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Summary

The function of some genetic variants associated with brain-relevant traits has been explained
through colocalization with expression quantitative trait loci (éQTL) conducted in bulk post-
mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or
molecular function. These genetic variants may exert context-specific function on different
molecular phenotypes including post-transcriptional changes. Here, we identified genetic
regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific
population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing
longer polyadenylation sequences were observed in neurons, likely due to higher expression of
genes encoding the proteins mediating these post-transcriptional events. We also detected
hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative
polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A

with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting
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genetically mediated post-transcriptional regulation during brain development lead to differences

in brain function.
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Introduction

Genome-wide association studies (GWAS) have detected many genetic loci associated
with risk for neuropsychiatric disorders and inter-individual variation in brain structure and other
brain related traits'-6. The vast majority of brain-relevant trait GWAS loci have been detected
within non-coding genomic regions, and do not change protein coding sequence, implying that
they may impact traits through gene regulation’-°. Expression quantitative trait loci (eQTL)
analysis, which statistically tests the effects of genetic variants on gene expression, have been
widely studied in adult brain bulk tissue to interpret the function of brain-relevant trait GWAS
loci'®-"5. These studies aggregate steady-state expression across all potential isoforms
regardless of post-transcriptional expression modulations. While adult post-mortem bulk tissue
eQTLs have identified gene regulatory mechanisms for a subset of brain-trait associated loci,
many do not colocalize, leaving their gene-regulatory function unknown. This has recently been
termed the “missing regulation” problem in the field of functional genomics'. One potential
solution could be that brain-relevant trait GWAS loci may function as eQTLs detected only under
certain conditions including developmental stage, cell-type, or stimuli'®'”. Consistent with this,
eQTL studies performed in fetal brain bulk data'®'%, and using cell-type-specific approaches
during human neurogenesis and adulthood?® identified novel genetic loci associated with brain-
relevant traits that were not detected in bulk post-mortem adult brain tissue. Although context-

specificity has been taken into account in these studies, there are still brain-trait associated loci
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that are not explained even by context specific eQTLs. While greater power and additional
contexts will likely yield additional gene regulatory effects of brain-trait associated loci, an
alternative approach is to study genetic variants influencing brain-relevant traits via alteration of
other gene regulatory phenotypes beyond overall expression including post-transcriptional

regulation?'-23,

The most commonly studied post-transcriptional modifications, alternative splicing, has
been found to be a major contributor to brain-trait variation using both bulk tissue'®1924 and
specific cell-types?>28. Many other post-transcriptional events exist, including RNA-editing and
alternative polyadenylation, and their genetic regulation are in general poorly studied, especially
during the process of neurogenesis. RNA-editing is nucleotide changes in RNA sequence
relative to those encoded by the DNA sequence. RNA editing can alter protein product encoded
by mRNAs?7-28, |ocation of transcripts?®3°, splicing3'32, transcript stability®334, and microRNA
binding sequences3>3. In humans, adenosine-to-inosine (A-to-1) changes are the most common
type of RNA-editing®”-38. A-to-1 editing events largely overlap with Alu repeats in the human
genome and are generated when ADAR enzymes bind to double-stranded RNA hairpins
generated by inverted repeat Alus (IRAlus)?23%40. A-to-| RNA-editing occurs in the human
brain*'42, and has been shown to impact neurotransmission and neurodevelopment?7-28:43-45,
RNA-editing dysregulation has been also associated with neurological disorders including
schizophrenia*®#7, autism spectrum disorder*®4°, major depression®!, epilepsy®?, and
Alzheimer’s disease®. Genetic regulation of RNA-editing was observed across adult tissues by
performing editing quantitative trait loci (edQTL) analysis, where 1.4% of edit sites (within 228
genes) were significantly regulated by at least one genetic variant3%4046_ As a potential
mechanism for edQTLs, genetic variants can perturb RNA secondary structure, which can lead
to differential RNA-editing in nearby regions??3%40 . Though adult brain bulk tissues are most

commonly used to study edQTLs3%46%4 recent studies have shown that RNA-editing increases
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from development to adulthood in the human brain*'-%, and edQTLs that were not observed in
adult brain bulk tissue were detected in bulk fetal brain tissue®. Despite the discovery of
temporal-specific edQTLs, the cell-type specificity of RNA-editing events and their genetic
regulation are as yet unknown during human cortical development and may have been masked

in previous bulk tissue studies due to heterogeneity in cell-type composition.

Alternative polyadenylation (APA) is another post-transcriptional modification occurring
at the 3'UTR or introns of a given gene in which the poly(A) tail of transcribed mRNA is added in
different genomic locations®¢’. This modification can influence a variety of cellular processes
including gene expression, RNA stability, localization, translation rate, and inclusion of
microRNA target sequences®%. Dysregulated APA has been found in a variety of brain-
relevant diseases including Amyotrophic lateral sclerosis®®, Parkinson’s disease®® and
Huntington’s disease®. Furthermore, the disruption of several APA regulators have been
reported in Oculopharyngeal muscular dystrophy®' and multiple neuropsychiatric disorders®2.
Previous research described the dynamics of alternative polyadenylation (APA) sites during
neuronal differentiation and detected that longer 3’'UTR isoforms are abundant in neurons
compared to progenitors®3-65, Alternative polyadenylation quantitative trait loci (apaQTL also
known as aQTL) analysis can be applied to assess the genetic alteration of alternative
polyadenylation site usage®-%°. Mechanistically, genetic alteration of polyadenylation sites,
polyadenylation signal motifs, or motifs of RNA binding proteins (RBPs) regulating APA can
impact polyadenylation site usage®. apaQTLs performed in human adult brain bulk tissue have
identified many genetic loci associated with alternative polyadenylation site usage®®%°. However,
the temporal and cell-type-specific regulation of apaQTLs in the human brain has also as yet

remained unexplored.

In this study using an in vitro cell-type-specific system model of human neurogenesis,

we systematically evaluated genetic regulation of RNA-editing and APA events within
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progenitors and neurons across ~80 different donors. We discovered that RNA-editing was
more prevalent in neurons compared to progenitors, likely due to higher expression of the genes
encoding ADAR2 and ADARS proteins. Alternative polyadenylation also showed differences
across cell types, where longer 3’ UTR isoforms were observed in neurons as compared to
progenitors. We found that common genetic variation was associated with both editing and
alternative polyadenylation in a cell-type-specific manner. Hundreds of cell-type-specific
edQTLs and apaQTLs were identified that were not previously discovered using fetal bulk brain
data. We also observed that these post-transcriptional QTLs, as well as sQTLs showed largely
independent regulatory mechanisms as compared to eQTLs. Furthermore, they provided
additional interpretation of brain-relevant GWAS loci in addition to eQTLs, suggesting that
studying post-transcriptional QTLs is required for a comprehensive understanding of genetic

regulation of molecular phenotypes impacting brain development.

Results

Cell-type-specific RNA-editing during human neocortical differentiation

We utilized an in vitro cell-type-specific system recapitulating human neocortical
differentiation in which we previously generated cell-type specific expression, splicing, and
chromatin accessibility QTLs?%7°. This QTL dataset includes progenitors (Ngonor = 84) and their
differentiated, labeled, and sorted progeny, neurons (Ngonor = 74)%6. We identified RNA-editing
events by observing sequence variants in multiple RNA-sequencing reads (supported by at
least 10 RNA-sequencing reads in at least 85% of donors per cell-type) using REDItools
software”! (Figure 1A and see Methods section). These variants have never previously been
identified as genetic variations in human populations. We detected 562 and 3,707 RNA-editing
sites in progenitors and neurons, respectively (Table S1). We found that these edit sites
overlapped with 261 and 825 genes in progenitors and neurons, and 44% and 59% of genes

showed multiple RNA-editing events in those cell types, respectively.
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To validate that these edit sites were not present in genomic DNA, we investigated
nucleotides at the genomic position of edit sites within ATAC-seq reads from our previous
studies’®72. We observed that when any ATAC-seq reads were present at a predicted edit site
across all donors, exclusively the unedited allele was present at 94.5% of edit sites, providing
confidence that the predicted edit sites were not rare previously undiscovered genetic variants
(Figures S1A-B). To evaluate the similarity of RNA-editing sites detected in each cell-type to
previously discovered editing events, we examined features including mismatch content and
genomic positions of edits. Since the base-pairing features of inosine and guanosine are similar,
Adenosine-to-inosine (A-to-1) RNA editing mediated by ADAR is observed as Adenosine-to-
guanosine (A-to-G) mismatches in RNA-seq”3. We observed 90.4% and 97% of mismatches in
progenitors and neurons were A-to-G changes (Figure 1B). Most RNA-editing sites in both cell
types were overlapped with Alu repeats, also consistent with ADAR mediated RNA-editing
(Figure 1C). The majority of RNA-editing was detected within intronic and 3’'UTR gene regions,
though some was found in the coding sequence (Figure 1D). We also detected that 88% and
87% of RNA-editing sites in progenitor and neurons were also previously identified in either
GTEXx Cortex™ or BrainVar®® data in which whole-genome-sequencing data paired to RNA-seq
were available (Figure 1E), showing consistency of data generated here with previously
discovered RNA-editing events. We further evaluated a common local sequence motif for RNA-
editing, which is 1bp upstream enrichment and 1bp downstream depletion of guanosine’®
among the RNA-edit sites we discovered. We observed that both RNA-editing sites found in
GTEXx or BrainVar data (previously annotated) and editing sites which were not found in
previous datasets (novel) showed highly similar, and expected, motif enrichment in neurons
(Figure 1F). However, only previously annotated edit sites showed the expected motif
enrichment in progenitors, likely due to the smaller number of edit sites detected in this category

(Figure 1F). Supporting that these novel edit sites were not false positives, 97% and 99% of
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novel edit sites in progenitor and neurons did not show edited alleles in any read from the
ATAC-seq data (Figure S1A). These results provided evidence that RNA-edit sites explored in

our study exhibited characteristics of previously identified RNA-editing events.

Consistent with the detection of more RNA-edit sites in neurons than progenitors, we
found that Alu editing index (AEI), which is calculated as the global measurement of A-to-G
changes within Alu elements’®, was significantly higher in neurons than progenitors (Figure 2A).
As a potential mechanism leading to global editing differences between cell types, we compared
expression of genes encoding ADAR1, ADAR2, and ADARS3 enzymes. We detected that the
expression of ADAR1 was slightly higher in progenitors than neurons; whereas both ADAR2
and ADARS3 were strongly upregulated in neurons (Figure 2B). Consistent with this, increased
ADART1 expression was positively correlated with global editing levels (AEI) only in progenitors,
but increased ADARZ2 and ADAR3 expression was specifically positively correlated with global
editing levels in neurons (Figure S2A). Higher ADARZ2 expression and lower ADAR3 expression
were previously found in neurons compared to oligodendrocytes in the adult brain77, but have
not previously been evaluated in progenitors. Also, ADAR3 has been previously considered as
having an inhibitory role in RNA-editing in the adult brain®*77.78 but our developmental and cell-
type-specific system revealed a positive correlation between AEI and ADAR3 expression within
neurons, suggesting ADARS3 has a unique role during development leading to increased editing
in immature neurons. We also detected a smaller AEI index and number of edit sites discovered
in fetal bulk data compared to neurons, and 94% and 96% of edit sites discovered in progenitors
and neurons were not identified by using fetal bulk brain data (Figures 2A and C). We observed
that average read depth was 17.1M £ 5.8 and 99.8M + 29.8 in fetal bulk and cell-type-specific
RNA-seq data, respectively, so the novel cell-type specific editing events may be driven by
either the lower read depth of RNA-seq samples in the fetal bulk data limiting our power to

discover RNA-editing events or heterogeneity of cell-types in bulk data. Moreover, consistent


https://paperpile.com/c/uztCjj/dIB3
https://paperpile.com/c/uztCjj/uiwx+HTG0
https://paperpile.com/c/uztCjj/uiwx+HTG0+03sL
https://doi.org/10.1101/2023.08.30.555019
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555019; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

with the hypothesis that editing increased throughout the development, we also observed higher
AEI values in fetal bulk brain samples’® at older gestation weeks as neuronal production
increased, consistent with increased editing observed in neurons (Figure S2B). Overall, here,
we provide evidence that increased expression of genes encoding ADAR enzymes are likely
responsible for cell-type-specific global RNA-editing and the higher number of RNA-editing

events in neurons during human neurogenesis.

Next, we evaluated the downstream functions of RNA-editing. To understand if RNA-
editing sites that we discovered were also dysregulated in neuropsychiatric disorders, we
evaluated enrichment of cell-type-specific edit sites detected in our sample within previously
identified disease-related edit sites which were differentially detected between individuals from
case and control groups using adult-bulk post-mortem tissue*64%7°, We found that cell-type-
specific RNA-edit sites present during neurogenesis that were observed in our model system
overlapped with disease-related edit sites found in schizophrenia, glioblastoma, Fragile X, and
autism. We observed a greater overlap of disease associated editing events with neurons as
compared to progenitors, but these overlaps in both progenitors and neurons occurred more
than expected by chance (Fisher’s exact test, FDR < 0.05). These findings suggest a
developmental and cellular origin of RNA-editing dysregulation in neuropsychiatric disorders

(Figure 2D).

We also evaluated whether RNA-editing influences other cellular downstream functions
during neurogenesis. We performed high-content imaging of 8-week differentiated neuronal
cultures and labeled them with markers of neuronal differentiation (TUJ1 labeling was used for
early born neurons) and all nuclei (DAPI) with 31 wells measured per donor on average. We
implemented an image analysis pipeline to quantify the percentage of cells labeled with TUJ1 as
a measure of that donor's neurogenic potential, observing strong differences across donors

(compare Donor 18 with Donor 321 in Figure 2E). We found that an editing site within the 3'UTR
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of CEP104 gene in neurons was positively correlated with the number of cells expressing a
neuronal marker TUJ1 (Figure 2E, Table S2). CEP104 gene encodes a ciliary protein and loss-
of-function mutations on CEP104 were found in individuals with a neurodevelopmental
condition, Joubert syndrome®-82. These results indicate that RNA-editing can influence fate

decisions even without having an effect on the amino acid sequence of the protein.

Genetic requlation of cell-type-specific editing via editing quantitative trait loci (edQTL) analysis

To perform cell-type-specific edQTL analysis, we tested the association of genetic
variants with edit rate, which was defined as the read counts supporting the edited allele (mainly
the G nucleoside) divided by the total read coverage at the edit site, within +/-100 kb from edit
sites. We included only variants and edit sites located in the same gene (excluding intergenic
variants) because we hypothesized that alterations in mMRNA secondary structure alter editing.
We controlled population structure and global editing principal components (PCs) as technical
confounders. We controlled for one global PC of gene editing in progenitors and the major
known technical confounder (FACS sorting) in neurons (see Methods), which were highly
correlated to ADAR1-3 expression (Figure S2C). We implemented a hierarchical multiple
comparisons correction method using eigenMT-FDR at 5% as a significance threshold (see
Methods). We identified 101 and 517 edSites, which are the edit sites significantly regulated by
at least one genetic variant, within 79 and 279 genes in progenitors and neurons, respectively
(Figure 3A, Table S3). Primary edSNPs, which are variants showing the most significant
association with edSites, showed stronger associations as they were closer to the edit sites
(Figure 3B). We also observed that genes harboring these edit sites in neurons were
significantly enriched in biological pathways related to neuronal morphology and metabolism;
whereas we did not detect any significant enriched biological pathways in progenitors (Figure
3C). To investigate a potential mechanism whereby genetic variants impact RNA-editing, we

assessed the RNA-secondary structures where significant and nonsignificant edQTLs were
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located. We found that the majority of significant edQTLs were found within the double stranded
RNA-secondary structure, stem, which is substrate for ADAR enzymes in both cell types (Figure
3D). Only significant neuron edQTLs were significantly more enriched within stem structure
compared to nonsignificant neuron edQTLs. We did not observe an enrichment in progenitor
edQTLs within the stem structure, though this was likely driven by fewer edQTLs discovered in

progenitors (Figure 3D).

We observed high cell-type specificity of genetic effects on editing, finding that 86% and
97% of edSites in progenitors and neurons were not detected in other cell types. We also found
that 97% and 99% of edSites in progenitor and neurons were not detected in bulk fetal brain
tissue, showing additional genetic discovery is enabled using a cell-type specific approach

(Figure 3A).

Cell-type-specific alternative polyadenylation sites during human neocortical differentiation

Another post-transcriptional modification of interest during differentiation is alternative
polyadenylation. We identified and quantified alternative polyadenylation (APA) site usage by
applying the QAPA method, which allows identification and quantification of 3’'UTR isoforms
mapped to annotated polyA sites by using RNA-seq data®>83 (see Methods). After filtering out
lowly expressed 3'UTR isoforms, we detected 19,200 and 18,246 3'UTR isoforms
corresponding to alternative polyadenylation sites within 7,711 and 7,801 genes in progenitor
and neurons, respectively (Table S4). We observed 2.5 and 2.3 different 3’'UTR isoforms per
gene on average in progenitors and neurons, respectively. Principal component analysis for
APA usage showed that progenitors and neurons were distinctly separated, indicating that cell
type has a strong influence on 3’ UTR isoform usage (Figure 4A). We also observed that genes
which play a role in alternative polyadenylation were differentially expressed across cell-types,

including higher expression of FIP1L1 and RBBP6 in neurons, suggesting their distinct
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regulation and function during differentiation (Figure 4B). We next performed differential isoform
usage analysis across cell-types, and identified both cell-type-specific 3’'UTR lengthening and
shortening. We observed that the longest 3’'UTR isoform of a gene was upregulated in neurons
for 79% of 3’UTRs genes, consistent with the previous observation that longer 3UTRs are
expressed during differentiation whereas less differentiated and proliferative cell types generally
express shorter 3' UTRs®583-85. As an example, we found that longer 3'UTR of CALM1 gene
was upregulated in neurons (Figure 4C). CALM1 protein is a calcium ion sensor®, and the
neuron specific longer 3’'UTR expression of the CALM1 gene was previously shown in mice and
its deficiency led to impaired neuronal function®’. In summary, longer 3 UTRs were observed in
neurons as compared to progenitors, some of which have previously been shown to be
functional, and which may be mediated by the increased expression of FIP1L1 and RBBP6

polyadenylation factors.

Genetically altered cell-type-specific alternative polyadenylation sites

We performed alternative polyadenylation QTL (apaQTL) analysis by evaluating the
association of each 3'UTR isoform with the genetic variants within +/- 25 kb window of 3’'UTR
start and end sites (see Methods). We identified 423 and 215 primary apaQTLs within 352 and
184 genes in progenitors and neurons, respectively (Figure 4D, Table S5). Primary apaQTLs
showed stronger associations in closer proximity to the APA site (Figure 4E). To investigate a
mechanism underlying apaQTLs, we searched for significant apaQTLs that change canonical
polyadenylation signal sequences. We found that 13.6% and 16.3% of significant apaQTLs in
progenitor and neurons, respectively, were within canonical polyadenylation signal (PAS)
sequences. As previously reported, we also found that AAUAAA was the most frequent motif
among these overlapped PAS motifs altered by significant apaQTL®°. As an example, we

detected an apaQTL for RPL22L1 gene in both progenitor and neuron cells, and the T allele
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which was the AAUAAA motif matching allele was associated with increase in short 3UTR and
decrease in long 3'UTR (Figure 4F). To evaluate cell-type-specificity of apaQTLs, we utilized 14
statistics. We estimated the proportion of progenitor and neuron primary aSNP-APA pairs that
were non-null associations (1T1) in neuron and progenitor apaQTLs as 36.3% and 47.4%,
respectively, showing high cell-type specificity of alternative polyadenylation. We next evaluated
the overlap of cell-type-specific apaQTLs with fetal brain bulk data, and observed high cell-type
specificity of alternative polyadenylation (Figure 4D), again showing that genetic effects on post-

transcriptional modifications have greater discoverability within homogeneous cell types.

Genomic features distinquishing molecular QTLs

Next, we evaluated the genomic features distinguishing different types of molecular
QTLs in order to understand their shared or unique regulatory mechanisms. We evaluated this
using molecular QTLs previously identified in the same population of neural progenitor cells
(expression, splicing, and chromatin accessibility) together with those identified in this
manuscript (editing and polyadenylation)?®. We observed that both primary edQTLs and
apaQTLs were more often near transcription termination sites (TTS) as compared to primary
eQTLs which were more often near transcription start sites (TSS) in both cell-types (Figures 5A-
B). Unlike primary sQTLs, both primary edQTLs and apaQTLs were found less often near splice

sites (Figure 5C). Functional genetic variants are often near the molecular entity they regulate.

Furthermore, we also detected that primary edQTLs were found less often within
chromatin accessible regions more accessible within that cell type as compared to eQTLs"®
(Figure S3A, left side). Also, primary apaQTLs were found less often within chromatin
accessible regions compared to eQTLs in progenitor cells (Figure S3A, left side). On the other

hand, both primary edQTLs and apaQTL were enriched more within RNA Binding Protein (RBP)
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binding sites®® than eQTLs in both cell types (Figure S3A, right side). These findings are
consistent with the predicted mechanism of action of eQTLs, alterations in regulatory element
activity marked by accessible chromatin, as compared to ed/apaQTLs which are likely

dependent on alterations in affinity of RNA binding proteins.

Also, we observed that 2% and 1.8% of edSNPs, variants significantly associated with at
least one edit site, were also significantly associated with the expression of the gene harboring
the edit sites (edGene) in progenitors and neurons, respectively. 5.8% and 5.6% of apaSNPs
significantly associated with at least one APA, were also significantly associated with the
expression of the gene harboring the 3’'UTR (aGene) in progenitors and neurons, respectively.
Given the difference in statistical power between different datasets, we also applied T4
statistics® to assess the overlap across edQTLs/apaQTLs/eQTLs and sQTLs. We found that
the proportion of progenitor and neuron primary edSNP-edGene pairs that were non-null
associations (111) in progenitor/neuron eQTLs were 12% and 2%; the proportion of progenitor
and neuron primary apaSNP-aGene pairs that were non-null associations (111) in progenitor and
neuron eQTLs were 50% and 34.6%, and the proportion of progenitor and neuron primary
sSNP-sGene pairs that were non-null associations (111) in progenitor and neuron eQTLs were
46.5% and 40.6% (Figure 5D). Taken together, these findings suggested that genetic regulation
of RNA-editing, alternative polyadenylation, and alternative splicing site usage were mainly

independent from eQTLs, consistent with the observations previously reported??¢7.

To understand whether the small subset of eQTLs shared with ed/apaQTLs were
causally related, we performed mediation analysis®°! for variant-edit-gene and variant-APA
site-gene triplets. While we did not detect any variant-edit-gene triplets supporting the causal
forward model; we detected 335 and 49 variant-APA site-gene triplets. As an example, we

found that an apaQTL in progenitors mediated expression of CEP250 gene (Figure S3B).
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We also compared the pLOUEF scores® of the genes harboring edSites (edGenes) and
APA sites (aGenes) in this study and eGenes and genes for which splice sites (sGenes) were
found to be significantly regulated in our previous study?. We observed that sGenes, edGenes
and aGenes showed lower pLOUEF scores than eGenes in both cell types. Lower pLOUEF
scores indicate genes that are generally protected from rare damaging variation, suggesting that
they are important for diseases. These findings indicate that the genes affected by editing and

APA are likely to be more disease relevant (Figure 5E).

Interpretation of the function of the brain-relevant GWASSs using post-transcriptional QTLs

To explain the function of genetic variants associated with brain-relevant traits, we next
leveraged cell-type-specific edQTLs and apaQTLs with brain-related trait GWAS. Applying
colocalization analysis to 2,260 brain-trait GWAS including neuropsychiatric disorders, brain
structure and function, and cognitive performance (see Methods), we identified 6 and 6 GWAS
loci-traits pairs colocalized with progenitor and neuron edQTLs, respectively; also we found 6
and 3 GWAS loci-trait pairs colocalized with progenitor and neurons apaQTLs, respectively.
Importantly, we did not detect some of these loci in cell-type-specific eQTL and sQTL analysis?®®,
suggesting that our approach to integrate post-transcriptional gene regulatory phenotypes
revealed the regulatory mechanism of additional brain-relevant trait GWAS loci (Figure S4A,
Table S6). As a specific example for edQTLs colocalized with brain-relevant traits, we observed
that a neuron-specific edQTL, rs56320407 was co-localized with an educational attainment
GWAS-associated locus (index variant rs2589091, p-value = 3.3 x 10®, LD r? = 0.85 based on
European population) within the CCDC88A gene locus® (Figure 6A). Importantly, the edQTL
was not associated with any significant changes in CCDC88A expression showing that edQTL
enabled the detection of new brain-related genetic variation (Figure 6A). The edit site

(chr2:55406089:A>G, Figure S1B) was within the protein coding sequence of one the isoform of
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CCDCB88A, though did not change its amino acid sequence, but overlapped the intronic region
of the rest of the isoforms. The T allele of rs56320407 was associated with an increase in RNA-
editing and decreased educational attainment (Figure 6B). Both the edit site and the index
edQTL variant rs56320407, which is 20 bp away from the edit site, were within an Alu repeat
(Figure 6C). We predicted the secondary structure of a potential IRAlu hairpin using an in silico
analysis separately for T and C alleles of variant rs56320407 using RNA sequence between this
Alu site and the closest Alu repeat in the opposite direction®* (Figure 6C). The predicted
secondary structure of the IRAlu hairpin including T (U in RNA sequence) allele matched with
the A nucleotide; whereas structure including the C allele caused a C-A mismatch (Figure 6C).
Given that the T allele was associated with higher editing, this observation suggests that the T
allele caused formation of an RNA secondary structure substrate which was preferred by the
ADAR enzymes that consequently led to higher editing level. CCDCB88A is an actin binding
protein, and it played a role in axonal development and newborn neuron migration during mouse
adult neurogenesis®-%. Though the edit site did not lead to amino acid change in the protein or
differences in mRNA expression, we suggest that the edit site within the CCDC88A gene may
impact higher cognitive function via altering mRNA stability and eventually translation of protein

during cortex development.

One example of an apaQTL colocalized with brain-relevant trait GWAS was found at the
EP300 gene locus. We detected that progenitor-specific index apaQTL variant, rs35508493,
was colocalized with variant rs9607782 which is an index SNP within the schizophrenia GWAS?
(p-value = 5.5 x 10'%) (Figure 6D). We did not observe any genetic variants associated with
summarized gene expression at the locus. Insertion of GTA nucleotides at rs35508493 was
associated with decrease in usage of the longer 3’'UTR isoform and lower risk for schizophrenia
(Figure 6E). Variant rs35508493 was overlapped with binding sites of multiple RBPs including

LIN28B, YTHDF1, YTHDF2, YTDC1 and IGF2BP3 based on CLIPdb database (Figure 6D)%,
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suggesting that it may alter APA site usage by interfering with RBP function. EP300 gene
encodes a histone acetyltransferase protein, and its inhibition promoted proliferation of neural
progenitors in adult zebrafish®”. We observed several microRNA binding sites within the
genomic location that differ between long and short APA sites (Figure 6F). This observation
suggests that different APA site usage may influence mRNA stability by interfering microRNA
function which may consequently lead to differences in protein translation that may influence

schizophrenia risk by impacting neural proliferation.

We also evaluated how many additional brain-relevant GWAS loci’s function could be
explained via our cell-type-specific system in addition to adult brain eQTLs. We found that our
cell-type-specific QTL approach allowed discovering the function of 0.6-4.5% of GWAS loci
which could not be explained by adult brain eQTLs previously (Figure S4B). Furthermore, we
also investigated that 1.3%-37.5% of adult brain eQTLs which could already explain the function
of brain-relevant trait GWAS loci were also cell-type-specific QTLs, indicating a developmental

origin of these adult eQTLs (Figure S4B).

Discussion

In this study, we identified the impact of genetic variants on cell-type-specific RNA-
editing and alternative polyadenylation. We found that: (1) RNA-editing was more frequently
observed in neurons compared to progenitor cells. This increase in RNA editing may be
mediated by higher expression of ADARZ2 and ADAR3 in neurons. (2) Consistent with previous
findings of 3UTR isoforms lengthening during differentiation®3-%%, the majority of longer 3UTR
isoforms of the genes were upregulated in neurons. (3) Both edQTLs and apaQTLs were
strongly cell-type-specific. (4) Both edQTLs and apaQTLs were enriched within genomic
regions and regulatory elements which were different from eQTLs, suggesting independent

genetic regulatory mechanisms. (5) We found that a few edQTLs and apaQTLs were
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colocalized with brain-relevant trait GWAS loci in progenitor and neuron cells, increasing the

known gene regulatory mechanisms underlying complex brain traits.

Previous studies have reported that RNA-editing increases from fetal to adult human
brain*'%%, However, the mechanism causing the developmental increase of RNA-editing has
remained unexplored. Our cell-type-specific design using approximately 80 different donors
provided sufficient power to observe the difference in RNA-editing between cell types of the
prenatal brain. RNA-editing was six times more frequently observed in neurons compared to
progenitor cells during cortical development. This observation was consistent with ADAR2 and
ADARS3 upregulation, but slight ADAR7 downregulation in neurons. We observed that higher
ADAR1 expression was associated with increased editing levels in progenitors, but not in
neurons. Also, we noted that higher ADARZ2 and ADAR3 expression were associated with
higher editing levels, specifically in neurons. Though increased ADAR2 was also previously
found to be associated with increased editing in the adult brain, ADAR3 has been previously
thought to inhibit RNA-editing using expression measured in the adult brain3*77.789 However,
here we show that ADARS is positively correlated with editing in neurons suggesting that
ADARS can act as an activator of RNA-editing specifically during early development, but it may
later decrease editing levels in adulthood. Future studies measuring RNA-editing levels
following modulation of ADAR3 in immature and mature neurons will provide insights into
addressing this controversy. Increased editing levels in neurons suggests that RNA-editing has
functionality in neurons including neuronal differentiation, maturation and activity. For instance,
we found that higher editing rate within the CEP 704 gene was positively correlated with higher
number of neurons generated during differentiation, while the same edit site was not discovered
in progenitor cells (Figure 1E). Also, these results imply that the molecular engineering tools
such as RADAR and celREADR®?'% may be more useful in cell types with higher ADAR

expression, such as neurons, and that design of sense-edit-switch sequences that target
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endogenous mMRNAs may benefit from knowing which variants increase or decrease editing

events.

A previous report indicated that longer 3’'UTR isoforms are abundant in neurons
compared to progenitors® that 3’UTRs upregulated in neurons were mainly the longest possible
isoform of the genes. These observations suggest that testing 3'UTR isoform levels derived
from long-read sequencing across different genotypes will also be a useful strategy to validate
apaQTLs given that our short-read RNA-sequencing data may have limited accuracy for
quantification of the reads mapping to multiple isoforms. Finally, we detected that apaQTLs
showed a higher overlap with eQTLs compared to the overlap of edQTLs with eQTLs. Different
microRNA binding sites may exist more likely across different APAs which may eventually
impact regulation of gene expression via those microRNAs. On the other hand, only single base
changes via RNA-editing might not be sufficient to alter microRNA binding sites whereas they
can still influence RNA secondary structure and eventually translation of proteins. Performing
ribonucleoprotein immunoprecipitation assays'%! at candidate genetically altered APA and edit

sites for the microRNAs will help to explore these potential molecular mechanisms in the future.

Our cell-type-specific approach also increased discovery of genetic regulation on post-
transcriptional modulation during human brain development. We observed many more
ed/apaQTLs in our cell type specific dataset as compared to fetal bulk brain dataset. This could
be due to homogeneous cell populations yielding more accurate quantification of post-
transcriptional phenotypes, whereas bulk populations intermingle multiple different cell types
each of which has different mechanisms. However, it is also important to note that the lower
read depth difference in fetal bulk data compared to the cell-type-specific data might have
impacted the number of QTLs discovered. Future studies with greater cellular resolution will

likely yield greater discovery of genetically altered post-transcriptional gene regulation.

18


https://paperpile.com/c/uztCjj/fZnL
https://paperpile.com/c/uztCjj/2DL8
https://doi.org/10.1101/2023.08.30.555019
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.30.555019; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We observed a very low overlap between edQTLs/apaQTLs and eQTLs, suggesting
their impact is independent of the genetic regulation of gene expression as also proposed by
several previous reports?267-6°_This observation suggests that edQTLs/apaQTLs may impact
protein abundance, localization, or function rather than mRNA expression levels. The influence
of APA on protein abundance and ribosome occupancy without altering mMRNA expression
levels has been previously described®’. Although there is no clear evidence for the impact of
RNA-editing on translation yet, changes in protein levels via RNA-editing were detected in a
previous study'%2. Previous studies in adult brain data showed the differences in the impact of
genetic variants on gene expression and proteins'%-1%5, Comparison edQTLs/apaQTLs with
protein QTLs in cell-types of developing brain will clarify what the functional consequences of

these variants are at the molecular level.

As a result of their independent regulation, novel post-transcriptional QTL colocalizations
can be detected with brain-relevant trait GWAS that were not observed in steady state eQTL
colocalizations. Importantly, we observed a few edQTLs and apaQTLs colocalized with brain-
relevant trait GWAS, contributing to solving the missing regulation problem. Utilization of
edQTLs/apaQTLs with larger sample size may enable explanation of additional genetic

mechanisms underlying complex brain traits in the future.
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Figure legends

Figure 1. Study design and features of RNA-editing sites

(A) Study design to identify cell-type-specific edQTLs and apaQTLs.

(B) Proportions of RNA-editing events discovered in each cell type.

(C) Pie chart showing proportions of RNA-editing events within Alu repeats, other repeats or

non-repeat regions in the genome per cell type.

(D) Proportions of RNA-editing events across genomic regions. CDS: Coding sequence, 3'UTR:

Three prime untranslated region and 5’UTR: Five prime untranslated region
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(E) Overlap of RNA-edit sites with GTEx Cortex or BrainVar datasets. The edit sites overlapped

are defined as annotated and the sites which do not overlap are defined as novel.

(F) Local motif enrichment for annotated and novel edit sites per cell-type. Number of edit sites

(n) in each category is reported.

Figure 2. Cell-type-specific RNA-editing during human neurogenesis

(A) Comparison of Alu editing index (AEI) between progenitors and neurons. T-test p-value was

reported.

(B) Differential expression of ADAR1, ADAR2 and ADAR3 genes between progenitors and

neurons. Adjusted p-value (adj.pval) and log fold change (logFC) from limma were reported.

(C) Overlap of RNA-editing sites discovered in progenitors, neurons and fetal bulk data.

(D) Enrichment of cell-type-specific RNA-editing sites within edit sites dysregulated in brain-
relevant diseases. The number of edit sites overlap is reported, and the proportion of disease-
specific edit sites overlapped with cell-type-specific edit sites is shown on the y-axis. Asterisks
indicate significant enrichment (FDR < 0.05). Autism (Autism Spectrum Disorder), Fragile X,
(Fragile X syndrome from UC Davis database), Fragile X, (Fragile X syndrome from NIH
biobank dataset), GBM (Glioblastoma), SCZ ACC (Schizophrenia from anterior cingulate

cortex), and SCZ DLPFC (Schizophrenia from dorsolateral prefrontal cortex).

(E) Editing rate of the edit site (chr1:3813767:A>G) at the 3'UTR of CEP104 gene was positively
correlated with the proportion of TUJ1+ neurons. Gene model for CEP104 and the genomic
position of the edit site are given at the left. Scatter plot illustrating the correlation between edit
rate and the relative abundance of TUJ1+ neurons, and correlation coefficient (r) and p-values
are shown. Representative immunocytochemistry images for TUJ1 (in green) and DAPI (in blue)

staining of Donors 18 and 321 (D18 and D321) are shown, scale bar is 100 um.
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Figure 3. Cell-type-specific edQTLs

(A) Overlap of edSites detected in progenitors, neurons, and fetal bulk data.

(B) Primary edQTLs were more significantly associated with editing as they were closer to the
edit sites. Association p-values at -log10 scale are shown on the y-axis and distance from edit
sites are shown on the x-axis for progenitors (left) and neurons (right), density of the data points

are indicated by color density per cell-type.

(C) Gene ontology results for edGenes found in neurons.

(D) Enrichment of significant edQTLs within different RNA secondary structures illustrated at
left. Enrichment p-values at -log10 scale are shown on the y-axis across structures and data are
colored by cell-types. The number of variants (n) significantly associated with edit sites and

located within each structure are shown.

Figure 4. Cell-type-specific alternative polyadenylation and apaQTLs

(A) Principal component analysis for alternative polyadenylation (APA) site usage colored by

cell-type.

(B) Differentially expressed genes between progenitors and neurons that encode proteins
playing a role in alternative polyadenylation. Fold change (logFC) is given on the x-axis and
data points are colored by adjusted p-value at -log10 scale. logFC > 0 indicates the genes
upregulated in neurons and logFC < 0 indicates the genes upregulated in progenitors, and

logFC = 0 is shown with dashed vertical line line.

(C) Two APA sites of CALM1 which were differentially expressed between progenitors and
neurons are shown. Gene model for CALM1 is provided above, and relative read count per APA
sites for each cell-type are shown where relative read coverage calculated as ratio of number of

count supporting each APA site to total number of reads including both APA sites are shown on
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the y-axis; and genomic position of the reads are shown on the x-axis. Differential expression of

APA; (longer 3'UTR isoform) is shown between cell-types.

(D) Overlap of APA sites regulated by primary aSNPs across progenitors, neurons and fetal

bulk brain data.

(E) Primary apaQTLs were more significantly associated with APA as they were closer to APA
sites. Association p-values at -log10 scale are shown on the y-axis and distance from APA sites
are shown on the x-axis for progenitors (left) and neurons (right), density of the data points are

indicated by color density per cell-type.

(F) apaQTL overlapping with canonical polyadenylation signal motif AAUAAA for gene RPL221

is shown for each cell type. Read coverage per genotype is shown.

Figure 5. Comparison of cell-type-specific molecular QTLs

(A) Distribution of primary eQTLs, sQTLs, edQTLs and apaQTLs from transcription start site

(TSS) per cell-type, the distance from TSS is shown on the x-axis.

(B) Distribution of primary eQTLs, sQTLs, edQTLs and apaQTLs from transcription termination

site (TTS) per cell-type, the distance from TTS is shown on the x-axis.

(C) Distribution of primary eQTLs, sQTLs, edQTLs and apaQTLs from splice sites per cell-type,
the distance from splice is shown on the x-axis. Two distances were calculated relative to intron

start and end sites, and the shortest distance was used for comparison for each QTL data.

(D) Overlap of primary e/s/ed/apaQTLs via 111 statistics (progenitors in purple and neurons in
green). Matrices are colored based on the proportion of progenitor and neuron primary edSNP-
edGene, aSNP-aGene, sSNP-sGene, eSNP-eGene pairs that were non-null associations (171) in

each of QTL datasets.
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(E) pLOUEF values for aGenes, edGenes, eGenes and sGenes per cell type are shown. P-

values from t-test are reported.

Figure 6. Colocalization of cell-type-specific edQTLs and apaQTLs with brain-relevant

trait GWAS loci

(A) Genomics tracks illustrating that an edQTL within CCDC88A gene locus in neurons was
colocalized with an index variant for education attainment GWAS; whereas there was not any
significant eQTL for CCDC88A. Data points were colored based on the pairwise LD r? with
rs563320407; p-values for each association are shown on the y-axis and genomic positions of

genetic variants are shown on the x-axis.

(B) Boxplot illustrating distribution of editing rate across rs56320407.

(C) The predicted secondary structure of the IRAlu hairpin for T and C alleles of rs56320407.

Edit sites and genetic variants are indicated by red and blue colors, respectively.

(D) Genomics tracks illustrating that an apaQTL within EP300 gene locus in progenitor was
colocalized with an index variant for schizophrenia GWAS; whereas there was not any
significant eQTL for EP300 gene. Data points were colored based on the pairwise LD r? with
rs35508493; p-values for each association are shown on the y-axis and genomic positions of

genetic variants are shown on the x-axis.
(E) Boxplot illustrating distribution of editing rate across rs56320407.

(F) microRNA binding sites are shown for the genomic region which differs between two
potential 3’'UTR isoforms of EP300 gene (genomic coordinates for APA site 1:

chr22:41,178,956-41,180,079 and APA site 2: chr22:41,178,956- 41,179,495).
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Figure S1. Validation of RNA-editing sites discovered in RNA-seq data via ATAC-seq

data.

(A) The number of donors supporting that genomic DNA includes unedited alleles are shown on
the x-axis. The percentage of unedited allele per edit sites is shown on the right y-axis (red) and

the total number of ATAC-seq supporting unedited allele is given on the left y-axis (blue).

(B) Example ATAC-seq reads for RNA-editing sites chr19:18365401:A>G, chr6:163422494:A>G

and chr2:55406089:A>G.

Figure S2. ALU editing index is correlated with ADAR gene expression and

developmental time.

(A) Correlation of AEI values with VST normalized ADAR1, ADAR2 and ADARS3 expressions in
progenitors (purple) and neurons (green). Correlation coefficients (r) and p-values are shown

per relationship.

(B) Alu editing index across different gestational weeks in fetal bulk brain data.

(C) Correlation of technical confounders with ADAR1-3 gene expressions per cell-type.

Correlation efficient (r) and p-values are reported.

Figure S3. Comparison of cell-type-specific molecular QTLs

(A) Overlap of primary eQTLs, sQTLs, edQTLs and apaQTLs with chromatin accessibility
regions are RBP binding sites per cell type. Chi-square test p-values (p) are reported for each

pairwise comparison.

(B) APA site (chr20:35511626-35519280) within the CEP250 gene mediated its expression.
Genomic tracks for progenitor eQTLs and apaQTL are shown, and tracks are colored based on

relative LD r? for the variant rs2236160, which is the nearest variant to APA site.
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(C) Posterior probability of forward, independence and reactive models for mediation of CEP250
gene expression via APA site. Lower cartoon illustrates the relationship between variant (X)

within the APA site, mediator APA site (M) and CEP250 gene.

Figure S4. Comparison of GWAS colocalizations across cell-type-specific molecular

QTLs

(A) Number of brain-relevant trait-loci pairs are found in eQTLs, sQTLs, edQTLs and apaQTLs,
and shared pairs with eQTLs are indicated by black color, and pairs which were detected by

using QTLs other than that eQTLs are indicated by blue color.

(B) Number of brain-relevant trait-loci pairs are found in cell-type-specific eQTLs, sQTLs,

edQTLs and apaQTLs in addition to loci explained by adult brain eQTLs.

Methods

Preparation of primary human neural progenitor cells (phNPCs)

We established phNPCs culture including neural progenitor cells and neuronal progeny
differentiated from these progenitors by following the experimental workflow described in our
previous work?6:70.1% \Ne acquired the human fetal brain tissue (14-21 gestation weeks old)
derived from voluntary terminated pregnancy according to the IRB regulations at UCLA through
the Gene and Cell Therapy Core. The tissue pieces corresponding to the cortex were visually
selected for generation of phNPCs. In the Geschwind lab at UCLA, we dissociated these tissues
and formed neurospheres by using them as we have previously described?6:1%. We then plated
the neurospheres on the plates coated with laminin/fibronectin and polyornithine, and after an
average of 2.5 +/- 1.8 standard deviation passages, they were cryopreserved to transfer to Stein

lab at UNC-Chapel Hill?.

phNPCs from 89 unique donors were further randomly grouped into 8-9 donors for 12

rounds, and each round was thawed every 3 weeks. Each round was processed by mostly the
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same person and on the same day of the week, where changes in these technical variable
changes were documented. We cultured progenitor cells in proliferation media as previously
described?®7° for three weeks, and then prepared RNA-seq libraries. To differentiate progenitor
cells into neurons, we first cultured the cells in the media without growth factors for 5 weeks and
then transduced cells with AAV2-hSyn1-eGFP virus (with 20,000 multiplicity of infection (MOI))
that carries a reporter gene expressed specifically in neurons?®. After viral transduction, we
differentiated the cells for 3 weeks longer, and isolated EGFP-labeled neurons using FACS
sorting machines BD FACS Aria Il or Sony SH800S. We kept the neurons within the Qiazol

solution to prepare RNA-seq libraries.

RNA-sequencing and data processing

We prepared RNA-seq libraries and sequenced them as described in our previous
work?6. We obtained 150 bp paired end reads with a mean read depth of 99.8M + 29.8 SD read

pairs per library.

To process the RNA-sequencing data, as described in our previous work?®, if the same
library was sequenced on multiple flow cells, we merged .fastq files, trimmed the adapters for all
libraries using Cutadapt/1.15 software'?”, and performed quality control with FastQC software.
We aligned the RNA-seq reads into GRCh38 release92 reference genome including sequence

of AAV2-hSyn1-eGFP plasmid using STAR/2.6.0a aligner program°8,

To assess consistency of genotypes detected by genotyping array and RNA-seq, we
performed VerifyBamID analysis (v.1.1.3)'%°, as described previously?. We retained the RNA-
seq libraries with [CHIPMIX] < 0.04 and [FREEMIX] < 0.04, and assigned correct donor IDs for
8 libraries where there was a sample swap. Additionally, one library was missing cDNA
concentration and removed, also libraries with eRIN score lower than 7 were not included.

Following quality control, we obtained 84 and 74 unique donors for progenitors and neurons,
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respectively. We applied the same workflow to process RNA-seq data derived from fetal bulk

brain samples and retained 235 unique donors as previously described?.

Genotyping and imputation

We performed genotyping by utilizing HumanOmni2.5Exome or lllumina HumanOmni2.5
platforms followed by filtering via PLINK v.1.90b3 software''® with the parameters —hwe 1 x 10
—geno 0.05 —mind 0.01 —maf 0.01 as described previously?¢7°. We utilized the TOPMed
imputation server for imputation with the TOPMed reference panel (Version R2 on GRC38)'"",
after processing the genotype data via imputation preparation pipeline by using the algorithm
perl HRC-1000G-check-bim_v3.pl -b <bim file> -f <frequency file> -r
1000GP_Phase3_combined.legend.gz -g -p ALL (https://lwww.well.ox.ac.uk/~wrayner/tools/).
For downstream analyses, we retained the variants with following criteria: minor allele frequency

(MAF) > 0.01, imputation quality score R? > 0.3 and Hardy-Weinberg equilibrium at p > 1 x 106.

Detection and quantification of RNA-editing events by using RNA-sequencing data

To detect RNA-editing events by using RNA-sequencing data, we first aimed to reduce
mapping bias using the WASP method''? and remapped RNA-seq reads mapped via
STAR/2.6.0a aligner'°8, Following remapping, we discarded duplicated reads and extracted
uniquely mapped reads as input for Reditools software v2.0”". Using Reditools software, we
identified and quantified RNA-editing sites by applying the following parameters: -S -s 2 -q 20 -
bp 25 -ss 5 -mrl 50 -C -T 2 —0s 5 where -S was used for including only edit sites in the output, -
s was for strand inference, -q was for minimum read quality score, -bp was for minimum base
quality score, -ss was for splicing span, -mrl was for minimum read length, -C was for strand
correction, -T was for strand confidence and —os was for omopolymeric-span. We used Homo
sapiens gene ensembl v.92 as the reference genome. We discarded multi-allelic sites and the
sites overlapped with genomic variants from our genotype data with imputation R? greater than

0.3 and common SNPs in dbSNP (v153) unless they were listed in the REDIportal database’.
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For downstream analysis, we retained RNA-editing sites supported by at least 85% of donors
with 10 RNA-seq counts (at least 2 counts for edited allele) per cell-type and fetal bulk tissue.
We defined RNA-editing rate as the ratio of the number of read counts supporting the edited
allele to the sum of the number of the read counts supporting both edited and unedited alleles.

Validation of RNA-edit sites via matched ATAC-seq data

To confirm that RNA-edit sites are nucleotide changes in RNA-sequence but not
genomic mutations, we extracted WASP-mapped ATAC-seq reads from our two previous
studies’®”? which overlapped with per edit site. We calculated the abundance of each unedited
allele of each edit site per donor by getting the ratio of number of reads supporting the unedited
allele to total coverage at that site (Figure S1A). We excluded the nucleotides with base quality
lower than 30, and the reads where any mismatch were reported in CIGAR string since they

obscure the finding of the nucleotides at the genomic region of interest.

Calculation of the ALU editing index

We computed Alu editing index (AEI) per RNA-sequencing sample bam file per cell-type
and fetal bulk tissue (including uniquely mapped reads after STAR alignment and WASP
algorithms as used for the detection of RNA-editing via Reditools) via the RNAEditingindexer
algorithm?8.

Enrichment of local motif for RNA-edit sites

For each edit site, we extracted RNA-sequence within +/- 4 bp window of the edit sites.
Providing these sequences to the EDLogo software, we quantified and visualized local

sequence motifs'3,

Enrichment of progenitor and neuron RNA-edit sites within disease-relevant edit sites

To assess the significance of overlap between disease-relevant edit sites (defined based
on adjusted p-value < 0.05 in differential editing analysis between case and control) and edit

sites detected in each cell type, we applied GeneOverlap R package.
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Detection of alternative polyadenylation sites from RNA-seq data for each cell type

To detect and quantify alternative polyadenylation by using RNA-seq data, we followed
the pipeline described by QAPA method®s. We initially built 3UTR libraries including potential
alternative polyadenylation sites for each gene by using biomart ensembl gene metadata table
(human version 92), GTF file Homo_sapiens.GRCh38.92 as gene prediction table, and
PolyASite database (hg38) and GENCODE poly(A) sites track (hg38) as poly(A) site
annotations followed by extraction of 3’'UTR sequences by integrating these annotations with
reference genome fasta file (GRCh38 release92). After trimming the sequencing adaptors from
RNA-seq libraries via Cutadapt/4.1'%7, we quantified 3’'UTR isoforms via salmon/1.9.0'" based
on the 3'UTR library generated by QAPA by correcting for GC and sequence-specific biases. To
infer poly(A) usage (PAU) value for a given 3’'UTR isoform of a gene, we divided the expression
of this 3'UTR isoform by the sum of the expression of all other 3'UTR isoforms detected for that
gene via gapa quant function®. For the downstream analyses, we applied the following steps:
(1) we retained the 3’'UTR isoforms supported by 10 counts at least 10% of the donors for each
cell-type. (2) For the genes in which we detected only two 3’'UTR isoforms, we randomly
selected one of the isoforms to prevent statistical bias since these two isoforms were
complementary to each other. (3) We normalized the PAU ratios for the remaining 3UTR

isoforms via quantile normalization.

Differential alternative 3’'UTR expression analysis

Prior to the differential alternative 3’'UTR expression analysis, we first corrected quantile
normalized neuron gene expression data for the batch effect caused by the usage of different
machines for FACS sorting via removeBatchEffect function of limma R package''®. Followed by
batch correction for neurons, we combined two cell-type-specific data, and performed a paired
differential gene expression via limma package by using the design matrix model.matrix(~Cell-

type + as.factor(DonorID) + RIN, dataset). We identified differentially expressed 3'UTR isoforms
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between cell-types as adjusted p-values < 0.05 after multiple test correction via Benjamini-
Hochberg method''6. We assessed the isoform lengthening or shortening based on if the
differentially expressed 3'UTR had the longest or the shortest 3’'UTR isoform among all potential
3'UTR isoforms for a gene.

Immunohistochemistry of neurons for TUJ1 marker and quantification

We used the same experimental procedure to generate neurons from phNPCs as described
previously?6.70. At 8 weeks of differentiation, we fixed neuron cells in 4% PFA, and
permeabilized them by using 0.4% Triton in PBST solution and performed blocking within 10%
goat serum dissolved in PBST. After we incubated primary antibodies for TUJ1 (1:2000, Catalog
# 801202) overnight in 3% goat serum dissolved in PBST solution at 4°C, we washed the cells
three times with PBST. We applied fluorophore-conjugated secondary antibodies (Alexa Fluor
488, goat anti-mouse, 1:1000, Invitrogen, Catalog # A11001) at room temperature for an hour,

and applied DAPI staining for 10 minutes.

We performed imaging by using Nikon Eclipse Ti2 with pco.edge 4.2Q High QE sCMOS camera
via 10x objective. Prior to segmentation, we used ImageJ to isolate the DAPI channel,
transformed them to grayscale and divided images into 4 crops at 2862 by 2862 pixels. We
applied Cellpose software "7 for segmentation by implementing a nuclear segmentation method
in which we set the nucleus diameter as 9 microns. We subtracted the cell outlines from the
generated cell masks resulting in a final nuclear mask. To count TUJ1+ cells, we applied
CellProfiler to masks generated by Cellpose. We excluded cells if they had nuclei smaller than 6
microns in diameter, which were likely dead cells. In the other image channels, objects with high
intensity were considered debris and masked out of the images to aid in threshold and
background intensity calculations. For each channel, we corrected images for illumination

inhomogeneity, measured background intensity, and images intensities. We classified each cell
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for the TUJ1 marker if the average intensities were at least 1.5 standard deviations above the

median of the background intensity.

Cell-type-specific editing quantitative loci analysis

We tested association of editing rate with genetic variants within +/- 100 kb window of
editing site and located in the same gene harboring edit site to perform editing QTL (edQTL)
analysis. We included the editing sites if at least 85% of samples had at least 10 read counts (at
least 2 counts to support the edited allele) to support the editing site for each cell type. We
retained only the variants if at least two heterozygous donors and at least two homozygous
minor allele donors, or no homozygous minor allele donors were present as a filtering strategy
we previously used®. Since the donors showing the sufficient read counts might be different
across editing sites, for each editing site, we used 85% of the donors that every one of them
supported editing site with at least 10 counts in each cell type (at least 2 counts for edited

allele).

We performed cell-type-specific edQTL mapping analysis by using a generalized linear
model with binomial distribution that controls for population stratification and unmeasured
technical variation. To control for population stratification, we calculated MDS of global genotype
and used the first three MDS components as covariates. We controlled the unmeasured
technical variation which affects RNA-editing via an optimization strategy. For each cell-type, we
utilized principal component analysis (PCA) for unmeasured technical variation, and computed
global editing PCs via prcomp() function from stats R package by using edit rate values per edit
site. During the optimization strategy, we re-performed edQTL analysis by sequentially adding
the global editing PCs, first 3 MDSs of global genotype for each cell-type. We detected FACS
sorter as a major technical factor impacting editing rate in neurons, and controlled for it for
neuron edQTL analysis (p-value = 1.8 x 10”7 for PC1 of global editing and FACS sorter

relationship). After each run, we calculated the number of edit sites significantly associated with
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at least one genetic variant (edSite) at a 5% false discovery rate. Since we found that including

1 PC of global editing maximized the edSite discovery in both progenitor and neurons:

The optimized model we used for progenitors was:

Edit rate ~SNP + 3 MDS of global genotype + 1 PC of global editing

The optimized model we used for neurons was:

Edit rate ~SNP + 3 MDS of global genotype + FACS sorter + 1 PC of global editing

As implemented in our previous work?8, we applied a hierarchical correction procedure
termed eigenMT-FDR"'®, which allowed us to stringently control for multiple comparisons by
considering both the number of edit sites and the variants tested. In this algorithm, we first
computed locally adjusted p-values for cis-SNPs per edit site via the eigenMT approach in
which a genotype correlation matrix was used to estimate the effective number of independent
tests'"®. Then, we performed FDR procedure by using locally adjusted p-values that resulted in
globally adjusted p-values per edit site. As the last step, the edit sites with a globally adjusted p-
value lower than 0.05 were defined as edSites. We conducted the same procedure to discover

edQTLs in fetal bulk brain data.

Cell-type-specific alternative polyadenylation quantitative loci analysis

To perform cell-type-specific alternative polyadenylation QTL (apaQTL) analysis, we
tested association of quantile normalized PAU values per 3’'UTR isoform with the genetic
variants within the +/-25 kb window of isoform start and end sites. We retained the genetic
variants if they were carried by at least two heterozygous donors and without any homozygous
minor allele donors, or if they were carried by at least two minor allele homozygous donors

identical to edQTL analysis.
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We performed apaQTL mapping analysis by controlling for population stratification and
cryptic relatedness via a linear mixed effects regression model by using EMMAX software'2°,
We controlled the population stratification by using the first three MDS components of global
genotype as covariates. We generated the identity by state (IBS) kinship matrix by implementing
emmax-kin -v -h -d algorithm by using variants from the non-imputed genotype data, and
excluded the variants on the same chromosome via MLMe method'?'. Similar to edQTL
analysis, we performed an optimization strategy to identify the number of PCs of global
expression of 3'UTR isoforms, which was computed via prcomp() function of stats R package by
using quantile normalized PAU values per edit site separately for each cell type. After
sequentially adding PCs of global expression of 3’'UTR isoforms as covariates to re-run apaQTL
analysis, we identified 9 PCs and 6 PCs of global 3'UTR isoform expression in progenitor and
neurons showed the highest number of APA site significant associated with at least one genetic

variant at 5% FDR. As a result, we applied the following models per cell-type:

The optimized model we used for progenitors was:

PAU ~ SNP + 3 MDS of global genotype + 9 PC of global 3’'UTR expression + ¢

The optimized model we used for neurons was:

PAU ~ SNP + 3 MDS of global genotype + 6 PC of global 3’'UTR expression + FACS sorter + ¢

We conducted same pipeline to discover apaQTLs in fetal bulk data and the optimized model

we used for fetal bulk was:

PAU ~ SNP + 3 MDS of global genotype + 5 PC of global 3’UTR expression + ¢

where PAU is Poly(A) usage®® and we defined an error term ¢ for which cov(e) = 0%,ux+ 6%/ in
which kinship matrix used to account genetic relatedness is indicated by uk, variance is

indicated by 02, and o2 is random noise of the variance.
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Assessment of QTL sharing between cell-types and different molecular QTLs

For cell-to-cell comparison, the proportion of progenitor and neuron primary SNP-edit
site pairs or APA site pairs that are non-null associations in neuron and progenitor edQTLs or
apaQTLs data was estimated by utilizing the corresponding p-values to SNP-edit site pairs or
APA via 4 statistics® by using the qvalue R package'??. Similarly, for edQTL/apaQTL to eQTL
comparison, we estimated the proportion of progenitor and neuron primary SNP-edGene pairs,
gene including edit site or SNP-aGene pairs, gene including APA site pairs that are non-null
associations in progenitor and neuron eQTL data (171) by using the corresponding p-values to

SNP-Gene pairs detected in both datasets.

Prediction of inverted repeat Alus (/IRAIu) RNA hairpin secondary structures

To predict IRAlu RNA hairpin secondary structure, we extracted RNA-sequences
between two Alu repeats in opposite directions, and generated two sequences corresponding to
different alleles of a given genetic variant. These sequences were provided to viennaRNA
RNAfold software, and secondary structures were predicted and visualized via graphical output

from the software®*.

Enrichment of edQTLs within RNA secondary structures

As described in previous study??, for each edSite (edit site significantly associated with
at least one genetic variant), we extracted the RNA sequences including genetic variants within
+/- 800 bp window of the edSites. We included only sequences within gene start and end
coordinates within this window; therefore, some sequences were shorter than 1601 bp. We
matched the alleles for variants within this genomic window if the LD r? between them was
greater than 0.8. We first converted sequences files to bpseq via contrafold software’?®. Next,
providing these bpseq file formats for bpRNA software'?*, we predicted RNA secondary
structures including bulge, hairpin loop, interior loop, multiloop, stem within these RNA-

sequences. To assess enrichment of significant edQTLs within RNA-secondary structures, for
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each structure, we randomly selected non-significant eQTLs in equal number of significant
edQTLs in each structure category, which were matching minor allele frequency (MAF) and
distance from edit sites with 50% standard error of both features for 1,000 times. We computed
the enrichment p-value for each RNA structure as a number of observations in which the
overlap of nonsignificant edQTLs with the RNA structure was higher than the overlap of

significant edQTLs with the RNA structure divided by 1,000.

Comparison of molecular QTLs

We extracted cell-type-specific primary eQTLs and sQTL from our previous study?¢, and
cell-type-specific primary edQTLs and apaQTLs discovered in the current study for comparison.
For distance from TSS/TTS, we calculated the distance between genetic variant and TSS/TTS
of genes for which expression was tested in eQTLs, the distance between genetic variant and
TSS/TTS of genes where alternative splicing tested was located in sQTLs, the distance
between genetic variant and TSS/TTS of genes where edit site tested was located in edQTLs,
and the distance between genetic variant and TSS/TTS of genes where APA site tested was
located in apaQTLs considering the expression of the gene in either forward or reverse strand.
For distance from splice sites, we computed the distance of genetic variants from either intron
start and end sites for all potential alternative splicing events for a given gene, and used the
shortest distance for comparison. To compare enrichment of primary QTLs within chromatin
accessibility sites, we assessed the overlap of genetic variants within chromatin accessibility
regions which were differentially accessible in progenitors/neuron’ for progenitor and neuron
QTLs, respectively. To compare enrichment of primary QTLs within RBP binding sites, we
utilized CLIPdb data, and assessed the overlap of genetic variants with this dataset®. Pairwise

comparisons were performed via chi-square test.
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GWAS colocalization analysis

We applied LD-thresholded colocalization analysis to find edQTLs and apaQTLs
colocalized with the traits for each cell type separately?6.125. Summary statistics from GWAS for
schizophrenia (SCZ)3, educational attainment (EA)%, major depression disorder (MDD)'2¢,
cortical thickness and surface area from UKBB®, and the ENIGMA project®, neuroticism'??, 1Q4,
cognitive performance (CP)%, bipolar disorder (BP)', attention-deficit/hyperactivity disorder
(ADHD)'?8, Parkinson’s disease (PD)'?° and Alzheimer's disease (AD)'3° were used. Index
GWAS SNPs were defined as two LD-independent genome-wide significant GWAS signals (p-
value < 5x10-8) with pairwise LD r? < 0.2 calculated by using European population of 1000
Genomes (phase 3). For comparison of colocalizations with eQTLs and sQTLs?6, we used LD r?
< 0.5 to detect index GWAS variants. To perform colocalization analysis, first, we detected two
variants (one from index variants of GWAS and one from index variants of the QTL study) which
had pairwise LD r? greater than 0.8 based on either European population or our study). Then,
we re-performed the edQTL/apaQTL analysis by conditioning on GWAS index variant, and if the
association between edit rate/APA usage and the QTL index variant was no longer significant,

we considered these two loci as co-localized.
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