

1 Spatiotemporal development of the human T follicular helper cell
2 response to Influenza vaccination

3
4 Stefan A Schattgen^{1,6}, Jackson S. Turner^{2,6}, Mohamed A Ghonim^{1,6}, Jeremy Chase Crawford¹,
5 Aaron J. Schmitz², Hyunjin Kim¹, Julian Q. Zhou², Walid Awad¹, Wooseob Kim², Katherine M.
6 McIntire², Alem Haile³, Michael K. Klebert³, Teresa Suessen⁴, William D. Middleton⁴, Sharlene
7 A. Teefey⁴, Rachel M. Presti⁵, Ali H. Ellebedy^{2,*}, Paul G. Thomas^{1,*}

8
9 ¹Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA

10
11 ²Department of Pathology and Immunology, Washington University School of Medicine, St
12 Louis, MO, USA

13
14 ³Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA;

15
16 ⁴Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO,
17 USA;

18
19 ⁵Division of Infectious Diseases, Department of Internal Medicine, Washington University School
20 of Medicine, St. Louis, MO, USA

21
22 ⁶Equal contribution

23
24 *Corresponding author

25
26
27
28
29
30
31

32

33

34

35

36 Abstract

37

38 We profiled blood and draining lymph node (LN) samples from human volunteers after influenza
39 vaccination over two years to define evolution in the T follicular helper cell (TFH) response. We
40 show LN TFH cells expanded in a clonal-manner during the first two weeks after vaccination
41 and persisted within the LN for up to six months. LN and circulating TFH (cTFH) clonotypes
42 overlapped but had distinct kinetics. LN TFH cell phenotypes were heterogeneous and mutable,
43 first differentiating into pre-TFH during the month after vaccination before maturing into GC and
44 IL-10+ TFH cells. TFH expansion, upregulation of glucose metabolism, and redifferentiation into
45 GC TFH cells occurred with faster kinetics after re-vaccination in the second year. We identified
46 several influenza-specific TFH clonal lineages, including multiple responses targeting internal
47 influenza proteins, and show each TFH state is attainable within a lineage. This study
48 demonstrates that human TFH cells form a durable and dynamic multi-tissue network.

49

50 Introduction

51

52 Neutralizing humoral immune responses against Influenza virus (Flu) are a key correlate of
53 protection and the goal of vaccination. The generation of high-affinity antibodies takes place in
54 the germinal centers (GCs) located in secondary lymphoid organs (SLO) where they are
55 selected through affinity-maturation. CD4+ T follicular helper (TFH) cells provide support to B
56 cells in the GC reaction through the production of cytokines and costimulatory molecule
57 signaling engaged through T-B cell contact ¹. TFH cells expressing the chemokine receptor
58 CXCR5 and programmed death 1 (PD-1, gene name *PDCD1*) are readily detectable in SLOs
59 and tertiary lymphoid organs supporting GC formation. While the frequency of circulating TFH
60 (cTFH) in the peripheral blood is typically low in the absence of infection or vaccination ^{2,3}, cTFH
61 expansion and activation in response to vaccination correlated positively with the generation of
62 high-affinity, class-switched antibodies ⁴. Recent evidence shows a diverse polyfunctional T cell
63 response, including those cTFH cells, is correlated with protection against symptomatic infection
64 independent of serology ⁵. Considering their influence on the quality of humoral immune
65 response, a better understanding of the mechanisms regulating the TFH response to
66 vaccination is necessary for designing improved vaccine platforms.

67

68 TFH cells display substantial heterogeneity and mutability in their phenotypes across location
69 and time, and each of these states is not equal in their ability to boost and support B cell
70 responses. For example, the Th1-like CXCR3⁺ CXCR5^{low} PD-1^{low} cTFH subset has impaired
71 capacity for B cell help compared to CXCR3⁻ cTFH cells which more closely resemble GC TFH
72 cells ⁶⁻⁸. As cTFH cells are replenished by GC TFH cells egressing from SLOs, TFH cells in
73 these two compartments display significant overlap in their core gene expression (GEX)
74 programs with tissue-specific modifications between lymphoid organs and blood ^{9,10}. Antigen-
75 specific TFH cells generated in response to vaccination or infection are able to form long-lived
76 memory responses and be later recalled to assist B cells in subsequent challenges ^{3,11}. In
77 response to Flu vaccination in particular, the increased frequency of cTFH cells correlates with

78 the induction of protective antibody responses^{4,11,12}. Deep repertoire profiling of tonsillar and
79 blood TFH cells for matched donors showed a high frequency of shared clonotypes between the
80 two compartments and found Flu-specific clonotypes shared across tissues^{10,13}.

81
82 Studies profiling the GEX and TCR repertoires of bulk TFH cell populations have revealed that
83 they operate in a multi-tissue network linked by their TCR specificity. However, the trajectory of
84 TFH differentiation and maturation simultaneously within SLOs and peripheral blood of humans
85 in response to vaccination has not been tracked over time. Previously, we described the clonal
86 evolution of the GC B cell response following Flu vaccination by serially-sampling lymph nodes
87 via fine needle aspirate (FNA) and blood of human volunteers and performing single-cell GEX
88 and immune repertoire sequencing¹⁴. Here, we focused on characterizing the qualities and
89 kinetics of the LN and cTFH response accompanying robust vaccine-induced GC reactions in
90 multiple donors over the course of two years.

91
92 We found that alongside a transient increase in the frequency of cTFH cells in the blood during
93 the first two weeks post-vaccination, LN TFH cells had expanded clonally and began
94 differentiating into interfollicular pre-TFH cells before slowly maturing into GC TFH over the
95 course of one to three months. In addition to the classical GC TFH cells, we observed the
96 emergence of the recently described IL-10+ TFH cell subset^{15,16} by two months post-
97 vaccination, characterized by a unique transcriptional profile compared to pre-TFH and GC TFH
98 subsets. Closer examination of the transcriptional profiles of TFH cells over time showed the
99 existence of distinct phenotypic states along the trajectory of differentiation, and that each of
100 these states is obtainable and dynamic within individual clonal lineages. Importantly, the key
101 states and transitions occurring in the LN were not mirrored in the cTFH compartment, which
102 had dramatically different kinetics. Together, these data present a spatio-temporal view of the
103 dynamic changes in the repertoires and phenotypes of TFH cells engaged after successful
104 vaccination and help define a standard regarding the desired TFH response in optimizing
105 vaccine design.

106

107 Results

108 Activation of the TFH response following vaccination

109

110 Our cohort contains five healthy young adult volunteers enrolled in a multi-year seasonal Flu
111 vaccination study (details in Methods). These donors had not received a seasonal Flu vaccine
112 for at least three years prior to enrollment. Each donor was administered the Northern
113 Hemisphere seasonal quadrivalent Flu vaccine (2018-2019 for year 1) and blood and/or LN
114 samples were collected before vaccination, at 1 and 2 weeks and at approximately 1, 2, 3, 4,
115 and 6 months after vaccination. Donors 321-05 and 321-04 were vaccinated the following year
116 with the 2019-2020 seasonal quadrivalent vaccine and additionally sampled at 1 and 2 weeks
117 and at 1, 2, 3, and 4 months after their second vaccination. Donor 321-05 was the most
118 comprehensively sampled with corresponding blood and LN biopsies collected at nearly all time

119 points during year 1, and LN samples at five additional time points after revaccination during
120 year 2 (**Fig 1A**). Flow cytometric analysis of the year 1 time points for 321-05 showed that the
121 frequency of CD4⁺CXCR5⁺CD38⁺ cTFH cells in the blood was low at 0.16% of CD4+ T cells
122 prior to vaccination, expanded by about four-fold to their peak at 5 days afterward before
123 contracting to baseline levels at day 28 (**Fig 1B-D**, Gating strategies for PBMC and LN TFH can
124 be found in **S1A-B**). A similar transient increase in cTFH frequency early after vaccination
125 during year 1 was seen in donor 321-04 (**Fig S1C**). Day 5 cTFH cells had increased levels of
126 the activation markers ICOS and CD71 compared to the other time points (**Fig 1C**). The
127 frequency of CXCR5⁺PD-1^{hi} TFH cells in the lymph nodes began increasing at day 5 and
128 peaked at day 60 before contracting at the later time points (**Fig 1E**), and expressed high levels
129 of the master transcription factor for TFH development B-Cell Lymphoma 6 protein (BCL-6) (**Fig**
130 **1D, F**). The frequency of TFH cells positively correlated with those of GC B cells in the LN (**Fig**
131 **1D + S1D**).
132

133 To characterize changes in T cell phenotype elicited by repeated Flu vaccination, we performed
134 single-cell gene expression (scGEX) and TCR sequencing on all immune cell types present in
135 either peripheral blood or the same lymph node serially sampled from donors 321-04 and 321-
136 05 over the course of two years, and lymph node samples days 12 and 26 during the first year
137 for donors 321-08 and 321-07, respectively (32 unique tissue/time/donor combinations from 56
138 individual libraries) (**Table 1**). First, the gene count matrices for all the samples from both
139 donors were aggregated into a single matrix containing all cell types and TCR data mapped to
140 their corresponding cells. Next, we subset on cells belonging to clusters expressing T cell
141 markers and paired TCR clonotype information to create a dataset containing exclusively T cells
142 that included 154,547 cells covered by 127,471 unique TCR clonotypes (See Methods for more
143 details on data processing). Each cluster could be broadly categorized as being naive, effector,
144 or memory CD4+ and CD8+ T cells (*CCR7, SELL, KLRG1, ICOS, FOXP3, CD8B, and CD4*),
145 mucosal-associated invariant T cells (MAIT) and NK T cells (*KLRB1* and TCR sequence), or
146 TFH cells (*CXCR5 and PDCD1*) based on the expression of marker genes indicative for each
147 subset (**Fig 2A, 2C, 2G, and S2A**). Closer inspection of the factors associated with each T cell
148 cluster showed that donor, tissue source, and study year all were significant factors influencing
149 T cell GEX (**Fig 2B, 2D-F, S2B-E**). The degree of clonal expansion within each cluster was
150 consistent with their naive and effector/memory GEX profiles; naive clusters had no clones with
151 more than 2 cells whereas effector/memory, MAIT/NKT, and TFH clusters contained a number
152 of extensively expanded clones (**Fig S2F-G**). One cluster corresponding to TFH cells showed
153 higher and specific expression of characteristic markers including *CXCR5, PDCD1, ICOS, IL21*,
154 and *TOX2*, and contained cells from all four donors (**Fig 2G**).
155

156 TFH cells exist in distinct transcriptional states along the trajectory of maturation
157

158 We next focused on the TFH cells to characterize their phenotypic plasticity over time in
159 response to Flu vaccination. CD4 helper T cells can differentiate into multiple subsets within
160 clonal lineages stemming from a single founder. With this in mind, we subset all cells in the
161 entire dataset with TCR sequences matching those cells contained within the TFH cluster.

162 Interestingly, regulatory CD4+ T cells (Tregs) were located near to the TFH cells within the
163 embedding indicating they shared some transcriptional features perhaps due to localization
164 within SLOs near GC structures. Tregs have also been shown to regulate GC responses in
165 mouse models and prompted us to hypothesize they play a similar role in humans¹⁷⁻¹⁹. This
166 strategy to capture TFH and Treg cells yielded 15,290 cells with 11,268 unique TCR clonotypes
167 (**Table 2**). Reclustering of the subset discovered 20 GEX clusters where again the donor of the
168 cells accounted for much of the variation in the GEX (**Fig 3A-B**). These cells were
169 predominantly from the LN samples; however, 1,710 cells were from the peripheral blood
170 indicating our approach captured both the central and lymph node TFH populations and their
171 clonal relations (**Fig 3C**). In addition to donor variation, the GEX varied substantially across
172 sampling time points roughly partitioned into early (top), middle (bottom), and late (middle) time
173 points in the projection (**Fig 3D**). Since the single-cell GEX dataset also contained lymph node B
174 cells (see Methods for details on data processing), we looked for correlations between the
175 frequency of the TFH cells and different B cell subsets in the lymph node. While there was no
176 relationship between the frequencies of TFH cells and other B cell subsets, there was a
177 significant positive correlation with GC B cell frequency (**Figs 3E, S3A**).
178

179 Examination of differentially-expressed genes across the TFH clusters showed several clusters
180 (2, 4, 7, 14, 16, and 19) expressed high levels of genes characteristic of mature GC TFH cells (e.g. *CXCR5*, *PDCD1*, *IL21*), while other clusters (0, 1, 3, 6, 8, 11, 12, 15, 17, and 18) expressed genes consistent with the early and memory stages of TFH differentiation (e.g. *KLF2*, *IL7R*, *CCR7*) (**Fig S3B**). Cluster 13 expressed marker genes (e.g., *IL10* and *LAG3*) most consistent with the recently described subset of T follicular cells producing IL-10 (IL10 TFH)^{15,16}. Clusters 5, 9, and 10 expressed the Treg master transcription factor Forkhead Box P3 (*FOXP3*) (**Fig S3B**). We then classified each of the TFH clusters as either pre/memory TFH, GC TFH, IL10 TFH, or Treg cells based on these markers (**Fig 3F**), and defined the GEX profiles specific to each state. In addition to *FOXP3*, Tregs expressed other canonical markers of the lineage including Interleukin 2 receptor alpha subunit (*IL2RA*), Basic Leucine Zipper ATF-Like Transcription Factor (*BATF*), and PR/SET Domain 1 (*PRDM1*, aka *BLIMP1*) (**Fig 3G, left panel, 3H**). Compared to early and memory TFH cells, GC TFH cells showed increased levels of the co-inhibitory receptor T cell immunoreceptor with Ig and ITIM domains (*TIGIT*), the transcription factor TOX high mobility group box family member 2 (*TOX2*)²⁰, and the canonical TFH chemokine *CXCL13* (**Fig 3G, middle pane, 3H**). Consistent with their high motility along the T cell zone border, amongst the top expressed genes in the early and memory TFH cells were those associated with cell adhesion and cytoskeletal rearrangement including Vimentin (*VIM*), Epithelial membrane protein 3 (*EMP3*), and Thymosin beta-10 (*TMSB10*), as well as Kruppel Like Factor 2 (*KLF2*), a negative regulator of TFH differentiation²¹ (**Fig 3G-H**). In addition to IL-10, the IL10 TFH cells expressed several genes that distinguished the subset from the pre/memory subset (**Fig 3G right panel, Fig 3H**). Transcription Factor 7 (*TCF7*) promotes TFH differentiation by suppressing the expression of Th1-promoting *PRDM1*²². Consistent with this mechanism, the pre/memory and GC TFH expressed high levels of *TCF7* and low amounts of *PRDM1*; in contrast, IL10 TFH cells expressed low levels of *TCF7* and high levels of *PRDM1* (**Fig 3G-H**). *FOXP3* was not detected in IL10 TFH cells, however, they specifically expressed another member of the Forkhead Box family, *FOXB1*, which has no described role in regulating

206 T cell differentiation and function. IL10 TFH cells expressed a number of genes encoding for
207 proteins known to modify intracellular signaling pathways including the negative regulator of
208 mTORC1 signaling DNA Damage Inducible Transcript 4 (*DDIT4*), Regulator Of G Protein
209 Signaling 1 (*RGS1*) which regulates G-protein signaling T cell chemotaxis, and two regulators of
210 MAPK signaling, Mitogen-Activated Protein Kinase Kinase Kinase 8 (*MAP3K8*) and Dual
211 Specificity Phosphatase 4 (*DUSP4*) (**Fig 3H**). The transcriptional profiles within each TFH state
212 were consistent between the two donors, indicating these discrete states along the trajectory of
213 TFH differentiation following vaccination were common between them (**Fig S3C**).
214

215 We asked whether particular biological processes in the Gene Ontology (GO) database were
216 enriched within the TFH and Treg subsets and examined their variation across both time and T
217 cell subset. We conducted gene set variation analysis (GSVA) with the top enriched GO terms
218 using IL10 TFH marker genes relative to other TFH and Treg subsets. IL10 TFH were chosen
219 as the representative subset since they shared many DEGs with GC TFH as well as a number
220 of subset-specific DEGs; thus they are representative of mature TFH cells. The pathways found
221 to be enriched within the IL10 TFH could be broadly categorized into those related to cellular
222 metabolism, TCR signaling, and cytokine-mediated signaling (**Fig 4A**). A gradient across the
223 pre/memory, GC, and IL10 TFH subsets was observed with all pathways being mostly highly
224 represented in IL10 TFH, followed GC TFH, and lastly the pre/memory TFH cells. Many of the
225 pathways enriched in the GC and IL10 TFH cells were similarly upregulated in Tregs. Pathways
226 related to glycolysis were particularly upregulated in the IL10 and GC TFH subsets.
227

228 GSVA was further performed on lymph node TFH cells for donors 321-05 and 321-04
229 separately, and in the absence of the Treg cells, to resolve changes in these pathways in TFH
230 cells over the entire time course of the study. In donor 321-05 between days 0 and 28 of the first
231 year, pathways associated with T cell activation and cytokine signaling were the most
232 upregulated amongst all the pathways examined and peaked at day 60 (**Fig 4B**). Mitochondrial
233 respiration and glycolysis pathways were sharply upregulated at days 60 and 90 before
234 decreasing at day 180. In contrast to the slow evolution of the TFH response during year 1, the
235 pathways describing T cell activation, cytokine-stimulation, and cellular metabolism were
236 already higher at baseline on day 0 during year 2, and quickly increased by day 5 following
237 revaccination. These pathways also varied in their expression across the time course for donor
238 321-04, however, in contrast to donor 321-05, glucose metabolism was upregulated by day 5
239 during the first year but displayed slower kinetics in upregulation the second year. (**Fig S4A**).
240 One potential interpretation is the TFH response to vaccination for donor 321-04 during year 1
241 was mostly recalled from memory, or a mix of primary and recall responses.

242 Temporal dynamics of the TFH response
243

244 Considering the alterations in T cell activation and cellular metabolism pathways across TFH
245 subsets, we next looked at changes in the relative frequency of each subset over time. In donor
246 321-05, the pre/memory TFH cells were the largest fraction (~56%), followed by GC TFH cells
247 (~25%), Tregs (18%), and few IL10 TFH cells (>1%) at the time of first vaccination (**Fig 5A**).
248 The frequency of GC TFH cells increased by day 12 and continued to rise until peaking at day

249 90 before declining to a similar frequency as day 0 at day 180. The frequency of IL10 TFH cells
250 transiently increased at day 5 to ~10% before declining and rising to ~5% at day 90 at the peak
251 of the GC B cell response. Tregs were highest in their frequencies at the earliest and latest time
252 points and displayed an inverse pattern in their kinetics relative to the GC TFH cells.
253 Pre/memory TFH cells were again the predominant subset at the time of re-vaccination on year
254 2 day 0. However, in contrast to year 1, the frequency of GC TFH had expanded two-fold by day
255 7 to 40% and remained in high frequency out to day 120. A corresponding two-fold decrease in
256 Treg frequency was observed during this time like the inverse kinetics observed in year 1. IL10
257 TFH frequency increased during the first week after vaccination during year 2 and remained
258 stable out through day 120. GC and pre/memory TFH cells were similar in frequency in Donor
259 321-04 on day 0 of year 1. Vaccination stimulated a transient increase in the frequency of GC
260 IL10 TFH frequency by day 5 that had decreased to starting levels by day 12, whereas the
261 frequency of Tregs decreased during this time and little change in GC B cell frequency was
262 noted (**Fig S5A**). The frequency of GC and IL10 TFH, and GC B cells, were all at their
263 maximum at day 120. In contrast to year 1, the kinetics of the TFH response in donor 321-04
264 during year 2 showed a similar pattern as those observed in donor 321-05. Here, the frequency
265 of the pre/memory TFH were highest at day 0 of year 2 and quickly declined as frequencies of
266 GC and IL10 TFH, and GC B cells each increased and remained elevated through day 120.
267
268 We next performed pseudotime analysis to infer and quantify TFH maturation and compare their
269 inferred developmental trajectories to those measured in real time. Here, we subset the dataset
270 further into lymph node TFH cells only (excluding Tregs) and we set the “root” nodes
271 (pseudotime values are set to 0) in an area of the projection containing mostly pre/memory TFH
272 cells from early time points in year 1 (**Fig 5A-C**). Comparing the distributions of pseudotime
273 values across TFH states showed the inferred pseudotime trajectories matched the expected
274 our biological expectation; pre/memory subset were early in pseudotime while the more mature
275 GC and IL10 TFH subsets were in middle and late pseudotime (**Fig 5E**). We next compared the
276 expression of marker genes representative of the TFH subsets relative to pseudotime values to
277 better assess the fit between the inferred and observed developmental trajectories. CCR7
278 expression was highest in the early pseudotime pre/memory TFH cells whereas GC TFH
279 markers *PDCD1* *PVALB*, *TOX2*, and *CXCR5* increased in expression during mid to late
280 pseudotime (**Fig 5F**). In line with our observations above, the *FOXB1* and *IL10* were specifically
281 expressed by IL10 TFH cells in late pseudotime. Furthermore, *PRDM1* expression in late
282 pseudotime IL10 TFH increased while expression of *TCF7* simultaneously decreased.
283
284 Given the changes in the kinetics of metabolism and signaling pathways between years 1 and 2,
285 we compared the pseudotime distributions of matched time points across study years to better
286 quantify differences in TFH maturation in the same lymph node across vaccination years. The
287 mean pseudotime values in donor 321-05 steadily increased between early and final time points
288 in year 1 and beyond, as the distribution skewed even further towards late pseudotime at day 0
289 in year 2 (**Fig 5G**). The pseudotime values across the year 2 time points were nearly all higher
290 than those observed over the first year. Giving a contrasting view, the pseudotime values
291 remain elevated across all the year 1 time points for donor 321-04 (**Fig S5B**). However, the
292 values dropped to a more expected baseline by the second year where the response now better

293 matched that observed in donor 321-05 during year 1 where TFH maturation takes place over
294 the course of weeks before fully maturing by 2-3 months.

295

296 Together these observations show that TFH phenotypes are not only dynamically tuned in the
297 short-term, but also over the long term to promote a robust and rapid memory recall response to
298 antigen-restimulation.

299 Clonal dynamics of the TFH cell response

300

301 We next turned our attention towards characterizing the TCR repertoire, specificity, and clonal
302 dynamics of the TFH response. First, we asked if the frequency of TFH cells was related to their
303 clonality. In donor 321-05, TFH frequency (amongst all T cells in the lymph node) during the first
304 year increased between days 0 and 5, peaked at day 28 before slowly decreasing back to
305 baseline at day 90 (**Fig 6A**). During year 1 in Donor 321-04, TFH frequency continued to
306 increase across the entire time course and peaked at day 120. During the second year, TFH
307 frequency quickly increased between days 0 and the first time point after revaccination (day 7
308 for 321-05, day 14 for 321-04) for both donors, and remained elevated through the final time
309 points for the year.

310

311 We quantified the clonality of the TFH cells using the reciprocal of the D50 index (see methods).
312 TFH clonality followed a similar trend to that observed for TFH frequency. During year 1, the
313 peak in TFH frequency for donor 321-05 coincided with their maximum clonality at day 12 and a
314 second peak without an accompanying spike in frequency was detected at day 90 (**Fig 6B**). For
315 donor 321-04, the TFH clonality sharply increased at year 1 day 12, and remained elevated for
316 the remainder of year 1. TFH frequency and clonality for both donors had contracted by the
317 baseline time point at year 2 day 0, however, they quickly expanded in a clonal-manner by the
318 first time point after revaccination and contracted over the next 2 months before again
319 expanding and reaching a second peak at days 90 and 120 for donors 321-04 and 321-05,
320 respectively. Comparing TFH frequency to their clonality showed a positive correlation between
321 these two measures (**Fig 6C**), indicating TFH expansion occurs in a clonal-manner after
322 vaccination.

323

324 Next, we tracked the TFH clonotypes across time points, and for donor 321-05 across tissues
325 as well, to determine whether their repertoires remained stable over the long term. The number
326 of TFH clonotypes in the lymph node remained low at year 1 days 0 and 5 prior to expanding on
327 day 12 when the largest number of unique TFH clonotypes for donor 321-05 was observed (**Fig**
328 **6D**). Several of the TFH clones detected in the lymph node at year 1 day 12 were detected in
329 peripheral blood at the year 1 day 0 time point indicating that at least some of the clonotypes
330 engaging in the GC reaction were derived from memory cTFH cells. Additionally, many of the
331 TFH clonotypes from year 1 day 12 were detected at subsequent time points, particularly at
332 days 28, 60, 90, and 120, however, fewer were detectable by day 180. Very few TFH
333 clonotypes persisted from year 1 until year 2 day 0, but by one week after revaccination (year 2
334 day 7) many of the clonotypes tracked from year 1 were again detectable and persisted
335 throughout year 2 until the last time point at day 120. A similar trend was observed for donor

336 321-04 (**Fig 6E**). Here, several of the TFH clones detected at day 12 persisted throughout year
337 1, contracted by year 2 day 0, were detected again at year 2 day 14, and persisted through year
338 2 day 90. Shared clonotypes in the PBMC samples for donor 321-07 and 321-08 were detected
339 across time points, and in both cases a single clonotype was shared between the blood and LN
340 TFH compartments within the respective donor (**Fig 6F-G**).
341

342 To expand the clonal analysis and increase the depth of the repertoire data, we performed
343 additional single-cell paired and bulk TCR sequencing on sorted cTFH and LN TFH cells from
344 donors 321-04, 321-05, and 321-11 at multiple time points from year one (See **Fig 1A**). The
345 additional paired TCR sequences from donors 321-04 and 321-05 matched mostly to cells
346 within the TFH clusters in the 10X dataset (**Fig S6B**). Matching TCR sequences obtained from
347 bulk TCR profiling showed a similar pattern with most matches being to cells in the TFH clusters
348 (**Fig S6C**). We then used the Morisita-Horn overlap index to determine the extent of sharing, or
349 publicity, between the bulk repertoire sequences from sorted cTFH and LN TFH cells. Here,
350 sharing of TCR alpha and beta chains was highest amongst samples taken from the same
351 donor, and consistent with observations from the 10X dataset, TCR sequences from blood
352 cTFH on day 5 extensively overlapped with those from lymph node TFH cells at day 12 and
353 later time points during year one for subjects 321-04 and 321-05 (**Fig S6D**).

354 The trajectory of TFH maturation in Flu-specific clonal lineages
355

356 We next sought to determine if the expanded and persistent TFH lineages we identified were in
357 fact specific for Flu-derived antigens. Twelve paired TCRs were picked from donor 321-05
358 prioritized based on whether the lineage was detected in both PBMC and LN samples in the 10x
359 dataset, the total number of cells detected in the lineage, and the number of time points the
360 lineage was detected (**Fig 7A**, Extended Data Table 1). Four lineages (3, 9, 11, and 12) were
361 detected in both the PBMC and LN samples 10X datasets, and for each clone the cTFH cells
362 were detected either before or at the same time they were initially detected in the LN. Lineage 3
363 was detected in the cTFH at the time of initial vaccination on day 0 of year 1, indicating it is a
364 memory response to Flu. Seven additional lineages (1, 2, 4, 5, 6, 7, and 10) were detected in
365 bulk cTFH cells sequenced on day 5 (**Fig 7B**). Lineage 8 was not detected either in blood or LN
366 prior to day 12 (**Fig 7A-B**), suggesting it is a *de novo* response. The paired TCRs were
367 transduced into TCRnull Jurkat cells, and artificial antigen-presenting cell lines (aAPCs), here
368 K562 cells, stably expressing each individual MHC class II allele from donor 321-05 were
369 generated. First, we set out to determine the Flu protein containing the epitope recognized by
370 each TFH clone by co-culturing them with aAPCs either a) infected with Flu PR8 strain (the
371 vaccine backbone) and b) transfected with plasmids expressing individual segments of Flu PR8
372 strain and examining CD69 upregulation, IFN γ production, and CD3 downregulation as
373 measures of activation (**Fig S7A**). Clones TFH1, TFH3, and TFH12 were responsive to PR8-
374 infected aAPCs expressing DR3*03:01, DPA1*01:03 / DPB1*13:01, and DR5*01:01,
375 respectively (**Fig S7B**). Clone TFH1 responded to the matrix (M) gene segment with DR3*03:01
376 aAPCs, TFH3 also recognized M protein but in the context of DPA1*01:03 / DPB1*13:01, and
377 TFH12 responded to the nucleoprotein segment (NP) in DR5*01:01 aAPCs (**Fig S7C**). We
378 synthesized partially overlapping 17mer and 15mer peptides tiled across the span of the M and

379 NP gene segments, respectively, to precisely map the epitopes recognized by clones TFH1,
380 TFH3, and TFH12. Each clone responded to two partially overlapping peptides from the same
381 gene; TFH1 responded best to M2₄₆₋₆₂, TFH3 to M1₅₁₋₆₇, and TFH12 the NP₃₀₋₄₃ (**Fig 7C**). We
382 further tested if any of the remaining clones were specific for peptides derived from the HA
383 protein by co-culturing with the T cell lines with aAPCs pulsed with full-length recombinant
384 protein for each Flu strain included in the vaccine. Clone TFH11 showed a positive response to
385 the HA from the H1N1 strain presented by DR5*01:01 aAPCs (**Fig. S7D**). To more precisely
386 map the location of the epitope recognized by TFH11, we tested whether it responded to aAPCs
387 transfected with plasmids containing full-length and truncated versions of HA. Truncations were
388 made by removing blocks of 100 amino acids from the C terminus of HA. TFH11 responded to
389 constructs containing the first 300 amino acids of HA starting from the N-terminus but failed to
390 respond once HA₁₆₀₋₂₆₀ was deleted, indicating its epitope is located within this region of HA
391 (**Fig. 7D**).
392

393 We next looked for alterations in GEX over the time course for all the screened clonal lineages
394 to define their individual differentiation trajectories. Subsetting all cells belonging to each lineage
395 and performing PCA analysis on their most highly variable features, we found the PC1 scores
396 varied substantially within each lineage over the time course. The lowest positive PC1 scores
397 were observed on days 0, 5, and 12 of year 1, ascended to values around 0 at day 28, and
398 continued increasing until day 60 where they remained for the rest of year 1 and at all time
399 points in year 2 (**Fig 7E**). We hypothesized this PCA analysis was capturing TFH maturation
400 within these clonal lineages and more closely examined the expressions of genes contributing
401 most to the variance for PC1, and indeed, the negative loadings contained a number of
402 pre/memory TFH markers (e.g. *TMSB10*, *KLF2*) while the positive loadings were enriched with
403 GC TFH markers (e.g. *SH2D1A*, *TOX2*) (**Fig S7E**). Scoring the expressions of gene sets
404 specific to the pre/memory, GC, and IL10 TFH subsets as individual modules further confirmed
405 the maturation of clonal lineages with the passage of time with the pre/memory module scores
406 being highest early in year before decreasing as the GC and IL10 TFH scores increased with
407 time (**Fig 7F**, Extended Data Table 2). Consistent with our time point analysis above, the
408 pre/memory module scores remained low throughout the later part of year 1 and through year 2.
409 Closer examination of TFH subset-specific genes within cells belonging to the Flu-specific TFH1
410 and TFH3 clonotypes found the daughter cells were heterogeneous with regard to TFH subset
411 (**Fig 7G**). For example, the TFH1 and TFH3 lineages both contained a mix of mature IL10 and
412 GC TFH cells across all time points. In the case of the TFH3 lineage where cells from the day 0
413 year 1 time point were detected there is a clear transition away from a migratory phenotype (i.e.
414 high *VIM*, *TMSB10*, *EMP3* expression) at days 0 and 5 that is down regulated at later times
415 presumably following migration into the follicle.

416 Discussion

417
418 Our study describes the maturation of the TFH response to seasonal influenza vaccination
419 using longitudinal samples taken from lymph nodes and peripheral blood from human donors
420 over the course of two years.
421

422 TFH differentiation occurs on a continuum, however, we observed definable phenotypic states
423 along this trajectory that correspond with their tissue location at both the macro and micro levels
424 ¹. We show human TFH cells in the lymph node fall into three distinct subsets with definable
425 transcriptional markers and differing metabolic programs. The pre/memory subset corresponded
426 to TFH cells at the earliest and latest time points in the response when their frequency amongst
427 TFH cells was highest; early during the beginning stages of differentiation at the interfollicular
428 zone after initial antigen stimulation, and later after disengaging from the GC reaction and
429 forming memory. In GC TFH cells we observed downregulation in the expression molecules
430 related to cell motility and upregulation of *CXCL13* and *IL21*, two key mediators for B cell
431 migration, retention, and survival within the GC. Increased glucose metabolism through mTOR
432 signaling is required for differentiation into GC TFH cells in mouse models ²³. In agreement with
433 this, we observed upregulation of gene modules related to mitochondrial respiration and
434 glycolysis in human GC and IL-10+ TFH cells compared to pre/memory and subsets, indicating
435 this requirement is conserved between species. The existence of human FOXP3- IL-10+ TFH
436 cells with regulatory functions were recently reported ^{15,16}. In addition to sharing a core gene
437 expression profile with GC TFH cells, IL-10+ TFH cells had several specific alterations that
438 could hint at a potential mechanism for their differentiation, including suppression of *TCF7*
439 expression associated with increased levels of *PRDM1*, specific expression of *FOXB1* (though
440 no expression of *FOXP3*), and modulated display of co-stimulatory/inhibitory molecules (e.g.
441 increased *ICOS*, *LAG3*, and *GITR*).
442

443 While the existence of these three TFH subsets is known, the kinetics of TFH differentiation and
444 the interrelatedness of these subsets within clonal lineages was unknown. Here, we show that
445 within the LN TFH compartment that the pre/memory TFH subset had the highest frequency
446 prior to vaccination, before decreasing over the course of several months as the frequency of
447 GC TFH cells increased. Coinciding with the peak in GC TFH frequency was the appearance
448 and increase in IL-10+ TFH cells. The frequency of IL-10+ TFH cells was low (< 5%) during the
449 first month after vaccination, and only transiently increased and peaked in frequency between
450 two and three months. Consistent with memory recall, TFH activation and expansion operated
451 under different kinetics after vaccination in subsequent years. While it took three months for GC
452 TFH cells to reach their peak frequency after vaccination during year one, they were the most
453 abundant TFH subset by one week and reached their peak frequency within one month after re-
454 vaccination during year two. The increased kinetics of GC TFH expansion and differentiation
455 during the recall response in year two was accompanied by alterations in their transcriptional
456 programs compared to the first year, including upregulated mitochondrial respiration and
457 glycolytic pathways. Long-lived TFH cells in mice have been shown to undergo epigenetic
458 alterations enforcing their metabolic reprogramming and supporting their survival and plasticity
459 ²⁴. It is likely the transcriptional and metabolic alterations we observed in long-lived human TFH
460 cells are regulated through similar epigenetic mechanisms and should be subject to further
461 investigation.
462

463 Using TCR sequencing permitted us to track individual TFH clonotypes over the time course
464 and examine for variation in their GEX profiles. Previous work comparing TFH cells from tonsils
465 to cTFH in the blood for a single donor has shown these two compartments at least partially

466 overlap in their TCR repertoires ^{10,13}. Our analyses of bulk and single-cell TCR repertoires of LN
467 TFH and cTFH revealed a similar overlap between the two compartments. Extending on this, we
468 identified TFH clonotypes that were Flu-specific and persisted in the LN three to six months
469 after initial vaccination in year one and reappeared in the same LN upon re-vaccination in year
470 two where they again persisted for several months. By examining the GEX profiles of these Flu-
471 specific TFH clonal lineages we were able to show that each TFH transcriptional state is
472 attainable amongst daughter cells within a given lineage. The M1-specific TFH3 lineage was
473 particularly interesting in that it was first detected as cTFH cells before vaccination on day 0
474 before appearing in the LN by day 12, indicating it was a memory response and that cTFH cells
475 serve as a memory pool for seeding the GC reaction with antigen-specific TFH cells that assist
476 B cells during the recall response.

477

478 It is notable that these robust persistent responses were observed with a vaccine that is
479 unadjuvanted and generally considered to induce relatively weak immune responses. In
480 contrast to other recent reports examining GC responses to mRNA vaccines or novel adjuvants,
481 these responses induced expansion on a similar time scale (~6 months), indicating that this may
482 be a standard lifecycle of human TFH expansion, regardless of the inflammatory environment at
483 priming ^{14,25-27}. None of the subjects reported either an influenza infection or vaccination within
484 the last three years, though this is not definitive evidence of a lack of exposure. However, the
485 distinct dynamics between years 1 and 2 do suggest a resting environment at the year 1 time
486 point.

487

488 In summary, our study shows the human TFH cells operate in a multi-tissue network that is
489 plastic, dynamic, and durable across time. TFH cells provide critical help in the development of
490 the humoral immune response to pathogen infection, vaccination, and autoimmunity. These
491 works provide an extensive, high-resolution resource describing the evolution of the TFH
492 response. Limitations of the study include the limited number of subjects and sampling, and our
493 lack of knowledge of antigen exposure history. Future studies with expanded subjects and
494 diverse vaccination types using the same antigen targets (e.g. adjuvanted vs. unadjuvanted Flu
495 vaccination) will provide additional insights into the generation of productive TFH responses.

496

497 Limitations of the study

498 A limitation of our study is that we examined a small number of individuals because of the cost
499 and procedural intensity of the experimental plan. Future studies will build on these observed
500 trajectories to characterize human TFH responses in more individuals and with diverse
501 vaccination strategies.

502 Figure Legends

503

504 **Figure 1. Detection of human TFH response in multiple tissues following seasonal Flu**
505 **vaccination. A)** Schematic of PBMC draws and lymph node fine needle aspirates (LN) for the
506 three donors following seasonal influenza vaccination. **B)** Scatter plots of cTFH (CXCR5+

507 CD38+) cells in the blood for donor 321-05 during year 1. Gated on CD45+ CD14- CD19- CD3+
508 CD4+ cells. See figures S1A-B for gating strategy. **C)** Frequency of ICOS+ CD71+ cTFH cells
509 gated in B. **D)** Frequency of PBMC cTFH and LN TFH (CD4+ CXCR5+ PD-1+ BCL6+) and GC
510 B cells (CD19+ IgDlo CD20hi CD38int) by time point. Shown as log10 frequency of CD4+ T
511 cells or CD19+ B cells. **E)** Scatter plots of TFH (CXCR5+PD-1+) cells in LN samples. Gated on
512 CD14- CD19- CD4+ cells. **F)** Frequency of lymph node CD27+ BCL6+ TFH cells gated in E.
513

514 **Figure 2. Spatial-temporal GEX and TCR repertoire profiling of T cell response to Flu**
515 **vaccination.** Aggregate scGEX dataset containing $N = 154,547$ cells with 127,471 unique TCR
516 clonotypes generated from PBMC and LN samples at each time point for donors 321-05 and
517 321-04 (See Figure 1A). 2D umap projection annotated by: **A)** GEX cluster T cell phenotype, **B)**
518 donor origin, **C)** T cell type, **D)** tissue origin, **E)** study year, and **F)** clone size. **G)** Feature plots
519 displaying select T subset markers.
520

521 **Figure 3. Identification of TFH maturation states.** Subset of the aggregate T cell dataset in
522 figure 2 containing all cells clonally related to those in the TFH and Treg clusters. $N = 15,290$
523 cells with 11,268 unique TCR clonotypes. 2D umap projections of the TFH lineage dataset
524 annotated by: **A)** GEX cluster, **B)** donor, **C)** tissue, and **D)** time post-immunization. **E)** Scatter
525 plot of comparing the relative frequencies of germinal center B cells versus TFH cells in LN
526 samples. Pearson correlation. **F)** 2D umap projection of the TFH lineage dataset annotated by
527 TFH subset. **G)** Volcano plots of TFH subset-specific marker genes for pre/memory vs. IL10
528 TFH (left), Treg (middle), and GC TFH (right). **H)** Dot plot of select TFH and Treg subset-
529 specific markers.
530

531 **Figure 4. Alterations in TFH metabolism and signaling with time.** **A)** GSVA of top
532 upregulated GO terms identified by *Enrichr* analysis for each IL10 TFH subset relative to other
533 TFH/Treg subsets. **B)** GSVA of donor 321-05 LN TFH cells (Tregs excluded) across time
534 points..
535

536 **Figure 5. TFH composition and phenotype are dynamic.** **A)** Relative frequencies of
537 pre/memory, GC, and IL10 TFH subsets in LN samples from donor 321-05 over time. Chi-
538 squared with p-value determined by Monte Carlo simulation. 2D umap projection of LN TFH
539 cells (Tregs excluded) from all donors annotated by: **B)** pseudotime with selected root nodes
540 where scale was pseudotime scale was set to zero indicated by black circles, **C)** TFH subset,
541 and **D)** time point. **E)** Scatter plot of log normalized expression of TFH subset marker genes
542 versus pseudotime values per cell. **F)** Density plots of pseudotime values by TFH subset. **F)**
543 Density plots of pseudotime values for 321-05 LN TFH cells for matched time points between
544 study years. In the format (year 1 day, year 2 day), time points shown are pre (0,0), early (7,5),
545 mid (28,28), late (60,60), final (180,120). Vertical lines indicate the median pseudotime from E)
546 for the indicated TFH subset.
547

548 **Figure 6. Clonal TFH expansion following flu vaccination.** **A)** Relative frequency of TFH
549 cells in LN samples with respect to time point. **B)** TFH clonality in LN samples with respect to
550 time point as measured by inverse D50 index. **C)** Scatter plot of comparing the TFH relative

551 frequency and clonality across all time points. Pearson correlation. **D-G**) Network graph
552 depicting the connections between TFH clonal lineages in PBMCs and LN for donor 321-05 **D**),
553 321-04 **E**), 321-08 **F**), and 321-07 **G**). Node sizes correspond to the number of clones and edge
554 widths correspond to the number of clones connecting each node.
555

556 **Figure 7. Dynamic alteration of phenotypes in Flu-specific TFH clonal lineages.** **A)** Alluvial
557 plot showing the number of cells detected in PBMCs (top) and LN (bottom) for each TFH clonal
558 lineage picked from donor 321-05 for screening across time points. **B)** Alluvial plot showing the
559 relative abundance of picked clonal lineages in bulk TCR β sequencing from sorted cTFH and
560 LN TFH cells. **C)** Frequency of CD69+ or IFN γ + TFH1, TFH3, and TFH12 Jurkat T cells after
561 co-culture with aAPCs pulsed with indicated IAV-derived peptides. **D)** Frequency of IFN γ +
562 TFH12 Jurkat T cells after co-culture with aAPCs transfected with plasmids containing truncated
563 versions of HA. **E)** PC1 scores of individual cells from the picked TFH lineages with respect to
564 time. **F)** Heatmap of pre/memory, GC, and IL10 TFH gene set module scores for the picked
565 TFH lineages. **G)** Heatmap of TFH marker gene expressions for TFH clones 1 and 9. In C and
566 D the bar height corresponds to the mean, the whiskers show the standard error of the mean,
567 and p-values calculated by t-test.
568

569 **Supplemental Figure Legends**

570
571 **Table 1. Cell and clonotype counts in total T cell dataset.**

572
573 **Table 2. Cell and clonotype counts in TFH lineages dataset.**

574
575 **Supplementary Figure 1. TFH flow gating strategy and donor 321-04 frequencies.**

576
577 **Supplementary Figure 2. Features of the total T cell dataset.** **A)** Heatmap showing the
578 expressions of marker genes for each GEX cluster. **B-E)** GEX cluster distribution with respect to
579 **B)** tissue, **C)** donor, **D)** study year, and **E)** time point after vaccinations. **F)** 2D umap projection
580 colored by $\log_{10}(1+n)$ transformed clone sizes. **G)** GEX cluster distribution of $\log_{10}(1+n)$
581 transformed clone sizes.
582

583 **Supplementary Figure 3. B cell subset frequency correlation and marker genes for TFH**
584 **clonal lineages subset.** **A)** Heatmap of Pearson correlation between frequency of TFH and
585 naive, resting memory, activated, GC, and plasmablast (PB) B cell subsets in the lymph node.
586 **B)** Heatmap of the top marker genes for each GEX cluster for the TFH clonal lineages subset.
587 **C)** Dot plot of select TFH and Treg subset-specific markers split by donor.
588

589 **Supplementary Figure 4. Alterations in TFH metabolism and signaling in Donor 321-04.**
590 **A)** GSVA of donor 321-05 LN TFH cells with respect to time for TFH-specific upregulated GO
591 terms.
592

593 **Supplementary Figure 5. TFH composition and phenotypes over time for Donor 321-04.**
594 **A)** Relative frequencies of pre/memory, GC, and IL10 TFH subsets in LN samples from donor
595 321-04 over time. Chi-squared with p-value determined by Monte Carlo simulation. **B)** Boxplot
596 of pseudotime values per cell for indicated donor and time points.

597

598 **Supplementary Figure 6. Bulk and single-cell PCR TFH repertoire profiling.** **A)** 2D umap
599 projection of total T cell dataset highlighting cells with matching paired TCR sequences to TCR
600 data generated by scPCR of individually sorted cTFH and LN TFH cells from each donor. See
601 Figure 1A. **B)** Top) 2D umap projection of total T cell dataset highlighting cells with matching
602 TCR α or TCR β sequences to TCR sequences generated from bulk sorted TFH cells from each
603 donor. Bottom) Frequency cells within each GEX cluster matching to TCR α or TCR β
604 sequences in the bulk data. **C)** Morisita-Horn index for TCR α (left) and TCR β (right) sequences
605 from bulk sorted TFH cells for all donors and time points.

606

607 **Supplementary Figure 7. Identification of Flu-specific TFH clonotypes in donor 321-05.** **A)**
608 Gating strategy for assessing Jurkat TFH TCR cell line activation in co-culture experiments. **B)**
609 Frequency of CD69+ Jurkat T cells expressing TCRs TFH1, TFH3, and TFH12 after co-culture
610 with aAPCs infected with Flu PR8. **C)** Frequency of CD3+ (top) and CD69+ (bottom) TFH1,
611 TFH3, and TFH12 T cell lines after co-culture with aAPCs transfected with plasmids expressing
612 individual segments of the IAV genome. **D)** Frequency of CD69+ TFH11 cell line co-culture with
613 aAPCs pulsed with recombinant HA protein, PMA/ionomycin, or unstimulated control. **D)**
614 Heatmap showing the expressions of genes corresponding to the head and tail PC1 loadings in
615 the picked TFH clonal lineages.

616

617 Extended Data

618 Extended Data Table 1. TFH TCRs chosen for specificity screening.

619 Extended Data Table 2. TFH subset module gene sets.

620 Extended Data Table 3. Study participant HLA typing.

621

622 Methods

623

624 **Sample collection, preparation, and storage.**

625

626 All studies were approved by the Institutional Review Board of Washington University in St

627 Louis. Written consent was obtained from all participants. Eight participants who had not been

628 vaccinated against influenza for at least three years were enrolled, including 1 female and 7

629 males, aged 26–40 years old. PBMCs were isolated using Vacutainer CPT tubes (BD), the

630 remaining red blood cells were lysed with ammonium chloride lysis buffer (Lonza), and cells

631 were immediately used or cryopreserved in 10% dimethylsulfoxide in FBS. Ultrasound-guided

632 FNA of axillary lymph nodes was performed by a qualified physician's assistant under the

633 supervision of a radiologist. Lymph node dimensions and cortical thickness were measured
634 before each FNA. For each FNA sample, 6 passes were made using 25-gauge needles, each of
635 which was flushed with 3 ml of RPMI 1640 supplemented with 10% FBS and 100 U ml⁻¹
636 penicillin/streptomycin, followed by three 1-ml rinses. Red blood cells were lysed with
637 ammonium chloride buffer (Lonza), washed twice with PBS supplemented with 2% FBS and 2
638 mM EDTA, and immediately used or cryopreserved in 10% DMSO in FBS. Participants reported
639 no adverse effects of phlebotomy, serial FNA, or vaccination. No statistical methods were used
640 to predetermine sample size. Investigators were not blinded to experiments and outcome
641 assessment.

642

643 **Vaccine**

644 Flucelvax QIV influenza vaccine for the North American 2018/2019 and 2019/2020 seasons
645 were purchased from Seqirus.

646

647 **Single-cell RNA-seq library preparation and sequencing**

648

649 Activated and memory B cells were enriched from PBMCs by first staining with IgD-PE and
650 MojoSort anti-PE Nanobeads (BioLegend), and then processing with the EasySep Human B
651 Cell Isolation Kit using the EasyEights magnet (Stemcell) to negatively enrich IgDlo B cells.
652 Enriched IgDlo B cells, whole PBMCs, and whole FNA from each time point for participant 05
653 were processed using the following 10 × Genomics kits: Chromium Single Cell 5' Library and
654 Gel Bead Kit v2 (PN-1000006); Chromium Single Cell A Chip Kit (PN-120236); Chromium
655 Single Cell V(D)J Enrichment Kit; and Human, B cell (96rxns) (PN- 1000016), and Chromium i7
656 Multiplex Kit (PN-120262). The cDNAs were prepared after GEM generation and barcoding,
657 followed by GEM RT reaction and bead cleanup steps. Purified cDNA was amplified for 10–14
658 cycles before cleaning with SPRIselect beads. Then, samples were evaluated on a bioanalyser
659 to determine cDNA concentration. BCR target enrichments were performed on full -length
660 cDNA. GEX and enriched BCR libraries were prepared as recommended by the 10 × Genomics
661 Chromium Single Cell V(D)J Reagent Kit (v1 Chemistry) user guide, with appropriate

662 modifications to the PCR cycles based on the calculated cDNA concentration. The cDNA
663 libraries were sequenced on Novaseq S4 (Illumina), targeting a median sequencing depth of
664 50,000 and 5,000 read pairs per cell for gene expression and BCR libraries, respectively
665
666

667 **Cell sorting and flow cytometry**

668

669 Staining for analysis and sorting was performed using fresh or cryo-preserved PBMCs or FNA
670 single cell suspensions in 2% FBS and 2 mM EDTA in PBS (P2). For sorting, cells were stained
671 for 30 min on ice with IgD-PerCP-Cy5.5 (IA6-2, 1:200), CD4-Alexa 700 (SK3, 1:400), CD20-
672 APC-Fire750 (2H7, 1:100), and Zombie Aqua along with CD38-BV605 (HIT2, 1:100), CD71-
673 FITC (CY1G4, 1:200), and CD19-PE (HIB19, 1:200) for PBs or CD19-BV421 (HIB19, 1:100),
674 CD71-PE (CY1G4, 1:400), CXCR5-PE-Dazzle 594 (J252D4, 1:40), and CD38-PE-Cy7 (HIT2,
675 1:200) for GC B cells (all BioLegend). For donors 321-07 and 321-08 the PBMC samples for
676 days 0 and 5 were stained with TotalSeq-C anti-human hashtag oligos 9 and 10, respectively,
677 for downstream demultiplexing. Cells were washed twice, and single PBs (live singlet CD19+
678 CD4- IgDlo CD38+ CD20- CD71+) and GC B cells (live singlet CD19+ CD4- IgDlo
679 CD71+CD38int CD20+ CXCR5+) were sorted using a FACSaria II into 96-well plates
680 containing 2 µL Lysis Buffer (Clontech) supplemented with 1 U µl-1 RNase inhibitor (NEB), or
681 bulk sorted into buffer RLT Plus (Qiagen) and immediately frozen on dry ice. For analysis, cells
682 were stained for 30 min on ice with biotinylated recombinant HAs and PD-1-BB515 (EH12.1, BD
683 Horizon, 1:100) diluted in P2, washed twice, then stained for 30 min on ice with IgA-FITC
684 (M24A, Millipore, 1:500), CD45-PerCP (2D1, BD Bioscience, 1:25), IgG-BV480 (goat polyclonal,
685 Jackson ImmunoResearch, 1:100), IgD-SB702 (IA6-2, Thermo, 1:50), CD38-BV421 (HIT2,
686 1:100), CD20-Pacific Blue (2H7, 1:400), CD27-BV510 (O323, 1:50), CD4-BV570 (OKT4, 1:50),
687 CD24-BV605 (ML5, 1:100), streptavidin-BV650, CD19-BV750 (HIB19, 1:100), CXCR5-PE-
688 Dazzle 594 (J252D4, 1:50), CD71-APC (CY1G4, 1:100), CD14-A700 (HCD14, 1:200), and IgM-

689 APC-Cy7 (MHM-88, 1:400) (all BioLegend) diluted in Brilliant Staining buffer (BD Horizon). Cells
690 were washed twice, then fixed and permeabilized for intranuclear staining for 1 h at 25 °C with
691 True Nuclear fixation buffer (BioLegend), washed twice with permeabilization/wash buffer, and
692 stained for 30 min at 25 °C with BCL6-PE (7D1, 1:50) and Ki-67-PE-Cy7 (Ki-67, 1:400) (both
693 BioLegend). Cells were washed twice with permeabilization/wash buffer and resuspended in P2
694 for acquisition on an Aurora using SpectroFlo v2.2 (Cytek). Flow cytometry data were analysed
695 using FlowJo v10 (Treestar)."

696

697 **Processing of 10x Genomics single-cell 5' gene expression data**

698

699 The demultiplexed FASTQ pair-end reads were preprocessed on a by-sample basis using the
700 cellranger count command from 10x Genomics' Cell Ranger v6.0.0 for alignment against
701 the GRCh38 human reference v.3.0.0 (refdata-cellranger-GRCh38- 3.0.0). Individual samples
702 are assigned to one of three datasets: one containing samples from donors 321-05 and 321-04,
703 one containing samples from donors 321-07 and 321-08, and the last containing additional
704 CD4+ PBMCs from donor 321-05 year 1 day 0 time point.

705

706

707 **Processing 10x Genomics single-cell TCR reads**

708

709 Read for each sample were parsed using cellranger vdj from 10 x Genomics' Cell Ranger
710 v.6.0.0 for alignment against the cellranger-vdj-GRCh38-alts-ensembl-5.0.0 reference.
711 Additional quality control was performed using the make_10x_clones_file function from the
712 CoNGA software package using settings stringent = True to correct for spurious chain
713 pairings based on other paired clonotypes in the dataset. Only cells with paired TCRαβ
714 sequences were retained. The inverse D50 index in figure 6D was calculated as the reciprocal
715 of the quotient from dividing the number of unique clones occupying the top 50% of the
716 repertoire (after ranking by abundance) by the total number of unique clonotypes for the time
717 point multiplied by 100.

718

719 **Processing single-cell TCR sequencing from sorted TFH cells**

720

721 TCR α and TCR β chains were amplified from blood and lymph node TFH cells sorted into
722 individual wells of a 384-well plate (described above) by RT-PCR using variable gene and
723 constant region primers and sequenced by Sanger method as previously described²⁸.
724 Sequencing reads were parsed using the TCRdist pipeline as previously described²⁹.

725

726

727 **Bulk TCR sequencing of sorted TFH cells**

728

729 TCR α and TCR β chains from bulk sorted cTFH and LN TFH were amplified using a 5' Rapid
730 Amplification of cDNA Ends (RACE) with unique molecular identifiers (UMIs) for error correction
731 essentially as described³⁰. RNA was extracted from bulk sorted blood and lymph node TFH cells
732 from donors 321-04, 321-05, and 321-11 using the RNeasy Micro Kit (Qiagen). Reverse
733 transcription was carried out using SmartScribe RT (Takara), and Q5 polymerase (New England
734 Biolabs) was used during first and second round amplification. Barcoded TCR α and TCR β
735 amplicons generated by the second round PCR were pooled by equal volume, prepped, and
736 indexed for sequencing on Illumina platforms using a KAPA HyperPrep Kit (Roche). 150 bp
737 paired-end sequencing was performed on Illumina NovaSeq6000.

738

739 **Processing bulk TCR sequencing**

740

741 Paired-end FASTQ reads were processed using the `migec v1.2.9` software³¹. Reads
742 corresponding to individual samples were demultiplexed prior to assembling nucleotide
743 sequence reads within each UMI group. VDJ junction mapping of assembled contigs was
744 performed using the NCBI-BLAST+ package within `migec`. Additional quality control was
745 performed on the filtered clonotype tables from `migec` using the `vdjtools v1.2.1`³²
746 `FilterNonFunctional`, `Correct`, and `Decontaminate` functions to remove potentially
747 erroneous clonotypes within and between samples. The `immunarch v0.6.5` package³³ for R
748 was used for the Morisita-Horn index calculations.

749

750 **Single-cell gene expression analysis**

751

752 Analysis was performed using Seurat v 4.1.1. The three datasets noted above were each
753 processed in the following manner prior to aggregation. First, an object containing all cell types
754 was generated prior to filtering down to only T cells. QC was performed by removing cells with
755 greater than 10% mitochondrial content, expressing fewer than 300 or greater than 4000 genes,
756 and containing fewer than 900 or greater than 40000 UMIs were filtered from the dataset to
757 remove presumably lysed/dead cells and doublets. MULTIseqDemux for demultiplexing hashtag
758 oligos for the dataset containing donors 321-07 and 321-08³⁴. After preprocessing, the three
759 datasets were merged and SCTranform was used for data normalization prior to feature
760 extraction, scaling, and principal component analysis (PCA)³⁵. The Harmony algorithm was
761 applied for batch integration across donors and datasets³⁶. The FindClusters and
762 RunUMAP tools were applied to the harmonized embedding generate a 2D projection of GEX
763 space. TCR clonotype information (described above) was then mapped back to cells in the
764 object by matching their corresponding UMI barcodes.

765
766 Cluster identities were assigned based on the expression of T cell markers distinguishing each
767 of the major subtypes including: *CD4*, *CD8B*, *KLRB1*, *ZBTB16*, *KLRG1*, *CCR7*, *SELL*, *FOXP3*,
768 *PRF1*, and *TBX21*. *PDCD1*, *CXCR5*, and *ICOS* were used to identify TFH clusters. TFH cells
769 were further subset on and reprocessed to identify heterogeneity in their GEX phenotypes.
770 Here, we chose to include all cells clonally-linked to those in the two TFH clusters that might
771 otherwise be excluded due to non-TFH GEX cluster assignments.

772
773 Monocle3³⁷⁻³⁹ R package version 1.1.0 was used for pseudotime analysis on our data. The
774 getEnrichedPathways function in the Cerebro⁴⁰ v1.3.1 R package was used to find enriched
775 GO terms for the TFH populations. GO terms enriched in IL10 TFH cells with respect to all other
776 TFH and Treg cells were used for GSVA⁴¹ analysis in Figure 4B (GSVA R package v1.42.0).
777 Genes defining the pre/memory, GC, and IL10 TFH modules in Figure 7F were taken from
778 intersecting positive markers defining the subset relative to the two other subsets based on the
779 results of the differential expression analysis shown in Figure 3G. Module scores were
780 calculated using the AddModuleScore function in Seurat.

781

782 **HLA class II typing**

783

784 HLA typing was conducted with the research-grade AllType NGS 11-loci Amplification Kit (One
785 Lambda) as described in (<https://doi.org/10.1038/s41590-022-01184-4>). Libraries were
786 sequenced on the Illumina MiSeq platform at 150x150 base pairs, and data were parsed using
787 the TypeStream Visual software (One Lambda). HLA typing results are in Extended Data Table
788 3.

789

790

791 **Construction of TFH TCR cell lines and aAPC lineages**

792

793 Twelve TCR clonotypes were picked from donor 321-05 for cloning based on two criteria; the
794 clone was detected at multiple time points after vaccination, and it had matching scPCR and
795 bulk sequencing results from the sorted TFH cells. VDJ nucleotide sequences of the picked
796 clones were reconstructed using stiTChR⁴² with the TCR α and TCR β chains linked with a P2A
797 auto-cleavage site. To generate APCs expressing specific HLA, the nucleotide sequences of
798 alpha and beta chains for donor-specific HLA class II haplotypes were curated using ([Allele](#)
799 [Search Tool < IMGT/HLA < IPD < EMBL-EBI](#)) and linked via T2A site to form the full HLA
800 constructs (HLA-DR, HLA-DP, and HLA-DQ). Constructs were synthesized and cloned
801 (Genscript) into a custom pLVX-EF1a-P2A-GFP-IRES-Puro lentiviral vector. Lentivirus particles
802 were subsequently generated by co-transfected 293T cells (ATCC) with one of the generated
803 constructs, psPAX2 (Addgene, 12260), and pMD2.G (Addgene, 12259) using GeneJuice
804 transfection reagent (EMD Millipore) or Lipofectamine3000 transfection kit (Thermo Fisher). To
805 generate the a-APC lineages, K562 cells (ATCC, CCL-243) expressing (HLA-DM, CD80, and
806 CD64 molecules) were transduced with donor's HLA-II vectors to generate a set of artificial
807 Antigen Presenting Cell lines (aAPCs). Similarly, Jurkat cells were transduced with the panel
808 TCR lentiviruses. Both K562 and Jurkat cells were placed under 1 ug/mL puromycin selection
809 for 2 weeks before sorting for GFP+ cells.

810

811

812 **Cell line antigen stimulation assays**

813

814 TCR-negative Jurkat cells were cloned with a curated set of donor's derived TCR sequences. The
815 TCR expressing clonotypes were subsequently screened for activation upon coculture with aAPC
816 encoding cognate HLA Class-II alleles. The HLA-II-expressing aAPCs were preincubated with B-
817 Propiolactone-inactivated Influenza A virus (strain A/Puerto Rico/8/1934 H1N1) at MOI=1 for 2

818 hours prior to adding the TCR expressing lines in a ratio of 1:1. The cocultured cells were
819 incubated at 37° C and 5% CO₂ for additional 24 hours. Cells were washed with cold PBS and
820 then stained with a cocktail of fluorescently labeled antibodies including: anti-human CD3-PE-Cy7
821 (Clone: OKT3, Biolegend), Ghost viability dye (Tonbo Biosciences), TCR α/β-BV421 (Clone: IP26,
822 Biolegend), CD69-PerCP-eFluor-710 (Clone: FN50, Invitrogen), IFN-γ-BV785 (Clone: 4S.B3,
823 Biolegend). Similarly, HLA-II expressing aAPCs were transfected with pHW2000 vectors
824 encoding the genomic viral segments (PB2, PB1, PA, NP, M, and NS) 48h prior to coculturing
825 with the TCR expressing lineages. The transfection was conducted via Neon Electroporation
826 System (Thermo, MPK5000S) using 1 pulse at 1,000 volts and 50 ms width according to the
827 manufacturer's protocol. To identify the driving peptide motifs that triggered activation in the
828 responding clones, a pool of overlapping oligopeptide sequences spanning M1, M2, and NP
829 proteins of the H1N1 PR8 strain (Mimotopes) were used for the peptide mapping experiments.
830 Libraries covering M1 and M2 consisted of 17mer peptides that were overlapping by 11
831 residues. The NP library consisted of 15mer peptides overlapping by 11 residue. All samples were
832 acquired on Aurora (CyteK) and data were analyzed using FlowJo software.
833

834 Acknowledgments

835
836 We thank Erica Lantelme for facilitating sorting; Lisa Kessels, Michael Royal, and the staff of the
837 Infectious Diseases Clinical Research Unit at Washington University School of Medicine for
838 assistance with vaccination and sample collection.
839

840 The authors declare the following competing interests: A.H.E. is a consultant for InBios and
841 Fimbrion Therapeutics. The Ellebedy laboratory received funding under sponsored research
842 agreements from Emergent BioSolutions. P.G.T. has consulted and/or received honoraria and
843 travel support from Illumina, Johnson and Johnson, and 10X Genomics. P.G.T. serves on the
844 Scientific Advisory Board of Immunoscope and Cytoagents. The authors have applied for
845 patents covering some aspects of these studies. All other authors declare no competing
846 interests.
847

848 The Thomas laboratory was funded by ALSAC at St. Jude; the Center for Influenza Vaccine
849 Research for High-Risk Populations (CIVR-HRP) contract number 75N93019C00052; the St.
850 Jude Center of Excellence for Influenza Research and Surveillance (P.G.T.) contract number

851 HHSN272201400006C ; the St. Jude Center of Excellence for Influenza Research and
852 Response (P.G.T.) contract number 75N93021C00016; and grants U01AI150747 ,
853 U01AI144616, and R01AI136514. The Ellebedy laboratory was supported by NIAID grants R21
854 AI139813, U01 AI141990, and NIAID Centers of Excellence for Influenza Research and
855 Surveillance (CEIRS) contract HHSN272201400006C.

856

857 The WU321 study was reviewed and approved by the Washington University Institutional
858 Review Board (approval no. 201808171).

859

860 Contributions

861

862 S.A.S analyzed scGEX and TCR sequencing data, designed experiments, generated libraries
863 and processed data for bulk TCR profiling, and wrote the manuscript. J.S.T. collected and
864 analyzed the flow cytometry data and performed fluorescence-activated cell sorting. M.G.
865 generated TCR and aAPC cell lines and performed antigen-stimulation experiments. J.C.C. and
866 H.K. parsed and analyzed scGEX and TCR data. W.A. performed single-cell TCR sequencing.
867 A.H.E., R.M.P., M.K.K. and A.H. wrote and maintained the IRB protocol, recruited, vaccinated
868 and phlebotomized participants and coordinated sample collection. T.S. performed the FNA
869 under the supervision of S.T., J.Q.Z., J.H. A.H.E. conceived, designed, and supervised the
870 seasonal Flu vaccination study. P.G.T. supervised this study and wrote the manuscript. All
871 authors reviewed the manuscript.

872

873

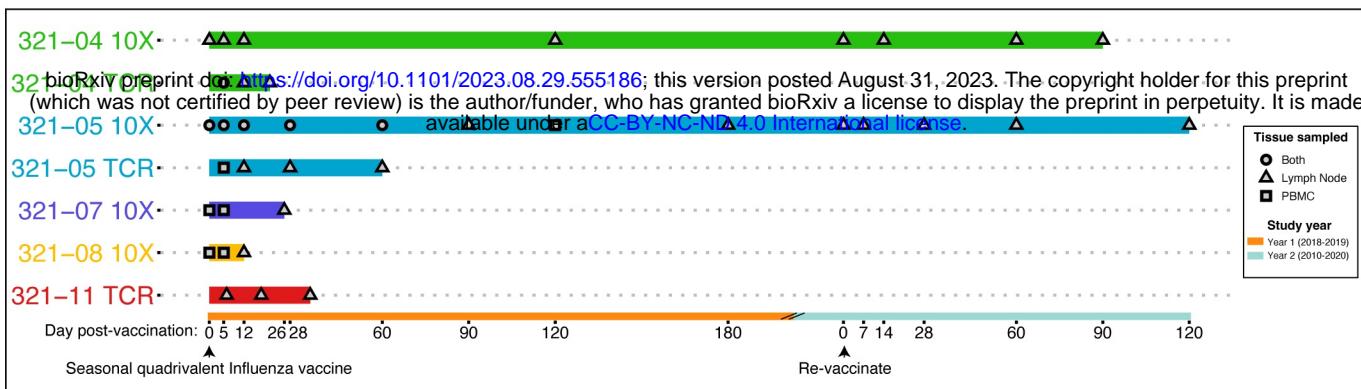
874 Data Availability

875

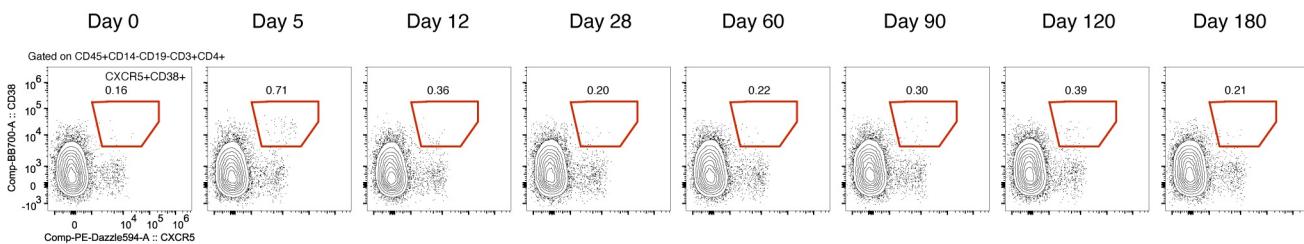
876 Single-cell GEX and TCR profiling for all the T cells with paired TCR information along with the
877 bulk and single-cell TCR sequencing of sorted TFH cells is available on Zenodo
878 <https://doi.org/10.5281/zenodo.6476022>. The code for running the analyses is available at
879 https://github.com/sschattgen/Flu_TFH_paper.

880 References

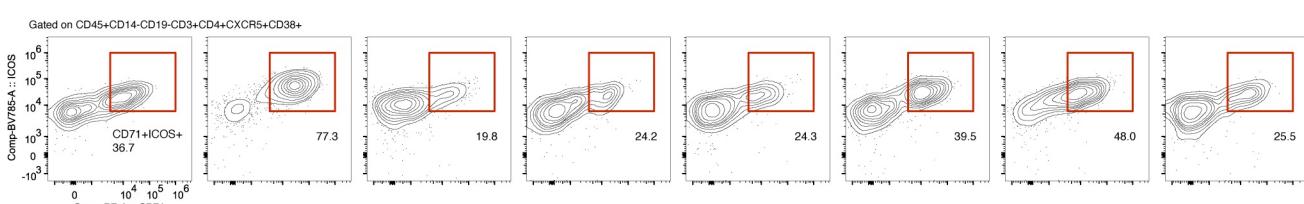
- 881
- 882 1. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. *Immunity* **41**,
883 529–542 (2014).
- 884 2. Chevalier, N. et al. CXCR5 expressing human central memory CD4 T cells and their
885 relevance for humoral immune responses. *J. Immunol.* **186**, 5556–5568 (2011).
- 886 3. He, J. et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell
887 activity and promote antibody responses upon antigen reexposure. *Immunity* **39**, 770–781
888 (2013).
- 889 4. Herati, R. S. et al. Circulating CXCR5+PD-1+ Response Predicts Influenza Vaccine
890 Antibody Responses in Young Adults but not Elderly Adults. *The Journal of Immunology*
891 **193**, 3528–3537 (2014).
- 892 5. Mettelman, R. C. et al. Baseline innate and T cell populations are correlates of protection
893 against symptomatic influenza virus infection independent of serology. *Nat. Immunol.* **24**,
894 1511–1526 (2023).
- 895 6. Obeng-Adjei, N. et al. Circulating Th1-Cell-type Tfh Cells that Exhibit Impaired B Cell Help
896 Are Preferentially Activated during Acute Malaria in Children. *Cell Rep.* **13**, 425–439 (2015).
- 897 7. Locci, M. et al. Human Circulating PD-1+CXCR3–CXCR5+ Memory Tfh Cells Are Highly
898 Functional and Correlate with Broadly Neutralizing HIV Antibody Responses. *Immunity* **39**,
899 758–769 (2013).
- 900 8. Morita, R. et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells
901 and contain specific subsets that differentially support antibody secretion. *Immunity* **34**,
902 108–121 (2011).
- 903 9. Heit, A. et al. Vaccination establishes clonal relatives of germinal center T cells in the blood
904 of humans. *J. Exp. Med.* **214**, 2139–2152 (2017).
- 905 10. Vella, L. A. et al. T follicular helper cells in human efferent lymph retain lymphoid

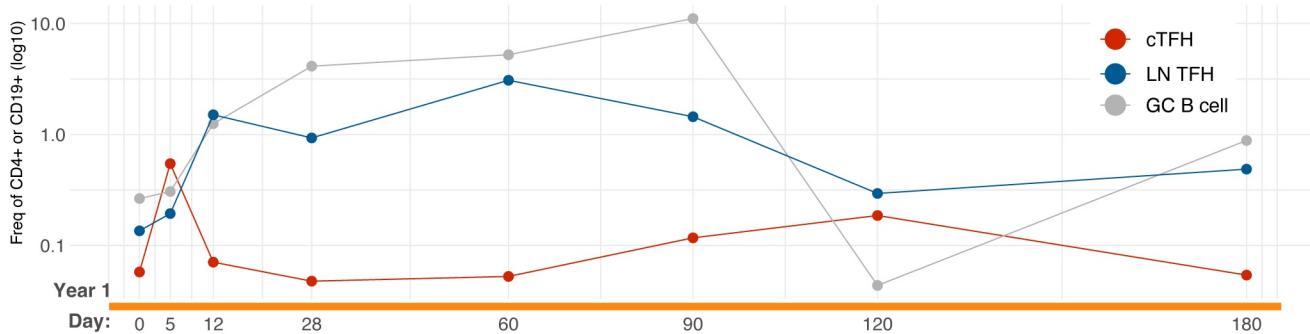

- 906 characteristics. *J. Clin. Invest.* **129**, 3185–3200 (2019).
- 907 11. Herati, R. S. *et al.* Successive annual influenza vaccination induces a recurrent
908 oligoclonotypic memory response in circulating T follicular helper cells. *Sci Immunol* **2**,
909 (2017).
- 910 12. Bentebibel, S.-E. *et al.* Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with
911 antibody responses to influenza vaccination. *Sci. Transl. Med.* **5**, 176ra32 (2013).
- 912 13. Brenna, E. *et al.* CD4+ T Follicular Helper Cells in Human Tonsils and Blood Are Clonally
913 Convergent but Divergent from Non-Tfh CD4+ Cells. *Cell Rep.* **30**, 137–152.e5 (2020).
- 914 14. Turner, J. S. *et al.* Human germinal centres engage memory and naive B cells after
915 influenza vaccination. *Nature* **586**, 127–132 (2020).
- 916 15. Cañete, P. F. *et al.* Regulatory roles of IL-10-producing human follicular T cells. *J. Exp.*
917 *Med.* **216**, 1843–1856 (2019).
- 918 16. Kumar, S. *et al.* Developmental bifurcation of human T follicular regulatory cells. *Sci*
919 *Immunol* **6**, (2021).
- 920 17. Chung, Y. *et al.* Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal
921 center reactions. *Nat. Med.* **17**, 983–988 (2011).
- 922 18. Wollenberg, I. *et al.* Regulation of the germinal center reaction by Foxp3+ follicular
923 regulatory T cells. *J. Immunol.* **187**, 4553–4560 (2011).
- 924 19. Linterman, M. A. *et al.* Foxp3+ follicular regulatory T cells control the germinal center
925 response. *Nat. Med.* **17**, 975–982 (2011).
- 926 20. Xu, W. *et al.* The Transcription Factor Tox2 Drives T Follicular Helper Cell Development via
927 Regulating Chromatin Accessibility. *Immunity* **51**, 826–839.e5 (2019).
- 928 21. Lee, J.-Y. *et al.* The transcription factor KLF2 restrains CD4⁺ T follicular helper cell
929 differentiation. *Immunity* **42**, 252–264 (2015).
- 930 22. Wu, T. *et al.* TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection.
931 *Cell Rep.* **12**, 2099–2110 (2015).

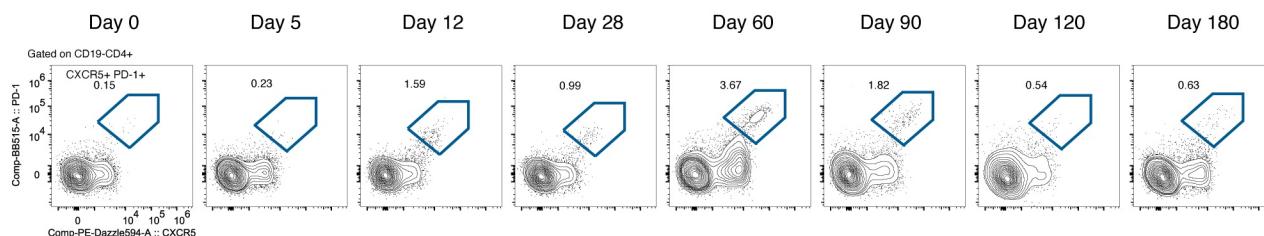
- 932 23. Zeng, H. *et al.* mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive
933 Follicular Helper T Cell Differentiation. *Immunity* **45**, 540–554 (2016).
- 934 24. Künzli, M. *et al.* Long-lived T follicular helper cells retain plasticity and help sustain humoral
935 immunity. *Sci Immunol* **5**, (2020).
- 936 25. Mudd, P. A. *et al.* SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular
937 helper cell response in humans. *Cell* **0**, (2021).
- 938 26. Turner, J. S. *et al.* SARS-CoV-2 mRNA vaccines induce persistent human germinal centre
939 responses. *Nature* **596**, 109–113 (2021).
- 940 27. Lee, J. H. *et al.* Long-lasting germinal center responses to a priming immunization with
941 continuous proliferation and somatic mutation. *bioRxiv* 2021.12.20.473537 (2021)
942 doi:10.1101/2021.12.20.473537.
- 943 28. Dash, P. *et al.* Paired analysis of TCR α and TCR β chains at the single-cell level in mice. *J.*
944 *Clin. Invest.* **121**, 288–295 (2011).
- 945 29. Dash, P. *et al.* Quantifiable predictive features define epitope-specific T cell receptor
946 repertoires. *Nature* **547**, 89–93 (2017).
- 947 30. Egorov, E. S. *et al.* Quantitative profiling of immune repertoires for minor lymphocyte counts
948 using unique molecular identifiers. *J. Immunol.* **194**, 6155–6163 (2015).
- 949 31. Shugay, M. *et al.* Towards error-free profiling of immune repertoires. *Nat. Methods* **11**, 653–
950 655 (2014).
- 951 32. Shugay, M. *et al.* VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. *PLoS*
952 *Comput. Biol.* **11**, e1004503–16 (2015).
- 953 33. ImmunoMind Team. immunarch: An R Package for Painless Bioinformatics Analysis of T-
954 Cell and B-Cell Immune Repertoires. *Zenodo* (2019) doi:10.5281/zenodo.3367200.
- 955 34. McGinnis, C. S. *et al.* MULTI-seq: sample multiplexing for single-cell RNA sequencing
956 using lipid-tagged indices. *Nat. Methods* **16**, 619–626 (2019).
- 957 35. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq


- 958 data using regularized negative binomial regression. *Genome Biol.* **20**, 296 (2019).
- 959 36. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
960 Harmony. *Nat. Methods* **16**, 1289–1296 (2019).
- 961 37. Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed by
962 pseudotemporal ordering of single cells. *Nat. Biotechnol.* **32**, 381–386 (2014).
- 963 38. Qiu, X. *et al.* Single-cell mRNA quantification and differential analysis with Census. *Nat.*
964 *Methods* **14**, 309–315 (2017).
- 965 39. Qiu, X. *et al.* Reversed graph embedding resolves complex single-cell trajectories. *Nat.*
966 *Methods* **14**, 979–982 (2017).
- 967 40. Hillje, R., Pelicci, P. G. & Luzi, L. Cerebro: interactive visualization of scRNA-seq data.
968 *Bioinformatics* **36**, 2311–2313 (2020).
- 969 41. Hänelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for
970 microarray and RNA-seq data. *BMC Bioinformatics* **14**, 7 (2013).
- 971 42. Heather, J. M. *et al.* Stitchr: stitching coding TCR nucleotide sequences from V/J/CDR3
972 information. *bioRxiv* 2021.12.20.473544 (2021) doi:10.1101/2021.12.20.473544.

973
974


A


B


C

D

E

F

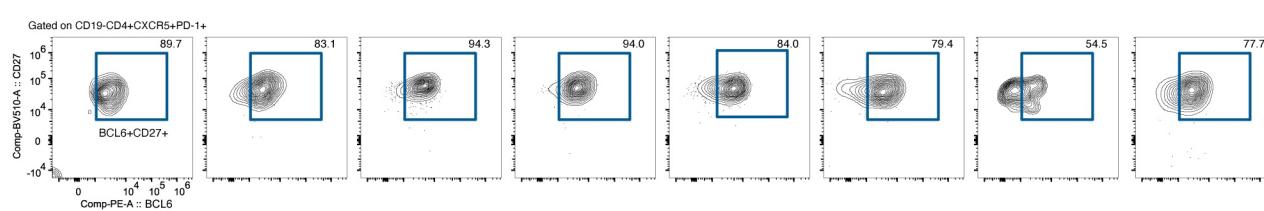
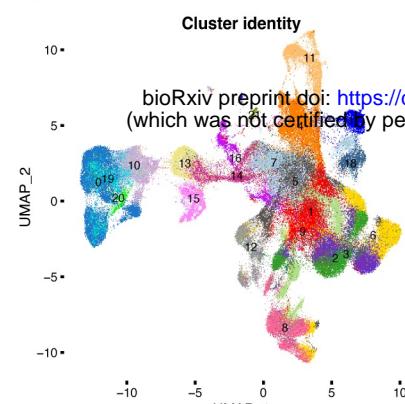
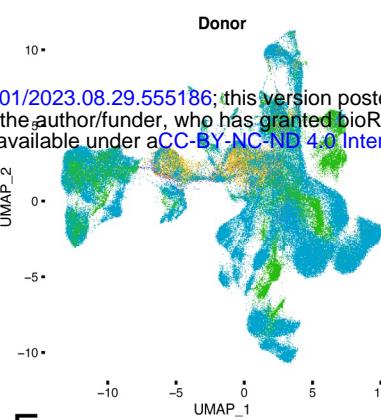
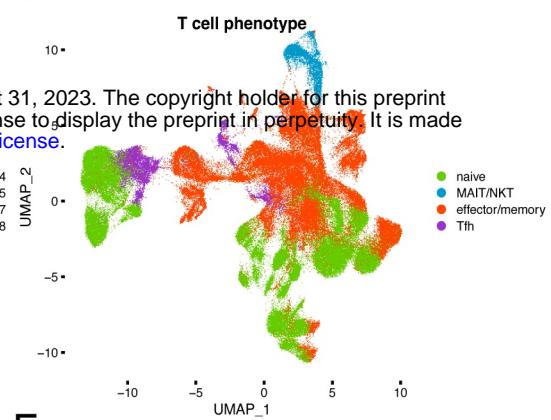
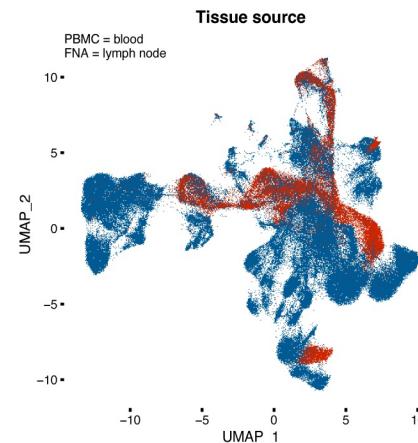
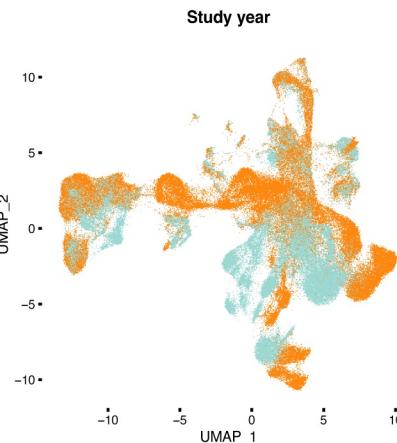
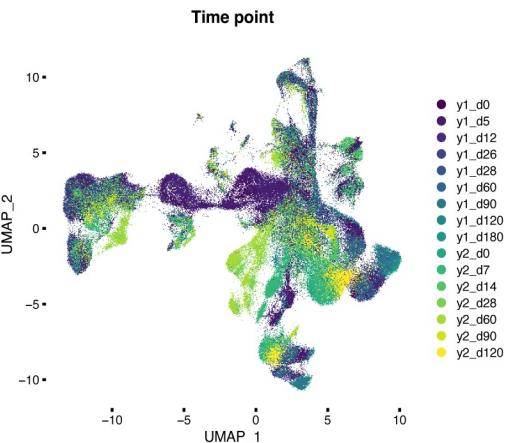
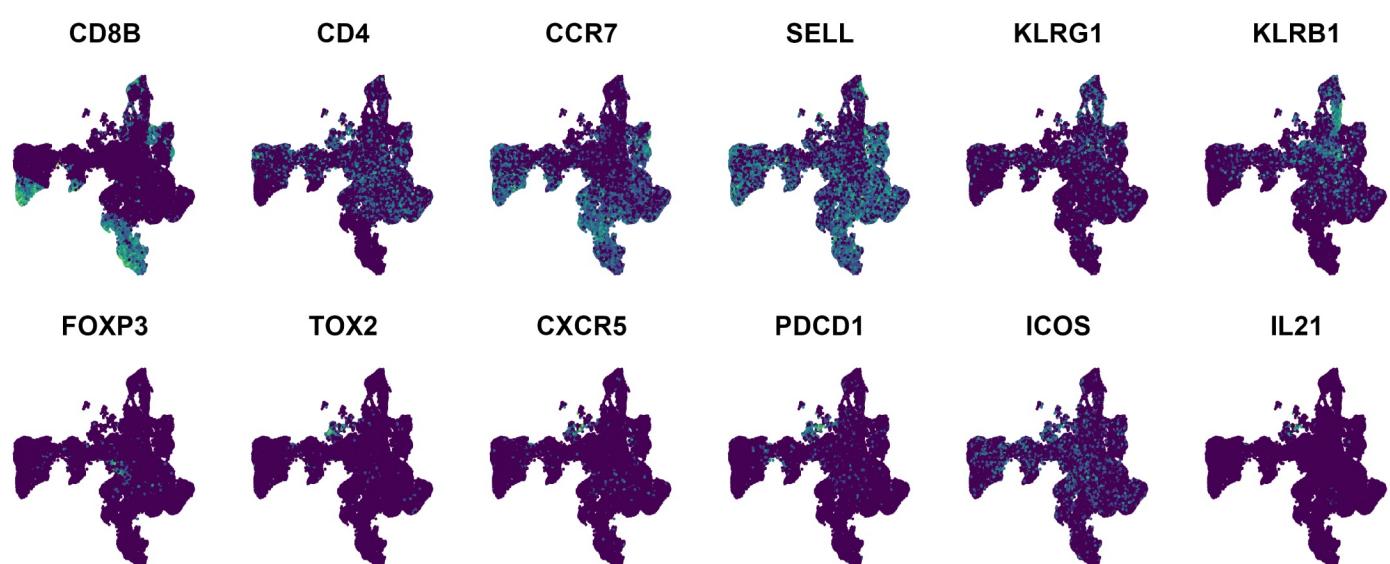









Figure 1

A**B****C****D****E****F****G****Figure 2**

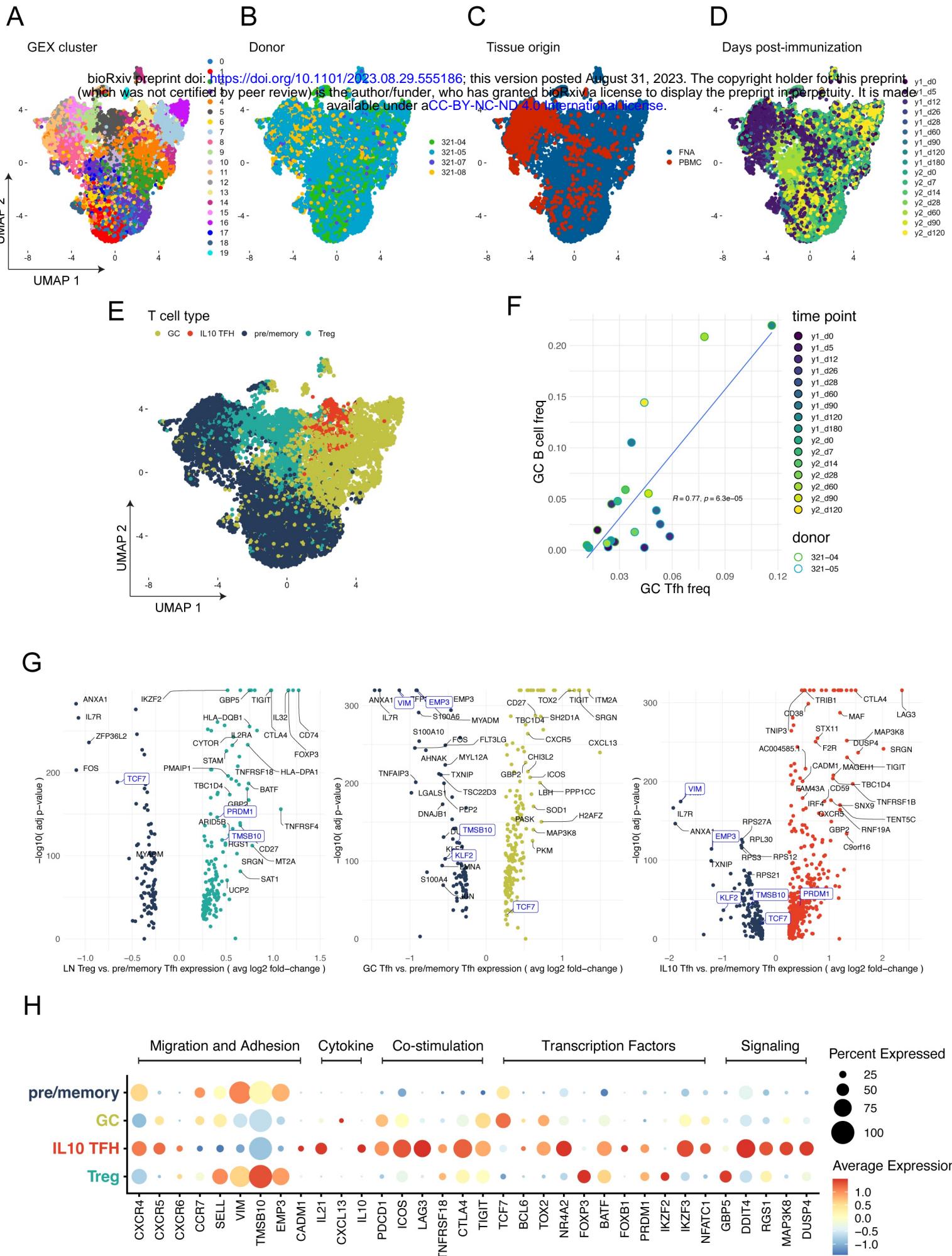
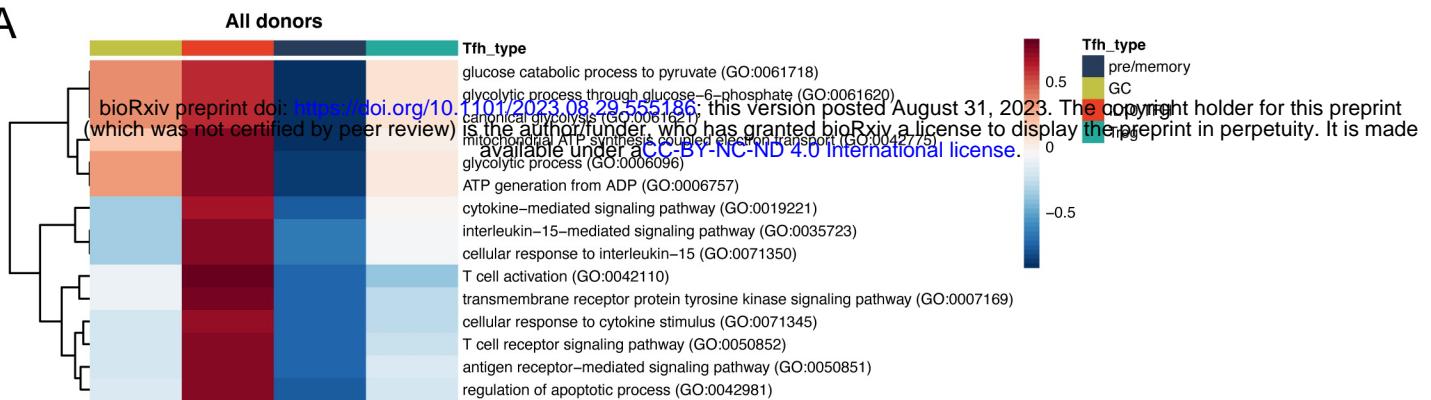



Figure 3

A

B

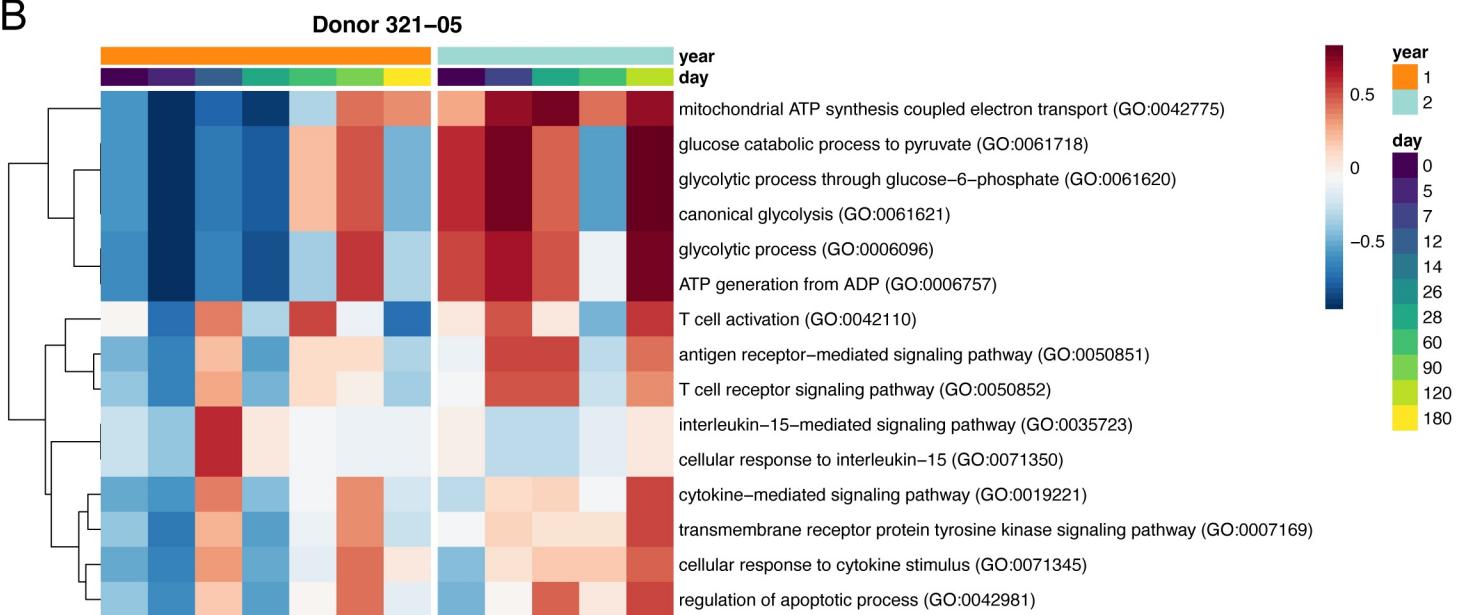
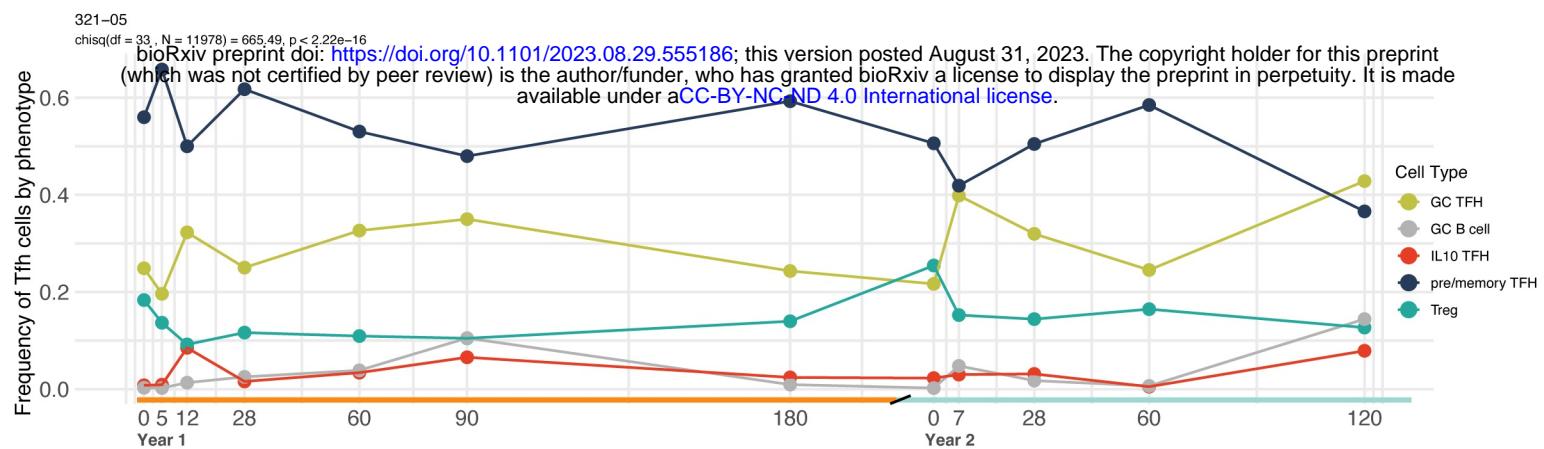
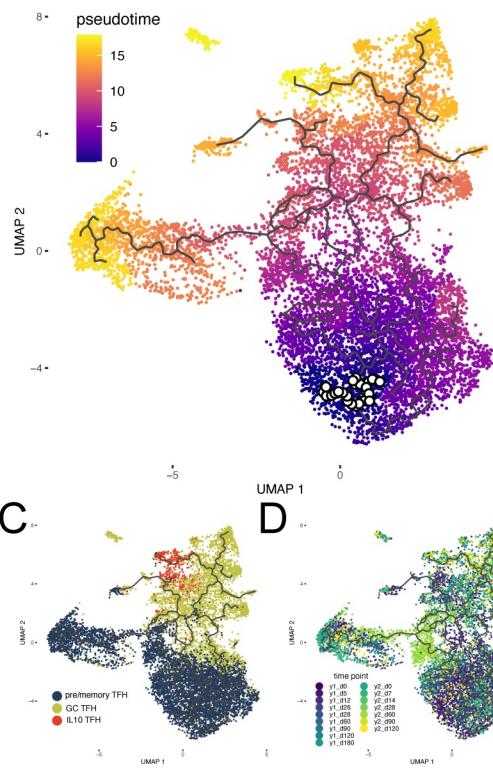
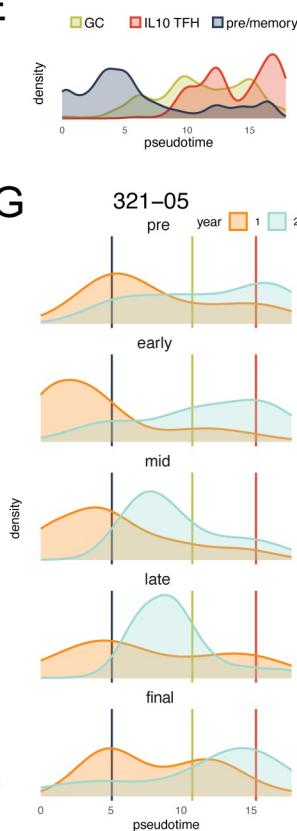
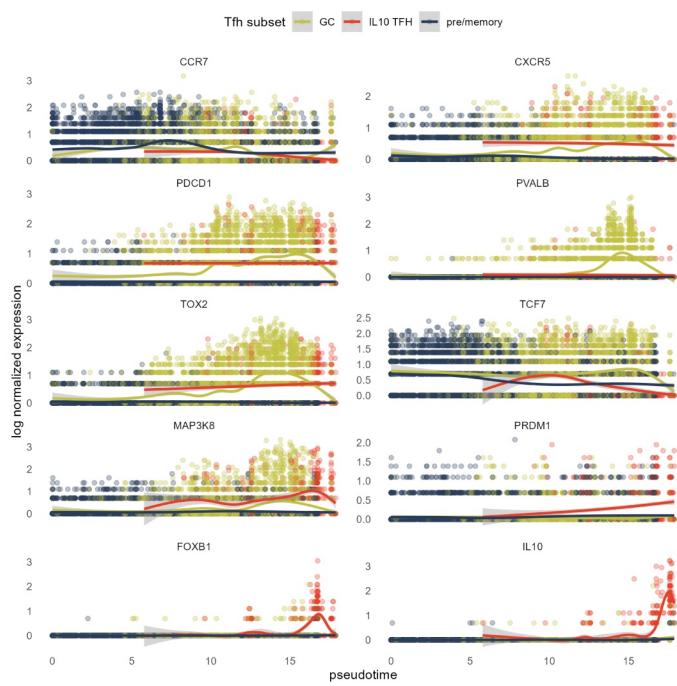




Figure 4


A


B

E

F

C

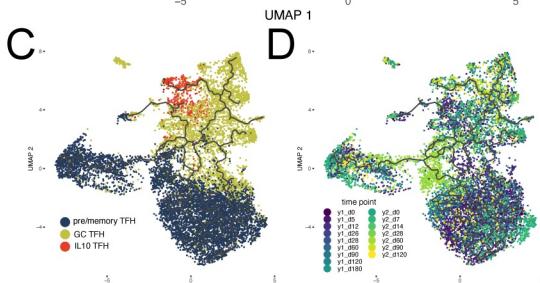
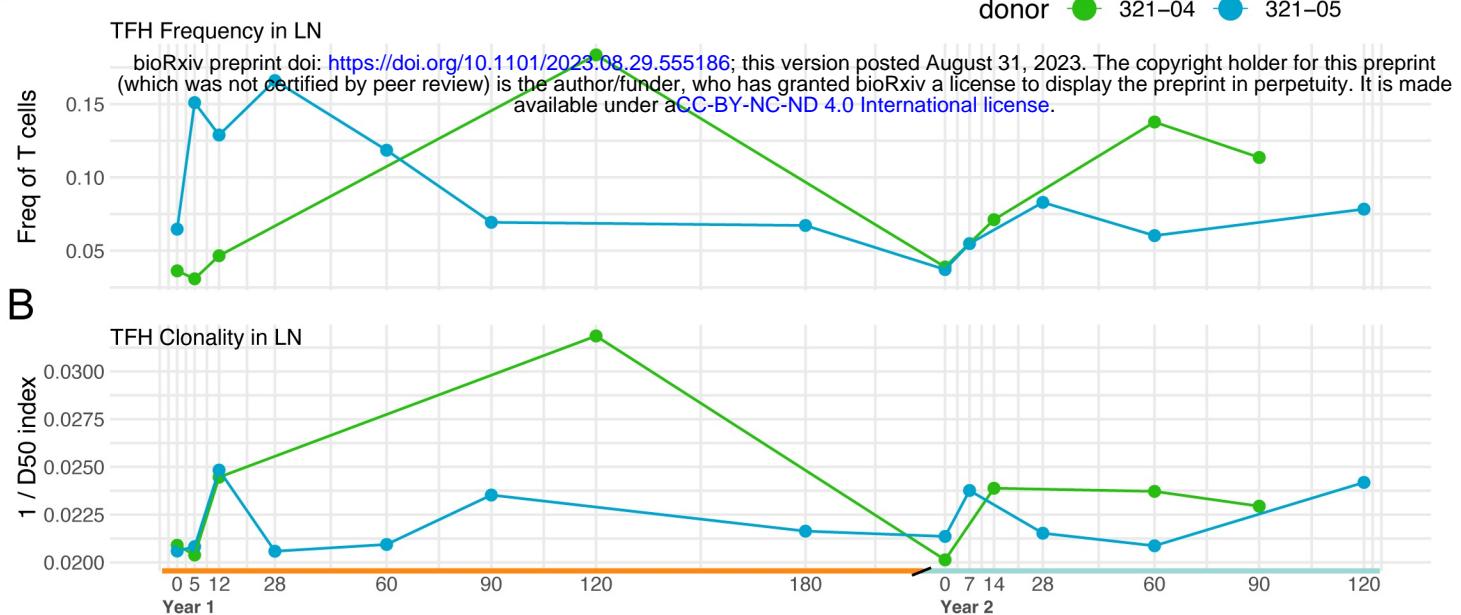
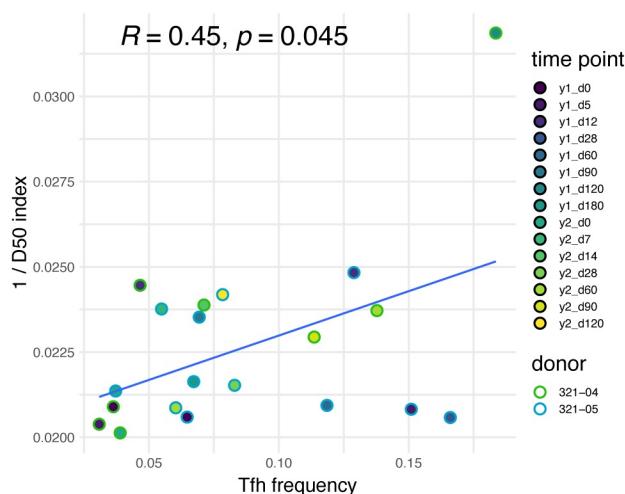
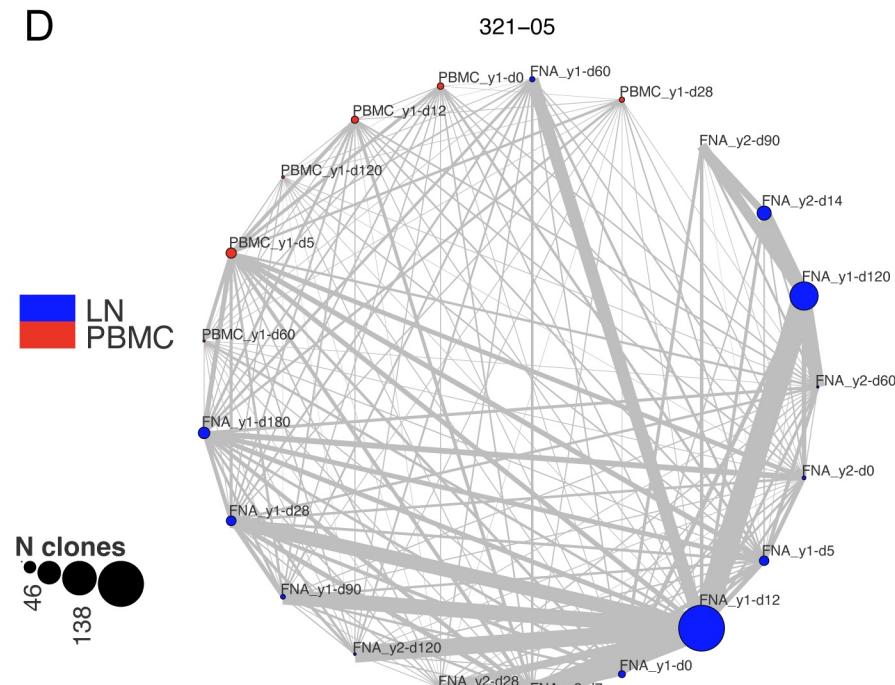
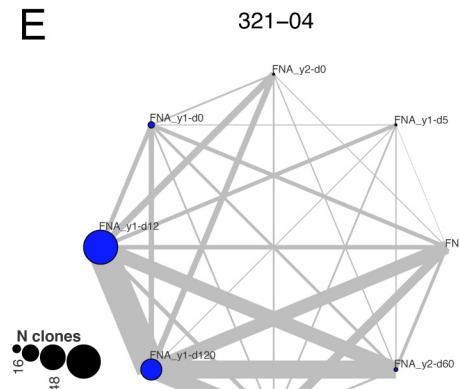
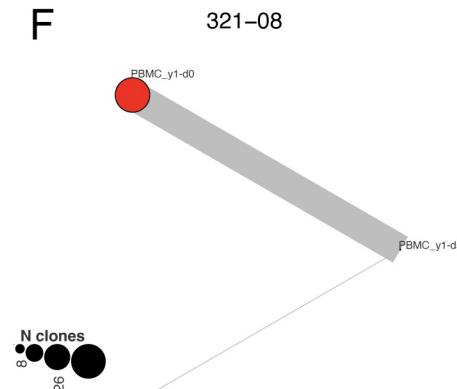




Figure 5


A


C


D

E

F

G

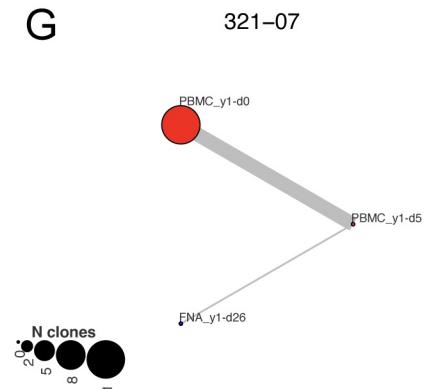


Figure 6

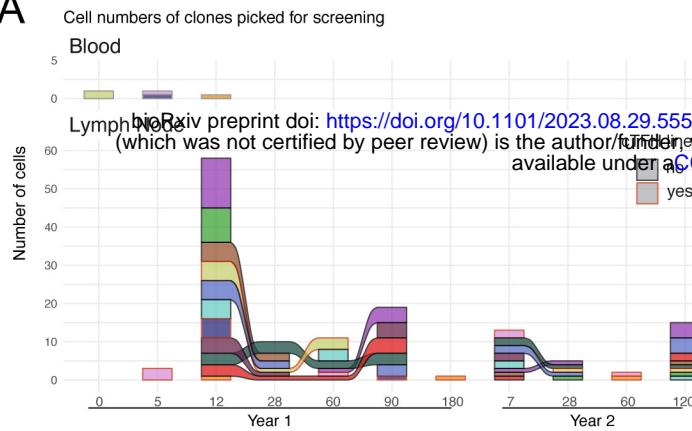
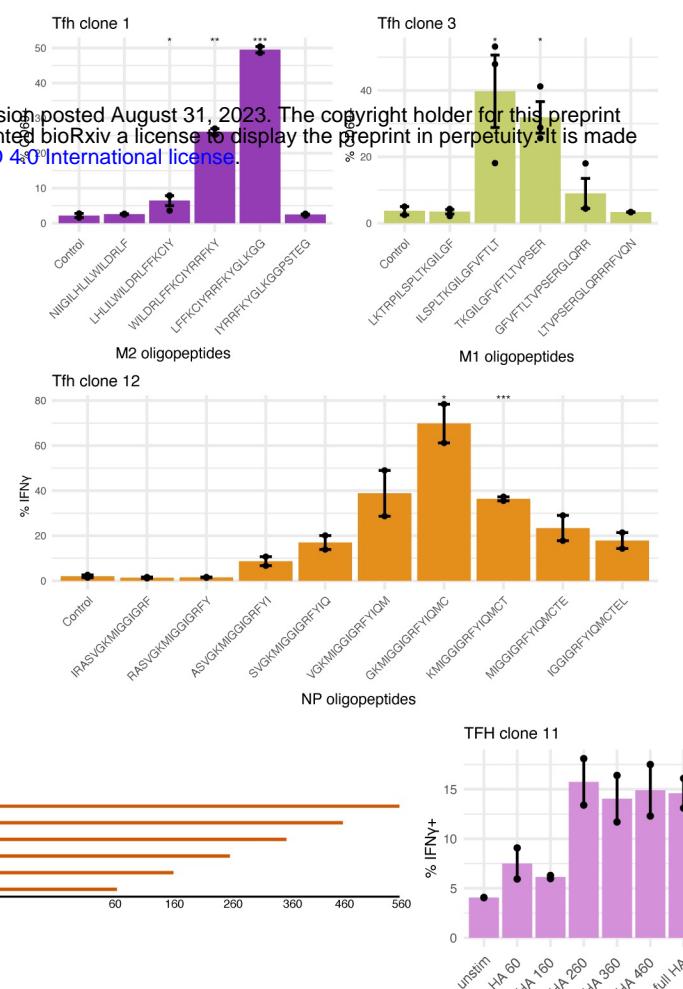
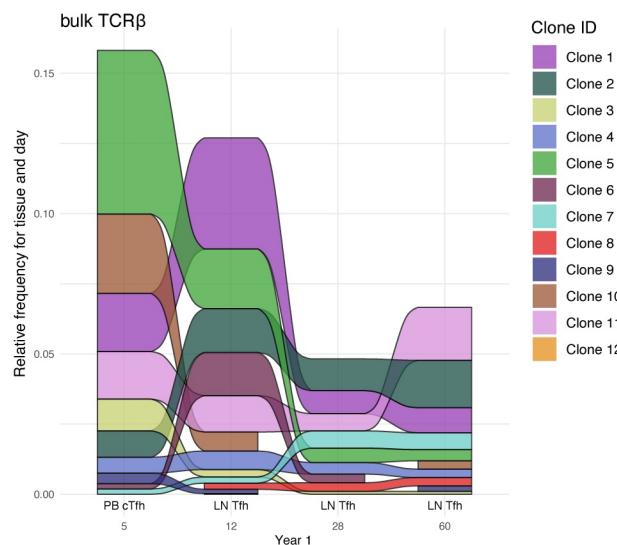
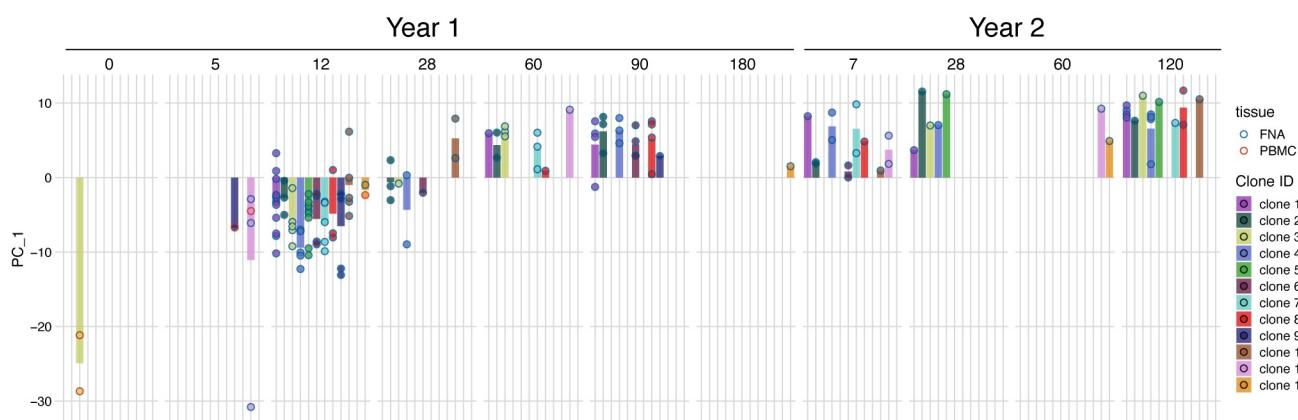
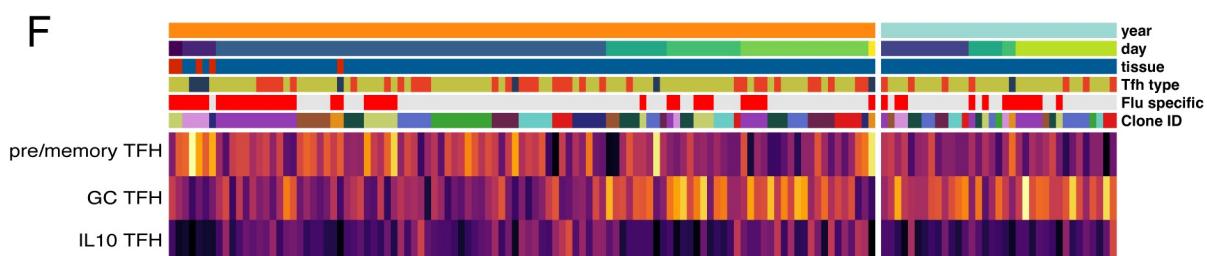
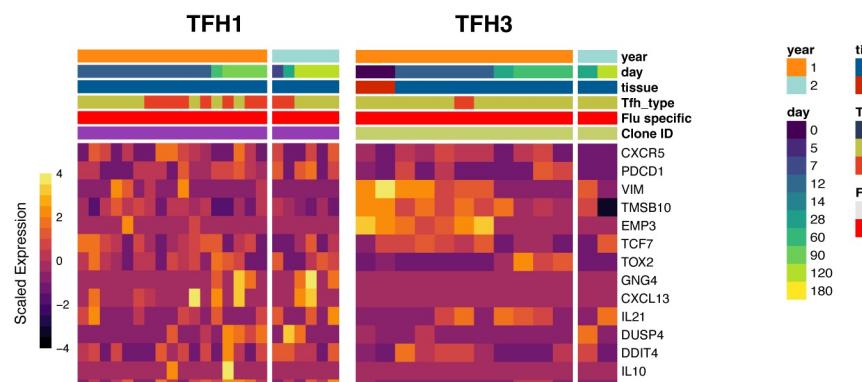






A**C****B****D****E****F****G****Figure 7**

Table 1. Cell and clonotype counts in total T cell dataset

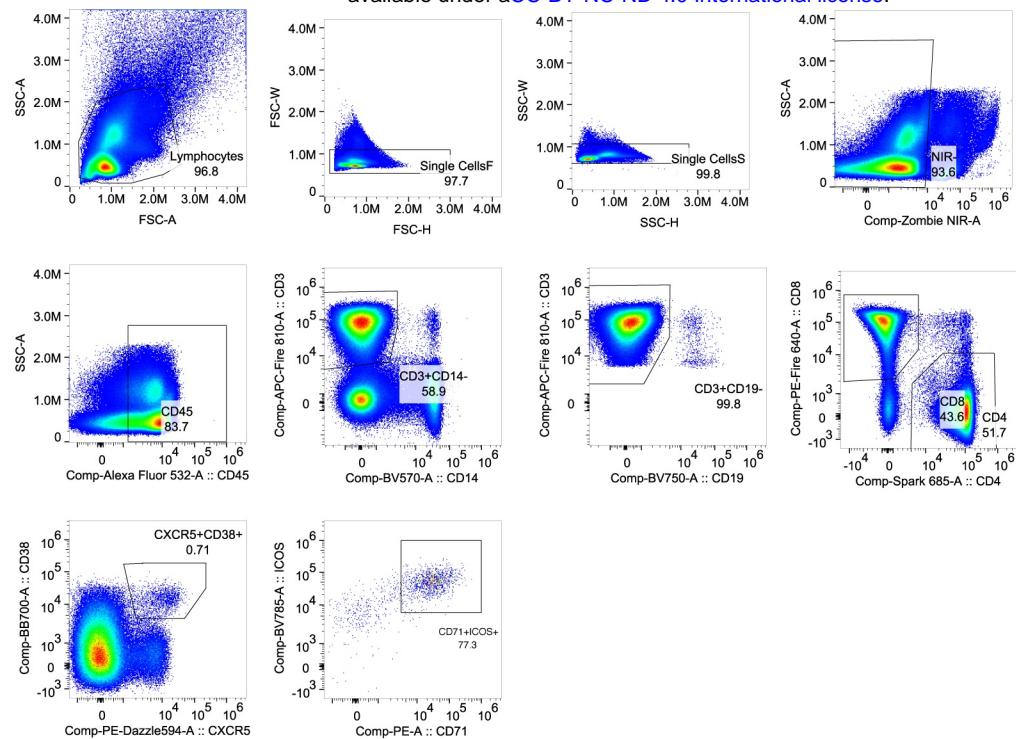
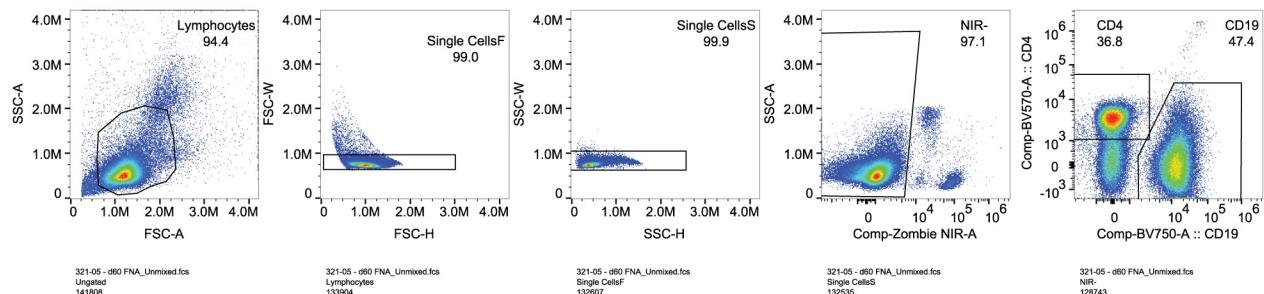
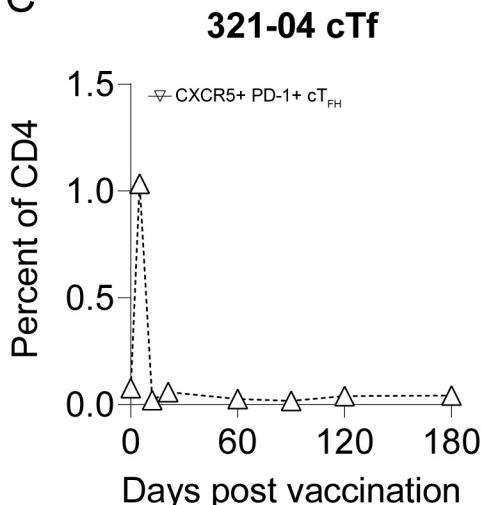
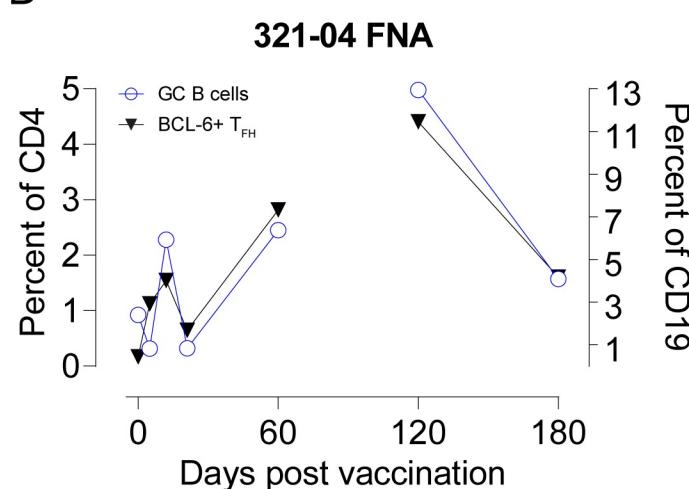
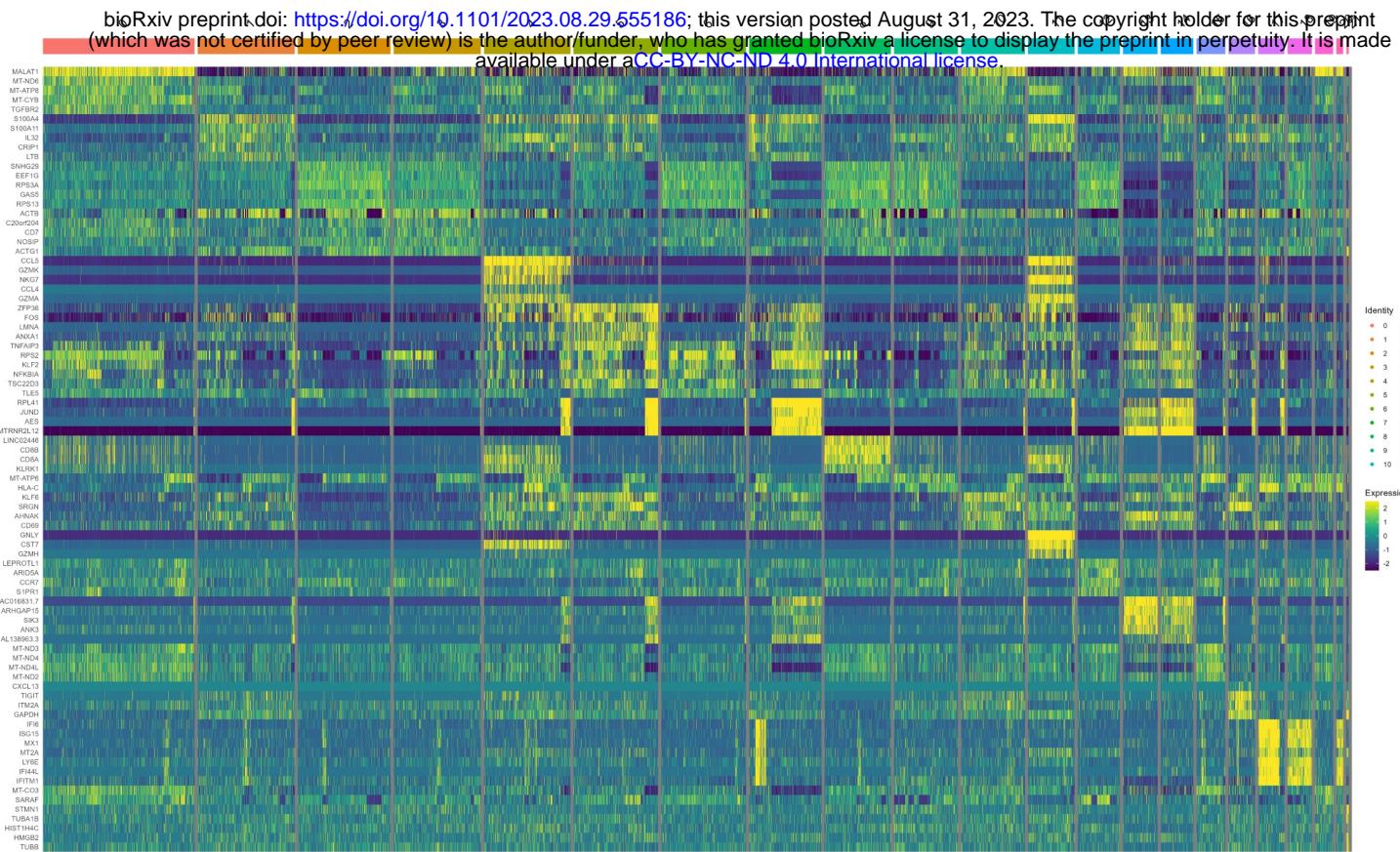
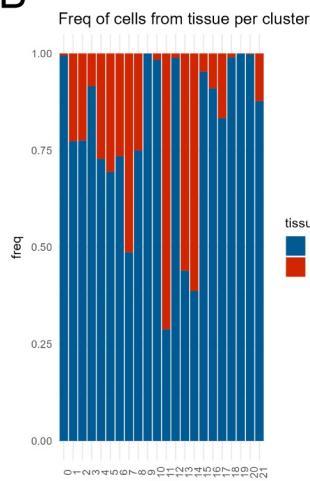




donor	year	day	tissue	number of cells	number of clonotypes
bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.555186 ; this version posted August 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.					
321-04	1	12	LN	4635	4430
321-04	1	120	LN	2686	2426
321-04	1	5	LN	1717	1642
321-04	2	0	LN	4007	3859
321-04	2	14	LN	5212	5035
321-04	2	60	LN	1546	1470
321-04	2	90	LN	2711	2555
321-05	1	0	LN	6613	6426
321-05	1	12	LN	8859	8493
321-05	1	180	LN	7199	7003
321-05	1	28	LN	6794	6507
321-05	1	5	LN	7311	7109
321-05	1	60	LN	4336	4133
321-05	1	90	LN	6083	5888
321-05	2	0	LN	11245	10979
321-05	2	120	LN	4670	4531
321-05	2	28	LN	5279	5117
321-05	2	60	LN	6234	5946
321-05	2	7	LN	12798	12509
321-05	1	0	PBMC	3353	2778
321-05	1	12	PBMC	3584	3136
321-05	1	120	PBMC	2828	2379
321-05	1	28	PBMC	3121	2717
321-05	1	5	PBMC	8730	5220
321-05	1	60	PBMC	3611	3027
321-07	1	26	LN	722	412
321-07	1	0	PBMC	944	559
321-07	1	5	PBMC	1632	953
321-07	1	NA	PBMC	130	41
321-08	1	12	LN	6961	3057
321-08	1	0	PBMC	2554	1406
321-08	1	5	PBMC	1491	768
321-08	1	NA	PBMC	308	133

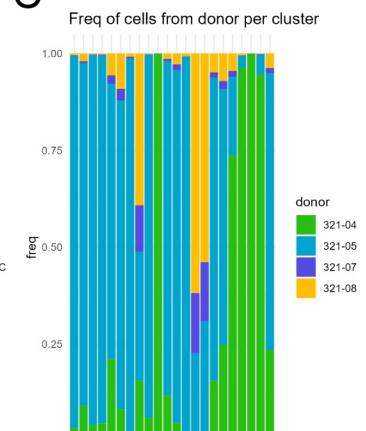
Table 2. Cell and clonotype counts in TFH dataset

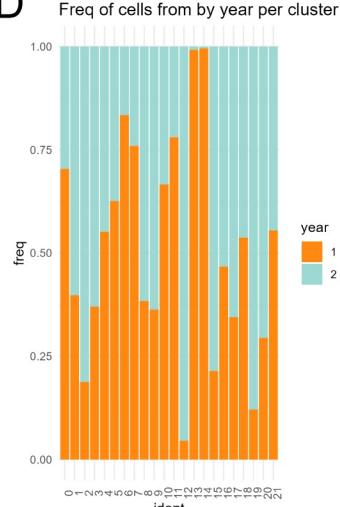

donor	year	day	tissue	number of cells	number of clonotypes
321-04	1	0	LN	252	245
321-04	1	5	LN	92	90
321-04	1	12	LN	324	287
321-04	1	120	LN	557	420
321-04	2	0	LN	264	263
321-04	2	14	LN	461	408
321-04	2	60	LN	255	226
321-04	2	90	LN	372	334
321-05	1	0	LN	627	611
321-05	1	5	LN	1646	1596
321-05	1	12	LN	1608	1415
321-05	1	28	LN	1443	1408
321-05	1	60	LN	677	654
321-05	1	90	LN	640	575
321-05	1	180	LN	744	705
321-05	2	0	LN	660	620
321-05	2	7	LN	931	819
321-05	2	28	LN	638	607
321-05	2	60	LN	583	565
321-05	2	120	LN	481	420
321-05	1	0	PBMC	140	127
321-05	1	5	PBMC	590	472
321-05	1	12	PBMC	180	167
321-05	1	28	PBMC	151	147
321-05	1	60	PBMC	149	141
321-05	1	120	PBMC	90	87
321-07	1	26	LN	53	53
321-07	1	0	PBMC	71	56
321-07	1	5	PBMC	27	27
321-07	1	NA	PBMC	2	2
321-08	1	12	LN	272	217
321-08	1	0	PBMC	197	159
321-08	1	5	PBMC	98	91
321-08	1	NA	PBMC	15	15

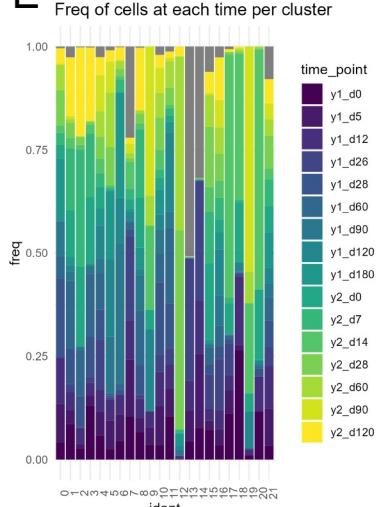
A

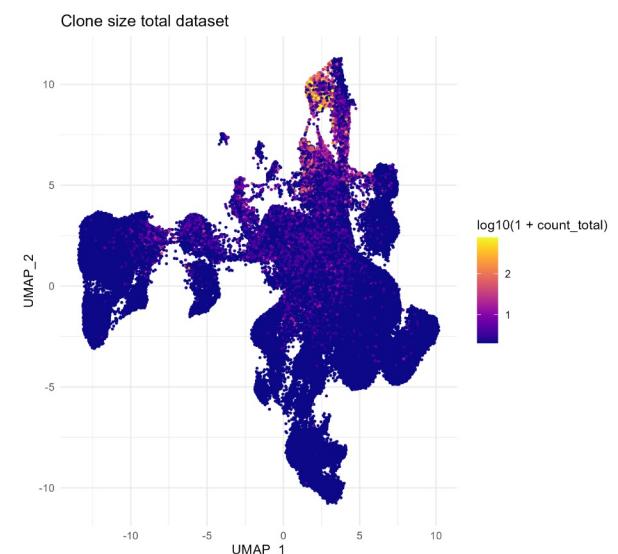

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.29.555186>; this version posted August 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

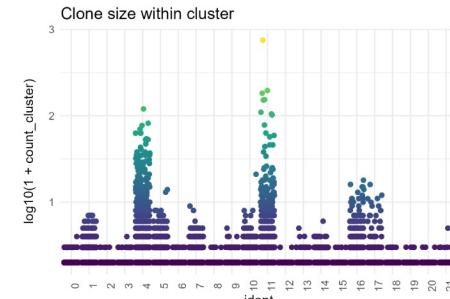
B**C****D**


A


B

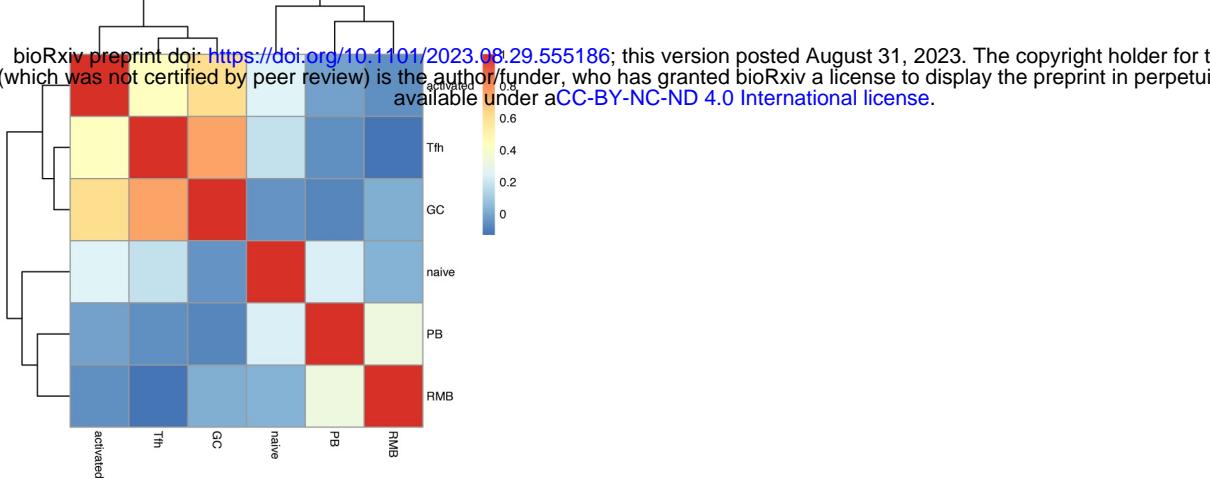

C


D

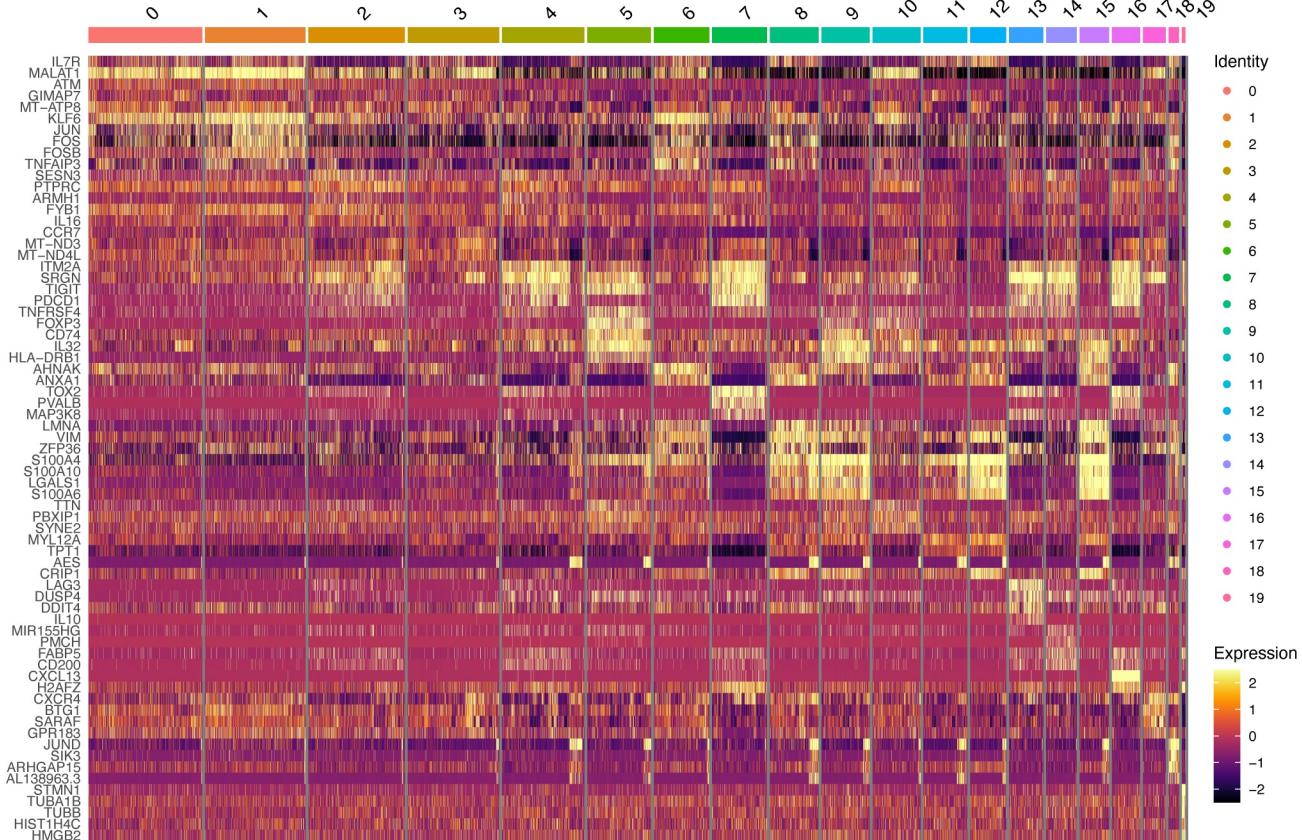

E

F

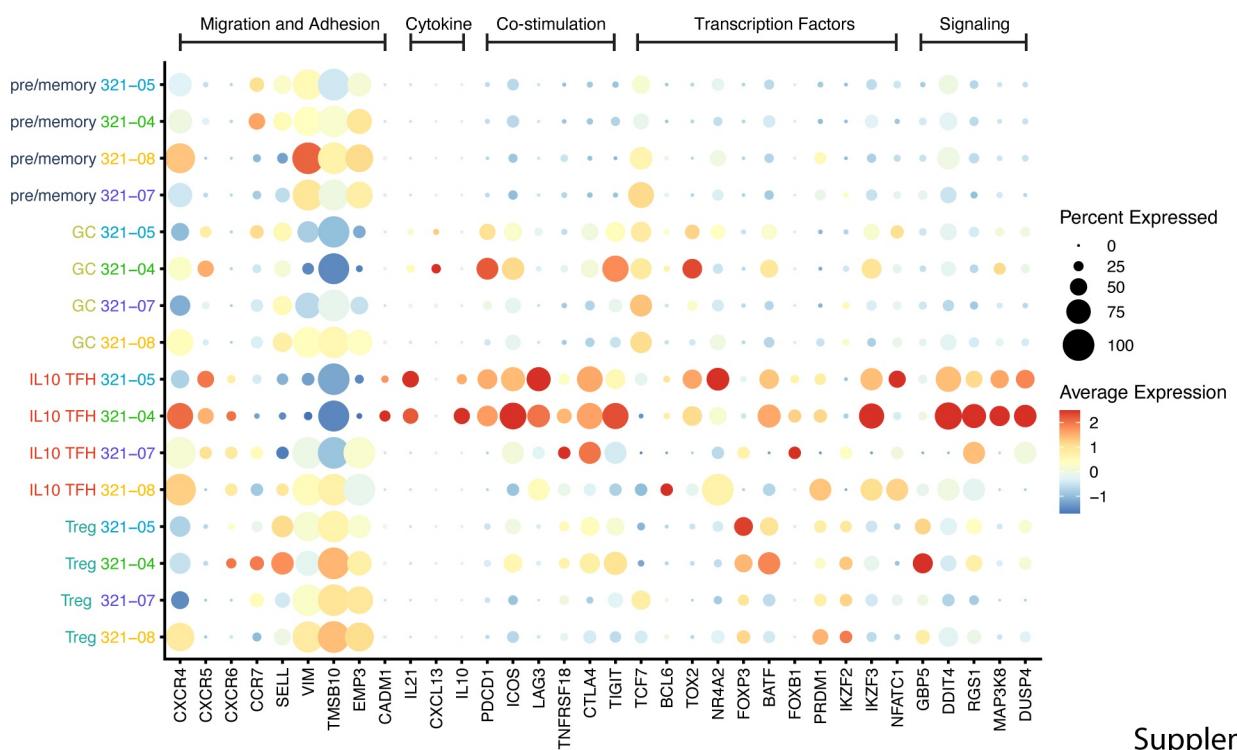
G



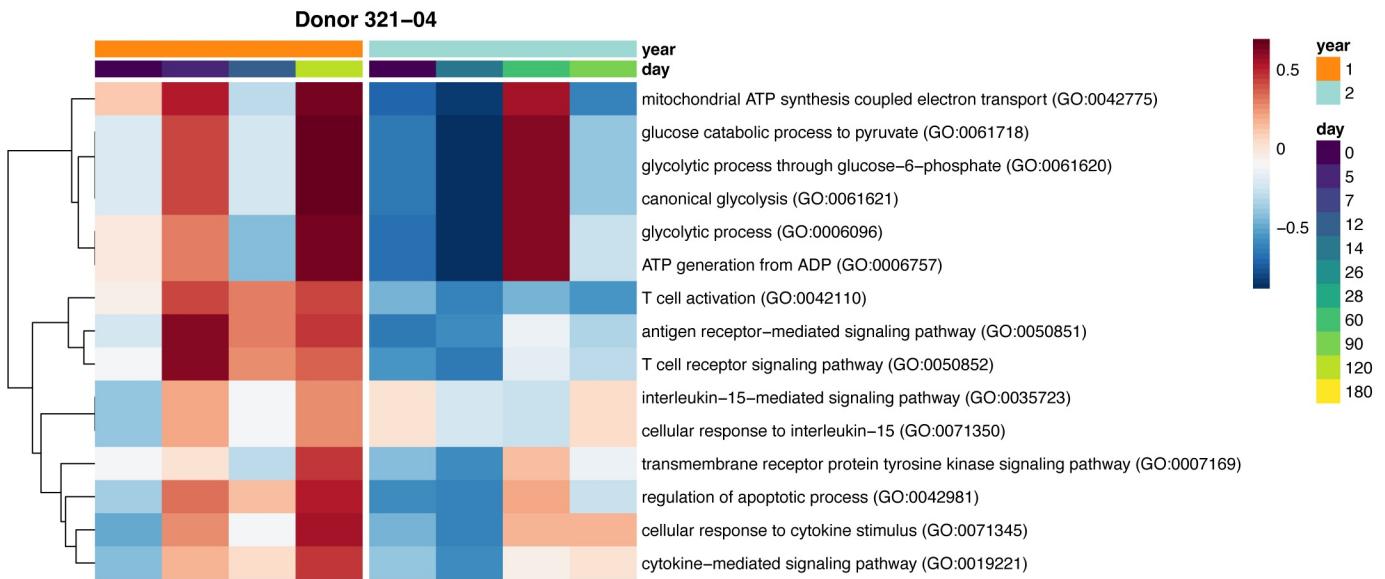
Supplemental Figure 2

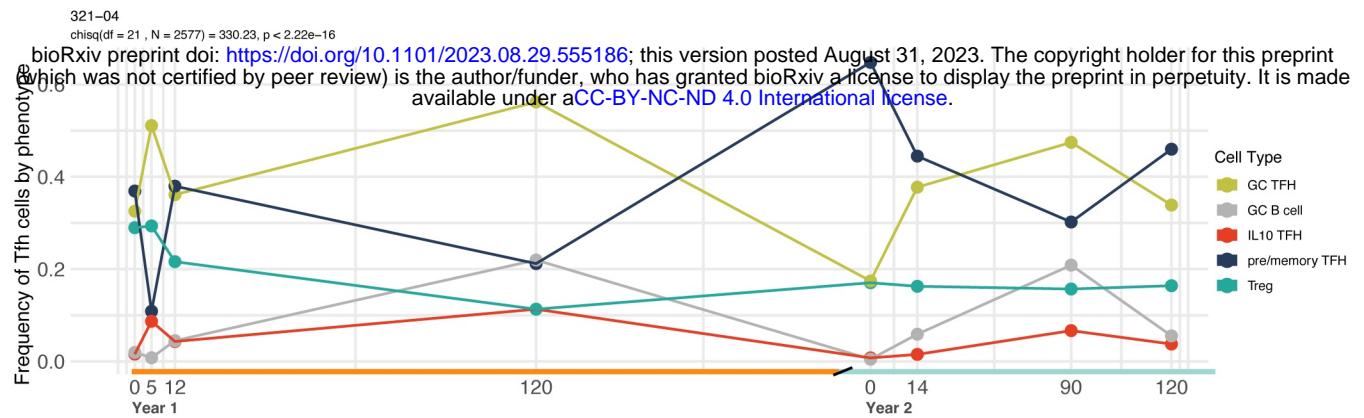

A

Pearson correlation between GC Tfh and B cell subset frequencies

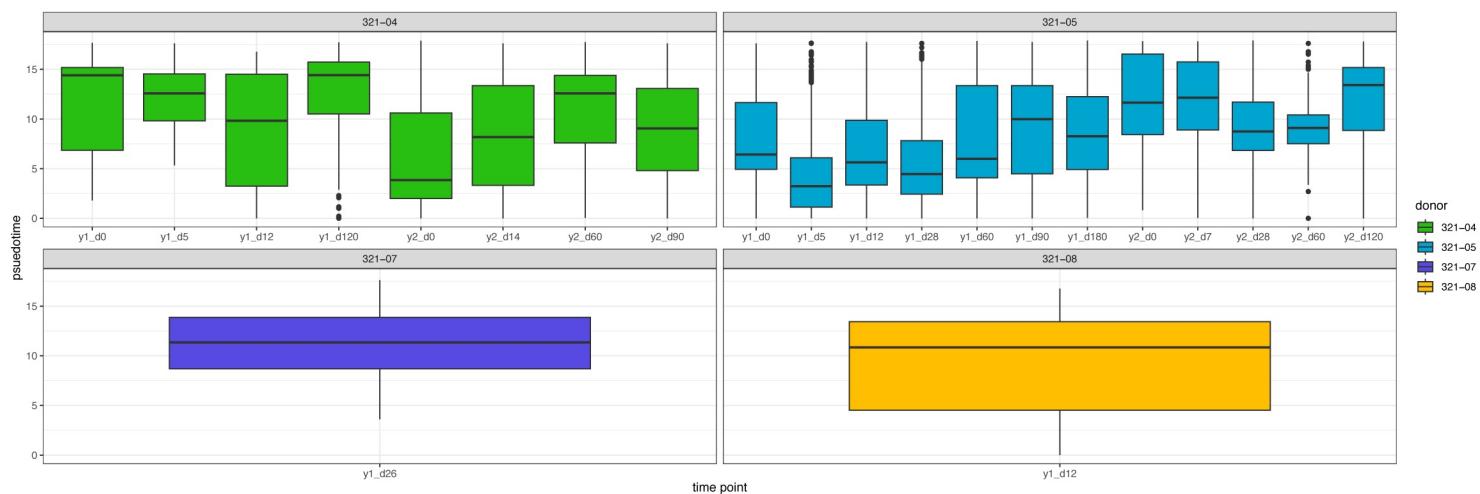

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.29.555186>; this version posted August 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

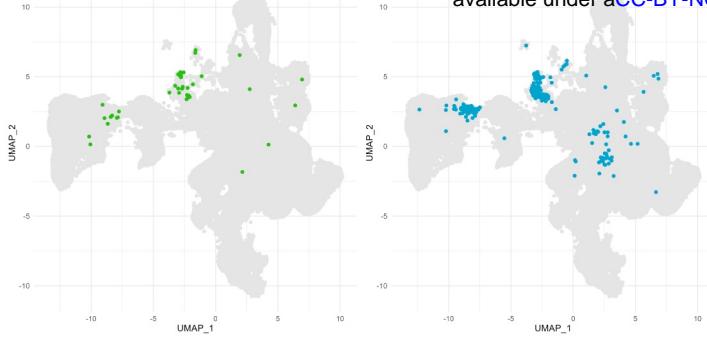

C


Supplemental Figure 3

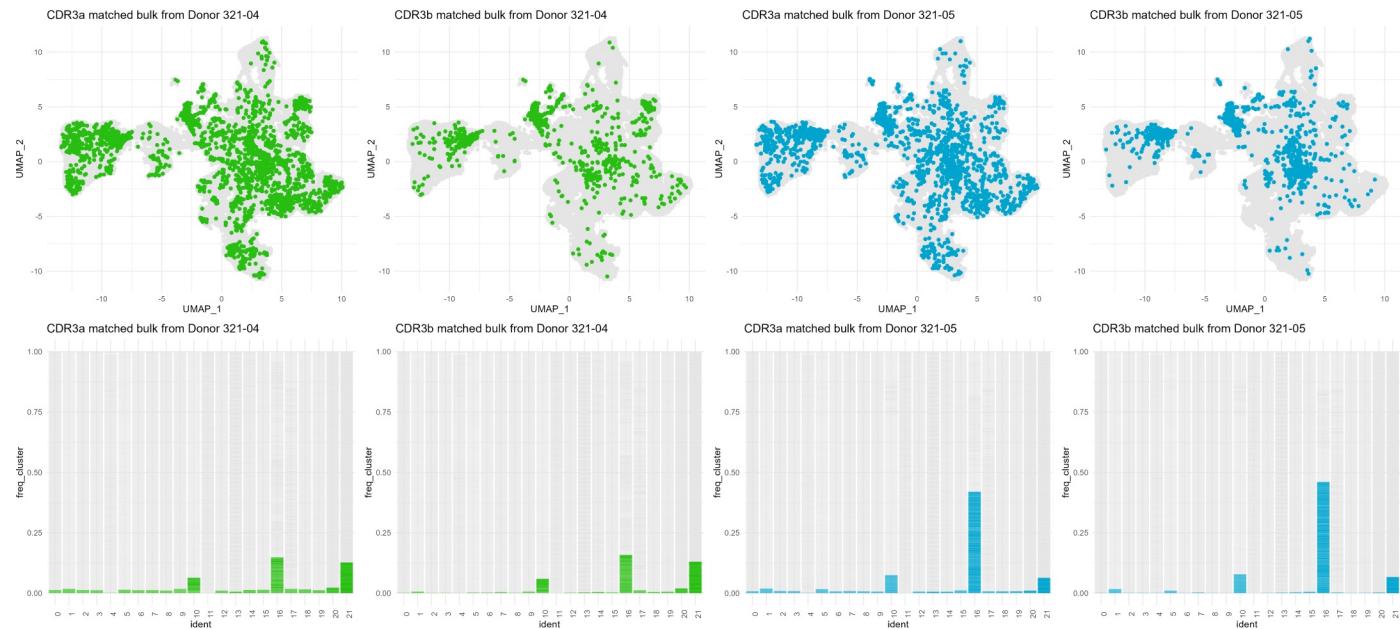
A


bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.29.555186>; this version posted August 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

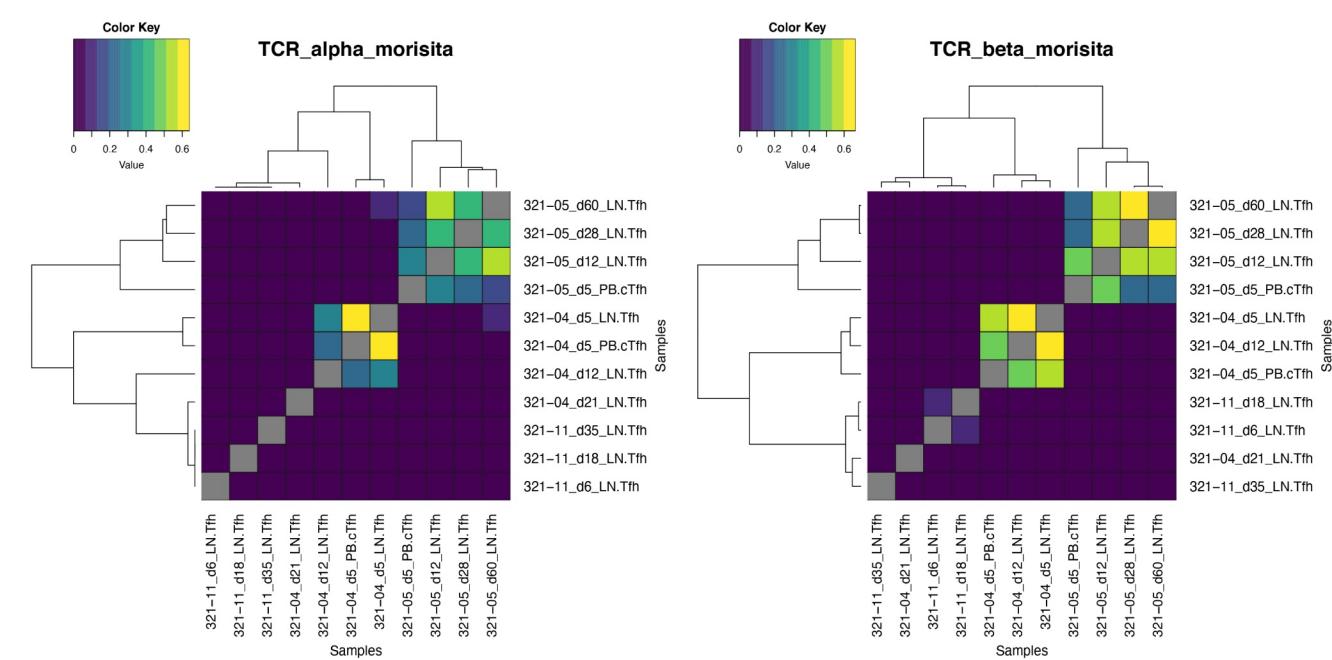
A

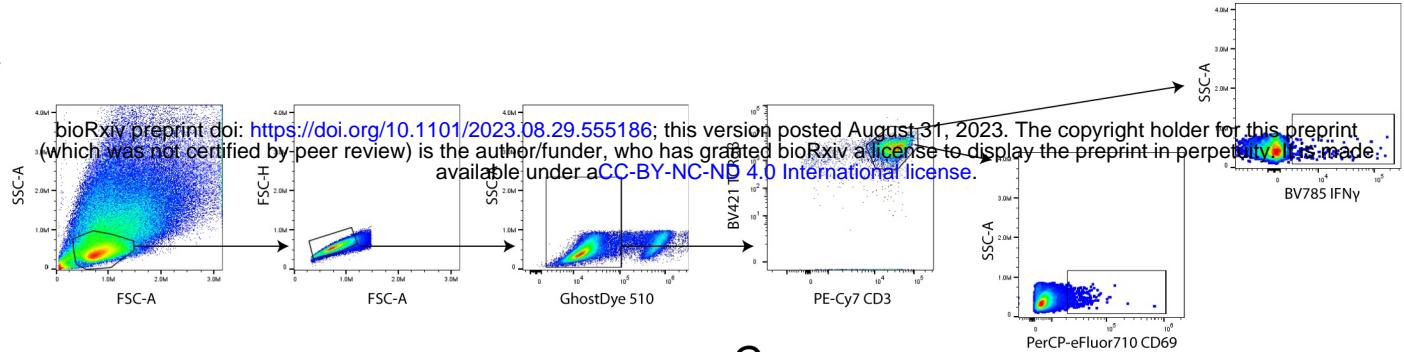


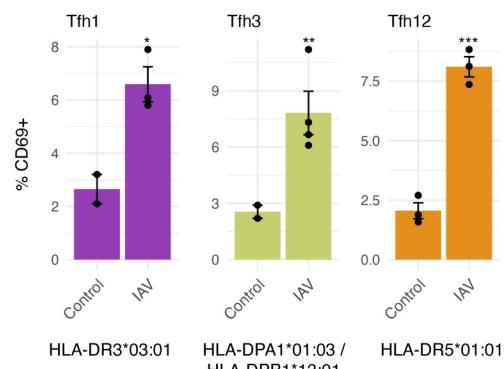
B

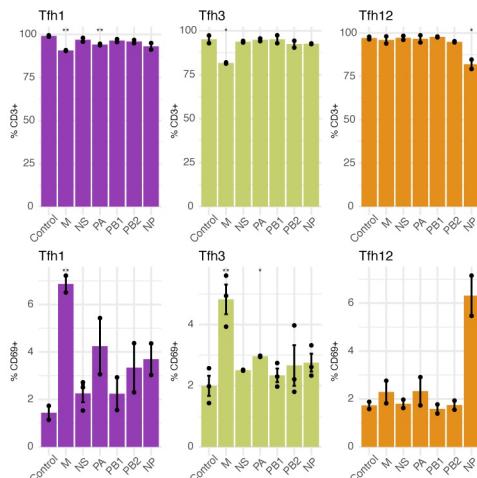


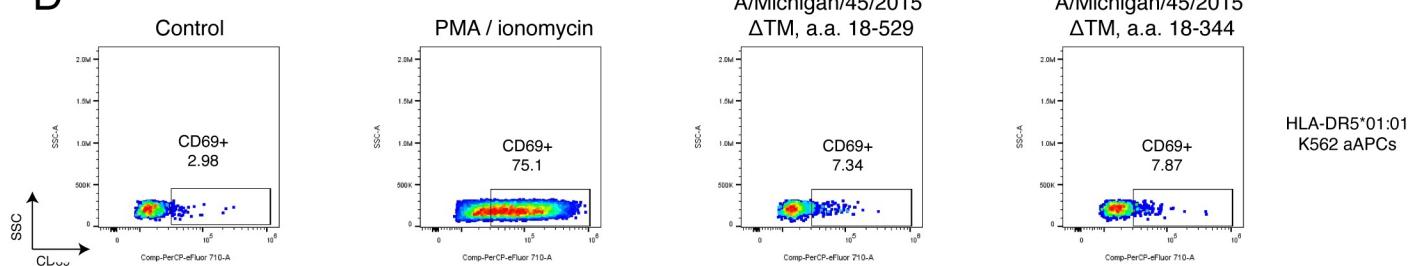
A

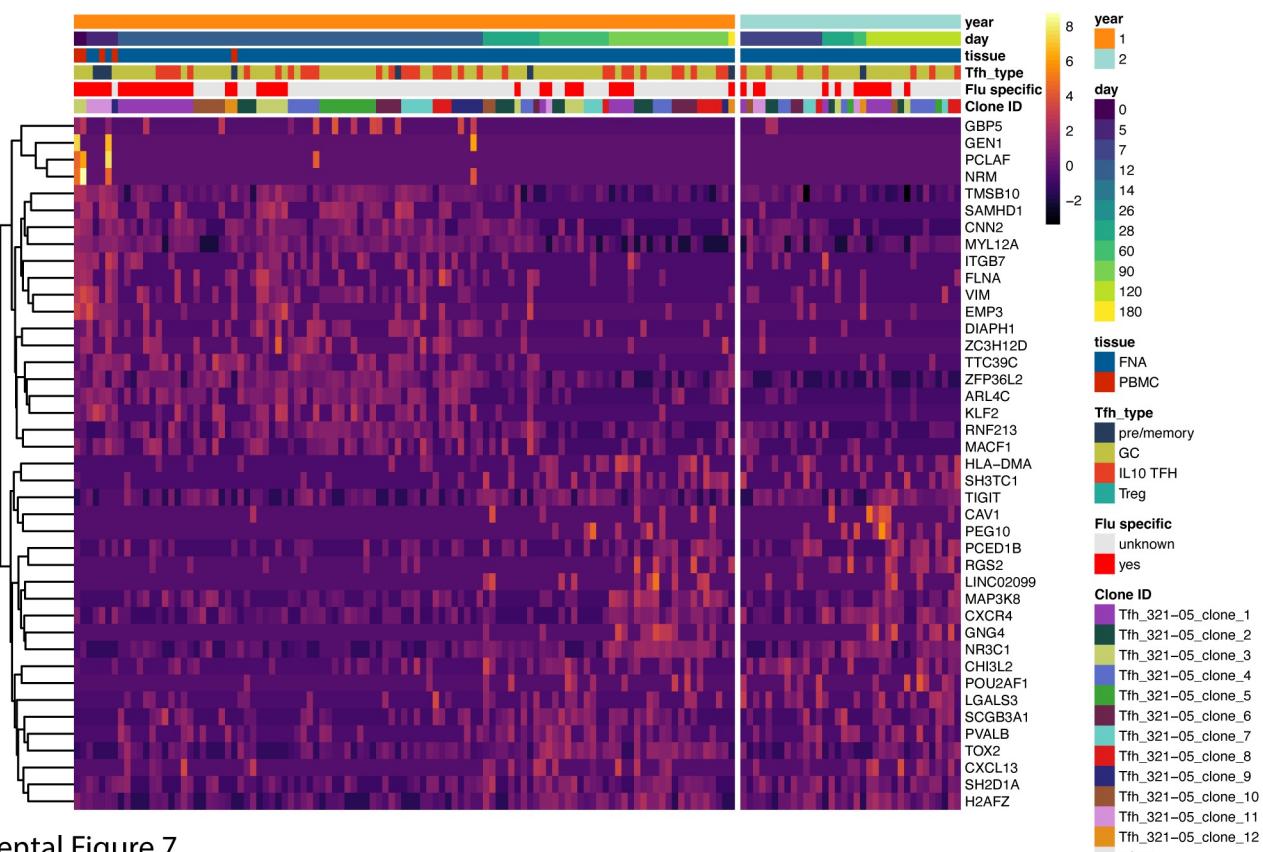

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.29.555186>; this version posted August 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


B


C


A


B


C

D

E

Supplemental Figure 7