

1

2

3

4

5 **Diversity and community structure of anaerobic gut fungi in the 6 rumen of wild and domesticated herbivores**

7
8 Casey H. Meili¹, Moustafa A. TagElDein², Adrienne L. Jones¹, Christina D. Moon³, Catherine
9 Andrews³, Michelle R. Kirk³, Peter H. Janssen³, Carl J. Yeoman⁴, Savannah Grace⁴, Joanna-
10 Lynn C. Borgogna⁴, Andrew P. Foote⁵, Yosra I. Nagy², Mona T. Kashef², Aymen S. Yassin²,
11 Mostafa S. Elshahed¹, Noha H. Youssef^{1*}

12
13 ¹ Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.

14 ² Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

15 ³ AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.

16 ⁴ Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA.

17 ⁵ Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA

21
22 * Corresponding author: 1110 S. Innovation Way Drive, Stillwater, OK. Email:
23 noha@okstate.edu

25

26

27

28

29

30

31

32 **Abstract.** The rumen houses a diverse community that plays a major role in the digestion
33 process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the
34 rumen. Here, we present a global amplicon-based survey of the rumen mycobiome by examining
35 206 samples from 15 animal species, 15 countries and six continents. The rumen mycobiome
36 was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera
37 identified. However, only six genera (*Neocallimastix*, *Orpinomyces*, *Caecomyces*, *Cyllamyces*,
38 *NY9*, and *Piromyces*) were present at > 4% relative abundance. AGF diversity was higher in
39 members of the families *Antilocapridae* and *Cervidae* compared to *Bovidae*. Community
40 structure analysis identified a pattern of phylosymbiosis, where host family (10% of total
41 variance) and species (13.5%) partially explained the rumen mycobiome composition.
42 Domestication (11.14%) and biogeography (14.1%) also partially explained AGF community
43 structure, although sampling limitation, geographic range restrictions, and direct association
44 between domestication status and host species hindered accurate elucidation of the relative
45 contribution of each factor. Pairwise comparison of rumen versus fecal samples obtained from
46 the same subject (n=13) demonstrated greater diversity and inter-sample variability in rumen
47 over fecal samples. The genera *Neocallimastix* and *Orpinomyces* were present in higher
48 abundance in rumen samples, while *Cyllamyces* and *Caecomyces* were enriched in fecal samples.
49 Comparative analysis of global rumen and feces datasets revealed a similar pattern. Our results
50 provide a global view of AGF community in the rumen and identify patterns of AGF variability
51 between rumen and feces in herbivores tract.

52

53

54

55 **Importance.** Ruminants are highly successful and economically important mammalian suborder.

56 Ruminants are herbivores that digest plant material with the aid of microorganisms residing in

57 their GI tract. The rumen compartment represents the most important location where

58 microbially-mediated plant digestion occurs in ruminants, and is known to house a bewildering

59 array of microbial diversity. An important component of the rumen microbiome is the anaerobic

60 gut fungi, members of the phylum Neocallimastigomycota. So far, studies examining AGF

61 diversity have mostly employed fecal samples, and little is currently known regarding the

62 identity of AGF residing in the rumen compartment, factors that impact the observed patterns of

63 diversity and community structure of AGF in the rumen, and how AGF communities in the

64 rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity

65 using amplicon-based surveys targeting a wide range of wild and domesticated ruminants

66 (n=206, 15 different animal species) obtained from 15 different countries. Our results

67 demonstrate that while highly diverse, no new AGF genera were identified in the rumen

68 mycobiome samples examined. Our analysis also indicate that animal host phylogeny plays a

69 more important role in shaping AGF diversity in the rumen, compared to biogeography and

70 domestication status. Finally, we demonstrate that a greater level of diversity and higher inter-

71 sample variability was observed in rumen compared to fecal samples, with two genera

72 (*Neocallimastix* and *Orpinomyces*) present in higher abundance in rumen samples, and two

73 others (*Cyllamyces* and *Caecomycetes*) enriched in fecal samples. Our results provide a global

74 view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors

75 impacting diversity and community structure of the rumen mycobiome, and identify patterns of

76 AGF community variability between the rumen and feces in the herbivorous GIT tract.

77

78

Introduction

79 Ruminants (suborder *Ruminantia*) are one of the most diverse and prevalent groups of extant
80 mammalian herbivores. The global population of domesticated ruminants is estimated at ~3.75
81 billion, and that of wild ruminants is upwards of 75 million animals (1). Suborder *Ruminantia*
82 includes six families: *Antilocapridae*, *Bovidae*, *Cervidae*, *Giraffidae*, *Moschidae*, and *Tragulidae*
83 (2). The most species-rich family is *Bovidae* with >140 species (3), many of which are important
84 livestock animals (e.g., cattle, goats, sheep) (1).

85 Ruminants are highly efficient in digesting high-fiber feeds and forages. This is primarily
86 due to the ability to ferment feed in an anaerobic pregastric chamber (the rumen) which enables a
87 specialized microbiome-mediated plant biomass degradation and fermentation to end products
88 that are important energy sources for the host (4). Rumination, the process by which animals
89 regurgitate and masticate previously swallowed plant material, allows further physical
90 breakdown of partially digested feed, enhancing rumen microbial activity.

91 The rumen microbial community encompasses bacteria, archaea, protozoa, and fungi (5).
92 The fungal component, the anaerobic gut fungi (AGF), belongs to the phylum
93 *Neocallimastigomycota*. They play a key role in the plant biomass degradation process. AGF
94 hyphae efficiently penetrate plant biomass and mechanically disrupt plant cell walls (5), as well
95 as by producing a wide array of carbohydrate-active enzymes (CAZymes) that are crucial for
96 plant cell wall degradation (6-8). Indeed, several field studies have demonstrated the important
97 contributions of AGF to biomass degradation in ruminants (7, 9, 10).

98 Surprisingly, in contrast to the wealth of information on the rumen bacterial and archaeal
99 communities, little information is currently available on the resident rumen AGF community in
100 the rumen of mammalian herbivores. The bulk of culture-independent and culture-based AGF

101 characterization studies have been conducted on fecal, rather than rumen, samples due to the
102 relative ease of sampling (11-14), and only a few studies to date have reported on AGF
103 communities in rumen samples, all of which were limited in scope, examining few subjects and
104 host species (15-19). AGF communities residing in the rumen could differ from those
105 encountered in fecal samples due to possible selection and modification when passing through
106 various partitions of the forestomach system (rumen, omasum, and abomasum) owing to the
107 large difference in pH between these compartments (e.g., 6-6.4 in the rumen, 5.5-6.5 in the
108 omasum, and 1.5-3 in the abomasum in cattle) before reaching the circumneutral small intestine.
109 In addition, a fraction of fermentation occurs in the intestine (around 10%, (20)); and the
110 potential AGF presence, origin, identity, load, and relative contribution to the AGF community
111 encountered in fecal samples is currently unknown. Finally, distinct bacterial and archaeal
112 communities colonize various locations in the GI tract of ruminants (21, 22), and these
113 communities could differentially impact and modulate AGF diversity, load, and community
114 composition through antagonistic, synergistic, or mutualistic relationships, as suggested in
115 defined cocultures (23).

116 Because the rumen is the main site for feed digestion and absorption, studying the AGF
117 community there provides insights into the taxa involved in active plant biomass degradation in
118 ruminants. A detailed understanding of the AGF diversity and community structure in the rumen
119 is key for devising strategies for community modulation, manipulation, and augmentation to
120 improve the host's overall health and feed efficiency. As well, the yet-unexamined rumen could
121 represent a source for novel, hitherto uncharacterized AGF taxa that are selectively lost during
122 feed passage from the rumen to the lower GI tract. To fill this knowledge gap, we characterized
123 the AGF communities of a global collection of rumen samples (n=206) belonging to fifteen

124 different species from three ruminant families using a culture-independent amplicon sequencing
125 approach. In addition to the dataset's broad host and geographic distribution, enabling
126 biogeographic-based comparisons, it also allows comparison of domesticated (n=180) compared
127 to wild (n=26) hosts, providing a unique opportunity to examine the effect of domestication on
128 the rumen AGF community. Further, the rumen AGF community was compared to fecal AGF
129 datasets obtained in a recent similar global survey. Finally, a direct pairwise comparison of AGF
130 communities in the rumen and fecal samples simultaneously obtained from the same animal was
131 conducted on a subset of animals. Our results provide a global view of the identity, diversity, and
132 community structure patterns of AGF in the mammalian rumen and elucidate the role of
133 phylogeny, biogeography, and domestication in structuring AGF communities. Further, rumen
134 versus feces community comparisons suggest that while similar ecological and evolutionary
135 factors impact the AGF community in both locations, distinct differences in the identity,
136 diversity, and community structure patterns exist between both locations. We posit that such
137 differences are driven by AGF acquisition routes, and the selection process associated with the
138 transition of AGF from the pre-gastric rumen to the intestine.

139

140 **Materials and Methods**

141 **Samples:** A total of 206 rumen samples from 15 countries and six continents were obtained
142 (Table S1, Figure 1a). Samples include representatives from three ruminant families
143 (*Antilocapridae*, *Bovidae*, and *Cervidae*) and 15 different domesticated and wild animal species
144 (Figure 1 b, Table S1). Many of these samples were obtained as part of a prior global rumen
145 census (GRC) survey of the bacterial, archaeal, and protozoal communities in the rumen (24)
146 (Table S1). Other samples were obtained from wild ruminants through collaboration with hunters
147 at the state of Montana (n=27) (Table S1). A third fraction of samples (n=23) were collected
148 from three slaughterhouses (Cairo, Giza and Menya) in Egypt with the help of trained
149 technicians. The GITs of the slaughtered animals were separated on a clean bench and then
150 sectioned with a knife. Rumen content solids were transferred in sterile labeled 50 ml Falcon
151 tubes. The interval between the animal death and the sample collection did not exceed 30 min.
152 The falcon tubes were stored at -20°C till DNA extraction (Table S1). Finally, samples were also
153 obtained from an animal housed at the Oklahoma State University Department of Animal
154 Sciences through gastric tube insertion (n=1, Table S1). All animal ethics approvals for rumen
155 sampling from the GRC survey were obtained as outlined in (24). All hunters in Montana had the
156 necessary hunting permits and harvested animals using legal methods. Sample collection and
157 handling in Egyptian samples was approved by the Committee for Safe Handling and Disposal of
158 Chemical and Biological Materials, Faculty of Pharmacy Cairo University # MI3011, June 2021.
159 The sampling procedure at Oklahoma State University was reviewed and approved by the
160 Oklahoma State University Institutional Animal Care and Use Committee (Protocol #21-03).
161 **DNA extraction, amplification, and sequencing.** DNA from the GRC rumen samples was
162 extracted as described previously (24) and stored at -80°C, then stabilized using GenTegra-DNA

163 protectant (GenTegra, Pleasanton CA, USA) to minimize DNA degradation during shipping
164 from New Zealand to Oklahoma State University. For all other samples, whole (i.e., solid and
165 liquid) rumen samples were collected, frozen, and transferred to the laboratory where they were
166 promptly stored at -80°C. DNA was extracted from all samples using the DNeasy Plant Pro Kit
167 (Qiagen, Germantown, MD, USA) according to the manufacturer's instructions. PCR
168 amplification reactions, amplicon clean-up, quantification, index and adaptor ligation, and
169 multiplexing were conducted in a single laboratory (Oklahoma State University, Stillwater, OK,
170 USA) to eliminate inter-laboratory variability. The procedure, previously outlined in detail in
171 reference (13), involved amplification of a ~370 bp of the second variable region of the large
172 ribosomal subunit (D2-LSU) using primers AGF-LSU-EnvS primer pair (AGF-LSU-EnvS For:
173 5'-GCGTTTRRCACCASTGTTGTT-3', AGF-LSU-EnvS Rev: 5'-
174 GTCAACATCCTAACAGYGTAGGTA-3'). Pooled libraries were sequenced at the University of
175 Oklahoma Clinical Genomics Facility (Oklahoma City, OK, USA) using an Illumina MiSeq
176 platform as previously described (13).

177 **Sequence processing and phylogenetic placement.** Protocols for read assembly and sequence
178 quality trimming, as well as procedures for calculating thresholds for species and genus
179 delineation and genus-level assignments were conducted as described previously (13).

180 Assignment of sequences to AGF genera was conducted using a two-tier approach for genus-
181 level phylogenetic placement and thresholds as described previously (11, 13, 25).

182 **Diversity and community structure assessment.** The relationship between host identity and
183 AGF diversity and community structure was examined across animal host families and species
184 for animals with at least four samples at each of these levels. This included the three animal host
185 families, and the animal species pronghorn (n=4), cattle (n=116), sheep (n=26), goat (n=14),

186 American bison (n=8), water buffalo (n=5), zebu cattle (n=5), mule deer (n=8), sika deer (n=5),
187 and elk (n=5). The effect of biogeography was examined by clustering samples by country and
188 only including countries with at least 4 samples. This included samples from New Zealand
189 (n=42), USA (n=36), China (n=25), Egypt (n=25), Netherlands (n=25), Denmark (n=12), France
190 (n=11), Brazil (n=10), Chile (n=5), Mexico (n=4), and Switzerland (n=4). However, due to the
191 uneven distribution of animals across locations, we also re-analyzed the effects of biogeography
192 across the same animal species. Only cattle and sheep were considered for this comparison as
193 they had enough representation (at least 4 samples) across different countries (Brazil, China,
194 Denmark, Egypt, Netherlands, New Zealand, and Switzerland for cattle, and Chile, France, and
195 New Zealand for sheep). The effect of domestication status was also examined by clustering
196 animals into wild or domesticated categories. However, domestication status could also be
197 conflated with host phylogeny due to unequal representation of wild animals from the families
198 *Cervidae*, and *Antilocapridae*, and domesticated animals in family *Bovidae*. Domestication status
199 could also be conflated with biogeography, with all wild animals originating from samples
200 obtained in the USA. To partially alleviate this issue, we also examined the effect of
201 domestication status within members of the same family, comparing wild bighorn and mountain
202 goat (n=4) versus all other domesticated *Bovidae* species, and domesticated sika deer (n=5)
203 versus all other wild *Cervidae* species. Finally, domesticated versus wild comparison of
204 members of the same animal genus was also conducted was possible (for domesticated members
205 of the genus *Cervus* (sika deer, *C. nippon*, n=5) versus wild (elk, *C. canadensis*, n=5)).

206 Diversity indices (Shannon, Simpson, and Inverse Simpson) were calculated using the
207 estimate_richness command in the phyloseq R package, and the effect of factors (host family,
208 species, domestication status, and biogeography) on alpha diversity was calculated using the aov

209 command in R. The TukeyHSD command in R was used for multiple comparisons of means on
210 the ANOVA results for all pairwise comparisons.

211 For community structure analysis, weighted Unifrac was calculated using the distance
212 command in the phyloseq R package. Pairwise values were used to construct PCoA ordination
213 plots using the commands ordinate and plot_ordination in phyloseq R package. To elucidate
214 factors significantly impacting community structure, PERMANOVA tests were run using the
215 command adonis in vegan R package. Percentage variance explained by each factor was
216 calculated as the percentage of the sum of squares of each factor to the total sum of squares, and
217 F-statistics p-values were used to examine the significance of the effect.

218 Multiple regression of matrices (MRM), Mantel tests for matrices correlations, and
219 Procrustes rotation were also utilized to further quantify factors that could explain the divergence
220 in AGF communities. MRM and Mantel tests were conducted by comparing a Gower-
221 transformed matrix of each host factor (host family, species, domestication status, and
222 biogeography) to the weighted Unifrac beta diversity dissimilarity matrix (calculated as detailed
223 above) using the MRM and Mantel commands in the ecodist R package. Gower transformation
224 of host factor matrices was conducted using the daisy command in the cluster R package. The
225 protest command in the vegan R package was utilized for Procrustes rotation calculations. P-
226 values, and coefficients (R^2 regression coefficients from MRM analysis, Spearman correlation
227 coefficients from Mantel tests, and symmetric orthogonal Procrustes statistic from Procrustes
228 analysis) were examined to determine the significance, and importance of factors, respectively,
229 in shaping the AGF community.

230 To identify specific animal host-fungal associations, LIPA (Local Indicator of
231 Phylogenetic Association) was employed using the lipaMoran command in the phylosignal R

232 package. For genera with significant associations (p-value <0.05), we calculated the average
233 LIPA value for each animal species. Only genera with >1% relative abundance in the entire
234 dataset (n=15) were examined. We considered average LIPA values in the range of 0.2-0.4 to
235 represent weak associations, in the range of 0.4-1 to represent moderate associations, and above 1
236 to represent strong associations.

237 **AGF diversity in rumen versus fecal samples.** For a subset of animals, (12 cattle and one water
238 buffalo, Table S1) fecal samples were obtained as the same time as rumen samples. One cattle
239 subject was housed at the Oklahoma State Animal Sciences Department. Rumen samples were
240 obtained via gastric tubing, as described above, and the first fecal sample deposited after rumen
241 collection was obtained. For the remaining animals (11 cows and 1 buffalo), subjects were
242 slaughtered as part of the slaughterhouse operations, and rumen and fecal samples were directly
243 obtained post-slaughter. DNA extraction, amplification, and sequencing of fecal samples were
244 conducted following the same procedures for rumen samples outlined above.

245 As well, we sought to evaluate whether the observed patterns from pairwise comparison
246 of samples obtained from the same animal could be extrapolated to larger datasets where fecal
247 and rumen samples were obtained from different animals. To this end, we compared the
248 community structure of cattle rumen (n=116) and fecal (n=178) AGF communities using all
249 cattle rumen samples obtained in this study and cattle fecal samples obtained in a recent global
250 survey of the AGF mycobiome (13).

251 For both rumen versus feces datasets obtained from the same animal (n=26), and global
252 cattle rumen versus feces (n=294), DPCoA plots were calculated using the plot_ordination
253 command in the phyloseq R package. In addition, metastats (26) in mothur was used to identify
254 genera differentially abundant in rumen versus feces samples.

255 **Sequence and data deposition.** Illumina amplicon reads generated in this study have been
256 deposited in GenBank SRA under BioProject accession number PRJNA1008183 and Biosample
257 accessions numbers SAMN37111842- SAMN37112060.
258

259

Results

260 **Rumen AGF community overview.** Illumina sequencing of 206 different rumen samples
261 generated 1.86 million (average=9029) high-quality AGF-affiliated D2-LSU sequences (Table
262 S2). High coverage values (average 0.996, minimum 0.92, coverage higher than 0.98 in 197/206
263 samples) indicated that the majority of genus-level diversity was captured in all samples (Table
264 S2). Phylogenetic analysis identified 81 of the 88 AGF genera currently described (22/22
265 cultured; 59/66 uncultured) (Table S2, Figure 1c, d), and no new AGF genera were identified in
266 the dataset. While the majority of currently recognized AGF genera and candidate genera were
267 encountered, only 15 genera were present at >1% abundance in the entire dataset (Figure 1c),
268 and only seven genera (*Neocallimastix*, *Caecomyces*, *Orpinomyces*, *Caecomyces*, *Cyllamyces*,
269 *NY9*, and *Piromyces*) were present at >4% abundance (Figure 1c). Relative abundance and
270 occurrence for AGF genera were highly correlated ($R^2 = 0.571$, Figure S1).

271 **Patterns of alpha diversity in the rumen mycobiome.** Alpha diversity patterns were assessed
272 using three different indices: Shannon, Simpson, and Inverse Simpson (Figure 2, Figure S2).
273 Collectively, samples belonging to the family *Bovidae* are less diverse when compared to
274 members of the families *Cervidae* and *Antilocapridae* (Figure 2a, Figure S2a-b). Within specific
275 animal species, the AGF community in the rumen of pronghorn (family *Antilocapridae*), mule
276 deer and elk (family *Cervidae*) were the most diverse, while goat (family *Bovidae*) harbored the
277 least diverse community. Pairwise differences in estimates of AGF community alpha diversity
278 were significant between host species belonging to different families, e.g. pronghorn
279 (*Antilocapridae*) versus goat (*Bovidae*), mule deer (*Cervidae*) versus goat and cattle (*Bovidae*),
280 and sika deer (*Cervidae*) versus goat (*Bovidae*), as well as within few pairs of species in the

281 family Bovidae, e.g. American Bison versus goat, sheep versus goat, and sheep versus cattle
282 (Figure 2a, Figure S2a-b).

283 In addition to host identity, multiple pairwise significant differences were observed
284 between alpha diversity patterns of samples when grouped by the country of origin (Figure 2b).
285 However, since biogeographic patterns could be a reflection of unequal distribution of hosts
286 species across locations as described above, we also examined differences in alpha diversity
287 between the same animal species from different countries. Only cattle and sheep had adequate
288 samples (at least 4) across different countries (Brazil, China, Denmark, Egypt, Netherlands, New
289 Zealand, and Switzerland for cattle, and Chile, France, and New Zealand for sheep) to enable
290 such analysis. We identified significant differences in alpha diversity based on country of origin
291 in cattle, but not sheep (Figure 2b, S2c-d). Finally, a comparison of alpha diversity estimates
292 between samples from domesticated versus wild animals revealed higher levels of diversity in
293 wild compared to domesticated hosts (Figure 2c), although such differences were not significant
294 when restricting the analysis to animal hosts within the same host family or genus (Figure 2c).

295 **Rumen mycobiome community structure.** AGF community structure analysis indicated a
296 significant role for host phylogeny in shaping AGF rumen mycobiome at the family ($p=0.001$)
297 and the species ($p=0.001$) levels; although such factors explained only 10.0% and 13.5% of
298 variance, respectively (Figure 3a). Similarly, domestication status was a significant factor
299 ($p=0.001$) in explaining 11.1% of the AGF rumen mycobiome variance when using the entire
300 dataset (Figure 3b), as well as when subsetting samples belonging to the genus *Cervus* ($p=0.01$),
301 but not when subsetting samples belonging to the families *Bovidae* and *Cervidae* (Figure 3b).
302 Finally, biogeography was also significantly associated with the AGF rumen mycobiome
303 community, explaining 14.1% of the community variance using the entire dataset level (Figure

304 3c). A significant effect of biogeography on AGF community structure was also observed when
305 restricting the analysis to a single host species (cattle and sheep, Figure 3c).

306 In addition to PERMANOVA, multiple regression of matrices (MRM), Mantel tests for
307 matrices correlations, and Procrustes rotation were utilized to quantify factors that could explain
308 the divergence in AGF communities. Results of matrices correlation using each of the three
309 methods confirmed the importance of animal host species, family, biogeography, and
310 domestication status in explaining the AGF community structure (Figure S3). Finally, to identify
311 whether specific AGF genera are associated with specific animal hosts and to quantify the
312 strength of such associations, we employed LIPA analysis. For the 15 genera encountered at
313 >1% abundance, LIPA analysis identified 17 (5 weak, 4 moderate, and 8 strong) AGF genus-
314 animal host associations (Figure S4).

315 **Rumen-feces mycobiome comparison.** Direct comparisons were made of rumen and fecal
316 samples obtained simultaneously from 12 cows and one water buffalo sample. Within this
317 relatively limited dataset, clear differences were observed in the AGF community composition
318 (Figure 4a), alpha diversity (Figure 4b), and community structure (Figure 4c). Fecal samples
319 AGF communities were significantly less diverse than those from rumen samples (Figure 4b).
320 DPCoA ordination plots using weighted Unifrac demonstrated clear clustering of rumen and
321 fecal communities, with sampling location (rumen versus feces) explaining 51.66% of
322 community variance. The level of variability within each sampling location was quantified by
323 measuring the variability in Euclidean distances of samples from each sampling location to their
324 corresponding group centroid (the centroid of the 95% ellipses shown in Figure 4c). A
325 significantly greater level of variability was observed in rumen versus feces samples. Further,
326 DPCoA showed selective enrichment of specific AGF taxa for each sampling location with the

327 genera *Neocallimastix*, and *Orpinomyces* selectively enriched in the rumen, and the genera
328 *Caecomyces* and *Cyllamyces* selectively enriched in fecal samples. Metastats confirmed
329 significance of these specific genera selective enrichment.

330 We sought to evaluate whether the observed patterns of AGF genera selective enrichment
331 in rumen versus feces could be extrapolated to a more global level on datasets where fecal and
332 rumen samples were obtained from different animals. We, thus, compared the community
333 structure of cattle rumen and fecal AGF communities using the cattle rumen samples analyzed in
334 this study (n=116) and 178 cattle fecal samples obtained in a recent global survey of the AGF
335 mycobiome (13). For this larger dataset (Figure 4d), DPCoA ordination plots using weighted
336 Unifrac showed significant clustering with sampling location (rumen versus feces), albeit
337 explaining only a minor fraction of the community variance (7.2%). Similar to the smaller
338 dataset, a significantly greater degree of variability was observed in rumen versus feces samples
339 (Figure 4d). While DPCoA showed a very similar pattern for the four AGF taxa identified above
340 (*Neocallimastix*, and *Orpinomyces* clustering close to rumen samples, and the genera
341 *Caecomyces* and *Cyllamyces* clustering close to fecal samples) (Figure 4d), Metastats analysis
342 only confirmed significance of the selective enrichment of *Neocallimastix* in cattle rumen and
343 *Cyllamyces* in cattle feces (Figure 4d).

344

345

346

347

Discussion

348 We present a detailed assessment of the rumen compartment mycobiome in 206 mammalian
349 herbivores using a culture-independent amplicon-based survey. Our results highlight the high
350 level of overall gamma diversity within the global rumen mycobiome, with 81 out of the 88
351 currently reported AGF genera identified (Figure 1c). The AGF rumen mycobiome community
352 composition displayed a pattern where a relatively limited number of genera were ubiquitous
353 (occurring in >50% of the samples) and abundant (representing a large fraction of the AGF
354 community when encountered) (Figures 1d, S1). The remaining AGF genera displayed lower
355 levels of occurrence and relative abundance (Figure S1). Such a pattern of high diversity and
356 predominance of few genera is consistent with prior surveys of AGF in fecal samples of
357 herbivores (13, 27). The rationale behind the existence and maintenance of perpetually rare
358 genera within the herbivorous gut has previously been debated, and is potentially attributed to
359 their superior survival capabilities or probable role played under specific conditions not
360 adequately captured in the current sampling schema (e.g., younger age, stress, specific types of
361 feed) (13). Significantly, our analysis failed to identify novel AGF genera beyond those
362 previously observed in prior feces-based surveys (Figure 1c-d, (11-14, 18)), hence refuting the
363 preposition that rumen samples could represent a significant reservoir of novel, hitherto
364 undescribed AGF diversity. This does not preclude novel AGF diversity in wild ruminants with
365 specialized diets or feeding behaviors, like reindeer feeding on lichen or browsing ruminants in
366 tropical forests, but widespread novelty seems unlikely.

367 Beyond documenting the occurrence and relative abundance (Figure 1) of AGF taxa, we
368 examined patterns of their diversity and community structure in the rumen mycobiome and
369 attempted to elucidate the role of and interplay between various factors in shaping the observed

370 patterns. Our results document statistically significant differences in levels of diversity (Figures
371 2, S2) and community structure (Figure 3) patterns between various families and host species,
372 suggesting a pattern of phylosymbiosis, where host phylogenetic affiliation plays a role in
373 shaping the AGF community. As well, LIPA analysis (Figure S4) has shown few specific
374 pairwise AGF genus-animal species associations (e.g., goat with *Caecomyces*, *Orpinomyces*,
375 *Cyllamyces*, and *Neocallimastix*, buffalo with *Orpinomyces*, American bison with NY9,
376 pronghorn, elk, and mule deer with *Khoyollomyces*). Interestingly, recent work on the fecal AGF
377 mycobiome has also identified patterns of phylosymbiosis, with specific LIPA preferences
378 largely concordant in most animals shared between the two datasets (e.g. buffalo with
379 *Orpinomyces*, elk and mule deer with *Khoyollomyces*).

380 It is important to note that quantitative assessment of the role of host identity in
381 explaining rumen AGF community structure (PERMANOVA, and multivariate matrices
382 comparisons using MRM, Mantel, and Procrustes) indicates that, host species/family could
383 explain only a relatively small fraction of the observed variance (Figures 3, S3). This indicates
384 that additional factors such as domestication status, and biogeography could possibly play an
385 additional role in shaping the rumen AGF community. Domesticated animals typically receive a
386 less diverse, more frequent and homogenous dietary regimen that is often grain-rich. This is in
387 stark contrast to wild herbivores that browse or graze on a more heterogeneous diet with a feeding
388 regimen controlled by resource availability and predation risk. Our results indicate a higher level
389 of AGF alpha diversity in wild animals (Figure 2c, S2e-f), and a significant role (F-statistic
390 $R^2=11.14\%$, p-value=0.001) for domestication status in shaping AGF community (Figure 3b,
391 S3). As such, we posit that more variable feed types and non-monotonous feeding patterns in
392 wild herbivores could lead to enrichment and co-existence of a more diverse AGF community

393 suited to a more stochastic feeding regimen. However, it is important to note that all animal
394 species examined were either exclusively wild or domesticated, leading to a potential conflation
395 of both factors (animal species and domestication status) as drivers of AGF diversity and
396 community structure. We attempted to partially control for the conflation of both factors by re-
397 analyzing the impact of domestication on AGF diversity and community structure on subsets of
398 the datasets comprised of animals from the same family (families *Bovidae* and *Cervidae*, Figures
399 2c, S2e-f, 3b) or species (genus *Cervus*, Figures 2c, S2e-f, 3b). The results hint at a potential
400 (albeit not significant) role for domestication towards lower diversity and selection of taxa, as
401 evidenced by differences between closely related wild and domesticated animals. Nevertheless,
402 only a highly controlled experiment, where wild and domesticated subjects belonging to the
403 same animal species from the same location are compared could conclusively disentangle both
404 factors, e.g., capturing, rearing, and sampling white-tailed deer species in a domesticated setting
405 and comparing their AGF community to wild deer from the same region.

406 Biogeography could be an additional factor impacting AGF diversity and community
407 structure, as previously postulated for rumen bacterial and archaeal communities (24). Our
408 results show that biogeography could play a role in shaping AGF diversity (Figures 2b, S2c-d)
409 and community structure (Figure 3c). However, similar to domestication status, the result of
410 biogeographic-based assessments could be skewed by the over-representation of specific animal
411 species in certain locations. We attempted to partly disentangle host and biogeography by
412 reanalyzing subsets constituting the same animal species from different locations. Our results
413 suggest a role for biogeography in shaping AGF diversity in cattle. It is interesting to note that a
414 similar observation was also discerned in a recent global dataset of fecal samples (13). The role

415 of biogeography in shaping the AGF community could be driven by variability in cattle breed
416 anatomic characteristics, feeding regimen, and rearing conditions between two locations.

417 Prior studies on AGF diversity in ruminants have largely been conducted on fecal, rather
418 than rumen samples (11-14, 18). The lack of studies on AGF communities in the rumen was
419 largely hampered by methodological limitations. Collection of rumen samples requires surgical
420 fistulation or gastric tubing, processes that could be conducted in research settings, but are
421 largely unfeasible for a broad sampling of herds in farming and ranching settings (28, 29). In
422 wild ruminants, such an approach is not feasible, except in extremely rare conditions, where
423 domestication of a naturally wild host was achieved (30). Theoretically, differences in AGF
424 community between rumen and feces could be driven by selection for or against specific AGF
425 taxa when passing through various regions within the animal's alimentary tract, enrichment of
426 specific AGF genera involved in intestinal fermentation (20), or interaction between AGF and
427 the distinct bacterial and archaeal communities colonizing various location in the animal's
428 alimentary tract. Using a pairwise sampling scheme in 13 animal subjects, we sought to assess
429 differences between AGF communities in rumen versus feces samples. We acknowledge the
430 relatively limited number of replicates and restriction to mostly one species (*Bos taurus*) and
431 hence the patterns obtained should be regarded as preliminary. Our analysis clearly demonstrated
432 that the AGF community in rumen samples is significantly more diverse than feces (Figure 4b).
433 As well, distinct differences in community structure were observed between rumen and feces
434 samples, with a selective enrichment of the genera *Neocallimastix* and *Orpinomyces* in rumen
435 sample and *Caecomyces* and *Cyllumyces* in fecal samples. The underlying reasons for the
436 observed inhibition and enrichment trends are presently unclear, given our current rudimentary
437 knowledge regarding fine differences in metabolic and physiological preferences between

438 various AGF genera. Nevertheless, it is notable that the genera *Caecomycetes* and *Cyllamyces* are
439 the only known AGF exhibiting a bulbous rhizoidal growth pattern and appear to have a unique
440 attachment/pressing on plants compared to filamentous rhizoids. This growth pattern, with a
441 higher proportion of the fungal thallus protected within the plant biomass, compared to the more
442 superficial external hyphal attachment pattern in filamentous genera could offer a better
443 protection during rumen contents passage through the highly acidic abomasum to the intestine.
444 As well, while all AGF appear to grow readily and specialize in attacking intact plant biomass, a
445 differential preference or efficiency of some genera in attacking, penetrating, and colonizing
446 intact plant biomass would confer a competitive advantage in the rumen, where intact plants are
447 first acted upon by the animal's microbiome. On the other hand, a greater affinity for oligomers,
448 dimers, and monomers uptake could enrich specific genera in the colon, where available
449 substrates are mostly soluble sugars rather than intact plant material. It is interesting to note that
450 distinct differences in rumen versus fecal communities have also been observed in bacteria and
451 archaea, where a similar pattern of lower diversity in feces was observed, as well as a distinct
452 preference for fiber-degrading taxa (e.g. *Fibrobacter*) in rumen as opposed to sugar-degrading
453 taxa (e.g. *Tenericutes*) in feces (31, 32).

454 **Funding.** This work has been supported by the NSF grant number 2029478 to MSE and NHY,
455 and the New Zealand Ministry of Business, Innovation and Employment Strategic Science
456 Investment Fund AgResearch Microbiomes programme to CDM. The collection of the Global
457 Rumen Census samples was supported by the New Zealand Government as part of its support for
458 the Global Research Alliance on Agricultural Greenhouse Gases to PHJ. Montana wild ruminant
459 samples were collected with support of the Bair Ranch Foundation and the Montana Agricultural
460 Experiment Station. Some of the computing for this project was performed at the High-

461 Performance Computing Center at Oklahoma State University supported in part through the
462 National Science Foundation grant OAC-1531128.

463 **Conflict of Interest.** The authors declare no conflict of interest.

464 **Acknowledgments.** We thank the following members of the GRC project for contributing
465 samples used in this study:

466 **Olubukola Ajike Isah:** Department of Animal Nutrition, Federal University of Agriculture,
467 Abeokuta (FUNAAB), Nigeria.

468 **Jorge Avila-Stagno:** Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillan,
469 Chile.

470 **Kasper Dieho, Jan Dijkstra, and Andre Bannink:** Animal Nutrition Group, Wageningen
471 University, 6700 AH Wageningen, The Netherlands.

472 **Fabian N. Fon:** Department of Agriculture, University of Zululand, KwaDlangezwa,
473 Empangeni, 3886, South Africa.

474 **Hilario Mantovani:** Departamento de Microbiología, Universidade Federal de Viçosa, Campus
475 UFV, 36570-000 Viçosa, Minas Gerais, Brazil.

476 **Martin Fraga:** Departamento de Microbiología, Instituto de Investigaciones Biológicas
477 Clemente Estable, Av. Italia 3318, CP 11600, Montevideo, Uruguay.

478 **Francisco E. Franco:** VITA Marangani, Universidad Nacional Mayor de San Marcos, Lima,
479 Perú.

480 **Chris Friedman:** Ministry for Primary Industries Verification Services Hawkes Bay, Silver Fern
481 Farms—Pacific, Whakatu, Hastings, New Zealand.

482 **Arjan Jonker and Cesar S. Pinares-Patino:** AgResearch Limited, Grasslands Research Centre,
483 Palmerston North 4442, New Zealand.

484 **Sophie Krizsan:** Department of Agricultural Research for Northern Sweden, Swedish University
485 of Agricultural Sciences, SE-901 83 Umea, Sweden.

486 **Jan Lassen:** Department of Molecular Biology and Genetics, Aarhus University, DK-8830
487 Tjele, Denmark.

488 **Satoshi Koike and Yasuo Kobayashi:** Laboratory of Animal Nutrition, Research Faculty of
489 Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060–8589, Japan.

490 **Sang Suk Lee and Lovelia L. Mamuad:** Department of Animal Science & Technology,
491 Sunchon National University, Suncheon, Jeonnam 540–742, Korea.

492 **Cécile Martin, Diego Morgavi, and Milka Popova:** Institut National de la Recherche
493 Agronomique, UMR1213 Herbivores, Saint-Genes-Champanelle, F-63122, France.

494 **Andreas Muenger:** Agroscope, Institute for Livestock Sciences ILS, CH-1725 Posieux,
495 Switzerland.

496 **Camila Muñoz, , Rodrigo de la Barra, María Eugenia Martínez, and Andrés M. Carvajal:**
497 Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Región de Los Lagos,
498 Chile.

499 **Mario A. Cobos-Peralta:** Colegio de Postgraduados, Institución de Ensenanza e Investigación
500 en Ciencias Agrícolas, CP 56230, Montecillo, Mexico.

501 **Tasia Taxis:** Animal Science Genetics, University of Missouri-Columbia, Columbia, Missouri
502 65211, USA.

503 **Emilio M. Ungerfeld:** Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco,
504 Chile.

505 **Min Wang and Zhi Liang Tan:** Institute of Subtropical Agriculture, The Chinese Academy of
506 Sciences, Changsha, China.

507 **Tianhai Yan:** Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR,

508 Northern Ireland.

509

510 **Figure Legends**

511 **Figure 1. AGF diversity patterns in the rumen mycobiome.** (A) A map showing the
512 biogeographical origin of all samples (n=206) analyzed in this study. (B) Bar plots showing the
513 number of samples belonging to each animal species. Animals are ordered by family.
514 Domestication status is color-coded (domesticated in peach and wild in cyan). (C) Pie chart
515 showing the overall composition of AGF genera encountered in the entire (1.86 million
516 sequence) dataset. Genera present in >1% relative abundance are named on the pie chart, genera
517 with relative abundances 0.5-1% are named in the bar chart to the right, and genera present in
518 <0.5% relative abundance are collectively referred to as “Others”. (D) AGF community
519 composition in the animal species studied. The phylogenetic tree downloaded from timetree.org
520 shows the relationship between the 15 species sampled. Species are color-coded by their family
521 and the total number of samples belonging to each of the three families is shown at each
522 corresponding node. “Samples” refer to the number of samples belonging to each animal species
523 and is shown to the right of the tree as a heatmap with the exact numbers displayed.
524 “Domestication” refers to the domestication status (domesticated in peach and wild in cyan) and
525 is shown as a pie chart to the right of the heatmap. “Biogeography” shows the distribution of the
526 number of samples from different geographical regions and is shown as a pie chart to the right of
527 “Domestication”. Countries are color-coded as shown in the figure key. The AGF community
528 composition for each animal species is shown to the right as colored columns corresponding to
529 the legend key. Genera with a total abundance of >1% are shown, while all other genera are
530 grouped as “Others”.

531 **Figure 2. AGF alpha diversity in the rumen mycobiome.** (A) Box and whisker plots showing
532 the distribution of Shannon diversity measure for different animal families (left), and animal

533 species (right) with four or more samples. (B) Box and whisker plots showing the distribution of
534 Shannon diversity measure for animals from different biogeographical locations (only countries
535 with at least 4 samples are shown). Results are shown for the total dataset (left), and for only
536 cattle (middle), or only sheep (right). (C) Box and whisker plots showing the distribution of
537 Shannon diversity measure for domesticated versus wild animals. Results are shown for the total
538 dataset (left), and for animals belonging to the families *Bovidae*, *Cervidae*, or the genus *Cervus*
539 as depicted on top of each figure. Results for two-tailed ANOVA followed by Tukey for pairwise
540 animal family and animal species comparisons are shown on top of the box plots only for
541 significant comparisons. *, $0.01 < p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$;
542 ****, $p < 0.00001$.

543 **Figure 3. Patterns of AGF beta diversity in the rumen mycobiome.** Principal coordinate
544 analysis (PCoA) ordination plots based on AGF community structure in the 206 samples studied
545 here constructed using the phylogenetic similarity based Unifrac weighted. The shape represents
546 the animal family as shown on top. The % variance explained by the first two axes are displayed
547 on the axes, and ellipses encompassing 95% of variance are displayed. In (A), samples and
548 ellipses are color coded by animal family (left), or animal species (right). In (B), samples and
549 ellipses are color coded by animal domestication status when using the total dataset (top), or only
550 for animals belonging to the families *Bovidae* (middle left), *Cervidae* (middle right), or the genus
551 *Cervus* (bottom). In (C), samples and ellipses are color coded by animal biogeography when
552 using the total dataset (top), or only for cattle (bottom left), or sheep (bottom right).
553 PERMANOVA results for partitioning the dissimilarity by variation sources (animal family,
554 animal species, domestication status, and country) is shown for each plot. R^2 refers to percentage
555 variance explained by each factor (calculated as the percentage of the sum of squares of each

556 factor to the total sum of squares), while p-value refers to the F-statistics p-value.

557 **Figure 4. Rumen-feces mycobiome comparison.** (A-C) Same individual rumen-feces

558 mycobiome comparison conducted on 13 animal subjects (12 cattle, and 1 buffalo). (A)

559 Collective AGF community composition for each sampling location. Genera with >1% total

560 abundance are color coded as shown to the right. All other genera are grouped as “others”. (B)

561 AGF alpha diversity patterns in the 13 rumen-versus-feces samples. Box and whisker plots show

562 the distribution of Shannon (left), Simpson (middle), and Inverse Simpson (right) diversity

563 indices in the two sampling locations. (C) Double principal coordinate analysis (DPCoA) biplot

564 based on the phylogenetic similarity-based index weighted Unifrac showing the community

565 structure in the 13 rumen and 13 feces samples. The % variance explained by the first two axes is

566 displayed on the axes, and ellipses encompassing 95% of variance are displayed. The samples

567 and ellipses are color-coded by sampling location (rumen, blue; feces, green). AGF genera are

568 shown as smaller black empty circles and the four AGF genera with selective enrichment in

569 either sampling locations are labeled. PERMANOVA results are shown in the bottom left corner

570 of the plot, where R^2 refers to percentage variance explained by the sampling location (calculated

571 as the percentage of the sum of squares of each factor to the total sum of squares), while p-value

572 refers to the F-statistics p-value. To the right of the DPCoA plot, the level of variability between

573 samples from the same sampling location is shown as box and whisker plots for the distribution

574 of DPCoA ordination distance of each sample to its group centroid, and results for two-tailed

575 ANOVA is shown on top of the box plots: *, $0.01 < p < 0.05$. Results of metastats for these four

576 genera are shown in the table. For each taxon, the average and standard deviations of abundance

577 is shown for the rumen versus feces, followed by the sampling location where the taxon was

578 identified as significantly differentially abundant, and the metastats p-value. (D) Global cattle

579 rumen-feces mycobiome comparison conducted on the cattle rumen samples analyzed in this
580 study (n=116) and 178 cattle fecal samples obtained in a recent global survey of the AGF
581 mycobiome (13). Double principal coordinate analysis (DPCoA) biplot based on the
582 phylogenetic similarity-based index weighted Unifrac showing the community structure in the
583 116 rumen and 178 feces samples. The % variance explained by the first two axes is displayed
584 on the axes, and ellipses encompassing 95% of variance are displayed. The samples and ellipses
585 are color-coded by sampling location (rumen, blue; feces, green). The same four AGF genera
586 identified as selectively enriched in either sampling locations in (C) with are labeled.
587 PERMANOVA results are shown in the bottom left corner of the plot, where R^2 refers to the
588 percent variance explained by the sampling location, while p-value refers to the F-statistics p-
589 value. The level of variability between samples from the same sampling location is shown as box
590 and whisker plots for the distribution of DPCoA ordination distance of each sample to its group
591 centroid, and results for two-tailed ANOVA is shown on top of the box plots: ****, p < 0.0001.
592 Results of metastats for the two genera with significant differential abundance are shown.

593 **References**

594 1. Hackmann TJ, Spain JN. 2010. Invited review: ruminant ecology and evolution:
595 perspectives useful to ruminant livestock research and production. *J Dairy Sci* 93:1320-
596 34.

597 2. Decker JE, Pires JC, Conant GC, McKay SD, Heaton MP, Chen K, Cooper A, Vilkki J,
598 Seabury CM, Caetano AR, Johnson GS, Brenneman RA, Hanotte O, Eggert LS, Wiener
599 P, Kim JJ, Kim KS, Sonstegard TS, Van Tassell CP, Neibergs HL, McEwan JC,
600 Brauning R, Coutinho LL, Babar ME, Wilson GA, McClure MC, Rolf MM, Kim J,
601 Schnabel RD, Taylor JF. 2009. Resolving the evolution of extant and extinct ruminants
602 with high-throughput phylogenomics. *Proc Natl Acad Sci USA* 106:18644-9.

603 3. Heller R, Frandsen P, Lorenzen ED, Siegismund HR. 2013. Are there really twice as
604 many bovid species as we thought? *Syst Biol* 62:490-3.

605 4. Moraïs S, Mizrahi I. 2019. Islands in the stream: from individual to communal fiber
606 degradation in the rumen ecosystem. *FEMS Microbiol Rev* 43:362-379.

607 5. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova
608 K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. 2014. Anaerobic fungi
609 (phylum *Neocallimastigomycota*): Advances in understanding their taxonomy, life cycle,
610 ecology, role and biotechnological potential. *FEMS Microbiol Ecol* 90:1-17.

611 6. Couger MB, Youssef NH, Struchtemeyer CG, Liggenstoffer AS, Elshahed MS. 2015.
612 Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal
613 isolate *Orpinomyces* sp. strain C1A. *Biotechnol Biofuels* 8:208.

614 7. Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, Arntzen MØ, Olson HM,
615 Copeland A, Isern N, Shukla A, Roux S, Lombard V, Henrissat B, O'Malley MA,

616 Grigoriev IV, Tringe SG, Mackie RI, Pasa-Tolic L, Pope PB, Hess M. 2021. Proteome
617 specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber.
618 ISME J 15:421-434.

619 8. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ,
620 Atiyeh HK, Wilkins MR, Elshahed MS. 2013. The genome of the anaerobic fungus
621 *Orpinomyces* sp. strain C1A reveals the unique evolutionary history of a remarkable plant
622 biomass degrader. Appl Environ Microbiol 79:4620-34.

623 9. Elliott R, Ash AJ, Calderon-Cortes F, Norton BW, Bauchop T. 1987. The influence of
624 anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J Agri Sci 109:13-17.

625 10. Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo
626 R, Forano E, Waters SM, Hess M, Tapiro I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR,
627 Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ,
628 Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado
629 RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S,
630 Mayorga OL, Elliott C, Morgavi DP. 2018. Addressing global ruminant agricultural
631 challenges through understanding the rumen microbiome: past, present, and future. Front
632 Microbiol 9:2161.

633 11. Hanafy RA, Johnson B, Youssef NH, Elshahed MS. 2020. Assessing anaerobic gut
634 fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and
635 multi-year isolation. Environ Microbiol 22:3883-3908.

636 12. Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. 2010. Phylogenetic diversity
637 and community structure of anaerobic gut fungi (phylum *Neocallimastigomycota*) in
638 ruminant and non-ruminant herbivores. ISME J 4:1225-1235.

639 13. Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS,
640 TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj
641 JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ,
642 Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote
643 AP, Youssef NH, Elshahed MS. 2023. Patterns and determinants of the global
644 herbivorous mycobiome. *Nat Commun* 14:3798.

645 14. Young D, Joshi A, Huang L, Munk B, Wurzbacher C, Youssef NH, Elshahed MS, Moon
646 CD, Ochsenreither K, Griffith GW, Callaghan TM, Sczyrba A, Lebuhn M, Flad V. 2022.
647 Simultaneous metabarcoding and quantification of *Neocallimastigomycetes* from
648 environmental samples: Insights into community composition and novel lineages.
649 *Microorganisms* 10:1749.

650 15. Moon CD, Carvalho L, Kirk MR, McCulloch AF, Kittelmann S, Young W, Janssen PH,
651 Leathwick DM. 2021. Effects of long-acting, broad spectra anthelmintic treatments on
652 the rumen microbial community compositions of grazing sheep. *Sci Rep* 11:3836.

653 16. Azad E, Fehr KB, Derakhshani H, Forster R, Acharya S, Khafipour E, McGeough E,
654 McAllister TA. 2020. Interrelationships of fiber-associated anaerobic fungi and bacterial
655 communities in the rumen of bloated cattle grazing alfalfa. *Microorganisms* 8:1543.

656 17. Guo W, Wang W, Bi S, Long R, Ullah F, Shafiq M, Zhou M, Zhang Y. 2020.
657 Characterization of anaerobic rumen fungal community composition in yak, Tibetan
658 sheep and small tail Han sheep grazing on the Qinghai-Tibetan Plateau. *Animals* 10:144.

659 18. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH.
660 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial,

661 archaeal and eukaryotic microorganisms in rumen microbial communities. PLOS ONE
662 8:e47879.

663 19. Kumar S, Indugu N, Vecchiarelli B, Pitta DW. 2015. Associative patterns among
664 anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes
665 in diet and age in the rumen of dairy cows. *Front Microbiol* 6:781.

666 20. Hartinger T, Zebeli Q. 2021. The present role and new potentials of anaerobic fungi in
667 ruminant nutrition. *J Fungi (Basel)* 7:200.

668 21. de Oliveira MN, Jewell KA, Freitas FS, Benjamin LA, Tótola MR, Borges AC, Moraes
669 CA, Suen G. 2013. Characterizing the microbiota across the gastrointestinal tract of a
670 Brazilian Nelore steer. *Vet Microbiol* 164:307-314.

671 22. Wang K, Zhang H, Hu L, Zhang G, Lu H, Luo H, Zhao S, Zhu H, Wang Y. 2022.
672 Characterization of the microbial communities along the gastrointestinal tract in
673 crossbred cattle. *Animals (Basel)* 12:825.

674 23. Swift CL, Louie KB, Bowen BP, Hooker CA, Solomon KV, Singan V, Daum C,
675 Pennacchio CP, Barry K, Shuthanandan V, Evans JE, Grigoriev IV, Northen TR,
676 O'Malley MA. 2021. Cocultivation of anaerobic fungi with rumen bacteria establishes an
677 antagonistic relationship. *mBio* 12:e01442-21.

678 24. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E, Aravena P,
679 Nora Arenas G, Ariza C, Attwood GT, Mauricio Avila J, Avila-Stagno J, Bannink A,
680 Barahona R, Batistotti M, Bertelsen MF, Brown-Kav A, Carvajal AM, Cersosimo L,
681 Vieira Chaves A, Church J, Clipson N, Cobos-Peralta MA, Cookson AL, Cravero S,
682 Cristobal Carballo O, Crosley K, Cruz G, Cerón Cucchi M, de la Barra R, De Menezes
683 AB, Detmann E, Dieho K, Dijkstra J, dos Reis WLS, Dugan MER, Hadi Ebrahimi S,

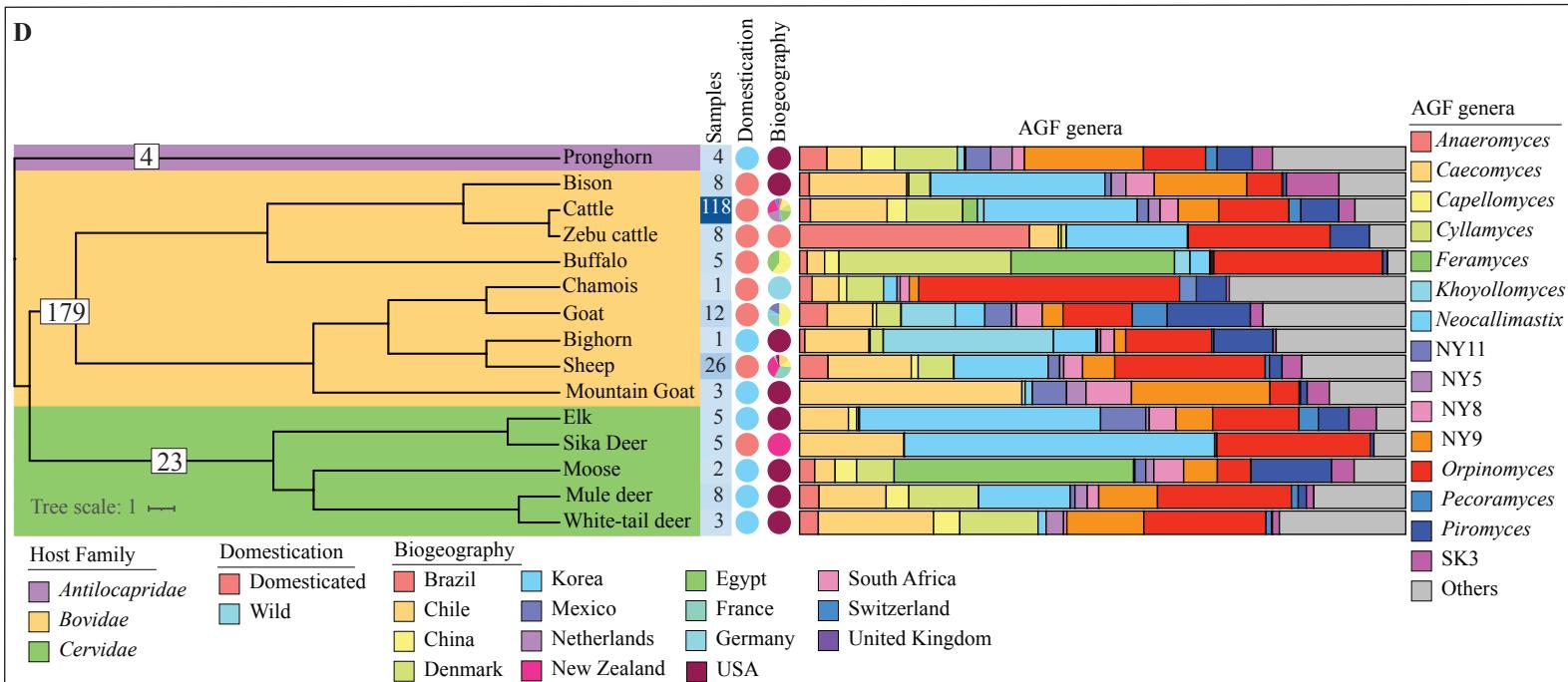
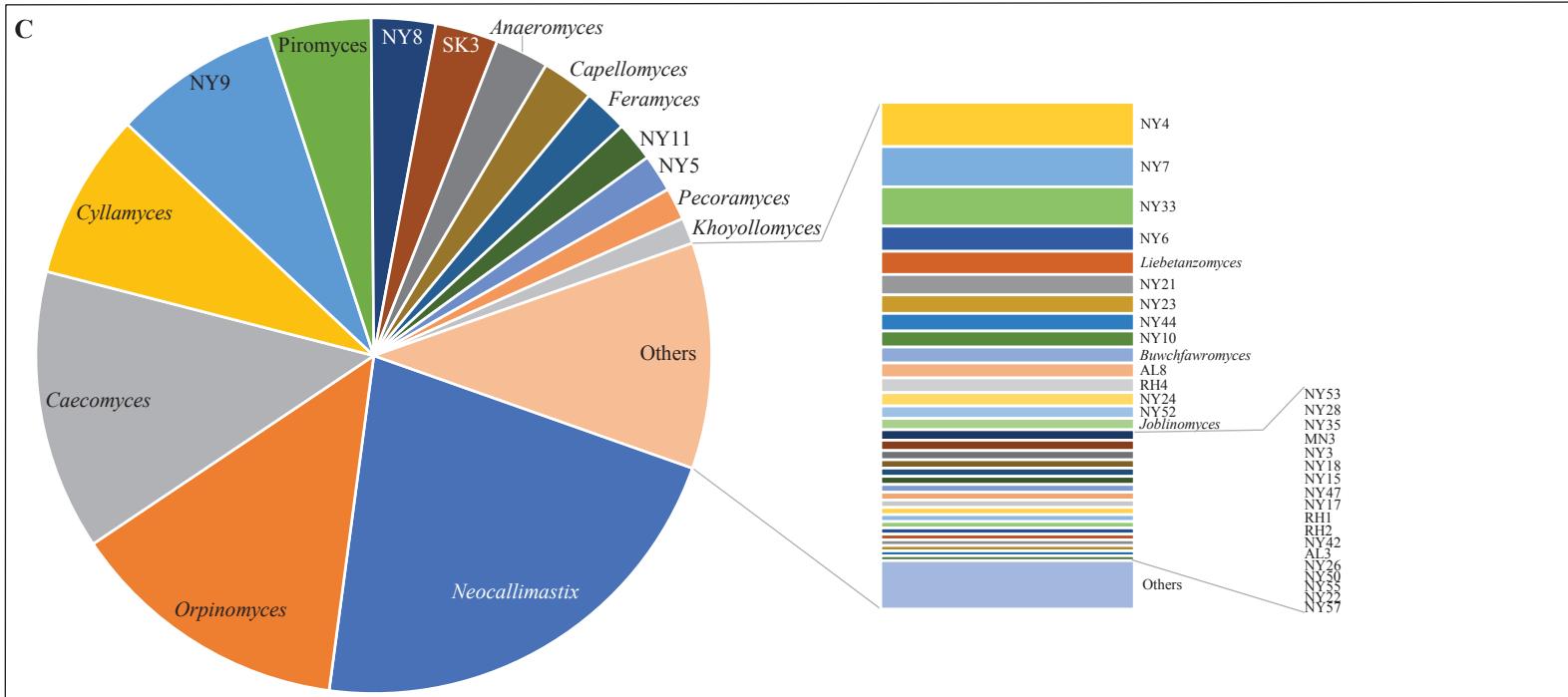
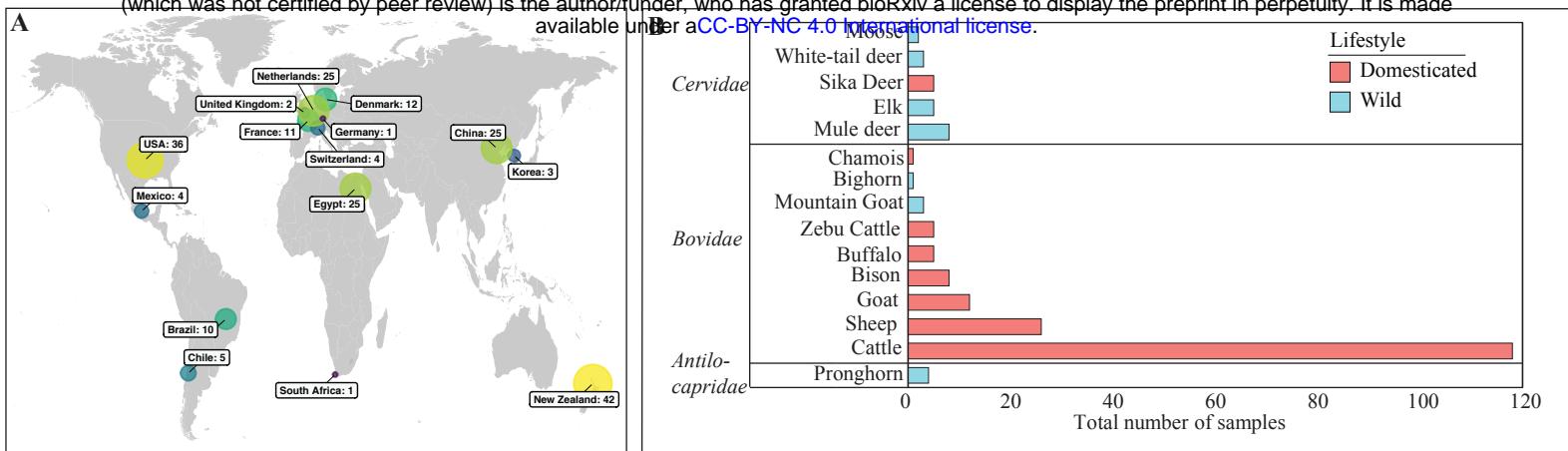
684 Eyþórsdóttir E, Nde Fon F, Fraga M, Franco F, Friedeman C, Fukuma N, Gagić D,
685 Gangnat I, Javier Grilli D, Guan LL, Heidarian Miri V, Hernandez-Sanabria E, et al.
686 2015. Rumen microbial community composition varies with diet and host, but a core
687 microbiome is found across a wide geographical range. *Sci Rep* 5:14567.

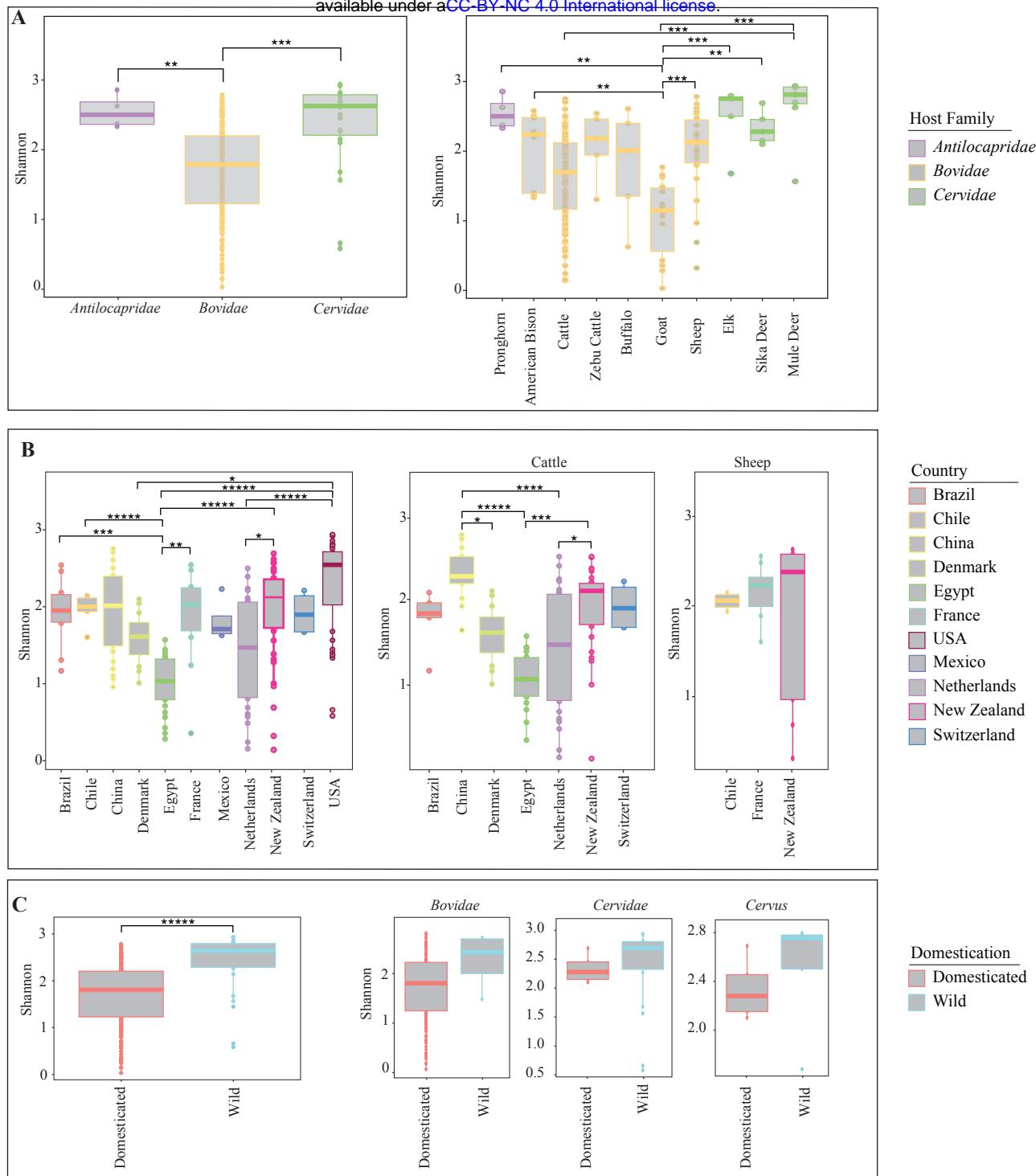
688 25. Elshahed MS, Hanafy RA, Cheng Y, Dagar SS, Edwards JE, Flad V, Fliegerová KO,
689 Griffith GW, Kittelmann S, Lebuhn M, O'Malley MA, Podmirseg SM, Solomon KV,
690 Vinzelj J, Young D, Youssef NH. 2022. Characterization and rank assignment criteria for
691 the anaerobic fungi (*Neocallimastigomycota*). *Int J Syst Evol Microbiol* 72: doi:
692 10.1099/ijsem.0.005449.

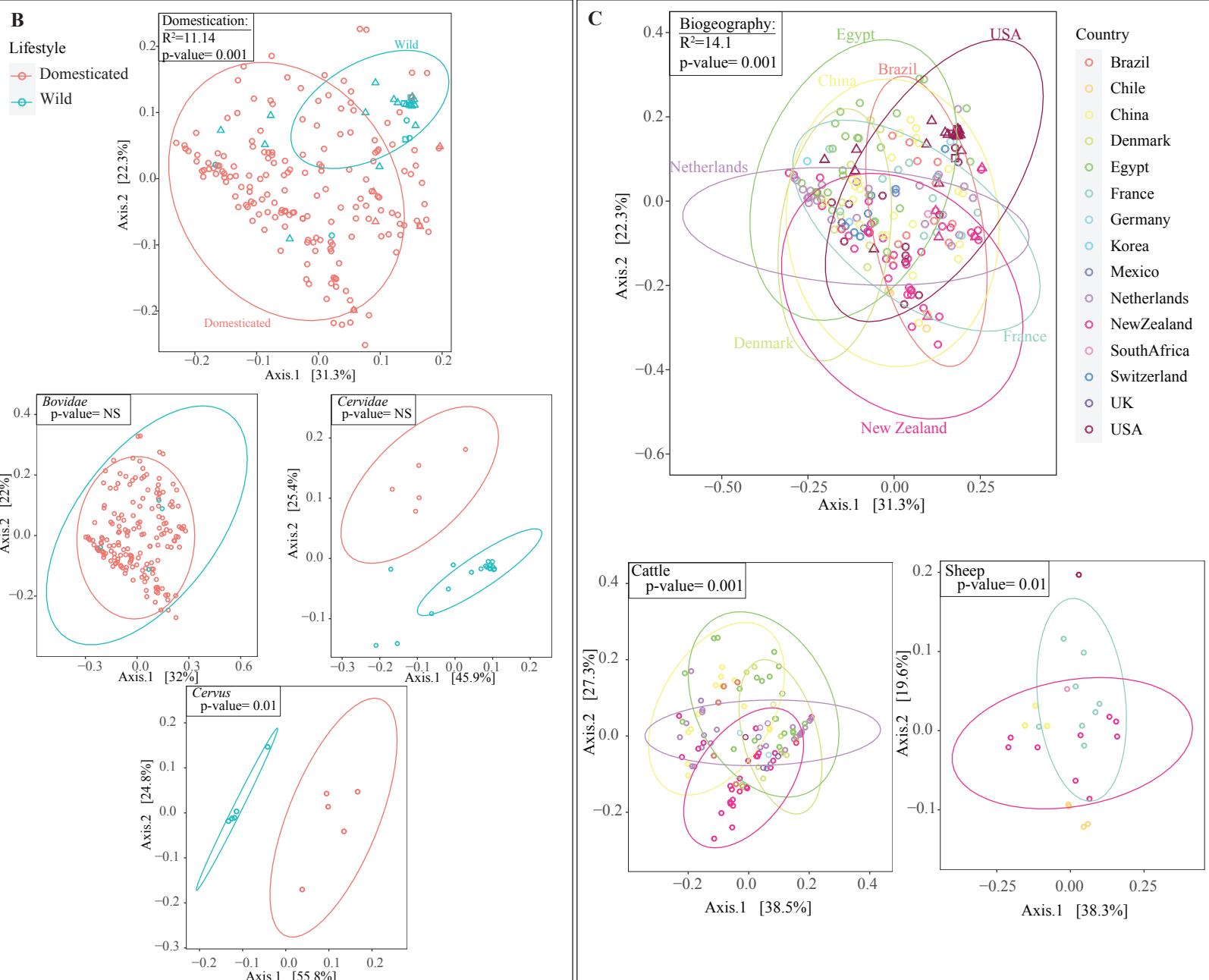
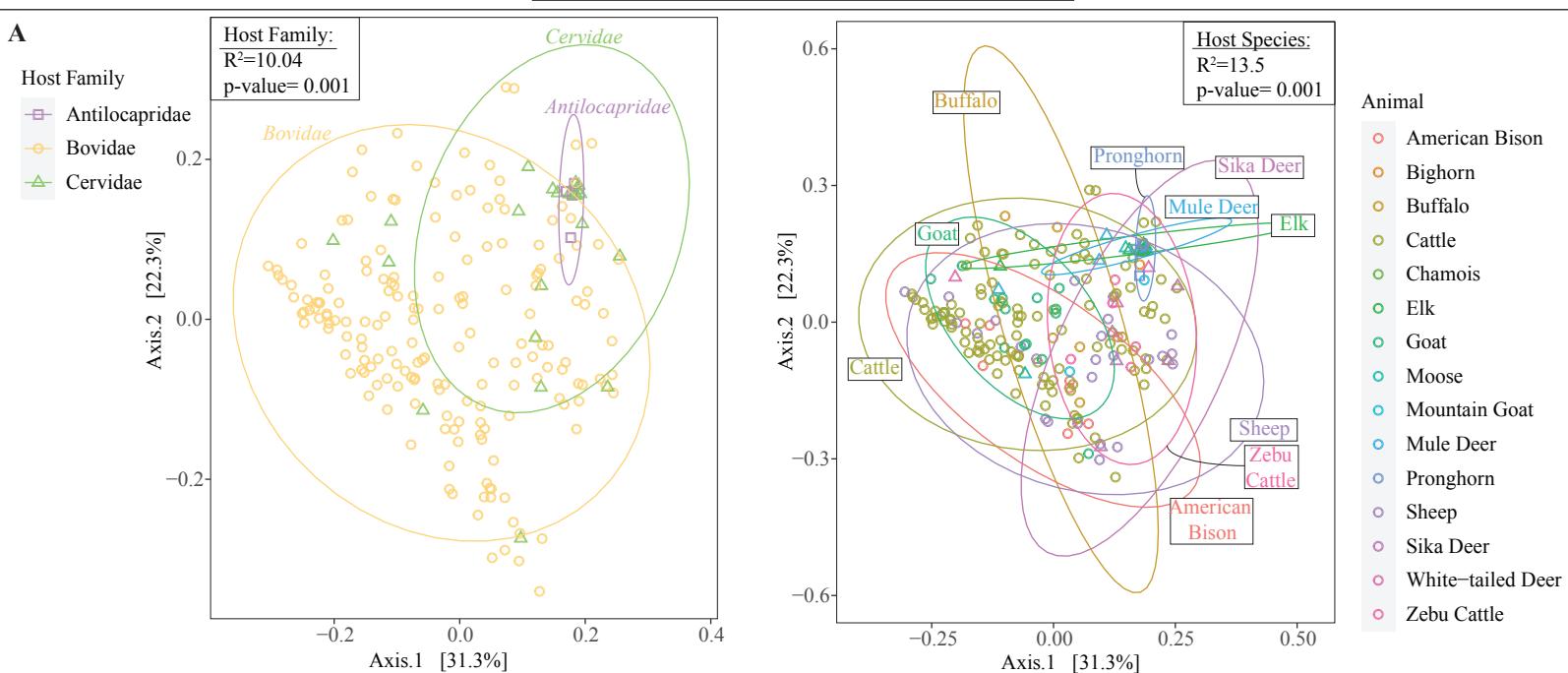
693 26. White JR, Nagarajan N, Pop M. 2009. Statistical methods for detecting differentially
694 abundant features in clinical metagenomic samples. *PLoS Comput Biol* 5:e1000352.

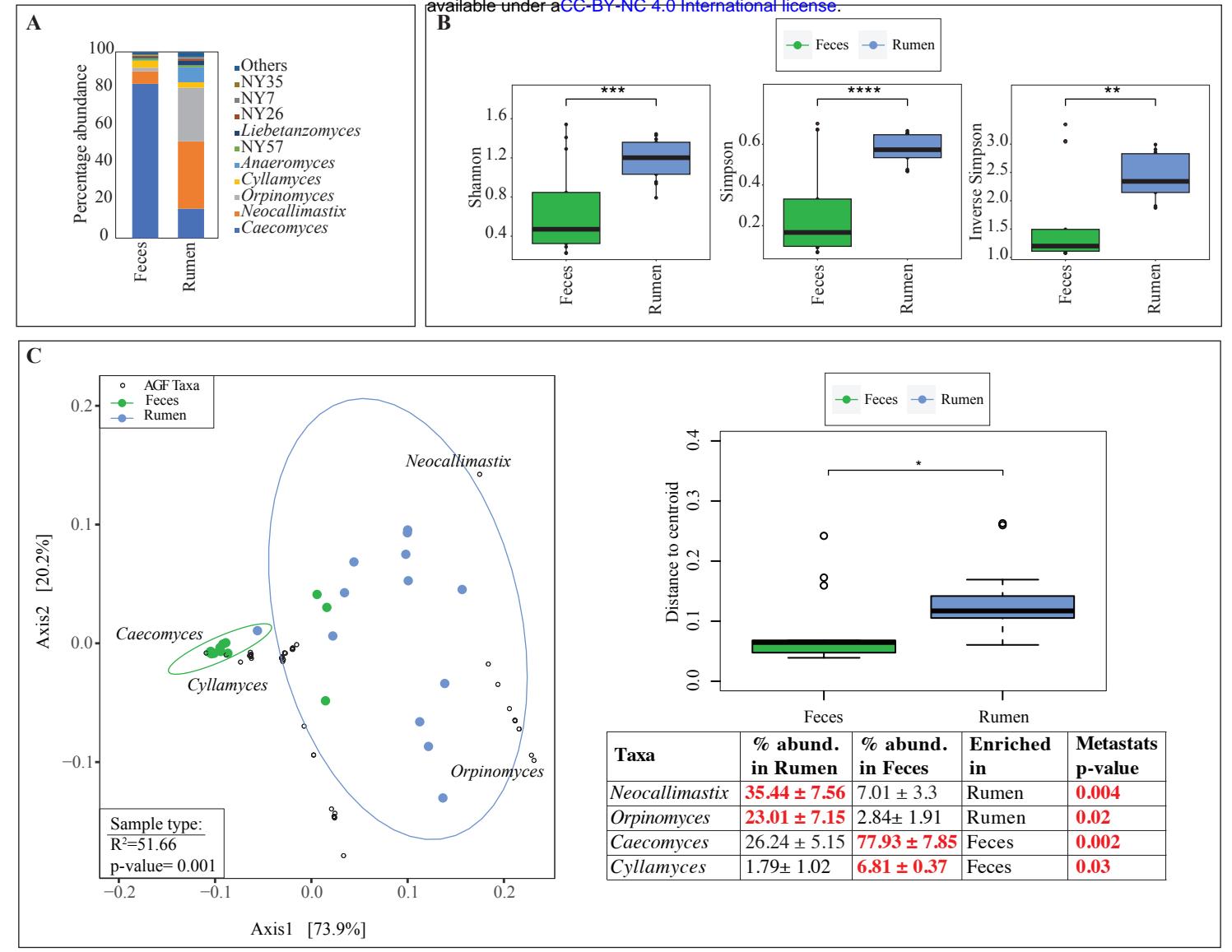
695 27. Adrienne LJ, Carrie JP, Casey HM, Rochelle MS, Philip H, Mostafa SE, Noha HY. 2023.
696 Anaerobic gut fungal communities in marsupial hosts. *bioRxiv*
697 doi:10.1101/2023.05.31.543067:2023.05.31.543067.

698 28. Castillo C, Hernández J. 2021. Ruminal fistulation and cannulation: A necessary
699 procedure for the advancement of biotechnological research in ruminants. *Animals*
700 (Basel) 11:1870.

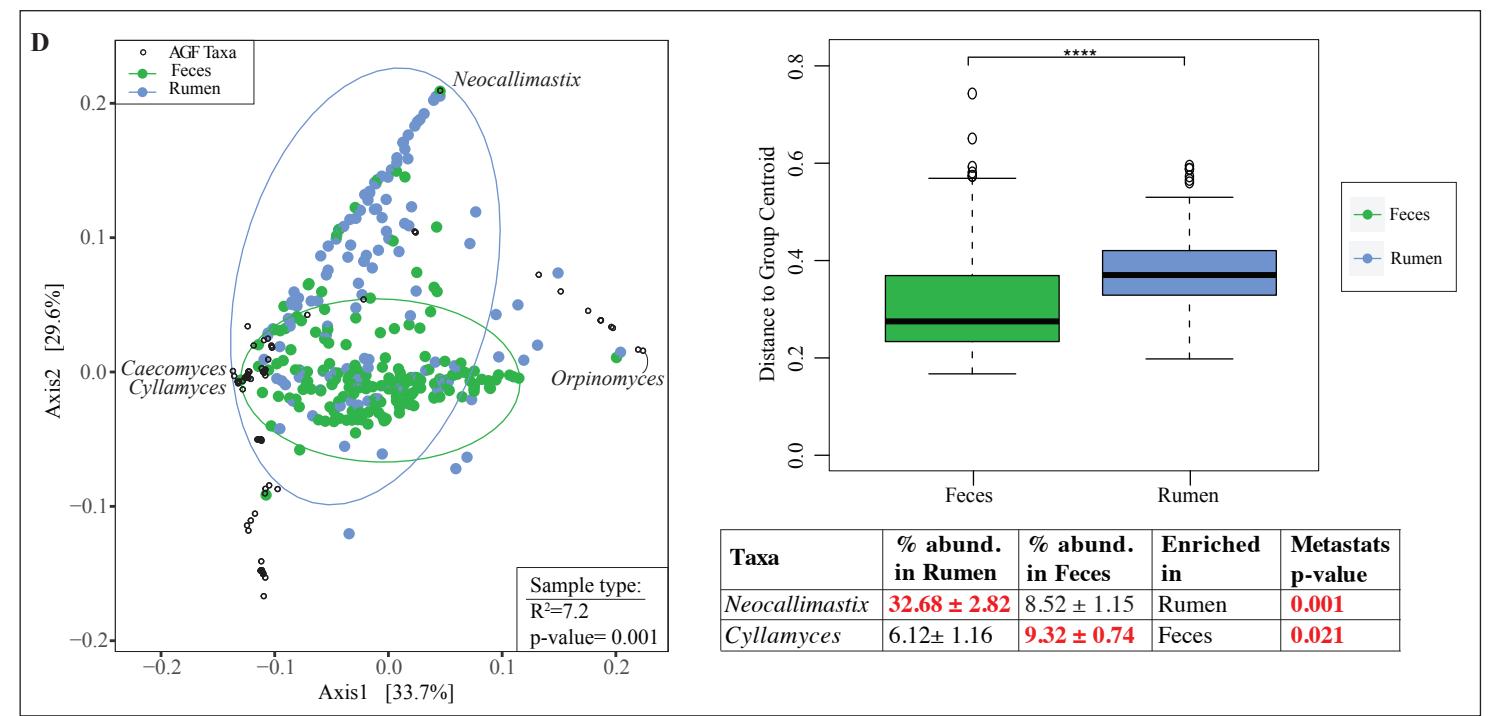



701 29. Hagey JV, Laabs M, Maga EA, DePeters EJ. 2022. Rumen sampling methods bias
702 bacterial communities observed. *PLoS One* 17:e0258176.


703 30. Soden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, Purvine SO, Hoyt
704 DW, Schückel J, Jørgensen B, Willats W, Spalinger DE, Firkins JL, Lipton MS, Sullivan
705 MB, Pope PB, Wrighton KC. 2018. Interspecies cross-feeding orchestrates carbon
706 degradation in the rumen ecosystem. *Nat Microbiol* 3:1274-1284.



707 31. Liu JH, Zhang ML, Zhang RY, Zhu WY, Mao SY. 2016. Comparative studies of the
708 composition of bacterial microbiota associated with the ruminal content, ruminal
709 epithelium and in the faeces of lactating dairy cows. *Microb Biotechnol* 9:257-68.


710 32. Williamson JR, Callaway TR, Lourenco JM, Ryman VE. 2022. Characterization of
711 rumen, fecal, and milk microbiota in lactating dairy cows. *Front Microbiol* 13:984119.

712



Global rumen-feces mycobiome comparison in cattle

