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Representation learning models have become a mainstay of modern genomics. These models are trained to
yield vector representations, or embeddings, of various biological entities, such as cells, genes, individuals,
or genomic regions. Recent applications of unsupervised embedding approaches have been shown to learn
relationships among genomic regions that define functional elements in a genome. Unsupervised representation
learning of genomic regions is free of the supervision from curated metadata and can condense rich biological
knowledge from publicly available data to region embeddings. However, there exists no method for evaluating
the quality of these embeddings in the absence of metadata, making it difficult to assess the reliability of analyses
based on the embeddings, and to tune model training to yield optimal results. To bridge this gap, we propose
four evaluation metrics: the cluster tendency score (CTS), the reconstruction score (RCS), the genome distance
scaling score (GDSS), and the neighborhood preserving score (NPS). The CTS and RCS statistically quantify
how well region embeddings can be clustered and how well the embeddings preserve information in training
data. The GDSS and NPS exploit the biological tendency of regions close in genomic space to have similar
biological functions; they measure how much such information is captured by individual region embeddings in
a set. We demonstrate the utility of these statistical and biological scores for evaluating unsupervised genomic
region embeddings and provide guidelines for learning reliable embeddings. Availability: Code is available at

https://github.com/databio/geniml.

Introduction

Genomic regions, or intervals, define functional elements in the
genome, such as enhancers, promoters, or transcription factor
binding sites (1). A region is represented as a pair of coordinates
marking its location on the genome. A set of such regions, often
stored in Browser Extensible Data (BED) format, can be used to
represent an epigenomics experiment that identifies locations of
interest produced by a biological experiment, such as ChIP-Seq (2)
or ATAC-Seq (3, 4). Through broad effort (1, 5), the amount of
epigenome data has rapidly increased, and almost 100,000 BED
files are now available on the NCBI Gene Expression Omnibus
(GEO) (6-8). This growing resource of BED files contains rich
biological information and have been used to interpret the human
genome and drive discovery in genetic variation and gene regu-
lation (9-12). However, the ever-increasing volume of genomic
region data also makes region-based analyses computationally
costly, since analysis often requires computing region overlaps
among region sets (13-15).

We recently introduced region-set2vec (16), an unsupervised
method to learn representations for genomic region sets. The
method learns low-dimensional vectors called embeddings as
representations for genomic region sets, using only the region
co-occurrence information contained in region sets. With region-
set2vec, we can leverage the publicly available genomic region
data, even without annotations, and can replace some costly
region overlap calculation with more efficient vector similarity
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measures. To create region set embeddings, region-set2vec first
must learn region embeddings, which are then averaged to
represent the region set. We previously demonstrated the value
of region set embeddings. We reason that the underlying region
embeddings could be useful independently; for example, we can
infer the function of an unknown region based on its closeness
to other known regions in the embedding space, or use them for
fast annotation and clustering on single-cell data (17). To develop
such methods and concepts further, we first sought a way to
evaluate region embeddings independently and objectively. Our
previous study evaluated region set embeddings, but no method
has yet been proposed to evaluate the quality of the underlying
region embeddings.

To bridge this gap, we propose four novel statistical and biological
scores to measure the quality of region embeddings. First, we pro-
pose two statistical scores that use only the training data and the
region embeddings: 1) the cluster tendency score (CTS), which
measures how well a set of region embeddings can form clusters;
and 2) the reconstruction score (RCS), which tests whether a re-
gion embedding can reconstruct the training data. Next, we pro-
pose two biologically-motivated scores that exploit the tendency of
regions near one another on the genome to have similar biological
functions. We reasoned that embedding distances that reflect func-
tional similarity between regions should be biased toward smaller
embedding distances for regions nearby on the genome. In other
words, two embeddings close in latent space should be, on aver-
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Figure 1. Illustration of unsupervised region embeddlng generation. A. Replace regions in BED files with overlapped regions in a universe. This is called
tokenization. B. Binary embeddings and the embeddings after keeping 10 (PAC-10D) and 100 (PCA-100D) principal components of the Binary embeddings.
C. Region2Vec shuffles regions in tokenized BED files to generate more training files. D. Region2Vec trains the model using the prediction tasks created by a

sliding context window with length W.

age, closer in genome space. To assess whether region embeddings
capture this tendency, we propose the genome distance scaling
score (GDSS) and the neighborhood preserving score (NPS). The
GDSS shows the degree to which the embedding distance between
two regions scales with genome distance. We expect to obtain
a positive and large scaling value if the embeddings recapitulate
genome distance. The NPS measures how much the neighborhood
of a region in the genome space overlaps with the neighborhood
of the same region in the embedding space.

These four scores are generally applicable to any set of region em-
beddings, including Region2Vec embeddings. To demonstrate, we
calculated the four scores for three different types of embeddings:
1) Binary embeddings; 2) dimensionality-reduced versions of Bi-
nary embeddings; and 3) Region2Vec embeddings trained with
various learning parameters. Our results show the advantage of
Region2Vec embeddings in capturing the desired biological knowl-
edge with low dimensions, providing new evidence for the value
of region-set2vec embeddings (16). Using a classification task, we
showed how these scores can reflect the utility of embeddings on a
downstream task. Finally, our study provides guidelines for train-
ing hyperparameters for learning reliable genomic region embed-
dings based on the obtained scores.

Methods
Data overview

To guide our embedding evaluation methods development, we first
collected a representative collection of region sets consisting of
690 transcription factor binding BED files from the ENCODE Uni-
form TFBS composite track as a region set collection to generate
and evaluate region embeddings.

Tokenization of BED files into universe regions

To compare diverse region sets, many epigenome analysis meth-
ods, including our embedding methods, require first re-defining
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the raw regions into consensus regions. We refer to the consen-
sus region set as a “universe”, and the process of re-defining the
raw regions as “tokenization” (Figure 1A). Tokenization allows us
to use a shared vocabulary of genomic regions. We tokenize by
representing each original region as any universe regions that it
overlaps. Original regions that do not overlap any universe re-
gion are discarded. Thus, after tokenization, tokenized BED files
contain only unique universe regions. As a result, we need only
consider learning embeddings for regions in the universe instead
of original regions. Tokenization is the first step for any region
embedding learning methods considered in this paper.

To test how our proposed evaluation metrics are affected by region
size, number of elements, and fit of the universe, we built seven
universes with different numbers of regions and tokenized the 690
BED files into each (Table S2). These include 3 Merge universes,
which we built by merging all regions in the collection using dif-
ferent distance thresholds. For example, For the Merge (100) uni-
verse, we merged all regions that were less than 100 bp apart.
The other 4 universes are not derived from the BED file collec-
tion; the Tiling universes are created by simple tiling of fixed-size
windows across the genome, and the DHS universe is an external
universe defined as regulatory regions from DNase I hypersensi-
tive sites (DHSs) with similar tissue specificity of DNase-seq signal
patterns (18). For these non-data-driven universes, we filtered out
any regions that do not appear in the tokenized BED file collec-
tion. For each universe, we generated region embeddings by first
tokenizing the region sets. We then used the tokenized region sets
as training data to produce embeddings.

Constructing region embeddings

We produced region embeddings using three unsupervised meth-
ods: 1) Binary embeddings, which are 690-dimensional vectors
where each dimension represents presence of a region in one of
the 690 BED files; 2) principal component analysis (PCA) embed-
dings, constructed as the top 10 (PCA-10D) or 100 (PCA-100D)
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principal components of the binary embedding matrix(19); and
3) Region2Vec embeddings, using 12 different parameter sets for
training the Region2Vec model.

Binary and PCA embeddings

The simplest embeddings, binary region embeddings, are
parameter-free and are directly obtained from tokenized BED
files. We represent these embeddings as a matrix B € RY*V,
where N is the number of tokenized BED files, and V is the size
of the universe (Figure 1B). If the Ith region exists in the nth
tokenized BED file, then the entry at the /th row and nth column
is 1; otherwise the value is 0. The Binary embeddings can be very
high-dimensional when the number of tokenized BED files N is
large. To obtain lower dimensional embeddings, we apply PCA
(19) to reduce the dimension of the Binary embeddings from N
(N = 690 in our analysis) to 10 (PCA-10D) or 100 (PCA-100D)
(Figure 1B).

Region2Vec embeddings

Region2Vec first randomly shuffles regions in each tokenized BED
file (Figure 1C), then, similar to training word embeddings in
Word2Vec (20), it uses a context window to create prediction
tasks and updates Region2Vec embeddings (Figure 1D) (16).
Region2Vec embeddings are derived from the first step of region-
set2vec (16), which first creates region embeddings, and then
averages these to create region set embeddings. Region2Vec
maps genomic regions to D-dimensional vectors. Region2Vec
treats each region as a word, and treats regions in the same
tokenized BED file as a sentence. In natural language, words in
a sentence often serve to convey a single idea. Similarly, regions
in the same BED file share a similar biological context and can be
considered as words in a sentence. Then, Region2Vec leverages
techniques in natural language processing (NLP) (21) to produce
region embeddings. We use the gensim (22) implementation of
Word2Vec to implement Region2Vec. There are two steps in the
Region2Vec training pipeline: region shuffling and training.

Region shuffling. Treating regions in a BED file as a sentence al-
lows Region2Vec to exploit techniques (21) from NLP to produce
region embeddings. However, these models are built for natural
language, which imposes a specific order between regions. Re-
gions in a BED file do not have any order and can be considered
as neighbors of each other since they share the same biological
context. To break such order, we randomly shuffle the regions in
each region sentence obtained by reading regions in order from a
tokenized BED file.

Region2Vec training. Region2Vec training uses the region co-
occurrence information contained in region sentences to generate
region embeddings.  Specifically, for each region sentence,
Region2Vec moves a context window with length W from the be-
ginning to the end of the sentence. At each position of the window,
the W regions covered by the window are used to update region
embeddings via a prediction task. The task asks a Region2Vec
model to predict the remaining region given W — 1 regions in the
context window. We design the Region2Vec model as a three-layer
neural network with weights W; € RV*” and Wo ¢ RV*P
for the first and second half of the network, respectively, where
V is the size of the universe used in tokenization, and D is the
embedding dimension. The input for the model is a binary vector
a=1[0,...,1,0,1,...,0] of length V. The ones in a correspond to
W — 1 regions in a context window. Then, the model shows how
likely each region will be in the context window with a probability
distribution p € RY*! over all the universe regions. Region2Vec
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aims to maximize the probability on the remaining region by
optimizing W; and Wo. We move the context window and
continue the above prediction and optimization procedures until
all region sentences have been consumed. The obtained weight
matrix W are the embeddings for all the universe regions.

Region2Vec embeddings training

We consider three important hyperparameters in Region2Vec: con-
text window size W, embedding dimension D, and initial learning
rate r. The context window size determines how many region em-
beddings are jointly updated each time. The embedding dimension
specifies the number of vector dimensions used to represent a re-
gion. The initial learning rate controls the update magnitude for
region embeddings. To explore how these hyperparameters affect
the quality of the embeddings, we did a grid search, taking differ-
ent values of each of these parameters in combination. We take
W from {5,50}, D from {10,100}, and r from {0.025,0.1,0.5} to
generate 12 sets of region embeddings for each universe. During
Region2Vec training, we shuffle the whole set of tokenized BED
files 100 times. After each shuffling, the model is trained on the
shuffled files, and after that, the learning rate is linearly decayed
until reaching the minimum 10~%.

For each of these 15 sets of embeddings (Table S1), we compared
their performance by calculating two statistical scores: the clus-
ter tendency score (CTS), reconstruction score (RCS), and two
biological scores, the genome distance scaling score (GDSS) and
neighborhood preserving score (NPS).

Cluster tendency score (CTS)

The Cluster Tendency Score (CTS) quantifies the degree to which
region embeddings can be clustered. Our rationale is that embed-
dings that form clusters are more likely to be useful than embed-
dings that are diffuse. We use the idea from the Hopkins test (23)
to design our score. Given a set of N region embeddings, we first
sample Ng embeddings Q = {q;|¢ = 1,..., Ng} from the given
set to reduce the computational complexity, where q; is a region
embedding. This step is optional if the time and computational re-
sources can support the evaluation with all N region embeddings.
We found that using Ns = 10* is enough to produce stable results.

Then, from the Ns embeddings, we further subsample Ny embed-
dings T = {q;j|i = 1,..., Nz} as test points, where q; € Q. For
each test point q;, we find its nearest neighbor q; in O\{q; }, i.e.,
q: € Q and q; # q;. We calculate D, the summation of all the
distances between q; and q;, as D = Zf; 7 d(aj, qi). We define
the distance function d(-, -) as the squared Euclidean distance.

Next, we generate Ny random points U = {u,|i = 1,...,Nr},
that are uniformly distributed in the same area where the embed-
dings in Q reside. To do this, we uniformly sample u; between
Qmin and Qmax, Where gmin and qmax are vectors. Each dimension
of Qmin (Qmax) has the minimum (maximum) value of the corre-
sponding dimension of the embeddings in Q. Then, we calculate
Dpg, the summation of all the distances between u; and its nearest
neighbor q; in Q, as Dr = ZfiTl d(u;, q;). If there are clusters
in Q, then the random points should have large distances to their
nearest neighbors in Q.

We define the CTS as 2-max(Dgr/(Dr+ Dr)—0.5,0) (Figure 2A),
a normalized ratio between D and Dy, ranging from 0 to 1. A
larger CTS indicates a large Dr and a greater tendency for the em-
beddings being evaluated to have clusters. When the embeddings
are uniformly distributed, we have Dy ~ Dy, Dr/(Dr + Dr) =~
0.5, and CTS ~ 0. Note that points in ¢/ lie in a hypercube and that
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Figure 2. Overview of the two statistical evaluation scores. A. Illustration of calculating CTS. B. Illustration of calculating RCS.

the embeddings in Q may not distribute in that shape in practice.
As a result, Dr may be overestimated, inflating the CTS. For ex-
ample, embeddings in Q can be uniformly distributed in a sphere
within the hypercube, and sampling points in ¢/ at the corners of
the hypercube will increase D, leading to a large CTS even when
there are no clusters in Q. We address this by shrinking the hyper-
cube a little bit, using 95% percentile and 5% percentile of each di-
mension data in Q to define qmax and qmin, respectively. If the em-
beddings being evaluated deviate from randomly distributed ones,
then Dg will be large, and Dy will be relatively small; therefore,
their CTS will be large.

Reconstruction score (RCS)

One limitation of CTS is that it evaluates only the spatial distri-
bution of region embeddings, and does not assess the information
contained in the embeddings. To address this, we sought a score
that could evaluate embedding content more directly. To this end,
we developed the Reconstruction Score (RCS), a statistically moti-
vated metric that measures how much embeddings preserve the in-
formation about regions’ occurrence among the training BED files.
To measure how much such information is preserved in a region
embedding, we create a regression task to predict the original in-
put vectors, and evaluate the performance of region embeddings
on this task. Intuitively, RCS measures how well the embeddings
can be used to reconstruct the full-dimensional input data.

To compute RCS, we first define the Binary embeddings as “ob-
served” embeddings, since they represent all the regions’ occur-
rences in the training data by definition. These Binary embeddings
B (row vectors) are the labels in the regression task. We define
the trained embeddings as “query” embeddings Q (row vectors),
which are the inputs in this task. Each region thus has a “query”
and an “observed” representation. We preprocessed both the query
and observed embeddings so that they have zero mean and unit
variance. We split B and Q into K folds (Figure 2B, K-fold split)
B = [B4,...,Bk] and Q = [Q1,...,Qxk]. Then, we use each
fold to train a regression model fy with parameters 6 that predicts
the observed embeddings B, using the corresponding query em-
beddings Q) (Figure 2B, Regression task). We instantiate f, as
a three-layer feed-forward neural network with 200 hidden units
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and ReLU activations. The input dimension of the model depends
on the dimension of given region embeddings D, and the output
dimension of the model is the number of BED files in the collec-
tion (V. = 690). The performance of fy reflects quality of Q in this
evaluation. We use mean-squared error as the training loss. Dur-
ing evaluation, we use R score because it is bounded between 0
and 1 and leads to an interpretable score with 1 indicating perfect
reconstruction capability. We calculate R? (k) score for the kth fold
defined as follows

fo(am)lls
bk — b*|3

Sonky Ik —
N
P

where Ny denotes the number of rows in By, || - |3 denotes the
squared 2-norm of a vector, b® denotes the nth row of By, q
denotes the nth row of Q, b* denotes the row average of By,
and 0" denotes the parameters learned at the kth step. We re-
peat the above process process for K steps. Finally, the RCS for
Q is the average R? score over the K-fold cross-validation, i.e.,
= K | R*(k). To make the RCS for different sets of embeddings
comparable, we keep the architecture of the neural network fo
fixed.

R*(k)=1-

€3]

In theory, Binary embeddings should have the highest RCS of 1;
however, the model cannot perfectly be trained to be an identity
function, so we consider the score of the Binary embeddings to be
an upper bound. We used the implementation from scikit-learn
(24) and calculated the RCS of the region embeddings that we
generated for the seven universes. To reduce the time and space
complexity induced from a large N, we randomly sample a small
portion of the training BED files, e.g., 10 files, for evaluation. We
demonstrated in the Results section that this technique does not
significantly affect the evaluation between different sets of region
embeddings.

Genome distance scaling score (GDSS)

CTS and RCS provide useful insight into the clusterability and re-
construction ability of embeddings; however, neither of them con-
siders biological knowledge. Thus, we next sought to devise eval-
uations that take into account the biology. To this end, we devel-
oped the Genome Distance Scaling Score (GDSS), which quanti-
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Figure 3. Overview of the two biological scores. A. GDSS calculation Step 1: Sample region pairs from a universe and calculate ED and GD for each pair.
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neighborhood size U as the average of the overlap ratios for all sampled regions. D. NPS calculation Step 2: Calculate how significant the NPR of a set of

query embeddings given U is over a set of random embeddings as the NPS.

fies how much the embedding distances vary with the correspond-
ing genome distances for a set of region embeddings. The GDSS
analyzes how the embedding distance (ED) between two regions
changes with their genomic distance (GD). The ED and GD reflect
two different relationships between two regions; the ED reflects
their region co-occurrence in BED files, whereas the GD reflects
their distance in genome space. Since regions that are close on
the genome tend to have more similar biological functions than
regions that are distant on the genome, we reasoned that, on aver-
age, the GD could be used as a noisy proxy for some shared biolog-
ical function. Of course, regions that are distant from one another
on the genome may be functionally similar, and may also be near
one another in embedding space because of their functional simi-
larity in biology. However, on average, we expect GD to be smaller
between two regions that are similar than between two random
regions. In training the embeddings, the location on the genome
is not provided to the model. Therefore, any correlation between
genomic distance and embedding distance reflects biological learn-
ing accomplished by the training process. We exploit this expecta-
tion to design the GDSS, reasoning that embeddings that capture
this biological signal will have GD positively correlated with ED.

Therefore, to calculate GDSS, we first randomly sample Ng region
pairs from the universe and calculate their ED and GD values (Fig-
ure 3A). The GD between two regions GD(r,7) is calculated as
follows,

cre @
c=

O O

GD(r,7) = {

oo
_é7

5—e¢,0)

max(s

where r = (¢, s,e) (7 = (¢, 5, €)), c (&) represents the chromosome
index of r (7), s (8) and e (&) denote the start and end positions
of r (7), respectively. Therefore, if two regions overlap, the GD
is zero; if they are on different chromosomes, the GD is infinity;
otherwise, the GD is the smallest number of base pairs connect-
ing the two regions. The ED between the two regions ED(r,7) is
the cosine distance between their region embeddings because the
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distance is immune to the artifacts caused by the magnitudes of re-
gion embeddings or the embedding dimensions. For example, the
Euclidean distance between two region embeddings obtained from
Region2Vec can be simply enlarged using a large learning rate or
a large embedding dimension, leading to a large GDSS. However,
using cosine distance does not have this issue since the distance is
bounded from -1 to 1.

Finally, we conduct a linear curve fitting for the Ng ED and GD
pairs and obtain the slope of the fitted curve as the GDSS for the
set of region embeddings being evaluated (Figure 3B). A positive
score indicates the set of region embeddings captures the biologi-
cal information that the closeness of regions in the genome reflects
their functional similarity. The magnitude of the score indicates
how strong such information is captured by the region embed-
dings. A large GDSS is often associated with embeddings with
large and low-density clusters, where the embeddings tend to re-
pel each other to have a large average ED.

GDSS is not a perfect score of biological information capture. In
fact, a model that is provided with genomic locations in the train-
ing process could exploit the locations to place region embeddings
near one another when the regions are near in genome space;
however, such a model will not have learned anything useful. Nev-
ertheless, for a model that is not provided with genomic locations
in training, the ability to recapitulate genome distance to some
degree provides evidence that the model has learned underlying
biology.

Neighborhood preserving score (NPS)

GDSS focuses on individual region pair distances and does not con-
sider local neighborhood structures. We thus developed the Neigh-
borhood Preserving Score (NPS), which finds whether the regions
neighboring on the genome are also close in the embedding space.
Like GDSS, NPS relies on the general tendency of biological re-
gions to cluster by function. To achieve this, NPS considers the
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overlap between a region’s neighboring set in the genome space
and the corresponding set in the embedding space.

NPS quantifies the degree to which linear genomic neighborhood
information of genomic regions is preserved in the embedding
space. Compared with GDSS, NPS does not evaluate individual
region embeddings; instead, it focuses on local sets of region em-
beddings. It is based on the same assumption that a region’s neigh-
boring regions in the genome space tend to have similar biologi-
cal functions, and whether the embeddings capture this relation-
ships can be used as a measure of their quality. Hence, for good
embeddings, we expect to observe a significant overlap between
the neighboring region sets from the genome and the embedding
space.

NPS uses SNPR to measure the significance of the overlap in av-
erage. Specifically, we first calculate the overlap between the U-
nearest neighbors of a region in genome space, BY () and its U-
nearest neighbors in embeddings space, 7Y (r) of a region r. We
use the GD defined in Eq. (2) and cosine distance as the ED. Then,
we calculate the overlap ratio p(r) for the region r as follows:

U U

i) = 1B/ O0 T -
where | - | denotes the size of a set. Averaging over all p(r) gives us
the NPR (Figure 3C) for the set of region embeddings being evalu-
ated. We denote such an NPR as gNPR. To measure how significant
the NPR is, we calculate the NPR for a set of random region embed-
dings, denoted as rNPR. A random region embedding is created by
sampling a value from -0.5 to 0.5 for each embedding dimension.
Finally, we calculate SNPR as

gNPR
rNPR "

We calculate SNPR (Figure 3D) as the NPS for a set of region em-
beddings. A large NPS indicates the strong capability of the region
embeddings to preserve the neighborhood information. When the
value of NPS is close to 0, the U-neighborhood preserving capa-
bility of the region embeddings is only as good as a set of random
embeddings. Increasing U increases the distance of the regions
on the genome and decreases the value of qNPR. Hence, NPS will
also decrease. In contrast, a very small U may lead to zero qNPR,
making NPS an ineffective measure of evaluating region embed-
dings. In our evaluation, we set U as a multiple of 50 so that we
can effectively compare different sets of region embeddings using
NPS.

SNPR = log,, (€Y

Fio score

Finally, in the process of computing and evaluating these scores,
we realized that the quality of embeddings may be affected by the
goodness of fit of the universe. We therefore needed a way to as-
sess the universe fit to provide more insight into how the scores
perform. In parallel work, we recently developed the Fiq score as
a way to assess fit of a universe to a collection (25). Briefly, the
Fo score is computed as a weighted harmonic mean of the preci-
sion and recall when considering a query region set as a positive
file with a universe as a prediction of that file. Specifically, we first
consider a genomic position covered by a raw region set in the col-
lection and ask whether this position covered by the universe. We
count the number of genomic positions that are covered in both
as true positive (TP), the number covered only in the universe as
false positive (FP), and the number covered only in the region set
as false negative (FN). With TP, FP, and FN, we calculate preci-
sion and recall. Precision tells us the ratio of the universe covering

6- Evaluation of unsupervised genomic regions embeddings

the region set, and recall gives the ratio of the region set covering
the universe. We then compute the F'o score, which is similar to
the F score, and combines the precision and the recall with the
harmonic mean, except we weigh the recall 10 times more weight
than precision, due to the asymmetry of the relationship between
universe and region set collection member. The asymmetry of the
weights favors a universe that broader than the region set, since
the universe needs to be more general to accommodate many dif-
ferent region sets. The Fi( score ranges between 0 and 1, with 1
representing the perfect fit between the universe and the region
set. We applied the this score to each embedding set to improve
interpretability of the evaluation metrics.

Results
Cluster tendency score (CTS)

To calculate CTS, we first sample Ns = min(10*, N) region em-
beddings from the original N embeddings to reduce the compu-
tational complexity. Then, from the Ng embeddings, we sample
Nr = 10% - Ng test points. For each of the Nr test points, we
compute the distance to its nearest neighbor among the Ng sam-
pled points excluding itself. We get the distance summation over
the Nr test points as Dr. We do the same for Ny random points
and get the distance summation as Dr. Next, we calculate the CTS
for each set of region embeddings. To combat the randomness in
the score, we computed CTS with 20 different random seeds and
report the average.

We observed the embeddings being evaluated tend to cluster with
a large CTS (e.g., Figure 4A). In contrast, a lower CTS indicates
the embeddings are more dispersed throughout the embedding
space (e.g., Figure 4B), with a score near 0 indicating no clusters
(e.g., Figure 4C). We also observed that CTS varied across embed-
ding approaches, and that CTS is robust to the choice of universes
(Figure S1). Scores for the 5k tiling universe varied from 0.84
(5W100D-0.0250r) to 0.00 (5W10D-0.5000r) (Figure 4D). Inter-
estingly, the PCA-10D embeddings have a higher score than the
PCA-100D and Binary (Figure 4D), even though the PCA-10D re-
tains less information from the training data than the PCA-100D
and Binary. In other words, a high CTS does not necessarily in-
dicate better embeddings, since we can always generate a set of
region embeddings with a very high score while being irrelevant
to the training data. Instead, a CTS is only relevant to the spatial
distribution of region embeddings and quantifies how likely they
can be clustered. For Region2Vec embeddings, we observed that
small context windows (e.g., W = 5) achieved higher CTSs than
large context windows (e.g., W = 50). Moreover, using a large ini-
tial learning rate (e.g., 7 = 0.5) leads to training failures since the
corresponding CTSs are around 0, indicating that the embeddings
are just as good as random embeddings in terms of clusterability.
Therefore, for training Region2Vec embeddings with good cluster-
ability, avoid using a large r, and use a small W. We conclude that
the CTS is useful to identify low quality region embeddings whose
CTS is near 0.

Reconstruction score (RCS)

We used 5-fold cross validation to calculate RCSs. Binary em-
beddings faithfully represent the original similarity information
between regions in the training data and demonstrate that the
data has rich structures (Figure 4E). For Region2Vec embeddings
learned with different context window sizes, a high RCS implies a
large context window size and rich structures in the correspond-
ing embeddings (e.g., Figure 4F). We reason that a large context


https://doi.org/10.1101/2023.08.28.555137
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.28.555137; this version posted May 9, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CTS: 0.41 C

CTS:0.00 D Tiling (5k)

A CTS: 0.84 B

Tiling (5k), 5W100D-0.0250r Tiling (5k), 50W10D-0.1000r

E RCS: 0.75 F RCS: 0.41 G

Tiling (5k), 5W10D-0.5000r 00 02 04 06 08

5W100D-0.0250r A-
PCA-10D
5W10D-0.0250r
Binary -
5W10D-0.1000r 3
PCA-100D 3
50W100D-0.0250r -
50W10D-0.0250r 3
50W10D-0.1000r B-
5W100D-0.1000r '
50W100D-0.1000r 3
50W10D-0.5000r1 +
5W100D-0.5000r1 *
50W100D-0.5000r1 -
5W10D-0.5000r

CTs

RCS: 0.11 H Tiling (5k)

o
R
Fom

;.\A:(‘?“ » § kY
g T A e

R o W - } 4 Ry
¥ e 3 ! (,. % o

Tiling (5k), Binary Tiling (5k), 5W10D-0.0250r

Tiling (5k), 5W100D-0.5000r

Binary E

PCA-100D
50W100D-0.0250r
5W100D-0.0250r
5W100D-0.1000r
50W100D-0.1000r
PCA-10D
5W10D-0.0250r F
50W10D-0.0250r ]
5W10D-0.1000r
50W10D-0.1000r
50W10D-0.5000r
50W100D-0.5000r
5W10D-0.5000r
5W100D-0.5000r GH

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4. CTS and RCS results for the Tiling (5k) universe. A-C. UMAP visualizations of the 5W100D-0.025r, 50W100D-0.1000r, and 5W10D-0.5000r
embeddings. D. CTSs of different sets of region embeddings. E-G. UMAP visualizations of the Binary, 5W10D-0.0250r, and 5W100D-0.5000r embeddings.
H. RCSs of different sets of region embeddings. Each blue horizontal bar and the associated black bar in D (H) indicate the average and standard deviation
of the CTSs (RCSs) from 20 (5) runs of the CTS (RCS) calculation for each set of region embeddings. W: context window size, D: embedding dimension, r:

initial learning rate.

window can well preserve the region occurrence information con-
tained in the training data, since in theory, all regions in a BED
file should be in the same context. Thus, Region2Vec embed-
dings learned in this way capture various degrees of similarity
between genomic regions, exhibiting rich structures in the embed-
ding space. In contrast, using a small context window tends to
move regions in the same BED file but not in the same context win-
dow away from each other, perturbing the original similarity infor-
mation between regions. Region2Vec embeddings learned with a
smaller context window tend to have a lower RCS and exhibit less
distinctive structures (e.g., Figure 4G).

Computing RCSs across our embedding sets, we observed that
RCSs are generally robust to the choice of universe (Figure S2).
Specifically, on the 5k tiling universe, as expected, Binary em-
beddings achieve the highest RCS (Figure 4H). The PCA embed-
dings have decreasing RCSs as dimensionality is decreased, con-
sistent with fewer dimensions retaining less information about the
original data (Figure 4H). Among the Region2Vec embeddings,
across universes, 50W100D-0.0250r achieves the highest RCS and
5W100D-0.5000r achieves the lowest; in general, using a large
context window (e.g., W = 50), a large embedding dimension
(e.g., D = 100), and a small initial learning rate (e.g., » = 0.025)
scores higher, indicating that these training settings best preserve
the region occurrence information contained in the training data
(Figure 4H).

Compared with CTS, which favors a small context window (W =
5), RCS favors a large context window (/W = 50), which demon-
strates a tradeoff between the clusterability of Region2Vec embed-
dings and their capability in preserving the region occurrence in-
formation contained in the training data. If we prioritize cluster-
ability, we should choose a small context window, whereas if we
prioritize preserving information for downstream data processing,
we should choose a larger context window.

The space and time complexities of calculating RCS increase when
the number of output dimensions or the number of training BED

7- Evaluation of unsupervised genomic regions embeddings

files N increases. To address, we randomly sample a small por-
tion of the given BED files for the RCS calculation. We experi-
mented with 690 (all) BED files and 10 BED files and calculated
the Pearson correlation coefficient between the RCSs for the 15
sets of region embeddings under each universe. We observe that
reducing the number of output dimensions does not significantly
affect the relative measurements between different sets of region
embeddings under each universe (Table 1).

Table 1. Pearson correlation coefficients between RCSs calculated with 690
and 10 output dimensions for region embeddings under each universe.

Universe RCS correlation
tilelk 0.97
tile5k 0.98
tile25k 0.97
Mergel00 0.98
Mergelk 0.97
Mergel0k 0.97
DNAse Hypersensitive Sites 0.99

Genome distance scaling score (GDSS)

To calculate GDSS, we first randomly sample 100k pairs of regions
and calculate the ED and the GD for each region pair. Then, we
compute the line of best fit over the 100k (GD, ED) points. The
GDSS is the slope of the fitted line showing the global trend of ED
as GD increases.

We first show how the GDSS varies visually. We observed that
GDSS is higher for embeddings with low-density clusters. For
example, we can observe large and sparse clusters from the high-
scoring embeddings 50W10D-0.0250r for Merge (100) (Figure
5A) and PCA-10D for Merge (10k) (Figure 5E). In contrast, we
can observe dense clusters from the low-scoring embeddings
Binary for Merge (100) (Figure 5B), PCA-10D for Merge (100)
(Figure 5C), and Binary for Merge (10k) (Figure 5F). For almost
random embeddings, there is no clear cluster (e.g., Figure 5G).
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Figure 5. GDSS and NPS results. A-C. UMAP visualizations of the 50W10D-0.0250r, Binary, and PCA-10D embeddings for the Merge (100) universe.
D. GDSSs for different sets of region embeddings for the Merge (100) universe. E-G. UMAP visualizations of the PCA-10D, Binary, and 50W10D-0.5000r
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context window size, D: embedding dimension, r: initial learning rate.

Computing the GDSS for each set of embeddings in Table S1 across
universes, we observed that unlike the statistical evaluations, the
GDSS rankings vary substantially by universe. For example, in
the Merge (100) universe, the PCA embeddings have the lowest
GDSSs (Figure 5D), whereas, for the Merge (10k) universe, the
PCA embeddings have the highest GDSSs (Figure 5H).

We next sought to investigate why the universe selection has such a
drastic effect on GDSS. We reasoned that the tokenization under a
universe could mask the shared function of nearby regulatory ele-
ments. For example, after tokenization, nearby regions are merged
into large consensus regions, or they are completely missed due to
the lack of coverage of the universe (25). Then, the shared func-
tion signature could disappear, leading to lower GDSSs. To test
this, we sought to determine the “fit” of each universe to the in-
put data. We computed the Fi, scores (see Methods), a score we
developed recently (25) to measure how well a chosen universe
covers the regions in the provided BED files (before tokenization).
Larger Fio scores indicate the universe is a better fit for the re-
gions in the collection. Computing Fio on the seven universes,
we found that the Merge (100) universe has a higher Fjo score
(Fio = 0.6281) than the Merge (10k) universe (Fio = 0.1990),
indicating it is a better fit to the input collection. This may explain
why the embeddings tokenized with different universes have such
different rankings; using the Merge (100) universe for tokeniza-
tion can preserve more information contained in raw BED files and
is less noisy than tokenizing with Merge (10k), for which simply
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using PCA to reduce noise works better than using Region2Vec to
learn from very noisy data. Similarly, Tilling (25k) has a low Fig
score (Fip = 0.1591), and PCA embeddings perform the best in
terms of GDSS (Figure S3F).

Interestingly, Region2Vec embeddings perform best when the uni-
verse is a good fit to the BED files (Figure S3A,B,D,E,G). This in-
dicates that Region2Vec is capturing biological knowledge in the
embeddings. We conclude that using a universe with a high Fi
score is important for Region2Vec. The context window size W de-
pends on the size of the universe. Using W = 5 is preferred for a
large universe (Figure S3A,D,G), while using W = 50 is preferred
for a relatively small universe (Figure S3B,C,E,F). Avoid using a
very large initial learning rate (e.g., » = 0.5) since it leads to very
low GDSSs. In most cases, using a small embedding dimension
(e.g., D = 10) is beneficial for achieving a high GDSS.

Neighborhood preserving score (NPS)

To extended GDSS beyond individual region pair distances and
consider local neighborhood structure, we next computed the NPS.
We randomly sampled 10* regions, and for each sampled region,
we obtain its sets of U-nearest neighbor regions in the genome
space (B) and its U-nearest neighbor regions in the embedding
space (7). Then, we computed NPSs for each of the 15 sets of
generated region embeddings for each universe.
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As U increases, we observe decrease in NPSs (Figure 5I), which
is expected since the sharing in biological function decreases as
the neighboring regions get further away in genome space as U
increases. For comparison using NPSs, we choose a large U, i.e.,
U = 500, since we are more interested in testing whether a set of
region embeddings captures rich biological information which is
often contained in a large neighborhood of regions. Although we
choose U = 500 in Figure 5J-M, the ranks of different sets of re-
gion embeddings are stable under different Us (Supplemental Fig-
ure S5A-G). An exception happens when U is small. For example,
when U = 50, among different sets of region embeddings for the
Merge (100) universe, Binary has the highest NPS (Supplemental
Figure S5A).

To achieve a high NPS, the region’s neighboring regions in the em-
bedding space should be as close as possible so that they will not
be included in other region’s neighborhood set and decrease the
overlap ratio for that region. Therefore, for a set of region em-
beddings with a high NPS, we will observe many small and dense
clusters. For example, we can observe small and dense clusters
from the high-scoring embeddings 50W100D-0.1000r for Tiling
(5k) (Figure 5J). We observe relatively sparse clusters for embed-
dings with smaller NPSs (Figure 5K and L). Among different kinds
of Region2Vec embeddings, the ones trained with the largest ini-
tial learning rate r = 0.5 have very small NPSs, and the ones with
the large context window size W = 50 and the large embedding
dimension D = 100 have large NPSs (Figure 5M). This observa-
tion is consistent across the seven universes (Figure S4). Moreover,
for each of the seven universes, Binary, PCA-100D, and PCA-10D
have decreasing NPSs. As in other evaluations, using large ini-
tial learning rate (r = 0.5) leads to ineffective training of region
embeddings and small NPSs. High NPSs are best achieved with
a large context window (e.g., W = 50), a large embedding di-
mension (e.g., D = 100), and a small initial learning rate (e.g.,
r = 0.025).

Downstream task performance

To demonstrate that our proposed metrics are indicative of the
performance of downstream tasks, we used the metadata of the
BED files and designed two downstream classification tasks: anti-
body type classification and cell type classification. We used 60%
of the BED files as the training data and the remaining ones as
the test data. We first calculated the average embedding of all
the tokenized region embeddings in a BED file as the vector rep-
resentation for the BED file. Then, we trained an SVM classifier
with a linear kernel to predict the antibody type or the cell type
of the BED file given its vector representation. We used five-fold
cross-validation with the F1 score with micro average to measure
the classification performance. For the two particular classifica-
tion tasks, we observe that all the scores have positive correlations
with the downstream classification performance, and NPS is the
most indicative metric (Table 2). However, there is clear varying
in performance;for example, CTS does not predict performance
particularly well on these two classification tasks. Nevertheless, as
the four proposed scores evaluate different perspectives of region
embeddings, choosing the most indicative score depends on the
downstream task.

Table 2. Pearson correlation coefficients between the classification perfor-
mance and the four evaluation scores.

Classtype CTS RCS GDSS NPS
Antibody 0.14 0.76 0.52 0.88
Cell 0.22 0.78 0.48 0.88
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Discussion and conclusion

In this paper, we proposed two statistical-based scores, CTS and
RCS, and two biological-based scores, GDSS and NPS, to evalu-
ate the quality of genomic region embeddings learned from unsu-
pervised methods. Each score evaluates different perspectives of
region embeddings. CTS quantifies how well region embeddings
can be clustered, and RCS measures how much original training
information is preserved by region embeddings. GDSS calculates
the degree to which region embedding distances scale with ge-
nomic region distance in the embedding space, while NPS calcu-
lates how well region embeddings preserve a region’s neighbor-
hood in genome. These four scores provide complimentary per-
spectives that, when taken together, can provide a comprehensive
evaluation of the statistical and biological value of region embed-
dings in an unsupervised way. The scores also vary in terms of
input requirements: calculating a CTS only needs region embed-
dings for evaluation, whereas calculating a RCS also needs ac-
cess to the training data (the tokenized BED files). The biological
GDSS and NPS do not need the training data, but they do need
the genomic coordinates of regions in order to calculate genome
distance.

The four scores do not necessarily match since they evaluate dif-
ferent perspectives of region embeddings. Choosing a good score
depends on the task that we focus on. For example, RCS favors
Region2Vec embeddings with a large context window, while CTS
favors Region2Vec embeddings with a small one. When the task
is to identify clusters, it is better to select a set of region embed-
dings with a high CTS. However, if the the task is to distinguish
between different cell/antibody types with high accuracy, it is bet-
ter to select a set of region embeddings with a high RCS. Moreover,
we have found the four scores useful in tandem to ensure region
embeddings meets our needs. For example, we can first calculate
RCSs of several candidate sets of region embeddings to filter out
low-scoring sets that lose too much training information. Then, to
ensure biological signatures are preserved, we can calculate GDSS
or NPS to further select region embedding sets. Finally, we can
calculate CTS to find an easily-clustered region embedding set to
facilitate downstream analyses.

Scores of the same type are not directly comparable across uni-
verses, since different universes have different sets of regions, re-
sulting in different training data across universes. However, all
the scores, except the GDSS, yielded similar rankings regardless
of universe. In fact, GDSS is the only one that was sensitive to
the choice of universe. Although evaluating the quality of a uni-
verse is not our goal in this paper, we found a correlation between
GDSS and Fi score, a measure of universe quality. Therefore, we
propose that GDSS may be useful as a way to determine whether
a universe is a poor fit, which coincides to the case when PCA
embeddings outperform Binary embeddings, providing a way to
assess a universe without the need to access the original BED files
(before tokenization).

Overall, based on the results from the four scores, we found that
with proper settings, embeddings learned from Region2Vec, are
top performers in general. More specifically, the Region2Vec em-
beddings outperformed the binary and PCA embeddings in terms
of CTS, GDSS and NPS. We notice that Region2Vec embeddings
had lower RCSs than PCA embeddings. We reason that Region2Vec
exploits regions’ co-occurrence information in the training data for
dimensionality reduction with a finite-sized context window. It
may lose certain region co-occurrence information contained in a
long region sequence. Compared to Region2Vec, PCA performs rel-
atively simple linear dimensionality reduction on the original data.
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Therefore, it is easier for a neural network to learn an inverse func-
tion for PCA embeddings to reconstruct the original data (hence,
higher RCSs) than for Region2Vec embeddings. Nevertheless, Re-
gion2Vec embeddings have demonstrated the ability to capture the
simple biology that close regions on the genome have similar bi-
ological functions. Our scores also provide parameter selection
guidelines for learning good Reigon2Vec embeddings. We expect
that these scores will provide a useful basis for evaluation of un-
supervised region embeddings, and also anticipate that they can
form the basis of evaluation approaches for upcoming supervised
region embedding methods as well (26).
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Supplementary information

Table S1. Configurations of the 15 types of embeddings.

Embedding method Name Dimensions (D) Window size (W) Learning rate (r)
Binary Binary 690 N/A N/A
PCA PCA-10D 10 N/A N/A
PCA-100D 100 N/A N/A
5W10D-0.0250r 10 5 0.025
5W10D-0.1000r 10 5 0.1
5W10D-0.5000r 10 5 0.5
5W100D-0.025r 100 5 0.025
5W100D-0.1000r 100 5 0.1
Region2Vec 5W100D-0.5000r 100 5 0.5
& 50W10D-0.0250r 10 50 0.025
50W10D-0.1000r 10 50 0.1
50W10D-0.5000r 10 50 0.5
50W100D-0.0250r 100 50 0.025
50W100D-0.1000r 100 50 0.1
50W100D-0.5000r 100 50 0.5
Table S2. Universes used in the experiments.
Universe Number of regions Fio Description
Merge (100) 287,225 0.6281 Merge regions when distance < 100 bps
Merge (1k) 232,626 0.5296 Merge regions when distance < 1k bps
Merge (10k) 40,498 0.1990 Merge regions when distance < 10k bps
Tiling (1k) 426,964 0.4937 Each region has 1k bps
Tiling (5k) 251,084 0.2677 Each region has 5k bps
Tiling (25Kk) 100,053 0.1591 Each region has 25k bps
DNAse Hypersensitive Sites 561,580 0.4513  External universe
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Figure S1. CTS scores of different sets of embeddings for regions in the seven universes. Each blue horizontal bar and the associated black bar indicate
the average and standard deviation of the CTSs from 20 runs of the CTS calculation for each set of region embeddings. W: context window size, D: embedding
dimension, r: initial learning rate.
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Figure S2. RCSs of different sets of embeddings for regions in the seven universes. Each blue horizontal bar and the associated black bar indicate the
average and standard deviation of the RCSs calculated with 5 different random seeds for each set of region embeddings. W: context window size, D: embedding
dimension, r: initial learning rate.
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Figure S3. GDSSs of different sets of embeddings for regions in the seven universes. Each blue horizontal bar and the associated black bar indicate
the average and standard deviation of the GDSSs calculated with 20 different random seeds for each set of region embeddings. W: context window size, D:
embedding dimension, r: initial learning rate.
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Figure S5. Average ranks of each set of region embeddings under different Us over 20 runs of the calculation of NPS. A large rank indicates a high
NPS. W: context window size, D: embedding dimension, r: initial learning rate.
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Figure S6. Pairwise correlations between the CTS, RCS, GDSS, and NPS for the Merge (100) universe.
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