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Abstract

A central task in expression quantitative trait locus (eQTL) analysis is to identify cis-eGenes
(henceforth “eGenes”), i.e., genes whose expression levels are regulated by at least one local
genetic variant. Among the existing eGene identification methods, FastQTL is considered the
gold standard but is computationally expensive as it requires thousands of permutations for
each gene. Alternative methods such as eigenMT and TreeQTL have lower power than
FastQTL. In this work, we propose ClipperQTL, which reduces the number of permutations
needed from thousands to 20 for data sets with large sample sizes (> 450) by using the
contrastive strategy developed in Clipper; for data sets with smaller sample sizes, it uses the
same permutation-based approach as FastQTL. We show that ClipperQTL performs as well
as FastQTL and runs about 500 times faster if the contrastive strategy is used and 50 times
faster if the conventional permutation-based approach is used. The R package ClipperQTL is
available at https://github.com/heatherjzhou/ClipperQTL.

1 Introduction

Molecular quantitative trait locus (molecular QTL, henceforth “QTL”) analysis investigates the
relationship between genetic variants and molecular traits, potentially explaining findings in
genome-wide association studies [1, 2]. Based on the type of molecular phenotype studied, QTL
analyses can be categorized into gene expression QTL (eQTL) analyses [3, 4], alternative splicing
QTL (sQTL) analyses [4], three prime untranslated region alternative polyadenylation QTL
(3′aQTL) analyses [5], and so on [1, 2]. Among these categories, eQTL analyses, which
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investigate the association between genetic variants and gene expression levels, are the most
common. Therefore, in this work, we focus on eQTL analyses as an example, although everything
discussed in this work is applicable to other types of QTL analyses as well.

A central task in eQTL analysis is to identify cis-eGenes (henceforth “eGenes”), i.e., genes whose
expression levels are regulated by at least one local genetic variant. This presents a multiple-testing
challenge as not only are there many candidate genes, each gene can have up to tens of thousands
of local genetic variants, and the local genetic variants are often in linkage disequilibrium (i.e.,
associated) with one another.

Existing eGene identification methods include FastQTL [6], eigenMT [7], and TreeQTL [8]. All
three methods share the same two-step approach: first, obtain a gene-level p-value for each gene;
second, apply a false discovery rate (FDR) control method on the gene-level p-values to call
eGenes. The key difference between the three methods lies in how the gene-level p-values are
obtained.

Among the existing eGene identification methods, FastQTL [6] is considered the gold standard
and is currently the most popular. It uses permutations to obtain gene-level p-values. There are
four main ways to use FastQTL, depending on (1) whether the direct or the adaptive permutation
scheme is used and (2) whether proportions or beta approximation is used (Table 1). The default
way of using FastQTL is to use the adaptive permutation scheme with beta approximation [4, 6].
The adaptive permutation scheme means the number of permutations is chosen adaptively for
each gene (between 1000 and 10,000 by default [4, 6]); the beta approximation helps produce
higher-resolution gene-level p-values given the numbers of permutations (Algorithm S1). The
main drawback of FastQTL is the lack of computational efficiency as it requires thousands of
permutations for each gene. A faster implementation of FastQTL named tensorQTL has been
developed [9], but it relies on graphics processing units (GPUs), which are not universally
available.

eigenMT [7] and TreeQTL [8] have been proposed as faster alternatives to FastQTL. Neither
method uses permutations. In a nutshell, eigenMT uses Bonferroni correction to calculate a
gene-level p-value for each gene but estimates the effective number of local genetic variants for
each gene by performing a principal component analysis (conceptually speaking; instead of using
the actual number of local genetic variants). On the other hand, TreeQTL uses Simes’ rule [10] to
calculate a gene-level p-value for each gene. Our analysis shows that both eigenMT and TreeQTL
have lower power than FastQTL (Figures 1 and 3).

Clipper [11] is a p-value-free FDR control method. Given a large number of features (e.g., genes),
a number of measurements under the experimental (e.g., treatment) condition, and a number of
measurements under the background (e.g., control) condition, Clipper works as the following: first,
obtain a contrast score for each feature based on the experimental and background measurements
(for example, the contrast score may be the average experimental measurement minus the average
background measurement); second, given a target FDR (e.g., 0.05), obtain a cutoff for the contrast
scores; lastly, call the features with contrast scores above the cutoff as discoveries. The idea is
that the contrast scores of the uninteresting features (e.g., genes whose expected expression levels

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.555191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555191
http://creativecommons.org/licenses/by-nc-nd/4.0/


are not increased by the treatment) will be roughly symmetrically distributed around zero, and
the outlying contrast scores in the right tail likely belong to interesting features. Notably, Clipper
produces a q-value for each feature (similar to Storey’s q-values [12]), so that the features can be
ranked from the most significant to the least significant.

In this work, we propose ClipperQTL for eGene identification, which reduces the number of
permutations needed from thousands to 20 for data sets with large sample sizes (> 450) by using
the contrastive strategy developed in Clipper; for data sets with smaller sample sizes, it uses the
same permutation-based approach as FastQTL. Unlike tensorQTL, our ClipperQTL software does
not rely on GPUs. We show that ClipperQTL performs as well as FastQTL and runs about 500
times faster if the contrastive strategy is used and 50 times faster if the conventional
permutation-based approach is used (we refer to the two variants of ClipperQTL as the Clipper
variant and the standard variant, respectively; Section 4.2).

2 Results

2.1 Real data results

We compare the performance and run time of different variants of FastQTL, eigenMT, TreeQTL,
and ClipperQTL (Table 1) on the most recent GTEx expression data [4]. The 49 tissues with sample
sizes above 70 are considered [4]. For each gene, we consider single nucleotide polymorphisms
(SNPs) within one megabase (Mb) of the transcription start site (TSS) of the gene [4]; we use
0.01 as the threshold for the minor allele frequency (MAF) of a SNP and 10 as the threshold for
the number of samples with at least one copy of the minor allele (MA samples) [6]. We include
eight known covariates and a number of top expression PCs (principal components) as inferred
covariates [13]. The eight known covariates are the top five genotype PCs, WGS sequencing
platform (HiSeq 2000 or HiSeq X), WGS library construction protocol (PCR-based or PCR-free),
and donor sex [4]. The number of expression PCs is chosen via the Buja and Eyuboglu (BE)
algorithm [13, 14] for each tissue. We use the BE algorithm because we find that in our simulated
data (Section S2), the BE algorithm can recover the true number of covariates well. The target
FDR for eGene identification is set at 0.05. We do not include Matrix eQTL [15] in our real data
comparison because both our simulation study (Section 2.2) and Huang et al. [16] show that Matrix
eQTL cannot control the FDR in the eGene identification problem.

The results from our real data analysis are summarized in Figures 1, 2, and S2. We find that the
four variants of FastQTL produce almost identical results as one another. Specifically, the
numbers of eGenes identified by the four methods are almost identical (Figure 1), and the
identified eGenes highly overlap (Figure S2). This means the adaptive permutation scheme and
the beta approximation of FastQTL (Section S1.2) are not critical to the performance of FastQTL;
the simplest variant, FastQTL 1K prop, is sufficient. Further, we find that eigenMT and TreeQTL
methods identify fewer eGenes than FastQTL (Figure 1). In contrast, ClipperQTL methods
produce almost identical results as FastQTL in tissues with the appropriate sample sizes
(Section 4.2; Figures 1 and S2).

In terms of run time comparison (Figure 2), we find that eigenMT has almost no computational
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advantage over FastQTL, and TreeQTL has no computational advantage over the standard variant
of ClipperQTL (which is slower than the Clipper variant of ClipperQTL). Both the standard variant
and the Clipper variant of ClipperQTL are orders of magnitude faster than FastQTL. In particular,
the standard variant of ClipperQTL is about five times faster than FastQTL 1K prop—the simplest
FastQTL method—even though the algorithms are equivalent (Section 4.2); we attribute this to
differences in software implementation. Compared to the default FastQTL method, the standard
variant and the Clipper variant of ClipperQTL are about 50 times and 500 times faster, respectively.

2.2 Simulation results

In our simulation study, we roughly follow the data simulation in the second, more realistic
simulation design of Zhou et al. [13], which roughly follows the data simulation in Wang et al.
[17]. We simulate three data sets in total. Each data set is simulated according to Algorithm S5
with sample size n = 838, number of genes p = 1000, number of covariates K̃ = 20, proportion of
variance explained by genotype in eGenes PVEGenotype = 0.02, and proportion of variance
explained by covariates PVECovariates = 0.5. All covariates are assumed to be known
covariates.

The results from our simulation study are summarized in Figure 3. We confirm the finding in
Huang et al. [16] that Matrix eQTL cannot control the FDR in the eGene identification problem.
All other methods can approximately control the FDR. Further, FastQTL and ClipperQTL methods
have higher power than eigenMT and TreeQTL methods, consistent with our real data results
(Section 2.1).

3 Discussion

We have shown that ClipperQTL achieves a 500-fold or 50-fold increase in computational
efficiency compared to FastQTL (depending on the variant used) without sacrificing power or
precision. In contrast, other alternatives to FastQTL such as eigenMT and TreeQTL have lower
power than FastQTL.

We propose two main variants of ClipperQTL: the standard variant and the Clipper variant. The
standard variant is equivalent to FastQTL with the direct permutation scheme and proportions
(Algorithm S1) and is suitable for a wide range of sample sizes. The Clipper variant uses the
contrastive strategy developed in Clipper [11] (Algorithm 1) and is only recommended for data
sets with large sample sizes (> 450).

Regarding which variant of ClipperQTL should be used when the sample size is large enough
(> 450), we believe that if computational efficiency is a priority, then the Clipper variant should
be used. However, if the study also contains smaller data sets, then the researcher may choose to
use the standard variant on all data sets for consistency.

A possible extension of ClipperQTL lies in trans-eGene identification. Compared to cis-eGenes,
trans-eGenes are currently identified in very small numbers [4], possibly due to the lack of power
of existing approaches. Since the Clipper variant of ClipperQTL only needs 20 permutations for
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optimal performance and using only one permutation works almost as well (Section S3), there may
be potential for ClipperQTL to be adapted for trans-eGene identification.

The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.
Our work demonstrates the potential of the contrastive strategy developed in Clipper and provides
a simpler and more efficient way of identifying cis-eGenes.

4 Methods

4.1 Problem

Here we describe the eGene identification problem and introduce the notations for this work.

The input data are as follows. Let Y denote the n× p fully processed gene expression matrix with
n samples and p genes. For gene j , j = 1, · · · , p , the relevant genotype data is stored in S j , the
n× q j genotype matrix, where each column of S j corresponds to a local common SNP for gene
j (conceptually speaking; in reality, all genotype data may be stored in one file). Let X denote
the n×K covariate matrix with K covariates. Using our analysis of GTEx’s Colon - Transverse
expression data [4] (Section 2.1) as an example, we have n = 368, p = 25,379, q j typically under
15,000, and K = 37, including eight known covariates and 29 inferred covariates (the number of
inferred covariates is chosen via the BE algorithm [13, 14]; Section 2.1).

The assumption is that for j = 1, · · · , p , Y [ , j] , the jth column of Y , is a realization of the following
random vector:

1
n×1

β0 j
1×1

+ S j
n×q j

β1 j
q j×1

+ X̃
n×K̃

β2 j
K̃×1

+ ε j
n×1

, (1)

where 1 denotes the n× 1 matrix of ones, S j is defined as above, X̃ is the true covariate matrix
(which X tries to capture), all entries of β0 j , β1 j , and β2 j are fixed but unknown parameters, and
ε j is the random noise. In particular, it is assumed that at most a small number of entries of β1 j are
nonzero [17]. If all entries of β1 j are zero, then gene j is not an eGene. On the other hand, if at
least one entry of β1 j is nonzero, then gene j is an eGene. The goal is to identify which of the p
genes are eGenes given Y ,

{
S j
}p

j=1 , and X .

4.2 ClipperQTL

We propose two main variants of ClipperQTL: the standard variant and the Clipper variant. The
standard variant is equivalent to FastQTL with the direct permutation scheme and proportions
(Algorithm S1) and is suitable for a wide range of sample sizes. The Clipper variant uses the
contrastive strategy developed in Clipper [11] (Algorithm 1) and is only recommended for data sets
with large sample sizes (> 450). The development of ClipperQTL is discussed in Section S3. A
key technical difference between the standard variant and the Clipper variant is that in the standard
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variant, gene expression is permuted first and then residualized, whereas in the Clipper variant,
gene expression is residualized first and then permuted.

The main input parameter of ClipperQTL under both variants is B, the number of permutations.
For the standard variant, B is set at 1000 by default. For the Clipper variant, we recommend setting
B between 20 and 100 (Figures S3 and S4).

Algorithm 1: The Clipper variant of ClipperQTL

Inputs:
• Y ,

{
S j
}p

j=1 , and X (gene expression, genotype, and covariate data, respectively;
Section 4.1).

• B > 1, the number of permutations (default is 20).
1 for j← 1 to p do
2 Regress Y [ , j] against X and denote the residuals as (Y [ , j])resid , an n×1 matrix.
3 Regress each column of S j against X and save the residuals in

(
S j
)

resid , an n×q j matrix.

4 Calculate R j := abs
(
cor

(
(Y [ , j])resid ,

(
S j
)

resid

))
, a 1×q j matrix, where abs and cor

denote the absolute value function and the correlation function in R, respectively. That is,
the lth entry of R j , l = 1, · · · ,q j , is the absolute value of the correlation between
(Y [ , j])resid and the lth column of

(
S j
)

resid .
5 Define r j := max

(
R j
)

, the maximum of all values in R j . This is equivalent to |r j(1)| in
Algorithm S1.

6 for b← 1 to B do
7 Permute (Y [ , j])resid to obtain (Y [ , j])b

resid .

8 Calculate Rb
j := abs

(
cor

(
(Y [ , j])b

resid ,
(
S j
)

resid

))
, a 1×q j matrix.

9 Define rb
j := max

(
Rb

j

)
.

10 end
11 end
12 Run Clipper [11] to call eGenes using

{
r j
}p

j=1 as measurements under the experimental

condition and
{

r1
j
}p

j=1 , · · · ,
{

rB
j
}p

j=1 as measurements under the background condition
(Section 1); use enrichment analysis, GZ procedure, maximum contrast score, and h = 1
(Section S3).
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Tables and figures

Method category Method Note Method name for speed comparison

(A) (B) (C) (D)

1 Matrix eQTL Matrix eQTL

2

FastQTL

FastQTL 1K-10K prop
FastQTL 1K-10K

3 FastQTL 1K-10K beta Default FastQTL method

4 FastQTL 1K prop
FastQTL 1K

5 FastQTL 1K beta

6 eigenMT eigenMT eigenMT

7
TreeQTL

TreeQTL BY Default TreeQTL method
TreeQTL

8 TreeQTL Storey

9

ClipperQTL

ClipperQTL standard 1K ClipperQTL standard 1K

10 ClipperQTL Clipper 20 ClipperQTL Clipper 20

11 ClipperQTL Clipper 50 ClipperQTL Clipper 50

Table 1: Summary of the 11 eGene identification methods we compare. Details of these methods
can be found in Sections 4.2 and S1.
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Figure 1: Number of eGenes comparison based on GTEx expression data [4] (Table 1; see
Section 2.1 for the analysis details). Each dot corresponds to a tissue. The x-axis and y-axis both
represent numbers of eGenes identified by different methods. Diagonal lines through the origin
are shown to help with visualization. a-c The four variants of FastQTL identify almost the same
numbers of eGenes as one another. d-f eigenMT and TreeQTL methods identify fewer eGenes
than FastQTL. g-i ClipperQTL methods identify almost the same numbers of eGenes as FastQTL
in tissues with the appropriate sample sizes (Section 4.2). We use 465 as the sample size cutoff
because the next largest sample size is 396. See Figure S2 for an analysis of the overlap between
identified eGenes.
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Figure 2: Run time comparison based on GTEx expression data [4] (Table 1; see Section 2.1 for
the analysis details). Each dot corresponds to a tissue. FastQTL 1K-10K takes under 500 CPU
hours. FastQTL 1K takes under 50 CPU hours. ClipperQTL standard 1K takes under 10 CPU
hours. ClipperQTL Clipper 20 takes under 1 CPU hour. Run times of ClipperQTL Clipper 20
and ClipperQTL Clipper 50 are only shown for tissues with sample sizes ≥ 465 (Figure 1).
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Figure 3: Power and FDR comparison of all 11 methods based on our simulation study (Table 1;
Section 2.2). The target FDR is set at 0.05 (grey shaded area in b). The height of each
bar represents the average across simulated data sets. Error bars indicate standard errors. In
a, a horizontal line at the height of the bar for FastQTL 1K-10K beta is shown to help with
visualization. All methods except Matrix eQTL can approximately control the FDR. FastQTL
and ClipperQTL methods have higher power than eigenMT and TreeQTL methods.
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Availability of data and materials

The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.
The code used to generate the results in this work is available at https://doi.org/10.5281/
zenodo.8259929. In addition, this work makes use of the following data and software:

• GTEx V8 public data [4], including fully processed gene expression matrices and known
covariates, are downloaded from https://gtexportal.org/home/datasets.

• GTEx V8 protected data [4], specifically, the whole genome sequencing (WGS) phased
genotype data, are downloaded from the AnVIL repository with an approved dbGaP
application (see https://gtexportal.org/home/protectedDataAccess).

• FastQTL (https://github.com/francois-a/fastqtl, accessed October 29, 2020).
• Matrix eQTL R package Version 2.3 (https://cran.r-project.org/web/packages/
MatrixEQTL, accessed March 6, 2023).

• eigenMT (https://github.com/joed3/eigenMT, accessed March 6, 2023).
• TreeQTL R package Version 2.0 (https://bioinformatics.org/treeqtl, accessed

March 6, 2023).

Funding

This work is supported by NSF DGE-1829071 and NIH/NHLBI T32HL139450 to H.J.Z. and
NIH/NIGMS R01GM120507 and R35GM140888, NSF DBI-1846216 and DMS-2113754,
Johnson & Johnson WiSTEM2D Award, Sloan Research Fellowship, and UCLA David Geffen
School of Medicine W.M. Keck Foundation Junior Faculty Award to J.J.L.

Authors’ contributions

H.J.Z, X.G., and J.J.L. conceived the project. H.J.Z. developed the method, performed the
analyses and experiments, and wrote the software and manuscript. X.G. advised on the usage of
Clipper. J.J.L. supervised the project. All authors participated in discussions and approved the
final manuscript.

Acknowledgments

The authors would like to thank former and current members of Junction of Statistics and Biology
at UCLA for their valuable insight and suggestions.

Declarations

Ethics approval and consent to participate

Not applicable.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.555191doi: bioRxiv preprint 

https://github.com/heatherjzhou/ClipperQTL
https://doi.org/10.5281/zenodo.8259929
https://doi.org/10.5281/zenodo.8259929
https://gtexportal.org/home/datasets
https://gtexportal.org/home/protectedDataAccess
https://github.com/francois-a/fastqtl
https://cran.r-project.org/web/packages/MatrixEQTL
https://cran.r-project.org/web/packages/MatrixEQTL
https://github.com/joed3/eigenMT
https://bioinformatics.org/treeqtl
https://doi.org/10.1101/2023.08.28.555191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Consent for publication

Not applicable.

Competing interests

None.

References

[1] Eddie Cano-Gamez and Gosia Trynka. From GWAS to function: Using functional genomics
to identify the mechanisms underlying complex diseases. Frontiers in Genetics, 11:424, 2020.

[2] Youqiong Ye, Zhao Zhang, Yaoming Liu, Lixia Diao, and Leng Han. A multi-omics
perspective of quantitative trait loci in precision medicine. Trends in Genetics, 36(5):318–
336, 2020.

[3] GTEx Consortium. Genetic effects on gene expression across human tissues. Nature, 550
(7675):204–213, 2017.

[4] GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human
tissues. Science, 369(6509):1318–1330, 2020.

[5] Lei Li, Kai-Lieh Huang, Yipeng Gao, Ya Cui, Gao Wang, Nathan D. Elrod, Yumei Li,
Yiling Elaine Chen, Ping Ji, Fanglue Peng, William K. Russell, Eric J. Wagner, and Wei
Li. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait
and disease heritability. Nature Genetics, 53(7):994–1005, 2021.

[6] Halit Ongen, Alfonso Buil, Andrew Anand Brown, Emmanouil T. Dermitzakis, and
Olivier Delaneau. Fast and efficient QTL mapper for thousands of molecular phenotypes.
Bioinformatics, 32(10):1479–1485, 2016.

[7] Joe R. Davis, Laure Fresard, David A. Knowles, Mauro Pala, Carlos D. Bustamante, Alexis
Battle, and Stephen B. Montgomery. An efficient multiple-testing adjustment for eQTL
studies that accounts for linkage disequilibrium between variants. The American Journal
of Human Genetics, 98(1):216–224, 2016.

[8] C. B. Peterson, M. Bogomolov, Y. Benjamini, and C. Sabatti. TreeQTL: Hierarchical error
control for eQTL findings. Bioinformatics, 32(16):2556–2558, 2016.

[9] Amaro Taylor-Weiner, François Aguet, Nicholas J. Haradhvala, Sager Gosai, Shankara
Anand, Jaegil Kim, Kristin Ardlie, Eliezer M. Van Allen, and Gad Getz. Scaling
computational genomics to millions of individuals with GPUs. Genome Biology, 20(1):228,
2019.

[10] R. J. Simes. An improved Bonferroni procedure for multiple tests of significance. Biometrika,
73(3):751–754, 1986.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.555191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555191
http://creativecommons.org/licenses/by-nc-nd/4.0/


[11] Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner,
Antigoni Manousopoulou, Ning Wang, Wei Li, Leo D. Wang, and Jingyi Jessica Li. Clipper:
P-value-free FDR control on high-throughput data from two conditions. Genome Biology, 22
(1):288, 2021.

[12] John D. Storey and Robert Tibshirani. Statistical significance for genomewide studies.
Proceedings of the National Academy of Sciences, 100(16):9440–9445, 2003.

[13] Heather J. Zhou, Lei Li, Yumei Li, Wei Li, and Jingyi Jessica Li. PCA outperforms popular
hidden variable inference methods for molecular QTL mapping. Genome Biology, 23(1):210,
2022. https://doi.org/10.1186/s13059-022-02761-4.

[14] Andreas Buja and Nermin Eyuboglu. Remarks on parallel analysis. Multivariate Behavioral
Research, 27(4):509–540, 1992.

[15] Andrey A. Shabalin. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations.
Bioinformatics, 28(10):1353–1358, 2012.

[16] Qin Qin Huang, Scott C Ritchie, Marta Brozynska, and Michael Inouye. Power, false
discovery rate and Winner’s Curse in eQTL studies. Nucleic Acids Research, 46(22):e133–
e133, 2018.

[17] Gao Wang, Abhishek Sarkar, Peter Carbonetto, and Matthew Stephens. A simple new
approach to variable selection in regression, with application to genetic fine mapping. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 82(5):1273–1300, 2020.

[18] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B
(Methodological), 57(1):289–300, 1995.

[19] Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional
covariance matrices. Journal of Multivariate Analysis, 88(2):365–411, 2004.

[20] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple
testing under dependency. The Annals of Statistics, 29(4):1165–1188, 2001.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.555191doi: bioRxiv preprint 

https://doi.org/10.1186/s13059-022-02761-4
https://doi.org/10.1101/2023.08.28.555191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary materials for

ClipperQTL: ultrafast and powerful eGene identification method

Heather J. Zhou, Xinzhou Ge, Jingyi Jessica Li

S1 Existing eGene identification methods

In this section, we review the existing eGene identification methods and describe the variants that
we compare in this work (Table 1).

Recall the notations from Section 4.1. Let Y denote the n× p fully processed gene expression
matrix with n samples and p genes. For gene j , j = 1, · · · , p , the relevant genotype data is stored
in S j , the n× q j genotype matrix, where each column of S j corresponds to a local common SNP
for gene j . Let X denote the n×K covariate matrix with K covariates.

S1.1 Matrix eQTL

Conceptually speaking, Matrix eQTL [15] works as follows: for j = 1, · · · , p , l = 1, · · · ,q j , run
the linear regression represented by the following R lm() formula:

Y [ , j] ∼ S j[ , l] + X (S1)

and obtain the p-value for the null hypothesis that the coefficient corresponding to S j[ , l] is zero
given the covariates; denote this p-value as p jl . Therefore, a total of ∑

p
j=1 q j p-values are obtained,

one for each gene-SNP pair. Matrix eQTL then uses the Benjamini-Hochberg (BH) procedure [18]
on these p-values to call significant gene-SNP pairs [15]. To call eGenes using Matrix eQTL in
this work, we call as eGenes all genes that appear at least once in the significant gene-SNP pairs.

In reality, Matrix eQTL uses the following equivalent approach to obtain the p-values, which
is more computationally efficient due to the overlap of local common SNPs across genes. For
j = 1, · · · , p , l = 1, · · · ,q j , first, regress the gene expression against the covariates:

Y [ , j] ∼ X . (S2)

Second, regress the genotype against the covariates:

S j[ , l] ∼ X . (S3)
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Then, calculate the Pearson correlation between the expression residuals from (S2) and the
genotype residuals from (S3) and denote it as r jl . This is the partial correlation between Y [ , j]
and S j[ , l] conditional on X .

Lastly, convert the partial correlation to a test statistic using

t jl = r jl

√
n−2−K

1− r2
jl

(S4)

and convert the test statistic to a p-value using

p jl = 2×P
(
T ≥ |t jl|

)
, T ∼ tn−2−K , (S5)

where P denotes probability, |t jl| denotes the absolute value of t jl , and T is a random variable
following the t-distribution with n−2−K degrees of freedom.

Notably, the larger |r jl| (the absolute value of r jl), the smaller p jl , and vice versa. Both FastQTL
(the variants using proportions; Section S1.2) and ClipperQTL (the standard variant; Section 4.2)
make use of this fact.

S1.2 FastQTL

There are four main ways to use FastQTL [6], depending on (1) whether the direct or the adaptive
permutation scheme is used and (2) whether proportions or beta approximation is used. The direct
permutation scheme with either proportions or beta approximation is summarized in
Algorithm S1. The adaptive permutation scheme is identical except the number of permutations is
chosen adaptively between Bmin and Bmax (two input parameters) for each gene rather than
directly inputted (see Ongen et al. [6] for details).

The default way of using FastQTL is to use the adaptive permutation scheme (Bmin = 1000 and
Bmax = 10,000) with beta approximation [4, 6]. In total, we compare four ways of using FastQTL
in this work including the default approach: FastQTL 1K-10K prop, FastQTL 1K-10K beta (the
default), FastQTL 1K prop, and FastQTL 1K beta (see Table 1). That is, the number of
permutations is either fixed at 1000 or chosen adaptively between 1000 and 10,000 for each gene,
and either proportions or beta approximation is used.

In addition to identifying eGenes, FastQTL can also output significant gene-SNP pairs. We
summarize the algorithm for this in Algorithm S2.
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Algorithm S1: The direct permutation scheme of FastQTL

Inputs:
• Y ,

{
S j
}p

j=1 , and X (gene expression, genotype, and covariate data, respectively;
Section 4.1).

• B, the number of permutations.
1 for j← 1 to p do
2 Obtain r j1 , · · · ,r jq j , the partial correlation between Y [ , j] and S j[ , 1] , · · · ,S j[ , q j]

(respectively) conditional on X (Section S1.1).
3 Denote the one with the largest absolute value as r j(1) .
4 for b← 1 to B do
5 Permute Y [ , j] (leave S j unchanged).
6 Obtain rb

j1, · · · ,rb
jq j

, the partial correlation between Y [ , j] after permutation and
S j[ , 1] , · · · ,S j[ , q j] (respectively) conditional on X .

7 Denote the one with the largest absolute value as rb
j(1) .

8 end
9 if using proportions then

10 p̃ j , the gene-level p-value for gene j , is defined as

p̃ j :=
(

∑
B
b=11

{
|rb

j(1)| ≥ |r j(1)|
}
+1

)
/(B+1) . // Roughly the proportion of

permutations with more extreme outcomes. The addition of one in the numerator

and the denominator helps avoid p-values that are exactly zero.

11 else if using beta approximation then
12 Find true d f ∈ (0,∞) , which is to replace n−2−K when converting r j(1) and

{rb
j(1)}

B
b=1 to p-values using (S4) and (S5). // See the source code of FastQTL for

how true d f is defined. In a nutshell, true d f minimizes the absolute

difference between 1 and the method of moments estimate for the first shape

parameter of the beta distribution from the p-values.
13 Convert r j(1) and {rb

j(1)}
B
b=1 to p-values using (S4) and (S5) with n−2−K replaced

by true d f . Denote these p-values as p j(1) and {pb
j(1)}

B
b=1 .

14 Fit a beta distribution to {pb
j(1)}

B
b=1 using maximum likelihood estimation. Denote the

cumulative distribution function of the fitted beta distribution as Fj .
15 p̃ j , the gene-level p-value for gene j , is defined as p̃ j := Fj

(
p j(1)

)
.

16 end
17 end
18 Use Storey’s q-value [12] on

{
p̃ j
}p

j=1 to call eGenes.
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Algorithm S2: Identification of significant gene-SNP pairs in FastQTL

Input:
• Intermediate and final results from Algorithm S1 using either the direct or the adaptive

permutation scheme and beta approximation (rather than proportions).
1 Define pt (following the notation of the GTEx Consortium [4]) as the average of the

gene-level p-value of the most significant non-eGene and the gene-level p-value of the least
significant eGene (see the source code of FastQTL). That is, pt is defined as the average of
two of p̃1 , · · · , p̃p .

2 for j← 1 to p do
3 if gene j is identified as an eGene then
4 Define threshold j := F−1

j (pt) , where F−1
j denotes the inverse function of Fj .

5 Convert r j1 , · · · ,r jq j (Line 2 of Algorithm S1) to p-values using (S4) and (S5)
(without replacing n−2−K with true d f ).

6 If the p-value corresponding to a SNP is less than or equal to threshold j , then gene j
and this SNP are together identified as a significant gene-SNP pair.

7 end
8 end

0.00

0.05

0.10

0.15

200 400 600
Sample size

p t

Figure S1: Scatter plot of pt (Algorithm S2) from FastQTL 1K-10K beta versus sample size in
GTEx expression data [4] (see Section 2.1 for the analysis details). This scatter plot contains 49
dots, each corresponding to a tissue. We see that pt increases roughly linearly with sample size.

S1.3 eigenMT

We summarize eigenMT [7] in Algorithm S3. After obtaining the gene-level p-values, eigenMT
does not specify what method to use to control the false discovery rate when calling eGenes.
Therefore, in this work, we use Storey’s q-value [12] following FastQTL (Section S1.2). In
addition to producing the gene-level p-values, eigenMT also outputs the most significantly
associated SNP for each gene.
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Algorithm S3: eigenMT

Inputs:
• Results from Matrix eQTL, i.e., p jl , j = 1, · · · , p , l = 1, · · · ,q j (Section S1.1).
•
{

S j
}p

j=1 , genotype data (Section 4.1).
• W , window size for partitioning genotype data (default is 200).
• C, threshold for the cumulative proportion of variance explained (default is 0.99).

1 for j← 1 to p do
2 Consider p j1 , · · · , p jq j . Denote the smallest one as p j(1) .
3 Initialize qeff

j , the effective number of local common SNPs for gene j , at 0. The goal is to
calculate qeff

j from S j .
4 Break S j vertically into ⌈q j

W ⌉ chunks, each chunk an n×W matrix except the last chunk,
which may have fewer columns.

5 for i← 1 to ⌈q j
W ⌉ do

6 Denote the number of columns in the ith chunk of S j as Wji (if i < ⌈q j
W ⌉, then Wji =W ).

7 if Wji = 1 then
8 qeff

j ← qeff
j +1.

9 else
10 Obtain the Ledoit-Wolf estimate [19] of the covariance matrix of the ith chunk of

S j using sklearn.covariance.LedoitWolf() in Python.
11 Convert the estimated covariance matrix to a correlation matrix.
12 Obtain the eigenvalues of the correlation matrix, λ1 ≥ ·· · ≥ λW ji , using

scipy.linalg.eigvalsh() in Python.
13 Set all negative eigenvalues (if any) to 0. // See the source code of eigenMT.

14 qeff
j ← qeff

j + argminK

(
∑

K
k=1 λk
W ji

≥C
)

. That is, increment qeff
j by the minimum

number of top eigenvalues required to pass the threshold for the cumulative
proportion of variance explained. // See the source code of eigenMT.

15 end
16 end
17 p̃ j , the gene-level p-value for gene j , is defined as p̃ j := min

(
p j(1)×qeff

j ,1
)

.

18 end

S1.4 TreeQTL

TreeQTL [8] uses Simes’ rule [10] to calculate a gene-level p-value for each gene (Algorithm S4).
After obtaining the gene-level p-values, TreeQTL allows the user to use Bonferroni correction, BH
[18], or Benjamini-Yekutieli (BY) [20] to call eGenes (the default is BY).

We compare two variants of TreeQTL in this work: TreeQTL BY (the default) and
TreeQTL Storey (see Table 1). In TreeQTL Storey, we use Storey’s q-value [12] on the
gene-level p-values to call eGenes, following FastQTL (Section S1.2). We do not include variants
of TreeQTL using Bonferroni correction or BH in our comparison because Bonferroni correction
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aims to control the family-wise error rate rather than the false discovery rate, and BH is more
stringent than Storey’s q-value (we show that even TreeQTL Storey has lower power than
FastQTL; Figures 1 and 3).

Algorithm S4: TreeQTL

Input:
• Results from Matrix eQTL, i.e., p jl , j = 1, · · · , p , l = 1, · · · ,q j (Section S1.1).

1 for j← 1 to p do
2 Consider p j1 , · · · , p jq j . Denote the order statistics as p j(1) , · · · , p j(q j) , with p j(1) being the

smallest and p j(q j) being the largest.
3 p̃ j , the gene-level p-value for gene j , is defined as p̃ j := minl=1,··· ,q j p j(l)

q j
l , following

Simes’ rule [10].
4 end
5 Use Bonferroni correction, BH [18], or BY [20] on

{
p̃ j
}p

j=1 to call eGenes (the default is
BY).

S2 Data simulation

In our simulation study, we roughly follow the data simulation in the second, more realistic
simulation design of Zhou et al. [13], which roughly follows the data simulation in Wang et al.
[17]. We simulate three data sets in total. Each data set is simulated according to Algorithm S5
with the following attributes:

• Sample size, n = 838.
• Number of genes, p = 1000.
• Number of covariates, K̃ = 20.
• Proportion of variance explained by genotype in eGenes, PVEGenotype= 0.02.
• Proportion of variance explained by covariates, PVECovariates= 0.5.

# of effect SNPs Probability

0 0.35483532

1 0.34962617

2 0.18326554

3 0.07072812

4 0.02498728

5 0.01655758

Table S1: In our data simulation (Algorithm S5), the number of effect SNPs [13, 17] for each
gene is sampled based on this probability table (the second column sums to one). This table is
summarized from GTEx’s independent cis-eQTL analysis [4] (see Figure S2 of Zhou et al. [13]).
A gene is an eGene if and only if its number of effect SNPs is greater than zero.
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Algorithm S5: Simulation of one data set

1 Randomly select p genes from GTEx’s Brain - Cortex expression data [4], avoiding genes from the X
chromosome [13, 17].

2 The goal is to simulate Y , the n× p gene expression matrix.
3 Simulate X̃ , the n× K̃ true covariate matrix, by drawing each entry independently from N(0,1). In this

work, all random sampling is independent unless otherwise specified.
4 for j← 1 to p do
5 Obtain S j , the n×q j genotype matrix for gene j , by subsetting GTEx V8 genotype data [4]. Each

column of S j corresponds to a local common SNP for gene j . “Local” means the SNP is on the
same chromosome as the gene and is located within one megabase (Mb) of the transcription start
site (TSS) of the gene. “Common” means the minor allele frequency (MAF) of the SNP is at least
0.01 and the number of samples with at least one copy of the minor allele (MA samples) is at
least 10.

6 Sample q̃ j , the number of effect SNPs [13, 17] for gene j , based on Table S1.
7 if q̃ j = 0 then
8 Generate Y [ , j] based on

Y [ , j] = X̃
n×K̃

β2 j
K̃×1

+ e j
n×1

, (S6)

where each entry of β2 j is drawn from N(0,1), and each entry of e j is drawn from N(0,1)
and scaled. The scaling is to ensure that PVECovariates is as desired. Specifically, we scale
e j so that

Var(e j)

Var
(

X̃β2 j

) =
1−PVECovariates

PVECovariates
. (S7)

9 else
10 Randomly select q̃ j columns of S j and designate them as the effect SNPs of gene j .
11 Generate Y [ , j] based on

Y [ , j] = S j
n×q j

β1 j
q j×1

+ X̃
n×K̃

β2 j
K̃×1

+ e j
n×1

, (S8)

where entries of β1 j that don’t correspond to the effect SNPs of gene j are set to 0, and
entries of β1 j that correspond to the effect SNPs of gene j are each drawn from N(0,1).
Further, each entry of β2 j is drawn from N(0,1) and scaled, and each entry of e j is drawn
from N(0,1) and scaled. The scaling is to ensure that PVEGenotype and PVECovariates

are as desired. Specifically, we scale β2 j so that

Var
(

X̃β2 j

)
Var(S jβ1 j)

=
PVECovariates

PVEGenotype
(S9)

and separately scale e j so that

Var(e j)

Var(S jβ1 j)
=

1−PVEGenotype−PVECovariates

PVEGenotype
. (S10)

12 end
13 end
14 A gene is an eGene if and only if its number of effect SNPs is greater than zero.
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S3 Development of ClipperQTL

Here we describe the development of ClipperQTL.

Clipper [11] has four main technical parameters:

• Analysis: enrichment vs. differential analysis.
• Procedure: Barber-Candès (BC) vs. Gimenez-Zou (GZ) procedure.
• Contrast score: maximum vs. difference (i.e., minus) contrast score.
• h (only applicable under the GZ procedure, not the BC procedure).

In addition, in ClipperQTL, we can control B, the number of permutations (ClipperQTL
terminology), i.e., the number replicates under the background condition (Clipper terminology).

In ClipperQTL, we use enrichment analysis rather than differential analysis because in identifying
eGenes, the alternative hypothesis is that the expectation of the maximum absolute correlation from
the original expression data is greater than (rather than merely different from) the expectation of
the maximum absolute correlation from permuted expression data.

In ClipperQTL, the number of replicates under the experimental condition is fixed at one because
we only have one set of the original, unpermuted expression data. Therefore, if B = 1, then we
only need to consider the BC procedure (in enrichment analysis, if the number of replicates under
the experimental condition and the number of replicates under the background condition are both
one, then the GZ procedure with either maximum or difference contrast score reduces to the BC
procedure with difference contrast score); if B> 1, then we only need to consider the GZ procedure
(in enrichment analysis, the BC procedure is only applicable when the number of replicates under
the experimental condition and the number of replicates under the background condition are equal
[11]). In other words, B determines the procedure we need to consider.

Therefore, we explore different combinations of B, contrast score, and h (only applicable under
the GZ procedure). We find that for data sets with small sample sizes (< 450), no combination
works well consistently, but for data sets with large sample sizes (> 450), B between 20 and 100,
maximum contrast score, and h = 1 works well (B = 1 and maximum contrast score works almost
as well; details not shown). Therefore, the Clipper variant of ClipperQTL is only recommended
for data sets with large sample sizes (> 450; Section 4.2). It always uses enrichment analysis, GZ
procedure, maximum contrast score, and h = 1 (Algorithm 1), and the user is recommended to set
B between 20 and 100 (Section 4.2).
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Figure S2: Overlap between eGenes identified by various methods and eGenes identified by
FastQTL 1K-10K beta—the default FastQTL method—in GTEx expression data [4] (Table 1; see
Section 2.1 for the analysis details). Each dot corresponds to a tissue. Given two sets, A and B, the
overlap is defined as |A∩B|/min(|A|, |B|), where | · | denotes the cardinality of a set. That is, the
overlap between two sets is defined as the size of the intersection divided by the size of the smaller
set. b, c, g The overlap is slightly lower when the sample size is smaller. This can be explained by
the fact that power is generally lower when the sample size is smaller [4]. h, i Only tissues with
sample sizes ≥ 465 are shown (Figure 1).
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Figure S3: Number of eGenes comparison between ClipperQTL Clipper with different B’s and the
default FastQTL method based on GTEx expression data [4] (the analysis details are as described
in Section 2.1). Each dot corresponds to a tissue. The x-axis and y-axis both represent numbers of
eGenes identified by different methods. Diagonal lines through the origin are shown to help with
visualization. ClipperQTL Clipper with B between 20 and 100 works well for tissues with large
sample sizes (Section 4.2). We use 465 as the sample size cutoff because the next largest sample
size is 396.
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Figure S4: Comparison of ClipperQTL Clipper with different B’s. Each box plot contains 13
data points, corresponding to the 13 tissues in GTEx expression data [4] with sample sizes ≥ 465
(the analysis details are as described in Section 2.1). As B increases from 20 to 100, the stability
of ClipperQTL Clipper (a) and the discovery overlap with the default FastQTL method (b) both
increase slightly. See Figure S2 for our definition of overlap. Stability is a measure of how much
the result of a method depends on the random seed; the higher the stability, the less the result
varies with respect to the random seed. Specifically, to calculate the stability of a method (e.g.,
ClipperQTL Clipper 20), we run the method 10 times with 10 different seeds. We divide the 10
runs into 5 pairs. For each pair, we calculate the overlap between the two sets of identified eGenes.
The stability of the method is calculated as the average of the 5 overlaps.
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