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Background: Traumatic brain injury (TBI) is more common than ever and is 

becoming a global public health issue. However, there are no sensitive diagnostic or 

prognostic biomarkers to identify TBI, which leads to long-term consequences. In this 

study, we aim to identify genes that contribute to brain injury and to identify potential 

mechanisms for its progression in the early stages.

Method: From the Gene Expression Omnibus (GEO) database, we downloaded 

GSE2871's gene expression profiles. Weighted gene coexpression network analyses 

(WGCNA) were conducted on differentially expressed genes (DEGs), and the DEGs 

were analyzed by Gene Set Enrichment Analysis(GSEA). An enrichment analysis of 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was 

performed for understanding the biological functions of genes. The potential 

biomarkers were identified using 3 kinds of machine learning algorithms. Nomogram 

was constructed using the “rms” package. And the receiver operating characteristic 

curve (ROC) was plotted to detect and validate our prediction model sensitivity and 

specifificity.

Results: Between samples with and without brain injury, 107 DEGs were 

identified, including 47 upregulated genes and 60 downregulated genes. On the basis 

of WGCNA and DEGs, 97 target genes were identified. In addition, biological 

function analysis indicated that target genes were primarily involved in the interaction 

of neuroactive ligands with receptors, taste transduction, cortisol synthesis and 

secretion, potassium ion transport. Based on machine learning algorithms,  

LOC103691092, Npw could be potentially useful biomarkers for TBI and showed 

good diagnostic values. Finally, a nomogram was constructed of the expression levels 

of these seven target genes to predict level of TBI, and the ROC showed that these genes 

can be used as hub genes after TBI.

Conclusion: LOC103691092, NPW, STK39, KCND3, APOC3, FOXE3, and 

CHRNB1 were identified as hub genes of TBI. These findings can provide a new 

direction for the diagnosis and treatment of TBI. 
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Introduction

Traumatic brain injury (TBI) is a major global health problem and a leading 

cause of death and disability1. It occurs as a result of direct impact or impact to the 

head from factors such as motor vehicles, crush and assault2. Even non-fatal injuries 

can lead to severe lifelong disability, which has significant implications for the 

injured and their families, as well as for medical costs3-5. It is well known that the 

earlier a non-fatal traumatic brain injury is detected and treated, the less long-term 

impact it has on the injured person6,7. The severity of TBI was graded using the 

Glasgow Coma Scale (GCS), which was divided into mild, moderate and severe 

according to the degree of injury8. Mild traumatic brain injury (mTBI) has been 

reported to account for 70% to 90% of all traumatic brain injury cases9. In the absence 

of a diagnosis of mTBI, its effects can lead to cognitive impairment, depression, and 

headache, among others10. At present, clinical imaging and electroencephalogram 

detection methods are not obvious for the detection of some mTBI, which makes it 

easy to be confused with concussion, and thus fail to treat patients in time and 

correctly11,12. Distinct patterns of gene expression following traumatic brain injury 

will occur in a time- and injury-dependent fashion. In particular, changes in 

expression of enzymes involved in energy metabolism and neuroplasticity will be 

detected.

  In this study, we performed gene expression level analysis on the downloaded 

dataset to obtain differentially expressed genes between TBI patients and normal 

subjects. Combined the downloaded data with WGCNA and machine learning 

algorithm, a total of 7 core genes were screened out, and these 7 core genes were used 

to construct the nomogram. Traumatic brain injury (TBI) induces a complex cascade 

of molecular and physiological effects. This study proposes to investigate the gene 

expression profile in cortex and hippocampus over early time points, following two 

different injury severities. These results will complement prior knowledge of both 

metabolic and neuroplastic changes after TBI, as well as serve as a starting point to 
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investigate additional gene families whose expression is altered after TBI. Based on 

this, we can relatively accurately distinguish between the clinically difficult 

concussion and mTBI, and can also target these genes for treatment.

Materials and methods

Data Collection

The gene expression profile (GSE2871) was obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/), which was sequenced using the GPL85 platform. 

At early post-injury timepoint, animals will be sacrificed, brain regions (parietal 

cortex and hippocampus, ipsilateral and contralateral to injury) will be dissected and 

RNA isolated(Supplementary figure 1). RNA will be used to synthesize cRNA probes 

for microarray hybridization. We created a Github page and uploaded the raw data 

and code(https://github.com/guanr80/guanr80.git).

Identifification of DEGs and GSEA

The “Limma” R package was used to screen DE Gs between TBI and normal 

samples, and genes with P < 0.05 and |log2FC| >1 were regarded as DEGs. 

GSEA-4.1.0 was used to input the expression data and phenotypic data, and the five 

most significantly up-regulated pathways and the most significantly down-regulated 

pathways were plotted, respectively.

Screening of the Critical Genes

To find out the core genes that were altered after TBI, the downloaded dataset 

was used to construct a weighted gene co-expression network using the “WGCNA” R 

package. To obtain an accurate network, we performed a cluster analysis of the 

samples. And then, we calculated the Pearson correlation coefficient between each 

pair of genes to evaluate the expression similarity of genes and acquire a correlation 

matrix. We further used a soft threshold function to transform the correlation matrix 

into a weighted neighborhood matrix, and a soft join algorithm was used to select the 

optimal soft threshold to ensure that gene correlations fit the scale-free distribution to 
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the greatest extent possible. Subsequently, the neighborhood matrix was transformed 

into a topological overlap matrix(TOM). After obtaining the co-expression modules, 

the key modules were screened out by correlation analysis, and the genes of the key 

modules were regarded as the key genes.Based on WGCNA screening, DEGs and key 

genes were intersected to obtain the target genes.

Functional Enrichment Analysis

R packages “clusterProfifiler” and “enrichplot” were used to perform GO assays 

and KEGG assays of DEGs with a statistically significant difference of at least P< 

0.05.

Identification of TBI hub genes based on machine learning algorithms

Least absolute shrinkage and selection operator (LASSO) is a regression analysis 

method that performs both gene selection and classification13. First, the R package 

glmnet (Version4.1.2) was used to fit the logistic LASSO regression model. Next, the 

SVM-RFE algorithm was used to screen potential genes using the “e1071” R package. 

In addition, the random forest (RF) algorithm was also conducted to screen potential 

genes using the “randomForest” R package. Finally, the intersection of the genes 

obtained by LASSO, SVM-RFE and RF machine learning algorithms was taken by 

Veen graph as the hub genes of TBI.

Construction of the nomogram of TBI

We used "rms" in the R package to construct the nomogram out of  the hub 

genes obtained by the machine learning algorithm. Next, ROC analysis was 

performed to evaluate whether hub genes could differentiate TBI samples from 

normal samples using the “pROC” R package.

Analysis of associated genes of core genes and their potential drugs

    We searched for associated genes from a public database (https://genemania.org). 

GeneMANIA uses extensive genomic and proteomic data to find functionally similar 
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genes. We founded the relationship between drug targets (https://drugcentral.org/) and 

the main targets identified by this work.

Evaluation of correlations and expression levels of key genes

Associations between hub genes were identified using Pearson correlation 

analysis, and P<0.05 was considered statistically significant. Wilcoxon’s rank-sum 

test was used to analyze the expression levels of hub genes.

Results

Identifification of DEGs

To explore biomarkers that are altered after TBI, this study retrospectively 

analyzed data on gene expression from TBI and normal samples in GSE2871 by 

setting the cut-off value as P < 0.05 and |log2FC| >1. 107 DEGs were identified, 

including 47 up regulated genes and 60 down regulated genes(Figure 1A, B). GSEA 

analysis was performed for differential genes to understand the main enrichment 

pathways of differential genes, and the top five up regulated pathways and the top five 

down regulated pathways were displayed(Figure 1C, D ).
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FIGURE 1

DEGs between TBI and normal samples. (A) Volcano plot of DEGs. (B) Heat map of DEGs. 

(C) GSEA of down-regulated DEGs. (D) GSEA of up-regulated DEGs.

Screening of key modules and genes based on WGCNA

Analysis was performed to identify differentially expressed genes between TBI 

patients and normal controls. First of all, the soft threshold was selected for 

subsequent co-expression network construction (Figure 2A, B). The essence was to 

make the constructed network more consistent with the characteristics of scale-free 

networks. WGCNA was used to construct a co-expression network module and 

visually display the gene correlation of the modules. Co-expression modules were 

shown in a hierarchical cluster plot (Figure 2C). Multiple modules were shown to be 
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associated with TBI through the moduletrait correlation studies. Each cell contains the 

corresponding correlation and P-value (Figure 2D). We show the association between 

module membership and gene importance using scatter plots (Figure 2E). The module 

“MEturquoise” had high association with TBI and was selected as TBI related module. 

By WGCNA screening, DEGs were crossed with key genes to obtain target genes 

(Figure 2F).
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FIGURE 2

Construction of WGCNA modules. (A, B) The soft threshold was selected for subsequent 

co-expression network construction. (C) The cluster dendrogram of co-expression genes in TBI. 

(D) The module-trait relationship heat map. (E) Associations between module membership and 

gene importance is depicted in a scatter plot. (F) A Venn diagram was made to obtain the 

intersection of the target genes screened by the two methods. 

Functional Enrichment Analysis of DEGs

To further investigate the biological processes and signaling pathways associated 

with TBI DEGs, we utilized GO and KEGG analyses. The results of GO assays 

associated the most enriched biological process (BP) terms with potassium ion 

transport. The most enriched terms for cellular components (CC) were mainly 

associated with basolateral plasma membrane. The most enriched molecular function 

(MF) terms were associated with voltage-gated potassium channel activity (Figure 3A, 

B). The outcomes of KEGG assays revealed that DEGs were mainly enriched in 

pathways involved in neuroactive ligand-receptor interaction and cytokine-cytokine 

receptor interaction(Figure 3C, D).
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FIGURE 3

GO and KEGG analyses of target genes. (A, B) GO analyses of target genes. (C, D) KEGG 

analysis of target genes.  

Screening of key genes for TBI based on machine learning algorithms

To further identify the hub genes of TBI, we selected three machine learning 

algorithms to screen the target genes. The LASSO regression approach was used to 

narrow down the nine overlapping features, and nine variables were were further used 

in subsequent analyses(Figures 4A). The SVM-RFE analysis showed that a total of 86 

potential genes were identified when the accuracy of SVM model was the 

best(Figures 4B). Meanwhile, the RF algorithm identified 32 genes at the lowest error 

rate(Figures 4C). Finally, seven hub genes changed after TBI were obtained according 

to the above three machine algorithms, which were STK39, KCND3, APOC3, 

FOXE3, CHRNB1, LOC103691092 and NPW(Figures 4D).
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FIGURE 4

Identification of hub genes for TBI based on machine learning algorithms. (A) The Log 

(Lambda) value of the genes in the LASSO model and the most proper log (Lambda) value in the 

LASSO model. (B) The optimum accuracy rate of the SVM model based on the characteristic 

genes. (C) The RF module based on the characteristic genes. (D) The Venn diagram showing the 

overlapping genes in LASSO, SVM, and RF modules.

Development of a nomogram for hub genes after TBI and diagnostic implications 

for the hub genes

Patients with "concussion" and "mild traumatic brain injury" are often encountered in clinical work, and the differentiation 

between the two is sometimes not so easy, and even some can not be distinguished on imaging14. At this time, some methods are 

needed to assist in diagnosis. A diagnostic nomogram was successfully constructed based on the eight genes for evaluating the 

incidence of TBI(Figure 5A). The nomogram based on the key genes derived by machine algorithms can solve the clinical difficult 
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to distinguish between "concussion" and "mild traumatic brain injury". To further investigate the role of hub genes in TBI, we first 

performed ROC analysis of these genes, which showed that these genes can be used as hub genes after TBI. These genes are 

LOC103691092, NPW, STK39, KCND3, APOC3, FOXE3 and CHRNB1(Figure 5B-H).

FIGURE 5

(A) A nomogram for hub genes after TBI. (B-H) ROC curves of hub genes of the dataset.

Evaluation of correlations and expression levels of key genes

To further investigate the role of core genes in TBI, we observed their expression levels in TBI patients and normal 
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samples. The results showed that among the seven hub genes, only KCND3 showed increased expression after TBI, while the 

others showed decreased expression(Figure 6A-G). After the differential expression levels of the 7 key 

genes were identified, correlation analysis was performed to further understand their 

relationship with each other. LOC103691092 was associated with the most genes, 

including STK39, KCND3 and CHRNB1(Figure 6H).

FIGURE 6

Evaluation of expression levels of key genes and their correlations. (A-G) The expression 

levels of hub genes in TBI patients and normal samples of the dataset. (H) Correlations of key 
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genes. 

ssGSEA major pathways of core genes and their differential analysis in normal 

individuals and TBI

After the core genes that changed after TBI were analyzed, we performed 

ssGSEA analysis on them to display their main enriched pathways(Figure 7A). We then 

compared normal samples with major enriched pathways and TBI population for in-depth analysis of differential pathways(Figure 

7B). Obviously, CHRNB1, LOC103691092 and STK39 are all closely related to “HALLMARK_PANCREAS_BETA_CELLS”. 

In addition to this, NPW has rich biological functions and is closely related to nine pathways. Among them, 

"HALLMARK_OXIDATIVE_PHOSPHORYLATION", "HALLMARK_MYC_TARGETS_V1" and 

"HALLMARK_PROTEIN_SECRETION" had higher differential scores.
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FIGURE 7

Major ssGSEA pathways of core genes and their differential analysis. (A) ssGSEA of the 

seven core genes. (B) Differential expression of core gene-enriched pathways.

Analysis of associated genes of core genes and their potential drugs

    After identifying seven TBI-related genes in this study, we identified the genes 

closely related to them from the GeneMANIA database(Figure 8A). The 

pathophysiological changes after TBI included ROS production, edema, inflammation, 

angiogenesis and metabolic related changes. We performed ssGSEA on the first seven 

genes, and the results showed that these genes were closely related to the 

pathophysiology of TBI(Figure 8B). The formation of ROS is closely related to 

FOXE3, CHENB1 and APOC3. Otherwise, APOC3 is closely related to inflammation 
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caused by TBI. We identified a number of potential drugs that may act on some of the 

TBI-associated genes identified in this study in the public database 

(https://drugcentral.org/).

FIGURE 8

Analysis of associated genes and potential drugs. (A) The associated genes of key genes 

identified in this study. (B) Differential expression of core gene-enriched pathways. 

Discussion 

  TBI is a global public health problem that not only affects the long-term 

cognitive, physical, and mental health of patients, but also has a significant impact on 

families and caregivers15. Due to the lack of early imaging features in some mTBI 

patients, although mTBI patients have a history of brain trauma, it is often difficult to 

distinguish them from concussion, which often leads to delayed treatment and affects 

early treatment16-19. Therefore, biomarkers are needed to differentiate concussion 

from mTBI at an early stage in order to improve outcomes. 

  In the present study, we first obtained DEGs of TBI, and WGCNA screened 

key genes for the key module. Ninety-seven target genes were screened out by 

intersecting DEGs with key genes. Interestingly, these 97 target genes were mostly 

related to the interaction of neuroactive ligands with receptors, taste transduction, 
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cortisol synthesis and secretion and potassium ion transport. Thus, we speculated that 

these genes might play key roles in TBI by regulating the interaction of neuroactive 

ligands with receptors, taste transduction, cortisol synthesis and secretion and 

potassium ion transport. Therefore, our study may contribute to understanding the 

molecular mechanisms underlying TBI.

  Also, we identified LOC103691092, NPW, STK39, KCND3, APOC3, 

FOXE3 and CHRNB1 as hub genes using LASSO logistic regression, SVM-RFE and 

RF algorithms. Members of the NPW signaling system have been primarily detected 

and mapped to the CNS, and this signaling system has a wide range of functions, 

including regulation of inflammatory pain and neuroendocrine functions20, 21. 

Therefore, NPW may play an important role in the inflammatory pain and 

neuroendocrine process of TBI. Studies have shown a significant association between 

STK39 polymorphism and hypertension susceptibility, which also suggests that 

STK39 may be closely related to hypertension after TBI22, 23. Clinically, TBI patients 

often have electrophysiological disorders, and KCND3(the potassium voltage-gated 

channel subfamily D member 3) is closely related to electrophysiological balance, so 

this gene may play an important role in the process of TBI24, 25. Studies have shown 

that APOC3(apolipoprotein C-3) is involved in the regulation of vascular 

endothelium26, 27. CHRNB1 has been reported to be associated with inotropic 

regulation28, 29. LOC103691092 is a newly discovered gene and has not been reported. 

Finally, we performed ssGSEA analysis on the 7 core genes, analyzed the highly 

enriched pathways, and compared the differences between normal samples and TBI 

samples. CHRNB1, LOC103691092 and STK39 are all closely related to 

“HALLMARK_PANCREAS_BETA_CELLS”. A number of studies have shown that 

this pathway is closely related to the regulation of human blood glucose levels, which 

also reasonably explains the mechanism of blood glucose elevation after brain 

injury30-32. The pathways with higher enrichment scores were 

"HALLMARK_OXIDATIVE_PHOSPHORYLATION", 

"HALLMARK_MYC_TARGETS_V1" and 

"HALLMARK_PROTEIN_SECRETION". These pathways contain potential 
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mechanisms for the treatment of TBI, which remain to be further studied.

  In conclusion, we identified seven genes that are closely related to TBI. 

Therefore, our study may help to understand the mechanism of TBI and identify TBI 

in head trauma patients. In addition, these key genes may also contribute to the 

targeted therapy of TBI, targeting specific genes to treat severe TBI that does not 

respond well to conventional methods. Of course, the role of hub genes remains to be 

further verified.
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