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Abstract 

The Saccharomycotina yeasts (“yeasts” hereafter) are a fungal clade of scientific, economic, and 

medical significance. Yeasts are highly ecologically diverse, found across a broad range of 

environments in every biome and continent on earth1; however, little is known about what rules 

govern the macroecology of yeast species and their range limits in the wild2. Here, we trained 

machine learning models on 12,221 occurrence records and 96 environmental variables to infer 

global distribution maps for 186 yeast species (~15% of described species from 75% of orders) 

and to test environmental drivers of yeast biogeography and macroecology. We found that 

predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. 

Diversity in vegetation type and topography were some of the greatest predictors of yeast species 

richness, suggesting that microhabitats and environmental clines are key to yeast diversification. 

We further found that range limits in yeasts are significantly influenced by carbon niche breadth 

and range overlap with other yeast species, with carbon specialists and species in high diversity 

environments exhibiting reduced geographic ranges. Finally, yeasts contravene many 

longstanding macroecological principles, including the latitudinal diversity gradient, 

temperature-dependent species richness, and latitude-dependent range size (Rapoport’s rule). 

These results unveil how the environment governs the global diversity and distribution of species 

in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate 

the prediction of economically relevant and emerging pathogenic species under current and 

future climate scenarios. 
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Introduction 

Saccharomycotina is a fungal subphylum as genetically diverse as plants and animals3 that 

occurs across a broad range of environments and metabolic modalities4. Yeasts provide a 

plethora of crucial ecosystem functions, acting as mutualists, parasites, and decomposers5. Some 

yeasts are used as biological pest control while others are pathogens of important crop species6. 

This subphylum contains the genus Saccharomyces, whose members are responsible for baking, 

brewing, and winemaking industries, which total over a trillion-dollar annual market share. 

Along with the popular model organism Saccharomyces cerevisiae, other emerging yeast 

models, such as Komagataella (Pichia pastoris), Lipomyces starkeyi, Yarrowia lipolytica, and 

Zygosaccharomyces spp. are being developed with applications for pharmaceuticals, biofuels, 

cosmetics, and other biotechnologies7–11.  7 of 19 priority fungal pathogens12 recently identified 

by the World Health Organization occur in Saccharomycotina. These include members of the 

polyphyletic genus Candida, which are responsible for over 400,000 life-threatening infections 

annually with 46-75% mortality13.  

 

Despite their relevance to science, technology, industry, and human health, very little is known 

about the natural distribution of yeast diversity and the factors that govern it2. The pathogen 

Candida auris was only described in 2009 but has since been found in 30 countries globally 

within a decade for unknown reasons14. The yeast Saccharomyces eubayanus, one of the parental 

species that gave rise to the lager brewing hybrid S. pastorianus, was identified in the wild in 

201115, and European populations were only discovered in 202216. Fungi more generally have 

been traditionally excluded from macroecological studies, and are notably absent from seminal 

studies on which current theory is based17–19. What large scale studies do exist are concentrated 
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in soil fungi, where yeasts accounted for only 0.4% of species20. While yeasts can be isolated 

from soil, their environmental range is far broader and they are commonly found in a variety of 

substrates and microbiomes across plants, animals, and other fungi1. Yeasts have been isolated 

from locations as diverse as sterile hospital environments21 to penguin feces22, and can 

metabolize alcohols, ketones, organic acids, and more6. Due to the unique and exceptional 

diversity of their fundamental niche space, the macroecology of yeasts may differ significantly 

from other eukaryotic clades. To discover global patterns in yeast diversity and distributions we 

predicted distribution maps for 186 species and tested drivers across 96 environmental variables. 

 

Results 

To explore the global distribution of yeast species diversity, we used machine learning to infer 

the full geographic ranges of each species with at least five unique occurrence records. Of these 

233 species, 47 with a true positive or true negative rate less than 75% were removed, yielding a 

total of 186 species representing 9 of 12 Saccharomycotina orders11 (Fig. S1). Taxonomic bias is 

known to confound geographic analyses of species richness23. Care must be taken to ensure 

diversity hotspots are indeed areas of increased species richness, and not just areas of increased 

taxonomic scrutiny. To assess this possible bias, we compared the observed geographic species 

richness of the training data defined by the taxonomy used by this study (based on conventional 

taxonomic standards) to species hypotheses defined by the UNITE database24 (based on genetic 

clustering). Diversity patterns were highly congruent globally between both taxonomies (p<2.2E-

16, r2=0.798) (Fig. S2), which indicates that the species richness estimates used by this study 

reflect true biological patterns. Sampling bias is another factor that can significantly influence 

biogeographic analyses. The relationship between sampling density was much weaker for 
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predicted diversity estimates (p=6.5E-7, r2=0.028) than empirical observations (p=2.2E-16, 

r2=0.402), demonstrating the power of the machine learning approach used by this study to 

disentangle meaningful phenomena from false signal produced by sampling artifacts (Fig. S3).  

 

Figure 1. Global yeast diversity. A) Heat map of the distributions of 186 yeast species 

inferred through random forest machine learning models. B) Average species richness 

per grid cell for each latitude band or line. 

 

Distribution maps predicted through machine learning revealed several distinct hotspots of yeast 

diversity (Fig. 1), particularly in temperate forests (Fig. 2). Of the 11 most species rich 

ecoregions all were extratropical forests. Eight were classified as mixed forests and another eight

were montane, associated with mountain ranges such as the Alps, Pyrenees, Caucasus, and the 

Appalachians. Mixed forests harbor the greatest higher-level taxonomic plant diversity, which is 

thought to contribute heavily to the biodiversity of other fungal groups like ectomycorrhizal 

mycobionts25,26. Similarly, montane ecosystems are known to be exceptionally diverse27,28, with 

radically different assemblages of plants and animals occurring in close proximity along 

elevational clines. 
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Figure 2. Yeast species richness is concentrated in temperate, mixed forests. 

Average species richness per grid cell for each Köppen-Geiger climate class (A) and 

biome (B).  

 

Predicted yeast species richness was highest in mixed, montane forests. To explore which 

environmental drivers contribute most to yeast diversity in these regions, regression models were 

performed for 96 variables (Table S1). The heterogeneity in vegetation and topography across 

montane mixed forests provides a plethora of microhabitats and ecological niches for yeasts to 

occupy, which may contribute to their high diversity in these environments. This hypothesis is 

supported by our environmental regression analysis. Two of the variables with 100% relative 

importance in predicting species richness are enhanced vegetation index diversity and the 

topography principal component (Fig. 3, Table S2). Plant species richness and geomorphic class 

diversity were also highly significant, with 98% and 99% relative importance, respectively. By 

re 
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contrast, relative importance for the principal component including forest biomass was just 39%, 

and altitude was not significant at all (false discovery rate (FDR)=0.33). This result suggests that 

it is not the forests and mountainous regions per se that are conducive to yeast diversity, but 

rather the heterogeneity of hosts and landscapes these environments often provide.  

 

Figure 3. Traditional predictors of species diversity are poor indicators of yeast

species diversity. A) Variables that scale with diversity in other clades, such as tropical

climates (left), temperature (center), and area (right), did not scale with yeast species

diversity. B) Three select variables that were among the best predictors of yeast species

diversity: temperate climates (left), vegetation diversity (center), and geomorphic class

diversity (right). All graphs represent the same regression analysis with the following

summary statistics; FDR: false discovery rate of the negative binomial regression. m:
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scaled slope of linear regression. r2: coefficient of determination for linear regression. 

Trend-lines were produced through locally weighted smoothing.  

 

Yeast species show extensive variation in their species ranges. For example, Metschnikowia 

gruessii (order Serinales) was predicted to occur in just 9 ecoregions while Kockiozyma 

suomiensis (order Lipomycetales) was predicted to occur in 338, covering over a quarter of the 

earth’s terrestrial surface (Fig. 4A). We tested three variables that are expected to influence 

species range size: niche breadth, species richness, and absolute latitude. Niche breadth was 

obtained from a recent study4 that generated experimental growth curves across 18 carbon 

sources for every species in our dataset. We found that the number of different carbon sources a 

species was able to metabolize had a significant impact on range size (Fig. 4A). Carbon 

specialists, which can only grow on a limited number of carbon sources4, had significantly 

(p=0.02) smaller geographic ranges compared to non-specialist species. Range size was also 

significantly negatively correlated with species richness (p≈0) (Fig. 4B). Species who occupied 

environments with high numbers of other yeast species were more likely to have smaller ranges. 

Lastly, absolute latitude had a negative effect (p≈0) on species range size, such that yeast species 

occupying ecoregions closer to the equator had larger range sizes than more temperate species 

(Fig. 4C), with species ranges becoming smaller with distance from the equator. 
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Figure 4. Yeast species range size scales negatively with species richness and 

latitude, positively with carbon niche breadth. A) Specialist species that grew on 

only a few carbon sources had significantly smaller geographic ranges than non-

specialists. p-values represent a phylogenetic ANOVA test. Size of inferred ranges for 

each species included in this study, compared to B) species richness, and C) absolute 

latitude. Summary statistics represented phylogenetic generalized least squares tests. 

All tests use the same underlying time-calibrated tree from Opulente, LaBella et al. 

20234 
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Yeast species ranges appear to be limited both by high species richness and carbon niche 

breadth, suggesting that niche partitioning plays an important role in yeast biogeography. Species 

in high diversity areas have restricted ranges, implying that intraspecific competition limits 

geographic expansion. The limited range of specialists further demonstrates that the fundamental 

niche space available to a species has macroecological consequences.  

 

Comparisons of the macroecology of yeasts to other eukaryotic clades reveals several 

similarities. For example, richness peaks in montane forests27,28 and a positive association 

between niche breadth and range size17,29 are general patterns predicted by mainstream 

macroecological theory. Nevertheless, we also identified three major respects in which yeast 

macroecology deviates substantially from that of many other eukaryotic groups. 

 

First, it is generally expected that species richness scales with resource availability, usually 

represented with proxy variables, such as area, temperature, or productivity30. However, of these 

traditional predictors, only productivity emerged as a driver of yeast diversity. Net primary 

productivity (NPP) had a strong, significant relationship with species richness (FDR=1.1E-57, 

r2=0.24) (Table S2). After highly correlated variables were decomposed into principal 

components (see Methods), the resulting productivity principal component constructed from net 

primary productivity, growing season, and soil respiration was similarly predictive, with 100% 

relative importance (Fig. 3, Table S1). 
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Surprisingly, neither temperature nor area had a positive effect on yeast species richness. Area 

size had a significant relationship with richness (FDR=6.8E-11, r2=8.2E-3), but the relationship 

was negative; yeast species richness was greater in smaller ecoregions, which was the opposite 

trend of what would be expected (Fig. 3). Mean annual temperature had no significant 

relationship with yeast diversity (FDR=0.078, r2=9.4E-3). The temperature-associated principal 

component constructed from snow cover and energy from the sun was also insignificant 

(FDR=0.23, r2≈0). Temperature was previously identified as an important factor influencing the 

range of Saccharomyces species31,32, which has important implications as the ranges of many 

fungal pathogens are predicted to expand due to climate change33. Our analysis suggests that this 

association between temperature and species range is also true throughout the subphylum since 

temperature range and temperature mean were the 7th and 9th most important continuous 

variables in our distribution models, respectively (Table S3). However, while temperature is an 

important determinant of yeast species distributions, it is not predictive of yeast species diversity 

globally.  

 

Second, the latitudinal diversity gradient, or the tendency for species richness to peak in tropical 

climates, is arguably the most widely observed macroecological trend18. In Saccharomycotina 

however, temperate regions held the most diversity with an average species richness of 73.6 

species per grid cell, a value 2.6x higher than that of tropical regions (Fig. 2). Additionally, while 

temperate regions held significantly more richness than non-temperate regions (FDR=3.9E-13, 

r2=0.20), the species richness of tropical regions did not significantly differ from the richness of 

non-tropical regions (FDR=0.051, r2=0.01) (Fig. 3). Previous studies that have observed an 

inverse latitudinal diversity gradient in other fungal clades have suggested negative relationships 
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between fungal diversity and plant richness34 or temperature35 as potential drivers. However, as 

mentioned above, we found that yeast species diversity was positively correlated with plant 

species richness (FDR=5.9E-43, r2=0.22) and uncorrelated with temperature (FDR=0.078, 

r2=1.9E-3).  

 

The absence of tropical diversity in certain fungal clades could also be due to historical 

biogeographical factors25. In ectomycorrhizal fungi, for example, there are no known obligately 

tropical species36, suggesting that lineages originally arose in temperate regions. However, as has 

been reported in other clades37,38, diversity and diversification appear to be only weakly 

correlated in yeasts, suggesting that historical hotspots of diversification are not necessarily 

current hotspots of diversity (Fig. S4). Additionally, variables tracking climate changes since the 

last glacial maximum were largely insignificant and had some of the smallest effect sizes 

measured. It is possible, that due to the short generation times and widespread dispersal 

capabilities of many yeast species39,40, historical processes that operate over thousands of years 

have had minimal impact on modern distributions. Such a scenario may also help to explain the 

absence of a latitudinal diversity gradient. If yeast species can rapidly colonize and saturate 

environmental niches that were previously unavailable due to climate shifts or glacial cycles, it 

may explain why species richness is not concentrated in the more stable tropics. 

 

Third, Rapoport’s rule41, or the positive relationship between species range size and latitude, was 

also found to be reversed in yeasts. As mentioned above, distance from the equator had a 

significant (p≈0), negative relationship with species range size.  Though the generality of 

Rapoport’s rule has been extensively questioned42,43, it has been identified as a major factor in 
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the distribution of soil fungi, particularly in Agaricomycetes20. Rapoport’s rule was originally 

postulated in order to explain the latitudinal diversity gradient, since the smaller ranges of 

species in the tropics would enable more species to coexist. If Rapoport’s rule and latitudinal 

diversity gradients are indeed connected, it would explain the observed trend of both of them 

being inverted in yeasts. 

 

In conclusion, we sought to uncover the global diversity and distribution of the 

Saccharomycotina yeasts. As single-celled organisms, the life history and lifestyle of yeasts are 

markedly different from many other eukaryotic clades. This divergence is reflected in their 

macroecology, which sets them apart even from other fungi20. We did not find evidence of many 

commonly observed ecological patterns. Predicted yeast diversity is concentrated in temperate 

climates, not the tropics. Similarly, species range size decreases with distance from the equator, 

an inverse of Rapaport’s rule. Additionally, neither temperature, nor area, scale with species 

richness. These surprising findings emphasize the need in macroecology to study a variety of 

underexplored clades, especially those with unique life history traits. 

 

The distribution models used by this study are reliant on environmental sampling. Wild yeasts 

are severely under sampled, which could influence the accuracy of our machine learning 

predictive models. Nevertheless, our inferences of yeast species richness are consistent with 

current knowledge. For example, biodiversity hotspots in Western European forests32. Perhaps 

more importantly, our models also make specific predictions that can be tested through 

additional sampling. Specifically, ecoregions around the Mediterranean and Black seas such as 

the north Turkish coast and montane forests along the Apennine and Rhodope mountain ranges 
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were in the 98th percentile for yeast species richness, despite having zero samples in our training 

data. The Appalachian Mountains in the U.S. might similarly be an underappreciated 

biodiversity hotspot for yeasts, with species richness estimates rivaling that of western Europe 

despite having less than 3% of their sampling. Guiding both geographic and taxonomic sampling 

of this important clade toward specific poorly sampled ecoregions will likely greatly increase the 

resolution and power of future studies. For understudied and under sampled clades like the 

yeasts, employing a computational predictive framework, such as the one developed in this 

study, can guide future sampling efforts. We hope that both geographic and taxonomic sampling 

of this important clade continue to improve, which will help increase the resolution and power of 

future studies.  

 

While the distribution patterns of yeast diversity are distinct from many other eukaryotes, the 

threats yeast face may be largely the same. We found that yeast diversity hotspots are 

characterized by temperate, montane, mixed forests. Notably, these ecosystems are some of the 

most impacted by human activities and climate change. Forests in central Europe, east Asia, and 

southwest Brazil, where yeast diversity is high, are dominated by secondary growth44, having 

previously been disturbed by human activities. Similarly, montane environments are particularly 

impacted by climate change as communities shift upslope in response to rising temperatures, 

altering species ranges in the process27,45. As temperate ecosystems are forced to retreat to higher 

latitude and altitudes in a warming world, yeast diversity hotspots will need to adapt with them 

or face extinction. The methodology used by this study is readily adjustable to an array of future 

climate scenarios, and it may prove useful in assessing how yeast diversity, including 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.555417doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555417
http://creativecommons.org/licenses/by-nc/4.0/


economically relevant and pathogenetic species, is affected by past, present, and future 

anthropogenic transformations.  

 

Methods 

Dataset 

To obtain a comprehensive record of Saccharomycotina biogeographic distribution, several data 

sources were queried. All available Saccharomycotina occurrence records without flagged 

geospatial issues were downloaded from the Global Biodiversity Information Facility on 

December 14, 202246 (doi.org/10.15468/dl.n4fkqs). These data were further filtered by removing 

any record with a reported coordinate uncertainty of 1km or greater. Saccharomycotina records 

were also downloaded from the GlobalFungi47 dataset (release 4), and two published papers2,48. 

In Spurley et al. (2022), records marked with the “anthropic” flag were removed, as this study is 

primarily interested in the diversity and distribution of naturally occurring yeasts. Similarly, the 

industrial hybrid species Saccharomyces bayanus and Saccharomyces pastorianus were 

excluded from analysis. Though now considered a naturally-occurring species distinct from S. 

bayanus, Saccharomyces uvarum records were also removed as a conservative measure. After 

records were combined from all four data sources, species names were reconciled with the most 

recent taxonomy11 (Table S4), and two additional filtering steps were applied. First, coordinate 

resolution needed to be at least two decimal places. Second, the R package CoordinateCleaner 

was employed to remove suspicious records, such as those with equal latitude and longitude 

coordinates, zero coordinates, or coordinates matching the centroid of counties/provinces or 

biodiversity institutions. The full filtered search resulted in 22,355 Saccharomycotina occurrence 

records, representing every biome on earth and 49.7% of terrestrial ecoregions. 
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Each occurrence record was associated with 96 environmental variables describing the climate, 

history, soil, vegetation, and anthropogenic inputs of the region. All variables were taken from 

publicly available sources and projected onto the WGS84 coordinate system at 30” (~1 km2) 

resolution. Further details for each variable are available at Table S5. To avoid overfitting or 

overrepresentation of specific sampling sites in the training data, records with identical 

environmental variables of the same species within the same hundredth degree of latitude or 

longitude were aggregated into one. Finally, records with any missing data were also removed, 

resulting in a training dataset of 12,816 presences.  

 

Species distribution modeling with machine learning 

To infer species occurrences in areas of limited sampling, machine learning random forest 

models were used. 233 models were constructed, one for every species with at least 5 occurrence 

records. 100,000 environmental datapoints were randomly sampled as pseudo-absences. 

Modeling was performed using the R package ‘randomforest’. A down-sampling approach was 

used for training, which has been shown to reduce overfitting and significantly improve results in 

species distribution modeling49. Each random forest model consisted of 100 decision trees. 

Otherwise, default parameters were used. A leave-one-out strategy was used for validation, and 

186 models with at least a 75% true positive rate and 75% true negative rate were retained for 

downstream analysis. On average, models for these 186 species had an area under the receiver 

operating characteristic curve of 0.92, a true positive rate of 87%, and a true negative rate of 90% 

(Fig. S5). Of the 96 environmental variables used in training, Köppen-Geiger climate 

classifications were the most predictive, followed by ecofloristic zones, biomes, and soil 
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classifications. Together these four categorical variables represented almost a quarter of all 

variable importance, with 24.7% of the total mean decrease in Gini index across all variables. 

We also note that variables that are important for the binary classification task of random forest 

models are not necessarily those that are the most predictive of overall richness. For example, 

mean annual temperature was the 9th most important continuous variable for distribution 

modeling but had an insignificant (FDR=0.078) effect on richness. Conversely, geomorphic class 

diversity was the 3rd least important continuous variable for distribution modeling but had 100% 

relative importance to richness regressions. 

  

Diversity and diversification estimation 

To reduce computational costs and to increase interpretability of results, terrestrial ecoregions 

were selected as the main unit of analysis for this study, which are defined by the World Wildlife 

Fund as ‘a large unit of land containing a geographically distinct assemblage of species, natural 

communities, and environmental conditions’50. To accomplish this analysis, environmental 

variables and species richness estimates were aggregated into ecoregions. For the 90 continuous 

environmental variables in our training dataset, we simply took the mean value of all grid cells in 

a given ecoregion (Table S6). Select categorical variables were also encoded into 6 binary 

variables, which were based on the majority class within each ecoregion (Table S7). Species 

were said to be found in a particular ecoregion if they were predicted to occur in at least 10% of 

that ecoregion’s grid cells according to the random forest model. Speciation rates were inferred 

from the DR statistic51,52 calculated from the inverse equal splits method53, using the time-

calibrated phylogeny published in Opulente & LaBella 20234. Ecoregion specific rates were 

calculated using a weighted mean of speciation rates for all species found in a given ecoregion. 
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Weights represented the inverse of the number of ecoregions in which a given species occurred, 

such that species endemic to a specific ecoregion contributed more to that ecoregion’s estimate 

than a cosmopolitan species52. 

 

Environmental analysis 

To determine environmental drivers of yeast diversity, regression models were constructed for 

each of the 96 quantitative variables, with yeast species richness as the dependent variable in 

each case. As species richness is always represented by a non-negative integer, negative-

binomial regressions were used, which are thought to be more appropriate for count data and, in 

practice, had consistently better Akaike information criterion scores than linear models. To 

increase interpretability of summary statistics, scaled linear regressions were also performed, 

taking r2 as a measure for goodness-of-fit and the slope (m) as a measure of effect size. 16 

variables whose negative binomial regressions had false discovery rates >0.05 were removed 

from downstream analysis. To reduce correlations between environmental variables, highly 

correlated variables were decomposed into single principal components. Effort was made to 

preserve the interpretation of principal components wherever possible. Each principal component 

explained at least 83% of the total variance (μ=93%); further details can be found at Table S8. 

After highly correlated variables were decomposed, the greatest r2 between variables was 0.71 

(μ=0.11) (Fig. S6). To estimate the contribution of the most predictive environmental variables 

and principal components, relative importance analysis was used. Negative binomial regression 

models were constructed from every combination of the 16 variables and principal components 

whose linear relationship with species richness had r2>0.15 and m>0.20; species richness was the 
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dependent variable. This strategy resulted in 65,535 total models. Akaike weights were then 

calculated and used to estimate relative importance for each predictor54.  

  

Species Range Size Analysis  

Several estimates were measured to test drivers of species range size. Species range size itself 

was estimated as the total fraction of grid cells predicted to be occupied by a given species. 

Latitude and species range overlaps were estimated for each species as the average value across 

every ecoregion in which a given species was predicted to occur (Table S9). Specialist 

classifications were taken from Opulente, LaBella et al. 20234, which inferred niche-breadth 

through experimental quantitative growth assays on 18 carbon sources. The positive relationship 

between niche-breadth and geographic range size has been identified as a major macroecological 

pattern in plants and animals17,19. However, this consensus has also attracted controversy for two 

main reasons. First, niche-breadth is a broadly defined concept often measured along multiple 

axes, such as diet, habitat, and tolerance, which are not necessarily correlated17. Second, as range 

size and niche-breadth are typically inferred from the same underlying data (occurrence records), 

sampling artifacts can produce spurious correlations29,55,56. The yeast dataset utilized by this 

study circumvents both these issues. The external absorption mode of feeding in yeasts57 means 

that diet and habitat are one and the same, providing a convenient and unique lens through which 

to measure niche-breadth. Additionally, as this study defines niche-breadth independently 

through experimental growth assays conducted in a laboratory4, there is no autocorrelation 

between niche-breadth and range size. Associations between species range size and 

diversity/latitude were tested with phylogenetic generalized least squares models implemented in 
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the R package nlme58 and niche breadth using phylogenetic ANOVAs implemented in the 

package geiger59. 

 

Data Availability 

All code required to run the species distribution models presented in this paper and replicate 

primary analyses as well as supplementary data files, including distribution maps and raster files 

for all 186 species have been deposited online and will be made publicly accessible upon 

publication. 
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