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ABSTRACT2

Aberrant DNA methylation (DNAm) is known to be associated with the aetiology of cancer,3
including colorectal cancer (CRC). In the past, the availability of open access data has been the4
main driver of innovative method development and research training. However, this is increasingly5
being eroded by the move to controlled access, particularly of medical data, including cancer6
DNAm data. To rejuvenate this valuable tradition, we leveraged DNAm data from 1,845 samples7
(535 CRC tumours, 522 normal colon tissues adjacent to tumours, 72 colorectal adenomas, and8
716 normal colon tissues from healthy individuals) from 14 open access studies deposited in9
NCBI GEO and ArrayExpress. We calculated each sample’s epigenetic age (EA) using eleven10
epigenetic clock models and derived the corresponding epigenetic age acceleration (EAA). For11
EA, we observed that most first- and second-generation epigenetic clocks reflect the chronological12
age in normal tissues adjacent to tumours and healthy individuals (e.g. Horvath (r = 0.77 and13
0.79), Zhang EN (r = 0.70 and 0.73)) unlike the epigenetic mitotic clocks (EpiTOC, HypoClock,14
MiAge) (r < 0.3). For EAA, we used PhenoAge, Wu, and the above mitotic clocks and found15
them to have distinct distributions in different tissue types, particularly between normal colon16
tissues adjacent to tumours and cancerous tumours, as well as between normal colon tissues17
adjacent to tumours and normal colon tissue from healthy individuals. Finally, we harnessed18
these associations to develop a classifier using elastic net regression (with lasso and ridge19

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.555284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.555284
http://creativecommons.org/licenses/by/4.0/


Widayati et al. Epigenetic clock analysis in CRC

regularisations) that predicts CRC diagnosis based on a patient’s sex and EAAs calculated20
from histologically normal controls (i.e. normal colon tissues adjacent to tumours and normal21
colon tissue from healthy individuals). The classifier demonstrated good diagnostic potential with22
ROC-AUC=0.886, which suggests that an EAA-based classifier trained on relevant data could23
become a tool to support diagnostic/prognostic decisions in CRC for clinical professionals. Our24
study also reemphasises the importance of open access clinical data for method development25
and training of young scientists. Obtaining the required approvals for controlled access data26
would not have been possible in the timeframe of this study.27

Keywords: epigenetic age, colorectal cancer, CRC, epigenetic clock, epigenetic age acceleration, colon tissue methylation28

1 INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer in the world, with around 1.93 million new29
cases worldwide in 2020 (Sung et al. (2021)). One of the main risk factors of CRC is ageing (Dekker et al.30
(2019)). Here, ageing is not solely referred to as an increase in chronological age (CA), but is also viewed31
as a gradual decline in biological function (biological ageing) (Gems (2015)). One of the hallmarks of32
ageing is epigenetic alteration, which includes changes in DNA methylation (DNAm) patterns, abnormal33
histone modifications, and irregular chromatin remodelling (López-Otı́n et al. (2013)). Epigenetic alteration34
is one of the hallmarks of cancer, including CRC (Dekker et al. (2019); Hanahan (2022)). CRC arises35
due to the accumulation of genetic and epigenetic alterations in the colon mucosa. Abnormal changes in36
DNAm patterns are a common form of epigenetic change in CRC. They contribute to the initiation of37
abnormal stem cell growth of the intestine, this is often followed by the appearance of adenomas and,38
later, progression to carcinoma (Dekker et al. (2019); Schmitt and Greten (2021)). Interestingly, DNAm39
alteration was not only observed in cancerous tissues but also in normal colon tissue, indicating the early40
occurrence of DNAm changes in CRC tumour development or the field effect of cancerisation (Luo et al.41
(2014); Joo et al. (2021); Sanz-Pamplona et al. (2014)).42

There are several methods developed for CRC diagnosis, with colonoscopy being considered the gold43
standard (Dekker et al. (2019)). Yet, other potential prognostic and diagnostic markers, including DNAm-44
based biomarkers, have been studied in order to provide robust results (Okugawa et al. (2015); Mueller and45
Győrffy (2022)). DNAm pattern abnormalities in cancer, including in CRC, occur due to hyper- and/or46
hypo-methylation of some genomic regions (Nishiyama and Nakanishi (2021)). Some CRC cases are also47
associated with a unique CpG island methylator phenotype (CIMP), which is characterised by the strong48
hypermethylation in certain promoter regions across the genome (Schmitt and Greten (2021)).49

In the past decade, epigenetic age predictors (”epigenetic clocks”) have been developed to estimate50
chronological and biological age based on DNAm levels in specific age-associated CpG sites (Table 1).51
The first-generation epigenetic clocks, namely Horvath and Hannum clocks, were mainly utilised to predict52
chronological age (Horvath (2013); Hannum et al. (2013)). Second-generation clocks were then developed53
to not only estimate the chronological age but also to capture physiological conditions by incorporating54
some clinical measures (e.g. blood biomarkers) or by including specific CpG sites in their models (Levine55
et al. (2018); Horvath et al. (2018); Wu et al. (2019); Zhang et al. (2019)). Later, some cancer-specific56
epigenetic clock models were constructed by combining molecular mitotic clocks and cancer DNAm57
pattern alteration hypotheses (Yang et al. (2016); Youn and Wang (2018); Teschendorff (2020)).58

Deviation of the predicted epigenetic age (EA) from the chronological age (CA), known as epigenetic age59
acceleration (EAA), has been studied with respect to its association with age-related phenotypic changes60
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and health outcomes, including cancer (Horvath (2013); Oblak et al. (2021)). Since DNAm alteration is61
associated with cancer incidence, epigenetic age scores have been studied to find suitable DNAm markers62
for cancer, including CRC. Previous studies have assessed the relationship between CRC and EAA (Durso63
et al. (2017); Zheng et al. (2019); Devall et al. (2021); Nwanaji-Enwerem et al. (2021); Matas et al. (2022)).64
However, our understanding of whether epigenetic ageing measures (EA and/or EAA) differ between65
histologically normal colon tissues in individuals with and without CRC is limited to two publications66
(Joo et al. (2021); Wang et al. (2020)). These studies identified a significant difference in epigenetic age67
acceleration between normal colon tissue from patients with and without CRC. However, although both68
studies assessed the same clocks (i.e., Horvath, Hannum, PhenoAge, EpiTOC), they obtained different69
results. Joo et al. (2021) found a significant difference in EpiTOC age acceleration while Wang et al. (2020)70
observed it in EAA from the PhenoAge clock. The differences in datasets, sample groupings, and number71
of samples in each study may be a plausible explanation for this. Hence, to identify the most suitable clock72
for reflecting DNAm changes in CRC, further study regarding the associations between epigenetic clock73
measures and CRC, particularly in normal colon tissue, is needed.74

This study was designed to be suitable for a Masters’s student project (i.e., it had to be completed75
within six months). Although the vast majority of DNAm data, including for CRC, are deposited in public76
databases such as EGA and dbGaP, they are classified as controlled access data which requires a data access77
agreement to be completed and to be approved by a data access committee before the data can be shared.78
This process can take months or even years (Powell (2021)) and is further complicated by diverse and, in79
some cases, even inappropriate data access agreements (Saulnier et al. (2019)). For these reasons, only data80
that are available under open access were considered for inclusion in this study. Despite being rare, open81
access data are of equal quality and have a long and successful track record as drivers of innovation and82
training (Greenbaum et al. (2011)). The resulting limitations and advantages of using exclusively open83
access data are discussed further in Section 4.3.84

We obtained 14 open access datasets (summarised in Table S1) with the aim of evaluating the associations85
between CRC diagnosis and epigenetic ageing measures (EAs and EAAs) derived from eleven epigenetic86
clocks. In particular, we aimed to: (1) evaluate the associations between chronological age and estimated87
EAs for each tissue type; (2) identify the EAAs that can capture the difference between CRC tumours,88
normal colon tissues adjacent to tumours, colorectal adenomas, and normal colon tissues from healthy89
individuals; (3) determine the EAAs that can distinguish between histologically normal colon tissues from90
individuals with different CRC diagnoses; and (4) develop an EAA-based classifier that demonstrates91
good potential for use in distinguishing between normal colon tissues from healthy individuals and normal92
colon tissues adjacent to tumours, thus aiding CRC diagnosis. Graphical overview of the study design is93
presented on Figure 1, the methodology is summarised in Figure S1.94

2 METHODS

2.1 Association analysis95

2.1.1 Data acquisition and pre-processing96

The data for this study were downloaded from two public repositories: NCBI GEO (National Center for97
Biotechnology Information Gene Expression Omnibus) and EMBL-EBI (European Molecular Biology98
Laboratory European Bioinformatics Institute) ArrayExpress (Barrett et al. (2012); Sarkans et al. (2021)).99
The list of datasets used in this study is given in Table S1. In particular, we searched for human colon100
tissue DNA methylation (DNAm) profiles generated using Illumina methylation platforms (Infinium101
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HumanMethylation450 and MethylationEPIC arrays), with available chronological age, colorectal cancer102
(CRC) patient status, and specimen pathology (tumour, adenoma or normal tissue) (Bibikova et al. (2011);103
Pidsley et al. (2016)). Dataset GSE132804, which includes DNAm profiles produced using both 450K and104
EPIC platforms, was treated as two separate datasets with respect to the technology used.105

Where possible, the data were processed from raw .idat files for each dataset separately following106
previously described methods (Chervova et al. (2019)). In brief, samples with more than 1% of low-quality107
probes (detection p > 0.01, bead count < 3), or in disagreement between reported and inferred sex, were108
excluded, together with samples identified as outliers by built-in quality control checks of minfi and109
ENmix R packages (Aryee et al. (2014); Xu et al. (2021); R Core Team (2009)). Missing and low-quality110
CpG probes (across more than 1% of samples) were filtered out. Data were normalised using the ssNoob111
method implemented in the minfi package (Fortin et al. (2017)). For some datasets without raw data112
and/or necessary technical information, we used published pre-processed data and performed quality113
control checks by assessing their methylation values data (distribution plots, reported and inferred sex114
matches).115

2.1.2 Sample notations and variables description116

All samples in our data contain information regarding chronological age, sex, and tissue types. We117
categorised samples into four different tissue types:118

• healthy: samples from normal colon tissues of individuals without CRC (i.e. no concurrent CRC was119
observed at the time of sample collection); normal colon tissues from individuals with concurrent120
colon adenoma were included in this category,121

• normal: samples from normal colon tissues adjacent to the tumours of CRC patients,122

• tumour: samples from cancerous tumours obtained from CRC patients,123

• adenoma: samples from adenoma tissues of patients with observed colorectal adenoma (mostly sessile124
serrated adenomas).125

For association analysis, we used two different datasets: (a) dataset with healthy, normal, tumour, and126
adenoma samples (Dataset 1) and (b) dataset with only healthy and normal samples (Dataset 2). A summary127
of the available cohort characteristics is given in Table 2). Details about the sample collection site (i.e. left128
or right colon) are available for only half of the dataset. Some samples also have information regarding the129
detailed location. We classified samples from descending colon, rectosigmoid junction, rectum, sigmoid,130
and splenic flexure as samples from the left colon, while ascending colon, caecum, hepatic flexure, and131
transverse colon are from the right colon (Lin et al. (2016). Other information such as race/ethnicity, cancer132
stage, mutation, and CpG island methylator phenotype (CIMP) status is limited to a small number of133
samples, hence we excluded these variables from the analysis.134

2.1.3 Epigenetic age calculation135

We classified the epigenetic clocks into three categories: first-generation, second-generation, and136
epigenetic mitotic clocks. First- and second-generation epigenetic age (EA) were calculated for each137
sample using R methylClock library (Pelegı́-Sisó et al. (2021)), while epigenetic mitotic clocks were138
run using the scripts provided by their authors (Yang et al. (2016); Youn and Wang (2018); Teschendorff139
(2020)). Estimated age and mitotic age scores were used to calculate epigenetic age acceleration (EAA)140
which is described in the next section. Further details about the epigenetic clocks and EAAs are provided141
in Table 1.142
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2.1.4 EAA calculation and statistical analysis143

We performed the analysis of outliers separately for Dataset 1 and Dataset 2 by using the differences144
between epigenetic and chronological age values, which we call epigenetic age acceleration differences145
(EAAd). This metric was only calculated for the first- and second-generation clocks, and not for the mitotic146
clocks. A sample was labelled an outlier if its EAAd value was more than three standard deviations away147
from the mean EAAd across the whole dataset (i.e., outside the interval mean ± 3 · SD). We removed all148
samples which were outliers in at least two clocks. In total, 142 and 38 samples were removed as outliers149
from Dataset 1 and Dataset 2, respectively.150

All analyses in this study were conducted in R v. 4.2.2 (R Core Team (2009)). To evaluate the associations151
between EAA and CRC, we calculated EAAs from each epigenetic clock using the following steps (EAA152
for Dataset 1 and Dataset 2 were calculated separately using the same steps):153

• Step 1a: We regressed epigenetic age onto the chronological age and sex of healthy samples using the154
linear model (1).155

EA ∼ CA + sex. (1)

Healthy samples were chosen to ensure the uniform EAA calculation for all epigenetic age scores,156
including those for mitotic clocks.157

• Step 2a: Using the linear regression coefficients obtained in Step 1a in model (1) , we calculated EAAs158
as the model residuals.159

• Step 3a: Based on the mixed-effect model (2), we adjusted EAAs obtained in Step 2a for the dataset160
and patient IDs using formula (2). This adjustment was made to ensure data independence because161
in some datasets there is more than one sample per patient, and without this adjustment, they would162
violate the independence assumption of most statistical tests. Adjustment for dataset ID is to alleviate163
any batch effect.164

residuals(EAA ∼ 1|dataset ID + 1|patient ID). (2)

It is worth noting that traditionally EAAs for the first- and second-generation epigenetic clocks are165
calculated either as differences between EA and CA or as the residuals from linear regression of EA onto166
chronological age using the whole dataset (Horvath (2013); McEwen et al. (2020)). This works well when167
the output of the epigenetic clock is predicted age, which correlates well with chronological age. Epigenetic168
mitotic clocks predict the number of cell divisions (as a proxy to the quality of maintenance of ageing169
cells). The residuals from fitting mitotic predicted ”age” to CA are much less interpretable, as they cannot170
be easily compared to CA. To improve interpretability, we changed the way we calculate EAAs for all171
clocks in this study (see Steps 1a-3a in Section 2.1.4). Now, we fit linear regression only on the control172
or baseline class (for this study, this was the samples classed as ”healthy”) and then expect that if a clock173
captures the difference between classes, residuals for this class will be different from the control group.174

Associations between estimated epigenetic age and chronological age were analysed using the Pearson175
correlation test, while the relationships between EAAs and sample characteristics were assessed using the176
Spearman correlation test, which is suitable for both continuous and ordinal variables. Two-sample t-tests177
were performed to analyse the difference in EAAs between different tissue types. All graphs presented178
in this study were produced using ggplot and its extensions (Wickham (2011)), pheatmap (Kolde179
(2019)), and base R functions (R Core Team (2009)).180
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2.2 Classifier181

2.2.1 Data selection182

Ten different datasets spanning 990 samples were used to build the classifier. 328 were normal and 662183
were healthy colon tissue samples. The classifier was trained on sex and on the epigenetic age acceleration184
scores from 11 different clocks.185

The data was split into training and testing datasets. The training dataset consisted of data from six studies186
(NCBI GEO datasets GSE101764, GSE132804 450k, GSE132804 EPIC, GSE142257, GSE149282, and187
GSE166212), and contained 341/215 healthy/normal samples. The testing dataset included data from188
four studies (ArrayExpress deposited E-MTAB-3027 and E-MTAB-7036, as well as NCBI GEO datasets189
GSE151732 and GSE199057), and contained 321/113 healthy/normal samples. Samples originating from190
the same dataset were not split between training and testing sets in order to avoid potential data leakage191
through batch effect. The distribution of healthy and normal samples across the different datasets is192
provided in Table S2.193

Only normal and healthy tissue samples were included when making the classifier (tumour and adenoma194
samples were excluded). Samples were excluded if there was no corresponding raw data (.idat) file or195
technical information (array identifiers and position of the sample in the array) available. Analysis of196
outliers using EAAd was done as described in Section 2.1.4 - samples were removed if they were outside197
of the mean ± 3 · SD interval in even one clock. In total, 39 samples were removed using these exclusion198
criteria.199

2.2.2 EAA calculation200

To calculate EAAs for the classifier we used the following four-step procedure for each epigenetic clock:201

• Step 1b: We regressed epigenetic age onto the chronological age for healthy samples in the training202
dataset using model (3).203

EA ∼ CA. (3)

• Step 2b: Using linear regression coefficients obtained in Step 1b, we calculated the EAA scores for all204
samples used in the classifier as the regression residuals.205

• Step 3b: We performed normalisation of the training dataset using standard normal distribution scaling.206

• Step 4b: Test data were scaled using the mean and standard deviation of the training data used in Step207
3b.208

These steps were taken to prevent data leaks between the training and testing datasets. The choice of209
using only healthy samples in Step 1b was made to ensure a uniform EAA calculation for all epigenetic age210
scores, including mitotic clocks. Scaling was performed to unify the various scores’ distribution, making211
the classifier coefficients more interpretable. We also calculated platform-adjusted residuals by adding212
binary Illumina platform ID data (Illumina 450k or EPIC arrays) as a predictor in the model (3) in the first213
step.214

2.2.3 Grid search, cross-validation, and classifier training215

Elastic net regression with ridge and lasso penalty terms was used when training our classifier. The216
optimal values for the elastic net parameters α and λ were identified through cross-validation. We manually217
selected folds for the cross-validation process. It was done by choosing two datasets for each fold testing218
data, and the remaining four for the fold training subset. By doing this, we ensured that the training and219
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testing subsets in each fold included both healthy and normal samples, which resulted in 12 folds being220
used in the cross-validation process.221

EAA calculation was performed separately at each fold, followed by training a classifier on the fold222
training set and calculating metrics on the fold testing set. This was done using a grid search for α ∈ [0, 1]223
with step 0.05, and λ ∈ [0, 1] with step 0.01. For each set of parameter values (fold, α and λ) we calculated224
two threshold-independent metrics (areas under the receiver operating characteristic (ROC-AUC) and225
precision-recall (PR-AUC) curves) to evaluate the model performance and identify optimal values for the226
parameters. For each pair of values {α, λ} we calculated the means of ROC-AUC across all folds and227
chose the optimal parameters based on the maximum mean ROC-AUC number.228

The classifier model was then fitted on the training dataset using elastic net regression on EAAs and229
sex. The R glmnet (Tay et al. (2023)) and PRROC (Grau et al. (2015)) libraries were used to prepare the230
classifier and evaluate its performance metrics. Results were visualised using pROC (Robin et al. (2011))231
and ggplot2 (Wickham (2011)) R libraries.232

3 RESULTS

3.1 Evaluation of epigenetic clocks in healthy and cancer patients233

Our dataset consists of n = 1845 samples containing healthy (n = 716), normal (n = 522), tumour234
(n = 535), and adenoma (n = 72) samples from colorectal tissues (Table 2). We evaluated the relationship235
between chronological age and epigenetic age through Pearson correlation coefficient for each tissue236
category. A summary of descriptive statistics for epigenetic age scores is given in Table S3. In general, the237
epigenetic ages from most clocks showed positive correlations with chronological age (CA) (Figure 2A,238
Figure S2). In terms of correlation strength, CA and EA from first- and second-generation clocks (except239
Wu’s clock) have higher correlations in healthy and normal tissues (r = 0.46−0.79) compared to epigenetic240
mitotic age scores (r < 0.3).241

We calculated EAAs following the procedure described in Section 2.1.4, the corresponding regression242
coefficients are given in Table S9 for Dataset 1 and Table S10 for Dataset 2. EAAs were calculated as243
the regression onto both CA and sex in order to reduce possible age- and sex-related bias. We analysed244
the relationship between EAAs and sample characteristics using the Spearman correlation test. We only245
included sample characteristics which were covered in more than half of the samples (i.e., age, sex, site).246
In all tissue samples, the correlation coefficients between EAAs and age are close to zero apart from a few247
EAAs from adenoma samples (Figure 2B, Figure S5), similar results were observed between EAAs and248
sex. On the other hand, the site (i.e., left or right colon) has a high correlation with Hannum AA and most249
second-generation EAAs in healthy samples, but the correlation strength is decreased in samples from250
CRC patients. In terms of EAAs, the first- and second-generation clock EAAs are clustered together in all251
tissues except for Horvath AA, PedBE AA, and Wu AA. The latter three EAAs behaved differently in CRC252
patients and patients with colorectal adenoma. Epigenetic mitotic clocks-based EAAs showed associations253
with each other, yet the coefficient became smaller in adenoma tissues (Figure S5). Analysis of unadjusted254
EAAs showed similar results (Figure S6). Density plots of EAA distribution in four different tissue types255
are given in Figure 3C and Figure S3. Summaries of EAA descriptive statistics for Dataset 1 and Dataset 2256
are given in Table S4, Table S5, and Table S6.257
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3.2 Differences between EAAs in healthy individuals and CRC patients258

In order to evaluate the association between epigenetic clocks and CRC, we investigated whether259
EAAs can capture the differences between tissues with different origins (i.e., healthy, normal, tumour,260
and adenoma) using the two-sample t-test. Among the different tissue types, tumour samples have261
the highest EAA variability. We also observed that Horvath AA, Pheno AA, Wu AA, EpiTOC AA,262
HypoClock AA, and MiAge AA captured differences between every tissue, except for healthy and adenoma263
(Figure S7). Interestingly, most EAAs showed significant differences between normal and adenoma samples264
(Figure S7). All EAAs were significantly different between normal and healthy samples, except for PedBE265
AA (Figure 3A, Figure 3B). Most EAAs also captured the differences between tumour and normal samples,266
as well as between tumour and healthy samples (Figure S7).267

We repeated this test using Dataset 2 to further investigate the ability of EAAs from different epigenetic268
clocks to distinguishing between healthy and normal colon tissues. The distribution of EAAs from this269
dataset is given in Figure S4. EAAs were obtained from the residuals of regressing EA onto the CA for270
healthy samples and adjusted for the dataset and patient ID in Dataset 2, which contains fewer samples271
compared to Dataset 1. Hence, the EAA estimates will be different from the scores in the previous dataset.272
In general, normal samples had significantly lower EAAs compared to healthy samples. These differences273
were observed in all EAAs except for Horvath AA and SkinBlood AA (Figure 4). However, the p-value274
of SkinBlood AA was around the borderline (p = 0.056, 95% CI = -0.014, 1.180), hence, we may still275
consider SkinBlood AA for distinguishing between normal colon tissues from patients with and without276
CRC. This result slightly differs from comparing healthy and normal samples in the previous dataset, where277
PedBE AA was the only EAA that did not capture the difference between these tissues. Thus, all EAAs in278
our study, except for PedBE AA and Horvath AA, showed potential in discriminating between healthy and279
normal colon tissues in our datasets.280

3.3 EAA-based classifier demonstrates good diagnostic potential281

We calculated EAAs following the steps described in Section 2.2.2, the corresponding regression282
coefficients and scaling parameters are given in Table S11. We trained a classifier model based on the sex283
data as well as on the EAAs calculated from normal colon tissue samples from six datasets, using elastic284
net regression with parameters α = 0.05 and λ = 0.16 estimated through the 12-folds cross-validation285
process (see Table S12 for the cross-validation folds list). Optimal parameter values were chosen based286
on the highest mean of the ROC-AUC metric across twelve cross-validation folds; heatmaps of the mean287
and standard deviations of the ROC-AUC are given in Figure S12. For these values of α and λ, the288
model selected binary sex data and ten EAAs, and excluded only Horvath’s EAA. The resulting classifier289
coefficients and performance were assessed on the testing subset (Table S13) and demonstrated ROC-AUC290
= 0.886, 95% CI [0.850, 0.922]. The ROC and PR curves for the classifier performance on the testing291
dataset and the histogram of the classifier’s scores are given in Figure 5A-C and Figure S10, respectively.292

We also tried other values of the elastic net regression parameters α and λ, which have also demonstrated293
high values of mean ROC-AUC in the cross-validation step. In particular, for α = λ = 0.25 and α = 0.1,294
λ = 0.35, the classifier model used sex and six EAAs as predictors and demonstrated ROC-AUC of295
0.882 (95% CI [0.845, 0.918]) and 0.835 (95% CI [0.791, 0.879]) on the testing data, respectively. The296
corresponding classifier coefficients for these values of regularisation parameters are presented in Table S13.297

By using the EAAs adjusted for the Illumina platform ID (450k or EPIC), we trained a platform-dependent298
classifier. In this case, the cross-validation step was based on six folds (Table S12), and the optimal elastic299
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net parameters values were identified as α = 0.05 and λ = 0.68. This classifier demonstrated a higher300
ROC-AUC=0.921 (95% CI [0.892, 0.949]) than the platform-independent version, and was based on sex301
and ten EAAs. The corresponding plots and coefficients can be found in Figure S11 and Table S13.302

4 DISCUSSION

4.1 Associations between epigenetic age and CRC303

Abnormal changes in biological age, including epigenetic age, might reflect the underlying process of304
cancer development, including in CRC. In our study, we focused on evaluating the relationship between305
epigenetic clock measures (EA and EAA) and colon tissues from participants with and without CRC. We306
observed that most first- and second-generation epigenetic clocks reflect the chronological age very well in307
normal and healthy colon tissues, especially Horvath age. On the other hand, epigenetic mitotic clocks308
showed weaker correlations with CA. Our results align with findings from Wang et al. (2020) and Joo et al.309
(2021), where Horvath and EpiTOC were reported to have the strongest and weakest associations with310
CA, respectively. This is not surprising, since Horvath’s clock model was originally trained to predict CA311
across various tissues (Horvath (2013)) while mitotic clock models were developed to account for stem312
cell division rates, which may affect their ability to predict CA (Yang et al. (2016)). For example, MiAge313
gives an estimate of cell cycle numbers (which are measured in thousands) and EpiTOC’s scores reflect the314
average DNAm increase due to presumed cell replication error (ranging between 0 and 1).315

It is worth mentioning that associations between EA and CA vary for some of the considered clocks in316
histologically normal, adenoma, and cancerous colon tissues. Similar results were also described in Joo317
et al. (2021) for Horvath, Hannum, PhenoAge, and EpiTOC. As reviewed by Weisenberger et al. (2018),318
abnormal DNA methylation patterns have been observed in cancer cells, including in CRC cases. This319
aberration mainly results in the silencing of genes that contribute to DNA repair and tumour suppression,320
such as MLH1, CDKN2A, and SFRP2, hence promoting cancer growth and survival (Weisenberger et al.321
(2018); Schmitt and Greten (2021)). This might be a plausible explanation for the increased variance in322
the epigenetic age of CRC tumours. We also observed a higher variance in adenoma samples compared to323
normal and healthy tissues. A previous study reported that adenoma may have a similar methylation pattern324
with either normal colon tissue or chromosomally unstable cancer tissue, depending on the methylator325
epigenotype status (low or high) (Luo et al. (2014)). The variance in our data might be present due to326
abnormal DNAm patterns or other epigenetic instability. However, it might also be caused by the low327
number of adenoma samples available in this study compared to other tissues.328

In general, EAAs in this study are independent of age and sex both before and after adjusting for sex,329
while the sample collection site correlated with some of the EAAs in healthy samples. This might be330
explained by the balanced ratio between male and female subjects in our dataset. Besides, evidence for331
sexual dimorphism in CRC is still lacking (White et al. (2018); Abancens et al. (2020)), although worldwide332
statistics showed slightly higher CRC incidence in males (Sung et al. (2021)). In contrast, immunological333
landscape variations and differentially methylated loci between the left and right colon have been observed334
in previous studies, which might be due to differences in the embryological lineage between the left and335
right colon (Kaz et al. (2014); Zhang et al. (2018); Illingworth et al. (2008)). Some CRC cases might336
also have higher CIMP on one side of the colon (Weisenberger et al. (2018)) and the methylated region337
might overlap with some of the clocks’ CpGs. However, despite the evidence, it is noteworthy that site338
information is available only for about half of the samples in our dataset and is distributed differently in339
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each tissue. Hence, an explanation for the association between site and epigenetic clocks cannot be given340
through our study.341

Our dataset consists of colon tissue with different tissue states to assess the ability of EAAs to capture342
the epigenetic deviation between each tissue. We observed that Pheno AA, Wu AA, and epigenetic mitotic343
clocks-based EAAs distinguished most of these tissues very well, compared to other EAAs. Moreover,344
all of the considered EAAs (except Horvath and PedBE AA) were significantly different between the345
healthy and normal colon tissue in both datasets. Our results are in line with Joo et al. (2021), in which346
EpiTOC performed well in distinguishing between these colon tissues, whereas non-mitotic clocks,347
especially Horvath AA, demonstrated inconsistent results. Field cancerisation that affects genomic stability,348
particularly the DNAm pattern, of normal colon tissues adjacent to CRC tumours might contribute to349
the EAA differences (Sanz-Pamplona et al. (2014)). Wang et al. (2020) also reported that normal colon350
tissue samples from CRC patients are differently methylated in 5-20 CpGs that overlap with CpGs from351
Hannum, Horvath, PhenoAge, and EpiTOC model, compared to colon tissue from participants without352
CRC. Hence, this might explain the sensitivity of these clocks in distinguishing normal colon tissues353
from individuals with different CRC diagnoses. Further investigation of the epigenome of normal colon354
tissue and its association with various epigenetic clock models is needed to find the most suitable CpGs as355
biomarkers in normal colon tissue.356

4.2 Classifier for capturing CRC risk from normal colon tissue357

The main idea behind developing a classifier was an attempt to combine the abilities of several clocks358
to distinguish between normal colon tissue from individuals with and without CRC. To the best of our359
knowledge, this is the first effort to make a cancer status predictor based on EAAs in histologically360
normal tissues. We performed a thorough literature search and did not manage to find any similar studies,361
although there were several fairly successful attempts to create CRC diagnostic methods based on peripheral362
blood, stool blood, and colon tissue, which are well-summarised in the recent review on CRC diagnostic,363
prognostic and predictive DNAm biomarkers (Mueller and Győrffy (2022)).364

Our classifier demonstrated a very encouraging performance (ROC-AUC above 0.88), which is a clear365
indication of its diagnostic potential. The only EAA excluded from the regression by the elastic net (for366
α = 0.05, λ = 0.16) was Horvath AA, which is in line with the results reported in Section 3.2 and367
is discussed above, where Horvath EAAs were found to be distributed similarly in healthy and normal368
samples. At the same time, we observed that the highest absolute classifier coefficients come from EAAs369
derived from the Wu and PhenoAge clocks, whilst the lowest values were observed for EpiTOC, Zhang370
BLUP, and Skin and Blood clocks, which mostly reflects our association analyses outcomes. The improved371
performance of the platform-dependent classifier (ROC-AUC above 0.92) suggests that the classifier could372
be upgraded further with the inclusion of relevant predictors, which was not possible in the present study373
due to data availability. In particular, we expect that adding relevant information such as the sample374
location and patient ethnicity/race to the regression model could make a substantial contribution to the375
classifier performance. The presented framework for classifier development, including EAA calculation,376
cross-validation, and parameter tuning steps, could be applied to an extended (or modified) list of epigenetic377
clocks and relevant phenotypic data. It might also be adapted for a classifier based on DNAm data for a378
subset of CpGs (e.g. CpGs used in epigenetic clocks). Potentially these lead to the creation of a tool that379
can support diagnostic/prognostic decisions for clinical professionals.380
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4.3 Study limitations381

The results presented in this paper should be considered while taking into account several shortcomings.382
The analysed dataset comprises data obtained from multiple independent studies which were conducted in383
different countries; following diverse sample extraction, processing, and storage protocols; and using four384
different DNAm profiling technologies (two versions of Illumina 450k and two versions of EPIC arrays).385
The diversity in sample handling makes our dataset very prone to technical bias. In order to reduce the386
influence of this bias, where possible, we pre-processed the data using consistent unified techniques and387
methods designed to treat samples without the context of the dataset (e.g. using single sample normalisation388
method ssNoob). We would like to point out that the heterogeneity of our data due to technical variability389
can be viewed as an advantage rather than as a shortcoming, since it reflects real-world data diversity.390

Furthermore, the datasets from most studies had very limited clinical data available, which reduced391
our ability to account for several important characteristics that are known to be reflected in DNAm data.392
For example, sample location (i.e., left/right colon) and race are known to be associated with different393
distributions of EAAs (Devall et al. (2021, 2022)), which, in turn, could influence epigenetic age scores394
for some clocks. Hence, we cannot fully guarantee that these clocks correlate with CRC status in our395
dataset. Moreover, due to the limited availability of clinical data, we could not study whether the classifier396
scores are associated with the disease stage and outcome. This also means that when developing our model397
we were unable to account for some potentially important characteristics (e.g. site, cancer stage). The398
better performance of the platform-dependent classifier compared to the platform-independent version399
demonstrated that variability in the DNAm profiling platforms (Illumina arrays) influences DNAm measures400
and that our results could be substantially improved with a larger, more homogeneous, and better-annotated401
dataset.402

5 CONCLUSION

This open access-enabled study investigated the associations between eleven epigenetic age measures and403
the colon tissue of individuals with and without CRC. Our results indicate that CRC status might affect404
the association between epigenetic age and chronological age, as well as between colon tissue EAAs and405
clinical characteristics. We have also demonstrated that most EAAs, except for Horvath and PedBE AA,406
are able to distinguish between colon tissue with different CRC status, particularly between normal and407
healthy colon tissues. We developed a CRC status classifier based on sex and EAAs calculated using408
histologically normal colon tissue DNAm data, which performed well. Although further studies on a larger,409
more homogeneous, and more clinically described datasets are needed to acquire a deeper understanding410
of this association, our results provide valuable insights into the relationship between epigenetic age and411
CRC. In addition, our framework could be used for developing a more robust classifier.412
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TABLES

Table 1. Summary of the epigenetic clocks.
Abbreviations: DNAm - DNA methylation, CpG - cytosine phosphate guanine

Category Clocks (reference) Description
First-generation
clocks

Horvath (Horvath (2013)) Developed on DNAm of various tissue samples. Used
penalised regression model to regress CA onto 353 CpG
sites (which are previously selected by elastic net (EN)
regression model).

Hannum (Hannum et al.
(2013))

Developed by regressing CA onto blood DNAm data
using EN regression model, which resulted in selected
71 CpG sites as the accurate CA predictor.

Second-generation
clocks

PhenoAge (Levine et al.
(2018))

Developed through two-step process: determination of
”phenotypic age” metric and regression of blood DNAm
data onto phenotypic age, resulting in selected 513 CpG
sites to estimate final phenotypic age.

Skin and Blood (Horvath et al.
(2018))

This clock uses 391 CpGs to estimate epigenetic age.
These CpGs were obtained from EN regression of CA
onto blood DNAm, saliva, fibroblasts, keratinocytes,
buccal cells, and endothelial cells.

Pediatric-Buccal-Epigenetic
(PedBE) (McEwen et al.
(2020))

This clock uses 94 CpG sites to predict epigenetic age.
Elastic net regression on pediatric buccal DNAm data
was used to select these CpG sites.

Wu (Wu et al. (2019)) Trained on paediatric blood DNAm from 11 datasets.
Elastic net approach used in this model resulted
in selected 111 CpG sites to estimate child-specific
biological age.

Zhang BLUP (Zhang et al.
(2019))

Trained on blood and saliva DNAm. Uses 319,607 CpG
probes (obtained using Best Linear Unbiased Prediction
(BLUP) approach) to estimate epigenetic age.

Zhang EN(Zhang et al. (2019)) Trained on blood and saliva DNAm. Uses 514 CpG sites
(selected using EN regression) to estimate epigenetic
age.

Epigenetic mitotic
clocks

EpiTOC (Yang et al. (2016)) This clock uses average DNAm level of 385 CpGs from
PCGT promoters that are generally unmethylated in 11
foetal tissue types to predict mitotic age.

HypoClock (Teschendorff
(2020))

This clock uses average DNAm level of 678 solo-
WCGW sites.

MIage (Youn and Wang (2018)) Trained on 4,020 cancer and adjacent normal tissue
DNAm from 8 TCGA cancer data, and tested on 5
other TCGA cancer data. Used the panel of selected
268 hypermethylated CpGs to estimate mitotic age.
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Table 2. Summary of cohort characteristics
Dataset 1 Dataset 2

All Healthy Normal Tumour Adenoma All Healthy Normal
No. of samples 1845 716 522 535 72 1220 715 505
Age
(median (range)
in years)

63
(25.1 - 93.6)

59
(31 - 88)

64
(25.1 - 93)

66
(27 - 93.6)

75
(50 - 90)

60
(25.1 - 93)

59
(31 - 88)

64
(25.1 - 93)

Gender
Female 936 453 206 229 48 650 453 197
Male 909 263 316 306 24 570 262 308
Site
Left 637 426 140 71 0 561 426 135
Right 307 218 46 43 0 263 217 46
NA 901 72 336 421 72 396 72 324
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FIGURES

Figure 1. Study design overview. Human colon DNAm datasets, obtained from open access repositories
was pre-processed, and corresponding epigenetic age measures were calculated using 11 DNAm clocks.
These measures were used in evaluating associations between epigenetic age and age acceleration with
tissue type (healthy, normal, adenoma, tumour), and developing a novel CRC status classifier model.
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Figure 2. (A) Relationship between chronological age and epigenetic age estimates in four different tissues
(healthy (n=716), normal (n=522), tumour (n=535), and adenoma (n=72)). Pearson’s correlation coefficients
are provided for each tissue separately. (B) Heatmap of Spearman correlation (correlation coefficients are
presented as absolute values) between sample characteristics and epigenetic age accelerations (EAAs) in
normal colon tissues from non-CRC (healthy) and CRC (normal) participants.
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Figure 3. (A) Boxplots of EAAs from first- and second-generation clocks in normal colon tissues from
Dataset 1. (B) Boxplots of EAAs from mitotic clocks in normal colon tissues from Dataset 1. (C) Density
plots of EAA distribution in four different tissues. p-values for (A) and (B) were obtained from Welch’s
two-sample t-test. ns=non significant, *p≤0.05, ** p<0.001, ***p<0.001, ****p<0.0001
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Figure 4. (A) Boxplots of EAAs from first- and second-generation clocks in normal colon tissues from
Dataset 2. (B) Boxplots of EAAs from epigenetic clocks in normal colon tissues from Dataset 2. (C)
Density plots of EAA distribution in two different tissues. The p-values were obtained from Welch’s
two-sample t-test. *p≤0.05, ** p<0.001, ***p<0.001, ****p<0.0001.
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Figure 5. Classifier performance. ROC curve (A), precision-recall (PR) curve (B) and histogram (C) of
the classifier scores for the testing data subset. The diagonal dashed line on panel (A) corresponds to the
y = x, and represents the ROC of a random classifier. The horizontal line on panel (B) corresponds to the
minimum precision value y = 0.26.
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