

1

2 Immune Evasion and Membrane Fusion of SARS-CoV-2 XBB Subvariants EG.5.1 and XBB.2.3

3

4 Julia N. Faraone^{1,2,3, #}, Panke Qu^{1,2,#}, Negin Goodarzi^{1,2}, Yi-Min Zheng^{1,2}, Claire Carlin⁴,

5 Linda J. Saif^{5,6,7}, Eugene M. Oltz⁸, Kai Xu^{1,2}, Daniel Jones⁹, Richard J. Gumina^{4,10,11},

6 and Shan-Lu Liu^{1,2,7,8,12,*}

7

8 ¹Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA

9 ²Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA

10 ³Molecular, Cellular, and Developmental Biology Program,
11 The Ohio State University, Columbus, OH 43210, USA

12 ⁴Department of Internal Medicine, Division of Cardiovascular Medicine,
13 The Ohio State University, Columbus, OH 43210, USA

14 ⁵Center for Food Animal Health, Animal Sciences Department, OARDC,
15 College of Food, Agricultural and Environmental Sciences,
16 The Ohio State University, Wooster, OH 44691, USA

17 ⁶Veterinary Preventive Medicine Department, College of Veterinary Medicine,
18 The Ohio State University, Wooster, OH 44691, USA

19 ⁷Viruses and Emerging Pathogens Program, Infectious Diseases Institute,
20 The Ohio State University, Columbus, OH 43210, USA

21 ⁸Department of Microbial Infection and Immunity, The Ohio State University,
22 Columbus, OH 43210, USA

23 ⁹Department of Pathology, The Ohio State University Wexner Medical Center,
24 Columbus, OH, USA.

25 ¹⁰Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University
26 Wexner Medical Center, Columbus, OH 43210, USA

27 ¹¹Department of Physiology and Cell Biology, College of Medicine, The Ohio State University
28 Wexner Medical Center, Columbus, OH
29 43210, USA

30
31 #Authors contributed equally to this work

32 ¹²contact

33
34 *Corresponding Author: liu.6244@osu.edu

35

36 **Abstract**

37 Immune evasion by SARS-CoV-2 paired with immune imprinting from monovalent mRNA
38 vaccines has resulted in attenuated neutralizing antibody responses against Omicron subvariants. In
39 this study, we characterized two new XBB variants rising in circulation — EG.5.1 and XBB.2.3, for their
40 ability of neutralization and syncytia formation. We determined the neutralizing antibody in sera of
41 individuals that received a bivalent mRNA vaccine booster, BA.4/5-wave infection, or XBB.1.5-wave
42 infection. Bivalent vaccination-induced antibodies neutralized efficiently ancestral D614G, but to a
43 much less extent, two new EG.5.1 and XBB.2.3 variants. In fact, the enhanced neutralization escape
44 of EG.5.1 appeared to be driven by its key defining mutation XBB.1.5-F456L. Notably, infection by
45 BA.4/5 or XBB.1.5 afforded little, if any, neutralization against EG.5.1, XBB.2.3 and previous XBB
46 variants — especially in unvaccinated individuals, with average neutralizing antibody titers near the
47 limit of detection. Additionally, we investigated the infectivity, fusion activity, and processing of variant
48 spikes for EG.5.1 and XBB.2.3 in HEK293T-ACE2 and CaLu-3 cells but found no significant differences
49 compared to earlier XBB variants. Overall, our findings highlight the continued immune evasion of new
50 Omicron subvariants and, more importantly, the need to reformulate mRNA vaccines to include XBB
51 spikes for better protection.

52

53 **Introduction**

54 The COVID-19 pandemic still lingers across the globe as its causative agent, severe acute
55 respiratory syndrome virus 2 (SARS-CoV-2), continues to evolve. This evolution challenges the efficacy
56 of current vaccines, requiring the constant surveillance and reassessment of current public health
57 measures against COVID-19. Since the emergence of the Omicron lineage of SARS-CoV-2 in 2022,
58 the virus has exhibited ever-increasing numbers of mutations that escape neutralizing antibodies
59 generated through both mRNA vaccination and SARS-CoV-2 convalescence¹⁻⁸. The XBB-lineage
60 subvariants, which evolved from the recombinant XBB variant in early 2023, have displayed particularly
61 strong immune escape^{3,5,7,9-18}. This new level of immune evasion has prompted the Food and Drug

62 Administration to recommend inclusion of XBB-lineage subvariants in future iterations of mRNA
63 vaccines¹⁹.

64 One concern in vaccine design is the role of immune imprinting, which impairs vaccine efficacy
65 against evolving variants. It has been demonstrated that the three-dose course of wildtype spike mRNA
66 vaccine may be biasing immune responses toward earlier lineages of the virus, impairing our ability to
67 mount effective responses toward more recent Omicron-lineage subvariants²⁰⁻²². The bivalent booster
68 dose, including both the wildtype and BA.4/5 spikes, augments the response toward Omicron
69 subvariants relative to the 3-dose course of monovalent vaccines, but only to a limited extent^{7,20,21}.
70 Additional doses of Omicron spike-based vaccines or exposure to Omicron-lineage variants has been
71 shown to more effectively counteract immune imprinting, suggesting the need to reconfigure current
72 approaches²⁰. The continued surveillance and characterization of emerging variants is critical for
73 informing such decisions.

74 This study focuses on two XBB-lineage variants currently on the rise, termed EG.5.1 and
75 XBB.2.3^{23,24}. The latter evolved directly from XBB, with two additional mutations in spike: D253G in the
76 N-terminal domain (NTD) and P521S in the receptor binding domain (RBD). EG.5.1 evolved from
77 XBB.1.5, with two additional mutations in spike: Q52H in the NTD and F456L in the RBD²⁵ (**Fig 1A**).
78 EG.5.1, in particular, has increased rapidly in circulation across the globe and is currently on track to
79 become a dominant variant²⁴. Our study sought to characterize these variants and their defining
80 mutations by investigating aspects of spike protein biology, including infectivity, fusogenicity, and
81 escape from neutralizing antibodies in bivalent vaccinated sera, BA.4/5-wave convalescent sera, and
82 XBB.1.5-wave convalescent sera, as well as the monoclonal antibody (mAb) S309. We compare these
83 attributes to spikes from the ancestral D614G and late-evolved Omicron subvariants BA.4/5, XBB,
84 XBB.1.5, and XBB.1.16.

85

86 **Results**

87 *EG.5.1 and XBB.2.3 have comparable infectivity in HEK293T-ACE2 and CaLu-3 cells*

88 We first determined the infectivity of pseudotyped lentiviruses bearing each spike in HEK293T
89 cells expressing human ACE2 (HEK293T-ACE2), as well as the human lung epithelial carcinoma cell
90 line CaLu-3. In HEK293T-ACE2 cells, EG.5.1 exhibited slightly higher infectivity relative to the parental
91 subvariant XBB.1.5, with a 2.1-fold increase ($p < 0.05$) (**Fig 1B**). This enhancement appears to be
92 largely driven by the XBB.1.5-Q52H single mutation, which exhibited a 1.4-fold increase relative to
93 XBB.1.5 ($p > 0.05$), while XBB.1.5-F456L alone did not cause any increase in infectivity relative to
94 XBB.1.5 (**Fig 1B**). While XBB.2.3 exhibited comparable infectivity relative to XBB ($p > 0.05$), two single
95 mutations, XBB-D253G and XBB-P521S, conferred an increased titer relative to XBB of 2.5-fold ($p >$
96 0.05) and 1.7-fold ($p < 0.01$), respectively. In CaLu-3 cells, all XBB variants, including EG.5.1 and
97 XBB.2.3, remained significantly lower in infectivity than D614G ($p < 0.001$) (**Fig. 1C**), as seen previously
98 for Omicron-lineage variants^{5-7,26,27}. EG.5.1 and its single mutations, XBB.1.5-G52H and XBB.1.5-
99 F456L, exhibited comparable infectivity relative to parental XBB.1.5 ($p > 0.05$) (**Fig 1C**), with 1.4-fold
100 ($p > 0.05$) and 1.3-fold increases ($p < 0.05$), respectively. XBB.2.3 also exhibited comparably infectivity
101 relative to its parental XBB, with a 1.2-fold increase ($p > 0.05$) (**Fig 1C**). Overall, EG.5.1 and XBB.2.3
102 possess comparable infectivity to their parental XBB variants in ACE2 (HEK293T-ACE2) and CaLu-3
103 cells.

104
105 *EG.5.1 and XBB.2.3 exhibit comparable escape of neutralizing antibodies in bivalent vaccinated sera*
106 *to other XBB-lineage subvariants*

107 We next investigated escape of EG.5.1 and XBB.2.3 from neutralizing antibodies in serum
108 samples collected from individuals that received at least 2 doses of monovalent mRNA vaccine and 1
109 dose of bivalent (wildtype + BA.4/5 spike) mRNA vaccine. These sera were collected from The Ohio
110 State University Wexner Medical Center Health Care Workers (HCWs) at least three weeks post-
111 booster administration. The neutralization assays were conducted with pseudotyped lentivirus as
112 described previously²⁸, and the cohort totaled 14 individuals ($n = 14$). Among these, 7 became positive
113 during the Omicron wave, 3 tested positive prior to Omicron, and 4 were negative throughout. Sera

114 were collected between 23 and 108 days after receiving a bivalent vaccination (median 66 days, **Table**
115 **S1**). Consistent with previous results^{5,7}, all XBB-lineage subvariants, including EG.5.1 and XBB.2.3,
116 demonstrated marked reductions in antibody neutralization relative to D614G and BA.4/5^{5,7} (**Fig 2A-B**).
117 EG.5.1 exhibited modestly decreased neutralization relative to XBB.1.5 ($p > 0.05$), which appeared to
118 be driven by XBB.1.5-F456L mutation (**Fig 2A-B**). Notably, neutralizing antibody titers against EG.5.1
119 were markedly less than those against BA.4/5, with a 10-fold reduction ($p < 0.01$). Again, this phenotype
120 was largely driven by the XBB.1.5-F456L mutation, which exhibited a 11.3-fold reduction in titer ($p <$
121 0.001) relative to BA.4/5 (**Fig 2A-B**). Furthermore, nAb titers of the 10 HCWs with breakthrough
122 infection were much higher than those of the 4 HCWs without breakthrough infection (**Fig S1A**),
123 indicating that breakthrough infection augments both the magnitude and breadth of nAbs. In contrast
124 to EG.5.1, XBB.2.3 exhibited slightly increased neutralizing antibody titers relative to its parental XBB,
125 with a 1.5-fold difference ($p > 0.05$). These titers were still lower than those against BA.4/5, with a 5.6-
126 fold reduction ($p < 0.001$) (**Fig 2A-B**). Neither of the single mutations, XBB-D253G and XBB-P521S,
127 exhibited distinct phenotypes in neutralization resistance from XBB.2.3 (**Fig 2A-B**). Overall, EG.5.1 and
128 XBB.2.3 exhibit comparable escape of neutralizing antibodies in bivalent vaccinated sera to other XBB-
129 lineage subvariants.

130

131 *EG.5.1 and XBB.2.3 markedly escape of neutralizing antibodies in BA.4/5-wave convalescent sera*

132 The next cohort we tested were first responders and their household contacts who were infected
133 during the BA.4/5-wave of COVID-19 in Columbus, OH (**Table S1**). Nasal swabs from these individuals
134 confirmed COVID-19 positivity of 20 individuals ($n = 20$). Samples were sent for sequencing to
135 determine the infecting variant; 4 individuals were infected with BA.4, 7 with BA.5, and 9 were
136 undetermined but assumed to be infected with BA.4/5 based on the timing of collection when this variant
137 was dominant in Columbus (July 2022 to late September 2022). In this cohort, 3 individuals had
138 received 3 doses of either the Pfizer BioNTech BNT162b2 ($n = 1$) or Moderna mRNA-1272 ($n = 2$)
139 vaccine, and 17 individuals were unvaccinated (**Table S1**). Similar to previous results^{5,7}, all XBB-

140 lineage subvariants exhibited marked escape of BA.4/5-wave convalescent sera, with all values under
141 or around the limit of detection for the assay, i.e., 1:40^{5,7} (**Fig 2C-D, Fig S1B**). Both EG.5.1 and XBB.2.3
142 exhibited escape comparable to their parental variants (p > 0.05 for both) and had significant decreases
143 in neutralizing antibody titer relative to BA.4/5, with reductions of 13.8-fold (p < 0.01) and 5.3-fold (p <
144 0.05), respectively (**Fig 2C-D, Fig S1B**).

145

146 *XBB.1.5-wave convalescent sera do not efficiently neutralize EG.5.1 and XBB.2.3*

147 The third cohort we tested were 8 individuals from Columbus, OH who were infected during the
148 XBB.1.5-wave (**Table S1**). Nasal swabs were all confirmed to be COVID-19 positive, with XBB.1.5
149 variant confirmed in 7, the remaining presumptive XBB based on collection date. Escape of neutralizing
150 antibodies by XBB-lineage subvariants was comparable to the BA.4/5-convalescent cohort, with all
151 titers again near or below the limit of detection (**Fig 2E-F**). EG.5.1 had comparable titers relative to its
152 parental XBB.1.5 (p > 0.05), exhibiting a 13.4-fold decrease relative to BA.4/5 (p < 0.05) (**Fig 2C-D, 2E-**
153 **F**). XBB.2.3 exhibited comparable neutralizing antibody titers with its ancestor XBB (p > 0.05), but lower
154 titers than BA.4/5 with an 8.8-fold decrease (p > 0.05) (**Fig 2C-D, 2E-F**). Notably, 3 patients, especially
155 P2 and P5, and to a lesser extent P1, exhibited higher titers against XBB variants including EG.5.1 and
156 XBB.2.3 (**Fig 2F, Fig S1C**). Not surprisingly, P2 and P5 had received 3 doses of monovalent mRNA
157 vaccine (one with Moderna and another with Pfizer), and P1 was vaccinated with 3 doses of monovalent
158 plus one dose of Moderna bivalent mRNA shots (**Table S1, Fig 2F, Fig S1C**). Interestingly, P7, who
159 was a 64-year-old woman and had received 4 doses of monovalent and one dose of Moderna bivalent
160 vaccines showed very high titers against D614G and BA.4/5, but barely detectable titers against all the
161 XBB variants, including EG.5.1 and XBB.2.3 (**Table S1, Fig 2F**). As would be expected, P3 and P6,
162 who received 2 doses of monovalent of mRNA vaccine, as well as P4 and P8, whom were unvaccinated,
163 showed low if any titers against XBB variants, although low titers against D614G/BA.4/5 were detected
164 (**Table S1, Fig 2F, Fig S1C**).

165

166 *Monoclonal antibody S309 maintains neutralization efficacy against EG.5.1 and XBB.2.*

167 In addition to protection afforded through vaccination, monoclonal antibodies (mAb) represent a

168 critical method to control COVID-19, especially in the early phase²⁹. We thus tested S309, a class III

169 monoclonal antibody, which has been shown previously to neutralize most Omicron-lineage

170 subvariants, including XBB.1.5⁷. Here we found that S309 was still effective against both EG.5.1 and

171 XBB.2.3, with inhibitory concentrations at 50% (IC₅₀) of 2.7 µg/mL and 6.1 µg/mL, respectively (**Fig 3A-**

172 **B**). EG.5.1 exhibited a comparable IC₅₀ to other XBB variants, but a ~3-fold increased IC₅₀ compared

173 to D614G (0.86 µg/mL); the IC₅₀ values of XBB.1.5-Q52H and XBB.1.5-F456L were 2.1 and 2.2,

174 respectively (**Fig 3A-B**). XBB.2.3 demonstrated a more marked increase in IC₅₀ (6.1 µg/mL) compared

175 to XBB (2.3 µg/mL), which appeared to be driven by the P521S mutation with an IC₅₀ of 7.7 µg/mL (**Fig**

176 **3A-B**). Molecular modeling revealed that mutations in EG.5.1 and XBB.2.3 do not affect the ability of

177 S309 to recognize the spikes. These mutations are located outside the epitope region of antibody S309.

178 and are therefore less likely to influence the ability of S309 to recognize the spike protein (**Fig S2A**).

179

180 *The fusion activities of XBB.2.3 and EG.5.1 spike are comparable to other XBB variants but lower than*

181 *D614G.*

182 To determine the fusion activity of SARS-CoV-2 XBB spikes, we co-transfected HEK293T-ACE2

183 cells with GFP and the spike of interest and incubated the cells for 18 hours before imaging syncytia

184 formation using fluorescence microscopy. We quantified the total area of fused cells using Leica X

185 Applications Suite software implemented in Leica DMi8 microscope. Overall, EG.5.1 and XBB.2.3

186 showed a reduced fusogenicity relative to D614G, which is consistent with our previous results^{5,7,27,30,31}.

187 The fusion efficiency was comparable to other variants (**Fig 4A-B**), except XBB.1.16 (**Fig 4A-B**), which

188 showed lower fusogenicity (*Faraone et al. Cell Reports (in revision)*). Surface expression levels of

189 EG.5.1 and XBB.2.3 spikes on HEK293T producing pseudotyped lentiviruses were largely comparable,

190 as shown by flow cytometry using an anti-S1 antibody (**Fig 4C-D**).

191 We also investigated the processing of each spike into its S2 subunits in lysates of transfected
192 HEK293T cells. We performed western blotting and probed with an anti-S2 polyclonal antibody to
193 compare the ratios between S2 and full-length spike among the variant spikes tested. As shown **Fig**
194 **4E**, EG.5.1 and XBB.2.3 exhibited efficiencies of spike processing comparable to other XBB variants,
195 the levels of which were generally higher than that of D614G.

196

197 *Decreased antigenic distance in bivalent vaccinated relative to convalescent cohorts*

198 To better understand how antigenicity varies between variants, we conducted antigenic mapping
199 analysis on the three sets of neutralization titers presented above³². The method uses multidimensional
200 scaling on log2 transformed binding assay results to plot individual points for antigens and antibodies
201 in Euclidean space³². The spaces between the different points directly translate from fold changes in
202 neutralization titers, allowing for visualization of the antigenic differences between the variant spikes.
203 The points are plotted using “antigenic distance units” (AU), with one AU being equivalent to a 2-fold
204 change in neutralizing antibody titer^{13,32}. In all cohorts, D614G and BA.4/5 clustered together while XBB
205 variants were more antigenically distinct, sitting around 4.0-5.5 AU away from D614G, translating to a
206 16~45-fold drop in overall neutralizing antibody titer (**Fig 5A-C**, **Fig 2**). Antigenic distance between all
207 variants was overall slightly smaller for the bivalent relative to the convalescent cohorts (**Fig 5A-C**),
208 suggesting a broader neutralization induced by the bivalent vaccine. XBB.2.3 consistently clustered
209 with XBB.1.16, whereas EG.5.1 appeared more antigenically distant from the other XBB-lineage
210 variants (**Fig 5A-C**). This phenotype was more pronounced in the XBB.1.5-wave cohort (**Fig 5C**).
211 Overall, XBB-lineage variants are notably distinct antigenically from earlier variants D614G and BA.4/5,
212 but this is somewhat minimized upon bivalent vaccination.

213

214 **Discussion**

215 SARS-CoV-2 continues to evolve rapidly, presenting an ever-increasing challenge to vaccination
216 efforts. As expected, new XBB-lineage subvariants EG.5.1 and XBB.2.3, especially EG.5.1, remain

217 highly immune evasive, which likely contributes to the recent increase of COVID cases and
218 hospitalization^{23,24}. Though bivalent vaccination continues to protect better than the monovalent
219 vaccine and natural infection, neutralization titers are markedly low against all XBB variants, particularly
220 the newly emerged EG.5.1, in comparison to D614G and BA.4/5, as seen previously for XBB
221 variants^{3,5,7,9,12,14,16}. Neutralizing antibody titers stimulated by infection with either BA.4/5 or XBB.1.5
222 are minimal, with average neutralization titers against XBB variants clustering around the limit of
223 detection for the assay, which is consistent with another study³³. We found that the XBB.1.5-F456L
224 mutation, rather than the XBB.1.5-Q52H mutation, drives the enhanced neutralization escape
225 compared to XBB.1.5. Molecular modeling indicates that XBB.1.5-F456L likely decreases spike binding
226 to class 1 SARS-CoV-2 monoclonal antibodies, such as antibody S2E12, but does not appear to impact
227 spike binding to S309, a class 3 monoclonal antibody (**Fig S2A-B**), a finding that is consistent the
228 several recent publications³³⁻³⁵. Together, these studies underscore the need for close surveillance of
229 variants and newly formulated vaccines against SARS-CoV-2.

230 Notably, in our study, bivalent-vaccinated neutralizing antibody titers against BA.4/5 were
231 distinguishably lower than D614G despite BA.4/5 spike being included in the vaccine formulation (**Fig**
232 **2A-B**). This suggests that the antibody response is still largely targeting D614G, hence providing
233 evidence for immune imprinting induced by the monovalent doses of mRNA vaccines^{20-22,34,36}. Many
234 mutations have been acquired by the virus during its evolution from BA.4/5 through the various XBB
235 variants³⁷. Notably, neutralizing antibody titers for the bivalent cohort against XBB variants remain
236 significantly lower than D614G and BA.4/5 (**Fig 2A-B**). Consistently, antigenic mapping demonstrates
237 that XBB variants are quite antigenically distinct from D614G and BA.4/5 for all cohorts tested,
238 especially EG.5.1 (**Fig 2, Fig 5**). Importantly, the distinct antigenic phenotype of XBB and other Omicron
239 subvariants has been corroborated by other studies using antigenic cartography analysis^{21,22,38}.

240 We observed that the antigenic distance between all variants was smaller overall for the bivalent
241 vaccination cohort, the majority of which had breakthrough infection, relative to the convalescent
242 cohorts (**Fig 5, Table S1**). Two of 4 vaccinated individuals infected with XBB.1.5, i. e., P2 and P5, did

243 exhibit the broadest neutralizing antibody titers among the cohort (**Fig 2E-F**), suggesting that vaccines
244 containing XBB.1.5 and related spikes, such as XBB.1.16, EG.5.1, will likely overcome immune
245 imprinting and offer broader protection against XBB-lineage subvariants. This finding suggests that the
246 bivalent vaccine/breakthrough combination increases coverage of immune responses against newer
247 SARS-CoV-2 variants, as has been suggested previously by another group²⁰ (**Fig S2A, Fig 5**).
248 Fortunately, newly formulated mRNA vaccines containing XBB.1.5 spike have been submitted by Pfizer
249 and Moderna to the FDA and are expected to rollout in September³⁹⁻⁴¹.

250 We did not find dramatic changes in infectivity of EG.5.1 and XBB.2.3 compared to previous
251 XBB variants in either 293T-ACE2 or CaLu-3 cells (**Fig 1**). EG.5.1 had a modest increase in 293T-
252 ACE2 but this was not observed in the more biologically relevant lung airway epithelial cell line CaLu-
253 3. Importantly, similar to Omicron variants BA.4/5 and XBB variants, EG.5.1 and XBB.2.3 retain lower
254 infectivity in CaLu-3 cells relative to D614G, easing concerns of potentially increased pathogenesis in
255 the lung. Furthermore, the fusogenicity of EG.5.1 and XBB.2.3 are similar to other XBB variants, which
256 is much lower than D614G (**Fig 4**). In this regard, molecular modeling reveals that the XBB.1.5-F456L
257 mutation may reduce spike binding to ACE2 (**Fig S2C**). Specifically, the change from phenylalanine to
258 leucine decreases the side chain size and increases the distance between the receptor-binding domain
259 (RBD) and ACE2 residues, resulting in a reduction of hydrophobic interactions at this specific position.
260 Hence, the affinity between viral RBD and the ACE2 receptor is likely diminished. Overall, while we did
261 not find in vitro evidence to support that the newly emerged XBB variants, including EG.5.1, have
262 enhanced pathogenic potential that could explain a possible growth advantage in circulation around
263 the globe^{24,33}, in vivo assays and clinical studies are needed to address this important issue.

264 Overall, our study provides important support for new vaccine formulations in our quest for
265 continued control of the COVID-19 pandemic, underscored by the marked immune evasion of XBB
266 variants^{5,7,9,12,14,16,17,33,42} and the role of immune imprinting in these phenotypes^{20-22,38}. Specifically,
267 removal of the wildtype spike from mRNA vaccines and inclusion of XBB-lineage variant spikes must

268 be considered. The continued surveillance of new variants is essential to inform decisions around
269 vaccination against SARS-CoV-2 and treatment of COVID-19.

270

271 **Limitations of the Study**

272 Pseudotyped virus was used throughout the study in place of live authentic viruses. We have previously
273 validated our neutralization assay alongside live virus²⁸, and we believe the timeliness of the work
274 justifies the use of pseudotyped virus over live virus. Pseudotyped virus also provides critical advantage
275 for investigating the role of specific spike variants in neutralization, membrane fusion and infectivity in
276 a more controlled manner. Our cohort sizes for the neutralization assays were small, particularly the
277 XBB.1.5-wave cohort, because of the difficulty in recruiting as result of the decreased COVID-19 testing.
278 However, we believe our findings are still valid and significant given that other groups have published
279 such work with comparable cohorts and similar methods^{16,34}, and that our findings for XBB.1.5-wave
280 individuals corroborate results from another group³³. The sample collection time after vaccination or
281 infection also varies widely in our cohorts due to the clinical arrangements, which could have impacted
282 the nAb titers. Overall, we feel as though these limitations are outweighed by the timeliness of the work
283 and the importance of the continued characterization of variants to maintain control of the COVID-19
284 pandemic.

285

286 **Figure Legends**

287 **Figure 1: Infectivity of pseudotyped lentiviruses bearing XBB.2.3 or EG.5.1 spike into HEK293T-
288 ACE2 and CaLu-3 cells. (A)** Schematic relationship between XBB-lineage variants in this study.
289 Arrows denote direct relationships between variants with the corresponding spike mutations written
290 along them. **(B and C)** Pseudotyped lentiviruses bearing each of the depicted spikes of interest were
291 produced in HEK293T cells and used to infect **(B)** HEK293T-ACE2 or **(C)** CaLu-3 cells. Bars in **(B and**
292 **C)** represent means \pm standard deviation for 3 replicates represented by individual dots (n=3). p values
293 are displayed as *p < 0.05, ***p < 0.001, ****p < 0.0001 and ns p > 0.05.

294

295 **Figure 2: Neutralizing antibody titers against XBB.2.3 and EG.5.1 for bivalent vaccinees, BA.4/5-
296 convalescent cohort, and XBB.1.5-convalescent cohort.** Pseudotyped lentiviruses bearing each of
297 the spikes of interest were used to perform virus neutralization assays with three cohorts of sera; **(A-B)**
298 individuals that received at least two doses of monovalent mRNA vaccine and 1 dose of bivalent mRNA
299 vaccine (n=14), **(C-D)** individuals that were infected during the BA.4/5-wave of COVID-19 in Columbus,
300 OH (n=20); **(E-F)** individuals that were infected during the XBB.1.5-wave of COVID-19 in Columbus,
301 OH (n=8). **(A, C, E)** Plots depict individual neutralizing antibody titers displayed as neutralization titers
302 at 50% (NT₅₀). Bars represent geometric means with 95% confidence intervals. Numbers on top of the
303 plots represent the geometric means for each variant. Significance values are determined relative to
304 BA.4/5, ancestor of these XBBs, using log10 transformed NT₅₀ values to better approximate normality.
305 **(B, D, F)** Heatmaps that depict the NT₅₀ values for **(B)** the bivalent vaccinated cohort, **(D)** the BA.4/5-
306 convalescent cohort, and **(F)** the XBB.1.5-convalescent cohort. Asterisks in **(D and F)** indicate the
307 individuals who had received at least three doses of monovalent mRNA vaccine before infection.
308 Hashtags in **(F)** indicate individuals that received at least 3 doses of monovalent mRNA vaccine and 1
309 dose of bivalent booster. p values are displayed as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
310 and ns p > 0.05.

311

312 **Figure 3: Neutralization of monoclonal antibody S309 against XBB.2.3 and EG.5.1.** Pseudotyped
313 lentiviruses bearing each of the spikes of interest were used in a virus neutralization assay with the
314 class III monoclonal antibody S309. **(A)** Plot curve of S309 neutralization and **(B)** a table showing the
315 calculated IC₅₀ values best fit to the curve with the 95% confidence interval are depicted. The dashed
316 line in **(A)** marks 50% relative infectivity.

317

318 **Figure 4: Fusogenicity, expression, and processing of XBB.2.3 and EG.5.1 spikes. (A and B)**
319 Fusogenicity of spikes were determined by co-transfecting HEK293T-ACE2 cells with GFP and the

320 spike of interest and imaging the extent of fusion 18 hours post-transfection using fluorescence
321 microscopy. **(A)** Representative images were selected and **(B)** average areas of fusion quantified for
322 each spike. Bars represent means \pm standard error, and dots represent three random areas for each
323 replicate. Significance relative to D614G was determined using a one-way repeated measures ANOVA
324 with Bonferroni's multiple testing correction (n = 3). "No Spike" refers to the negative control which was
325 transfected with GFP and empty pcDNA3.1 plasmid. **** p < 0.0001. **(C)** Expression of spike was
326 determined by performing surface staining (anti-S1 polyclonal antibody) and flow cytometry on
327 HEK293T cells used to produce pseudotyped lentiviruses. A triplicate was performed, and a
328 representative overlaid histogram was selected and depicted in **(C)**. **(D)** The processing of each spike
329 was determined by lysing HEK293T cells transfected with spike of interest and performing western
330 blotting. Blots were probed with anti-S2 and anti-GAPDH (loading control), respectively. Processing of
331 spike was quantified using Image J to determine relative band intensities for full length spike versus S2
332 and a resulting S2/S ratio was calculated. Ratios are listed below each corresponding set of bands.
333 Ratios were normalized to D614G (D614G=1.0).

334

335 **Figure 5: Antigenic mapping of neutralization titers for bivalent vaccinated, BA.4/5-wave**
336 **infected, and XBB.1.5-wave infected cohorts (associated with Fig 2).** The Racmacs program
337 (1.1.35) was used to generate antigenic maps for neutralization titers from **(A)** the bivalent vaccinated,
338 **(B)** the BA.4/5 wave infected, and **(C)** the XBB.1.5-wave infected cohorts. Circles represent the variants
339 and squares represent the individual sera samples. Arrows between D614G and selected variants are
340 labeled with the distance between those variants in antigenic units (AU). One square on the grid
341 represents one antigenic unit squared.

342

343 **STAR Methods**

344 **Resource availability**

345 **Lead contact**

346 The lead contact Dr. Shan-Lu Liu can be reached at liu.6244@osu.edu with any questions or requests
347 for materials.

348

349 **Materials availability**

350 Materials can be requested by emailing the lead contact.

351

352 **Experimental model and subject details**

353 **Vaccinated and convalescent cohorts**

354 Three cohorts of serum were collected and used to determine neutralizing antibody titers against
355 selected SARS-CoV-2 variants. The first were health care workers (HCWs) working at the Ohio State
356 Wexner Medical Center that received at least 2 doses of monovalent mRNA vaccine and 1 dose of
357 bivalent mRNA vaccine. Samples were collected under the approved IRB protocols 2020H0228,
358 2020H0527, and 2017H0292. This cohort totaled 14 individuals, i.e., 8 males and 6 females. Among
359 these, 12 individuals received 3 doses of monovalent vaccine (Pfizer BioNTech BNT162b2 or Moderna
360 mRNA-1273) and 1 dose of bivalent vaccine (Pfizer); 1 individual had 2 doses of monovalent vaccine
361 (Pfizer) and 1 dose bivalent (Pfizer), and the final individual had 4 doses of monovalent vaccine (Pfizer)
362 and 1 dose of bivalent vaccine (Pfizer). Sample collections ranged from 23-108 days post-
363 administration of booster dose and the range of ages was 25-48 (median 36).

364 The second cohort were first responders and household contacts based in Columbus, OH that
365 were infected with SARS-CoV-2 during the BA.4/5-wave of infection in Columbus. Samples were
366 collected under approved IRB protocols 2020H0527, 2020H0531, and 2020H0240. This cohort totaled
367 20 individuals. For each, nasal swabs were used to confirm positive infection with the virus, and were
368 sequenced. 4 individuals were confirmed to be infected with BA.4, 7 with BA.5, and the remaining 9
369 were undetermined but assumed to be infected with BA.4/5 due to timing of collection during when the
370 variant was dominant in Columbus (July 2022 to late September 2022). 3 individuals in this cohort were

371 vaccinated with 3 doses of monovalent vaccine (1 Pfizer and 2 Moderna). The age range of this cohort
372 was 27-58 (median 44), and it included 4 male, 15 female, and 1 unknown individuals.

373 The final cohort were first responders that were infected during the XBB.1.5 wave in Columbus,
374 Ohio (Early February 2023 through July 2023). Samples were collected under IRB protocols
375 2020H0527, 2020H0531, and 2020H0240. The cohort totaled 8 individuals (n=8). Like the BA.4/5-wave
376 samples, nasal swabs were performed on each member of the cohort and the samples were sent for
377 sequencing. Seven samples were confirmed to be XBB.1.5 by COVID-Seq Artic v4 sequencing and
378 typing with Dragen COVID Lineage, with Pangolin plug-in (Illumina), with one presumptive XBB.1 based
379 on date of collection. Several showed private or regional variations in spike (e.g. T284I and L513F). 5
380 individuals were vaccinated with at least two doses of monovalent mRNA vaccine while 4 were not
381 vaccinated. Of the vaccinated members of the cohort, 1 received two doses of monovalent Moderna
382 mRNA vaccine, 2 individuals received 3 doses of monovalent vaccine (1 Pfizer, 1 Moderna), 1 individual
383 received 3 doses of monovalent vaccine and 1 dose of bivalent (all Moderna), and the last vaccinated
384 person received 4 doses of monovalent vaccine with 1 dose of bivalent (Moderna monovalent, Pfizer
385 bivalent). The range of ages was 38-64 (median 53), and the cohort had 5 male and 3 female individuals.

386 Full details of each cohort can be found in **Table S1**.

387

388 **Cell lines**

389 Cell lines used for this study included human embryonic kidney line HEK293T (ATCC CRL-11268,
390 RRID: CVCL_1926), HEK293T expressing human ACE2 (HEK293T-ACE2) (BEI NR-52511, RRID:
391 CVCL_A7UK), and human adenocarcinoma lung epithelial line CaLu-3 (RRID: CVCL_0609). HEK293T
392 and HEK293T-ACE2 cells were maintained DMEM (Gibco, 11965-092) supplemented with 10% fetal
393 bovine serum (Sigma, F1051) and 0.5% penicillin-streptomycin (HyClone, SV30010). CaLu-3 cells
394 were maintained in EMEM supplemented the same way. To split, cells were initially washed with
395 phosphate-buffered saline (Sigma, D5652-10X1L) then incubated in 0.05% trypsin + 0.53mM EDTA
396 (Corning, 25-052-CI) until complete detachment. Cells were kept at 37C and 5.0% CO2.

397

398 Method Details

399 **Plasmids**

400 All spike plasmids are in the backbone of pcDNA3.1 with restriction sites BamHI and KpnI and FLAG
401 tags at the N- and C-termini of spike. D614G, BA.4/5, and XBB plasmids were cloned by GenScript
402 using restriction enzyme cloning (Piscataway, NJ). XBB.1.5, XBB.1.16, XBB-D253G, XBB-P521S,
403 XBB.2.3, XBB.1.5-Q52H, XBB.1.5-F456L, and EG.5.1 plasmids were generated in house through site-
404 directed mutagenesis. Throughout, the “No Spike” control refers to empty pcDNA3.1 plasmid backbone
405 used in place of spike plasmid. The lentiviral vector used is a HIV-1, pNL4-3 vector with an Env deletion
406 and intronic secreted *Gaussia* luciferase reporter (inGluc).

407

408 **Pseudotyped lentivirus production and infectivity**

409 Pseudotyped lentiviral vectors were produced by co-transfected HEK293T cells in a 2:1 ratio with
410 pNL4-3 inGluc and the spike plasmid of interest. Transfections throughout are polyethyleneimine
411 transfections using the Transporter 5 transfection reagent (Polysciences). Pseudotyped virus was
412 collected 48 and 72 hours post-transfection and stored at -80C. To measure infectivity, 100uL of virus
413 was used to infect HEK293T-ACE2 cells. 300uL was used to infect CaLu-3 cells and cells were spun
414 at 1,650 x g for 45 minutes to mediate attachment. Luciferase measurements were taken as a readout
415 of infectivity at 48, 72, and 96 hours. Measurements were collected by taking 20uL of infected cell
416 media and combining it with 20uL luciferase substrate (0.1 M Tris pH 7.4, 0.3 M sodium ascorbate, 10
417 μM coelenterazine) and immediately reading on a BioTek Cytation plate reader. Plots for 48 hours and
418 120 hours are displayed in Fig 1 for HEK293T-ACE2 and CaLu-3, respectively.

419

420 **Virus neutralization assay**

421 Sera from the cohorts of interest was first serially diluted four-fold with a starting dilution of 1:40 (final
422 dilutions 1:40, 1:160, 1:640, 1:2560, 1:10240, and no serum as a control). mAb S309 was diluted 4-fold

423 from 12 μ g/ml (12, 3, 0.75, 0.1875, 0.046875 μ g/ml, no antibody control). Pseudotyped virus was
424 thawed and diluted based on infectivity results to normalize readouts. 100uL of each diluted virus was
425 then added onto serum samples. The virus and sera mixture were incubated for 1 hour at 37C. This
426 mixture was then used to infect HEK293T-ACE2 cells. Luciferase readout was collected as described
427 above at 48 and 72 hours post-infection. NT₅₀ values were determined through least-squares fit non-
428 linear regression with a normalized response (no serum control) in GraphPad Prism 9 (San Diego, CA).

429

430 **Syncytia formation**

431 HEK293T-ACE2 cells were co-transfected with GFP and the spike of interest. Cells were imaged 18
432 hours post-transfection using a Leica DMI8 fluorescence microscope. Average area of fused cells was
433 determined using the Leica X Applications Suite software that outlines edges of syncytia and calculates
434 the area within. Three images were randomly taken for each variant. Scale bars represent 150 μ M and
435 one representative image was selected for presentation.

436

437 **S protein surface expression**

438 Seventy-two hours post transfection, HEK293T cells used to produce lentivirus were washed in PBS
439 and incubated in PBS+5mM EDTA for 10 minutes to detach. Approximately 1x10⁶ cells were taken
440 for analysis of spike surface expression via flow cytometry. These cells were fixed in 3.7%
441 formaldehyde for 10 minutes and room temperature. Cells were stained with 1:200 anti-S1 polyclonal
442 antibody (Sino Biological, 40591-T62; RRID: AB_2893171) for 1.5 hours and washed three times in
443 PBS+2% FBS. Cells were then stained with secondary antibody 1:200 anti-Rabbit-IgG-FITC (Sigma,
444 F9887, RRID: AB_259816) and washed three times more. Flow cytometry was performed on a
445 LifeTechnologies Attune NxT flow cytometer. Data processing was performed using FlowJo v10.9.1
446 (Ashland, OR).

447

448 **S protein processing**

449 HEK293T cells transfected with spike of interest were lysed in 300uL RIPA+PI+PMSF (RIPA: 50mM
450 Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, Nonidet P-40, 0.1% SDS, PI+PMSF: Sigma, P8340) for 40
451 minutes on ice. Lysate was harvested and used for western blotting. Samples were run on a 10%
452 acrylamide SDS-PAGE gel and transferred to a PVDF membrane. Blots were probed with anti-S2 (Sino
453 Biological, 40590; RRID:AB_2857932) and anti-GAPDH as a loading control (Santa Cruz, Cat# sc-47724,
454 RRID: AB_627678). Secondary antibodies included anti-Rabbit-IgG-FITC (Sigma, A9169;
455 RRID:AB_258434) and anti-Mouse-IgG-FITC (Sigma, Cat# A5278, RRID: AB_258232). Blots were
456 imaged using Immobolin Crescendo Western HRP substrate (Millipore, WBLUR0500) and exposed on
457 a GE Amersham Imager 600. Quantification of band intensity was determined using ImageJ (NIH,
458 Bethesda, MD).

459

460 **Antigenic mapping**

461 Antigenic maps were generated using Racmacs (v1.1.35)
462 (<https://github.com/acorg/Racmacs/tree/master>). This method is based on a study conducted by Smith
463 and colleagues to determine the antigenic distances between different influenza strains based on
464 agglutination neutralization assays³². Briefly, raw neutralization titers were converted into a table with
465 sera samples as the columns and viruses as the rows. This table was then imported into the *Racmacs*
466 program using R (Vienna, Austria) and instructions in the documentation section for the program were
467 followed. *Racmacs* takes the titer table and converts it to a distance table by performing a log2
468 conversion and then calculating the distance between each antigen for each serum sample.
469 Multidimensional scaling is then performed on the distance table to generate the map. Optimization
470 settings were kept on default (2 dimensions, 500 optimizations, minimum column basis “none”). Maps
471 were saved from the “view” panel and labeled using Microsoft Office PowerPoint. Arrows drawn in
472 PowerPoint were used to calculate the distance between two points with the scale bar for “1 AU” being
473 used to normalize this value. 1 AU is equivalent to a 2-fold change in neutralizing antibody titer^{13,32}.

474

475 **Structural Modeling and Analysis**

476 We conducted structural modeling of EG.5.1 spike proteins bound to either the ACE2 receptor or
477 neutralizing antibodies. This modeling was carried out using the SWISS-MODEL server, employing
478 existing X-ray crystallography or cryo-EM structures from published sources as templates (PDB: 7K8Z,
479 8DT3, 7L7D, 7XB0, 7XCK, 7YAD, 7R6X). Molecular interactions involving EG.5.1 mutants were
480 carefully examined, and these interactions were visually presented using PyMOL.

481

482 **Quantification and statistical analysis**

483 Statistical analyses were performed using GraphPad Prism 9. Error bars in **(Fig 1B-C)** and **(Fig 4C)**
484 represent means with standard error. Comparisons between the viruses in **(Fig 1B-C)** and **(Fig 4C)**
485 were made using a one-way ANOVA with Bonferroni post-test. Both experiments (infectivity and
486 surface expression) were done in triplicate. Neutralization titers were determined using least-squares
487 non-linear regression. Error bars in **(Fig 2A, C, and E)** represent geometric means with 95% confidence
488 intervals. Comparisons between the viruses in **(Fig 2A, C, and E)** were made using a repeated
489 measures one-way ANOVA with Bonferroni post-test. These comparisons were conducted using log10
490 transformed NT₅₀ values to better approximate normality. Bars in **(Fig 3)** represent best fit values for
491 IC₅₀ ± 95% confidence interval (n=1). Significance analysis in **(Fig 4)** was performed using a one-way
492 repeated measures ANOVA with Bonferroni's multiple testing correction.

493

494 **Data and code availability**

495 Data can be requested from the lead contact. This paper does not report original code.

496

497 **Acknowledgements**

498 We thank the Clinical Research Center/Center for Clinical Research Management of The Ohio
499 State University Wexner Medical Center and The Ohio State University College of Medicine in
500 Columbus, Ohio, specifically J. Brandon Massengill, Francesca Madiai, Dina McGowan, Breona

501 Edwards, Evan Long, and Trina Wemlinger, for logistics, collection, and processing of samples. We
502 thank Tongqing Zhou at NIH for providing the S309 monoclonal antibody. In addition, we thank Sarah
503 Karow, Madison So, Preston So, Daniela Farkas, and Finny Johns in the clinical trials team of The Ohio
504 State University for sample collection and other supports. We thank Ashish R. Panchal, Soledad
505 Fernandez, Mirela Anghelina, and Patrick Stevens for their assistance in providing the sample
506 information of the first responders and their household contacts. We thank Peng Ru and Lauren
507 Masters for sequencing and Xiaokang Pan for bioinformatic analysis. S.-L.L., D. J., R.J.G., L.J.S. and
508 E.M.O. were supported by the National Cancer Institute of the NIH under award no. U54CA260582.
509 The content is solely the responsibility of the authors and does not necessarily represent the official
510 views of the National Institutes of Health. This work was also supported by a fund provided by an
511 anonymous private donor to OSU. K.X. was supported by The Ohio State University Comprehensive
512 Cancer Center, a Path to K grant through the Ohio State University Center for Clinical & Translational
513 Science. R.J.G. was additionally supported by the Robert J. Anthony Fund for Cardiovascular Research
514 and the JB Cardiovascular Research Fund, and L.J.S. was partially supported by NIH R01 HD095881.

515

516 **Author contributions**

517 S.-L.L. conceived and directed the project. R.J.G led the clinical study/experimental design and
518 implementation. J.N.F performed neutralization and infectivity assays, and P.Q. performed syncytia
519 formation and spike processing, N.G. performed mutagenesis to generate new variants. P.Q and J.N.F.
520 performed data processing and analyses. D.J. led SARS-CoV-2 variant genotyping and DNA
521 sequencing analyses. C.C., and R.J.G. provided clinical samples and related information. K.X.
522 performed molecular modeling and participated in discussion. J.N.F., P.Q., and S.-L.L. wrote the paper.
523 Y.-M.Z, L.J.S., and E.M.O. provided insightful discussion and revision of the manuscript.

524

525 **Declaration of interests**

526 The authors do not declare any competing interests.

527

528

References

1. Wang, Q., Guo, Y., Iketani, S., Nair, M.S., Li, Z., Mohri, H., Wang, M., Yu, J., Bowen, A.D., Chang, J.Y., et al. (2022). Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. *Nature* 608, 603-608. 10.1038/s41586-022-05053-w.
2. Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., Bolland, W.H., Porrot, F., Staropoli, I., Lemoine, F., et al. (2022). Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. *Nature* 602, 671-675. 10.1038/s41586-021-04389-z.
3. Miller, J., Hachmann, N.P., Collier, A.Y., Lasrado, N., Mazurek, C.R., Patio, R.C., Powers, O., Surve, N., Theiler, J., Korber, B., and Barouch, D.H. (2023). Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1 and XBB.1. *N Engl J Med* 388, 662-664. 10.1056/NEJMc2214314.
4. Hachmann, N.P., Miller, J., Collier, A.Y., Ventura, J.D., Yu, J., Rowe, M., Bondzie, E.A., Powers, O., Surve, N., Hall, K., and Barouch, D.H. (2022). Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. *N Engl J Med* 387, 86-88. 10.1056/NEJMc2206576.
5. Faraone, J.N., Qu, P., Evans, J.P., Zheng, Y.-M., Carlin, C., Anghelina, M., Stevens, P., Fernandez, S., Jones, D., Lozanski, G., et al. (2023). Neutralization escape of Omicron XBB, BR.2, and BA.2.3.20 subvariants. *Cell Reports Medicine* 4, 101049.
6. Evans, J.P., Zeng, C., Qu, P., Faraone, J., Zheng, Y.-M., Carlin, C., Bednash, J.S., Zhou, T., Lozanski, G., Mallampalli, R., et al. (2022). Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. *Cell host & microbe* 30, 1093-1102.e1093. 10.1016/j.chom.2022.04.014.
7. Qu, P., Faraone, J.N., Evans, J.P., Zheng, Y.-M., Carlin, C., Anghelina, M., Stevens, P., Fernandez, S., Jones, D., Panchal, A.R., et al. (2023). Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. *Cell Reports* 42, 112443.
8. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., et al. (2022). BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. *Nature* 608, 593-602. 10.1038/s41586-022-04980-y.
9. Zou, J., Kurhade, C., Patel, S., Kitchin, N., Tompkins, K., Cutler, M., Cooper, D., Yang, Q., Cai, H., Muik, A., et al. (2023). Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with Bivalent Vaccine. *N Engl J Med* 388, 854-857. 10.1056/NEJMc2214916.
10. Zhang, X., Chen, L.L., Ip, J.D., Chan, W.M., Hung, I.F., Yuen, K.Y., Li, X., and To, K.K. (2022). Omicron sublineage recombinant XBB evades neutralising antibodies in recipients of BNT162b2 or CoronaVac vaccines. *Lancet Microbe*. 10.1016/s2666-5247(22)00335-4.
11. Yue, C., Song, W., Wang, L., Jian, F., Chen, X., Gao, F., Shen, Z., Wang, Y., Wang, X., and Cao, Y. (2023). Enhanced transmissibility of XBB.1.5 is contributed by both strong ACE2 binding and antibody evasion. *bioRxiv*, 2023.2001.2003.522427. 10.1101/2023.01.03.522427.
12. Yamasoba, D., Uriu, K., Planchaisuk, A., Kosugi, Y., Pan, L., Zahradnik, J., Consortium, T.G.t.P.J., Ito, J., and Sato, K. (2023). Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant. *bioRxiv*, 2023.2004.2006.535883. 10.1101/2023.04.06.535883.
13. Wang, Q., Iketani, S., Li, Z., Liu, L., Guo, Y., Huang, Y., Bowen, A.D., Liu, M., Wang, M., Yu, J., et al. (2023). Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. *Cell* 186, 279-286.e278. 10.1016/j.cell.2022.12.018.
14. Uraki, R., Ito, M., Furusawa, Y., Yamayoshi, S., Iwatsuki-Horimoto, K., Adachi, E., Saito, M., Koga, M., Tsutsumi, T., Yamamoto, S., et al. (2023). Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. *Lancet Infect Dis* 23, 30-32. 10.1016/s1473-3099(22)00816-7.
15. Tamura, T., Ito, J., Uriu, K., Zahradnik, J., Kida, I., Anraku, Y., Nasser, H., Shofa, M., Oda, Y., Lytras, S., et al. (2023). Virological characteristics of the SARS-CoV-2 XBB variant derived from

576 recombination of two Omicron subvariants. *Nat Commun* 14, 2800. 10.1038/s41467-023-38435-
577 3.

578 16. Kurhade, C., Zou, J., Xia, H., Liu, M., Chang, H.C., Ren, P., Xie, X., and Shi, P.Y. (2022). Low
579 neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA
580 vaccine or a BA.5 bivalent booster. *Nat Med*. 10.1038/s41591-022-02162-x.

581 17. He, Q., Wu, L., Xu, Z., Wang, X., Xie, Y., Chai, Y., Zheng, A., Zhou, J., Qiao, S., Huang, M., et
582 al. (2023). An updated atlas of antibody evasion by SARS-CoV-2 Omicron sub-variants including
583 BQ.1.1 and XBB. *Cell Rep Med* 4, 100991. 10.1016/j.xcrm.2023.100991.

584 18. Davis-Gardner, M.E., Lai, L., Wali, B., Samaha, H., Solis, D., Lee, M., Porter-Morrison, A.,
585 Hentenaar, I.T., Yamamoto, F., Godbole, S., et al. (2022). Neutralization against BA.2.75.2,
586 BQ.1.1, and XBB from mRNA Bivalent Booster. *New England Journal of Medicine* 388, 183-185.
587 10.1056/NEJMc2214293.

588 19. Recommendation for the 2023-2024 Formula of COVID-19 vaccines in the U.S. (2023).

589 20. Yisimayi, A., Song, W., Wang, J., Jian, F., Yu, Y., Chen, X., Xu, Y., Yang, S., Niu, X., Xiao, T.,
590 et al. (2023). Repeated Omicron infection alleviates SARS-CoV-2 immune imprinting. *bioRxiv*,
591 2023.2005.2001.538516. 10.1101/2023.05.01.538516.

592 21. Wang, Q., Guo, Y., Tam, A.R., Valdez, R., Gordon, A., Liu, L., and Ho, D.D. (2023). Deep
593 immunological imprinting due to the ancestral spike in the current bivalent COVID-19 vaccine.
594 *bioRxiv*, 2023.2005.2003.539268. 10.1101/2023.05.03.539268.

595 22. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang,
596 N., et al. (2022). Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD
597 evolution. *Nature*. 10.1038/s41586-022-05644-7.

598 23. CDC COVID Data Tracker: Variant Proportions. (2023).

599 24. EG.5 Initial Risk Evaluation, 9 August 2023. (2023).

600 25. NextStrain. (2023).

601 26. Qu, P., Faraone, J.N., Evans, J.P., Zheng, Y.M., Yu, L., Ma, Q., Carlin, C., Lozanski, G., Saif,
602 L.J., Oltz, E.M., et al. (2022). Durability of Booster mRNA Vaccine against SARS-CoV-2
603 BA.2.12.1, BA.4, and BA.5 Subvariants. *N Engl J Med* 387, 1329-1331.
604 10.1056/NEJMc2210546.

605 27. Qu, P., Evans, J.P., Faraone, J.N., Zheng, Y.M., Carlin, C., Anghelina, M., Stevens, P.,
606 Fernandez, S., Jones, D., Lozanski, G., et al. (2023). Enhanced neutralization resistance of
607 SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. *Cell Host
608 Microbe* 31, 9-17.e13. 10.1016/j.chom.2022.11.012.

609 28. Zeng, C., Evans, J.P., Pearson, R., Qu, P., Zheng, Y.M., Robinson, R.T., Hall-Stoodley, L.,
610 Yount, J., Pannu, S., Mallampalli, R.K., et al. (2020). Neutralizing antibody against SARS-CoV-
611 2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. *JCI Insight*
612 5. 10.1172/jci.insight.143213.

613 29. San Filippo, S., Crovetto, B., Bucek, J., Nahass, R.G., Milano, M., and Brunetti, L. (2022).
614 Comparative Efficacy of Early COVID-19 Monoclonal Antibody Therapies: A Retrospective
615 Analysis. *Open Forum Infect Dis* 9, ofac080. 10.1093/ofid/ofac080.

616 30. Zeng, C., Evans, J.P., Qu, P., Faraone, J., Zheng, Y.M., Carlin, C., Bednash, J.S., Zhou, T.,
617 Lozanski, G., Mallampalli, R., et al. (2021). Neutralization and Stability of SARS-CoV-2 Omicron
618 Variant. *bioRxiv*. 10.1101/2021.12.16.472934.

619 31. Qu, P., Faraone, J.N., Evans, J.P., Zou, X., Zheng, Y.-M., Carlin, C., Bednash, J.S., Lozanski,
620 G., Mallampalli, R.K., Saif, L.J., et al. (2022). Differential Evasion of Delta and Omicron Immunity
621 and Enhanced Fusogenicity of SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants.
622 *bioRxiv*, 2022.2005.2016.492158. 10.1101/2022.05.16.492158.

623 32. Smith, D.J., Lapedes, A.S., de Jong, J.C., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus,
624 A.D.M.E., and Fouchier, R.A.M. (2004). Mapping the Antigenic and Genetic Evolution of
625 Influenza Virus. *Science* 305, 371-376. doi:10.1126/science.1097211.

626 33. Kaku, Y., Kosugi, Y., Uru, K., Ito, J., Kuramochi, J., Sadamasu, K., Yoshimura, K., Asakura, H.,
627 Nagashima, M., Consortium, T.G.t.P.J., and Sato, K. (2023). Antiviral efficacy of the SARS-CoV-

628 2 XBB breakthrough infection sera against Omicron subvariants including EG.5. bioRxiv,
629 2023.2008.2008.552415. 10.1101/2023.08.08.552415.

630 34. Wang, Q., Guo, Y., Zhang, R.M., Ho, J., Mohri, H., Valdez, R., Manthei, D.M., Gordon, A., Liu,
631 L., and Ho, D.D. (2023). Antibody Neutralization of Emerging SARS-CoV-2: EG.5.1 and
632 XBC.1.6. bioRxiv, 2023.2008.2021.553968. 10.1101/2023.08.21.553968.

633 35. Cao, Y.R. (2023). F456L-carrying XBB*, like EG.5, is rapidly rising. Meanwhile,
634 XBB*+L455F+F456L is also growing fast. Some updates explaining their advantages: .

635 36. Wang, Q., Bowen, A., Ho, J., Zhang, R., Valdez, R., Stoneman, E., Gordon, A., Liu, L., and Ho,
636 D.D. (2023). SARS-CoV-2 Neutralizing Antibodies Following a Second BA.5 Bivalent Booster.
637 bioRxiv, 2023.2008.2013.553148. 10.1101/2023.08.13.553148.

638 37. Chen, C., Nadeau, S., Yared, M., Voinov, P., Xie, N., Roemer, C., and Stadler, T. (2021). CoV-
639 Spectrum: Analysis of Globally Shared SARS-CoV-2 Data to Identify and Characterize New
640 Variants. Bioinformatics 38, 1735-1737. 10.1093/bioinformatics/btab856.

641 38. Fujita, S., Uriu, K., Pan, L., Nao, N., Tabata, K., Kishimoto, M., Itakura, Y., Sawa, H., Kida, I.,
642 Tamura, T., et al. (2023). Impact of Imprinted Immunity Induced by mRNA Vaccination in an
643 Experimental Animal Model. The Journal of Infectious Diseases. 10.1093/infdis/jiad230.

644 39. Pfizer and BioNTech Submit Applications to U.S. FDA for Omicron XBB.1.5-Adapted
645 Monovalent COVID-19 Vaccine. (2023).

646 40. MODERNA FILES FOR FDA AUTHORIZATION OF ITS UPDATED COVID-19 VACCINE.
647 (2023).

648 41. Will New COVID Vaccines Work Against EG.5? (2023).

649 42. Imai, M., Ito, M., Kiso, M., Yamayoshi, S., Uraki, R., Fukushi, S., Watanabe, S., Suzuki, T.,
650 Maeda, K., Sakai-Tagawa, Y., et al. (2023). Efficacy of Antiviral Agents against Omicron
651 Subvariants BQ.1.1 and XBB. N Engl J Med 388, 89-91. 10.1056/NEJMc2214302.

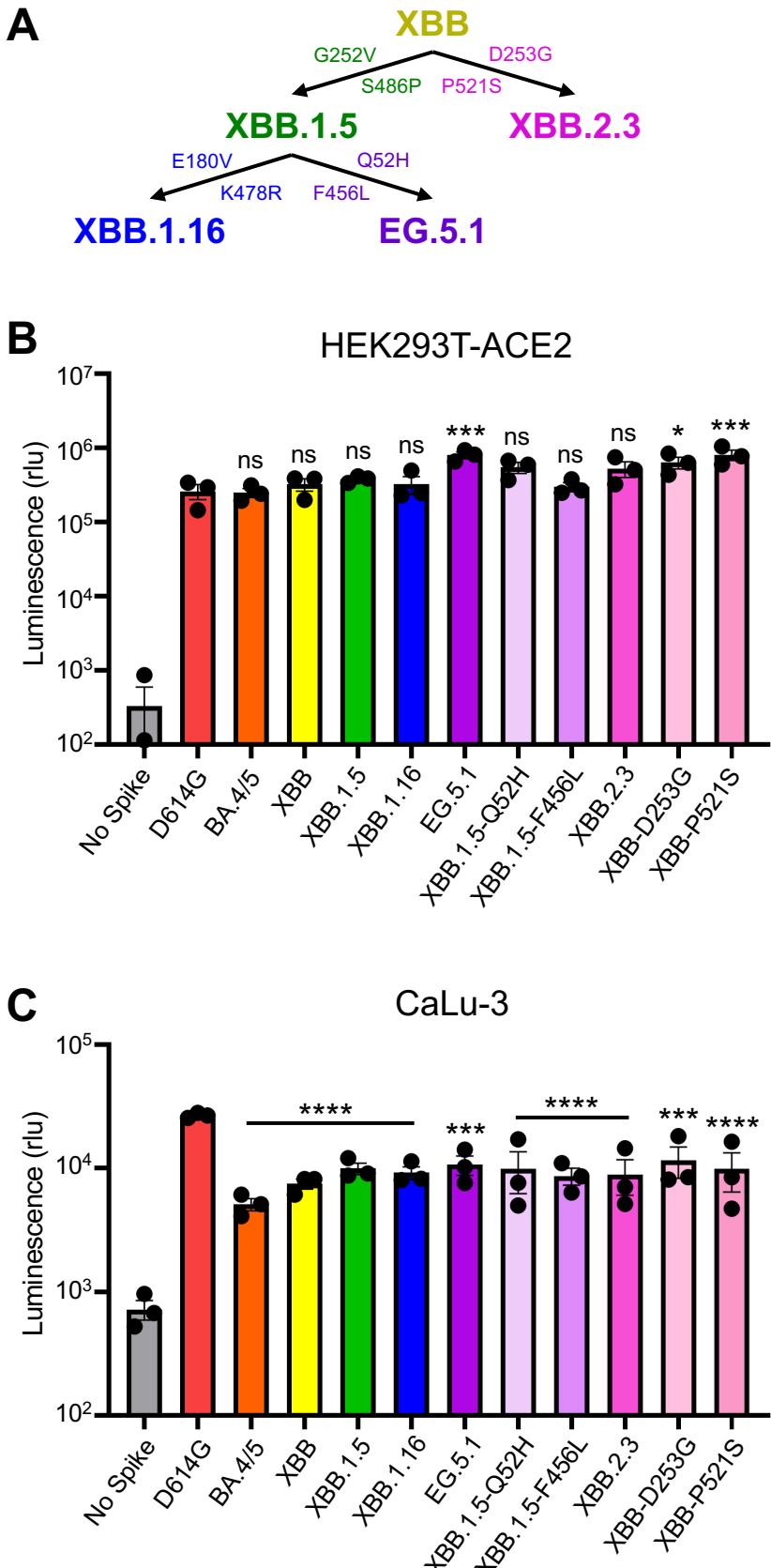
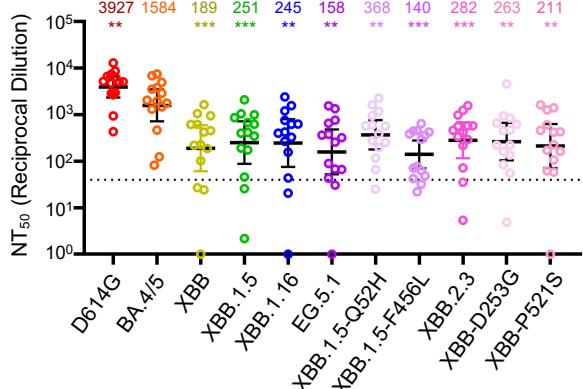
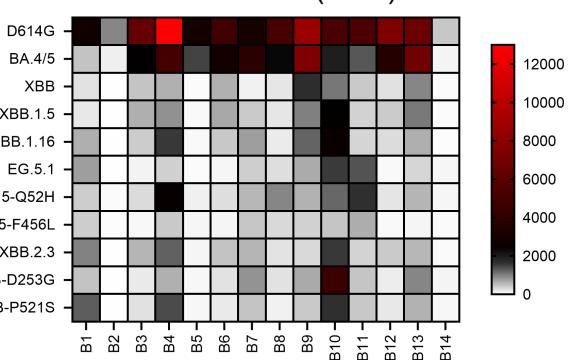
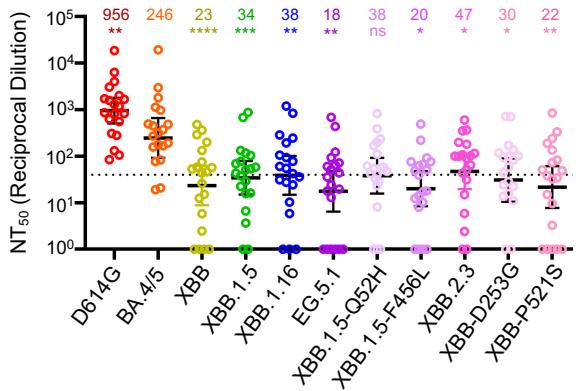



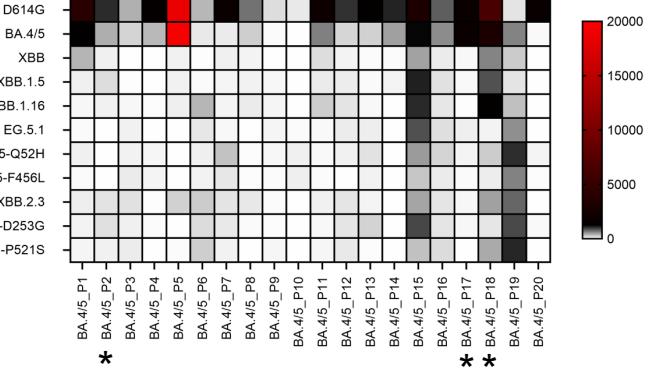
Figure 1


A

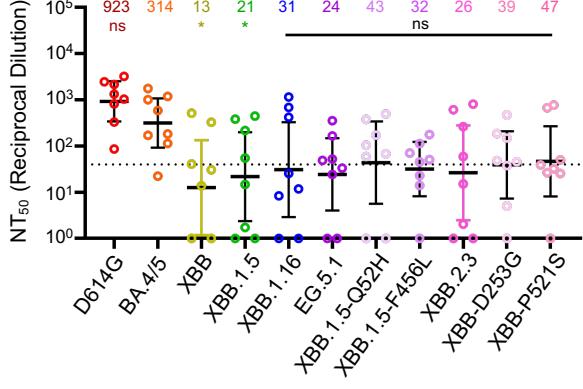
Bivalent HCWs (n=14)


B

Bivalent HCWs (n=14)


C

BA.4/5 wave (n=20)


D

BA.4/5 Wave (n=20)

E

XBB.1.5-Wave (n=8)

F

XBB.1.5-Wave (n=8)

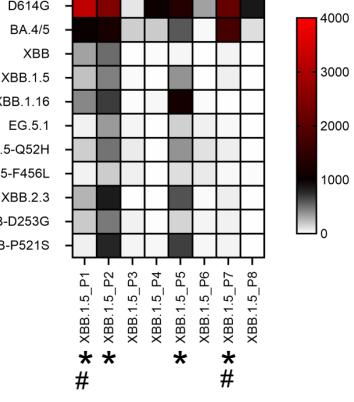
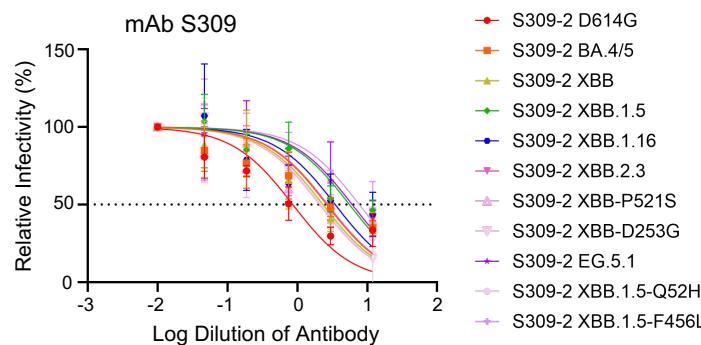
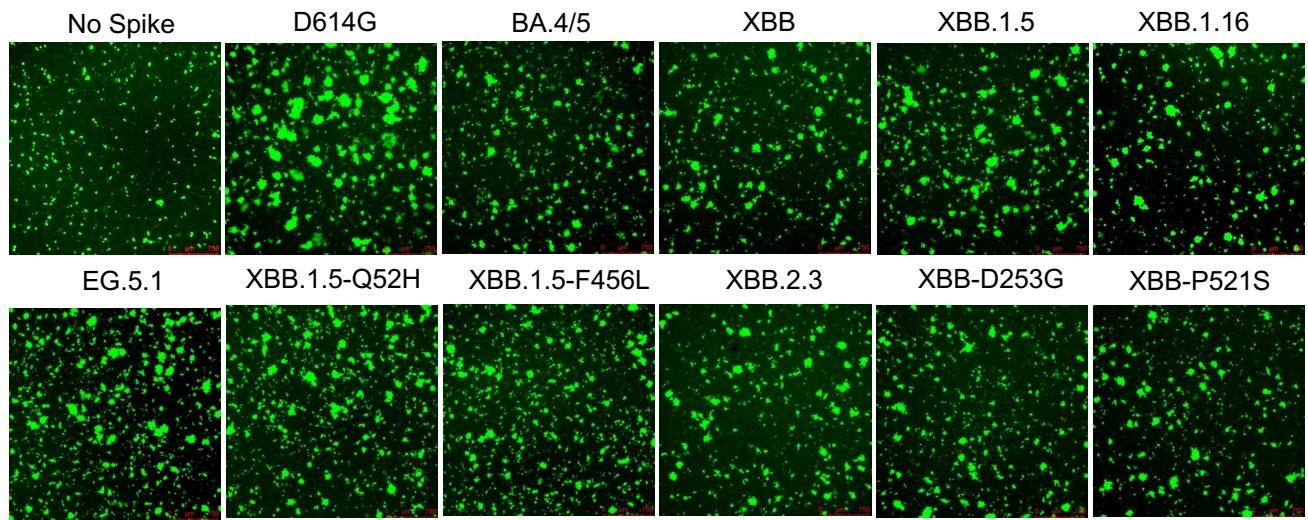



Figure 2

A



B

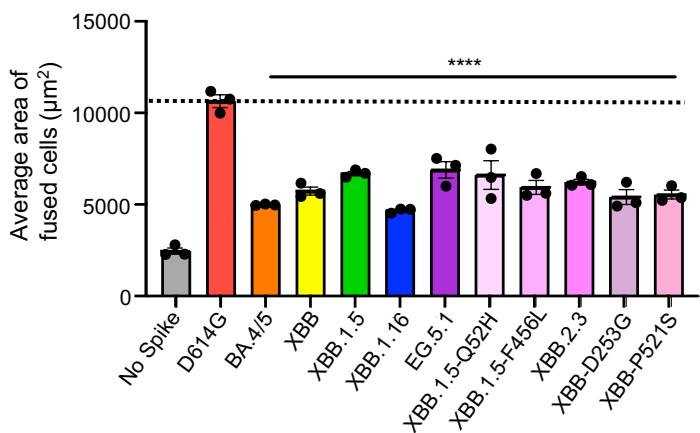
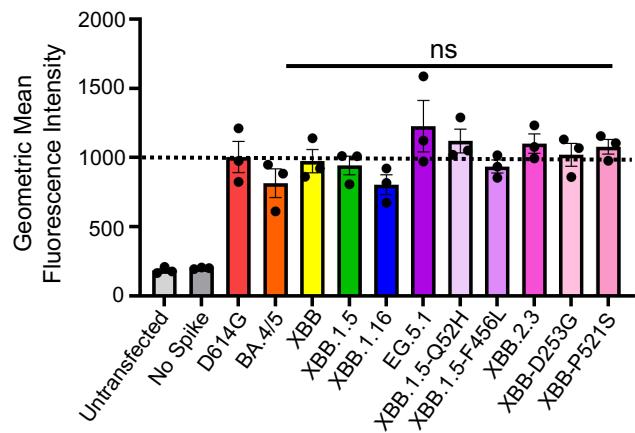
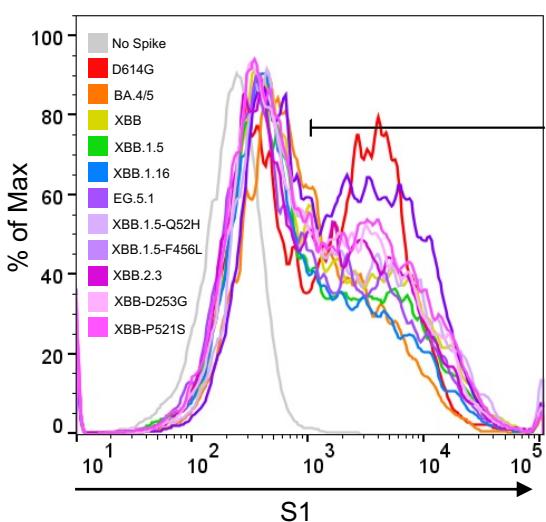
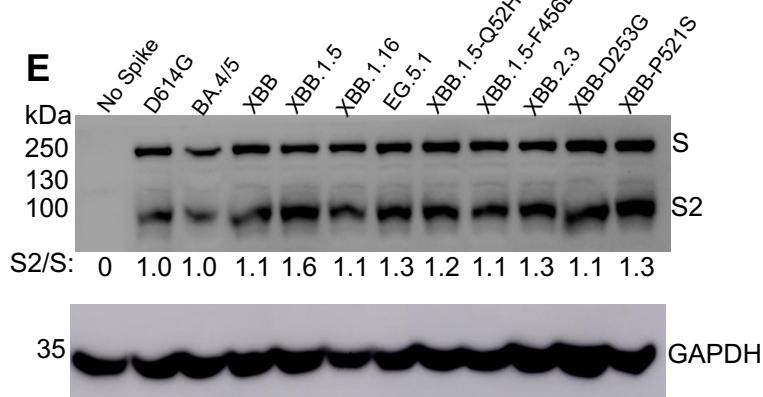

Variants	IC50 ($\mu\text{g/mL}$)
D614G	0.86 \pm 0.32
BA.4/5	2.6 \pm 0.9
XBB	2.3 \pm 0.8
XBB.1.5	5.6 \pm 1.8
XBB.1.16	3.5 \pm 1.7
EG.5.1	2.7 \pm 1.0
XBB.1.5-Q52H	2.1 \pm 1.0
XBB.1.5-F456L	2.2 \pm 0.6
XBB.2.3	6.1 \pm 2.2
XBB-D253G	2.7 \pm 0.8
XBB-P521S	7.7 \pm 2.4

Figure 3


A


B


C

D

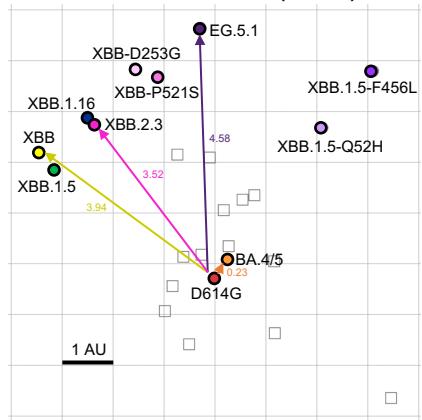
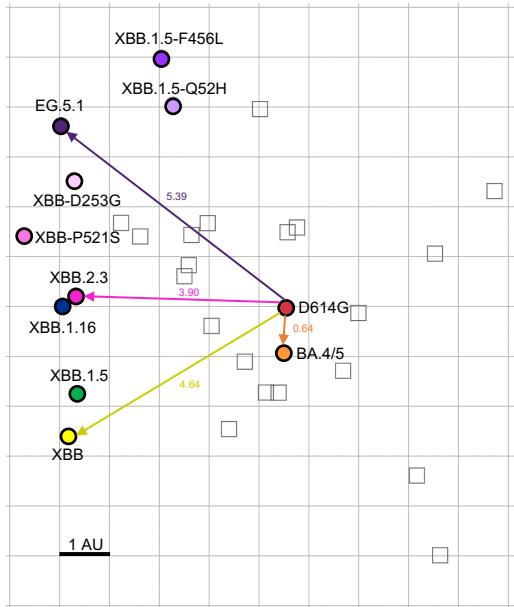
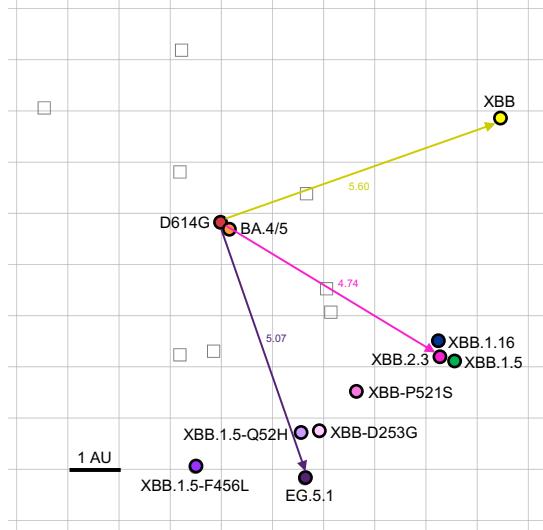

E

Figure 4


A

Bivalent HCWs (n=14)


B

BA.4/5 wave (n=20)

C

XBB.1.5-Wave (n=8)

Figure 5