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Abstract

The Saccharomycotinayeasts (“yeasts’ hereafter) are afungal clade of scientific, economic, and
medical significance. Y easts are highly ecologically diverse, found across a broad range of
environmentsin every biome and continent on earth'; however, little is known about what rules
govern the macroecology of yeast species and their range limitsin the wild®. Here, we trained
machine learning models on 12,221 occurrence records and 96 environmental variables to infer
global distribution maps for 186 yeast species (~15% of described species from 75% of orders)
and to test environmental drivers of yeast biogeography and macroecology. We found that
predicted yeast diversity hotspots occur in mixed montane forests in temperate climates.
Diversity in vegetation type and topography were some of the greatest predictors of yeast species
richness, suggesting that microhabitats and environmental clines are key to yeast diversification.
We further found that range limitsin yeasts are significantly influenced by carbon niche breadth
and range overlap with other yeast species, with carbon specialists and speciesin high diversity
environments exhibiting reduced geographic ranges. Finally, yeasts contravene many
longstanding macroecological principles, including the latitudinal diversity gradient,
temperature-dependent species richness, and latitude-dependent range size (Rapoport’ srule).
These results unveil how the environment governs the global diversity and distribution of species
in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate
the prediction of economically relevant and emerging pathogenic species under current and

future climate scenarios.
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Introduction

Saccharomycotinais afungal subphylum as genetically diverse as plants and animals® that
occurs across a broad range of environments and metabolic modalities’. Y easts provide a
plethora of crucial ecosystem functions, acting as mutualists, parasites, and decomposers’. Some
yeasts are used as biological pest control while others are pathogens of important crop species”.
This subphylum contains the genus Saccharomyces, whose members are responsible for baking,
brewing, and winemaking industries, which total over atrillion-dollar annual market share.
Along with the popular model organism Saccharomyces cerevisiae, other emerging yeast
models, such as Komagataella (Pichia pastoris), Lipomyces starkeyi, Yarrowia lipolytica, and
Zygosaccharomyces spp. are being devel oped with applications for pharmaceuticals, biofuels,
cosmetics, and other biotechnologies™. 7 of 19 priority fungal pathogens™ recently identified
by the World Health Organization occur in Saccharomycotina. These include members of the
polyphyletic genus Candida, which are responsible for over 400,000 life-threatening infections

annually with 46-75% mortality™.

Despite their relevance to science, technology, industry, and human health, very little is known
about the natural distribution of yeast diversity and the factors that govern it°. The pathogen
Candida auris was only described in 2009 but has since been found in 30 countries globally
within a decade for unknown reasons™. The yeast Saccharomyces eubayanus, one of the parental
species that gave rise to the lager brewing hybrid S. pastorianus, was identified in the wild in
2011", and European populations were only discovered in 2022, Fungi more generally have
been traditionally excluded from macroecological studies, and are notably absent from seminal

studies on which current theory is based™™°. What large scale studies do exist are concentrated
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in soil fungi, where yeasts accounted for only 0.4% of species”. While yeasts can be isolated
from soil, their environmental rangeis far broader and they are commonly found in a variety of
substrates and microbiomes across plants, animals, and other fungi®. Y easts have been isolated
from locations as diverse as sterile hospital environments™ to penguin feces”, and can
metabolize alcohols, ketones, organic acids, and more®. Due to the unique and exceptional
diversity of their fundamental niche space, the macroecology of yeasts may differ significantly
from other eukaryotic clades. To discover global patternsin yeast diversity and distributions we

predicted distribution maps for 186 species and tested drivers across 96 environmental variables.

Results

To explore the global distribution of yeast species diversity, we used machine learning to infer
the full geographic ranges of each species with at least five unique occurrence records. Of these
233 species, 47 with atrue positive or true negative rate less than 75% were removed, yielding a
total of 186 species representing 9 of 12 Saccharomycotina orders™ (Fig. S1). Taxonomic biasis
known to confound geographic analyses of species richness™. Care must be taken to ensure
diversity hotspots are indeed areas of increased species richness, and not just areas of increased
taxonomic scrutiny. To assess this possible bias, we compared the observed geographic species
richness of the training data defined by the taxonomy used by this study (based on conventional
taxonomic standards) to species hypotheses defined by the UNITE database®* (based on genetic
clustering). Diversity patterns were highly congruent globally between both taxonomies (p<2.2E-
16, r*=0.798) (Fig. S2), which indicates that the species richness estimates used by this study
reflect true biological patterns. Sampling bias is another factor that can significantly influence

bi ogeographic analyses. The relationship between sampling density was much weaker for
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predicted diversity estimates (p=6.5E-7, r’=0.028) than empirical observations (p=2.2E-16,
r’=0.402), demonstrating the power of the machine learning approach used by this study to

disentangle meaningful phenomena from false signal produced by sampling artifacts (Fig. S3).
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Figure 1. Global yeast diversity. A) Heat map of the distributions of 186 yeast species
inferred through random forest machine learning models. B) Average species richness

per grid cell for each latitude band or line.

Distribution maps predicted through machine learning revealed several distinct hotspots of yeast
diversity (Fig. 1), particularly in temperate forests (Fig. 2). Of the 11 most speciesrich
ecoregions all were extratropical forests. Eight were classified as mixed forests and another eight
were montane, associated with mountain ranges such as the Alps, Pyrenees, Caucasus, and the
Appalachians. Mixed forests harbor the greatest higher-level taxonomic plant diversity, whichis
thought to contribute heavily to the biodiversity of other fungal groups like ectomycorrhizal
mycobionts®?. Similarly, montane ecosystems are known to be exceptionally diverse?”%, with
radically different assemblages of plants and animals occurring in close proximity along

devationa clines.
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Figure 2. Yeast species richness is concentrated in temperate, mixed forests.
Average species richness per grid cell for each Koppen-Geiger climate class (A) and

biome (B).

Predicted yeast species richness was highest in mixed, montane forests. To explore which
environmental drivers contribute most to yeast diversity in these regions, regression models were
performed for 96 variables (Table S1). The heterogeneity in vegetation and topography across
montane mixed forests provides a plethora of microhabitats and ecological niches for yeasts to
occupy, which may contribute to their high diversity in these environments. This hypothesisis
supported by our environmental regression analysis. Two of the variables with 100% relative
importance in predicting species richness are enhanced vegetation index diversity and the
topography principal component (Fig. 3, Table S2). Plant species richness and geomorphic class

diversity were also highly significant, with 98% and 99% relative importance, respectively. By
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contragt, relative importance for the principal component including forest biomass was just 39%,
and altitude was not significant at all (false discovery rate (FDR)=0.33). This result suggests that
it is not the forests and mountainous regions per se that are conducive to yeast diversity, but

rather the heterogeneity of hosts and landscapes these environments often provide.
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Figure 3. Traditional predictors of species diversity are poor indicators of yeast
species diversity. A) Variables that scale with diversity in other clades, such as tropical
climates (left), temperature (center), and area (right), did not scale with yeast species
diversity. B) Three select variables that were among the best predictors of yeast species
diversity: temperate climates (left), vegetation diversity (center), and geomorphic class
diversity (right). All graphs represent the same regression analysis with the following

summary statistics; FDR: false discovery rate of the negative binomial regression. m:
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scaled slope of linear regression. r*; coefficient of determination for linear regression.

Trend-lines were produced through locally weighted smoothing.

Y east species show extensive variation in their species ranges. For example, Metschnikowia
gruessii (order Serinales) was predicted to occur in just 9 ecoregions while Kockiozyma
suomiensis (order Lipomycetales) was predicted to occur in 338, covering over a quarter of the
earth’ sterrestrial surface (Fig. 4A). Wetested three variables that are expected to influence
species range size: niche breadth, species richness, and absolute latitude. Niche breadth was
obtained from a recent study* that generated experimental growth curves across 18 carbon
sources for every speciesin our dataset. We found that the number of different carbon sources a
species was able to metabolize had a significant impact on range size (Fig. 4A). Carbon
specialists, which can only grow on alimited number of carbon sources®, had significantly
(p=0.02) smaller geographic ranges compared to non-specialist species. Range size was also
significantly negatively correlated with species richness (p~0) (Fig. 4B). Species who occupied
environments with high numbers of other yeast species were more likely to have smaller ranges.
Lastly, absolute latitude had a negative effect (p~0) on species range size, such that yeast species
occupying ecoregions closer to the equator had larger range sizes than more temperate species

(Fig. 4C), with species ranges becoming smaller with distance from the equator.
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Figure 4. Yeast species range size scales negatively with species richness and
latitude, positively with carbon niche breadth. A) Specialist species that grew on
only a few carbon sources had significantly smaller geographic ranges than non-
specialists. p-values represent a phylogenetic ANOVA test. Size of inferred ranges for
each species included in this study, compared to B) species richness, and C) absolute
latitude. Summary statistics represented phylogenetic generalized least squares tests.

All tests use the same underlying time-calibrated tree from Opulente, LaBella et al.

2023*
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Y east species ranges appear to be limited both by high species richness and carbon niche
breadth, suggesting that niche partitioning plays an important role in yeast biogeography. Species
in high diversity areas have restricted ranges, implying that intraspecific competition limits
geographic expansion. The limited range of specialists further demonstrates that the fundamental

niche space available to a species has macroecological consequences.

Comparisons of the macroecology of yeasts to other eukaryotic clades reveals several
similarities. For example, richness peaks in montane forests?”*® and a positive association
between niche breadth and range size*”* are general patterns predicted by mainstream
macroecological theory. Nevertheless, we also identified three major respects in which yeast

macroecology deviates substantially from that of many other eukaryotic groups.

First, it isgenerally expected that species richness scales with resource availability, usually
represented with proxy variables, such as area, temperature, or productivity®®. However, of these
traditional predictors, only productivity emerged as adriver of yeast diversity. Net primary
productivity (NPP) had a strong, significant relationship with species richness (FDR=1.1E-57,
r’=0.24) (Table S2). After highly correlated variables were decomposed into principal
components (see Methods), the resulting productivity principal component constructed from net
primary productivity, growing season, and soil respiration was similarly predictive, with 100%

relative importance (Fig. 3, Table S1).


https://doi.org/10.1101/2023.08.29.555417
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.555417; this version posted August 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Surprisingly, neither temperature nor area had a positive effect on yeast species richness. Area
size had a significant relationship with richness (FDR=6.8E-11, r’=8.2E-3), but the relationship
was negative; yeast species richness was greater in smaller ecoregions, which was the opposite
trend of what would be expected (Fig. 3). Mean annual temperature had no significant
relationship with yeast diversity (FDR=0.078, r°=9.4E-3). The temperature-associated principal
component constructed from snow cover and energy from the sun was also insignificant
(FDR=0.23, r’~0). Temperature was previously identified as an important factor influencing the

range of Saccharomyces species™*

, which has important implications as the ranges of many
fungal pathogens are predicted to expand due to climate change®. Our analysis suggests that this
association between temperature and species range is also true throughout the subphylum since
temperature range and temperature mean were the 7" and 9™ most important continuous
variablesin our distribution models, respectively (Table S3). However, while temperature is an

important determinant of yeast species distributions, it is not predictive of yeast species diversity

globally.

Second, the latitudinal diversity gradient, or the tendency for species richness to peak in tropical
climates, is arguably the most widely observed macroecological trend™®. In Saccharomycotina
however, temperate regions held the most diversity with an average species richness of 73.6
species per grid cdll, avalue 2.6x higher than that of tropical regions (Fig. 2). Additionally, while
temperate regions held significantly more richness than non-temperate regions (FDR=3.9E-13,
r’=0.20), the species richness of tropical regions did not significantly differ from the richness of
non-tropical regions (FDR=0.051, r*=0.01) (Fig. 3). Previous studies that have observed an

inverse latitudinal diversity gradient in other fungal clades have suggested negative relationships
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between fungal diversity and plant richness* or temperature™ as potential drivers. However, as
mentioned above, we found that yeast species diversity was positively correlated with plant
species richness (FDR=5.9E-43, r*=0.22) and uncorrelated with temperature (FDR=0.078,

r’=1.9E-3).

The absence of tropical diversity in certain fungal clades could also be dueto historical
biogeographical factors™. In ectomycorrhizal fungi, for example, there are no known obligately
tropical species®, suggesting that lineages originally arose in temperate regions. However, as has
been reported in other clades® ®, diversity and diversification appear to be only weakly
correlated in yeasts, suggesting that historical hotspots of diversification are not necessarily
current hotspots of diversity (Fig. $4). Additionally, variables tracking climate changes since the
last glacial maximum were largely insignificant and had some of the smallest effect sizes
measured. It is possible, that due to the short generation times and widespread dispersal
capabilities of many yeast species™“, historical processes that operate over thousands of years
have had minimal impact on modern distributions. Such a scenario may also help to explain the
absence of alatitudinal diversity gradient. If yeast species can rapidly colonize and saturate
environmental niches that were previously unavailable due to climate shifts or glacial cycles, it

may explain why species richness is not concentrated in the more stable tropics.

Third, Rapoport’s rule*, or the positive relationship between species range size and latitude, was
also found to be reversed in yeasts. As mentioned above, distance from the equator had a
significant (p~0), negative relationship with species range size. Though the generality of

Rapoport’s rule has been extensively questioned***, it has been identified as amajor factor in
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the distribution of soil fungi, particularly in Agaricomycetes®. Rapoport’s rule was originally
postulated in order to explain the latitudinal diversity gradient, since the smaller ranges of
species in the tropics would enable more species to coexist. If Rapoport’s rule and latitudinal
diversity gradients are indeed connected, it would explain the observed trend of both of them

being inverted in yeasts.

In conclusion, we sought to uncover the global diversity and distribution of the
Saccharomycotina yeasts. As single-celled organisms, the life history and lifestyle of yeasts are
markedly different from many other eukaryotic clades. This divergenceisreflected in their
macroecology, which sets them apart even from other fungi®®. We did not find evidence of many
commonly observed ecological patterns. Predicted yeast diversity is concentrated in temperate
climates, not the tropics. Similarly, species range size decreases with distance from the equator,
an inverse of Rapaport’srule. Additionally, neither temperature, nor area, scale with species
richness. These surprising findings emphasi ze the need in macroecology to study a variety of

underexplored clades, especially those with unique life history traits.

The distribution models used by this study are reliant on environmental sampling. Wild yeasts
are severely under sampled, which could influence the accuracy of our machine learning
predictive models. Nevertheless, our inferences of yeast species richness are consistent with
current knowledge. For example, biodiversity hotspots in Western European forests®. Perhaps
more importantly, our models also make specific predictions that can be tested through
additional sampling. Specifically, ecoregions around the Mediterranean and Black seas such as

the north Turkish coast and montane forests along the Apennine and Rhodope mountain ranges
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were in the 98" percentile for yeast species richness, despite having zero samples in our training
data. The Appalachian Mountainsin the U.S. might similarly be an underappreciated
biodiversity hotspot for yeasts, with species richness estimates rivaling that of western Europe
despite having less than 3% of their sampling. Guiding both geographic and taxonomic sampling
of thisimportant clade toward specific poorly sampled ecoregions will likely greatly increase the
resolution and power of future studies. For understudied and under sampled clades like the
yeasts, employing a computational predictive framework, such as the one developed in this
study, can guide future sampling efforts. We hope that both geographic and taxonomic sampling
of thisimportant clade continue to improve, which will help increase the resolution and power of

future studies.

While the distribution patterns of yeast diversity are distinct from many other eukaryotes, the
threats yeast face may be largely the same. We found that yeast diversity hotspots are
characterized by temperate, montane, mixed forests. Notably, these ecosystems are some of the
most impacted by human activities and climate change. Forestsin central Europe, east Asia, and
southwest Brazil, where yeast diversity is high, are dominated by secondary growth™, having
previously been disturbed by human activities. Similarly, montane environments are particularly
impacted by climate change as communities shift upslope in response to rising temperatures,
altering species ranges in the process’’*. As temperate ecosystems are forced to retreat to higher
latitude and altitudes in awarming world, yeast diversity hotspots will need to adapt with them
or face extinction. The methodology used by this study is readily adjustable to an array of future

climate scenarios, and it may prove useful in assessing how yeast diversity, including
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economically relevant and pathogenetic species, is affected by past, present, and future

anthropogenic transformations.

Methods

Dataset

To obtain a comprehensive record of Saccharomycotina biogeographic distribution, several data
sources were queried. All available Saccharomycotina occurrence records without flagged
geospatial issues were downloaded from the Global Biodiversity Information Facility on
December 14, 2022 (doi.org/10.15468/dl.n4fkgs). These data were further filtered by removing
any record with areported coordinate uncertainty of 1km or greater. Saccharomycotina records
were also downloaded from the Global Fungi*’ dataset (release 4), and two published papers®®.
In Spurley et al. (2022), records marked with the “anthropic” flag were removed, asthis study is
primarily interested in the diversity and distribution of naturally occurring yeasts. Smilarly, the
industrial hybrid species Saccharomyces bayanus and Saccharomyces pastorianus were
excluded from analysis. Though now considered a naturally-occurring species distinct from S,
bayanus, Saccharomyces uvarum records were also removed as a conservative measure. After
records were combined from all four data sources, species names were reconciled with the most
recent taxonomy™ (Table $4), and two additional filtering steps were applied. First, coordinate
resolution needed to be at |east two decimal places. Second, the R package CoordinateCleaner
was employed to remove suspicious records, such as those with equal latitude and longitude
coordinates, zero coordinates, or coordinates matching the centroid of counties/provinces or
biodiversity ingtitutions. The full filtered search resulted in 22,355 Saccharomycotina occurrence

records, representing every biome on earth and 49.7% of terrestrial ecoregions.
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Each occurrence record was associated with 96 environmental variables describing the climate,
history, soil, vegetation, and anthropogenic inputs of the region. All variables were taken from
publicly available sources and projected onto the WGS84 coordinate system at 30" (~1 km?)
resolution. Further details for each variable are available at Table S5. To avoid overfitting or
overrepresentation of specific sampling sitesin the training data, records with identical
environmental variables of the same species within the same hundredth degree of latitude or
longitude were aggregated into one. Finally, records with any missing data were also removed,

resulting in atraining dataset of 12,816 presences.

Species distribution modeling with machine learning

To infer species occurrences in areas of limited sampling, machine learning random forest
models were used. 233 models were constructed, one for every species with at least 5 occurrence
records. 100,000 environmental datapoints were randomly sampled as pseudo-absences.
Modeling was performed using the R package ‘randomforest’. A down-sampling approach was
used for training, which has been shown to reduce overfitting and significantly improve results in
species distribution modeling™. Each random forest model consisted of 100 decision trees.
Otherwise, default parameters were used. A leave-one-out strategy was used for validation, and
186 models with at least a 75% true positive rate and 75% true negative rate were retained for
downstream analysis. On average, models for these 186 species had an area under the receiver
operating characteristic curve of 0.92, atrue positive rate of 87%, and a true negative rate of 90%
(Fig. S5). Of the 96 environmental variables used in training, Koppen-Geiger climate

classifications were the most predictive, followed by ecofloristic zones, biomes, and soil
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classifications. Together these four categorical variables represented almost a quarter of all
variable importance, with 24.7% of the total mean decreasein Gini index across all variables.
We also note that variables that are important for the binary classification task of random forest
models are not necessarily those that are the most predictive of overall richness. For example,
mean annual temperature was the 9™ most important continuous variable for distribution
modeling but had an insignificant (FDR=0.078) effect on richness. Conversely, geomorphic class
diversity was the 3 least important continuous variable for distribution modeling but had 100%

relative importance to richness regressions.

Diversity and diver sification estimation

To reduce computational costs and to increase interpretability of results, terrestrial ecoregions
were selected as the main unit of analysis for this study, which are defined by the World Wildlife
Fund as ‘a large unit of land containing a geographically distinct assemblage of species, natural
communities, and environmental conditions®. To accomplish this analysis, environmental
variables and species richness estimates were aggregated into ecoregions. For the 90 continuous
environmental variablesin our training dataset, we simply took the mean value of all grid céllsin
a given ecoregion (Table S6). Select categorical variables were also encoded into 6 binary
variables, which were based on the mgjority class within each ecoregion (Table S7). Species
were said to be found in a particular ecoregion if they were predicted to occur in at least 10% of
that ecoregion’s grid cells according to the random forest model. Speciation rates were inferred
from the DR statistic™** calculated from the inverse equal splits method®, using the time-
calibrated phylogeny published in Opulente & LaBella 2023*. Ecoregion specific rates were

calculated using a weighted mean of speciation rates for all species found in a given ecoregion.
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Weights represented the inverse of the number of ecoregions in which a given species occurred,
such that species endemic to a specific ecoregion contributed more to that ecoregion’s estimate

than a cosmopolitan species™.

Environmental analysis

To determine environmental drivers of yeast diversity, regression models were constructed for
each of the 96 quantitative variables, with yeast species richness as the dependent variablein
each case. As species richnessis always represented by a non-negative integer, negative-
binomial regressions were used, which are thought to be more appropriate for count data and, in
practice, had consistently better Akaike information criterion scores than linear models. To
increase interpretability of summary statistics, scaled linear regressions were also performed,
taking r? as a measure for goodness-of-fit and the slope (m) as a measure of effect size. 16
variables whose negative binomial regressions had false discovery rates >0.05 were removed
from downstream analysis. To reduce correlations between environmental variables, highly
correlated variables were decomposed into single principal components. Effort was made to
preserve the interpretation of principal components wherever possible. Each principal component
explained at least 83% of the total variance (u=93%); further details can befound at Table S8.
After highly correlated variables were decomposed, the greatest r? between variables was 0.71
(1=0.11) (Fig. S6). To estimate the contribution of the most predictive environmental variables
and principal components, relative importance analysis was used. Negative binomial regression
models were constructed from every combination of the 16 variables and principal components

whose linear relationship with species richness had r>>0.15 and m>0.20; species richness was the
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dependent variable. This strategy resulted in 65,535 total models. Akaike weights were then

calculated and used to estimate relative importance for each predictor™.

Species Range Size Analysis

Several estimates were measured to test drivers of species range size. Species range size itself
was estimated as the total fraction of grid cells predicted to be occupied by a given species.
Latitude and species range overlaps were estimated for each species as the average value across
every ecoregion in which a given species was predicted to occur (Table S9). Specialist
classifications were taken from Opulente, LaBellaet al. 2023", which inferred niche-breadth
through experimental quantitative growth assays on 18 carbon sources. The positive relationship
between niche-breadth and geographic range size has been identified as a major macroecological
pattern in plants and animals'*°. However, this consensus has also attracted controversy for two
main reasons. First, niche-breadth is a broadly defined concept often measured along multiple
axes, such as diet, habitat, and tolerance, which are not necessarily correlated’. Second, as range
size and niche-breadth are typically inferred from the same underlying data (occurrence records),
sampling artifacts can produce spurious correlations?®>>*°. The yeast dataset utilized by this
study circumvents both these issues. The external absorption mode of feeding in yeasts® means
that diet and habitat are one and the same, providing a convenient and unigue lens through which
to measure niche-breadth. Additionally, as this study defines niche-breadth independently
through experimental growth assays conducted in a laboratory”, there is no autocorrelation
between niche-breadth and range size. Associations between species range size and

diversity/latitude were tested with phylogenetic generalized least squares models implemented in
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the R package nime™ and niche breadth using phylogenetic ANOV As implemented in the

package geiger™.

Data Availability

All code required to run the species distribution models presented in this paper and replicate
primary analyses as well as supplementary data files, including distribution maps and raster files
for all 186 species have been deposited online and will be made publicly accessible upon

publication.
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