bioRxiv preprint doi: https://doi.org/10.1101/2023.08.29.554992; this version posted August 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sparse Modeling of Genomic Landscape Identifies
Pathogenic Processes and Therapeutic Targetsin
M etastatic Breast Cancer

1+ * 1+ 1, + 1,2 1,3

Mengchen Pu ,Kai Tian ,WeishengZheng ,XiaorongLi ,KeyueFan ,Liang
1 1 L*

Zheng , Jielong Zhou , and Yingsheng Zhang
1

StoneWise, Al, Ltd., Beijing, China
2

Minzu University of China, Beijing, China
3

Capital Normal University, Beijing, China

*

Correspondence to: pumengchen@stonewise.cn (0000-0001-6282-2454) and zhangyingsheng(@stonewise.cn
(ORCID: 0000-0003-2520-3923)

n
these authors contributed equally to this work

ABSTRACT

Breast cancer is a heterogeneous disease and ranks as one of the most lethal and frequently detected
disease in the world. It poses significant challenges for precision therapy. To better decipher the patterns
of heterogeneous nature in human genome and converge them into common functionals, mutational
signatures are introduced to define the types of DNA damage, repair and replicative mechanisms that
shape the genomic landscape of each cancer patient.

In this study, we developed a deep learning (DL) model, MetaWise 2.0, based on pruning technology that
improved model generalization with deep sparsity. We applied it to patient samples from multiple
sequencing studies, and identified statistically significant mutational signatures associated with metastatic
progression using Shapley additive explanations (SHAP). We also employed gene cumulative
contribution abundance analysis to link the mutational signatures with relevant genes, which could
unearth the shared molecular mechanisms behind tumorigenesis and metastasis of each patient and lead to
novel therapeutic target identification.

Our study illustrates that MetaWise 2.0 is an effective DL tool for discovering clinically meaningful
mutational signatures in metastatic breast cancer (MBC) and relating them directly to relevant biological
functions and gene targets. These findings could facilitate the development of novel therapeutic strategies
and improve the clinical outcomes for individual patients.

| ntroduction

Cancer genome are prone to numerous mutations and rearrangements that manifest genomic instability
and heterogeneity. These variants modulate the expression and function of genes that regulate cell growth,
differentiation, survival and migration'?. The predominant cause of cancer-related morbidity and
mortality is the metastatic spread, in which cancer cells disseminate from their primary site to other parts
of the body through blood or lymphatic vessels. Metastatic processes typically involve cellular stressors
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and environmental shocks that elicit dramatic changes in the genome of cancer cells. These changes can
bestow adaptive advantages to the cancer cells, such as enhanced invasiveness and therapeutic resistance.
Therefore, elucidating the genomic characterization that underpins metastasis is crucial for devising
effective strategies to prevent and treat cancers.

Breast cancer is the most common malignancy among women worldwide. For both primary and MBC,
cumulative evidences point to the identification of the heterogeneous repertoire of disease-causing genes
from various mutational processes™*. However, due to the factors such as genomic background, lifestyle,
tumor evolution and treatment pressure, the genomic alterations in metastatic breast cancer can differ
drastically among patients. Thus, thorough genomic characterization of metastases for each patient will
provide valuable insights, and is essential to understand the effects of systemic treatment on the tumor
genome and improve the precision treatment of patients with metastatic breast cancers.

Genomic mutations can be characterized by mutational signatures defined as the proportion of mutations
falling into mutational processes defined by their nucleotide context. Somatic mutations in whole
genomes have empowered the detection of multiple mutational processes active in tumorigenesis, and
such processes manifested in the tumor genome during tumor progression and treatment. Several studies
have investigated the genomic landscape of metastatic tumors varieties®®. Deep learning methods have
been increasingly applied in the field of cancer research, particularly in studying the cancer metastasis
progress. Al-based prediction models have been developed based on clinical data, such as medical
images, gene expression profiles, etc’'*. At the same time, deep learning architectures are also being
developed for the prediction of metastasis, including multilayer perceptron, convolutional neural
networks, autoencoders, etc'>'®, These models aim to solve a binary classification problem by classifying
samples as either metastatic or non-metastatic. Several studies have shown the importance of mutational
signatures in identifying cancer-associated genes and demonstrated some promising results on how these
models guide precision medicine approaches'”". However, major challenges remain to be addressed,
including limited data accessibility, incorporation of multi-omics data, especially with extensive
phenotypic annotations, limited generalizability across diverse patient cohorts, and the poor
interpretability of DL models.

Over-parameterization, a common phenomenon in DL models, leads to high computational costs and
impaired generalizability. Network pruning, the elimination of model components, has proven to be an
effective technique that can optimize the efficiency of DL networks. This can help to reduce overfitting,
improve model interpretability, and decrease computational requirements. In this study, we introduce an
updated and extended version of MetaWise'”. In comparison to our previous version, the new MetaWise
2.0 benefits from pruning technology, and offers model the generalization capability for data from
different cohorts. Moreover, we integrated gene cumulative contribution abundance analysis with
SHapley Additive exPlanations (SHAP) analysis to detect the significant correlations through association
analysis of mutational signatures and key mutated functional genes and biological processes. These
signatures were implicated in the growth of metastatic breast cancer cells, including those related to
patient age, APOBEC enzymatic activity, DNA repair deficiency, etc. Several essential genes were
identified to be the major biomarkers of MBC. Further enrichment analysis enabled the identification of
various biological pathways involved in the development of MBC, such as the immune system processes,
cell-cell communications, etc. The model also exhibited the capability to additionally stratify patients
with MBC into more refined subgroups. This illustrates the potential utility of our updated approach, not
only to discriminate the primary and metastatic cancers but also pinpoint the disease-associated molecular
mechanisms for better therapeutic strategies of cancer treatment.

Results
Design of a sparse model for metastasis prediction

The diagram in Figure 1a illustrates the spread of MBC, originating from distinct primary sites and
migrating toward several metastatic sites in our datasets. Apart from lymph nodes and breast as the
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locoregional metastatic sites, the most frequently observed distant metastatic organs in our dataset were
liver, bone, skin and lung. As shown in Figure 1b, the distribution of molecular subtypes in our dataset
differed between primary and metastatic breast cancer patients. In primary patients, ER+/HER- and triple-
negative breast cancer (TNBC) were the two most common subtypes, accounting for 36.87% and 36.41%
of cases respectively. In metastatic patients, ER+/HER2- remained the most common subtype but with
more predominant compared to primary cases, accounting for 59.77% of metastatic cases. The remaining
distribution of metastatic patients consisted of 12.63%, 9.59% and 3.98% TNBC, ER+/HER2+ and ER-
/HER2+ respectively.
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Figure 1. a. The Sankey diagram displays metastatic spreading directions from primary breast cancer
toward several metastatic sites. Bandwidth is proportional to the number of metastatic tumor samples.
Circle border thickness is proportional to the number of metastatic samples in that site. The color code
representing the corresponding organ sites. b. The pie chart illustrates the subtypes distribution of primary
and metastatic cancers within our dataset. The red, yellow, blue and grey color represents the
ER+/HER2+, ER+/HER2-, ER-/HER2- and TNBC respectively. c. The workflow demonstrates our
updated approach, MetaWise 2.0. d. The illustration of data pre-processing. e. The illustration of model
pruning strategies.

As shown in Figure 1c, the workflow of our proposed model is illustrated, including a pruned deep
learning predictor, an explanation module, and a sub-group gene enrichment analysis module. The
predictor benefits from automated machine learning and model pruning techniques. To construct an
optimal neural network architecture for predicting metastasis, we first utilized Bayesian optimization®, an
efficient tool for hyperparameter tuning that employs a probabilistic model to guide the search through
the configuration space towards the globally optimal design. After conducting an automated architecture
search to identify the ideal configurations for architectural aspects such as the number of hidden layers
and nodes per layer, as well as fine-tuning the hyperparameters, we applied pruning to the model to
optimize it in two stages: input feature pruning and global weight pruning. Input feature pruning seeks to
decrease the dimensionality of the input data by eliminating any irrelevant or redundant features. Global
weight pruning takes a broader approach by removing weights from layers across the full model
architecture. We used the magnitude-based criterion to rank the weights according to their absolute
values, then removed a fixed percentage of weights with the smallest magnitudes, starting from 10% and
increasing by 10% until 90%. We fine-tuned the sparse model for several epochs after each pruning step
as shown in Figure le.

L everaging from Spar se model improves the performance of MetaWise-BC

In comparison to the model prior to the implementation of pruning techniques, it has been observed that
the performance of the model post-pruning exhibits a marginal improvement with respect to the validation
and internal test data. Furthermore, the model with pruned input features only or with pruned weights
only showed slightly better performance in validation dataset than pruned input features and weights
simultaneously, as shown in Table 1. This suggests that the pruning process may have facilitated the
optimization of the model, enabling it to more effectively learn from feature correlation and even make
slightly better predictions based on the training data with re-training after each pruning step.

Upon application to an external test data, it was observed that the three distinct pruning models exhibited
substantial improvements in performance compared to their pre-pruning counterparts. Notably, there was
a marked increase in recall, with an enhancement of 12%, while the F1 score demonstrated a 4.9%
increase, and test accuracy and AUC both improved by 3.6%, as shown in Table 2. Additionally, other
metrics also improved in varying degrees. These results convincingly demonstrate the power of pruning
techniques to reduce model parameters, and help to mitigate overfitting. Also, the incorporation of
pruning allows the model to better capture the key feature correlations, generalize to new data cohorts and
accurately predict a patient's potential risk of metastasis.

pruning Val acc Testacc | Testrecall | Test F1 score |Test AUC | Test
precision AUPR

No 91.5% 86.9% 90.2% 94.3% 92.2% 78.4% 96.5%
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Weight 90.6% 87.9% 90.2% 95.4% 92.7% 81.8% 97%
pruning

Input 91.5% 88.8% 92.4% 94.4% 93.4% 79.5% 96.7%
pruning

Weight + 91.5% 86% 89.1% 94.3% 91.6% 78.0% 96.4%
input
pruning

Table 1. The average training and validation performance of the model across five folds of cross-

validation.
pruning Test acc Test recall | Test precision | F1 score Test AUC | Test AUPR
No 82.6 77.6 86.4 81.7 82.6 87.6
Weight 85.5 86.9 84.7 85.7 85.5 89.1
Input 83.8 82.2 84.9 83.5 83.8 88
Weight + input | 85.5 86 85.2 85.6 85.5 89.1

Table 2. The average performance on external data

SHAP analysisinterpretsthe model

To investigate the role of mutational signatures in breast cancer metastasis, we performed SHAP analysis
on our model and identified certain signatures, such as SBS40, SBS1, SBS39, SBS8, SBS44, SBS2,
SBS31 and three de novo signatures SBS denovo 2, ID denovo 3 and ID denovo 4 which are involved
in the development of metastatic breast cancers, as shown in Supplementary Figure 1. In the pruned and
unpruned models, SHAP analysis revealed nearly the identical ten most impactful signatures. The key
factors were consistent across both models, only with varied relative importance. The clock-like signature
SBS1 is attributed to endogenous deamination of 5-methylcytosine to thymine®' which is related to age,
as well as SBS40, which has also been shown to correlate with patient age in different types of human
cancer’’. The mutational signature SBS8 is common in most cancers, but its etiology is controversial.
Recent evidence suggests that the SBSS8 signature is due to DNA damage caused by late replication
errors™, similar with defective DNA mismatch repair related signature SBS44. The uncharacterized
signature SBS39 was significantly enriched in the basal subtype compared with three other breast cancer
subtypes defined by PAMS50 (Her2, Luminal A, Luminal B) . The SBS2 is associated with activity of
the AID/APOBEC family of cytidine deaminases on the basis of similarities in the sequence context of
cytosine mutations caused by APOBEC enzymes. The SBS31 is attributed to chemotherapy treatment
with platinum drugs.
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In order to examine the consistency between pruning strategies and SHAP analysis, we conducted a very
radical pruning experiment by trimming 50% of the input features. The results showed that the eliminated
features were consistently ranked lower in SHAP analysis with a Shapley value of 0.0 as shown in
Supplementary Table 1. This suggests that the pruned input features had minimal impact on prediction
outcomes, as determined by the interpretable analysis. Our findings indicate a high degree of consistency
between the pruning strategy and SHAP analysis results, providing valuable insights into the
effectiveness of these methods in improving model performance.

Mutation signature Shapley value
SBS6 0.0
SBS7a 0.0
SBS7b 0.0
SBS12 0.0
SBS16 0.0
SBS17a 0.0
SBS19 0.0
SBS21 0.0
SBS22 0.0
SBS25 0.0
SBS26 0.0
SBS28 0.0
SBS30 0.0
SBS33 0.0
SBS35 0.0
SBS36 0.0
SBS38 0.0
SBS41 0.0
SBS88 0.0
SBS92 0.0
SBS93 0.0
SBS denovo_5 0.0
SBS denovo 6 0.0
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SBS denovo 8 0.0
SBS denovo 9 0.0
SBS denovo_ 10 0.0
SBS denovo 11 0.0
SBS denovo 12 0.0
SBS denovo 13 0.0
SBS denovo 14 0.0
SBS denovo 15 0.0
SBS denovo_16 0.0
SBS denovo 20 0.0
SBS denovo 21 0.0
SBS denovo 22 0.0
SBS denovo 23 0.0
SBS denovo 24 0.0
SBS denovo 25 0.0
SBS denovo 26 0.0
SBS denovo 27 0.0
DBS4 0.0
DBS5 0.0
DBS denovo 5 0.0
DBS_denovo 7 0.0
ID3 0.0
ID denovo 2 0.0
ID_denovo 5 0.0
ID_denovo 6 0.0
ID_denovo 7 0.0

Supplementary Table 1. The Shapley value of removed features by pruning.
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Supplementary Figure 1. SHAP result of a. original model, b. Global weights pruned model, c. Input
feature pruned model and, d. Global weights pruned and input pruned model.

To further validate the mutational signatures on model performance and results of the SHAP analysis, we
conducted ablation studies. By systematically removing input mutation signatures with high Shapley
value, we were able to assess the impact of these mutation signatures on model performance and
understand the relationship between individual input mutation signatures and their contribution to
prediction outcomes. The results of these ablation studies on top five features with large Shapley values
are presented in Table 3. Our ablation studies support the effectiveness of SHAP analysis in identifying
important mutational signatures and guiding the development of more accurate and interpretable models.
After removing the top input features with the largest Shapley values, the models performance dropped
significantly by approximately 5-10% on test accuracy. This suggests that the top features were critical to
the model's ability to predict. The sharp drop in performance after their removal highlights the importance
of these features in the model and underscores the need for careful feature selection when developing
predictive models.

Removed mutation Original Weights Input features Weights and input
signatures features

None 0.831 0.841 0.827 0.850
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SBS_denovo_2 0.803 0.822 0.817 0.822
SBS40 0.803 0.827 0.794 0.813
SBS1 0.757 0.785 0.771 0.752
SBS39 0.775 0.813 0.813 0.785
SBS8 0.738 0.761 0.752 0.742

Table 3. The model accuracy results from ablating the top features.

Cumulative contribution abundance analysis and GO enrichment analysisreveals potentially
relevant features

We conducted a comprehensive analysis to investigate the molecular mechanism behind mutation
signatures by employing the RNMF method®® and gene enrichment analysis. A key component of this
approach is the Cumulative Contribution Abundance (CCA) model, which effectively elucidates the
associations between mutational signatures and genes. By calculating the cumulative contribution of each
gene to each mutation signature, we were able to identify the genes that exerted the greatest influence on
each mutation signature. This information was then applied to determine the genes that contributed most
significantly to the mutation signature with the greatest impact for each sample. We subsequently grouped
a subset of patients exhibiting similar characteristics of the most influential mutation signatures and
obtained the most contributing genes corresponding to each patient within this subset. The resulting gene
set was undertaken to gene enrichment analysis to further elucidate the underlying biological
mechanisms.

Firstly, comparative analyses of the predicted genes enriched in primary and metastatic breast cancer
samples were performed using KEGG, Reactome, and Gene Ontology databases (figure 2a). During the
past decades, the molecular principles of metastasis remain an enigma even with the acceleration of multi-
omics research’**’. Genetic immune escape (GIE)*®, microenvironment-derived epithelial to
mesenchymal transition (EMT), cell motility**~°, breast cancer stem cells’ escape and sub localization are
well characterized in the metastatic processes. In our study, the genes enriched in primary breast tumors
are most correlated with cell growth and proliferation, cell homeostasis, and metabolism. Mutations of
these genes can promote rapid cell proliferation, inhibit apoptosis, and ultimately lead to tumor formation.
Nevertheless, the gene enriched in MBC are most correlated with immune system processes, cell
communication, cell death etc. This implies these genes may participate in tumor metastasis and late-stage
progression. The complement of these two sets showed significant differences in their corresponding
biological functions. In the primary tumor enriched gene set, PI3K/AKT signaling, RAS-MAPK
signaling, and ERBB signaling pathways were indicators of cell survival and proliferation; p53 signaling
pathway, G1/S transition, and apoptotic response will affect cell death and cell cycle; carbon and lipids
metabolism abnormality were associated with microenvironments, such as hypoxia and oxidative stress®'.
In comparison, four distinct pathways, including CCR3 pathway in inflammatory responses, PKC
pathway, G protein signaling pathways and integration of energy metabolism, were specific to the
metastasis enriched gene set. These pathways are associated with immune system processes, cell
transformation and invasion, etc*’.
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To further decipher the functions of these two distinct gene sets, we integrated them into a protein-protein
physical interaction network (PPIN) and filtered the interactions with a confidence score of less than 2.
The resulting genes were divided into six groups. As shown in Figure 2b, among these groups, five
groups contained both primary and metastatic tumor genes, while the other group contained only primary
tumor genes. The first group refers to cellular response to stimuli, especially immune response. The
primary genes were mainly involved in RTK signaling and transcription regulation. In contrast, the
metastasis genes were mainly involved in cellular surface communication and collagen recognition. The
second group refers to transcription regulation. The primary tumor gene set was enriched in P53 signaling
and hormone stimuli, while the metastasis genes were enriched in DNA repair and interleukin signaling.
The other three groups of metastasis gene set were mainly enriched in Wnt signaling, RAP1 signaling,
and calcium signaling pathway. The metastasis-specific genes were re-analyzed to characterize their
functions in cellular processes. Nine genes, including growth factors, tyrosine kinases, GTPases,
transcription factors and collagens, were involved in oncogenesis pathway (Figure 2c). For example, a
PDGF gradient will drive cells to migrate towards the high concentration edge®’; the extracellular matrix
could be remodeled by different collagen types and concentrations to create a microenvironment
supporting metastatic dissemination.
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Figure 2. Visualizations of meta-analysis results of primary and metastasis gene sets. a. The gene
ontology analysis of primary and metastasis enriched gene sets. b. The PPIN analysis of primary and
metastasis enriched gene sets. ¢. The cellular processes analysis of nine metastasis specific genes.

To validate the potential of our model to effectively cluster patients, we analyzed the distinct groups
within the metastatic patients. Eight clusters, including ID signature and SBS signature, were compared to
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elucidate their functional divergence. 3/56 genes were assigned to two clusters, and some genes in
different clusters play the same function (Figure 3a). The top 20 GO terms showed significant differences
between different clusters, e.g., SBS1 is mainly enriched in miRNA transcription, while SBS2 is involved
in protein-containing complex localization. Genes enriched in different clusters function in different
biological processes (Figure 3b).

To better understand the mechanisms that differentiate the subgroups, we selected two distinct groups
with the different highest impact mutation signatures: ID2 and SBS1. Genetic alterations analysis and
PPIN analysis were performed for both sub-groups, with the results presented in Figure 3. Our findings
revealed that the gene sets of these two patient subgroups were enriched in entirely distinct molecular
functions. The SBS1 signature indicates a C or T substitution and is believed to result from different
forms of DNA damage®. Ten genes were enriched in our prediction category. FOX04, PAX3, PLAGI
and NFIB are transcription factors; PDGFB is an RTK-related signaling protein; GNAS is a G-protein
downstream of GPCR; VTI1A and SNX29 are related to protein sorting; and MSH6 is a DNA-binding
protein which facilitates DNA mismatch repair. The functional process of FOX04, PAX3, GNAS and
PDGFB would be linked to the AKT pathway (Figure 3c). PAXS, a paralog of PAX3, has been validated
to induce the gene expression of E-cadherin®® and MiR-215°" to inhibit the expression of FAK**, thereby
suppressing breast cancer cell migration and invasion. A study of 263 breast cancer patients on cBioportal
showed that 20 single missense mutations of PAX3 were related to metastatic breast cancer. Similarly,
FOXOL silencing in hepatocellular carcinoma causes ZEB2 expression and the EMT process™, but high
expression of FOXO1 and FOXO3 upregulates matrix metalloproteinase (MMP) expression and enhances
cancer cell metastasis***!. Missense mutations of FOXO1 or FOXO4 were also correlated with breast
cancer metastasis according to genetic alterations analysis based on cBioportal database (Figure 3e).

ID1 and ID2 were the result of replication slippage with the most happening of A or T indels at long
poly(dA:dT) tracts****. The predicted ID2 cluster including FLT3 and HSP90OAA1 have functions in
protein kinase activity and CTP binding. HSP90 functioned as protein chaperone might have its dual
character in breast cancer oncogenesis: decreased HSP90 has documented to proceed invasion and
metastasis, whilst increased HSP90 enhances cell proliferation®. Intriguingly, HSP9OAA1 was confirmed
to be secreted extracellularly, and could activate EMT and migration*®*’ (Figure 3d). These results
indicate that our approach can successfully group patients in a way that reveals subsets enriched for
distinct biological processes.
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Figure 3. Visualizations of meta-analysis results based on multiple gene lists. A. predicted genes clustered
well of sub-groups of metastatic patients. B. Heatmap showing the top enrichment clusters, one row per
cluster, using a discrete color scale to represent statistical significance. Gray color indicates a lack of
significance. C. The PPIN network of SBS1, the solid line represents the physical interactions which
indicates that the proteins are part of a physical complex. The blue node represents the associated genes
from mutational signatures. D. the PPIN network of ID1, the dot line represents the functional protein
associations. E. Genetic alterations analysis of breast cancer with FOXO1, FOX04, HSP90AA1 and
FLT3.

Discussion

Over-parameterization is a common property in deep learning models, leading to increased computational
costs and reduced generalization. As a remedy, network pruning has proven to be an effective technique
to improve the efficiency of DL networks in situations where generalization is a concern and the
computational cost is limited*. It is demonstrated in our work that pruning can be applied to the input
layer of a neural network by removing input features with little to no impact on the output of the model.
Pruning can simplify the model and improve its performance by reducing noise and focusing on the most
relevant input features. Our results provide compelling evidence that our DL architecture is benefit from
pruning technology. After pruning, the SHAP analysis and external test results indicate that pruned sparse
model maintains the key input features and improves its generalization.
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Our sparse model is capable of accurately identifying patients with different mutational profiles, which
have significant implications for clinical management. Prior analysis methods can only associate
mutational signatures with crude etiology. Via incorporating SHAP and gene accumulation analyses, our
model not only can accurately predict metastasis risk in cancer patients, but for those who have
metastasized, our approach can further stratify patients based on detailed molecular characterization with
precision, portending favorable implications to inform personalized clinical management regimens. The
capacity to segregate patients based on subtle genotypic distinctions enables tailored therapeutic
interventions and prognostic predictions correlating with specific mutational profiles.

Further investigation will be justified to evaluate the clinical utility of this model, such as identifying
actionable information from defined patient risk groups, identifying the significant relationship among
mutations in coding and non-coding regions for metastasis. Due to the data confidentiality limitations, we
did not conduct further research in this direction. It is important to investigate the interpretability of the
features used by the model to predict prognosis for clinical guidance, which will be a topic of future work.
In addition, having paired genomic data of the primary tumor and metastatic lesions from the same
patients provides a powerful resource to study the genomic evolution of metastasis. Tracking the genomic
changes from primary to metastatic sites in the same individual captures the trajectory of tumor evolution
and progression in an authentic biological context, which will reveal core genomic features that
distinguish metastatic clones from primary ones while eliminating the individual difference effects.
Moreover, Martinez-Jiménez et. al. found that the metastatic tumors have a higher frequency of structural
variants®. Incorporating additional structural mutation signature data and copy number variations (CNVs)
has the potential to further improve Al algorithms from diverse multi-omics datasets. Leveraging diverse
genomic data types, including structural variants, expression data across diverse populations worldwide
will promote advances in Al for genomic medicines and enable more personalized therapies.

Methods
Genomic Data acquisition

The mutational signature contribution matrices pertaining to primary breast cancers within the Pan-
Cancer Analysis of Whole Genomes (PCAWG) cohort, and metastatic breast cancers within the Hartwig
Medical Foundation (HMF) cohort, were extracted from the supplementary tables of the reference®. The
dataset encompasses two types of contribution matrices. The first one is denoted as “signature
contributions”, encompassing the contributions for the mutational signatures detected in the two cohorts

individually. The second type, termed "etiology contributions”, amalgamates the contributions of identical
etiologies. For instance, contributions from mutational signatures SBS2 and SBS13 were conjoined to
signify the collective contribution of the APOBEC etiology. In this study, we applied the “signature
contributions” matrices for the training and validation of our models.

To constitute an external test dataset, we retrieved somatic mutation data from the BRCA-EU cohort,
encompassing primary breast cancers, via the International Cancer Genome Consortium (ICGC) data
portal (https://dcc.icgc.org/). Furthermore, we sourced somatic mutation data from the POG570 cohort®,
containing metastatic breast cancers, from https://www.bcgsc.ca/downloads/POG570. In a bid to uphold
data quality, samples characterized by low mutation burdens (mutation count < 50) were systematically
excluded from the analysis. This curation process led to a refined dataset consist of 496 primary breast
cancer samples and 127 metastatic breast cancer samples.

Mutational signatures extraction

As shown in Figure 1d, to ascertain the mutational signature contributions from an external dataset, we
implemented a comparable mutational signatures analysis pipeline, as delineated in reference®, albeit with
certain modifications. In essence, we categorized somatic mutations within the external dataset into 96
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SBS, 78 DBS, and 83 ID classes, as expounded upon in the earlier study®. The relative frequencies of
each category within these channels were computed through utilization of the R package mutSigExtractor
(https://github.com/UMCUGenetics/mutSigExtractor, v1.23). In order to ensure agreement with the
mutational signatures employed in our model training and to mitigate potential bleeding effects stemming
from the mutational signature extraction process, we refrained from conducting de novo mutational
signatures extraction on the external dataset. Instead, we opted to leverage the 14 SBS, 5 DBS, and 9 ID
mutational signatures previously identified within breast cancer instances within the PCAWG and HMF
cohorts, employing these as reference signatures. Then, the fitToSignatures() function of
mutSigExtractor, which employing a least square fitting algorithm, was applied to ascertain the
individualized contributions of the aforementioned reference signatures within each sample from the
external dataset. The matrices denoting these contribution values were subsequently employed as input
features for evaluating the performance of our model.

Implementation of MetaWise 2.0

The updated MetaWise framework consists of two modules: the classification module and the pathogenic
process identification module. The workflow is shown is Figure 1c. The classification module aims to
predict the metastasis possibility of a patient based on their genomic data. The pathogenic process
identification module aims to identify the key biological processes that are associated with metastasis
process from the genomic profile of patients.

Model design and evaluation

We implemented our model using the Keras framework with Tensorflow as the backend. Our model
consists of fully-connected layers, each followed by a batch normalization layer and a ReLU activation
function, with a softmax output layer. To optimize the performance of our model, we fine-tuned various
hyperparameters, such as the learning rate, the weight decay, the dropout rate, and the activation function.
The pruning process was performed by Keras prune low magnitude function.

We evaluated the performance of the updated approach and compared with our previous model,
MetaWise'” by five-fold cross validation. We measured the accuracy, recall, precision, specificity, F1-
score, the matthews correlation coefficient (MCC) and the area under the receiver operating characteristic
curve (AUROC) and the area under the precision recall curve (AUPR) on both internal and external test
sets. We compared the results of weight pruning, input feature pruning and global pruning to identify the
best pruning strategy.

Model interpretability analysis

We employed SHAP (SHapley Additive exPlanations) analysis to gain insights into the explanation of
our model and to reveal the significance and impact of various mutation signatures on the prediction.
SHAP analysis can offer both global and local explanations of the model, as well as feature interactions
and dependencies. We utilized the Python library, shap™, to conduct SHAP analysis for our model. After
we identified the important mutation signatures for each sub-set data, we associated genes with
mutational signatures using gene cumulative contribution abundance analysis® to understand the
pathogenesis of patients.

Cumulative contribution abundance analysis

In order to in-depth mine the relationship between genes and mutational signatures, the mutational
signature analysis was performed to associate mutational signatures with genes. A simple and practical R
package, RNMF?*, was applied by analyzing cumulative contribution abundance of genes.

GO enrichment analysis

Gene Ontology (GO) term enrichment analysis was performed to identify over-represented GO terms in
our gene set of interest. The GO system of classification assigns genes to a set of predefined bins based on
their functional characteristics. Enrichment analysis identifies which GO terms are over-represented (or
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under-represented) in the gene set using annotations for that gene set. Enrichment analysis was performed
using the clusterProfiler’!, which is an R package that provides functions for statistical analysis and
visualization of functional profiles for genes and gene clusters. It can be used to identify enriched gene
sets in a cluster of genes, or to compare the functional profiles of two or more clusters. The GO aspect
(molecular function, biological process, cellular component) for the analysis was selected, as well as the
species from which the genes come. The results page displays a table that lists significant shared GO
terms used to describe the set of genes entered.

Statistical analysis and results visualization
Ablation experiment

To perform the ablation experiments, we first ranked the input features according to their Shapley values.
Then, we removed the top-ranked input features one at a time, retrained the model on the remaining
features, and evaluated its performance using a variety of metrics. The results of these ablation
experiments were analyzed to determine the impact of each removed input feature on model performance.

meta-analysis

Additional pathway enrichment analyses, gene list annotations and protein-protein interaction network
analysis were performed using the free online meta-analysis tool Metascape™ (https://metascape.org/).

Code availability

Code will be uploaded to the github repository (https://github.com/promethiume/MetaWise) once the paper has been
conditionally accepted, and are available from the corresponding author on reasonable request during the manuscript
review process.
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