

1 **Comparative transcriptional analysis of *Candida auris* biofilms following farnesol and**
2 **tyrosol treatment**

3

4 Running title: Effects of farnesol/tyrosol against *C. auris* biofilms

5

6 Ágnes Jakab¹, Fruzsina Kovács^{1,2}, Noémi Balla^{1,2}, Csaba Nagy-Köteles³, Ágota Ragyák⁴,
7 Fruzsina Nagy¹, Andrew M Borman^{5,6}, László Majoros¹, Renátó Kovács^{1*}

8

9 ¹Department of Medical Microbiology, Faculty of Medicine, University of Debrecen,
10 Debrecen, Hungary

11 ²Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary

12 ³Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology,
13 Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.

14 ⁴Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner
15 Laboratory, University of Debrecen, Debrecen, Hungary

16 ⁵UK National Mycology Reference Laboratory, Public Health England, Science Quarter,
17 Southmead Hospital, Bristol BS10 5NB, UK

18 ⁶Medical Research Council Centre for Medical Mycology (MRCCMM), University of Exeter,
19 Exeter EX4 4QD, UK

20

21 *Corresponding author: Renátó Kovács; Department of Medical Microbiology, Faculty of
22 Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary, Phone: 00-
23 36-52-255-425; e-mail: kovacs.renato@med.unideb.hu

24

25

26 Abstract

27 *Candida auris* is frequently associated with biofilm-related invasive infections. The resistant
28 profile of these biofilms necessitates innovative therapeutic options, where quorum sensing
29 may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with
30 antifungal effects at supraphysiological concentrations. To date there has been no high-
31 throughput comparative molecular analysis regarding the background of farnesol- or tyrosol-
32 related effects against *C. auris* biofilms. Here, we performed genome-wide transcript profiling
33 with *C. auris* biofilms following 75 μ M farnesol or 15 mM tyrosol exposure using
34 transcriptome sequencing (RNA-Seq). The analysis highlighted that the number of up-
35 regulated genes (a minimum 1.5-fold increase) was 686 and 138 for tyrosol and farnesol,
36 respectively, while 662 and 199 genes were down-regulated (a minimum 1.5-fold decrease)
37 for tyrosol and farnesol, respectively. The overlap between tyrosol- and farnesol-responsive
38 genes was considerable (101 and 116 overlapping up-regulated and down-regulated genes,
39 respectively). Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid
40 oxidation, iron metabolism, and autophagy were primarily affected in treated cells. Farnesol
41 caused an 89.9%, 73.8%, and 32.6% reduction in the calcium, magnesium, and iron content,
42 respectively, whereas tyrosol resulted an 82.6%, 76.6%, and 81.2% decrease in the calcium,
43 magnesium, and iron content compared to the control, respectively. Moreover, the
44 complexation of farnesol, but not tyrosol, with ergosterol is impeded in the presence of
45 exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the
46 quorum-sensing molecules. This study revealed several farnesol- and tyrosol-specific
47 responses, which will contribute to the development of alternative therapies against *C. auris*
48 biofilms.

49

50

51

52 **Importance**

53 *Candida auris* is a multidrug-resistant fungal pathogen, which is frequently associated with
54 biofilm related infections. *Candida*-derived quorum-sensing molecules (farnesol and tyrosol)
55 play a pivotal role in the regulation of fungal morphogenesis and biofilm development.
56 Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological
57 concentrations. Innovative therapeutic approaches interfering with quorum-sensing may be a
58 promising future strategy against *C. auris* biofilms; however, limited data are currently
59 available concerning farnesol-induced and tyrosol-related molecular effects in *C. auris*. Here,
60 we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty
61 acid oxidation, iron metabolism, and autophagy, which were primarily influenced following
62 farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also
63 significantly affected. These results reveal molecular events that provide definitive
64 explanations for the observed anti-biofilm effect; furthermore, they support the development
65 of novel therapeutic approaches against *C. auris* biofilms.

66

67

68

69 Keywords: *Candida auris*, transcriptome, quorum-sensing, ergosterol, calcium, magnesium,
70 iron, biofilm

71

72 **Introduction**

73 Since its first clinical description, *Candida auris* has grown to represent a serious threat in the
74 healthcare environment, as warranted by the Centers for Disease Control (CDC); in addition,
75 it was assigned to the critical priority group in the fungal priority pathogen list published
76 recently by the World Health Organization (WHO) (1,2). Based on the available literature
77 data, micafungin and amphotericin B have been recommended as the first-line therapy against
78 *C. auris* for adults and infants, respectively (3,4). However, echinocandin resistant-isolate-
79 associated cases have tripled in United States of America in the last two years (5). To further
80 complicate therapy, indwelling medical devices were the source of approximately 90% of *C.*
81 *auris* candidaemia, indicating that biofilm formation is one of the main predisposing factors
82 of this invasive infection (6,7). In addition, echinocandins – as the first-line therapy – are
83 frequently ineffective for the treatment of these device-related infections. Several data sets are
84 available about the development of resistance to echinocandins following initial
85 administration with these antifungals, particularly in the case of catheter-related infections (8–
86 10).

87 Quorum sensing is a well-known population density-based communication system through
88 the release and sensing of different quorum-sensing molecules (11,12). In various fungal
89 species, this process plays a pivotal role in the regulation of intra- and inter-species
90 mechanisms such as morphogenesis or virulence (11,12). Farnesol and tyrosol are the two
91 best-described quorum-sensing molecules in the case of *Candida* species. Under
92 physiological conditions, farnesol inhibits the yeast-to-hyphae transition, while tyrosol has the
93 opposite effect in terms of morphogenesis (13,14). The observed potent inhibitory effect of
94 these molecules at supraphysiological concentrations suggests that either farnesol or tyrosol
95 may be a potential part of novel innovative preventive strategies against *Candida* biofilms,
96 including against the *C. auris* sessile community as published previously (15–19). These

97 studies showed that both molecules have a remarkable antifungal effect, interfering with
98 redox homeostasis, virulence, and intracellular microelement contents against planktonic
99 forms of *C. auris*; however, the transcriptome-based biofilm related changes remained to be
100 elucidated (17,18,20).

101 The present study showed the molecular background of the response to farnesol or tyrosol in
102 *C. auris* biofilm and revealed the transcriptome patterns associated with the observed
103 antifungal effect exerted by these two quorum-sensing molecules. The detailed understanding
104 of quorum sensing molecule-associated molecular mechanisms may open novel innovative
105 therapeutic approaches in the future to overcome this emerging fungal superbug.

106

107

108

109 **Materials and methods**

110 **Isolate and culture conditions**

111 *C. auris* isolate 12 (NCPF 8973), derived from the South Asian/Indian lineage, was obtained
112 from the National Mycology Reference Laboratory (United Kingdom) (21). The strain was
113 maintained on yeast extract-peptone-dextrose (YPD) solid medium (10 g/l yeast extract [Alfa
114 Aesar, United States of America], 20 g/l mycological peptone [Oxoid, United Kingdom], 20
115 g/l dextrose, and 20 g/l agar [VWR International Llc, Hungary], pH 5.6). Culturing and
116 biofilm formation were performed in RPMI-1640 (with l-glutamine and without bicarbonate,
117 pH 7.0, and with MOPS; Merck, Budapest, Hungary). Farnesol (Merck Ltd., Budapest,
118 Hungary) was obtained as 3M stock solution, which was diluted to a 30 mM working stock
119 solution in 100% methanol. The working concentration of farnesol were prepared in YPD
120 medium. Drug-free control was supplemented with 1% (vol/vol) methanol. Tyrosol [2-(4-
121 hydroxyphenyl) ethanol] (Merck Ltd., Budapest, Hungary) was prepared as a 0.1 M stock
122 solution in sterile physiological saline.

123

124 **Biofilm formation**

125 The *C. auris* isolate was subcultured on YPD agar for 48 hours at 37 °C. Fungal cells were
126 harvested by centrifugation at 3000 × g for 5 min and were washed three times with sterile
127 physiological saline. Afterwards, pellets were re-suspended in physiological saline, and the
128 cell density was adjusted to 1×10^6 cells/ml in sterile RPMI-1640 media for each experiment
129 using Burker's chamber (12,14). The 550 µl suspensions of *C. auris* cells were placed on the
130 bottom of 24-well polystyrene plates (TPP, Trasadingen, Switzerland) to 450 µl RPMI-1640
131 media and reincubated statically for 24 hours at 37 °C. After the incubation time, the culture
132 medium was aspirated, and non-adherent cells were removed by washing the biofilms with
133 sterile physiological saline. Tyrosol and farnesol in 15 mM and 75 µM concentrations were

134 added to preformed one-day-old biofilms, and then the plates were incubated for 24 hours at
135 37 °C. Developed biofilms obtained after a further 24 hours of cultivation in the presence and
136 absence of farnesol or tyrosol were scraped from the plate wells with 500 µL of physiological
137 saline and then washed three times with physiological saline (15,17,18). Three biological
138 replicates of biofilm-forming cell suspensions were centrifuged at 3000 g for 10 min at 4 °C,
139 and the pellets were used for RNA extraction and element analysis. Biofilm growth was
140 characterized by dry mass measurement (DCM). The DCM was taken after freeze-drying of
141 the biomass.

142

143 **RNA extraction**

144 Similar to our previous studies, total RNA samples were isolated from lyophilized *C. auris*
145 cells (CHRIST Alpha 1-2 LD plus lyophilizer, Osterode, Germany) using Tri Reagent (Merck
146 Ltd. Budapest, Hungary). The quality of RNA was determined using the Eukaryotic Total
147 RNA Nano kit (Agilent, Santa Clara, CA, USA) along with an Agilent Bioanalyzer (18,20).

148

149 **Reverse-Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)**

150 **Assays**

151 RT-qPCR was performed to quantify the transcription of 11 selected genes (six up-regulated,
152 *UME6*, *CFL4*, *BIO2*, *CZF1*, *FAD3*, and *MDR1*; three down-regulated, *PFK1*, *INO1*, and
153 *POT1*; and two non-differentially expressed genes, *ACT1*, and *ERG9*) selected on the basis of
154 the RNA-Seq experiments. For RT-qPCR, 1 µg of total RNA from each of three independent
155 experiments was digested with DNase I (Merck Ltd. Budapest, Hungary) following the
156 manufacturer's instructions, and the expression levels of genes were quantified with the
157 Luna® universal one-step RT-qPCR kit (New England Biolabs, Ipswich, MA, USA) with the
158 following cycling parameters: 10 min at 55 °C and 1 min at 95 °C, followed by 40 cycles

159 of 10 s at 95 °C, 10 s at 51 °C, and 20 s at 65 °C. The relative expression of each gene
160 was normalized to that of the *ACT1* (B9J08_000486) gene. Oligonucleotide primers were
161 designed with Oligo Explorer (v.1.1.) and Oligo Analyzer (v.1.0.2) software and are listed in
162 Supplementary Table 1. The relative transcription levels were characterized by the $\Delta\Delta\text{CP}$
163 value. $\Delta\Delta\text{CP}$ is the difference between the ΔCP s of the treated and untreated cultures, where
164 ΔCP is the difference between the crossing point of the reference gene and the target gene
165 within a sample (18,20).

166

167 **RNA Sequencing**

168 Total RNA was isolated from the farnesol treated, tyrosol treated, and untreated biofilms of *C.*
169 *auris* isolate 12. Whole RNA sequencing from \sim 250 ng of high-quality total RNA
170 ($\text{OD}_{260/280} \geq 1.9$; RIN value ≥ 7) was performed at the Genomic Medicine and Bioinformatic
171 Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine,
172 University of Debrecen, Debrecen, Hungary. Libraries were prepared with the NEBNext
173 RNA Sample Preparation kit (New England BioLabs) according to the manufacturer's
174 protocol. Biofilm samples were sequenced (single-read 75 bp sequencing on an Illumina
175 NextSeq 500 instrument (Illumina, San Diego, California, United States of America)
176 separately. Depending on the sample type, 19–23 million reads per sample (farnesol treated
177 samples), 19–23 million reads per sample (tyrosol treated samples) and 19–23 million reads
178 per sample (untreated samples) were obtained. The FastQC package
179 (www.bioinformatics.babraham.ac.uk/projects/) was used for quality control. Reads were
180 aligned to the genome of *C. auris* B8441, retrieved from the Candida Genome Database
181 (CGD) (www.candidagenome.org) with the HISAT2 algorithm combined with SAMtools (22).
182 The successfully aligned reads varied between $\geq 92\%$ (farnesol treated samples), $\geq 92\%$
183 (tyrosol treated samples), and $\geq 92\%$ (untreated samples). Downstream analysis was

184 performed using StrandNGS software (www.strand/ngs.com). BAM files were imported into
185 the software, and the DESeq algorithm was used for normalization. A moderated *t*-test was
186 used to determine differentially expressed genes between conditions.

187

188 **Evaluation of transcriptome data**

189 The Candida Genome Database platform (www.candidagenome.org) with default settings was
190 used to characterize the up- and down-regulated gene sets. Only hits with a corrected *p* value
191 < 0.05 were regarded as significantly enriched (Table S2 and S3). Enrichment of selected
192 gene groups in the up- and down-regulated gene sets was also studied with the Fisher's exact
193 test function of the R project (www.R-project.org/) (Table S3).

194

195 *The following gene categories were examined:*

196 The “Virulence-associated genes” are known as putative genes involved in the genetic
197 regulation of *C. albicans* virulence properties according to previously published
198 classifications (23–25).

199 The “Metabolic pathway-associated genes” include all genes related to ergosterol,
200 carbohydrate, and fatty acid biochemical pathways based on the pathway databases
201 (<http://pathway.candidagenome.org/>).

202 The “Metal metabolism-associated genes” group involved in manganese, calcium,
203 magnesium, iron, zinc, and copper homeostasis genes by *C. albicans* were collected by the
204 method of Fourie *et al.* (2018) and Gerwien *et al.* (2018) (26,27).

205 “Autophagy-related genes” were collected from the Candida Genome Database
206 (www.candidagenome.org).

207

208 **Intracellular metal content measured by inductively coupled plasma optical emission
209 spectrometry (ICP-OES) in *Candida auris* biofilms**

210 The selected intracellular element (Fe, Ca, and Mg) contents of the lyophilized biomass were
211 determined by inductively coupled plasma optical emission spectrometry (ICP-OES; 5110
212 Agilent Technologies, Santa Clara, CA, USA) following atmospheric wet digestion in 3 ml of
213 65% HNO₃ and 1 ml of 30% H₂O₂ in glass beakers. The metal contents of the samples were
214 normalized by DCM as described by Jakab *et al.* (2021) (20). The metal contents of the dry
215 biomass were determined in triplicate, and mean \pm standard deviation values were presented.

216

217 **Ergosterol-binding assay**

218 To determine the binding of farnesol or tyrosol to the ergosterol present in *C. auris* cell
219 membranes, an ergosterol binding assay was performed as described by Ramesh *et al.* (2023)
220 (28). Briefly, ergosterol (Merck, Budapest, Hungary) was dissolved in dimethyl-sulfoxide
221 (DMSO). The prepared ergosterol solution was then pipetted to RPMI-1640 in 100 and 200
222 mg/l final concentrations. The minimum inhibitory concentration (MIC) values of farnesol or
223 tyrosol against *C. auris* were determined in RPMI-1640 according to the recommendations
224 proposed by the Clinical Laboratory Standards Institute M27-A3 protocol with and without
225 media supplemented with ergosterol (29). The concentrations tested ranged from 0.585 to 300
226 μ M for farnesol and from 0.058 to 30 mM for tyrosol, with 100 and 200 mg/l of ergosterol in
227 RPMI-1640. MICs were determined as the lowest concentration that caused at least 50%
228 growth decrease compared with the untreated control cells. The changes in MIC values with
229 and without of added ergosterol were determined to conclude the ergosterol-binding ability of
230 farnesol and tyrosol.

231

232 **Data availability**

233 Regarding the *C. auris* isolate tested, the Whole Genome Shotgun project has been deposited

234 in DDBJ/ENA/GenBank under the accession JANPVY000000000. Transcriptome data have

235 been deposited in NCBI's Gene Expression Omnibus (GEO;

236 <http://www.ncbi.nlm.nih.gov/geo/>) and are accessible through GEO Series accession number

237 GSE233427 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE233427>).

238

239

240

241

242

243 **Results**

244 **Genome-wide transcriptional changes for *C. auris* biofilms**

245 Long-term transcriptional responses were studied for *C. auris* biofilms in three different
246 experimental settings: (i) untreated control *C. auris* biofilm, (ii) farnesol-exposed *C. auris*
247 biofilm, and (iii) tyrosol-treated *C. auris* biofilm. In these experiments, one-day-old biofilms
248 were supplemented with 75 μ M farnesol or 15 mM tyrosol and samples were collected after
249 24 hour-long exposures. Reproducible relationships between RNA-Seq results were
250 confirmed by principal component analysis (Figure S1). The effects of quorum-sensing
251 molecules on the transcriptomes are summarized in Figures 1A-D and 2.

252 Tyrosol-related effects were more pronounced on *C. auris* biofilms compared to untreated
253 control sessile cells. The number of up-regulated genes were 686 and 138 for tyrosol and
254 farnesol, respectively; while 662 and 199 genes were down-regulated for tyrosol and farnesol,
255 respectively (Figure 1A). The overlaps between tyrosol- and farnesol-responsive genes were
256 considerable (101 and 116 overlapping up-regulated and down-regulated genes, respectively);
257 however, the transcription of several genes changed exclusively in response to tyrosol
258 exposure (the number of up-regulated and down-regulated tyrosol-responsive genes was 585
259 and 546, respectively (Figure 1A).

260 The fold change obtained using RNA-Seq was compared with relative transcription levels
261 ($\Delta\Delta\text{CP}$) derived from RT-qPCR analysis. Selected genes of interest are shown in
262 Supplementary Table S1. The similarity between the transcription levels obtained from the
263 two methods indicates high consistency between the analytical data. Supplementary Table S4
264 indicates a good correlation between RNA-Seq and RT-qPCR data with a correlation
265 coefficient (r) of 0.89 (Farnesol vs. Control) and 0.95 (Tyrosol vs. Control). The possible
266 physiological background of the transcriptional changes for up- and down-regulated genes

267 was further characterized using gene set enrichment analyses (Figure 1B-D, Tables S2 and
268 S3), and selected changes are illustrated in a heat map (Figure 2).

269

270 **Farnesol exposure shows a moderate transcriptomic effect**

271 Based on our transcriptomic data, genes involved in biofilm formation (*CZF1*, *UME6*, and
272 *TYE7* transcription factors; and *PES1*, encoding a key enzyme specific to regulation of the
273 hyphae-to-yeast transition), iron-sulfur cluster binding (*RLI1*, *ISA1*, *BIO2*, *SDH2*, *DRE2*, and
274 *LEU1*), iron uptake (*FET31*, multicopper oxidase; *CCC1*, ferrous iron transporter; *CFL4* and
275 *FRE10*, ferric reductases), as well as in ribosome biogenesis (50 genes), ribosomal small
276 subunit biogenesis (29 genes), ribosomal large subunit biogenesis (14 genes), RNA metabolic
277 process (54 genes) and rRNA metabolic process (45 genes) were enriched in the up-regulated
278 gene set (Figures 1 and 2, Tables S2 and S3). Up-regulation of *UME6*, *CZF1*, *BIO2*, and
279 *CFL4* under farnesol exposure was confirmed by RT-qPCR data (Tables S4).

280

281 **Tyrosol treatment led to a considerable reprogramming of gene transcription in *C. auris*
282 biofilm**

283 Transcripts of biofilm-formation genes (*CZF1*, *UME6*, and *TYE7* transcription factors; and
284 *PES1*) were also activated by tyrosol treatment (Figure 2, Table S3). Furthermore, significant
285 up-regulation was observed in the case of the following genes: putative ABC transporters
286 (*MDR1*, *YCF1*, and *SNQ2*), unsaturated fatty acid biosynthetic process (*FAD2* and *FAD3*
287 encoding for delta-12 and omega-3 fatty acid desaturases), iron homeostasis (*CFL4*, *FRE9*,
288 and *FRE10*, ferric reductases; *FET31*, multicopper oxidase; *FTR1*, iron permease; *SIT1*,
289 ferrichrome siderophores transporter; *HXM1*, heme oxygenase; *MNN2* and *CCC1*, iron
290 transporters), iron-sulfur cluster binding (15 genes, e.g., *RLI1*, *ECM17*, *YAH1*, *ISA1*, *LYS4*,
291 *BIO2*, *ELP3*, *SDH2*, *DRE2*, and *LEU1*), as well as ribosome biogenesis (175 genes),

292 ribosomal small subunit biogenesis (84 genes), ribosomal large subunit biogenesis (57 genes),
293 RNA metabolic process (241 genes), rRNA metabolic process (147 genes), tRNA metabolic
294 process (74 genes), RNA polymerase I complex (8 genes), RNA polymerase III complex (9
295 genes), and translation (52 genes) (Figures 1 and 2, Tables S2 and S3).

296 On the other hand, ergosterol biosynthetic process (*ERG4*, *ERG7*, *ERG9*, *ERG10*, and
297 *ERG26*), phospholipid binding (26 genes), carbohydrate metabolic process (36 genes),
298 inositol metabolic process (*INO1*, and CR_08330W), trehalose metabolism (*TPS1*),
299 carbohydrate catabolic process (17 genes), glycolysis (*PGI1*, *PFK2*, *PFK1*, *TPI1*, *TDH3*,
300 *GPM1*, and *ENO1*), maltose degradation (*MAL2*, C5_04940W, *GDB1*, and C5_04940W),
301 fatty acid metabolic process (20 genes), fatty acid catabolic process (11 genes), fatty acid
302 beta-oxidation (*POX1*, *PXP2*, *POX1-3*, CR_08670C, *ECI1*, *FAA4*, and *FAA2-3*), glyoxylate
303 cycle (*MLS1*, and *MDH1-3*), glutamate catabolic process (*GAD1*, *UGA11*, and *UGA2*), copper
304 uptake (*CTR1*, copper transporter; *CCS1*, copper chaperone) zinc metabolism (*PRA1*, surface
305 protein; *CSRI*, transcription factor), as well as macroautophagy (25 genes), and response to
306 endoplasmic reticulum stress (20 genes) were enriched in the down-regulated gene set
307 (Figures 1 and 2, Tables S2 and S3).

308 Moreover, tyrosol exposure significantly decreased the transcription of 28 peroxisomal genes,
309 42 vacuolar genes, 37 genes of the cell cortex, including 9 genes of the cortical endoplasmic
310 reticulum and 20 genes of the cortical actin cytoskeleton, as well as 9 genes of the
311 endoplasmic reticulum tubular network in the cellular component-related term (Figures 1 and
312 2, Tables S2 and S3). It is noteworthy that tyrosol treatment caused a significant increase in
313 transcription of *UME6*, *CZF1*, *FAD3*, *BIO2*, *CFL4*, and *MDR1* based on the RT-qPCR
314 measurements. In addition, down-regulation of *PFK1*, *INO1*, and *POT1* was also supported
315 by RT-qPCR (Tables S4).

316 The obtained data indicated that tyrosol exposure significantly increased the transcription of
317 30 transmembrane transport-related genes and decreased the expression of 4 ergosterol
318 biosynthetic process (*ERG4*, *ERG10*, *ERG11*, and *ERG13*)-related genes compared to
319 farnesol treatment (Figures 1 and 2, Tables S2 and S3).

320

321 **Quorum-sensing molecules significantly influenced the metal content of one-day-old *C.***
322 ***auris* biofilm**

323 Quorum-sensing molecules decreased the dry cell mass and metal contents significantly
324 compared to untreated control biofilms ($p < 0.01$), as presented in Table 1. A significant
325 decrease was detected in the DCM of farnesol- and tyrosol-treated biofilms (0.53 ± 0.165 g/l
326 and 0.4 ± 0.16 g/l for farnesol and tyrosol, respectively) compared to untreated cells ($1.37 \pm$
327 0.35 g/l). Furthermore, farnesol and tyrosol exposures significantly influence the calcium
328 (319.37 ± 234.80 mg/kg and 551.75 ± 441.83 mg/kg), magnesium (695.78 ± 111.91 mg/kg
329 and 618.65 ± 40.75 mg/kg), and iron (240.34 ± 118.39 mg/kg and 67.17 ± 15.84 mg/kg)
330 contents of *C. auris* biofilms as compared to controls (3170.7 ± 82.8 mg/kg for calcium,
331 2648.36 ± 35.05 mg/kg for magnesium and 356.32 ± 45.62 mg/kg for iron, respectively)
332 (Table 1).

333

334 **Ergosterol-binding assay**

335 The ability of farnesol or tyrosol to cause membrane destabilization can be identified by its
336 ability to interfere with exogenous ergosterol added to the *C. auris* suspension in standard
337 microdilution assay. In the presence of exogenous ergosterol at 100 and $200 \mu\text{M}$, the MIC
338 of farnesol increased 4-fold, from 75 to $300 \mu\text{M}$ for *C. auris*. In the combination of tyrosol
339 and ergosterol, the MIC values were 30 mM in the presence or absence of ergosterol. These

340 results indicate that farnesol but not tyrosol may exert its activity in whole or in part by
341 binding to membrane ergosterol.

342

343

344 **Discussion**

345 In the past decade, *C. auris* has caused multiple outbreaks worldwide, which have frequently
346 been associated with extensive biofilm production on indwelling devices, further
347 complicating the already challenging treatment (5–7,30). Previous studies revealed that
348 innovative anti-biofilm strategies interfering with quorum sensing may effectively attack this
349 hard-to-treat sessile pathogen (31,32). Fungal quorum-sensing molecules (farnesol or tyrosol),
350 especially at supraphysiological concentrations, have remarkable antifungal and drug
351 potentiator effects against several *Candida* species (15–20). In the case of planktonic *C. auris*
352 cells, the molecular and physiological background of farnesol-related effects were described;
353 however, the biofilm-specific molecular and physiological events following farnesol or
354 tyrosol exposure remained to be elucidated so far (20). It is noteworthy that previously
355 performed differential expression analysis demonstrated that the *C. auris* planktonic and
356 biofilm transcriptome differ significantly (33). Therefore, the planktonic findings could not be
357 directly extrapolated to biofilms. In this study, we performed comprehensive comparative
358 transcriptomic profiling to significantly expand the list of genes affected by farnesol or
359 tyrosol and those physiological processes that will be able to support the development of
360 effective therapies against *C. auris* biofilms.

361 Our comparative transcriptomic data show a significant up-regulation in *CZF1* and *UME6*
362 genes following both farnesol and tyrosol exposure. Similarly up-regulated was *TYE7*, which
363 is the major transcriptional regulator of glycolysis genes in *C. albicans* that attaches the
364 promoters of genes related to glycolysis such as *PFK1* and *PFK2* encoding subunits of
365 phosphofructokinase (34). This enzyme irreversibly converts fructose-6-phosphate into
366 fructose-1,6-bisphosphate, which is a pivotal regulatory step in glycolysis (34,35).
367 Furthermore, it acts as a negative regulator of hypoxic filamentation (36). Despite the
368 overexpression of *TYE7*, several key genes in glycolysis were significantly down-regulated

369 (*PGII*, *PFK1*, *PFK2*, *TPII*, *TDH3*, *GPM1*, *ENO1*), especially under tyrosol exposure. The
370 opposite pattern was reported in *C. parapsilosis* planktonic cells, where exogenous tyrosol
371 treatment shifted metabolism toward glycolysis (18). Overexpression of *CZF1* protein
372 stimulates filamentation; moreover, *CZF1* gene deletion is associated with negative effects on
373 hyphae filamentation. Similar *CZF1* up-regulation was observed in case of *C. parapsilosis*
374 planktonic cells following tyrosol exposure; however, Jakab et al (2019) did not observe
375 higher rates of adherence and biofilm-forming ability in the presence of this quorum-sensing
376 molecule (18). Gene of *UME6* is also important in terms of hyphal extension. In addition,
377 Ume6 protein has a pivotal role in the expression of *HWP1*, *ECE1*, *ALS3*, and *HCG1*, which
378 are associated with the filamentation (35,36). We hypothesize that the observed up-regulation
379 of *CZF1* and *UME6* is a compensatory response of fungi to maintain the biofilm structure,
380 because both farnesol and tyrosol exposure significantly decreased the level of two bivalent
381 cations – magnesium and calcium – which play a critical role in biofilm development.
382 Previous studies suggest that magnesium triggers the growth of filamentous forms in *C.*
383 *albicans* and in *Trichosporon asahii* (37,38). Furthermore, magnesium uptake has an effect on
384 mitochondrial distribution, the production of lipid droplets, and vacuolar growth, which
385 contribute to promotion of hyphal growth and directly to biofilm formation (38). Hans et al.
386 (2019) showed that magnesium deprivation impedes the metabolic flexibility of *C. albicans*
387 (39). In our study, several glycolysis, gluconeogenesis, and fatty acid oxidation-related genes
388 were down-regulated, especially for tyrosol treatment, which were associated with the
389 reduced growth rate and the significantly decreased dry cell mass of sessile cells. A previous
390 study revealed that magnesium chelation and its lower level leads to the potentiation of
391 membrane-targeting antifungal drugs, which was confirmed previously between farnesol and
392 triazoles against *C. auris* biofilms (17,39). In addition, the decreased magnesium content
393 inhibited potential virulence traits, including biofilm formation, morphological transition, and

394 adherence to epithelial cells; moreover, it significantly influences membrane homeostasis
395 with remarkable changes in ergosterol synthesis-related genes, as confirmed in this study (39).
396 Aside of the magnesium content, both farnesol- and tyrosol- treated biofilms showed a
397 decreased calcium level. Previous results demonstrated that calcium supplementation could
398 increase the length of fungal cells grown for *T. ashaii*, *Cryptococcus neoformans*, and *C.*
399 *albicans* because calcium regulates both actin polymerization and microtubule
400 polymerization; thus, it has a remarkable direct effect on biofilm development (40,41). In
401 accordance with these studies, beside of decreased calcium level, tyrosol treatment
402 significantly down-regulated the transcription of several genes, which influence the actin
403 filament organization, actin cortical patch, cortical cytoskeleton and cortical actin
404 cytoskeleton. Presumably, the simultaneous reduction of these two crucial bivalent cations
405 (magnesium and calcium) may explain the previously documented anti-biofilm effect exerted
406 by farnesol or tyrosol.

407 Tyrosol treatment significantly decreased the iron content of biofilms, which were associated
408 with several up-regulated iron homeostasis-related gene groups (e.g., ferric reductases,
409 multicopper oxidases, iron permeases). Although farnesol exposure resulted in a similar
410 pattern in the transcription level of these genes, the observed changes did not coincide with a
411 significantly decreased iron content. Nevertheless, previously published planktonic *C. auris*
412 transcriptomic data showed that farnesol treatment down-regulated the transcription of iron
413 homeostasis-related genes, which were associated with a significant reduction of the iron
414 concentration (20). It is noteworthy that iron deprivation does not influence the biofilm-
415 forming ability of *C. albicans* (42). Nonetheless, the decreased iron content enhances the
416 membrane fluidity of *Candida* cells, influencing its susceptibility to membrane-active
417 antifungal agents (43).

418 Considering the results derived from transcriptome analysis, intracellular metal content
419 determination and ergosterol-binding assay, the examined fungal quorum-sensing molecules
420 appears to impact the fungal cell membrane structure. Our ergosterol binding assay shows that
421 farnesol is highly bound to the ergosterol, which presumably changes the conformational
422 properties of ergosterol, influencing the membrane characteristics; nevertheless, further
423 structure-based confirmatory experiments are needed to justify this hypothesis. Tyrosol could
424 also influence certain membrane characteristics. Tyrosol treatment significantly enhanced the
425 transcription of *FAD2* and *FAD3* genes encoding for fatty acid desaturases involved in poly
426 unsaturated fatty acid synthesis. Riekhof *et al.* (2014) demonstrated a similar pattern in
427 *FAD2/FAD3* transcription following phosphate starvation in fungi (44). The overexpression
428 of these desaturases may increase the tolerance of fungal cells to environmental stress.
429 Another remarkable tyrosol-induced membrane related effect was the down-regulation of
430 several ergosterol synthesis-associated genes including *ERG4*, *ERG7*, *ERG9*, *ERG10*, and
431 *ERG26*. The down-regulation of these genes may alter the membrane's permeability and may
432 influence its fluidity. Regarding farnesol, Dizova *et al.* (2017) showed that farnesol exposure
433 (200 μ M) down-regulated the *ERG9*, *ERG11*, and *ERG20* genes in *C. albicans* (45).
434 Furthermore, Jakab *et al.* (2021) reported that the presence of 75 μ M farnesol decrease the
435 transcription of *ERG6* gene in *C. auris*, which might enhance the passive diffusion of
436 farnesol; moreover, the decreased *ERG6* content produces higher susceptibility to oxidative
437 stress and impairs thermotolerance (20). Surprisingly, farnesol did not cause any relevant
438 change in the transcription of central ergosterol biosynthesis-related genes in this study. Aside
439 from *ERG* genes, *INO1*, encoding inositol-1-phosphate synthase, was also down-regulated
440 following tyrosol exposure. Interestingly, in the case of planktonic *C. auris* cells, farnesol
441 reduces the transcription of this gene (20).

442 With respect to autophagy-related genes, tyrosol exposure caused a significant decrease in the
443 transcription of *C1_00430W*, *AUT7*, *VPS34*, *C4_01790W*, *VAC8*, *CCZ1*, *C7_03860W*,
444 *SEC17*, *VMA2*, and *APG7*, whereas the transcription level of *SPO72* was increased.

445 Macroautophagy is an evolutionarily conserved dynamic pathway that functions primarily in
446 a degradative manner. Macroautophagy has a pivotal role in maintenance of cellular
447 homeostasis; however, either under-activated or over-activated macroautophagy can
448 remarkably compromise cell physiology, leading to cell death (46).

449 This is the very first study analyzing the global changes in gene transcription of *C. auris*
450 biofilms in a comparative manner following farnesol and tyrosol exposure. Nevertheless, one
451 major limitation should be highlighted. The *C. auris* isolates are classified into five different
452 clades (47). These lineages differ by several thousand single nucleotide polymorphisms. In
453 this study, we examined only one isolate from one clade (South Asian lineage). Nevertheless,
454 among all clades, the South Asian clade contains the highest percentage of multidrug-resistant
455 isolates (48). Thus, the obtained results are relevant in terms of overcoming biofilms formed
456 by multidrug-resistant isolates from the South Asian clade. Taken together, our data give a
457 novel insight into the genome-wide transcriptome changes caused by farnesol and tyrosol
458 exposure in the metal content of biofilms, metabolic regulation, and membrane-related
459 alterations. However, further mutant-based *in vitro* and *in vivo* investigations are needed to
460 fully understand the complete mechanism of these two quorum-sensing molecules in the *C.*
461 *auris* sessile community.

462

463

464

465

466

467

468

469 **Conflict of interest**

470 L. Majoros received conference travel grants from MSD, Cidara Therapeutics, Astellas and
471 Pfizer. All other authors declare no conflicts of interest.

472

473

474 **Acknowledgements**

475 R. Kovács was supported by the Janos Bolyai Research Scholarship of the Hungarian
476 Academy of Sciences (BO/00127/21/8). This research was supported by the Hungarian
477 National Research, Development and Innovation Office (NKFIH FK138462). R. Kovács was
478 supported by the UNKP-22-5-DE-417 New National Excellence Program of the Ministry for
479 Innovation and Technology from the Source of the National Research, Development and
480 Innovation Fund.

481

482

483 **References**

484 1. Centers for Disease Control and prevention, Antibiotic resistance threats in the United
485 States (2019). <https://ndc.services.cdc.gov/wp-content/uploads/Antibiotic-Resistance->
486 Threats-in-the-United-States-2019.pdf.

487 2. WHO fungal priority pathogens report. 2022. see:
488 <https://www.who.int/publications/i/item/9789240060241>

489 3. Park JY, Bradley N, Brooks S, Burney S, Wassner C. 2019. Management of Patients
490 with *Candida auris* Fungemia at Community Hospital, Brooklyn, New York, USA,
491 2016-2018. *Emerg Infect Dis* 25:601-602. doi: 10.3201/eid2503.180927.

492 4. Vitale RG. 2021. Role of Antifungal Combinations in Difficult to Treat *Candida*
493 Infections. *J Fungi (Basel)*. 7:731. doi: 10.3390/jof7090731.

494 5. Lyman M, Forsberg K, Sexton DJ, Chow NA, Lockhart SR, Jackson BR, Chiller T.
495 2023. Worsening Spread of *Candida auris* in the United States, 2019 to 2021. *Ann
496 Intern Med*. 176:489-495. doi: 10.7326/M22-3469

497 6. Sayeed MA, Farooqi J, Jabeen K, Mahmood SF. 2020. Comparison of risk factors and
498 outcomes of *Candida auris* candidemia with non-*Candida auris* candidemia: A
499 retrospective study from Pakistan. *Med Mycol*. 58:721-729. doi:
500 10.1093/mmy/myz112.

501 7. Arensman K, Miller JL, Chiang A, Mai N, Levato J, LaChance E, Anderson M,
502 Beganovic M, Dela Pena J. 2020. Clinical Outcomes of Patients Treated for *Candida*
503 *auris* Infections in a Multisite Health System, Illinois, USA. *Emerg Infect Dis*.
504 26:876-880. doi: 10.3201/eid2605.191588.

505 8. Al-Obaid I, Asadzadeh M, Ahmad S, AlObaid K, Alfouzan W, Bafna R, Emara M,
506 Joseph L. 2022. Fatal Breakthrough Candidemia in an Immunocompromised Patient in
507 Kuwait Due to *Candida auris* Exhibiting Reduced Susceptibility to Echinocandins and

508 Carrying a Novel Mutation in Hotspot-1 of FKS1. *J Fungi (Basel)*. 8:267. doi:
509 10.3390/jof8030267.

510 9. Briano F, Magnasco L, Sepulcri C, Dettori S, Dentone C, Mikulska M, Ball L, Vena
511 A, Robba C, Patroniti N, Brunetti I, Gratarola A, D'Angelo R, Di Pilato V, Coppo E,
512 Marchese A, Pelosi P, Giacobbe DR, Bassetti M. 2022. *Candida auris* Candidemia in
513 Critically Ill, Colonized Patients: Cumulative Incidence and Risk Factors. *Infect Dis*
514 *Ther*. 11:1149-1160. doi: 10.1007/s40121-022-00625-9.

515 10. Mulet-Bayona JV, Salvador-García C, Tormo-Palop N, Gimeno-Cardona C. 2022.
516 Recurrent candidemia and isolation of echinocandin-resistant *Candida auris* in a
517 patient with a long-term central catheter. *Enferm Infecc Microbiol Clin (Engl Ed)*.
518 40:334-335. doi: 10.1016/j.eimce.2022.03.011.

519 11. Tian X, Ding H, Ke W, Wang L. 2021. Quorum Sensing in Fungal Species. *Annu Rev*
520 *Microbiol*. 75:449-469. doi: 10.1146/annurev-micro-060321-045510.

521 12. Wongsuk T, Pumeesat P, Luplertlop N. 2016. Fungal quorum sensing molecules: Role
522 in fungal morphogenesis and pathogenicity. *J Basic Microbiol*. 56:440-447. doi:
523 10.1002/jobm.201500759.

524 13. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P,
525 Nickerson KW. 2001. Quorum sensing in the dimorphic fungus *Candida albicans* is
526 mediated by farnesol. *Appl Environ Microbiol*. 67:2982-92. doi:
527 10.1128/AEM.67.7.2982-2992.2001.

528 14. Alem MA, Oteef MD, Flowers TH, Douglas LJ. 2006. Production of tyrosol by
529 *Candida albicans* biofilms and its role in quorum sensing and biofilm development.
530 *Eukaryot Cell*. 5:1770-1779. doi: 10.1128/EC.00219-06.

531 15. Nagy F, Tóth Z, Darócz L, Székely A, Borman AM, Majoros L, Kovács R. 2020/a.
532 Farnesol increases the activity of echinocandins against *Candida auris* biofilms. Med
533 Mycol. 58:404-407. doi: 10.1093/mmy/myz057

534 16. Dekkerová J, Černáková L, Kendra S, Borghi E, Ottaviano E, Willinger B, Bujdáková
535 H. 2022. Farnesol Boosts the Antifungal Effect of Fluconazole and Modulates
536 Resistance in *Candida auris* through Regulation of the CDR1 and ERG11 Genes. J
537 Fungi (Basel). 8:783. doi: 10.3390/jof8080783.

538 17. Nagy F, Vitális E, Jakab Á, Borman AM, Forgács L, Tóth Z, Majoros L, Kovács R.
539 2020/b. *In vitro* and *in vivo* Effect of Exogenous Farnesol Exposure Against *Candida*
540 *auris*. Front Microbiol. 11:957. doi: 10.3389/fmicb.2020.00957.

541 18. Jakab Á, Tóth Z, Nagy F, Nemes D, Bácskay I, Kardos G, Emri T, Pócsi I, Majoros L,
542 Kovács R. 2019. Physiological and Transcriptional Responses of *Candida*
543 *parapsilosis* to Exogenous Tyrosol. Appl Environ Microbiol. 85:e01388-19. doi:
544 10.1128/AEM.01388-19

545 19. Kovács R, Tóth Z, Nagy F, Darócz L, Bozó A, Majoros L. 2017. Activity of
546 exogenous tyrosol in combination with caspofungin and micafungin against *Candida*
547 *parapsilosis* sessile cells. J Appl Microbiol. 122:1529-1536. doi: 10.1111/jam.13452.

548 20. Jakab Á, Balla N, Ragyák Á, Nagy F, Kovács F, Sajtos Z, Tóth Z, Borman AM, Pócsi
549 I, Baranyai E, Majoros L, Kovács R. 2021. Transcriptional Profiling of the *Candida*
550 *auris* Response to Exogenous Farnesol Exposure. mSphere. 6:e0071021. doi:
551 10.1128/mSphere.00710-21

552 21. Borman AM, Szekely A, Johnson EM. 2017. Isolates of the emerging pathogen
553 *Candida auris* present in the UK have several geographic origins. Med Mycol. 55:563-
554 567. doi: 10.1093/mmy/myw147.

555 22. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome
556 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol.*
557 37:907-915. doi: 10.1038/s41587-019-0201-4.

558 23. Mayer FL, Wilson D, Hube B. 2013. *Candida albicans* pathogenicity mechanisms.
559 *Virulence*.4:119-28. doi: 10.4161/viru.22913.

560 24. Höfs S, Mogavero S, Hube B. 2016. Interaction of *Candida albicans* with host cells:
561 virulence factors, host defense, escape strategies, and the microbiota. *J Microbiol.*
562 54:149-69. doi: 10.1007/s12275-016-5514-0

563 25. Araújo D, Henriques M, Silva S. 2017. Portrait of *Candida* Species Biofilm
564 Regulatory Network Genes. Trends Microbiol.25:62-75. doi:
565 10.1016/j.tim.2016.09.004.

566 26. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. 2018. Metals in fungal
567 virulence. *FEMS Microbiol Rev.* 42:fux050. doi: 10.1093/femsre/fux050.

568 27. Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. 2018. Iron at the
569 Centre of *Candida albicans* Interactions. *Front Cell Infect Microbiol.* 8:185. doi:
570 10.3389/fcimb.2018.00185.

571 28. Ramesh S, Madduri M, Rudramurthy SM, Roy U. 2023. Functional Characterization
572 of a Bacillus-Derived Novel Broad-Spectrum Antifungal Lipopeptide Variant against
573 *Candida tropicalis* and *Candida auris* and Unravelling Its Mode of Action. *Microbiol*
574 *Spectr.* 11:e0158322. doi: 10.1128/spectrum.01583-22.

575 29. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution
576 Antifungal Susceptibility Testing of Yeast Approved Standard, 3rd ed.; M27-A3;
577 CLSI: Wayne, PA, USA, 2008.

578 30. Kohlenberg A, Monnet DL, Plachouras D; *Candida auris* survey collaborative group;
579 *Candida auris* survey collaborative group includes the following national experts.

580 2022. Increasing number of cases and outbreaks caused by *Candida auris* in the
581 EU/EEA, 2020 to 2021. Euro Surveill. 27:2200846. doi: 10.2807/1560-
582 7917.ES.2022.27.46.2200846.

583 31. Kovács R, Majoros L. 2020. Fungal Quorum-Sensing Molecules: A Review of Their
584 Antifungal Effect against *Candida* Biofilms. J Fungi (Basel). 6:99. doi:
585 10.3390/jof6030099.

586 32. Costa AF, Silva LDC, Amaral AC. 2021. Farnesol: An approach on biofilms and
587 nanotechnology. Med Mycol. 59:958-969. doi: 10.1093/mmy/myab020.

588 33. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-
589 Richardson R, Williams C, Ramage G. 2018. Transcriptome Assembly and Profiling
590 of *Candida auris* Reveals Novel Insights into Biofilm-Mediated Resistance. mSphere.
591 3:e00334-18. doi: 10.1128/mSphere.00334-18.

592 34. Askew C, Sellam A, Epp E, Hagues H, Mullick A, Nantel A, Whiteway M. 2009.
593 Transcriptional regulation of carbohydrate metabolism in the human pathogen
594 *Candida albicans*. PLoS Pathog. 5:e1000612. doi: 10.1371/journal.ppat.1000612.

595 35. Liboro K, Yu SR, Lim J, So YS, Bahn YS, Eoh H, Park H. 2021. Transcriptomic and
596 Metabolomic Analysis Revealed Roles of Yck2 in Carbon Metabolism and
597 Morphogenesis of *Candida albicans*. Front Cell Infect Microbiol. 11:636834. doi:
598 10.3389/fcimb.2021.636834.

599 36. Henry M, Burgain A, Tebbji F, Sellam A. 2022. Transcriptional Control of Hypoxic
600 Hyphal Growth in the Fungal Pathogen *Candida albicans*. Front Cell Infect Microbiol.
601 11:770478. doi: 10.3389/fcimb.2021.770478.

602 37. Walker GM, Sullivan PA, Shepherd MG. (1984) Magnesium and the regulation of
603 germ-tube formation in *Candida albicans*. J Gen Microbiol. 130:1941-5. doi:
604 10.1099/00221287-130-8-1941.

605 38. Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. 2023. Hyphal
606 Growth in *Trichosporon asahii* Is Accelerated by the Addition of Magnesium.
607 *Microbiol Spectr.* 27:e0424222. doi: 10.1128/spectrum.04242-22.

608 39. Hans S, Fatima Z, Hameed S. 2019. Magnesium deprivation affects cellular circuitry
609 involved in drug resistance and virulence in *Candida albicans*. *J Glob Antimicrob*
610 *Resist.* 17:263-275. doi: 10.1016/j.jgar.2019.01.011.

611 40. Fox DS, Heitman J. Calcineurin-binding protein Cbp1 directs the specificity of
612 calcineurin-dependent hyphal elongation during mating in *Cryptococcus neoformans*.
613 2005. *Eukaryot Cell.* 4:1526-38. doi: 10.1128/EC.4.9.1526-1538.2005.

614 41. Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. 2007. Hyphal
615 orientation of *Candida albicans* is regulated by a calcium-dependent mechanism. *Curr*
616 *Biol.* 17:347-352. doi: 10.1016/j.cub.2006.12.043.

617 42. Hameed S, Prasad T, Banerjee D, Chandra A, Mukhopadhyay CK, Goswami SK,
618 Lattif AA, Chandra J, Mukherjee PK, Ghannoum MA, Prasad R. 2008. Iron
619 deprivation induces EFG1-mediated hyphal development in *Candida albicans* without
620 affecting biofilm formation. *FEMS Yeast Res.* 8:744-755. doi: 10.1111/j.1567-
621 1364.2008.00394.x

622 43. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. 2006. Unexpected link between
623 iron and drug resistance of *Candida spp.*: iron depletion enhances membrane fluidity
624 and drug diffusion, leading to drug-susceptible cells. *Antimicrob Agents Chemother.*
625 50:3597-3606. doi: 10.1128/AAC.00653-06.

626 44. Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR. (2014) Phosphate
627 starvation in fungi induces the replacement of phosphatidylcholine with the
628 phosphorus-free betaine lipid diacylglycerol-N,N,N-trimethylhomoserine. *Eukaryot*
629 *Cell.* 13:749-57. doi: 10.1128/EC.00004-14.

630 45. Dižová S, Černáková L, Bujdáková H. 2018. The impact of farnesol in combination
631 with fluconazole on *Candida albicans* biofilm: regulation of *ERG20*, *ERG9*, and
632 *ERG11* genes. *Folia Microbiol (Praha)*. 63:363-371. doi: 10.1007/s12223-017-0574-z.

633 46. Wen X, Klionsky DJ. 2016. An overview of macroautophagy in yeast. *J Mol Biol*.
634 428:1681-1699. doi: 10.1016/j.jmb.2016.02.021.

635 47. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. 2019. Potential
636 Fifth Clade of *Candida auris*, Iran, 2018. *Emerg Infect Dis*. 25:1780-1781. doi:
637 10.3201/eid2509.190686.

638 48. Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, Forsberg K, Lockhart
639 SR, Adam R, Alanio A, Alastruey-Izquierdo A, Althawadi S, Araúz AB, Ben-Ami R,
640 Bharat A, Calvo B, Desnos-Ollivier M, Escandón P, Gardam D, Gunturu R, Heath
641 CH, Kurzai O, Martin R, Litvintseva AP, Cuomo CA. 2020. Tracing the Evolutionary
642 History and Global Expansion of *Candida auris* Using Population Genomic Analyses.
643 *mBio*. 11:e03364-19. doi: 10.1128/mBio.03364-19.

644

645

646

647 **Table 1 Effects of quorum sensing molecules significantly influences the metal contents**
648 **of *Candida auris* biofilms.**

Culture	Dry cell mass (DCM) (g/l)	Metal contents/treatment (mg/kg) (mean \pm SD ^a)		
		Ca	Mg	Fe
Control cultures	1.37 \pm 0.35	3170.7 \pm 82.8	2648.36 \pm 35.05	356.32 \pm 45.62
+ 75 μM Farnesol	0.53 \pm 0.165**	319.37 \pm 234.80**	695.78 \pm 111.91**	240.34 \pm 118.39
+ 15 mM Tyrosol	0.4 \pm 0.16**	551.75 \pm 441.83**	618.65 \pm 40.75**	67.17 \pm 15.84**

649

650 ^aMean values \pm standard deviations (SD) calculated from three independent experiments are
651 presented.

652 The asterisks indicate significant differences calculated by Student t test comparing untreated
653 control and farnesol or tyrosol-treated cultures as follows: ** p <0.01.

654

655

656

657

658

659

660

661

662

663 **Legends to the Figures**

664 **Figure 1**

665 **Summary of RNA-Seq data and gene enrichment analyses.** (A) The effects of tyrosol (Tyr
666 vs. Cont) and farnesol (Farn vs. Cont) treatment to the transcriptomes are depicted in the Venn
667 diagrams. (B-D) Bubble charts of Gene Ontology (GO) terms of Candida Genome Database
668 (<http://www.candidagenome.org/cgi-bin/GO/goTermFinder>) generated by different
669 expression genes. Bubble charts represent up(Δ)- and down(\bullet)-regulated genes belonging to
670 gene groups farnesol treated versus untreated (B), tyrosol treated versus untreated (C) and
671 farnesol treated versus tyrosol treated (D) comparisons where the enrichment was significant
672 ($p < 0.05$). The color of bubble means the significance of the corresponding GO pathway (in
673 green color, low p values; in red color, high p values). As well, the size of bubble means the
674 number of different expression genes in this pathway. Only the differentially expressed genes
675 (corrected p value of <0.05) exhibiting more than 1.5-fold increase or decrease in their
676 transcription are shown. The full list of the gene groups is available in Supplementary Tables
677 S2 and S3.

678

679 **Figure 2**

680 **The effects of quorum sensing compounds, farnesol and tyrosol, on the expression of**
681 **selected genes of *C. auris* biofilms.** The heat map demonstrates the expression profiles of
682 representative genes according to the color scale that indicates gene expression changes in FC
683 units. Supplementary Table S3 summarizes the data that were used for the construction of the
684 heat map.

685

686 **Supplementary Figure 1:** Principal component analysis of the transcriptome data (A) and
687 Clusters (B).

688 Symbols represent untreated control (Cont) 75 μ M farnesol (Farn) and 15 mM tyrosol
689 exposure (Tyr) cultures. Analyses were performed with the StrandNGS software using default
690 settings.

691

692 **Supplementary Table 1:** Oligonucleotide primers used for RT-qPCR analysis.

693

694 **Supplementary Table 2:** Results of the gene set enrichment analysis.

695 Significant shared GO terms ($p < 0.05$) were determined with Candida Genome Database
696 Gene Ontology Term Finder (<http://www.candidagenome.org/cgi-bin/GO/goTermFinder>).
697 Biological processes, molecular function and cellular component categories are provided.

698

699 **Supplementary Table 3:** Transcription data of selected gene groups.

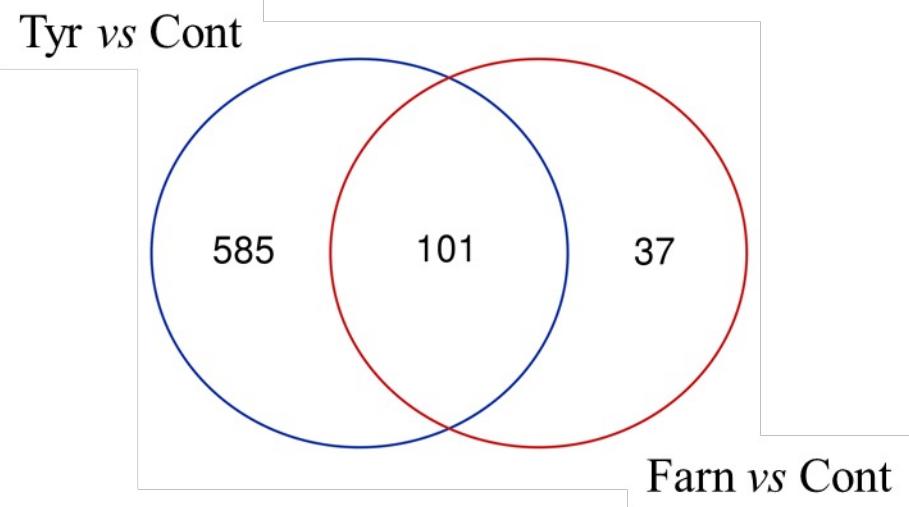
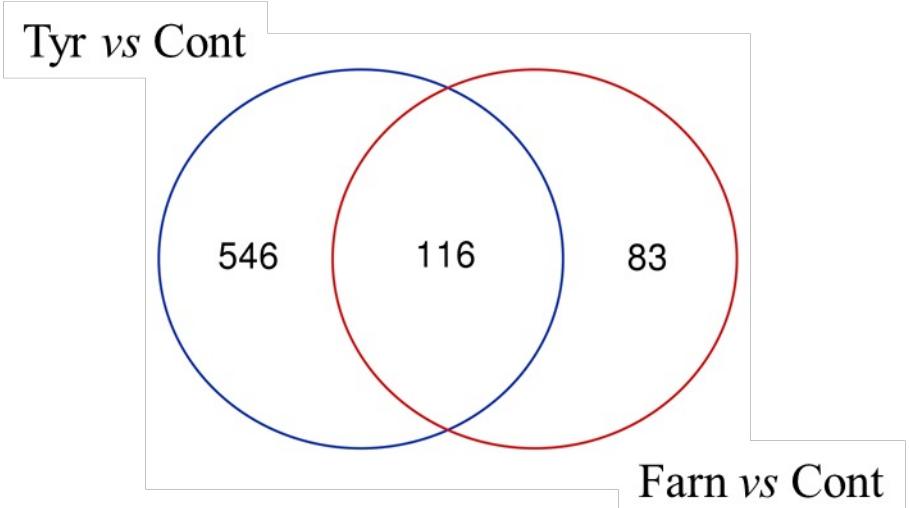
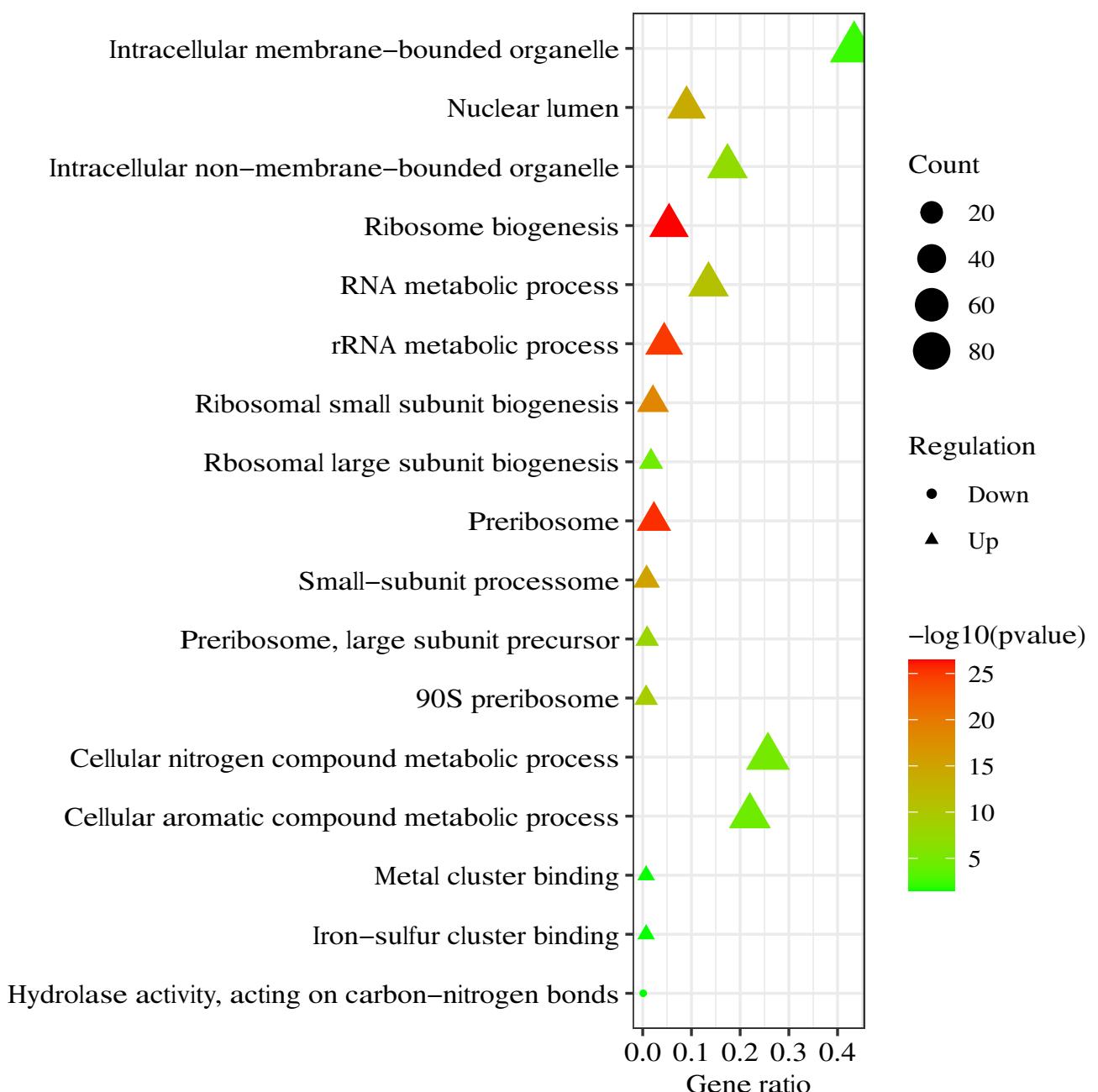
700 Part 1: Genes involved in genetic control of *Candida auris* virulence.

701 Part 2: Genes involved in metabolism.

702 Part 3: Genes involved in ergosterol and fatty acid metabolic process.

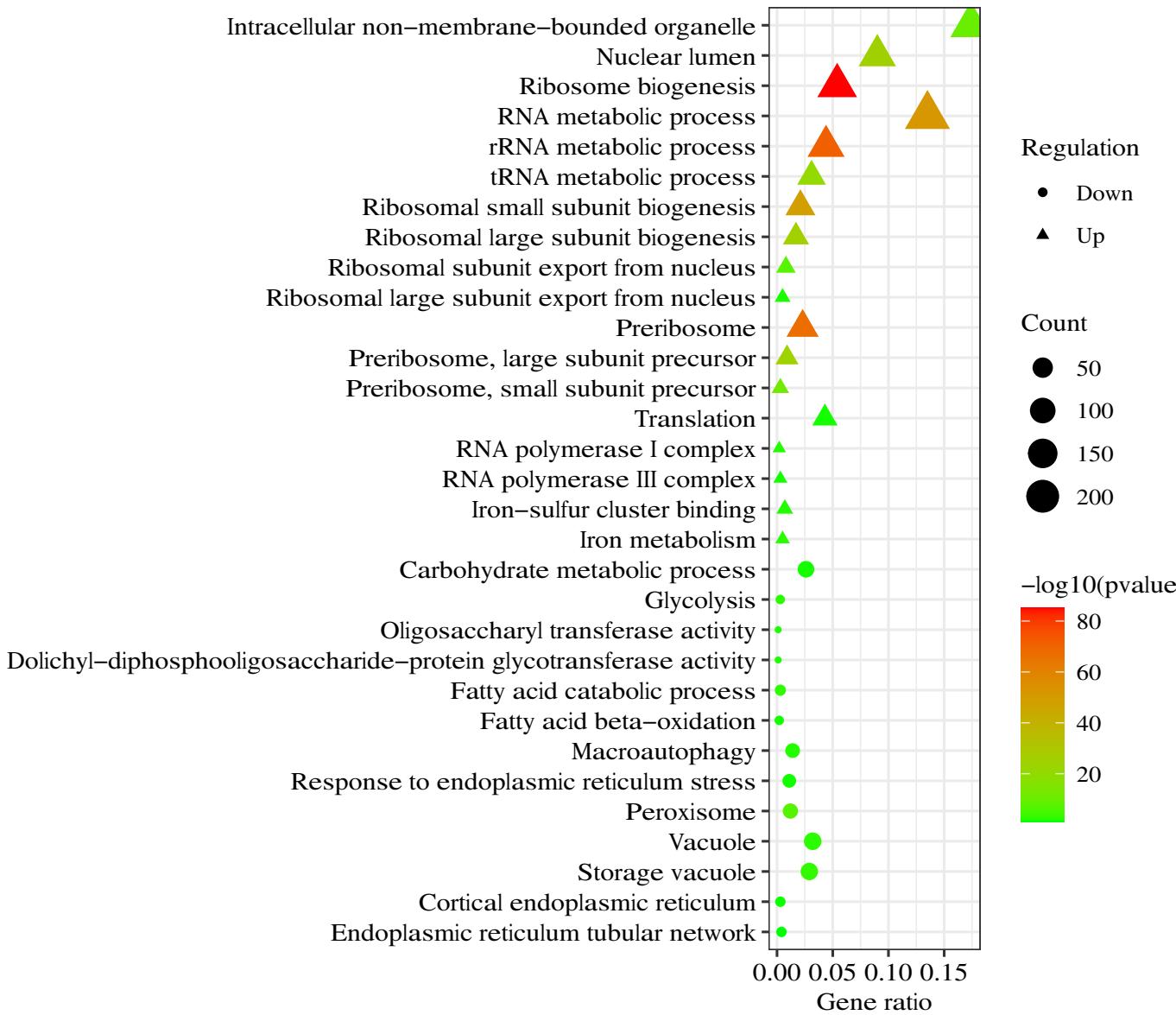
703 Part 4: Genes involved in metal metabolism.

704 Part 5: Genes involved in autophagy.




705 The systematic names, gene names, gene orthologs in *Candida albicans* and the features
706 (putative molecular function or biological process) of the genes are given according to the
707 Candida Genome Database (<http://www.candidagenome.org>). Up- and downregulated gene
708 were defined as differentially expressed genes (corrected p value < 0.05) where
709 $\log_2(\text{FC}) > 0.585$ or $\log_2(\text{FC}) < -0.585$, respectively, and FC stands for fold change ratios
710 (tyrosol treated *vs.* untreated) and are marked with red and blue colour. Results of gene
711 enrichment analysis (Fisher's exact test) are also enclosed.

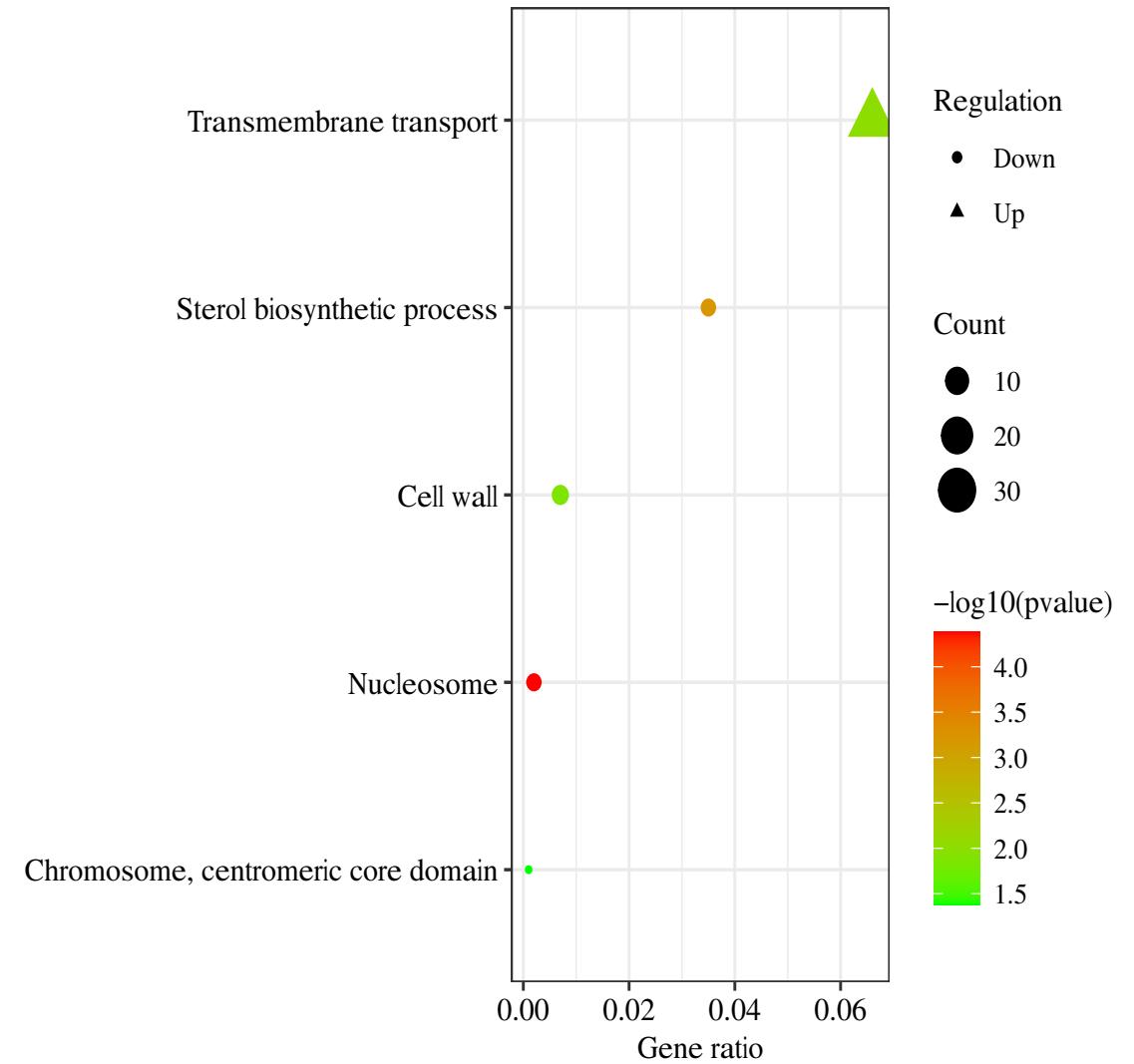
712

713 **Supplementary Table 4.** Overview of RT-qPCR assays


714 RNA-Seq data are presented as FC values, whereby FC is abbreviation of “fold-change”.
715 Relative transcription levels ($\Delta\Delta\text{CP}$) were quantified with $\Delta\Delta\text{CP} = \Delta\text{CP}_{\text{control}} - \Delta\text{CP}_{\text{treated}}$. CP
716 values stand for the qRT-PCR cycle numbers of crossing points. The *ACT1* (B9J08_000486)
717 was used as reference gene. RT-qPCR data are presented as mean \pm SD calculated from three
718 independent measurements. Significantly higher or lower than zero $\Delta\Delta\text{CP}$ values (up-
719 regulated or downregulated gene) are marked with red and blue colors, respectively (Student’s
720 t-test, $p < 0.05$, $n = 3$). Diagrams demonstrate the correlation between RT-qPCR and RNA-
721 Seq data.

722

A**Up-regulated genes****Down-regulated genes****B****Farn vs Cont**


C

Tyr vs Cont

D

Tyr vs Farn

Farn vs Cont Tyr vs Cont Tyr vs Farn

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.28.555140>; this version posted August 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Virulence factors

CZF1

PGC1

UMR6

YCF1

SNQ2

MDR1

PGII

PFK2

PFKI

TPII

TDH3

GPM1

ENO1

INO1

ERG4

ERG7

ERG9

ERG10

ERG11

ERG13

ERG26

FAD2

FAD3

POX1

PXP2

POX1-3

CR_08670C

ECII

FAA4

FAA2-3

POT1

FOX3

POT1-2

CFL4

FRE9

FRE10

FET31

FTR1

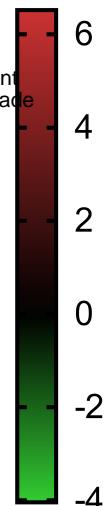
SIT1

HMX1

MNN2

AUT7

VPS34


VAC8

CCZ1

SEC17

VMA2

APG7

Glycolysis

Inositol biosynthesis

Ergosterol biosynthesis

Unsaturated fatty acid biosynthesis

Fatty acid oxidation

Iron metabolism

Autophagy