 10 Hz smoothing).
692 The spectral transfer matrix was then obtained from the Fourier transformation of the data
693 and together with the noise covariance matrix they were used to calculate the total and
694 intrinsic power through which GC is computed. The resulting GC values were then log-
695 transformed to normalize the data for statistical inference. We then compared information in
696 high versus low entropy and surprise (using a median-split) in each direction (hippocampus
697 → cortex and cortex → hippocampus) with non-parametric cluster-based permutations (using
698 a dependent samples two-tailed *t*-test), employing the maximum number of permutations
699 available for each pair of regions.

700

701 **Data availability:** All data needed to generate the figures, and over which statistics were
702 computed, are available in the following Github repository:
703 <https://github.com/frdarya/GenerativeRipples>

704

705

706 **Code availability:** Analyses codes are available in the following Github repository:
707 <https://github.com/frdarya/GenerativeRipples>

708

709

710 References

711 1. Gregory, R. L. Perceptions as hypotheses. *Philosophical Transactions of the Royal*
712 *Society of London. B, Biological Sciences* **290**, 181–197 (1980).

713 2. Friston, K. J. & Kiebel, S. J. Predictive coding under the free-energy principle.
714 *Philosophical Transactions of the Royal Society B: Biological Sciences* **364**, 1211–
715 1221 (2009).

716 3. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive
717 science. *Behavioral and Brain Sciences* **36**, 181–204 (2013).

718 4. Friston, K. J. A theory of cortical responses. *Philosophical Transactions of the Royal*
719 *Society B: Biological Sciences* **360**, 815–836 (2005).

720 5. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional
721 interpretation of some extra-classical receptive-field effects. *Nat Neurosci* **2**, 79–87
722 (1999).

723 6. Mumford, D. On the computational architecture of the neocortex - I. The role of the
724 thalamo-cortical loop. *Biol Cybern* **65**, 135–145 (1991).

725 7. Yon, D. & Frith, C. D. Precision and the Bayesian brain. *Current Biology* **31**, R1026–
726 R1032 (2021).

727 8. Rao, R. P. N. An optimal estimation approach to visual perception and learning. *Vision*
728 *Res* **39**, 1963–1989 (1999).

729 9. Clark, A. The many faces of precision (Replies to commentaries on “Whatever next?
730 Neural prediction, situated agents, and the future of cognitive science”). *Front Psychol*
731 **4**, (2013).

732 10. Moran, R. J. *et al.* Free Energy, Precision and Learning: The Role of Cholinergic
733 Neuromodulation. *Journal of Neuroscience* **33**, 8227–8236 (2013).

734 11. Fitzgerald, T. H. B., Moran, R. J., Friston, K. J. & Dolan, R. J. Precision and neuronal
735 dynamics in the human posterior parietal cortex during evidence accumulation.
736 *Neuroimage* **107**, 219–228 (2015).

737 12. Hesselmann, G., Sadaghiani, S., Friston, K. J. & Kleinschmidt, A. Predictive Coding
738 or Evidence Accumulation? False Inference and Neuronal Fluctuations. *PLoS One* **5**,
739 e9926 (2010).

740 13. Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern completion in the
741 hippocampus to predictive coding in visual cortex. *Nat Neurosci* **1**–7 (2016)
742 doi:10.1038/nn.4284.

743 14. Dimakopoulos, V., Mégevand, P., Stieglitz, L. H., Imbach, L. & Sarnthein, J.
744 Information flows from hippocampus to auditory cortex during replay of verbal
745 working memory items. *Elife* **11**, (2022).

746 15. Barron, H. C., Auksztulewicz, R. & Friston, K. J. Prediction and memory: A predictive
747 coding account. *Prog Neurobiol* **192**, (2020).

748 16. Bornstein, A. M. & Daw, N. D. Cortical and Hippocampal Correlates of Deliberation
749 during Model-Based Decisions for Rewards in Humans. *PLoS Comput Biol* **9**, (2013).

750 17. Fuhrer, J. *et al.* Direct brain recordings reveal continuous. 1–14 (2021).

751 18. Schapiro, A. C., Turk-Browne, N. B., Norman, K. A. & Botvinick, M. M. Statistical
752 learning of temporal community structure in the hippocampus. *Hippocampus* **26**, 3–8
753 (2016).

754 19. Strange, B. A., Duggins, A., Penny, W., Dolan, R. J. & Friston, K. J. Information
755 theory, novelty and hippocampal responses: Unpredicted or unpredictable? *Neural*
756 *Networks* **18**, 225–230 (2005).

757 20. Barron, H. C., Dolan, R. J. & Behrens, T. E. J. Online evaluation of novel choices by
758 simultaneous representation of multiple memories. *Nat Neurosci* **16**, 1492–1498
759 (2013).

760 21. Kaplan, R. *et al.* The Neural Representation of Prospective Choice during Spatial
761 Planning and Decisions. *PLoS Biol* **15**, 1–26 (2017).

762 22. Axmacher, N. *et al.* Intracranial EEG Correlates of Expectancy and Memory
763 Formation in the Human Hippocampus and Nucleus Accumbens. *Neuron* **65**, 541–549
764 (2010).

765 23. Lisman, J. E. & Redish, A. D. Prediction, sequences and the hippocampus.
766 *Philosophical Transactions of the Royal Society B* **364**, 1193–1201 (2009).

767 24. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction.
768 *Trends Cogn Sci* **11**, 299–306 (2007).

769 25. Kay, K. & Frank, L. M. Three brain states in the hippocampus and cortex.
770 *Hippocampus* **29**, 184–238 (2019).

771 26. Frank, D. & Kafkas, A. Expectation-driven novelty effects in episodic memory.
772 *Neurobiol Learn Mem* **183**, 107466 (2021).

773 27. Dayan, P. Improving Generalization for Temporal Difference Learning: The Successor
774 Representation. *Neural Comput* **5**, 613–624 (1993).

775 28. Ekman, M., Kusch, S. & de Lange, F. P. Successor-like representation guides the
776 prediction of future events in human visual cortex and hippocampus. *bioRxiv* 124-
777 (2022) doi:<https://doi.org/10.1101/2022.03.23.485480>.

778 29. Moser, E. I., Kropff, E. & Moser, M. B. Place cells, grid cells, and the brain's spatial
779 representation system. *Annu Rev Neurosci* **31**, 69–89 (2008).

780 30. Bell, A. H., Summerfield, C., Morin, E. L., Malecek, N. J. & Ungerleider, L. G.
781 Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex. *Current
782 Biology* **26**, 2280–2290 (2016).

783 31. Arnal, L. H. & Giraud, A. L. Cortical oscillations and sensory predictions. *Trends
784 Cogn Sci* **16**, 390–398 (2012).

785 32. Bastos, A. M. *et al.* Canonical Microcircuits for Predictive Coding. *Neuron* **76**, 695–
786 711 (2012).

787 33. Chao, Z. C., Takaura, K., Wang, L., Fujii, N. & Dehaene, S. Large-Scale Cortical
788 Networks for Hierarchical Prediction and Prediction Error in the Primate Brain.
789 *Neuron* **100**, 1252-1266.e3 (2018).

790 34. Bastos, A. M. *et al.* Visual areas exert feedforward and feedback influences through
791 distinct frequency channels. *Neuron* **85**, 390–401 (2015).

792 35. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and
793 rhythm specificity for predictive routing. *Proc Natl Acad Sci U S A* **117**, 31459–31469
794 (2020).

795 36. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory retrieval for
796 immediate use and consolidation. *Nat Rev Neurosci* **19**, 744–757 (2018).

797 37. Liu, A. A. *et al.* A consensus statement on detection of hippocampal sharp wave
798 ripples and differentiation from other fast oscillations. (2022) doi:10.1038/s41467-
799 022-33536-x.

800 38. Swanson, R. A., Levenstein, D., McClain, K., Tingley, D. & Buzsáki, G. Variable
801 specificity of memory trace reactivation during hippocampal sharp wave ripples. *Curr
802 Opin Behav Sci* **32**, 126–135 (2020).

803 39. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic
804 memory and planning. *Hippocampus* **25**, 1073–1188 (2015).

805 40. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory retrieval for
806 immediate use and consolidation. *Nat Rev Neurosci* **19**, 744–757 (2018).

807 41. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during
808 ripples. *Nat Neurosci* **10**, 1241–1242 (2007).

809 42. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to
810 remembered goals. *Nature* **497**, 74–79 (2013).

811 43. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S. & Redish, A. D. Hippocampal
812 Replay Is Not a Simple Function of Experience. *Neuron* **65**, 695–705 (2010).

813 44. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal
814 cellular assemblies. *Nature* **469**, 397–401 (2011).

815 45. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S. & Redish, A. D. Hippocampal
816 Replay Is Not a Simple Function of Experience. *Neuron* **65**, 695–705 (2010).

817 46. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to
818 remembered goals. *Nature* **497**, 74–79 (2013).

819 47. Logothetis, N. K. *et al.* Hippocampal-cortical interaction during periods of subcortical
820 silence. *Nature* **491**, 547–553 (2012).

821 48. Nitzan, N., Swanson, R., Schmitz, D. & Buzsáki, G. Brain-wide interactions during
822 hippocampal sharp wave ripples. *Proc Natl Acad Sci U S A* **119**, e2200931119 (2022).

823 49. Kaplan, R. *et al.* Hippocampal Sharp-Wave Ripples Influence Selective Activation of
824 the Default Mode Network. *Current Biology* **26**, 686–691 (2016).

825 50. Silva, D., Feng, T. & Foster, D. J. Trajectory events across hippocampal place cells
826 require previous experience. *Nat Neurosci* **18**, 1772–1779 (2015).

827 51. Gillespie, A. K. *et al.* Hippocampal replay reflects specific past experiences rather than
828 a plan for subsequent choice. *Neuron* **109**, 3149-3163.e6 (2021).

829 52. Findlay, G., Tononi, G. & Cirelli, C. The evolving view of replay and its functions in
830 wake and sleep. *SLEEP Advances* **1**, 1–14 (2020).

831 53. Norman, Y. *et al.* Hippocampal sharp-wave ripples linked to visual episodic
832 recollection in humans. *Science (1979)* **365**, (2019).

833 54. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations
834 between the medial temporal lobe and neocortex retrieve human memory. *Science (1979)* **363**, 975–978 (2019).

835 55. Axmacher, N., Elger, C. E. & Fell, J. Ripples in the medial temporal lobe are relevant
836 for human memory consolidation. *Brain* **131**, 1806–1817 (2008).

837 56. Hick, W. E. On the Rate of Gain of Information. *Quarterly Journal of Experimental
838 Psychology* **4**, 11–26 (1952).

839 57. Fernández-Ruiz, A. *et al.* Long-duration hippocampal sharp wave ripples improve
840 memory. *Science (1979)* **364**, 1082–1086 (2019).

841 58. Haarsma, J. *et al.* Precision weighting of cortical unsigned prediction error signals
842 benefits learning, is mediated by dopamine, and is impaired in psychosis. *Mol
843 Psychiatry* **26**, 5320–5333 (2021).

844 59. Limanowski, J. Precision control for a flexible body representation. *Neurosci Biobehav
845 Rev* **134**, 104401 (2022).

846 60. Kok, P., Jehee, J. F. M. & de Lange, F. P. Less Is More: Expectation Sharpens
847 Representations in the Primary Visual Cortex. *Neuron* **75**, 265–270 (2012).

848 61. Friston, K. Hierarchical Models in the Brain. *PLoS Comput Biol* **4**, e1000211 (2008).

849 62. Friston, K. J. A theory of cortical responses. *Philosophical Transactions of the Royal
850 Society B: Biological Sciences* **360**, 815–836 (2005).

851 63. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during
852 ripples. *Nat Neurosci* **10**, 1241–1242 (2007).

853 64. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic
854 memory and planning. *Hippocampus* **25**, 1073–1188 (2015).

856 65. Diba, K. Hippocampal sharp-wave ripples in cognitive map maintenance versus
857 episodic simulation. *Neuron* **109**, 3071–3074 (2021).

858 66. Silva, D., Feng, T. & Foster, D. J. Trajectory events across hippocampal place cells
859 require previous experience. *Nat Neurosci* **18**, 1772–1779 (2015).

860 67. Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Ripples reflect
861 a spectrum of synchronous spiking activity in human anterior temporal lobe. *Elife* **10**,
862 1–25 (2021).

863 68. de Lange, F. P., Heilbron, M. & Kok, P. How Do Expectations Shape Perception?
864 *Trends Cogn Sci* **22**, 764–779 (2018).

865 69. Pezzulo, G., Parr, T. & Friston, K. The evolution of brain architectures for predictive
866 coding and active inference. *Philosophical Transactions of the Royal Society B:
867 Biological Sciences* **377**, (2022).

868 70. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional
869 interpretation of some extra-classical receptive-field effects. *Nat Neurosci* **2**, 79–87
870 (1999).

871 71. Ramirez-Villegas, J. F., Logothetis, N. K. & Besserve, M. Diversity of sharp-wave-
872 ripple LFP signatures reveals differentiated brain-wide dynamical events. *Proc Natl
873 Acad Sci U S A* **112**, E6379–E6387 (2015).

874 72. Méndez-Bértolo, C. *et al.* A fast pathway for fear in human amygdala. *Nat Neurosci*
875 **19**, 1041–1049 (2016).

876 73. Avants, B. B., Tustison, N. J. & Johnson, H. Advanced normalization tools (ants).
877 *Insight j* **2**, (2009).

878 74. Treu, S. *et al.* Deep brain stimulation: Imaging on a group level. *Neuroimage* **219**,
879 117018 (2020).

880 75. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source
881 Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological
882 Data. *Comput Intell Neurosci* **2011**, 1–9 (2011).

883 76. Hamamé, C. M. *et al.* Functional selectivity in the human occipitotemporal cortex
884 during natural vision: Evidence from combined intracranial EEG and eye-tracking.
885 *Neuroimage* **95**, 276–286 (2014).

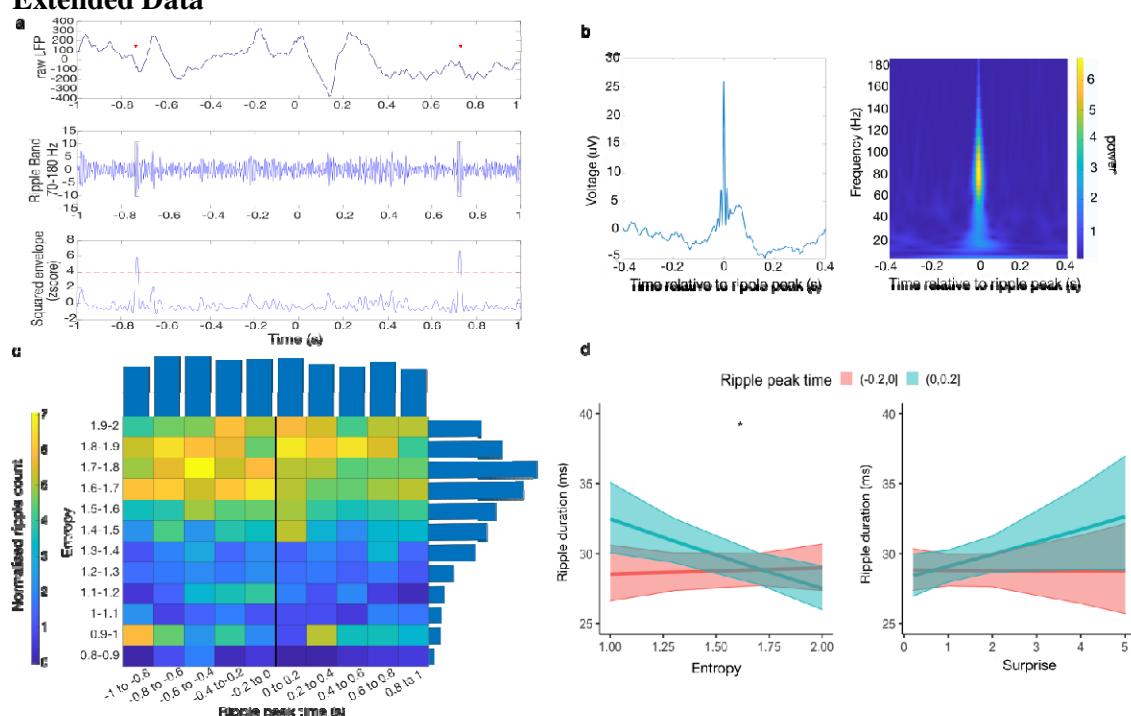
886 77. Shirhatti, V., Borthakur, A. & Ray, S. Effect of Reference Scheme on Power and
887 Phase of the Local Field Potential. *Neural Comput* **28**, 882–913 (2016).

888 78. Trongnetrponya, A. *et al.* Assessing Granger Causality in Electrophysiological Data:
889 Removing the Adverse Effects of Common Signals via Bipolar Derivations. *Front Syst
890 Neurosci* **9**, (2016).

891 79. Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S. & Buzsáki, G. Local generation
892 and propagation of ripples along the septotemporal axis of the hippocampus. *Journal
893 of Neuroscience* **33**, 17029–17041 (2013).

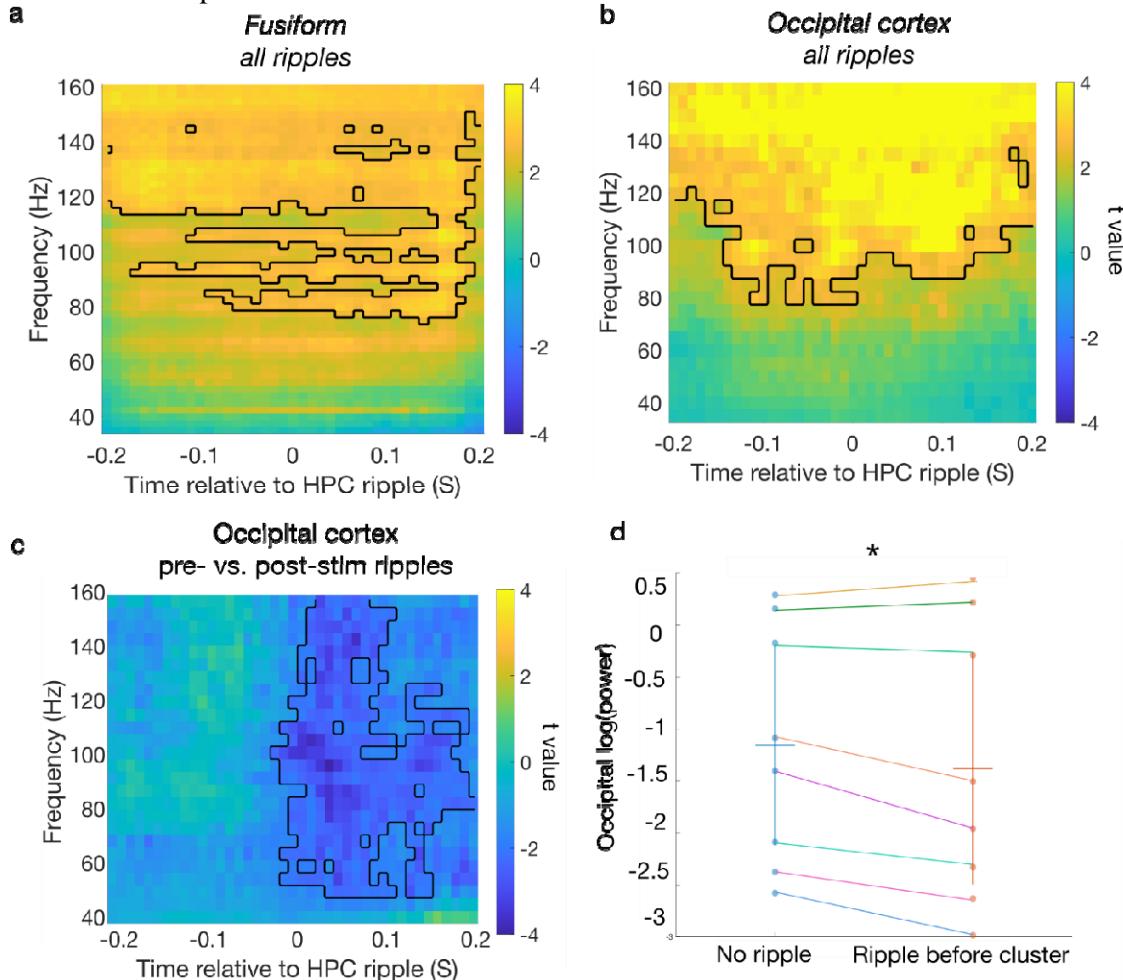
894 80. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models
895 Using lme4. *J Stat Softw* **67**, (2015).

896
897 **Acknowledgments:** We thank the patients who took part in the study and the
898 electroencephalography technicians at the Hospital Ruber Internacional and Swiss Epilepsy
899 Center in Zurich, as well as members of the Laboratory for Clinical Neuroscience for helpful
900 discussions.

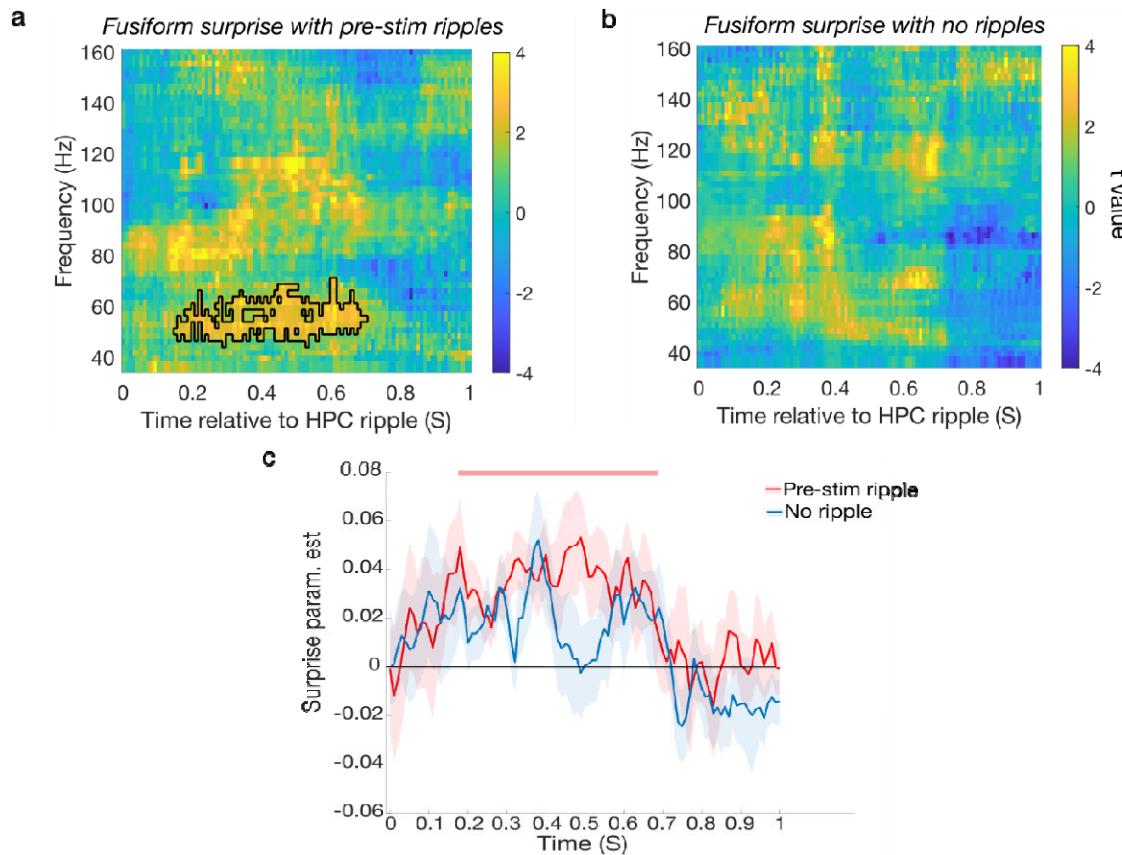

901
902 **Funding:** This project was funded by the European Research Council (ERC) under the
903 European Union’s Horizon 2020 research and innovation programme (ERC-2018-COG
904 819814). KJF is supported by funding for the Wellcome Centre for Human
905 Neuroimaging (Ref: 205103/Z/16/Z), a Canada-UK Artificial Intelligence

906 Initiative (Ref: ES/T01279X/1) and the European Union's Horizon 2020
907 Framework Programme for Research and Innovation under the Specific Grant
908 Agreement No. 945539 (Human Brain Project SGA3). This research was funded in part by
909 the Wellcome Trust [205103/Z/16/Z] and the Swiss National Science Foundation (funded by
910 SNSF 204651). For the purpose of Open Access, the author has applied a CC BY public
911 copyright license to any Author Accepted Manuscript version arising from
912 this submission.

913
914 **Author contributions:** B.A.S., K.J.F., designed the experiment. B.A.S., J.S., and R.T.
915 collected data. R.T., L.I., L.S., and A.G.-N. monitored patients and performed clinical
916 evaluation. N.L. and A.H. developed software to perform electrode localization. D.F., S.M.,
917 and B.A.S. performed analyses. D.F., K.J.F., and B.A.S wrote the paper with input from all
918 other authors.


919
920 **Competing interests:** The authors declare no competing interests.
921

922 **Extended Data**


923
924 **Extended Data for Figure 2 | Hippocampal ripples detected using the Norman et al.,**
925 **2019 algorithm.** a) an example ripple detected using the Norman et al (2019) method
926 showing the raw LFP trace (top), the ripple band signal (middle) and the standardised
927 envelope (bottom). b) Grand average raw field potential centred on ripple peak (left) and
928 peri-ripple wavelet spectrogram (n = 3858 ripple events from 15 participants). c) Normalized
929 ripple distribution across peri-stimulus time and entropy levels, accounting for the total
930 number of trials in each entropy bin. Normalized ripple count for each time and entropy bin is
931 colour-coded; average counts for each time and entropy bin are plotted as bars above and to
932 the right of the 2D distribution, respectively. The majority of ripples occurred pre-stimulus
933 and in high (but not highest) entropy levels. d) Ripple duration as a function of peri-stimulus
934 time and information-theoretic measures. Ripple duration increased with entropy (i.e.,
935

936 expected information gain) for pre-stimulus ripples, but decreased for post-stimulus ripples.
937 Shaded areas represent the 95% confidence intervals.

938
939 **Extended Data for Figure 4 | Peri-ripple cortical modulation using the Norman et al.,**
940 **2019 detection algorithm.** Cortical time-frequency analyses time-locked to the hippocampal
941 ripple peak time. Across all ripple trials there was an overall increase in high gamma power
942 in the fusiform (a) and occipital cortex (b) time-locked to hippocampal ripple. c) Comparing
943 trials with pre- versus post-stimulus hippocampal ripples, there was a reduction in occipital
944 gamma power in trials with pre-stimulus ripples, compared to post-stimulus ripples. d) mean
945 of log power in occipital cortex cluster positively associated with entropy in the pre-stimulus
946 time-window, split according to whether there was a hippocampal ripple just before the
947 significant effect or if there was not. Occipital gamma power was suppressed when there was
948 a hippocampal ripple compared to when there was not $t(7) = 2.54$, $p = 0.038$, Cohen's $d =$
949 0.9.

950

951

952

953

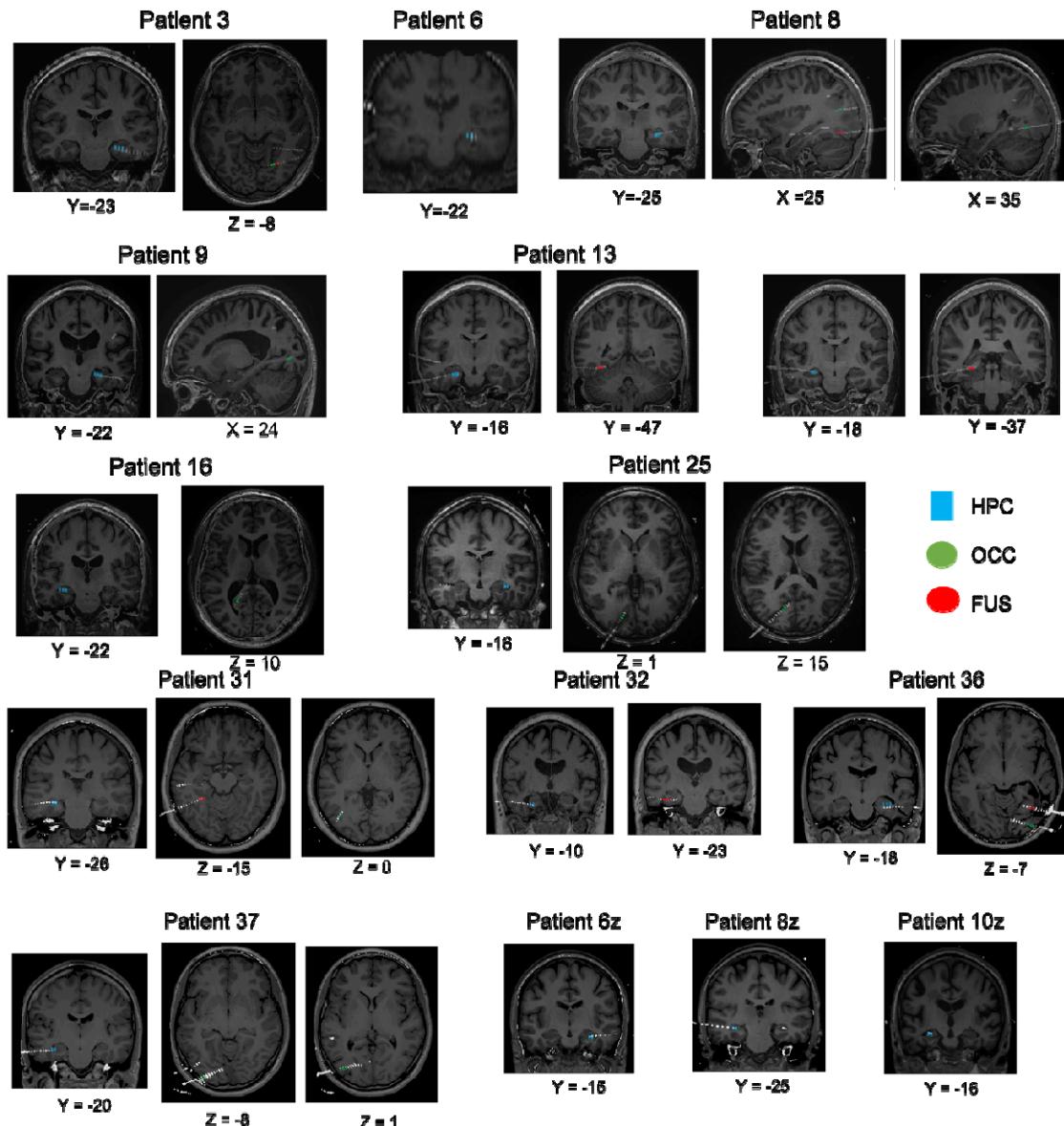
954

955

956

957

Extended Data for Figure 5 | Hippocampal pre-stimulus ripples modulate fusiform response to surprise using ripples detected with the Norman et al., 2019 algorithm. a) Fusiform post-stimulus association with surprise in trials with pre-stimulus ripple compared to (b) without pre-stimulus ripples (no significant response to surprise observed). c) The increase in fusiform gamma power 40-95 Hz (extracted from significant cluster in trials with pre-stimulus hippocampal ripples (red) compared to trials without ripples (blue).


958

959

960

961

Supplementary Materials

962

963

964

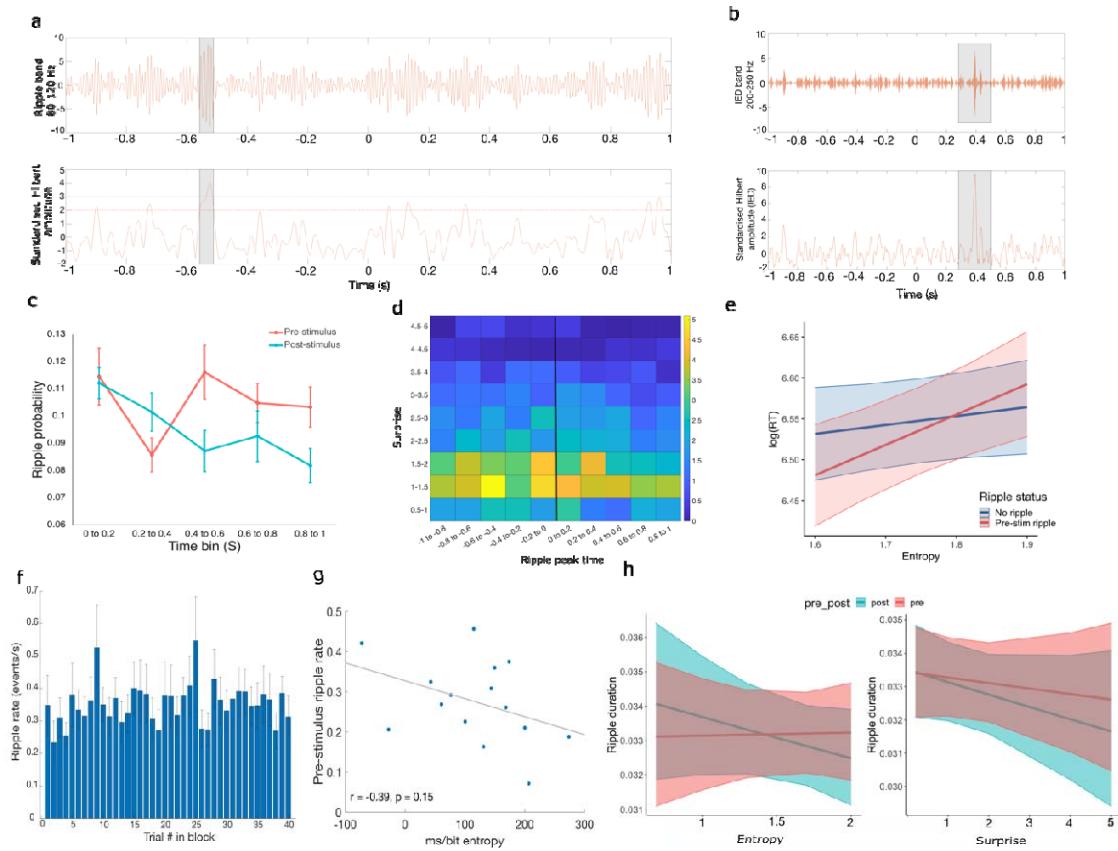
965

966

967

968

969


Figure S1 | Contact localisation. Patient-specific contacts in the hippocampus (HPC; yellow), occipital cortex (green; OCC) and fusiform (red; FUS). For all patients, post-operative CT images from each patient have been normalised and co-registered with their corresponding pre-operative MRI scans in MNI space and superimposed to display hippocampal, fusiform and occipital cortex contacts (CTs have been thresholded so as to only show electrode contacts).

970 **Table S1 | Patient demographic and clinical information.** M/F male, female: L/R left, right
 971

ID	age	gender	handedness	Aetiology	Lesion location
3	55	M	R	Focal dysplasia	Right temporal neocortex
6	48	M	R	Hippocampal sclerosis	Left hippocampal sclerosis
8	28	F	R	Focal dysplasia	Extensive right posterior dysplasia involving the convexity and medial aspect of parietal, occipital and posterior temporal lobes
9	38	M	R	Focal dysplasia	Right temporal lobe
13	42	F	R	Focal dysplasia	Right basal temporal cortex
15	35	F	R	Focal dysplasia	Left temporal pole
16	30	M	R	Reactive gliosis, diffuse microglia activation and small vessel vasculopathy	Medial wall of the left parietal region (precuneus and posterior cingulum)
25	29	M	R	Focal dysplasia	Right posterior temporobasal region
31	48	F	R	Drug-resistant epilepsy	Left frontal or fronto-temporal
32	59	M	R	Encephalocele + gliosis	Bilateral temporal pole (crisis registered only from the left side)
36	28	F	R	Focal epilepsy secondary to refractory right temporo-parietal hematoma	
37	24	F	L	Non-lesional	
6z	29	F	R	Unclear	
8z	30	F	R	Non-lesional	
10z	56	M	R	Hippocampal sclerosis	Right hippocampus

972
 973

974

975

976

977

978

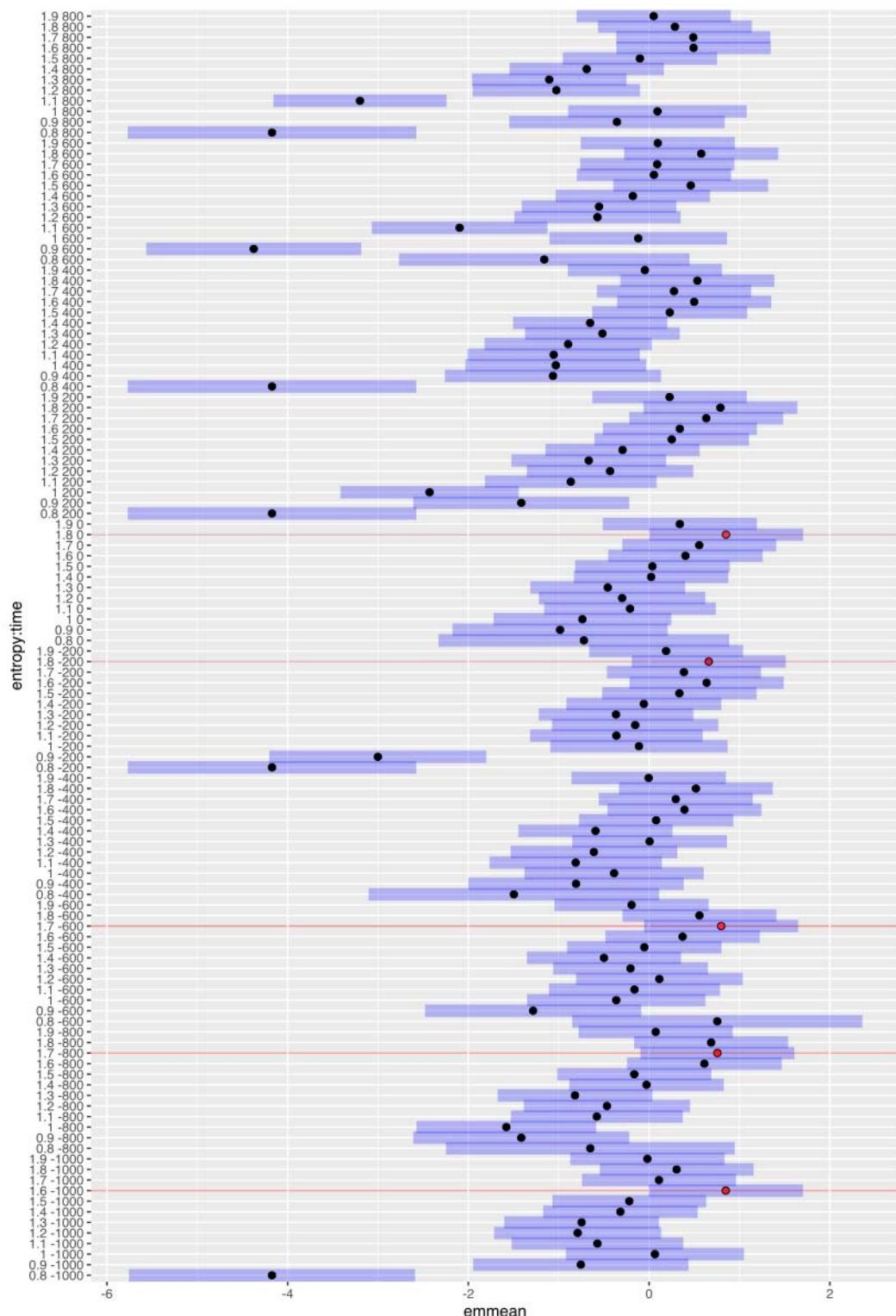
979

980

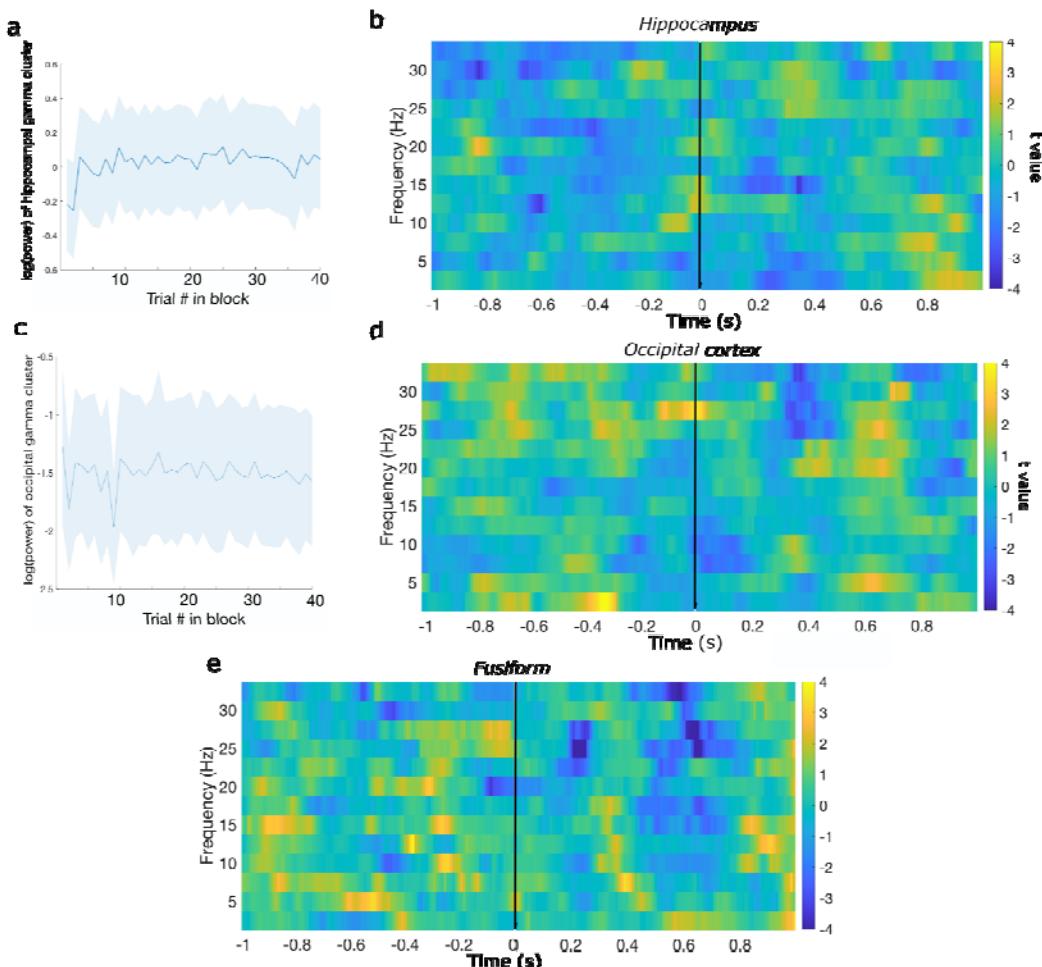
981

982

983


984

985


986

987

Figure S2 | Hippocampal ripples. **a)** An example of ripple detection, showing the filtered ripple band and Hilbert amplitude thresholds. Grey shading indicates ripple duration. **b)** An example interictal epileptiform discharge (IED). **c)** Ripple frequency as a function of time-bin and peri-stimulus time; a trend towards a main effect of peri-stimulus time ($p = 0.061$), with more ripples observed pre-stimulus. **d)** Normalised distribution of ripples as a function of peri-stimulus time and level of stimulus-bound surprise. **e)** Reaction time (log normalized) as a function of pre-stimulus ripple status and entropy. For trials with a pre-stimulus ripple there was a faster response, more pronounced (at trend level) for entropy levels around 1.6 to 1.8 bits. **f)** Ripple rate as a function of trial in block. **g)** Correlation between pre-stimulus ripple rate and increase in reaction time as a function of ms per bit of entropy. **h)** Ripple duration as a function peri-stimulus time and information-theoretic measures.

988 **Figure S3 | Estimated marginal means of the 2D ripple count as a function of entropy**
989 **and time bins.** The top 5 estimated marginal means are marked in red, blue shadings
990 represent upper and lower 95% confidence interval.

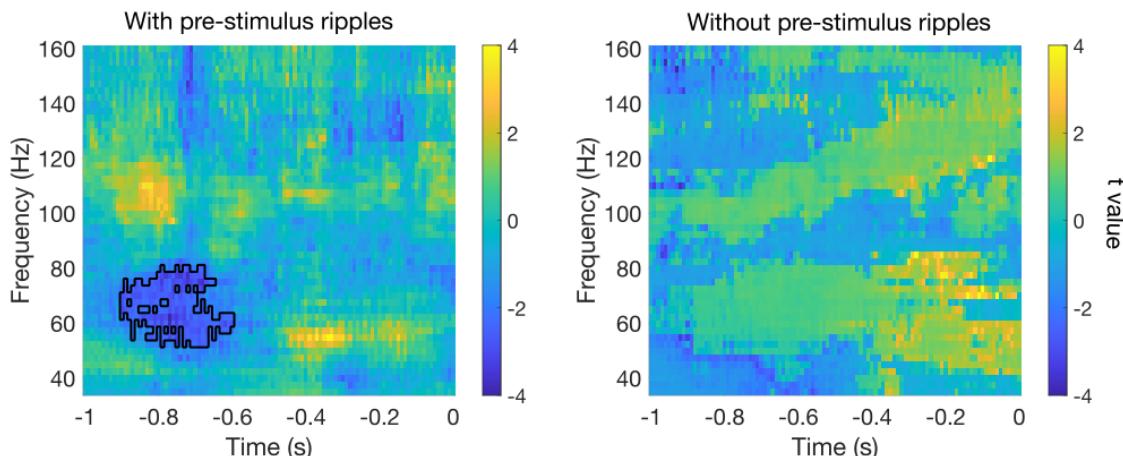
991

992

Figure S4 | Entropy-related responses. a) Log-transformed gamma power in hippocampal pre-stimulus entropy cluster (shown in Figure 3a), as a function of trial in block. b) Hippocampal lower frequencies entropy responses, pre- and post-stimulus. c) Log-transformed gamma power in occipital cortex pre-stimulus entropy cluster (shown in Figure 3b), as a function of trial in block. d) Occipital and e) Fusiform cortex lower frequencies entropy responses, pre- and post-stimulus.

993

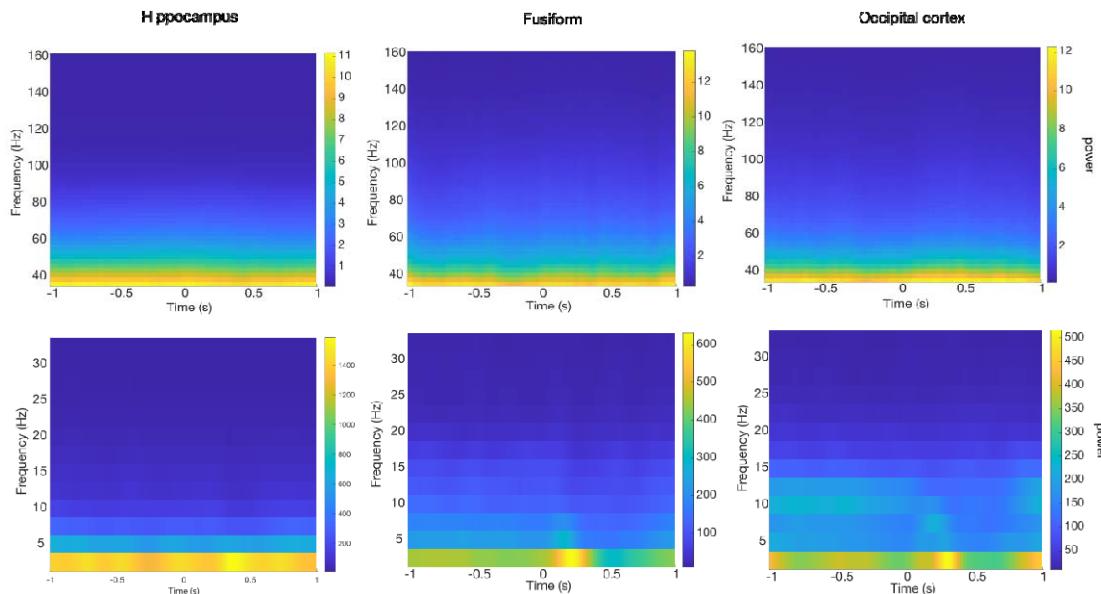
994


995

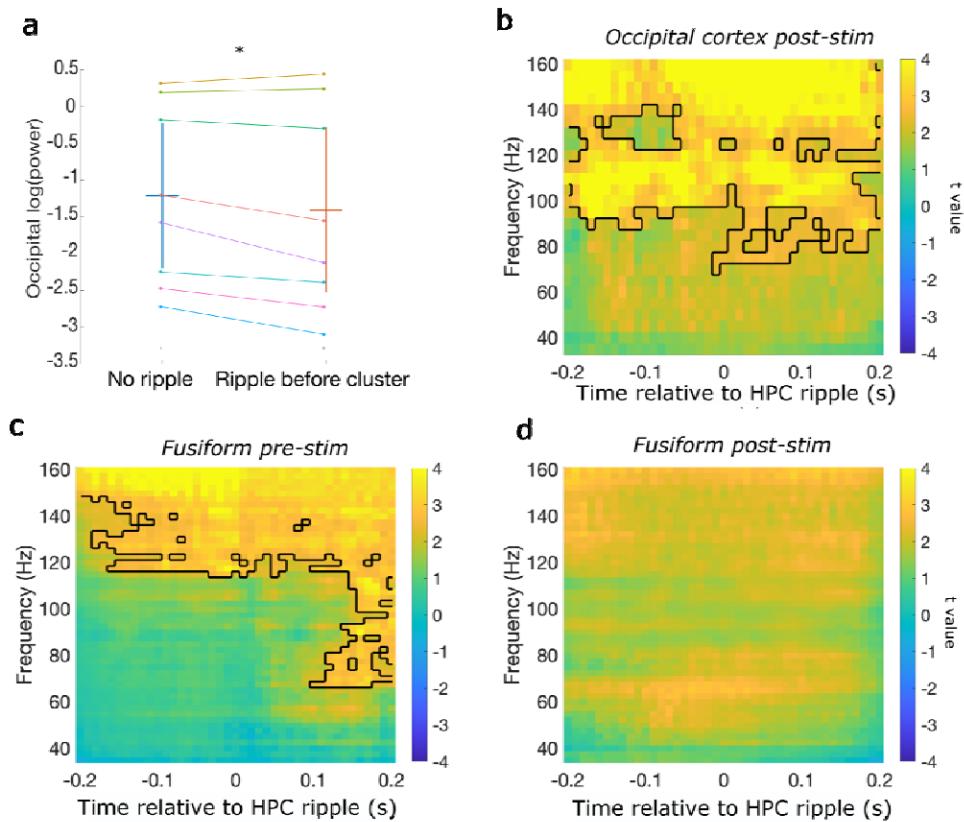
996

997

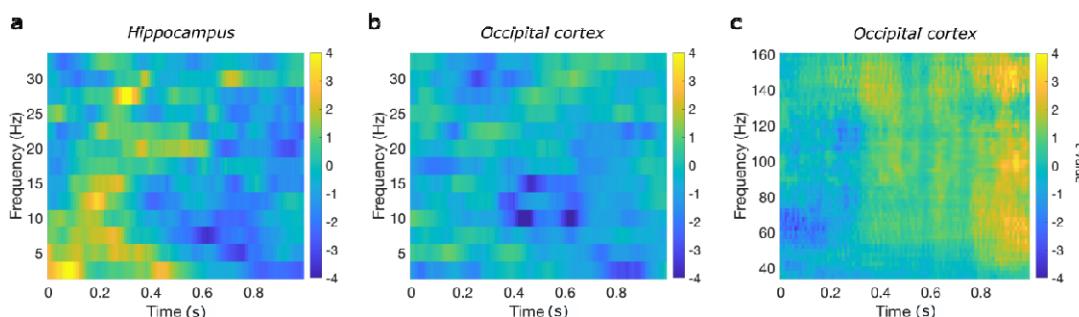
998


999

1000


1001 **Figure S5 | Pre-stimulus hippocampal response to entropy split by whether a pre-**
1002 **stimulus ripple was present.**

1003
1004



1005
1006 **Figure S6 | Raw spectrograms across all trials in each of the region of interest.**

1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

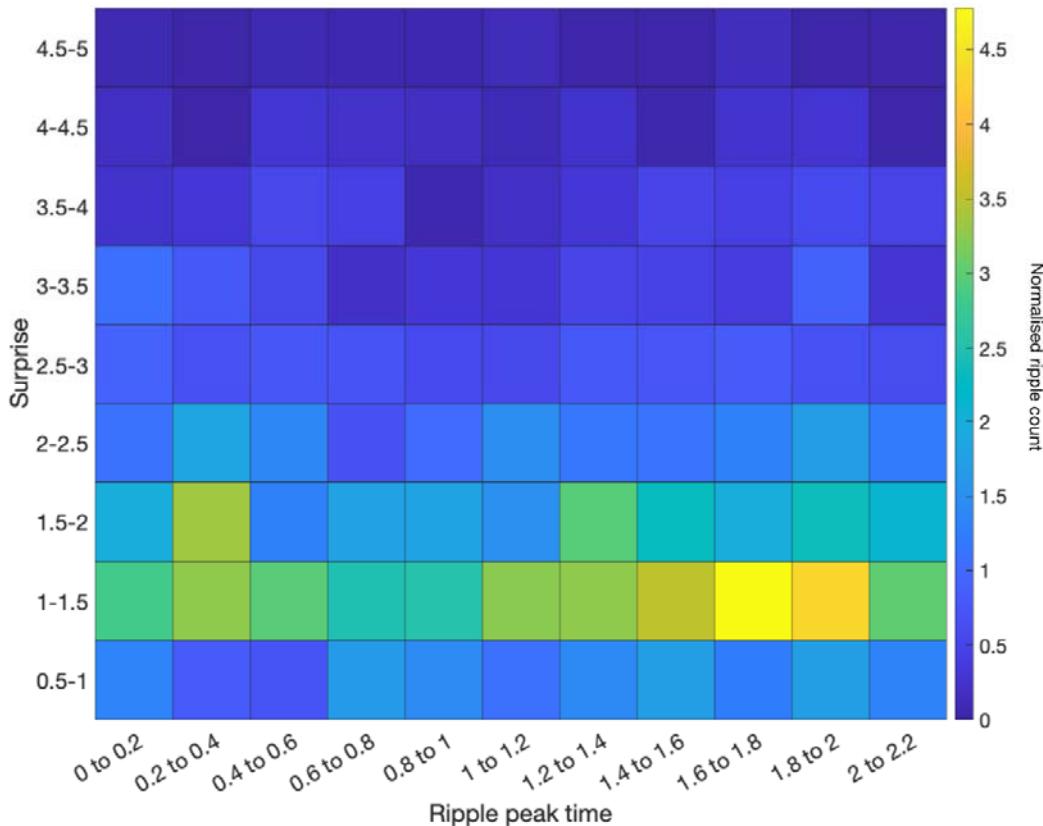
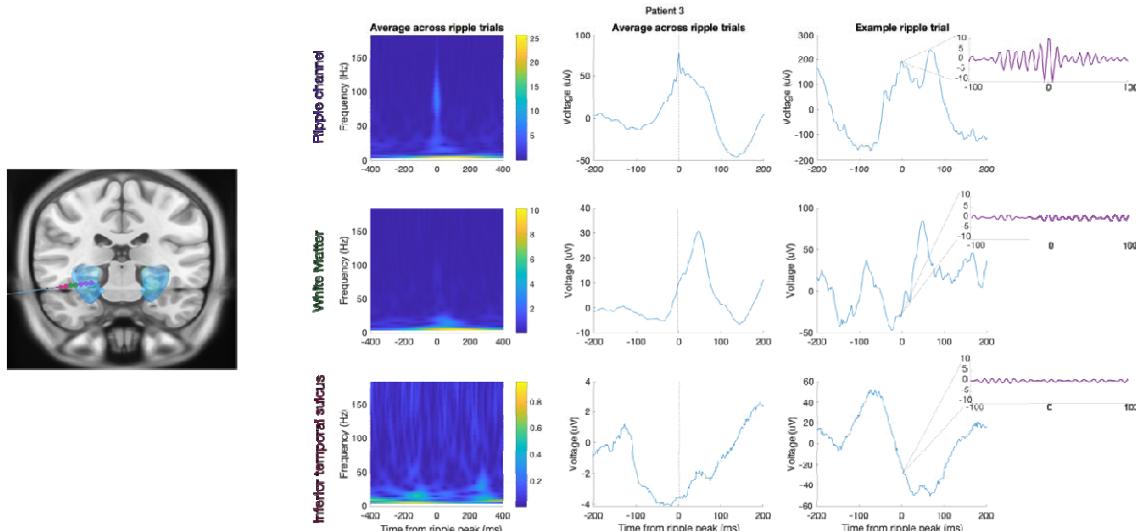

1021
1022
1023
1024

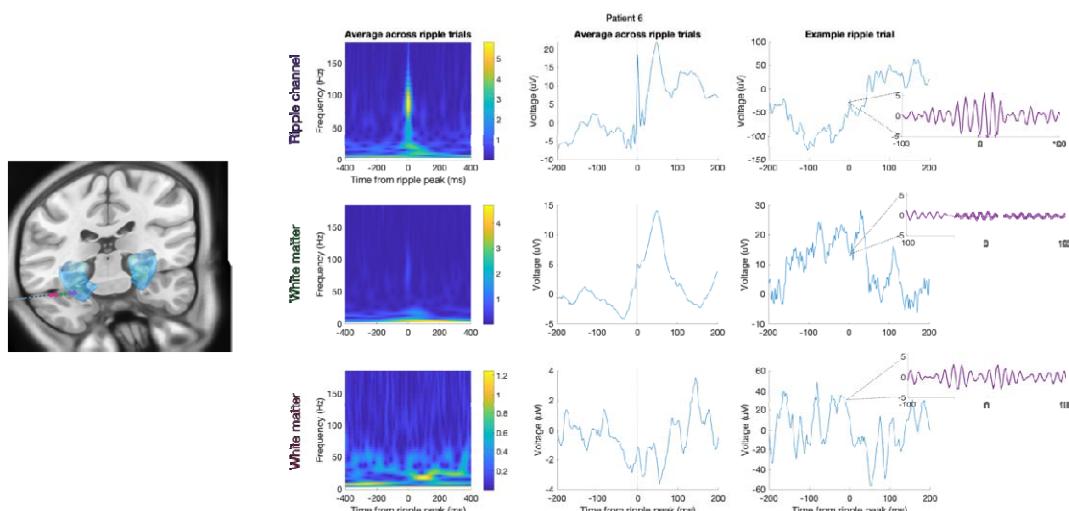
Figure S8 | Surprise responses. a) Hippocampal low frequency response to surprise. (b-c) Occipital cortex (b) low and (c) high frequencies response to surprise.



1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

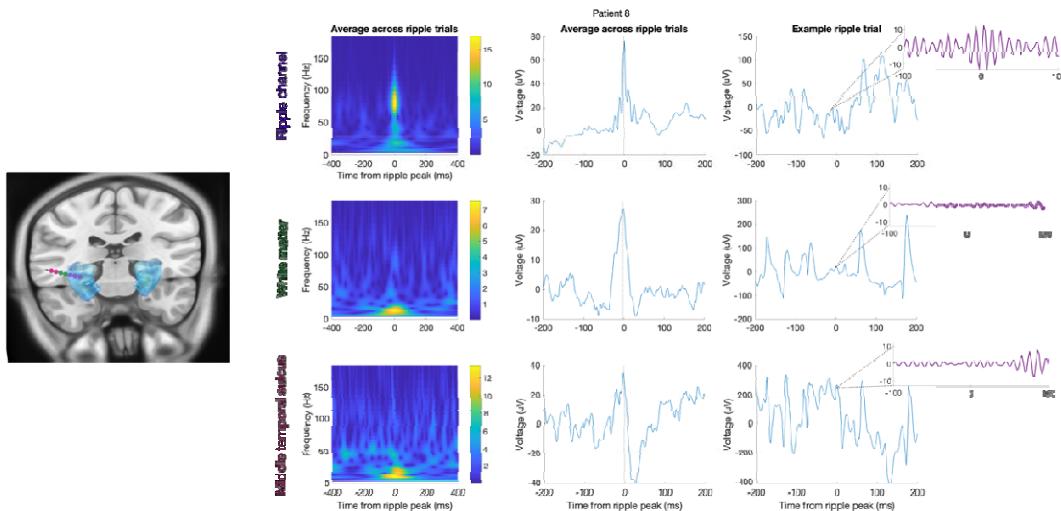
Figure S9 | Fusiform post-stimulus response to surprise is modulated by pre-stimulus hippocampal ripples and directed cortical-hippocampal information flow. **a**) Fusiform post-stimulus association with surprise in trials with pre-stimulus ripple earlier than **b**) without pre-stimulus ripples; **d-e**) Granger causality (GC) analysis between the hippocampus and occipital cortex for entropy. **f**) Granger causality from the hippocampus to fusiform for surprise. **g**) Partial directed coherence values for high (orange) versus low (green) surprise trials were significantly higher in the gamma band (shaded rectangle). This is analogous to the results presented in Figure 5e (main text), employing a Granger causal analysis.

1035
1036 **Figure S10 | Ripple distribution as a function of surprise.** If pre-stimulus ripples were
1037 reflecting post-processing of the previous stimulus, an increase in ripple count should be
1038 observed for high surprise later in the trial. When locked to stimulus onset and going forward
1039 in time (up to 2.2s post-stimulus onset, which corresponds to the time between presentation
1040 of successive stimuli), such an increase was not observed, i.e., the ripple rate in the top right
1041 quadrant of the plot shows a low ripple rate.. Instead, there is an increase in ripple count for
1042 low surprise (1-1.5 bits) at later time bins. This range of surprise values corresponds, on
1043 average, to a value of 1.67 bits of entropy. This plot is, therefore, consistent with the increase
1044 in ripple count in the pre-stimulus period for upcoming entropy values around 1.6 to 1.9 bits.
1045



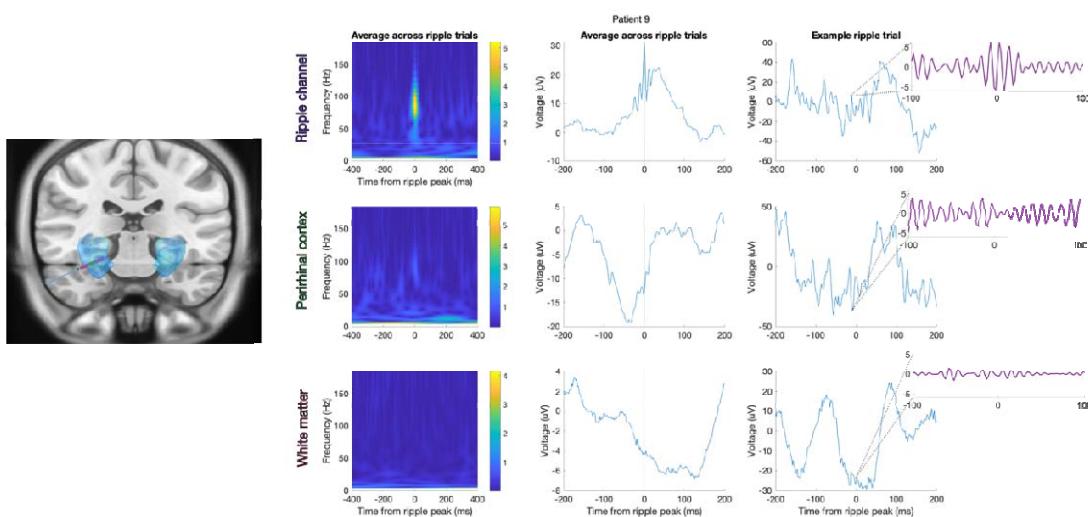
1046

1047 **Figure S11 | Averaged, and example single trial, ripple traces from hippocampal and**
1048 **adjacent contacts for Patient 3. Left.** Electrode localisation shown on the smoothed
1049 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1050 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1051 right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two
1052 contacts adjacent to the hippocampus are in white matter (medial contact)/inferior temporal
1053 sulcus (lateral contact). Red circles: the two subsequent contacts are in inferior temporal
1054 sulcus (medial contact)/white matter (lateral contact). **Right.** Top, bottom and middle rows:
1055 ripple-locked activity from the hippocampal (Ripple) channels (purple circles), and adjacent
1056 bipolar channels “White matter” (corresponding to green circles) and “inferior temporal
1057 sulcus” (corresponding to red circles) . The left and centre columns show the average peri-
1058 ripple wavelet spectrogram across all ripple trials (n = 320), and average raw field potential
1059 centred on ripple peak, respectively. The right column shows an example ripple trial (raw
1060 field potential centred on ripple peak) with an inset showing the ripple band activity (band
1061 pass filtered at 80-120Hz).


1062

1063

1064


1065 **Figure S12 | Averaged, and example single trial, ripple traces from hippocampal and**
1066 **adjacent contacts for Patient 6.** *Left.* Electrode localisation shown on the smoothed
1067 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1068 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1069 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1070 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1071 contacts are in white matter. *Right.* Top, bottom and middle rows: ripple-locked activity from
1072 the hippocampal (Ripple) channel (purple circles), and adjacent bipolar channels “White
1073 matter” (corresponding to green circles) and “White matter” (corresponding to red circles) .
1074 The left and centre columns show the average peri-ripple wavelet spectrogram across all
1075 ripple trials (n = 160), and average raw field potential centred on ripple peak, respectively.
1076 The right column shows an example ripple trial (raw field potential centred on ripple peak)
1077 with an inset showing the ripple band activity (band pass filtered at 80-120Hz).

1078 **Figure S13 | Averaged, and example single trial, ripple traces from hippocampal and**
1079 **adjacent contacts for Patient 8.** *Left.* Electrode localisation shown on the smoothed
1080 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1081 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1082 right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two
1083 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1084 contacts are in middle temporal sulcus. *Right.* Top, bottom and middle rows: ripple-locked activity from
1085 the hippocampal (Ripple) channels (purple circles), and adjacent bipolar channels “White matter” (corresponding to green circles) and “inferior temporal sulcus”
1086 (corresponding to red circles). The left and centre columns show the average peri-ripple
1087 wavelet spectrogram across all ripple trials (n = 210), and average raw field potential centred
1088 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1089 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1090 80-120Hz).
1091

1092 filtered

at

1093

1094

Figure S14 | Averaged, and example single trial, ripple traces from hippocampal and adjacent contacts for Patient 9. *Left.* Electrode localisation shown on the smoothed hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue) illustrates the contacts (coloured circles) from which data are presented in the panels on the right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two contacts adjacent to the hippocampus are in perirhinal cortex. Red circles: the two subsequent contacts are in white matter. *Right.* Top, bottom and middle rows: ripple-locked activity from the hippocampal (Ripple) channels (purple circles), and adjacent bipolar channels “Perirhinal cortex” (corresponding to green circles) and “White matter” (corresponding to red circles). The left and centre columns show the average peri-ripple wavelet spectrogram across all ripple trials ($n = 160$), and average raw field potential centred on ripple peak, respectively. The right column shows an example ripple trial (raw field potential centred on ripple peak) with an inset showing the ripple band activity (band pass filtered at 80-120Hz).

1095

1096

1097

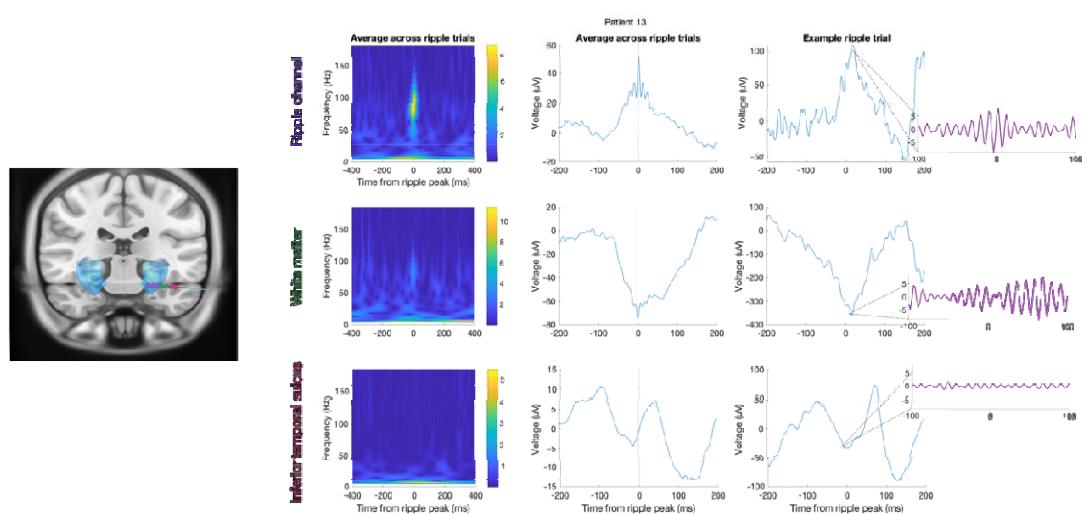
1098

1099

1100

1101

1102

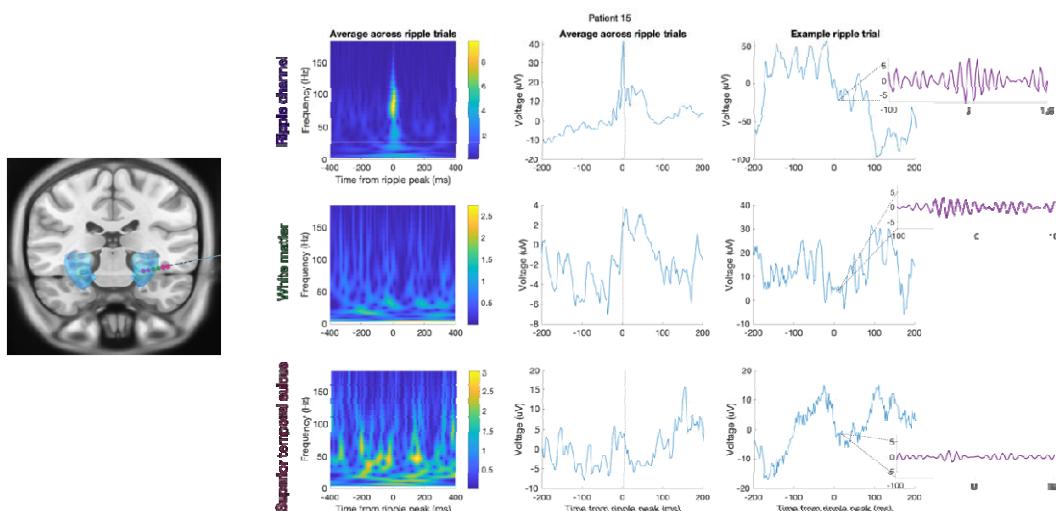

1103

1104

1105

1106

1107


1108

1109

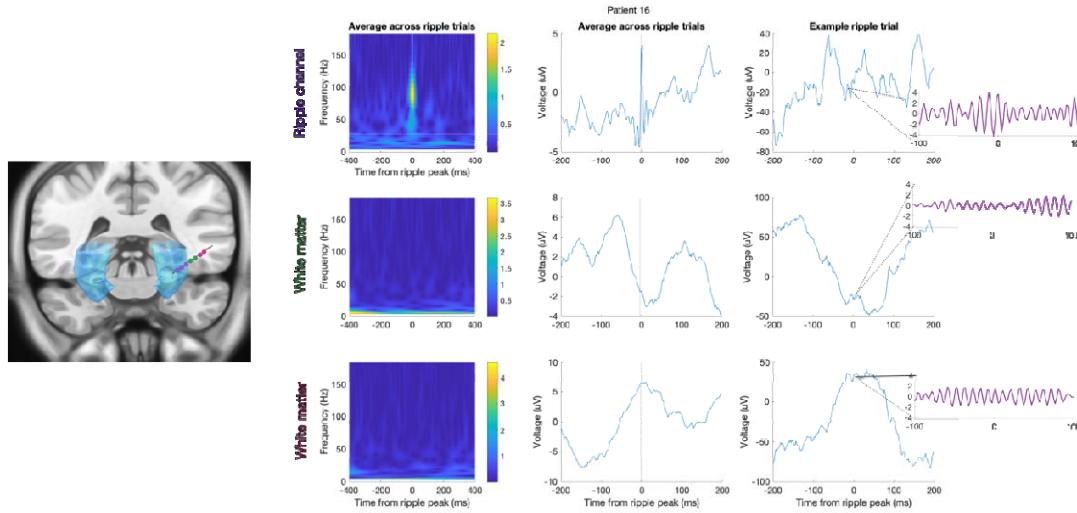
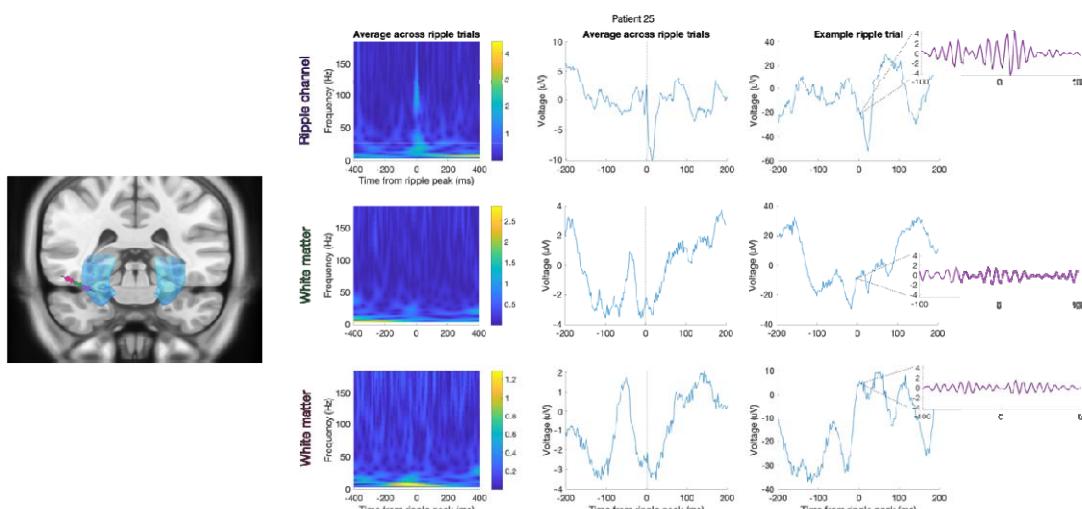
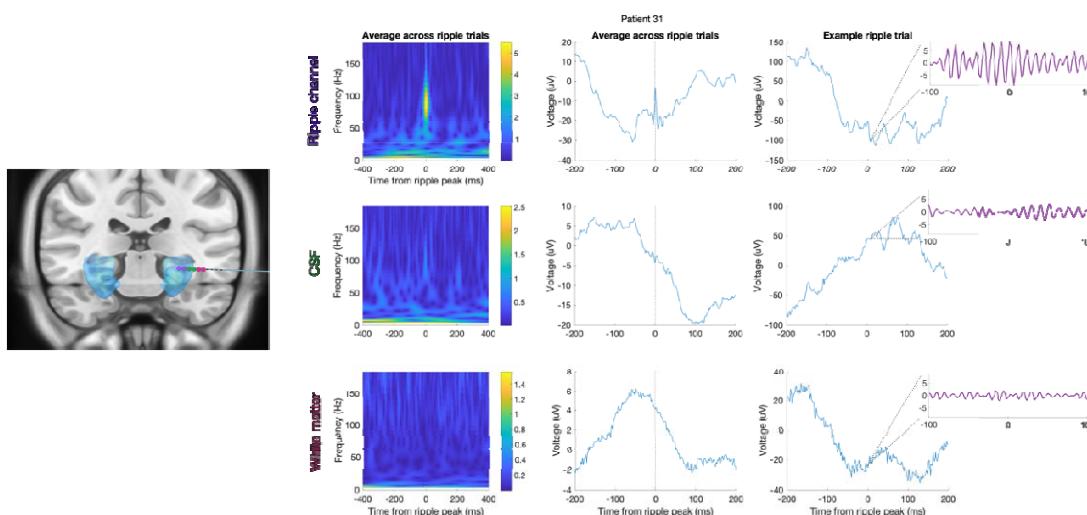

1110

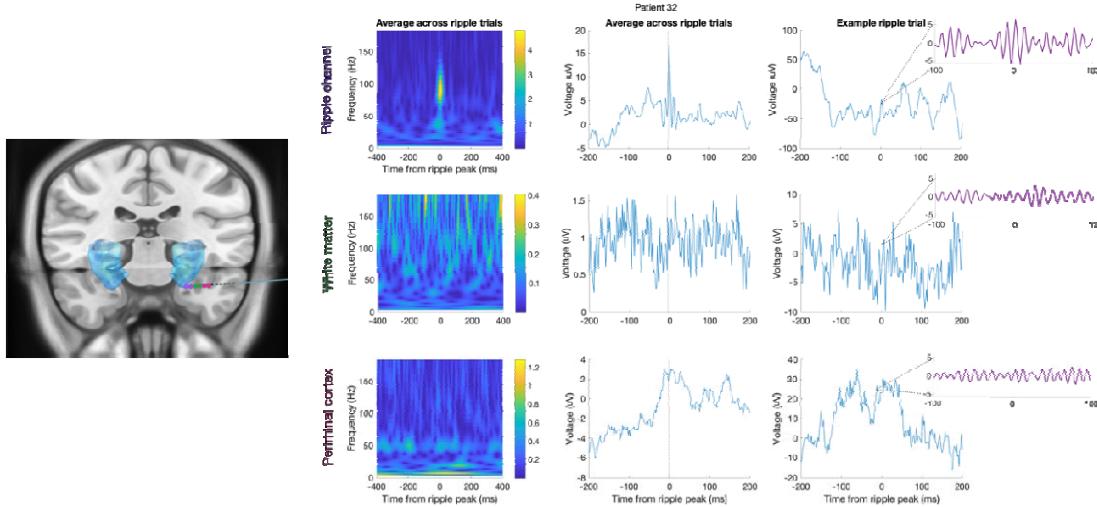
Figure S15 | Averaged, and example single trial, ripple traces from hippocampal and adjacent contacts for Patient 13. *Left.* Electrode localisation shown on the smoothed hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue) illustrates the contacts (coloured circles) from which data are presented in the panels on the right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two contacts adjacent to the hippocampus are in perirhinal cortex. Red circles: the two subsequent contacts are in white matter. *Right.* Top, bottom and middle rows: ripple-locked activity from the hippocampal (Ripple) channels (purple circles), and adjacent bipolar channels “Perirhinal cortex” (corresponding to green circles) and “White matter” (corresponding to red circles). The left and centre columns show the average peri-ripple wavelet spectrogram across all ripple trials ($n = 160$), and average raw field potential centred on ripple peak, respectively. The right column shows an example ripple trial (raw field potential centred on ripple peak) with an inset showing the ripple band activity (band pass filtered at 80-120Hz).


1111 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1112 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1113 right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two
1114 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1115 contacts are in inferior temporal sulcus. *Right*. Top, bottom and middle rows: ripple-locked
1116 activity from the hippocampal (Ripple) channels (purple circles), and adjacent bipolar
1117 channels “White matter” (corresponding to green circles) and “inferior temporal sulcus”
1118 (corresponding to red circles). The left and centre columns show the average peri-ripple
1119 wavelet spectrogram across all ripple trials ($n = 122$), and average raw field potential centred
1120 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1121 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1122 filtered at 80-120Hz).
1123

1124
1125 **Figure S16 | Averaged, and example single trial, ripple traces from hippocampal and**
1126 **adjacent contacts for Patient 15. Left.** Electrode localisation shown on the smoothed
1127 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1128 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1129 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1130 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1131 contacts are in superior temporal sulcus (medial contact)/white matter (lateral contact). *Right*.
1132 Top, bottom and middle rows: ripple-locked activity from the hippocampal (Ripple) channel
1133 (purple circles), and adjacent bipolar channels “White matter” (corresponding to green
1134 circles) and “Superior temporal sulcus” (corresponding to red circles). The left and centre
1135 columns show the average peri-ripple wavelet spectrogram across all ripple trials ($n = 169$),
1136 and average raw field potential centred on ripple peak, respectively. The right column shows
1137 an example ripple trial (raw field potential centred on ripple peak) with an inset showing the
1138 ripple band activity (band pass filtered at 80-120Hz).
1139
1140

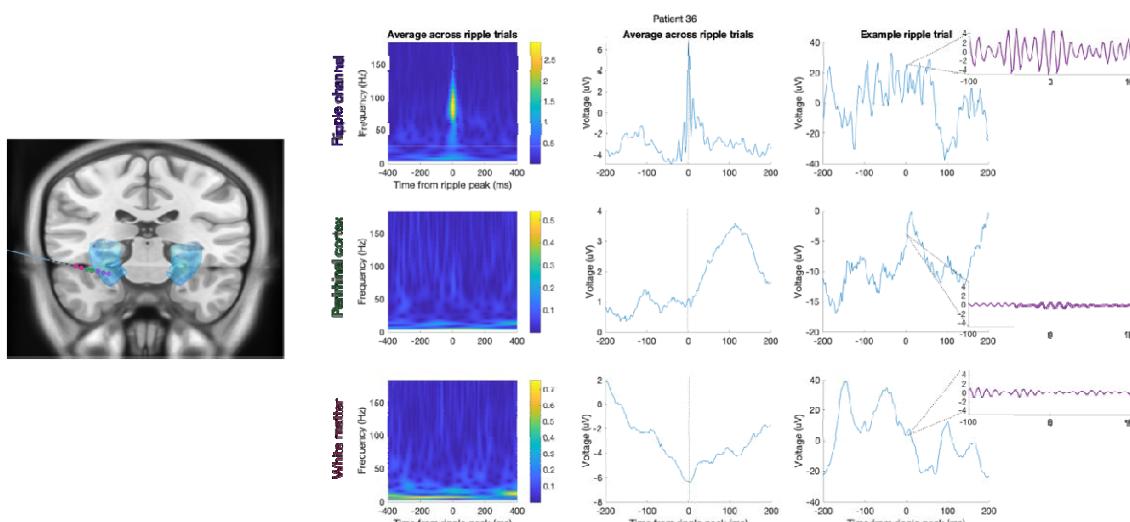


1141
1142 **Figure S17 | Averaged, and example single trial, ripple traces from hippocampal and**
1143 **adjacent contacts for Patient 16.** *Left.* Electrode localisation shown on the smoothed
1144 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1145 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1146 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1147 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1148 contacts are in white matter. *Right.* Top, bottom and middle rows: ripple-locked activity from
1149 the hippocampal (Ripple) channel (purple circles), and adjacent bipolar channels “White
1150 matter” (corresponding to green circles) and “White matter” (corresponding to red circles) .
1151 The left and centre columns show the average peri-ripple wavelet spectrogram across all
1152 ripple trials (n = 266), and average raw field potential centred on ripple peak, respectively.
1153 The right column shows an example ripple trial (raw field potential centred on ripple peak)
1154 with an inset showing the ripple band activity (band pass filtered at 80-120Hz).
1155
1156

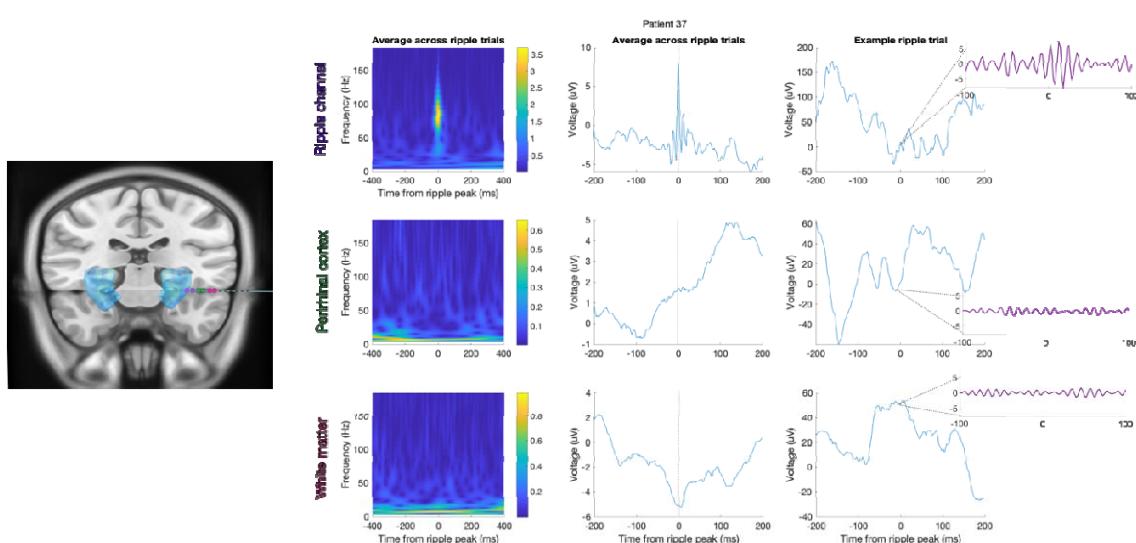


1157
1158 **Figure S18 | Averaged, and example single trial, ripple traces from hippocampal and**
1159 **adjacent contacts for Patient 25.** *Left.* Electrode localisation shown on the smoothed

1160 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1161 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1162 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1163 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1164 contacts are in white matter. *Right*. Top, bottom and middle rows: ripple-locked activity from
1165 the hippocampal (Ripple) channels (purple circles), and adjacent bipolar channels “White
1166 matter” (corresponding to green circles) and “White matter” (corresponding to red circles) .
1167 The left and centre columns show the average peri-ripple wavelet spectrogram across all
1168 ripple trials (n = 49), and average raw field potential centred on ripple peak, respectively. The
1169 right column shows an example ripple trial (raw field potential centred on ripple peak) with
1170 an inset showing the ripple band activity (band pass filtered at 80-120Hz).
1171
1172



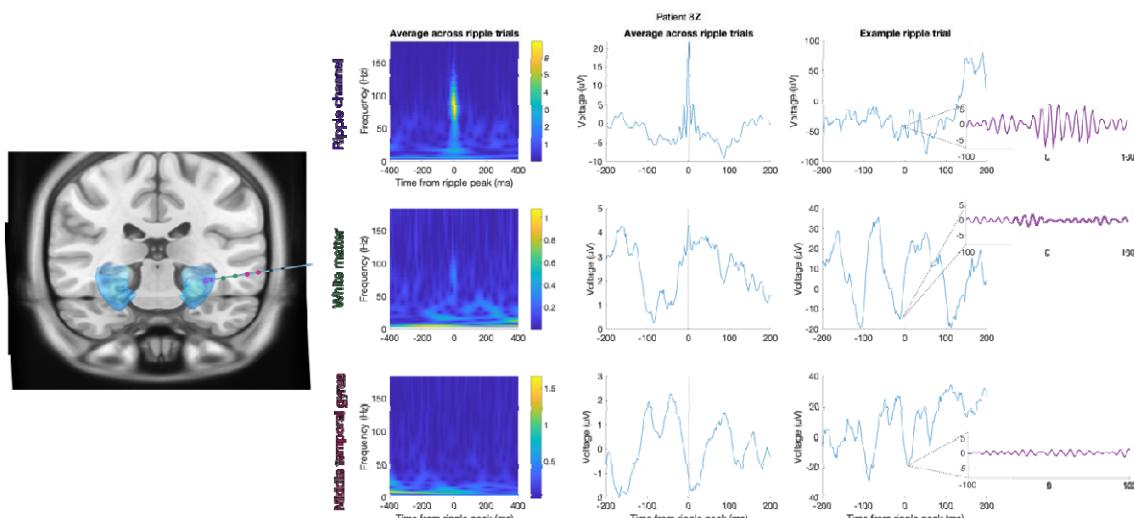
1173
1174 **Figure S19 | Averaged, and example single trial, ripple traces from hippocampal and**
1175 **adjacent contacts for Patient 31. Left.** Electrode localisation shown on the smoothed
1176 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1177 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1178 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1179 contacts adjacent to the hippocampus are in CSF (medial contact)/white matter (lateral
1180 contact). Red circles: the two subsequent contacts are in white matter. *Right*. Top, bottom and
1181 middle rows: ripple-locked activity from the hippocampal (Ripple) channel (purple circles),
1182 and adjacent bipolar channels “CSF” (corresponding to green circles) and “White matter”
1183 (corresponding to red circles). The left and centre columns show the average peri-ripple
1184 wavelet spectrogram across all ripple trials (n = 100), and average raw field potential centred
1185 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1186 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1187 filtered at 80-120Hz).
1188
1189


1190
1191 **Figure S20 | Averaged, and example single trial, ripple traces from hippocampal and**
1192 **adjacent contacts for Patient 32.** *Left.* Electrode localisation shown on the smoothed
1193 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1194 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1195 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1196 contacts adjacent to the hippocampus are in white matter (medial contact)/CSF (lateral
1197 contact). Red circles: the two subsequent contacts are in perirhinal cortex. *Right.* Top, bottom
1198 and middle rows: ripple-locked activity from the hippocampal (Ripple) channel (purple
1199 circles), and adjacent bipolar channels “White matter” (corresponding to green circles) and
1200 “Perirhinal cortex” (corresponding to red circles). The left and centre columns show the
1201 average peri-ripple wavelet spectrogram across all ripple trials ($n = 120$), and average raw
1202 field potential centred on ripple peak, respectively. The right column shows an example
1203 ripple trial (raw field potential centred on ripple peak) with an inset showing the ripple band
1204 activity (band pass filtered at 80-120Hz).

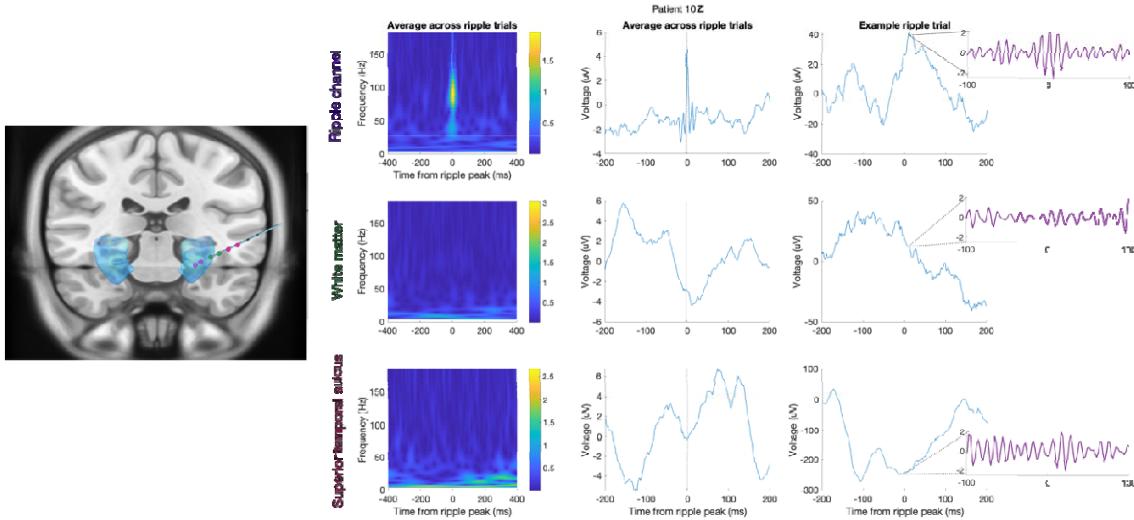
1205

1206
1207 **Figure S21 | Averaged, and example single trial, ripple traces from hippocampal and**
1208 **adjacent contacts for Patient 36.** *Left.* Electrode localisation shown on the smoothed
1209 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)

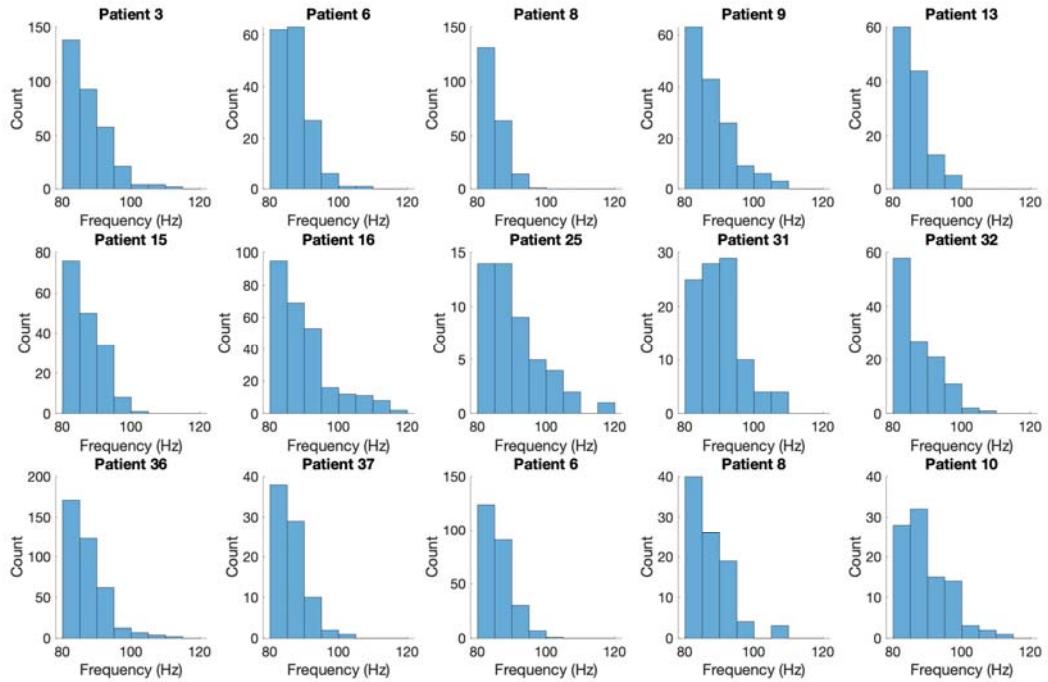
1210 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1211 right. Purple circles: 3 hippocampal contacts i.e., two bipolar channels. Green circles: the two
1212 contacts adjacent to the hippocampus are in perirhinal cortex. Red circles: the two subsequent
1213 contacts are in white matter (medial contact)/CSF (lateral contact). *Right*. Top, bottom and
1214 middle rows: ripple-locked activity from the hippocampal (Ripple) channels (purple circles),
1215 and adjacent bipolar channels “Perirhinal cortex” (corresponding to green circles) and “White
1216 matter” (corresponding to red circles). The left and centre columns show the average peri-
1217 ripple wavelet spectrogram across all ripple trials ($n = 381$), and average raw field potential
1218 centred on ripple peak, respectively. The right column shows an example ripple trial (raw
1219 field potential centred on ripple peak) with an inset showing the ripple band activity (band
1220 pass filtered at 80-120Hz).
1221



1222
1223 **Figure S22 | Averaged, and example single trial, ripple traces from hippocampal and**
1224 **adjacent contacts for Patient 37.** *Left*. Electrode localisation shown on the smoothed
1225 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1226 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1227 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1228 contacts adjacent to the hippocampus are in perirhinal cortex (medial contact)/white matter
1229 (lateral contact). Red circles: the two subsequent contacts are in white matter (medial
1230 contact)/inferior temporal sulcus (lateral contact). *Right*. Top, bottom and middle rows:
1231 ripple-locked activity from the hippocampal (Ripple) channel (purple circles), and adjacent
1232 bipolar channels “Perirhinal cortex” (corresponding to green circles) and “White matter”
1233 (corresponding to red circles). The left and centre columns show the average peri-ripple
1234 wavelet spectrogram across all ripple trials ($n = 80$), and average raw field potential centred
1235 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1236 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1237 filtered at 80-120Hz).
1238

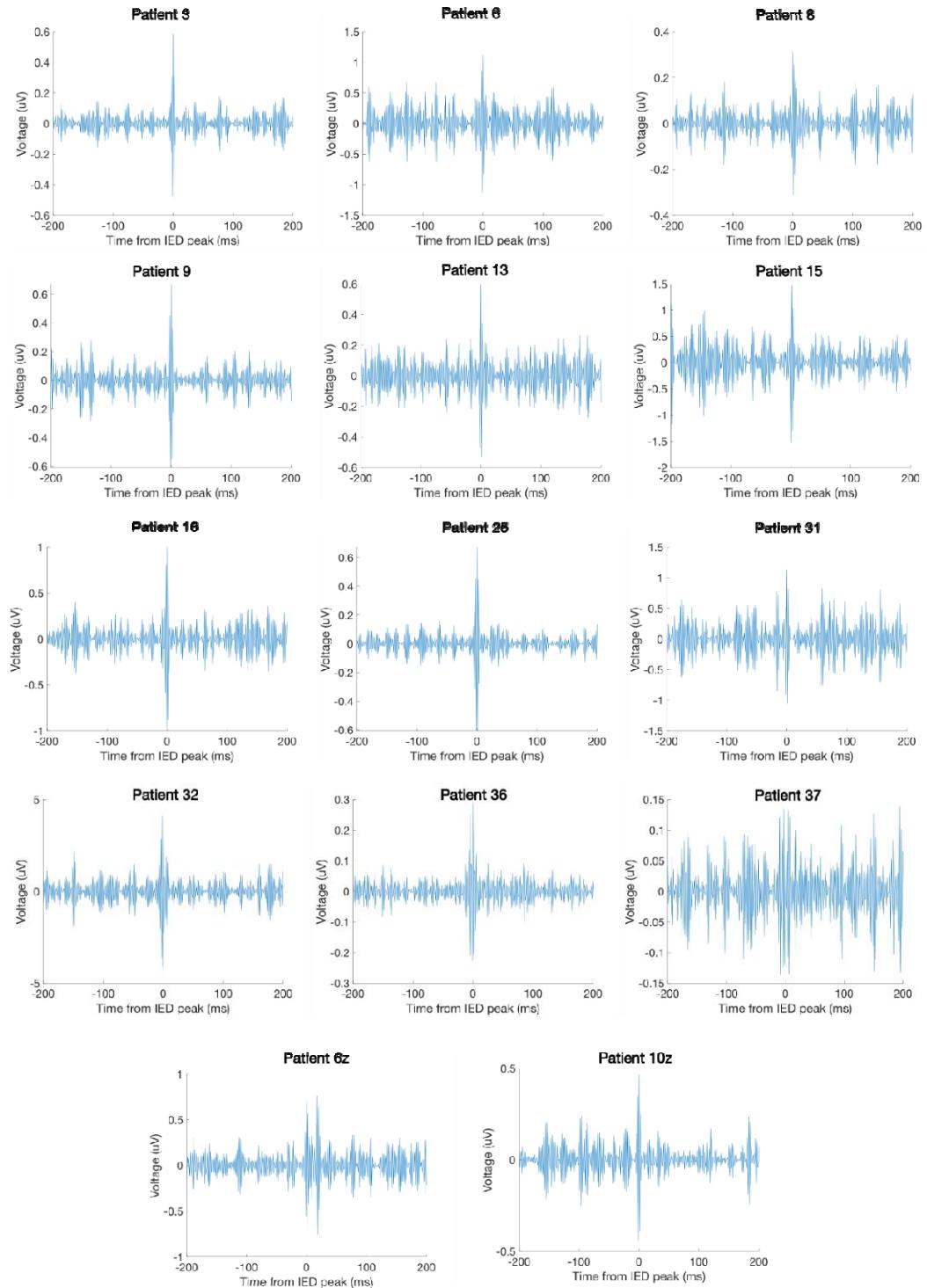

1239
1240 **Figure S23 | Averaged, and example single trial, ripple traces from hippocampal and**
1241 **adjacent contacts for Patient 6z.** *Left.* Electrode localisation shown on the smoothed
1242 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1243 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1244 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1245 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1246 contacts are in middle temporal gyrus. *Right.* Top, bottom and middle rows: ripple-locked
1247 activity from the hippocampal (Ripple) channel (purple circles), and adjacent bipolar
1248 channels “White matter” (corresponding to green circles) and “Middle temporal gyrus”
1249 (corresponding to red circles). The left and centre columns show the average peri-ripple
1250 wavelet spectrogram across all ripple trials (n = 253), and average raw field potential centred
1251 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1252 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1253 filtered at 80-120Hz).

1254



1255
1256 **Figure S24 | Averaged, and example single trial, ripple traces from hippocampal and**
1257 **adjacent contacts for Patient 8z.** *Left.* Electrode localisation shown on the smoothed
1258 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1259 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1260 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two

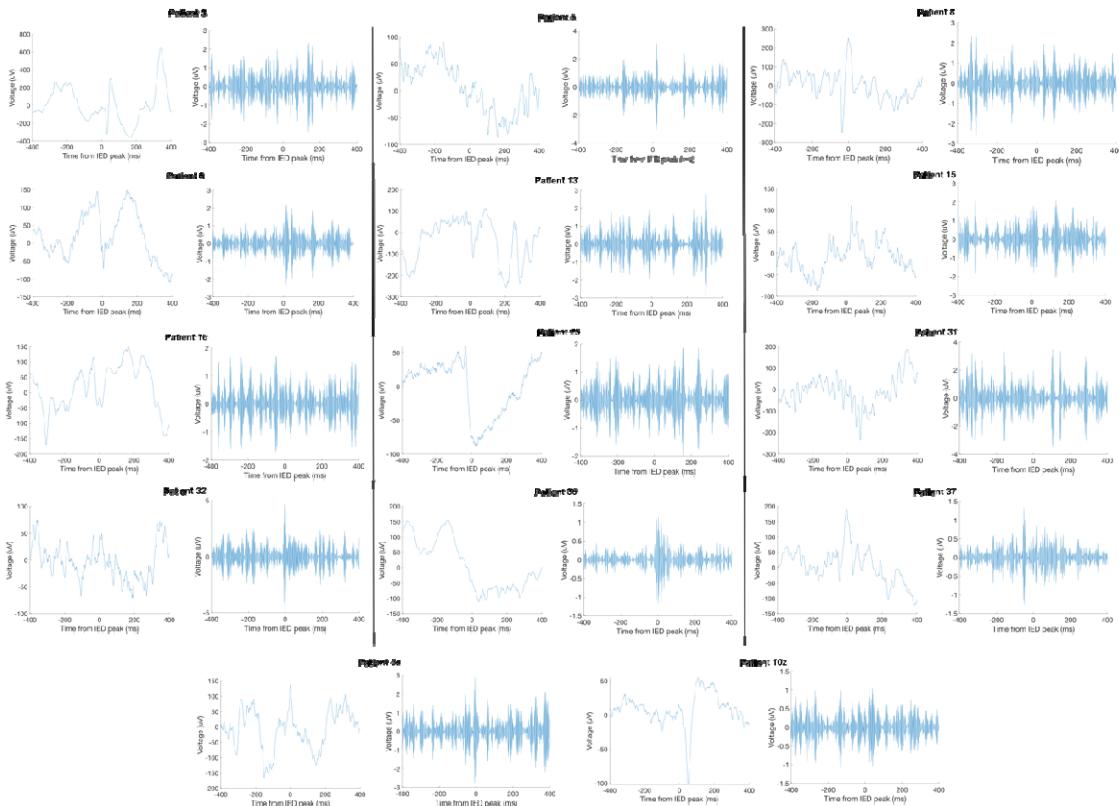
1261 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1262 contacts are in middle temporal gyrus (medial contact)/white matter (lateral contact). *Right*.
1263 Top, bottom and middle rows: ripple-locked activity from the hippocampal (Ripple) channel
1264 (purple circles), and adjacent bipolar channels “White matter” (corresponding to green
1265 circles) and “Middle temporal gyrus” (corresponding to red circles). The left and centre
1266 columns show the average peri-ripple wavelet spectrogram across all ripple trials (n = 92),
1267 and average raw field potential centred on ripple peak, respectively. The right column shows
1268 an example ripple trial (raw field potential centred on ripple peak) with an inset showing the
1269 ripple band activity (band pass filtered at 80-120Hz).



1270
1271 **Figure S25 | Averaged, and example single trial, ripple traces from hippocampal and**
1272 **adjacent contacts for Patient 10z.** *Left*. Electrode localisation shown on the smoothed
1273 hippocampus mask from the Automated Anatomical Labelling atlas for visualization; blue)
1274 illustrates the contacts (coloured circles) from which data are presented in the panels on the
1275 right. Purple circles: 2 hippocampal contacts i.e., one bipolar channel. Green circles: the two
1276 contacts adjacent to the hippocampus are in white matter. Red circles: the two subsequent
1277 contacts are in superior temporal sulcus. *Right*. Top, bottom and middle rows: ripple-locked
1278 activity from the hippocampal (Ripple) channel (purple circles), and adjacent bipolar
1279 channels “White matter” (corresponding to green circles) and “Superior temporal sulcus”
1280 (corresponding to red circles). The left and centre columns show the average peri-ripple
1281 wavelet spectrogram across all ripple trials (n = 120), and average raw field potential centred
1282 on ripple peak, respectively. The right column shows an example ripple trial (raw field
1283 potential centred on ripple peak) with an inset showing the ripple band activity (band pass
1284 filtered at 80-120Hz).
1285
1286

1287
1288
1289
1290
1291
1292

Figure S26 | Ripple peak frequency per patient. Histograms showing the distribution of each patient's ripples peak frequency. The majority of ripples occur at a frequency between 80 and 90 Hz (average ripple frequency over patients 87.5 Hz standard deviation 5.9).


1293

1294

1295

1296

Figure S27 | Mean IEDs per patient. High-pass filtered LFP (200Hz) across all detected IEDs, per patient.

1297
1298
1299
1300
1301

Figure S28 | Example IEDs per patient. Raw and high-pass filtered LFP (200Hz) for an example IED, per patient.