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ABSTRACT  
Breast cancer is a heterogeneous disease and ranks as one of the most lethal and frequently detected 
disease in the world. It poses significant challenges for precision therapy. To better decipher the patterns 
of heterogeneous nature in human genome and converge them into common functionals, mutational 
signatures are introduced to define the types of DNA damage, repair and replicative mechanisms that 
shape the genomic landscape of each cancer patient. 
In this study, we developed a deep learning (DL) model, MetaWise 2.0, based on pruning technology that 
improved model generalization with deep sparsity. We applied it to patient samples from multiple 
sequencing studies, and identified statistically significant mutational signatures associated with metastatic 
progression using Shapley additive explanations (SHAP). We also employed gene cumulative 
contribution abundance analysis to link the mutational signatures with relevant genes, which could 
unearth the shared molecular mechanisms behind tumorigenesis and metastasis of each patient and lead to 
novel therapeutic target identification. 
Our study illustrates that MetaWise 2.0 is an effective DL tool for discovering clinically meaningful 
mutational signatures in metastatic breast cancer (MBC) and relating them directly to relevant biological 
functions and gene targets. These findings could facilitate the development of novel therapeutic strategies 
and improve the clinical outcomes for individual patients. 

Introduction  
Cancer genome are prone to numerous mutations and rearrangements that manifest genomic instability 
and heterogeneity. These variants modulate the expression and function of genes that regulate cell growth, 
differentiation, survival and migration1,2. The predominant cause of cancer-related morbidity and 
mortality is the metastatic spread, in which cancer cells disseminate from their primary site to other parts 
of the body through blood or lymphatic vessels. Metastatic processes typically involve cellular stressors 
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and environmental shocks that elicit dramatic changes in the genome of cancer cells. These changes can 
bestow adaptive advantages to the cancer cells, such as enhanced invasiveness and therapeutic resistance. 
Therefore, elucidating the genomic characterization that underpins metastasis is crucial for devising 
effective strategies to prevent and treat cancers. 
Breast cancer is the most common malignancy among women worldwide. For both primary and MBC, 
cumulative evidences point to the identification of the heterogeneous repertoire of disease-causing genes 
from various mutational processes3,4. However, due to the factors such as genomic background, lifestyle, 
tumor evolution and treatment pressure, the genomic alterations in metastatic breast cancer can differ 
drastically among patients. Thus, thorough genomic characterization of metastases for each patient will 
provide valuable insights, and is essential to understand the effects of systemic treatment on the tumor 
genome and improve the precision treatment of patients with metastatic breast cancers.  
Genomic mutations can be characterized by mutational signatures defined as the proportion of mutations 
falling into mutational processes defined by their nucleotide context. Somatic mutations in whole 
genomes have empowered the detection of multiple mutational processes active in tumorigenesis, and 
such processes manifested in the tumor genome during tumor progression and treatment. Several studies 
have investigated the genomic landscape of metastatic tumors varieties5-8. Deep learning methods have 
been increasingly applied in the field of cancer research, particularly in studying the cancer metastasis 
progress. AI-based prediction models have been developed based on clinical data, such as medical 
images, gene expression profiles, etc9-14. At the same time, deep learning architectures are also being 
developed for the prediction of metastasis, including multilayer perceptron, convolutional neural 
networks, autoencoders, etc15-18. These models aim to solve a binary classification problem by classifying 
samples as either metastatic or non-metastatic. Several studies have shown the importance of mutational 
signatures in identifying cancer-associated genes and demonstrated some promising results on how these 
models guide precision medicine approaches17,19. However, major challenges remain to be addressed, 
including limited data accessibility, incorporation of multi-omics data, especially with extensive 
phenotypic annotations, limited generalizability across diverse patient cohorts, and the poor 
interpretability of DL models.  
Over-parameterization, a common phenomenon in DL models, leads to high computational costs and 
impaired generalizability. Network pruning, the elimination of model components, has proven to be an 
effective technique that can optimize the efficiency of DL networks. This can help to reduce overfitting, 
improve model interpretability, and decrease computational requirements. In this study, we introduce an 
updated and extended version of MetaWise17. In comparison to our previous version, the new MetaWise 
2.0 benefits from pruning technology, and offers model the generalization capability for data from 
different cohorts. Moreover, we integrated gene cumulative contribution abundance analysis with 
SHapley Additive exPlanations (SHAP) analysis to detect the significant correlations through association 
analysis of mutational signatures and key mutated functional genes and biological processes. These 
signatures were implicated in the growth of metastatic breast cancer cells, including those related to 
patient age, APOBEC enzymatic activity, DNA repair deficiency, etc. Several essential genes were 
identified to be the major biomarkers of MBC. Further enrichment analysis enabled the identification of 
various biological pathways involved in the development of MBC, such as the immune system processes, 
cell-cell communications, etc. The model also exhibited the capability to additionally stratify patients 
with MBC into more refined subgroups. This illustrates the potential utility of our updated approach, not 
only to discriminate the primary and metastatic cancers but also pinpoint the disease-associated molecular 
mechanisms for better therapeutic strategies of cancer treatment. 

Results  
Design of a sparse model for metastasis prediction 
The diagram in Figure 1a illustrates the spread of MBC, originating from distinct primary sites and 
migrating toward several metastatic sites in our datasets. Apart from lymph nodes and breast as the 
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locoregional metastatic sites, the most frequently observed distant metastatic organs in our dataset were 
liver, bone, skin and lung. As shown in Figure 1b, the distribution of molecular subtypes in our dataset 
differed between primary and metastatic breast cancer patients. In primary patients, ER+/HER- and triple-
negative breast cancer (TNBC) were the two most common subtypes, accounting for 36.87% and 36.41% 
of cases respectively. In metastatic patients, ER+/HER2- remained the most common subtype but with 
more predominant compared to primary cases, accounting for 59.77% of metastatic cases. The remaining 
distribution of metastatic patients consisted of 12.63%, 9.59% and 3.98% TNBC, ER+/HER2+ and ER-
/HER2+ respectively. 
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Figure 1. a. The Sankey diagram displays metastatic spreading directions from primary breast cancer 
toward several metastatic sites. Bandwidth is proportional to the number of metastatic tumor samples. 
Circle border thickness is proportional to the number of metastatic samples in that site. The color code 
representing the corresponding organ sites. b. The pie chart illustrates the subtypes distribution of primary 
and metastatic cancers within our dataset. The red, yellow, blue and grey color represents the 
ER+/HER2+, ER+/HER2-, ER-/HER2- and TNBC respectively. c. The workflow demonstrates our 
updated approach, MetaWise 2.0. d. The illustration of data pre-processing. e. The illustration of model 
pruning strategies. 
As shown in Figure 1c, the workflow of our proposed model is illustrated, including a pruned deep 
learning predictor, an explanation module, and a sub-group gene enrichment analysis module. The 
predictor benefits from automated machine learning and model pruning techniques. To construct an 
optimal neural network architecture for predicting metastasis, we first utilized Bayesian optimization20, an 
efficient tool for hyperparameter tuning that employs a probabilistic model to guide the search through 
the configuration space towards the globally optimal design. After conducting an automated architecture 
search to identify the ideal configurations for architectural aspects such as the number of hidden layers 
and nodes per layer, as well as fine-tuning the hyperparameters, we applied pruning to the model to 
optimize it in two stages: input feature pruning and global weight pruning. Input feature pruning seeks to 
decrease the dimensionality of the input data by eliminating any irrelevant or redundant features. Global 
weight pruning takes a broader approach by removing weights from layers across the full model 
architecture. We used the magnitude-based criterion to rank the weights according to their absolute 
values, then removed a fixed percentage of weights with the smallest magnitudes, starting from 10% and 
increasing by 10% until 90%. We fine-tuned the sparse model for several epochs after each pruning step 
as shown in Figure 1e. 
 
Leveraging from Sparse model improves the performance of MetaWise-BC 
In comparison to the model prior to the implementation of pruning techniques, it has been observed that 
the performance of the model post-pruning exhibits a marginal improvement with respect to the validation 
and internal test data. Furthermore, the model with pruned input features only or with pruned weights 
only showed slightly better performance in validation dataset than pruned input features and weights 
simultaneously, as shown in Table 1. This suggests that the pruning process may have facilitated the 
optimization of the model, enabling it to more effectively learn from feature correlation and even make 
slightly better predictions based on the training data with re-training after each pruning step. 
 
Upon application to an external test data, it was observed that the three distinct pruning models exhibited 
substantial improvements in performance compared to their pre-pruning counterparts. Notably, there was 
a marked increase in recall, with an enhancement of 12%, while the F1 score demonstrated a 4.9% 
increase, and test accuracy and AUC both improved by 3.6%, as shown in Table 2. Additionally, other 
metrics also improved in varying degrees. These results convincingly demonstrate the power of pruning 
techniques to reduce model parameters, and help to mitigate overfitting. Also, the incorporation of 
pruning allows the model to better capture the key feature correlations, generalize to new data cohorts and  
accurately predict a patient's potential risk of metastasis. 
 

pruning Val acc Test acc Test recall Test 
precision 

F1 score Test AUC Test 
AUPR 

No 91.5% 86.9% 90.2% 94.3% 92.2% 78.4% 96.5% 
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Weight 
pruning 

90.6% 87.9% 90.2% 95.4% 92.7% 81.8% 97% 

Input 
pruning 

91.5% 88.8% 92.4% 94.4% 93.4% 79.5% 96.7% 

Weight + 
input 
pruning 

91.5% 86% 89.1% 94.3% 91.6% 78.0% 96.4% 

 
Table 1. The average training and validation performance of the model across five folds of cross-
validation. 
 

pruning Test acc Test recall Test precision F1 score Test AUC Test AUPR 

No 82.6 77.6 86.4 81.7 82.6 87.6 

Weight  85.5 86.9 84.7 85.7 85.5 89.1 

Input  83.8 82.2 84.9 83.5 83.8 88 

Weight + input  85.5 86 85.2 85.6 85.5 89.1 

 
Table 2. The average performance on external data 
 
SHAP analysis interprets the model 
To investigate the role of mutational signatures in breast cancer metastasis, we performed SHAP analysis 
on our model and identified certain signatures, such as SBS40, SBS1, SBS39, SBS8, SBS44, SBS2, 
SBS31 and three de novo signatures SBS_denovo_2, ID_denovo_3 and ID_denovo_4 which are involved 
in the development of metastatic breast cancers, as shown in Supplementary Figure 1. In the pruned and 
unpruned models, SHAP analysis revealed nearly the identical ten most impactful signatures. The key 
factors were consistent across both models, only with varied relative importance. The clock-like signature 
SBS1 is attributed to endogenous deamination of 5-methylcytosine to thymine21 which is related to age, 
as well as SBS40, which has also been shown to correlate with patient age in different types of human 
cancer22. The mutational signature SBS8 is common in most cancers, but its etiology is controversial. 
Recent evidence suggests that the SBS8 signature is due to DNA damage caused by late replication 
errors23, similar with defective DNA mismatch repair related signature SBS44. The uncharacterized 
signature SBS39 was significantly enriched in the basal subtype compared with three other breast cancer 
subtypes defined by PAM50 (Her2, Luminal A, Luminal B) 24. The SBS2 is associated with activity of 
the AID/APOBEC family of cytidine deaminases on the basis of similarities in the sequence context of 
cytosine mutations caused by APOBEC enzymes. The SBS31 is attributed to chemotherapy treatment 
with platinum drugs. 
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In order to examine the consistency between pruning strategies and SHAP analysis, we conducted a very 
radical pruning experiment by trimming 50% of the input features. The results showed that the eliminated 
features were consistently ranked lower in SHAP analysis with a Shapley value of 0.0 as shown in 
Supplementary Table 1. This suggests that the pruned input features had minimal impact on prediction 
outcomes, as determined by the interpretable analysis. Our findings indicate a high degree of consistency 
between the pruning strategy and SHAP analysis results, providing valuable insights into the 
effectiveness of these methods in improving model performance. 
 

Mutation signature Shapley value 

SBS6     0.0 

SBS7a 0.0 

SBS7b 0.0 

SBS12 0.0 

SBS16 0.0 

SBS17a 0.0 

SBS19 0.0 

SBS21 0.0 

SBS22 0.0 

SBS25 0.0 

SBS26 0.0 

SBS28 0.0 

SBS30 0.0 

SBS33 0.0 

SBS35 0.0 

SBS36 0.0 

SBS38 0.0 

SBS41 0.0 

SBS88 0.0 

SBS92 0.0 

SBS93 0.0 

SBS_denovo_5 0.0 

SBS_denovo_6 0.0 
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SBS_denovo_8 0.0 

SBS_denovo_9 0.0 

SBS_denovo_10 0.0 

SBS_denovo_11 0.0 

SBS_denovo_12 0.0 

SBS_denovo_13 0.0 

SBS_denovo_14 0.0 

SBS_denovo_15 0.0 

SBS_denovo_16 0.0 

SBS_denovo_20 0.0 

SBS_denovo_21 0.0 

SBS_denovo_22 0.0 

SBS_denovo_23 0.0 

SBS_denovo_24 0.0 

SBS_denovo_25 0.0 

SBS_denovo_26 0.0 

SBS_denovo_27 0.0 

DBS4 0.0 

DBS5 0.0 

DBS_denovo_5 0.0 

DBS_denovo_7 0.0 

ID3 0.0 

ID_denovo_2 0.0 

ID_denovo_5 0.0 

ID_denovo_6 0.0 

ID_denovo_7       0.0 

 
Supplementary Table 1. The Shapley value of removed features by pruning. 
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Supplementary Figure 1. SHAP result of a. original model, b. Global weights pruned model, c. Input 
feature pruned model and, d. Global weights pruned and input pruned model. 
 
To further validate the mutational signatures on model performance and results of the SHAP analysis, we 
conducted ablation studies. By systematically removing input mutation signatures with high Shapley 
value, we were able to assess the impact of these mutation signatures on model performance and 
understand the relationship between individual input mutation signatures and their contribution to 
prediction outcomes. The results of these ablation studies on top five features with large Shapley values 
are presented in Table 3. Our ablation studies support the effectiveness of SHAP analysis in identifying 
important mutational signatures and guiding the development of more accurate and interpretable models. 
After removing the top input features with the largest Shapley values, the models performance dropped 
significantly by approximately 5-10% on test accuracy. This suggests that the top features were critical to 
the model’s ability to predict. The sharp drop in performance after their removal highlights the importance 
of these features in the model and underscores the need for careful feature selection when developing 
predictive models. 

Removed mutation 
signatures 

Original Weights Input features Weights and input 
features 

None 0.831 0.841 0.827 0.850 
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SBS_denovo_2 0.803 0.822 0.817 0.822 

SBS40 0.803 0.827 0.794 0.813 

SBS1 0.757 0.785 0.771 0.752 

SBS39 0.775 0.813 0.813 0.785 

SBS8 0.738 0.761 0.752 0.742 

 
Table 3. The model accuracy results from ablating the top features. 
 
Cumulative contribution abundance analysis and GO enrichment analysis reveals potentially 
relevant features 
We conducted a comprehensive analysis to investigate the molecular mechanism behind mutation 
signatures by employing the RNMF method25 and gene enrichment analysis. A key component of this 
approach is the Cumulative Contribution Abundance (CCA) model, which effectively elucidates the 
associations between mutational signatures and genes. By calculating the cumulative contribution of each 
gene to each mutation signature, we were able to identify the genes that exerted the greatest influence on 
each mutation signature. This information was then applied to determine the genes that contributed most 
significantly to the mutation signature with the greatest impact for each sample. We subsequently grouped 
a subset of patients exhibiting similar characteristics of the most influential mutation signatures and 
obtained the most contributing genes corresponding to each patient within this subset. The resulting gene 
set was undertaken to gene enrichment analysis to further elucidate the underlying biological 
mechanisms. 
Firstly, comparative analyses of the predicted genes enriched in primary and metastatic breast cancer 
samples were performed using KEGG, Reactome, and Gene Ontology databases (figure 2a). During the 
past decades, the molecular principles of metastasis remain an enigma even with the acceleration of multi-
omics research26,27. Genetic immune escape (GIE)28, microenvironment-derived epithelial to 
mesenchymal transition (EMT), cell motility29,30, breast cancer stem cells’ escape and sub localization are 
well characterized in the metastatic processes. In our study, the genes enriched in primary breast tumors 
are most correlated with cell growth and proliferation, cell homeostasis, and metabolism. Mutations of 
these genes can promote rapid cell proliferation, inhibit apoptosis, and ultimately lead to tumor formation. 
Nevertheless, the gene enriched in MBC are most correlated with immune system processes, cell 
communication, cell death etc. This implies these genes may participate in tumor metastasis and late-stage 
progression. The complement of these two sets showed significant differences in their corresponding 
biological functions. In the primary tumor enriched gene set, PI3K/AKT signaling, RAS-MAPK 
signaling, and ERBB signaling pathways were indicators of cell survival and proliferation; p53 signaling 
pathway, G1/S transition, and apoptotic response will affect cell death and cell cycle; carbon and lipids 
metabolism abnormality were associated with microenvironments, such as hypoxia and oxidative stress31. 
In comparison, four distinct pathways, including CCR3 pathway in inflammatory responses, PKC 
pathway, G protein signaling pathways and integration of energy metabolism, were specific to the 
metastasis enriched gene set. These pathways are associated with immune system processes, cell 
transformation and invasion, etc32. 
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To further decipher the functions of these two distinct gene sets, we integrated them into a protein-protein 
physical interaction network (PPIN) and filtered the interactions with a confidence score of less than 2. 
The resulting genes were divided into six groups. As shown in Figure 2b, among these groups, five 
groups contained both primary and metastatic tumor genes, while the other group contained only primary 
tumor genes. The first group refers to cellular response to stimuli, especially immune response. The 
primary genes were mainly involved in RTK signaling and transcription regulation. In contrast, the 
metastasis genes were mainly involved in cellular surface communication and collagen recognition. The 
second group refers to transcription regulation. The primary tumor gene set was enriched in P53 signaling 
and hormone stimuli, while the metastasis genes were enriched in DNA repair and interleukin signaling. 
The other three groups of metastasis gene set were mainly enriched in Wnt signaling, RAP1 signaling, 
and calcium signaling pathway. The metastasis-specific genes were re-analyzed to characterize their 
functions in cellular processes. Nine genes, including growth factors, tyrosine kinases, GTPases, 
transcription factors and collagens, were involved in oncogenesis pathway (Figure 2c). For example, a 
PDGF gradient will drive cells to migrate towards the high concentration edge33; the extracellular matrix 
could be remodeled by different collagen types and concentrations to create a microenvironment 
supporting metastatic dissemination34. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.554992doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.554992
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Figure 2. Visualizations of meta-analysis results of primary and metastasis gene sets. a. The gene 
ontology analysis of primary and metastasis enriched gene sets. b. The PPIN analysis of primary and 
metastasis enriched gene sets. c. The cellular processes analysis of nine metastasis specific genes. 
 
To validate the potential of our model to effectively cluster patients, we analyzed the distinct groups 
within the metastatic patients. Eight clusters, including ID signature and SBS signature, were compared to 
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elucidate their functional divergence. 3/56 genes were assigned to two clusters, and some genes in 
different clusters play the same function (Figure 3a). The top 20 GO terms showed significant differences 
between different clusters, e.g., SBS1 is mainly enriched in miRNA transcription, while SBS2 is involved 
in protein-containing complex localization. Genes enriched in different clusters function in different 
biological processes (Figure 3b).  
To better understand the mechanisms that differentiate the subgroups, we selected two distinct groups 
with the different highest impact mutation signatures: ID2 and SBS1. Genetic alterations analysis and 
PPIN analysis were performed for both sub-groups, with the results presented in Figure 3. Our findings 
revealed that the gene sets of these two patient subgroups were enriched in entirely distinct molecular 
functions. The SBS1 signature indicates a C or T substitution and is believed to result from different 
forms of DNA damage35. Ten genes were enriched in our prediction category. FOXO4, PAX3, PLAG1 
and NFIB are transcription factors; PDGFB is an RTK-related signaling protein; GNAS is a G-protein 
downstream of GPCR; VTI1A and SNX29 are related to protein sorting; and MSH6 is a DNA-binding 
protein which facilitates DNA mismatch repair. The functional process of FOXO4, PAX3, GNAS and 
PDGFB would be linked to the AKT pathway (Figure 3c). PAX5, a paralog of PAX3, has been validated 
to induce the gene expression of E-cadherin36 and MiR-21537 to inhibit the expression of FAK38, thereby 
suppressing breast cancer cell migration and invasion. A study of 263 breast cancer patients on cBioportal 
showed that 20 single missense mutations of PAX3 were related to metastatic breast cancer. Similarly, 
FOXO1 silencing in hepatocellular carcinoma causes ZEB2 expression and the EMT process39, but high 
expression of FOXO1 and FOXO3 upregulates matrix metalloproteinase (MMP) expression and enhances 
cancer cell metastasis40,41. Missense mutations of FOXO1 or FOXO4 were also correlated with breast 
cancer metastasis according to genetic alterations analysis based on cBioportal database (Figure 3e).  
ID1 and ID2 were the result of replication slippage with the most happening of A or T indels at long 
poly(dA:dT) tracts42-44. The predicted ID2 cluster including FLT3 and HSP90AA1 have functions in 
protein kinase activity and CTP binding. HSP90 functioned as protein chaperone might have its dual 
character in breast cancer oncogenesis: decreased HSP90 has documented to proceed invasion and 
metastasis, whilst increased HSP90 enhances cell proliferation45. Intriguingly, HSP90AA1 was confirmed 
to be secreted extracellularly, and could activate EMT and migration46,47 (Figure 3d).  These results 
indicate that our approach can successfully group patients in a way that reveals subsets enriched for 
distinct biological processes. 
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Figure 3. Visualizations of meta-analysis results based on multiple gene lists. A. predicted genes clustered 
well of sub-groups of metastatic patients. B. Heatmap showing the top enrichment clusters, one row per 
cluster, using a discrete color scale to represent statistical significance. Gray color indicates a lack of 
significance. C. The PPIN network of SBS1, the solid line represents the physical interactions which 
indicates that the proteins are part of a physical complex. The blue node represents the associated genes 
from mutational signatures. D. the PPIN network of ID1, the dot line represents the functional protein 
associations.  E. Genetic alterations analysis of breast cancer with FOXO1, FOXO4, HSP90AA1 and 
FLT3. 
 

Discussion  
Over-parameterization is a common property in deep learning models, leading to increased computational 
costs and reduced generalization. As a remedy, network pruning has proven to be an effective technique 
to improve the efficiency of DL networks in situations where generalization is a concern and the 
computational cost is limited48. It is demonstrated in our work that pruning can be applied to the input 
layer of a neural network by removing input features with little to no impact on the output of the model. 
Pruning can simplify the model and improve its performance by reducing noise and focusing on the most 
relevant input features. Our results provide compelling evidence that our DL architecture is benefit from 
pruning technology. After pruning, the SHAP analysis and external test results indicate that pruned sparse 
model maintains the key input features and improves its generalization. 
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Our sparse model is capable of accurately identifying patients with different mutational profiles, which 
have significant implications for clinical management. Prior analysis methods can only associate 
mutational signatures with crude etiology. Via incorporating SHAP and gene accumulation analyses, our 
model not only can accurately predict metastasis risk in cancer patients, but for those who have 
metastasized, our approach can further stratify patients based on detailed molecular characterization with 
precision, portending favorable implications to inform personalized clinical management regimens. The 
capacity to segregate patients based on subtle genotypic distinctions enables tailored therapeutic 
interventions and prognostic predictions correlating with specific mutational profiles. 
Further investigation will be justified to evaluate the clinical utility of this model, such as identifying 
actionable information from defined patient risk groups, identifying the significant relationship among 
mutations in coding and non-coding regions for metastasis. Due to the data confidentiality limitations, we 
did not conduct further research in this direction. It is important to investigate the interpretability of the 
features used by the model to predict prognosis for clinical guidance, which will be a topic of future work. 
In addition, having paired genomic data of the primary tumor and metastatic lesions from the same 
patients provides a powerful resource to study the genomic evolution of metastasis. Tracking the genomic 
changes from primary to metastatic sites in the same individual captures the trajectory of tumor evolution 
and progression in an authentic biological context, which will reveal core genomic features that 
distinguish metastatic clones from primary ones while eliminating the individual difference effects. 
Moreover, Martínez-Jiménez et. al. found that the metastatic tumors have a higher frequency of structural 
variants8. Incorporating additional structural mutation signature data and copy number variations (CNVs) 
has the potential to further improve AI algorithms from diverse multi-omics datasets. Leveraging diverse 
genomic data types, including structural variants, expression data across diverse populations worldwide 
will promote advances in AI for genomic medicines and enable more personalized therapies. 
 

Methods  
Genomic Data acquisition  
The mutational signature contribution matrices pertaining to primary breast cancers within the Pan-
Cancer Analysis of Whole Genomes (PCAWG) cohort, and metastatic breast cancers within the Hartwig 
Medical Foundation (HMF) cohort, were extracted from the supplementary tables of the reference8. The 
dataset encompasses two types of contribution matrices. The first one is denoted as “signature 
contributions”, encompassing the contributions for the mutational signatures detected in the two cohorts 
individually. The second type, termed “etiology contributions”, amalgamates the contributions of identical 
etiologies. For instance, contributions from mutational signatures SBS2 and SBS13 were conjoined to 
signify the collective contribution of the APOBEC etiology. In this study, we applied the “signature 
contributions” matrices for the training and validation of our models.  
 
To constitute an external test dataset, we retrieved somatic mutation data from the BRCA-EU cohort, 
encompassing primary breast cancers, via the International Cancer Genome Consortium (ICGC) data 
portal (https://dcc.icgc.org/). Furthermore, we sourced somatic mutation data from the POG570 cohort49, 
containing metastatic breast cancers, from https://www.bcgsc.ca/downloads/POG570. In a bid to uphold 
data quality, samples characterized by low mutation burdens (mutation count < 50) were systematically 
excluded from the analysis. This curation process led to a refined dataset consist of 496 primary breast 
cancer samples and 127 metastatic breast cancer samples. 
Mutational signatures extraction 
As shown in Figure 1d, to ascertain the mutational signature contributions from an external dataset, we 
implemented a comparable mutational signatures analysis pipeline, as delineated in reference8, albeit with 
certain modifications. In essence, we categorized somatic mutations within the external dataset into 96 
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SBS, 78 DBS, and 83 ID classes, as expounded upon in the earlier study43. The relative frequencies of 
each category within these channels were computed through utilization of the R package mutSigExtractor 
(https://github.com/UMCUGenetics/mutSigExtractor, v1.23). In order to ensure agreement with the 
mutational signatures employed in our model training and to mitigate potential bleeding effects stemming 
from the mutational signature extraction process, we refrained from conducting de novo mutational 
signatures extraction on the external dataset. Instead, we opted to leverage the 14 SBS, 5 DBS, and 9 ID 
mutational signatures previously identified within breast cancer instances within the PCAWG and HMF 
cohorts, employing these as reference signatures. Then, the fitToSignatures() function of 
mutSigExtractor, which employing a least square fitting algorithm, was applied to ascertain the 
individualized contributions of the aforementioned reference signatures within each sample from the 
external dataset. The matrices denoting these contribution values were subsequently employed as input 
features for evaluating the performance of our model. 
Implementation of MetaWise 2.0  
The updated MetaWise framework consists of two modules: the classification module and the pathogenic 
process identification module. The workflow is shown is Figure 1c. The classification module aims to 
predict the metastasis possibility of a patient based on their genomic data. The pathogenic process 
identification module aims to identify the key biological processes that are associated with metastasis 
process from the genomic profile of patients.  
Model design and evaluation 
We implemented our model using the Keras framework with Tensorflow as the backend. Our model 
consists of fully-connected layers, each followed by a batch normalization layer and a ReLU activation 
function, with a softmax output layer. To optimize the performance of our model, we fine-tuned various 
hyperparameters, such as the learning rate, the weight decay, the dropout rate, and the activation function. 
The pruning process was performed by Keras prune_low_magnitude function.  
We evaluated the performance of the updated approach and compared with our previous model, 
MetaWise17 by five-fold cross validation. We measured the accuracy, recall, precision, specificity, F1-
score, the matthews correlation coefficient (MCC) and the area under the receiver operating characteristic 
curve (AUROC) and the area under the precision recall curve (AUPR) on both internal and external test 
sets. We compared the results of weight pruning, input feature pruning and global pruning to identify the 
best pruning strategy. 
Model interpretability analysis 
We employed SHAP (SHapley Additive exPlanations) analysis to gain insights into the explanation of 
our model and to reveal the significance and impact of various mutation signatures on the prediction. 
SHAP analysis can offer both global and local explanations of the model, as well as feature interactions 
and dependencies. We utilized the Python library, shap50, to conduct SHAP analysis for our model. After 
we identified the important mutation signatures for each sub-set data, we associated genes with 
mutational signatures using gene cumulative contribution abundance analysis25 to understand the 
pathogenesis of patients. 
Cumulative contribution abundance analysis 
In order to in-depth mine the relationship between genes and mutational signatures, the mutational 
signature analysis was performed to associate mutational signatures with genes. A simple and practical R 
package, RNMF25, was applied by analyzing cumulative contribution abundance of genes.  
GO enrichment analysis 
Gene Ontology (GO) term enrichment analysis was performed to identify over-represented GO terms in 
our gene set of interest. The GO system of classification assigns genes to a set of predefined bins based on 
their functional characteristics. Enrichment analysis identifies which GO terms are over-represented (or 
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under-represented) in the gene set using annotations for that gene set. Enrichment analysis was performed 
using the clusterProfiler51, which is an R package that provides functions for statistical analysis and 
visualization of functional profiles for genes and gene clusters. It can be used to identify enriched gene 
sets in a cluster of genes, or to compare the functional profiles of two or more clusters. The GO aspect 
(molecular function, biological process, cellular component) for the analysis was selected, as well as the 
species from which the genes come. The results page displays a table that lists significant shared GO 
terms used to describe the set of genes entered.  
Statistical analysis and results visualization 
Ablation experiment 
To perform the ablation experiments, we first ranked the input features according to their Shapley values. 
Then, we removed the top-ranked input features one at a time, retrained the model on the remaining 
features, and evaluated its performance using a variety of metrics. The results of these ablation 
experiments were analyzed to determine the impact of each removed input feature on model performance.  
meta-analysis 
Additional pathway enrichment analyses, gene list annotations and protein-protein interaction network 
analysis were performed using the free online meta-analysis tool Metascape52 (https://metascape.org/).  

 
Code availability 
Code will be uploaded to the github repository (https://github.com/promethiume/MetaWise) once the paper has been 
conditionally accepted, and are available from the corresponding author on reasonable request during the manuscript 
review process. 
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