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Abstract

Computational models that predict an individual’s response to a vaccine offer the
potential for mechanistic insights and personalized vaccination strategies. These
models are increasingly derived from systems vaccinology studies that generate
immune profiles from human cohorts pre- and post-vaccination. Most of these studies
involve relatively small cohorts and profile the response to a single vaccine. The ability
to assess the performance of the resulting models would be improved by comparing
their performance on independent datasets, as has been done with great success in
other areas of biology such as protein structure predictions. To transfer this approach to
system vaccinology studies, we established a prototype platform that focuses on the
evaluation of Computational Models of Immunity to Pertussis Booster vaccinations
(CMI-PB). A community resource, CMI-PB generates experimental data for the explicit
purpose of model evaluation, which is performed through a series of annual data
releases and associated contests. We here report on our experience with the first such
‘dry run’ for a contest where the goal was to predict individual immune responses based
on pre-vaccination multi-omic profiles. Over 30 models adopted from the literature were
tested, but only one was predictive, and was based on age alone. The performance of
new models built using CMI-PB training data was much better, but varied significantly
based on the choice of pre-vaccination features used and the model building strategy.
This suggests that previously published models developed for other vaccines do not
generalize well to Pertussis Booster vaccination. Overall, these results reinforced the
need for comparative analysis across models and datasets that CMI-PB aims to
achieve. We are seeking wider community engagement for our first public prediction
contest, which will open in early 2024.

Introduction

A common challenge in developing computational models for biological applications is
to objectively test their generalizability and predictive performance’3. This is especially
true for systems vaccinology studies, due to the heterogeneous and high-dimensional
nature of the assay readouts, differences in study designs, and incomplete
understanding of what the clinically relevant correlates of a vaccine induced protective
response are. Integrating diverse data types, accounting for inter-individual variability,
and capturing temporal dynamics are crucial aspects that need to be addressed to
ensure the robustness and accuracy of computational models in system vaccinology.
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To address these challenges, we have established the CMI-PB resource to develop and
test computational models that predict the outcome of Tdap booster vaccination that is
designed to be used by the broader community. As part of this project, we will measure
the response to Tdap booster vaccination over four years, in four independent donor
cohorts datasets, which will allow us to create and test computational models that
predict vaccination outcome based on the baseline state of the vaccines (Table 1).

Here we report on the outcome of the first challenge: an internal ‘dry run’ where the
teams involved in making predictions spanned multiple institutions, but were all
collaborators in developing the CMI-PB resource. We report on the challenges
encountered for data sharing, formulating prediction questions, and the interpretation of
the results from different prediction models including the determination of which factors
contributed to such predictions. These results will inform the design of the next
prediction contest, which will open to community participation at the end of 2023.

The overall goal of our study is two-fold: First, we want to establish a community
platform to test and compare computational models of immunity in vaccination. Second,
we want to better understand vaccine induced immunity to B. pertussis - the causative
agent of whooping cough - a highly contagious respiratory infection that causes severe
disease in infants*. In the past 3 decades, there has been a resurgence of whooping
cough infections in the US that has been linked to a switch in the vaccine from wP
(whole cell) to aP (acellular) in 1996. Epidemiologically, that suggested that the
immunity induced by aP vaccines wanes quicker than those by wP vaccines®®. A
number of differences in immune responses between aP and wP vaccines have been
identified, such is their T cell polarization'®'3, but it is unclear how those differences
translate to duration of immunity. By establishing and testing computational models that
attempt to predict the cascade of events that follow B. pertussis booster vaccination, we
will improve our understanding of the mechanisms underlying these events, with the
ultimate goal to identify what variables induce a strong and durable recall response.
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Results
This results section covers two components: First, we describe the experience in setting
up and running the prediction contest. Second, we describe specific models that were

developed and discuss their performance on the prediction tasks.

Experimental data generation and access

Our experimental study is designed for a systems-level understanding of the immune
responses induced by Tdap booster vaccination and closely mimics the design of
previous studies from our group™. Briefly, individuals primed with aP or wP in infancy-
were boosted with Tdap and blood was collected pre-booster and post booster at days
1, 3, 7, and 14 (Figure 1A). Multiple assays were performed, namely i) gene expression
analysis (RNAseq) of bulk peripheral blood mononuclear cells (PBMCs), ii) plasma
cytokine concentration analysis, iii) cell frequency analysis of PBMC subsets, and iv)
plasma antibodies against Tdap components. We previously generated data from a total
of 60 subjects (28 aP and 32 wP; Table 1) as part of * that was made available as a
training dataset to develop predictive models. Additionally, we generated data from a
separate group of 36 newly tested subjects (19 aP + 17 wP) that was set aside to serve
as test data for the predictions.

To integrate experimental data generated at different time points, we created a
centralized CMI-PB database with tables corresponding to entity categories, including
subject and specimen information, experimental data, and ontology tables (database
schema is provided in Figure S1). We established different access modalities including
an application programming interface (API; https://www.cmi-pb.org/docs/api/) and bulk
file downloads, and shared these different access modalities with our participants in the
prediction challenge.

Formulating the prediction tasks

We formulated multiple prediction tasks in order to quantitatively evaluate different
aspects of immune responses to Tdap booster vaccination. As targets, we selected
biological readouts known to be changed by booster vaccination under the premise that
they are likely to capture meaningful heterogeneity across study participants based on
our previous work'. For instance, we had previously shown that the percentage of
monocytes was significantly elevated on day 1 post-booster vaccination compared to
baseline (i.e., pre-booster vaccination)™. We created a first task in which the overall
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frequency of monocytes among PMBCs on day 1 post-booster vaccination has to be
predicted. Similarly, we had previously shown that plasma IgG1-4 levels significantly
increased at day 7 post-booster vaccination compared to baseline™, and accordingly
chose as another task to predict plasma IgG levels against the Pertussis toxin (PT) on
day 14 post-booster vaccination. The third task was based on our previous finding that a
subset of aP-primed individuals showed an increased expression of pro-inflammatory
genes, including CCL3 on day 3 post-booster vaccination', which was the target of the
third task. Overall, we formulated a total of 14 prediction tasks (Table S1), including 13
prediction tasks of readouts identified from previous work and a “sanity-check” task to
predict the expression of the sex-specific XIST gene post-booster vaccination per
individual™.

Choosing a metric to evaluate prediction performance

We set out to choose a metric to evaluate how different prediction methods performed.
Specifically, we wanted to have three considerations: i) we needed a metric that would
produce a single numeric value as an output. This would allow us to compare and rank
the performance of the prediction methods effectively, ii) the chosen metric needed to
be non-parametric because the different experimental assays utilized in the study
produce analyte measurement outputs with non-normal distributions, iii) we wanted to
avoid incorporating arbitrary cutoffs or thresholds that could introduce subjectivity or
bias into the assessment process. Based on these considerations, we chose the
Spearman Rank correlation coefficient as our primary metric. The prediction tasks in our
first challenge thus constituted predicting the rank of individuals in specific immune
response readouts from high to low after B. pertussis booster vaccination based on their
pre-vaccination immune status.

Feedback from participants prior to data submission

We shared the prediction tasks, metrics, and data access instructions with the contest
participants, and asked them for feedback prior to submitting their prediction results.
Two main points of feedback were: (1) All contestants preferred using the bulk file
downloads over utilizing the custom APl we had created, as they preferred to work with
raw data over having to learn a new access modality. Given that creating reliable APIs
is resource intensive, this was identified as an area we wanted to down-prioritize going
forward. (2) When inspecting antibody titer data generated in different years,
contestants noticed significant variation in the averages of the baseline values for
donors (subjects) between the test and training datasets. Those variations were due to


https://doi.org/10.1101/2023.08.28.555193
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.28.555193; this version posted August 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a switch in the site where the assays were performed. We thus standardized the
antibody data in each year by applying the baseline median as a normalization factor
(https://github.com/CMI-PB/2021-Ab-titer-data-normalisation; Figure S2, S83), and
provided both the raw data and normalized data to the contestants.

Gathering and evaluating prediction results

A total of 34 computational models were developed by three independent teams of
contestants. Each team worked separately on their own set of models. The first team
focused on identifying and constructing prediction models based on the systems
vaccinology literature (Figure 2B). The second and third teams, on the other hand,
focused on constructing new prediction models derived from multi-omics dimension
reduction techniques (Figure 2C-D). We established a deadline of 3 months for each
team to submit their models, and subsequently, the corresponding predictions were
received for evaluation. A complete submission file contained 14 columns, 1 column per
prediction task. We found that most prediction models focused on a subset of tasks.
Furthermore, we found that in some cases, predictions for individual donors were
omitted. In those cases, we used the median rank calculated from the ranked list
submitted by the contestant to fill in missing ranks. An overview of the prediction results
is summarized in Figure 3, and the different prediction approaches are described in
more detail in the following.

Team 1: Establishing prediction models from the systems vaccinoloqy literature

The first team set out to identify previously published models developed within the
systems vaccinology field that aim to predict vaccination outcomes. With systematic
keyword queries using PubMed and Google Scholar and following citations, we
identified 40 studies of potential interest. A detailed review of these papers identified 10
studies with 24 models that were suitable for our purpose as they i) used
pre-vaccination measurements that we have available in our CMI-PB study, ii)
established biological differences in vaccine responses that we could utilize in our
prediction tasks, which in practice meant predicting antibody titers levels or classifying
subjects into high or low vaccine-induced antibody responders '®2°. None of the
identified models were developed for B. pertussis, but rather covered a wide range of
vaccines, including those against influenza, hepatitis B, and the yellow fever virus. They
employed a variety of methodologies including classification-based (diagonal linear
discriminant analysis, logistic regression, Naive Bayes, Random Forest),
regression-based (elastic net), and other approaches (gene signature and module
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scores). A summary of the literature review is depicted in Figure 2B and Figure S4 for
the 24 prediction methods that were implemented (Table S2). For each literature model,
we adapted the output scores to our prediction tasks, as described in the methods. It
has to be re-emphasized that these models were not developed to predict B. pertussis
vaccination outcomes. Thus evaluating these models as part of our prediction contest
does not quantify their intended performance, but rather judges how universal
previously identified patterns that impact responses for other vaccines are.

Establishing a harmonized dataset to train machine learning (ML) models

The second and third team both worked on ML approaches specific to B. pertussis
vaccination. While the prediction approaches they chose were different, they
collaborated on generating a harmonized dataset to start out with. Specifically, many of
the features evaluated in our experimental assays have low-information content.
Incorporating less informative features introduces various challenges in data analysis.
Low analyte levels could be difficult to distinguish from background noise, missing data
could skew statistical analyses, and these features tend to make it more challenging to
identify a robust and accurate prediction model. To address these issues, we applied
feature filtering on each assay in the training dataset, which is a widely adopted data
pre-processing strategy'. For gene expression, we filtered zero variance and
mitochondrial genes, and removed lowly expressed genes (genes with transcript per
million (TPM) < 1 in at least 30% of specimens). Similarly, we filtered features with zero
variance from cytokine concentrations, cell frequency, and antibody assays.
Subsequently, we removed features not measured for the test dataset and retained only
those that overlapped between the training and test datasets. As a result, we were left
with a total of 11,661 features in the harmonized dataset out of the original 58,659
features (Figure 2A). These harmonized datasets were used for training of the two ML
approaches as described below.

Team 2: Establishing purpose-built models using Joint and Individual Variation
Explained (JIVE)

The second team set out to build new prediction models using the available CMI-PB
training data using joint dimensionality reduction methods that discover patterns within a
single modality and across modalities to reduce the number of dimensions. In particular,
we applied the JIVE method to reduce the dimensionality of our datasets before
applying regression-based models to make predictions®?’. JIVE decomposes a
multi-source dataset into three terms: a low-rank approximation capturing joint variation
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across sources, low-rank approximations for structured variation individual to each
source, and residual noise?’. This decomposition can be considered a generalization of
Principal Components Analysis (PCA) for multi-source data?”. For JIVE, harmonized
datasets for transcriptomics, cell frequency, and cytokines concentrations were first
intersected on subjects which resulted in 13 individuals with complete data, and finally,
the decomposition was applied, generating 10 factors per omics data (Figure 2C).
These factors were then used as input for five different regression-based methods to
turn the JIVE results into predictive models for each specific task. These regression
methods included linear regression, lasso and elastic net with default parameters and
two more variants of lasso and elastic net that involved an automatic hyperparameter
search via cross-validation (CV; see Figure 2C).

Team 3: Establishing purpose-built models using Multiple Co-Inertia Analysis (MCIA)

The third team worked on three different approaches to build prediction models (Figure
2D). The first approach (baseline approach) utilized clinical features (age, infancy
vaccination, biological sex) and baseline task values as predictors of individual tasks.
The second approach (the MCIAbasic) utilized 10 multi-omics factors constructed using
MCIA as predictors of individual tasks. Prior to implementing MCIA, the harmonized
datasets were further processed to impute missing data in the baseline training set
using Multiple Imputation by Chained Equations (MICE) algorithm (Figure 2)%. The
objective function in MCIA maximizes the covariance between each individual omic and
a global data matrix consisting of the concatenated omic data blocks?**°. Finally, the
third approach (MCIAplus) combined the first two approaches and utilized clinical
features, baseline task values, utilized baseline approach, and 10 MCIA factors
identified through the MCIlAbasic approach as predictors of individual tasks. Further, for
all three approaches, we built a general linear model with lasso regularization for each
task. We used the feature scores as input data and the prediction task values as
response variables, generating separate predictive models for each task.

Comparing model prediction performance

In total, 32 different sets of predictions were submitted, including 24 from Team 1 based
on models identified from the literature and 8 models from Team 2 and 3 specifically
trained on the available data. A heatmap visualization of Spearman's correlations for
tasks versus models is presented in Figure 3. For 10 out of 12 prediction tasks at least
one model had a significant correlation of its predictions with the actual results, while no
model showed significant correlations for the remaining 2 tasks.
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For Team 1, of the twenty-four literature-based models, only three (furman_2013_age,
kotliarov_2020_TGSig, and avay_2017_m54) showed a significant correlation for any of
the seven antibody-related tasks by at least one model. The most successful model by
far was derived from a previous study by Furman et al?®® (furman_2013_age), where
chronological age of an individual was used as the sole predictor for antibody response
levels to influenza vaccination. In our results, age correlated positive with IgG1, and
negative with IgG4 titers to vaccine antigens post boost. These results suggest that
chronological age has a strong predictive potential to be universally utilized as a
biomarker to predict antibody responses against different pathogens in addition to
influenza and B. pertussis.

For Team 2, JIVE-based submissions attempted 10 tasks, excluding the four
antibody-related tasks that had missing samples within the harmonized dataset. Diving
into the cell frequency tasks, we saw a modest performance for predicting plasmablast
levels on day 7, and surprisingly, the simple linear regression performed best. Whereas
for other cell frequency tasks, there was no clear pattern of model performance. Within
gene expression tasks, JIVE-based models performed best when predicting CCL3
levels on day 3 and, once again, models without hyperparameter tuning performed the
best. Turning to /L6 at day 3, all JIVE-based models performed modestly, which
suggests that this task may be harder than others. As for NFKBIA on day 7, predictions
were poor for all JIVE-based models. The poor performance of JIVE-based models on
some predictive tasks may be due to the limited number of samples (subjects) used
(n=13).

For Team 3, the baseline, MClAbasic, and MCIAplus approaches submitted predictions
for all 14 tasks. These approaches outperformed all other teams prediction
performance. Specifically, both the MCIAplus and baseline approaches demonstrated
significant correlations for 10 out of the 14 tasks, covering the antibody titer, gene
expression, and cell frequency tasks - as illustrated in Figure 3. The MCIAbasic
approach had 6 out of 14 significant correlations. When examining what factors led to
improved performance of the baseline and MCIAplus approach as compared to the
MCIAbasic approach, it is apparent that the latter does not include demographic and
clinical information such as age.

Discussion

Here, we report the first evaluation of computational prediction models applied to
vaccine immune responses to B. pertussis. The concept of our approach is based on
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previous successful efforts such as the CASP and DREAM challenges®'*, which have
shown that community prediction contests can significantly advance the field of
computational predictions. This inaugural “dry run” constitutes an important step for the
development and refinement of our future community prediction contests. Major lessons
were learned both on how such a contest should be run, and on what input variables
should be considered in successful prediction models.

For future contests, we received a clear message that we should focus on simplicity.
Contestants asked for fewer prediction tasks, as each task has additional overhead. In
examining the results multiple related tasks tended to show similar results, which further
confirms that fewer unique tasks are preferable. For data access, there was a clear
preference for direct data downloads as files that are familiar to bioinformaticians over
the use of novel APIs. We will take this into account. Finally, data harmonization/
normalization is a key concern. Even in a tightly controlled project like ours, we cannot
guarantee that the data we generated in year one can be generated the same way in
year two. Initially, we did not expect this to be a problem, but instruments eventually
break, reagents run out, and the companies supplying them can go bankrupt or change
what they make available. This makes it crucial for data generating sites to document
how data was generated and to provide a way to harmonize it with previous data.

For model building, we were intrigued that of all the models assembled from the
literature, the best prediction performance was based solely on chronological age.
Aging is characterized by a progressive loss of physiological integrity and an increased
susceptibility to immunosenescence®. Age has been reported to be an important
determinant of vaccine effectiveness in older adults®*. So it is no surprise that age is
associated with vaccine efficacy, but it is surprising that none of the more
comprehensive models that take into account other variables - such as inflammation -
perform better, which we would have expected to be the case, even if these other
models were developed for different vaccines.

For the two ML approaches implemented by our teams, JIVE and MCIA ML, the most
striking difference in performance was clearly due to how baseline values were included
in the MCIA model. This is not inherent to MCIA method itself, and provides a prominent
reminder that no single ML method is superior to all others, and that selection of training
parameters plays a crucial role in the overall method performance.

Going forward, we are committed to performing comparable experiments on a yearly
basis that will serve as testing sets for future prediction contests. We believe that this
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collaborative and innovative approach will create a hub for immunologists to push for
novel models of immunity against Tdap boost. We expect the resultant models will also
be relevant for other vaccinology studies. Contestants from the research community that
are interested in participating are encouraged to contact us via cmi-pb-contest@lji.org
and check the website (www.cmi-pb.org) for the upcoming contest information.

Methods
Study design and human participants

Human volunteers that were primed with either the aP or wP vaccination during
childhood were recruited. All participants provided written informed consent before
donation and were eligible for Tdap (aP) booster vaccination containing tetanus toxoid
(TT), diphtheria toxoid (DT), and acellular Pertussis that contains inactivated pertussis
toxin (PT) and cell surface proteins of Bordetella pertussis including filamentous
hemagglutinin (FHA), fimbriae 2/3 (Fim2/3), pertactin (PRN). Longitudinal blood
samples were collected pre-booster vaccination (day 0) and post-booster vaccination
after 1, 3, 7, and 14 days.

PBMC and plasma extraction

Whole blood samples (with heparin) were centrifuged at 1850 rpm for 15 min with
breaks off. Subsequently, the upper fraction (plasma) was collected and stored at -80°C.
PBMCs were isolated by density gradient centrifugation using Ficoll-Paque PLUS
(Amersham Biosciences). 35 mL of RPMI 1640 medium (RPMI, Omega Scientific)
diluted blood was slowly layered on top of 15 mL Ficoll-Paque PLUS. Samples were
spinned at 1850 rpm for 25 min with breaks off. Then, PBMC layers were aspirated and
two PBMC layers per donor were combined in a new tube together with RPMI. Samples
were spinned at 1850 rpm for 10 min with a low break. Cell pellets of the same donors
were combined and washed with RPMI and spinned at 1850 rpm for 10 min with breaks
off. Finally, PBMCs were counted using trypan blue and a hemocytometer and, after
another spin, resuspended in FBS (Gemini) containing 10% DMSO (Sigma-Aldrich) and
stored in Mr. Frosty cell freezing container overnight at -80°C. The next day, samples
were stored at liquid nitrogen until further use.

Plasma antibody measurements
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Pertussis antigen-specific antibody responses were quantified in human plasma by
performing an indirect serological assay with xMAP Microspheres (details described in
XMAP Cookbook, Luminex 5" edition). Pertussis, Tetanus, and Diphtheria antigens (PT,
PRN, Fim2/3, TT, and DT (all from List Biological Laboratories) and FHA (Sigma) and as
a negative control Ovalbumin (InvivoGen) were coupled to uniquely coded beads
(XMAP MagPlex Microspheres, Luminex Corporation). PT was inactivated by incubation
with 1% formaldehyde (PFA) at 4°C for 1 h. 1% PFA PT and TT were then purified using
Zeba spin desalting columns (ThermoFisher). The antigens were coupled with each
unique conjugated microsphere using the xMAP Antibody Coupling Kit (Luminex
Corporation). Plasma was mixed with a mixture of each conjugated microsphere, and
WHO International Standard Human Pertussis antiserum was used as a reference
standard (NIBSC, 06/140). Subsequently, the mixtures were washed with 0.05%
TWEEN20 in PBS (Sigma-Aldrich) to exclude non-specific antibodies, and targeted
antibodies responses were detected via anti-human IgG-PE, IgG1-PE, 1gG2-PE,
IgG3-PE, IgG4-PE (all from SouthernBiotech) and human IgE-PE (ThermoFisher).
Antibody details are shown in Table S4. Samples were subsequently measured on a
FLEXMAP 3D instrument (Luminex Corporation), and the log(10) of the median
fluorescence intensity (MFI) was calculated.

PBMC cell frequencies

Cryopreserved PBMC were thawed by incubating cryovials at 37°C for 1 min and
stained with the viability marker Cisplatin. Subsequently, PBMCs were incubated with an
antibody mixture for 30 min. After washing, PBMCs were fixed in PBS (Thermo Fisher)
with 2% PFA (Sigma-Aldrich) overnight at 4°C. The next day, PBMCs were stained with
an intracellular antibody mixture after permeabilization using saponin-based Perm
Buffer (eBioscience). After washing, cellular DNA was labeled with Cell-ID Intercalator-Ir
(Fluidigm) and cell pellets were resuspended in 1:10 EQ Beads (Fluidigm) in 1 mL MiliQ
water. Samples were measured using a Helios mass cytometer (Fluidigm). Antibody
details are shown in Table S4. Twenty One different PBMC cell subsets were identified
using the unsupervised gating approach DAFi* with the exception of antibody-secreting
cells (ASCs), which were manually gated as CD45'Live'CD14:CD3-CD19"CD20-CD38"
cells. Gating was performed using FlowJo (BD, v10.7).

Plasma cytokine concentrations

Plasma samples were randomly distributed on 96 well plates for quantification. 276
different proteins (immuno-oncology, immune response, and metabolism Olink panels)
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were quantified by Analysis Lab at Olink Proteomics. Protein quantification involved the
Proximity Extension Assay (PEA) technology®®. Briefly, the plasma was incubated with
oligonucleotides labeled antibodies targeting the proteins of interest. The
oligonucleotides of matched oligonucleotides-antibodies-antigen will bind to each other,
enabling amplification and thereby quantification by qPCR. Ct values from the qPCR
were used to calculate Normalized Protein eXpression (NPX), a relative quantification
unit to report protein expression levels in plasma samples.

RNA sequencing

Per sample, 6 milion PBMCs were lysed using QIAzol Lysis Reagent (Qiagen).
Samples were stored at -80°C until RNA extraction. RNA was extracted using the
miRNeasy Mini Kit (Qiagen) including DNase treatment according to the manufacturer's
instructions. 500 ng of RNA was used for RNA sequencing (RNAseq) library
preparation. Library preparation was performed using the TruSeq Stranded mRNA
Library Prep Kit (lllumina). Libraries were sequenced on a HiSeq3000 (lllumina) system.

Bioinformatics RNA sequencing

The pair-end reads that passed lllumina filters were further filtered for reads aligning to
tRNA, rRNA, adapter sequences, and spike-in controls. The remaining reads were
aligned to the GRCh38 reference genome and Gencode v27 annotations using STAR
(v2.6.1)¥. DUST scores were calculated with PRINSEQ Lite (v0.20.3)®, and
low-complexity reads (DUST > 4) were removed from the BAM files. The alignment
results were parsed via the SAMtools* to generate SAM files. Read counts to each
genomic feature were obtained with the featureCounts (v1.6.5)* using the default
options along with a minimum quality cut-off (Phred >10).

Model development
Establishing baseline prediction models from the systems vaccinology literature

For literature models that did not present a quantification of the gene sets, a gene set
output score was developed. The first step of the calculation was to separate genes that
were up- and down-regulated. Next, for each specimen, i the TPM normalized gene
expression counts were summed for the upregulated genes (SumUP) and the
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downregulated genes (Sum )- Then the difference between SumUP and Sum

DOWN
was calculated for each specimen:

DOWN

X = Sum — Sum
i UP DOWN

The average (Avg) and the standard deviation (Std) of the TPM normalized gene
expression was calculated across all specimens as well as the square root of the total
number of specimens N. Finally, a standard score (zscore) was calculated for each
specimen:

zscore, = (Xi— Avg) / (Std//N)

If there were only upregulated genes, or if it could not be determined whether the genes
in the gene signature were up- or down-regulated, the sum of the genes in the signature
was simply used for the calculation of the zscore.

Establishing purpose-built models using JIVE

To develop models using JIVE we used harmonized datasets for transcriptome,
antibody levels and cytokine levels and located sample values for every variable, in
other words, complete datasets which resulted in 13 individuals (Figure 2C).
Decomposition with JIVE was then applied by using the r.jive package with jive(omics,
rankJ=10, rankA = rep(10, 3)), method = "given", conv = "default", maxiter = 100,
showProgress=FALSE) which resulted in 10 factors and saved the factor loading
values*'. In order to make a model from a reduced representation of the omics datasets,
each omic was multiplied by its corresponding factor loadings to generate factor scores.
During training, these factor scores were used as input into various models and
approaches from scikit-learn python package?*?, specifically, we used basic linear
regression (LinearRegression), lasso (Lasso), elastic net (ElasticNet), and lastly, lasso
and elastic net with automatic hyperparameter tuning via cross-validation (LassoCV and
ElasticNetCV). For methods using automatic hyperparameter tuning, candidate values
were not specified, therefore using the internal heuristics, which tests hyperparameter
values of various magnitudes. During the prediction steps, the testing data is projected
onto the lower dimensional space by multiplying the factor loadings by the omics
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datasets. These new factor scores were then used as input for predictions and finally
ranked before contest submission.

Establishing purpose-built models using MCIA

The MICE (Multiple Imputation by Chained Equations) method was employed to replace
missing data values in the harmonized dataset (Figure 2D). Specifically, transcriptome
data was utilized to impute missing values in other data modalities through the
application of MICE. We utlilized MICE imputed data to construct models. We
implemented MCIA using the mbpca function in the mogsa package®+3. We generated
10 low-dimension multi-omics factor scores for training datasets. Each multi-omics
factor was derived through a linear combination of the original features (e.g., genes or
proteins) extracted from the input data. Subsequently, global scores were computed for
the test dataset, capturing the overall representation or summary of the data in relation
to the underlying factors identified from the training data. This was accomplished by
utilizing factor loadings from the training dataset and feature scores from the test
dataset. For each task, we constructed a prediction model utilizing a general linear
model with lasso regularization using the g/imnet library**. We used the feature scores
as input data and the prediction task values as response variables, generating separate
predictive models for each task.

Data availability.

The training and test datasets used for the first challenge can be accessible through a
Zenodo repository at https://doi.org/10.5281/zenodo.7702790. The repository includes
detailed information on the datasets, challenge tasks, submission format, descriptions,
and access to the necessary data files that contestants used to develop their predictive
models and make predictions.

Code availability.

The codebases generated for the first CMI-PB challenge can be accessed through our
GitHub group (https://github.com/CMI-PB). The codebase for normalizing antibody titer
data is available at https://github.com/CMI-PB/2021-Ab-titer-data-normalisation, while
the code for standardizing data and generating computable matrices is available at
https://github.com/CMI-PB/cmi-pb-multiomics.
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Additionally, the codes for all models submitted for the first CMI-PB challenge are
available, including those identified from the literature. All 24 models derived using the
literature-based survey are available at
https://github.com/CMI-PB/literature_models_first challenge. The codebase for the
JIVE models is available at https://github.com/CMI-PB/cmi-pb-multiomics and the
codebase for the MCIA-based models can be found at
https://github.com/CMI-PB/mcia-model.
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Tables and Figures.

Tables.
Annual prediction | Contestant Number of subjects Current status
challenge title s

Training Test dataset
dataset

1| First Challenge: | CMI-PB 60 (28 aP + [ 36 (19 aP + | Concluded in May 2022

Internal dry run consortium | 32 wP) 17 wP)

2| Second Challenge: | Invited 96 (47 aP + [ 23 (13 aP + | Will be announced in
Invited challenge contestants |49 wP) 10 wP) September 2023

3| Third  Challenge: | Public 119 (60 aP [ 32 (16 aP + | Will be announced in April
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Open Challenge 1 + 59 wP) 16 wP) 2024

4| Fourth Challenge: | Public 151 (76 aP | 32 (16 aP + | Will be announced in
Open Challenge 2 + 85 wP) 16 wP)* December 2024

*Goal

Table 1: Past and future CMI-PB annual prediction challenges. Our commitment
involves conducting four annual challenges. The first challenge was completed in May
2022 with participation from the CMI-PB consortium. The second challenge will be
announced in August 2023 and will feature the CMI-PB consortium along with a limited
number of invited contestants from outside the consortium. We will involve members of
the public in the third and fourth challenges. The first challenge included training data
from a previously published study' and newly generated test data. Similarly, we will use
both the training and test data from previous challenges as the training data for future
challenges and generate new data for testing purposes.

Figures.

Figure 1: Outline for establishing the CMI-PB resource. A) Recruitment of human
subjects and longitudinal specimen collection. B) Generation of multi-omics data to
obtain a comprehensive understanding of the collected specimens. C) Implementation
of a data standardization approach to ensure consistency and comparability of the
generated data. D) The resulting dataset is provided in training and test formats to
enable contestants to develop their predictive models. E) The CMI-PB resource website
serves as a platform for hosting an annual prediction challenge, offering data
visualization tools for generated data, and providing access to teaching materials and
datasets.

Figure 2. Data processing, computable matrices, and prediction model
generation. A) Generation of a harmonized dataset involved identifying shared features
between the training and test datasets and filtering out low-information features.
Literature-based models used raw data from the database and applied data formatting
methods specified by existing models. In contrast, JIVE and MCIA utilized harmonized
datasets for constructing their models. B) Flowchart illustrates the steps involved in
identifying baseline prediction models from the literature, creating a derived model
based on the original models' specifications, and performing predictions as described by
the authors. C) The JIVE approach involved creating a subset of the harmonized
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dataset by including only subjects with data for all four assays. The JIVE algorithm was
then applied to calculate 10 factors, which were subsequently used for making
predictions. JIVE employed five different regression models for prediction purposes. D)
MCIA approach applied MICE imputation on the harmonized dataset and used this data
for model construction. MCIA method was applied to the training dataset to construct 10
factors. Then, these 10 factors and feature scores from the test dataset were utilized to
construct global scores for the test dataset. LASSO regression was applied to make
predictions. MCIAplus model was constructed by including additional features
(demographic, clinical features, and 14 task values) as factor scores, and it also utilized
LASSO regression to make predictions. D) The MCIA approach utilized MICE
imputation on the harmonized dataset for model construction. The MCIA method
employed the imputed training dataset to construct 10 factors. These 10 factors, along
with feature scores from the test dataset, were used to construct global scores for the
test dataset. LASSO regression was applied to make predictions. Additionally, the
MCIAplus model incorporated additional features such as demographic, clinical
features, and 14 task values as factor scores. Finally, LASSO regression was employed
for making predictions.

Figure 3: Evaluation of the prediction models submitted for the first CMI-PB
challenge. Model evaluation was performed using Spearman’s rank correlation
coefficient between predicted ranks by a contestant and actual rank for each A)
Antibody titers, B) Immune cell frequencies and C) transcriptomics tasks. The circles in
the heatmaps are sized proportionally according to the absolute values of the Spearman
rank correlation coefficient, while crosses represent any correlations that are not
significant. The dot represents whether the model does not submit ranks for a particular
task or if submitted tasks contain unique ranks. Any submissions featuring unique ranks
are not included in the evaluation process. The baseline and MCIAplus models
submitted by team 3 outperformed other models for most tasks.
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