

1 The marmoset default-mode network identified by

2 deactivations in task-based fMRI studies

3

4 Audrey Dureux^{1,4}, Alessandro Zanini^{1,4}, David J. Schaeffer³, Kevin Johnston^{1,2}, Kyle M.

5 Gilbert¹, Stefan Everling^{1,2,5}

6

7 ¹Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of

8 Western Ontario, London, Ontario, Canada

9 ²Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario,

10 Canada

11 ³Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA

12 ⁴These authors contributed equally.

13 ⁵Lead contact

14

15

16 Corresponding author

17 Stefan Everling

18 **Email:** severlin@uwo.ca

19 **SUMMARY**

20 Understanding the default-mode network (DMN) in the common marmoset (*Callithrix jacchus*)
21 has been challenging due to inconsistencies with human and marmoset DMNs. By analyzing
22 task-negative activation in fMRI studies, we identified medial prefrontal cortical areas, rostral
23 auditory areas, entorhinal cortex, posterior cingulate cortex area 31, hippocampus,
24 hypothalamus, and basomedial amygdala as marmoset DMN components. Notable, medial and
25 posterior parietal areas that were previously hypothesized to be part of the DMN were activated
26 during visual task blocks. Seed analysis using resting-state fMRI showed strong connectivity
27 between task-negative areas, and tracer data supported a structural network aligning with this
28 functional DMN. These findings challenge previous definition of the marmoset DMN and
29 reconcile many inconsistencies with the DMNs observed in humans, macaque monkeys, and
30 even rodents. Overall, these results highlight the marmoset as a powerful model for DMN
31 research, with potential implications for studying neuropsychiatric disorders where DMN
32 activity and connectivity are altered.

33

34

35 **KEYWORDS**

36 common marmoset, default mode, fMRI, medial prefrontal cortex, hypothalamus, auditory
37 cortex, anterior cingulate cortex

38

39

40 **INTRODUCTION**

41 The default-mode network (DMN) was initially identified as a large set of brain regions that
42 were more active during baseline than task periods in several positron emission studies^{1,2}.
43 Numerous subsequent fMRI studies have confirmed the existence of a DMN in humans³, and its
44 activation has been associated with various functions including mind wandering, social
45 cognition, language and semantic memory, and the construction of a sense of self. Changes in
46 DMN activity and connectivity have been found in several neuropsychiatric disorders, including
47 Alzheimer's disease, depression, schizophrenia, autism spectrum disorder, and attention deficit
48 disorder³.

49 Studies in rodents³⁻⁵ and nonhuman primates⁶⁻⁹ have also identified putative functional
50 and anatomical homologues to the human DMN which promise to offer a window into
51 investigating the DMN using targeted invasive recording and stimulation techniques. A small
52 nonhuman primate that may hold tremendous potential for these studies is the common
53 marmoset (*Callithrix jacchus*). This New World primate has a lissencephalic (smooth) cortex
54 that is ideal for laminar neurophysiology and electrode array implantations¹⁰. Moreover, its small
55 size allows for the usage of ultra-high field preclinical MR scanners¹¹. However, the marmoset
56 DMN seems to differ considerably from the human DMN, potentially limiting its translational
57 value. While in humans the DMN consists primarily of the medial prefrontal cortex (mPFC),
58 posterior cingulate cortex, anterior superior temporal cortex, middle temporal cortex, and angular
59 gyrus, fMRI studies in marmosets have identified the dorsolateral PFC area 8, posterior parietal
60 and posterior cingulate cortices as the DMN¹²⁻¹⁸. The identified marmoset DMN is puzzling for
61 at least two reasons. First, the marmoset posterior parietal cortex exhibits saccade-related activity
62 as identified by fMRI¹⁹ and single unit recordings²⁰. Further, electrical microstimulation in

63 posterior parietal areas LIP and MIP evokes contralateral saccades²¹. This is difficult to reconcile
64 with it being part of the DMN. Second, the absence of mPFC areas in the marmoset DMN is
65 surprising given that it has been identified as a main component of the human DMN^{1,3} and is also
66 part of the DMN in Old World macaque monkeys^{7,9} and even in rodents^{4,5,22}. For these reasons,
67 we revisited the search for the marmoset DMN by analyzing task-negative activation in our
68 recently published fMRI studies in marmosets^{23–26}.

69

70 RESULTS

71 Here we aimed to isolate the marmoset's DMN by identifying brain areas that exhibited higher
72 activations during baseline period than task epochs, i.e., areas that decreased their activation
73 during task blocks, in our previous marmoset fMRI studies. All studies employed passive tasks,
74 i.e., the marmosets were simply presented with a set of videos and/or audio clips. During
75 baseline periods, monkeys were presented with a small, filled black circle on a grey screen.
76 Please note that we restrict our analysis to task-positive versus task-negative activations here and
77 ignore all differences between the different conditions, which we already described in previous
78 publications.

79 Since the human DMN was initially identified by areas that were deactivated during
80 attention-demanding tasks^{1,2}, we first checked whether we could identify the typical DMN in
81 human subjects during such a passive task. To this end, we re-examined task-positive versus
82 task-negative activations in data from our recent study²³ in which we presented theory-of-mind
83 and random Frith-Happé animations to 10 humans and 6 marmoset monkeys. Figure 1, top
84 shows the task-positive (orange and red colors) and the task-negative activations (blue color) for
85 human subjects in this task. Consistent with numerous human studies, we found task-negative

86 activations in medial prefrontal cortex (including areas 25, 10v, 10d, p32, d32, p32pr, 9m, p24,
87 24dv), posterior cingulate cortex (23ab), superior temporal sulcus (STSda, STSdp), and angular
88 gyrus (PFm, PG). The task-positive network included mainly visual cortical areas (e.g. V1, V2,
89 V3, V4, MT, MST, FST, PH), posterior parietal cortex (areas PF, LIPv, 7PC, 7M, PCV), and
90 premotor and frontal eye fields (area 6a, FEF, 55b, PEF, IFJp, 6r). These findings demonstrate
91 that these passive tasks are able to evoke robust DMN activations in human subjects through
92 task-negative responses.

93 Next, we compared the task-positive and task-negative activations for the same task in
94 marmosets (Figure 1, bottom). On the medial surface, task-positive areas included V1, V2, V3,
95 19M, PGM, 31, 23a, and 23b. On the lateral surface, activations were observed in V1, V2, V3,
96 V4, V6, 19DI, Opt, MT, FST, MST, LIP, MIP, PG, and TE3. In addition to these widespread
97 posterior activations, we also found activations in frontal areas 6DR, 8aV, and 6Va, and
98 observed activations in somatomotor areas. Conversely, we found task-negative activations, i.e.,
99 deactivations during the task, in medial prefrontal areas 10, 32, 32v, 24a, 24b, 24c, 9, and 8b, as
100 well as in the right primary auditory cortex and rostral parabelt (RPB). In contrast to humans,
101 there were no task-negative activations in posterior cingulate cortex, or in area PG.

102

103 We then re-analyzed five additional of our recently published and in preparation fMRI
104 studies by pooling all task epochs together and comparing them to the baseline periods (Fig. 2,
105 left side).

106 In four of our studies (Fig. 2A-D), marmosets were presented with different types of videos
107 without any audio. These included in addition to the Frith-Happé animations (Fig. 2A), videos of
108 marmoset hands and forearms reaching towards objects or empty locations and their scrambled

109 versions (Fig. 2B)²⁶, videos of neutral and negative marmoset faces and their scrambled versions
110 (Fig. 2C)²⁴, and videos of predators or marmosets and their scrambled versions (Fig. 1D,
111 unpublished data). Overall, these four studies showed very similar task-positive activations in
112 visual, parietal, and lateral frontal regions. Although always considerably weaker than the task-
113 positive activations, we also observed a clear pattern in task-negative activations. All tasks were
114 associated with task-negative activations in medial prefrontal areas 10 and 32. Notably, two of
115 the studies (Fig. 2 B and D) also showed task-negative activations in area 25. In addition, all four
116 tasks were associated with some task-negative activations in temporal auditory areas. In the
117 Frith-Happé animation study²³, deactivations were restricted to the rostral parabelt (RPB) while
118 in the action observation study²⁶, they were localized to the superior temporal rostral (STR) area
119 (Fig. 2A, B). In contrast, the other two studies²⁴ showed strong task-negative activations across
120 multiple auditory areas (Fig. 2C-D).

121 In addition, these two studies also exhibited task-negative activations in primary motor cortex,
122 similar to the results in humans (Fig. 1, top).

123 We also included a study in which we presented auditory stimuli (vocal and scrambled
124 calls), videos (marmoset faces and scrambled faces), and videos with corresponding audio (faces
125 with calls, and scrambled faces with scrambled calls) (Fig. 2E)²⁵. In this study, fewer visual areas
126 were activated by the task conditions, but we observed very strong activations in auditory
127 cortices. In addition, we also found frontal task-positive activations in area 6DR, 6Va, and 8aV.
128 In contrast, task-negative activations were present in medial prefrontal areas 10, 32, and 25. A
129 purely auditory study (marmoset calls and scrambled calls) elicited task-related activations in
130 auditory cortices including core, belt, and parabelt areas (Fig. 2F). In addition, area 32 was

131 activated. Task-negative activations were more scattered and included area 6Va, parts of V3 and
132 V4.

133 Furthermore, three studies (Fig. 2D-F) also exhibited task-negative activations in entorhinal
134 cortex (Ent) and posterior cingulate area 31.

135

136 To identify areas that were activated during multiple studies, we computed probability
137 maps for task-positive and task-negative activations (Fig. 3). The analysis shows that the task-
138 positive network included predominately areas in the occipital, parietal, and inferotemporal
139 cortex (Fig. 3A). In addition, frontal area 6Va, 6DR, and 8aV were activated by most tasks. At
140 the subcortical level (Fig. 3B), we observed consistent recruitment of the lateral pulvinar (Pul),
141 lateral geniculate nucleus (LGN), lateral amygdala (LA), and the caudate nucleus (CN).

142 The task negative network included at the cortical level predominately medial prefrontal
143 area 10, 32, 32v, and 25 (Fig. 3C). Further, primary auditory cortex (A1), caudal parabelt (CPB),
144 RPB, and area STR displayed task-negative activations. In addition, entorhinal cortex (Ent) and
145 area 31 were sometimes part of task-negative areas. At the subcortical level (Fig. 3D), the
146 hippocampus (Hipp), basal medial amygdala (BM), and hypothalamus (Hyp) showed task-
147 negative activations in several of our studies.

148

149 The hypothalamus has recently been identified as a core component of the human
150 DMN²⁹. To further investigate its functional role in the task-negative and task-positive networks,
151 we performed a seed-based functional connectivity analysis of the hypothalamus using resting-
152 state fMRI data from an open dataset resource³⁰. Figure 4 shows the results of positive functional
153 connectivity with the regions around the paraventricular nucleus of the hypothalamus in blue and

154 negative functional connectivity in red. The functional connectivity maps showed positive
155 correlations with auditory core, belt, and parabelt areas, predominately towards anterior
156 locations, and with medial prefrontal areas 10, 32, 32v, and 25. At the subcortical level we found
157 positive functional connectivity with the medial pulvinar (mPul) and hippocampus (Hipp).
158 Overall, the positive functional connectivity of the hypothalamus resembled the task-negative
159 network and the negative functional connectivity included most of the areas of the task-positive
160 network.

161

162 To test whether we would find a similar pattern of positive functional connectivity with
163 other task-negative areas and negative functional connectivity with task-positive areas, we
164 displayed functional connectivity maps of areas 32, 10, 25, RPB, hypothalamus, hippocampus,
165 and basomedial amygdala on flatmaps of the right hemisphere (Fig. 5). These maps show strong
166 functional connectivity (blue) with the areas of the task-negative network and strong
167 anticorrelations (orange and yellow) with areas of the task-positive network.

168

169 With evidence from functional connectivity³⁰ (Fig. 5) that marmoset anterior cingulate
170 (namely area 32/32v) is not connected with posterior cingulate (areas 23 and 31), we
171 hypothesized that the structural underpinnings of these connections would also be sparse³¹.
172 Moreover, examining the functional connectivity across the entire medial and lateral frontal
173 cortices³² with posterior cingulate, we posit that the lateral frontal cortex (namely area 8) has
174 much stronger connectivity to areas 23 and 31 than do any of the anterior cingulate regions. To
175 validate this hypothesis, we conducted a comparison between the anatomical connections of the
176 region bordering mPFC areas 32 and 32v, and those of lateral PFC area 8aD. This comparison

177 utilized viral anterograde tracer data openly accessible through the BRAIN/MINDS resource³³.
178 Consistent with our proposed hypothesis, the findings from this examination (illustrated in Fig.
179 6) reveal a clear anatomical linkage between the lateral PFC (area 8aD) and the posterior
180 cingulate regions 23 and 31. In contrast, the connectivity pattern of the mPFC area 32/32v is
181 notably focused within the mPFC itself, extending to include the orbitofrontal areas 47O and 13,
182 as well as temporal areas TPO, TE1, and STR. Additionally, there are weak projections from
183 more posterior part of area 29 to the mPFC. In this pattern of results, the absence of structural
184 connectivity between the mPFC and the posterior cingulate cortex stands out in the marmoset.

185

186 **DISCUSSION**

187 Our findings revise the structure and potential function of the default-mode network (DMN) in
188 the common marmoset (*Callithrix jacchus*). By focusing on task-negative activations from our
189 previously published tasks, we discovered that the DMN in marmosets incorporates the medial
190 prefrontal cortex (mPFC), parts of the auditory cortex, hippocampus, basomedial amygdala and
191 the hypothalamus. This was particularly the case for studies where we presented visual stimuli
192 during task blocks, whereas vocal stimuli activated some of these areas during the task blocks.
193 Importantly, single neuron activity in area 32 of the marmoset mPFC that is activated by vocal
194 stimuli (see also Fig. 1F), also decreased during baseline blocks, suggesting a robust contribution
195 to the DMN.

196 Most studies to date have relied on resting-state fMRI to identify the DMN in
197 marmosets^{12,15–17}. Importantly, these studies have emphasized the presence of the posterior
198 cingulate cortex/precuneus in the putative marmoset DMN using independent component
199 analysis (ICA), or they have even identified the putative DMN by placing a seed in the marmoset

200 posterior cingulate cortex. However, the DMN in humans was initially defined as a set of brain
201 regions that showed higher activations during baseline than task epochs^{1,2} and not as areas that
202 showed a particular functional connectivity pattern. Liu and colleagues¹⁴ used a similar approach
203 to what we employed here, and attempted to identify the marmoset DMN as a network of brain
204 regions that increased their activity during the baseline period in an fMRI task using visual
205 stimuli. By using this approach, they found activations in V2, 19M, PGM, 23V, V6A, PEC, LIP,
206 VIP, MIP, PG and OPT during the baseline period. They did not detect any activations in
207 prefrontal cortex. This stands in sharp contrast to the absence of any activations in lateral or
208 medial parietal areas during baseline blocks in our analysis of visual blocked fMRI tasks. In fact,
209 lateral and medial parietal areas were activated by all videos. We believe that this difference
210 relates to the specifics of the task data that Liu et al. (2019) analyzed in their study. In their
211 task^{14,34}, the monkeys were presented with 16 s of visual pictures of faces, body parts, objects,
212 and scrambled stimuli, during which they had to maintain fixation within a 5-degree central
213 circle to receive a liquid reward every 1.5s. In contrast, no fixation requirements were imposed,
214 and no reward was given during the 20 s baseline blocks (grey screen). Therefore, one can
215 assume that the marmosets generated more and larger saccades during the baseline periods than
216 during the task blocks in this specific design (see also Fig. 2A of Hung et al. for example eye
217 traces³⁴). Consequently, the activations in the posterior parietal cortex observed by Liu and
218 colleagues¹⁴ during the baseline period are likely related to an increase in saccadic eye
219 movements during the baseline period, consistent with a role of the marmoset posterior parietal
220 cortex in saccade control as shown by electrical microstimulation²¹, electrophysiological
221 recordings²⁰, and fMRI¹⁹. In contrast, the task-based fMRI studies that we used here to identify
222 the DMN had no fixation requirements.

223 The discovery of a prominent role of mPFC in the marmoset DMN reconciles the
224 previous discrepancies observed with humans^{3,17}, macaque monkeys^{6,7,9}, and even rodents^{4,5,22} in
225 which mPFC areas have been identified as part of the DMN. We also found activations in three
226 of the six studies in posterior cingulate area 31. However, consistent with Liu and colleagues¹⁴,
227 we did not find any functional connectivity between the medial prefrontal areas and posterior
228 cingulate cortex in marmosets using rs-fMRI data. Accordingly, tracer data from the
229 Brain/MINDS Marmoset Connectivity Resource³³ confirm monosynaptic connections between
230 area 32 and other regions of the task-negative network such as areas prefrontal areas 25, 9, 10
231 and 14, the most frontal part of area 24a, the temporoparietal (TPO) area, and STR, only weak
232 monosynaptic connections with the posterior cingulate region. The absence of this human
233 hallmark DMN connectivity pattern points to a specific functional change in DMN structure
234 between humans, old world macaques, and marmosets¹⁷.

235 The inclusion of parts of the auditory and anterior temporal cortex in the marmoset DMN
236 opens novel research avenues concerning auditory processing and its integration with default
237 mode functioning. In fact, the DMN that we identified showed strong overlap with the vocal
238 network that we recently found by auditory fMRI in awake marmosets³⁵. In humans, the anterior
239 temporal cortex and the middle temporal cortex are integral parts of the DMN³. These regions
240 contain vocal patches³⁶⁻³⁹ and are also parts of the human language network⁴⁰. Based on the
241 observation in a macaque PET study that showed higher activations predominately in mPFC,
242 auditory cortex, and insular cortex during rest versus the performance of a visual working
243 memory task⁶, Watanabe and colleagues hypothesized that the default mode activity may reflect
244 some form of thought in the monkeys^{6,8}. Our findings in marmosets resemble these findings in
245 macaques and the observation that regions such as mPFC area 32 and parts of auditory cortex are

246 more active during baseline than task blocks is intriguing, given that we have recently shown that
247 these regions are also activated by the processing of conspecific vocalizations³⁵. Therefore, it
248 will be particularly interesting to investigate the functional interactions between mPFC areas and
249 auditory areas in marmosets, even in the absence of external auditory stimuli or tasks.

250 At the subcortical level, we observed task-negative activations in the basomedial
251 amygdala consistent with its role in the human DMN^{29,41,42}. Interestingly, in mice, this region has
252 been identified as a major target of the mPFC⁴³. Within the basomedial amygdala of mice,
253 neurons can differentiate between safe and threatening environments, with their activation—
254 mediated by projections from the mPFC—helping to alleviate high-anxiety states. In marmosets,
255 mPFC area 25 has been associated with cardiovascular and behavioural responses to stress⁴⁴, and
256 both anterograde and retrograde tracer data demonstrated a direct connection between marmoset
257 mPFC and the basomedial amygdala⁴⁵.

258 The identification of the hypothalamus as a prominent subcortical component of the
259 marmoset DMN supports a recent human DMN model²⁹. Interestingly, resting-state fMRI from a
260 large open resource marmoset dataset³⁰ confirmed positive functional connectivity between the
261 hypothalamus and other task-negative areas and negative functional connectivity with the task
262 positive network. Moreover, seed-based resting-state fMRI functional connectivity analysis
263 showed that the different nodes of the task-negative network exhibited strong functional
264 connectivity with each other and exhibited negative functional connectivity with regions of the
265 task-positive network. This is completely consistent with previous findings in humans^{46,47}. In
266 accordance with this pattern of functional connectivity, data from studies using both anterograde
267 and retrograde tracer methods have demonstrated a monosynaptic connection between the
268 hypothalamus and the mPFC in marmosets⁴⁵.

269 Overall, our results show that a network of structurally and functionally connected
270 cortical and subcortical brain regions exhibits increased activity during baseline blocks
271 particularly in visual blocked fMRI tasks. These findings demonstrate that the common
272 marmoset is a promising nonhuman primate model for research into the neural processes within
273 the DMN, with potential implications for understanding neuropsychiatric disorders where DMN
274 activity and connectivity show marked changes.

275

276 **METHODS**

277 For this study, we reanalyzed our previously published and in preparation studies using task-
278 related awake marmoset fMRI²³⁻²⁶, and one task in humans²³. Full experimental details are
279 provided in the published studies.

280

281 **Marmosets**

282 All experimental procedures were conducted in accordance with the Canadian Council of Animal
283 Care policy and were approved by the Animal Care Committee of the University of Western
284 Ontario Council on Animal Care. Additionally, the procedures complied with the Animal
285 Research: Reporting In Vivo Experiments guidelines.

286 For the fMRI experiments, a total of 11 adult common marmosets (*Callithrix jacchus*) served as
287 subjects. The number of animals utilized in each study ranged from 6 to 7, and both male and
288 female marmosets were included.

289 All marmosets were pair-housed at 24 - 26° C with 40-70% humidity under a 12 h light-dark
290 cycle.

291

292 **Preparation of the animals**

293 Animals were implanted for head-fixed fMRI experiments with an MR-compatible head restraint
294 chamber⁴⁸ or with a machined PEEK (polyetheretherketone) head post⁴⁹ under anesthesia and
295 aseptic conditions as previously described^{48,50}. Marmosets were acclimatized to the head-fixation
296 system in a mock MRI environment over a three week training period⁴⁹ that included head
297 restraint and exposure to pre-recorded MRI sounds .

298

299 **Human participants**

300 Ten healthy individuals (3 females, aged between 27 and 44 years) participated in the study²³.
301 Each participant was right-handed, had either normal vision or vision that was corrected to
302 normal, and did not have any neurological or psychiatric disorders. The Ethics Committee of the
303 University of Western Ontario approved the study, and all participants furnished written consent
304 for their involvement.

305

306 **fMRI experimental setup**

307 Visual stimuli were projected onto a forward-facing plastic screen positioned at a viewing
308 distance of 119 cm using an LCSD-projector (Model VLP-FE40, Sony Corporation, Tokyo,
309 Japan) via a back-reflection on a first surface mirror. We used Keynote software (version 12.0,
310 Apple Incorporated, CA) for stimulus display. The onset of visual and/or auditory stimuli was
311 synchronized with an MRI TTL pulse triggered by a python program running on a Raspberry Pi
312 (model 3B+, Raspberry Pi Foundation, Cambridge, UK). During each experimental run, different
313 conditions (movies and/or auditory stimuli) were presented during task blocks. The duration of
314 the task blocks varied between 12-19.5s between the studies but was constant within each study.

315 The task blocks were interleaved by baseline blocks that varied between studies from 15-18s,
316 during which a central black dot was displayed in the center of the screen against a gray
317 background. Marmosets were not required to fixate in any of the studies.

318

319 **MRI data acquisition**

320 All imaging studies were performed at the Center for Functional and Metabolic Mapping at the
321 University of Western Ontario. For marmosets, the data were collected using a 9.4T/31 cm
322 horizontal bore magnet and a Bruker BioSpec Avance III console running the Paravision 7
323 software package. We used a custom-built 15-cm inner diameter gradient coil (Handler et al.,
324 2020) with a maximum gradient strength of 1.5 mT/m/A. Depending on the experiment, it was
325 coupled with either a five receive channels^{24,26} facilitated by a head restraint chamber, or eight
326 receive channels²³⁻²⁶ utilizing a machined PEEK head post. To ensure optimal signal reception,
327 preamplifiers were located behind the animal. The receives coil was placed inside an quadrature
328 birdcage coil of 12-cm inner diameter, which was custom-fabricated in-house and served for
329 transmission. Gradient-echo based single-shot echo-planar images (EPI) were acquired with
330 specifications of 0.5 mm³ isotropic resolution, 42 slices [axial], 400 kHz bandwidth, and a
331 GRAPPA acceleration factor of 2 (left-right). The repetition time (TR) was 1.5s for all purely
332 visual studies, In auditory experiments, every slice also acquired within 1.5 s, succeeded by a
333 1.5s period in which the scanner noise was low. During one of the sessions, a T2-weighted
334 structural image was collected for each animal with the following parameters: TR=7s, TE=52ms,
335 field of view=51.2x51.2 mm, resolution of 0.133x0.133x0.5 mm, number of slices= 45 [axial],
336 bandwidth=50 kHz, GRAPPA acceleration factor: 2. The total experimental time was usually

337 around 60 minutes per animal and included experimental setup, animal preparation, and scanning
338 time.

339
340 For the human subjects, the imaging was conducted on a 7T/68 cm horizontal bore magnet
341 (Siemens Magnetom 7T MRI Plus). This was combined with an AC-84 Mark II gradient coil, an
342 in-house developed 8-channel parallel transmit, and a 32-channel receive coil⁵¹. Multi-Band EPI
343 BOLD sequences were acquired with the following parameters: TR = 1.5s, TE = 20ms, flip angle
344 = 30°, field of view=208x208 mm, matrix size = 104x104, resolution of 2 mm³ isotropic,
345 number of slices= 62, GRAPPA acceleration factor: 3 (anterior-posterior), multi-band
346 acceleration factor: 2. Additionally, field map images were also computed, derived from the core
347 magnitude image and its corresponding phase images. For every participant, an MP2RAGE
348 structural image was acquired during the sessions with the following parameters: TR=6s,
349 TE=2.13 ms, TI1 / TI2 = 800 / 2700 ms, field of view=240x240 mm, matrix size= 320x320,
350 resolution of 0.75 mm³ isotropic, number of slices= 45, GRAPPA acceleration factor (anterior
351 posterior): 3.

352
353 **MRI preprocessing**
354 The preprocessing of data from marmoset subjects was performed using AFNI⁵² and FSL⁵³
355 software. From the anatomical images of each marmoset, a T2-weighted template mask was
356 generated. This data was reoriented and subsequently, a manually skull-stripped mask was
357 created via FSLeyes. The mask was then binarized using AFNI's 3dcalc function. The
358 anatomical data was then merged with the binarized mask to generate the T2 mask. Finally this
359 mask was aligned with the 3D NIH marmoset brain atlas (NIH-MBA)²⁸.

360 The raw functional data was converted to NIfTI format using dcm2niix. After this conversion,
361 data was reoriented and corrected for any motion artifacts through functions like fslswapdim,
362 fslroi, and topup. The dataset for each specific run was then interpolated using the applytopup
363 function. Outliers that emerged were identified with 3dToutcount and subsequently eliminated
364 using 3dDespike.

365 Thereafter, time-shifting was initiated using 3dTshift. For each run, the median volume served as
366 the foundational base for alignment through 3dvolreg. Spatial smoothing was performed by
367 applying a three-dimensional Gaussian function with a full-width-half-maximum (FWHM)
368 ranging between 1 and 2 mm, depending on the study. To conclude the preprocessing phase, the
369 frequency domain was restricted between 0.01-0.1 Hz using a band-pass filter, specifically the
370 3dbandpass function.

371

372 Data preprocessing for human subjects was conducted using SPM12 (Welcome Department of
373 Cognitive Neurology, ⁵⁴). The process began by converting raw images into NifTI format. Once
374 transformed, functional images were subjected to field map correction using the specific toolbox
375 in SPM, which drew upon both magnitude and phase images. Following this, the functional
376 images were realigned to account for head movements and subsequently underwent slice timing
377 correction. Both the anatomical and functionally corrected volumes were then coregistered with
378 the MP2RAGE structural scan specific to each participant, facilitating their normalization to the
379 Montreal Neurological Institute (MNI) standard brain space. Anatomical images were
380 meticulously segmented to distinguish white matter, gray matter, and CSF partitions. These
381 segmented images were also normalized to the MNI space. The functional images underwent

382 spatial smoothing using a 6 mm FWHM isotropic Gaussian kernel. To conclude the
383 preprocessing, the data's time series was filtered with a high-pass setting of 128 s.

384

385 **Task-based fMRI analysis**

386 Each run utilized a general linear regression model. For this purpose, the task timing was
387 convolved with the hemodynamic response using AFNI's 'BLOCK' convolution for marmosets'
388 data and SPM12 hemodynamic response function for humans' data. A unified regressor was
389 created for all task conditions using AFNI's 3dDeconvolve function for marmosets and SPM12
390 function for humans. The resulting regression coefficient maps for the marmosets were
391 subsequently registered to the template space utilizing the transformation matrices obtained from
392 the anatomical image registrations. We therefore obtained a regression coefficient map from
393 individual runs for each subject, registered to the NIH marmoset brain atlas²⁸ for marmosets, and
394 aligned with the MNI brain standard space for humans. These maps were then subjected to
395 group-level comparison through paired t-tests, using AFNI's 3dttest++ function, ultimately
396 producing Z-value maps. To identify brain regions exhibiting task-positive and task-negative
397 activations in each study, we contrasted all conditions against the baseline period.

398 For visualization, the resulting z-value functional maps, specific to each study, were displayed
399 using the Connectome Workbench v1.5.076 on fiducial maps, showcasing both the medial and
400 lateral views of the right hemisphere. Additionally, FSLEYES⁵³ was used to present the coronal
401 section.

402

403 **Task-positive and task-negative probability maps**

404 To examine activation maps across studies, we computed coincidence maps of task-
405 positive and task-negative activations, thresholded at $z=3$ for task-positive and $z=-1$ for task-
406 negative, converted them into probability maps using a custom program in Matlab. The resultant
407 probability maps were visualized for each study via the Connectome Workbench v1.5.0⁵⁵ and
408 FSLeyes applications⁵³ on fiducial maps of the medial and lateral view of the right hemisphere.
409 Cortical parcellations of the Paxinos marmoset atlas were overlaid²⁸. In addition, probability
410 maps were overlaid on coronal sections of a high-resolution (100 x 100 x 100 um) ex-vivo
411 marmoset brain⁵⁵ which was aligned to the NIH marmoset brain template²⁸.

412

413 **Resting-state fMRI seed analysis**

414 To evaluate the functional connectivity of the hypothalamus – a subcortical area with robust
415 deactivations during task blocks - we measured its task-independent functional connectivity
416 using resting-state fMRI data from an open-access repository
417 (<https://marmosetbrainconnectome.org>)³⁰. This database contains over 70 hours of resting-state
418 fMRI data from 31 awake marmosets (*Callithrix jacchus*, 8 females; age: 14–115 months;
419 weight: 240–625 g). The data were acquired at the University of Western Ontario (5 animals)
420 on a 9.4T scanner and at the National Institutes of Health (26 animals) using a 7T scanner. We
421 positioned a seed (single voxel) in the hypothalamus region which showed the highest
422 probability of activity during baseline periods (9mm anterior, 0.5 mm right, and 7.5 mm dorsal to
423 the anterior commissure, corresponding to the paraventricular hypothalamus). Following this,
424 functional connectivity maps were downloaded and displayed on fiducial and flat maps using the
425 Connectome Workbench (v1.5.0⁵⁵) aligned to the NIH marmoset brain template²⁸. These maps

426 were also overlaid on coronal sections of the marmoset brain connectome T2 template using
427 FSLEYES. Additionally, we displayed functional connectivity maps of areas 32, 10, 25, RPB,
428 hypothalamus, hippocampus, and basomedial amygdala on flatmaps of the right hemisphere.

429

430 **Anatomical connectivity of frontal cortices with posterior cingulate cortex**

431 To confirm the structural underpinnings of connectivity between marmoset frontal cortex and
432 posterior cingulate, direct intracortical injections of viral anterograde tracers were compared
433 from the BRAIN/MINDS publicly available marmoset tracer resource
434 (<https://dataportal.brainminds.jp/marmoset-tracer-injection>)³³. The anterograde tracer injections
435 into the area bordering area 32 and 32v (Brain/MINDS ID: R01_0072; thy1-tTA 1/TRE-clover
436 1/TRE-Vamp2mPFC 0.25) x10e12 vg/ml) and into area 8aD (Brain/MINDS ID: R01_0026;
437 thy1-tTA 1/TRE-clover 1/TRE-Vamp2mPFC 1) x10e12 vg/ml) were compared. The full details
438 of these injections are publicly available at: <https://dataportal.brainminds.jp/>.

439

440 **Acknowledgement**

441 Support was provided by the Canadian Institutes of Health Research (FRN 148365, S.E.), the
442 Natural Sciences and Engineering Council of Canada (S.E.), and the Canada First Research
443 Excellence Fund to BrainsCAN. We wish to thank Cheryl Vander Tuin, Whitney Froese,
444 Miranda Bellyou, and Hannah Pettypiece for animal preparation and care and Dr. Alex Li for
445 scanning assistance.

446

447 **FIGURE LEGENDS**

448 **Figure 1. Task-positive and task-negative activations from our recent theory-of-mind and**
449 **random Frith-Happé animations study (Dureux et al., 2023c).** Group functional maps
450 showing significant task-positive and task-negative activations, comparing all Theory-of-mind
451 (ToM) and Random animations against baseline. Maps are displayed on right and left fiducial
452 (lateral and medial views) for both human (top) and marmoset (bottom) cortical surfaces. The
453 human map encompasses data from 10 participants, and the marmoset map includes 6 subjects.
454 The demarcating white line highlights regions as per the recent multi-modal cortical
455 parcellation atlas²⁷ for humans and based on the Paxinos parcellation of the NIH marmoset brain
456 atlas²⁸. The brain areas reporting task-positive activation have threshold corresponding to z-
457 scores >3 with yellow/orange scale, whereas the brain areas reporting task-negative activations
458 have threshold of z-scores < -1 or -3 , depending on the species, with blue scale (AFNI's
459 3dttest++).

460 **Figure 2. Task-related activations from 6 distinct tasks used in our recently published and**
461 **in preparation fMRI studies.** The left side of the figure outlines the task design for each
462 experiment and the right side illustrates brain regions indicating positive or negative activations.
463 This contrasts all task conditions against baseline periods for each study. In Studies A-D,
464 marmosets were exposed to video stimuli without auditory components. Study E combined both
465 visual and auditory stimuli, and Study F was exclusively auditory. Specifically, tasks included:
466 TOM and Random Frith-Happé animations (A)(REF); videos of marmoset hands and forearms
467 reaching towards objects or empty locations and their scrambled versions (B)(Zanini et al.,
468 2023); neutral and negative marmoset face videos alongside their scrambled versions (C)
469 (Dureux et al., 2023a); videos of predators or marmosets and their scrambled counterparts (D,
470 unpublished data); unimodal auditory stimuli comprising vocal and scrambled calls, video
471 stimuli with marmoset faces and scrambled versions, and combined audiovideo variants
472 (E)(REF); and marmoset vocalizations and their scrambled equivalents (F, unpublished data).
473 Group maps, varying from 6 to 7 marmosets depending on the task, are depicted on the right
474 fiducial marmoset cortical surface, covering both lateral and medial views. The white line
475 delineates the regions based on the Paxinos parcellation of the NIH marmoset brain atlas²⁸.

476 Task-positive activation regions are tied to z-scores > 3 (yellow/orange scale), and task-negative
477 zones correspond to z-scores < -1 (blue scale) as processed by AFNI's 3dttest++.

478

479 **Figure 3. Probabilistic functional mappings of task-positive (A and B) and task-negative (C**
480 **and D) activations.** We generated coincidence maps of both task-positive and task-negative
481 activations with a set threshold of $z=3$ for task-positive and $z=-1$ for task-negative activations.
482 These were then transformed into probability maps using a custom Matlab program. The
483 resulting maps are displayed on the left fiducial brain surfaces, showcasing both lateral and
484 medial views (A and C), as well as on coronal sections (B and D). Distinct brain regions are
485 highlighted based on the NIH marmoset brain atlas (Liu et al., 2018).

486

487 **Figure 4. Functional connectivity of the hypothalamus.** Seed-based functional connectivity
488 map centered on the hypothalamus, particularly the regions around the paraventricular nucleus,
489 derived from resting-state fMRI data (<https://marmosetbrainconnectome.org>) (Schaeffer et al.,
490 2022a). Positive functional connectivity is represented in blue (z-scores > 2.3), while negative
491 functional connectivity is shown in orange (z-scores < -2.3). This functional connectivity
492 representation is superimposed on the left fiducial brain surfaces maps (both lateral and medial
493 views) using the NIH marmoset brain template and atlas (Liu et al., 2018) and is also overlaid on
494 coronal sections.

495

496 **Figure 5. Functional connectivity maps of areas 32, 10, 25, RPB, hypothalamus,**
497 **hippocampus, and basomedial amygdala.** The figure illustrates a seed-based functional
498 connectivity map focused on areas 32, 10, 25, RPB, hypothalamus, hippocampus, and
499 basomedial amygdala, as derived from resting-state fMRI data
500 (<https://marmosetbrainconnectome.org>) (Schaeffer et al., 2022a). Positive functional connectivity
501 is depicted in blue (with z-scores > 2.3), while negative functional connectivity is rendered in
502 orange (with z-scores < -2.3) and displayed on flat maps of the right hemisphere. At the top of
503 the figure, to assess if a similar pattern of positive functional connectivity with other task-
504 negative areas and negative functional connectivity with task-negative areas can be observed, we
505 displayed the probabilistic functional mappings maps described in figure 3 on flat maps.

506

507 **Figure 6. Structural connectivity of the medial prefrontal cortex area 32/32v and lateral**
508 **prefrontal cortex area 8aD.** Viral anterograde tracer data from the BRAIN/MINDS publicly
509 available marmoset tracer resource³³. In red, anatomical connectivity of the region bordering
510 mPFC areas 32 and 32v; in light blue, anatomical connectivity of the lateral PFC area 8aD; in
511 white their overlap. The dashed white line indicates the localization and extent of the posterior
512 cingulate region, encompassing areas 23 and 31.

513

514

515
516

REFERENCES

- 517 1. Shulman, G. L. *et al.* Common Blood Flow Changes across Visual Tasks: II. Decreases in
518 Cerebral Cortex. *J. Cogn. Neurosci.* **9**, 648–663 (1997).
- 519 2. Raichle, M. E. *et al.* A default mode of brain function. *Proc. Natl. Acad. Sci. U. S. A.* **98**,
520 676–682 (2001).
- 521 3. Menon, V. 20 years of the default mode network: A review and synthesis. *Neuron* **111**,
522 2469–2487 (2023).
- 523 4. Lu, H. *et al.* Rat brains also have a default mode network. *Proc. Natl. Acad. Sci. U. S. A.*
524 **109**, 3979–3984 (2012).
- 525 5. Stafford, J. M. *et al.* Large-scale topology and the default mode network in the mouse
526 connectome. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 18745–18750 (2014).
- 527 6. Kojima, T. *et al.* Default Mode of Brain Activity Demonstrated by Positron Emission
528 Tomography Imaging in Awake Monkeys: Higher Rest-Related than Working Memory-
529 Related Activity in Medial Cortical Areas. *J. Neurosci.* **29**, 14463 (2009).
- 530 7. Mantini, D. *et al.* Default Mode of Brain Function in Monkeys. *J. Neurosci.* **31**, 12954–
531 12962 (2011).
- 532 8. Watanabe, M. Are there internal thought processes in the monkey?—Default brain activity
533 in humans and nonhuman primates. *Behav. Brain Res.* **221**, 295–303 (2011).
- 534 9. Matthew Hutchison, R. & Everling, S. Monkey in the middle: Why non-human primates
535 are needed to bridge the gap in resting-state investigations. *Front. Neuroanat.* **6**, 26204
536 (2012).
- 537 10. Okano, H. Current Status of and Perspectives on the Application of Marmosets in
538 Neurobiology. <https://doi.org/10.1146/annurev-neuro-030520-101844> **44**, 27–48 (2021).
- 539 11. Schaeffer, D. J., Liu, C. R., Silva, A. C. & Everling, S. Magnetic Resonance Imaging of
540 Marmoset Monkeys. *ILAR J.* **61**, 274–285 (2020).
- 541 12. Belcher, A. M. *et al.* Large-Scale Brain Networks in the Awake, Truly Resting Marmoset
542 Monkey. *J. Neurosci.* **33**, 16796 (2013).

543 13. Ghahremani, M., Hutchison, R. M., Menon, R. S. & Everling, S. Frontoparietal Functional
544 Connectivity in the Common Marmoset. *Cereb. Cortex* **27**, 3890–3905 (2017).

545 14. Liu, C. *et al.* Anatomical and functional investigation of the marmoset default mode
546 network. *Nat. Commun.* **10**, (2019).

547 15. Hori, Y. *et al.* Cortico-Subcortical Functional Connectivity Profiles of Resting-State
548 Networks in Marmosets and Humans. *J. Neurosci.* **40**, 9236 (2020).

549 16. Hori, Y. *et al.* Altered Resting-State Functional Connectivity Between Awake and
550 Isoflurane Anesthetized Marmosets. *Cereb. Cortex (New York, NY)* **30**, 5943 (2020).

551 17. Garin, C. M. *et al.* An evolutionary gap in primate default mode network organization.
552 *Cell Rep.* **39**, 110669 (2022).

553 18. Ngo, G. N., Hori, Y., Everling, S. & Menon, R. S. Joint-embeddings reveal functional
554 differences in default-mode network architecture between marmosets and humans.
555 *Neuroimage* **272**, 120035 (2023).

556 19. Schaeffer, D. J. *et al.* Task-based fMRI of a free-viewing visuo-saccadic network in the
557 marmoset monkey. *Neuroimage* **202**, 116147 (2019).

558 20. Ma, L. *et al.* Single-unit activity in marmoset posterior parietal cortex in a gap saccade
559 task. *J. Neurophysiol.* **123**, 896–911 (2020).

560 21. Ghahremani, M., Johnston, K. D., Ma, L., Hayrynen, L. K. & Everling, S. Electrical
561 microstimulation evokes saccades in posterior parietal cortex of common marmosets. *J.*
562 *Neurophysiol.* **122**, 1765–1776 (2019).

563 22. Liska, A., Galbusera, A., Schwarz, A. J. & Gozzi, A. Functional connectivity hubs of the
564 mouse brain. *Neuroimage* **115**, 281–291 (2015).

565 23. Dureux, A., Zanini, A., Selvanayagam, J., Menon, R. S. & Everling, S. Gaze patterns and
566 brain activations in humans and marmosets in the Frith-Happé theory-of-mind animation
567 task. *Elife* **12**, (2023).

568 24. Dureux, A., Zanini, A. & Everling, S. Face-Selective Patches in Marmosets Are Involved
569 in Dynamic and Static Facial Expression Processing. *J. Neurosci.* **43**, 3477–3494 (2023).

570 25. Dureux, A., Zanini, A. & Everling, S. Mapping of Facial and Vocal Processing in

571 Common Marmosets with ultra-high field fMRI. *bioRxiv* 2023.08.09.552659 (2023)
572 doi:10.1101/2023.08.09.552659.

573 26. Zanini, A., Dureux, A., Selvanayagam, J. & Everling, S. Ultra-high field fMRI identifies
574 an action-observation network in the common marmoset. *Commun. Biol.* **6**, 553 (2023).

575 27. Glasser, M. F. *et al.* The Human Connectome Project’s Neuroimaging Approach. *Nat.*
576 *Neurosci.* **19**, 1175 (2016).

577 28. Liu, C. *et al.* A digital 3D atlas of the marmoset brain based on multi-modal MRI.
578 *Neuroimage* **169**, 106–116 (2018).

579 29. Alves, P. N. *et al.* An improved neuroanatomical model of the default-mode network
580 reconciles previous neuroimaging and neuropathological findings. *Commun. Biol.* **2019** **21**
581 **2**, 1–14 (2019).

582 30. Schaeffer, D. J. *et al.* An open access resource for functional brain connectivity from fully
583 awake marmosets. *Neuroimage* **252**, 119030–119030 (2022).

584 31. Hori, Y. *et al.* Comparison of resting-state functional connectivity in marmosets with
585 tracer-based cellular connectivity. *Neuroimage* **204**, 116241 (2020).

586 32. Schaeffer, D. J. *et al.* Intrinsic functional clustering of anterior cingulate cortex in the
587 common marmoset. *Neuroimage* **186**, 301–307 (2019).

588 33. Watakabe, A. *et al.* Local and long-distance organization of prefrontal cortex circuits in
589 the marmoset brain. *Neuron* **111**, 2258-2273.e10 (2023).

590 34. Hung, C. C. *et al.* Functional MRI of visual responses in the awake, behaving marmoset.
591 *Neuroimage* **120**, 1 (2015).

592 35. Jafari, A. *et al.* A vocalization-processing network in marmosets. *Cell Rep.* **42**, 112526
593 (2023).

594 36. Belin, P., Zatorre, R. J., Lafallie, P., Ahad, P. & Pike, B. Voice-selective areas in human
595 auditory cortex. *Nat. 2000* **4036767** **403**, 309–312 (2000).

596 37. Belin, P., Bodin, C. & Aglieri, V. A “voice patch” system in the primate brain for
597 processing vocal information? *Hear. Res.* **366**, 65–74 (2018).

598 38. Belin, P. Voice processing in human and non-human primates. *Philos. Trans. R. Soc. B*

599 *Biol. Sci.* **361**, 2091–2107 (2006).

600 39. Latinus, M. & Belin, P. Human voice perception. *Curr. Biol.* **21**, R143–R145 (2011).

601 40. Malik-Moraleda, S. *et al.* An investigation across 45 languages and 12 language families
602 reveals a universal language network. *Nat. Neurosci.* 2022 **25**, 1014–1019 (2022).

603 41. Roy, A. K. *et al.* Functional Connectivity of the Human Amygdala using Resting State
604 fMRI. *Neuroimage* **45**, 614 (2009).

605 42. Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T. & Eickhoff, S. B. An investigation of the
606 structural, connectional, and functional subspecialization in the human amygdala. *Hum.*
607 *Brain Mapp.* **34**, 3247–3266 (2013).

608 43. Adhikari, A. *et al.* Basomedial amygdala mediates top-down control of anxiety and fear.
609 *Nat. 2015 5277577* **527**, 179–185 (2015).

610 44. Alexander, L. *et al.* Over-activation of primate subgenual cingulate cortex enhances the
611 cardiovascular, behavioral and neural responses to threat. *Nat. Commun.* 2020 **11** **11**, 1–
612 14 (2020).

613 45. Roberts, A. C. *et al.* Forebrain connectivity of the prefrontal cortex in the marmoset
614 monkey (*Callithrix jacchus*): An anterograde and retrograde tract-tracing study. *J. Comp.*
615 *Neurol.* **502**, 86–112 (2007).

616 46. Fox, P. T. *et al.* Brainmap taxonomy of experimental design: Description and evaluation.
617 *Hum. Brain Mapp.* **25**, 185–198 (2005).

618 47. Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X. & Milham, M. P.
619 Functional connectivity of default mode network components: Correlation, anticorrelation,
620 and causality. *Hum. Brain Mapp.* **30**, 625–637 (2009).

621 48. Johnston, K. D., Barker, K., Schaeffer, L., Schaeffer, D. & Everling, S. Methods for chair
622 restraint and training of the common marmoset on oculomotor tasks. *J. Neurophysiol.* **119**,
623 1636–1646 (2018).

624 49. Gilbert, K. M. *et al.* A radiofrequency coil to facilitate task-based fMRI of awake
625 marmosets. *J. Neurosci. Methods* **383**, 109737 (2023).

626 50. Schaeffer, D. J. *et al.* Integrated radiofrequency array and animal holder design for

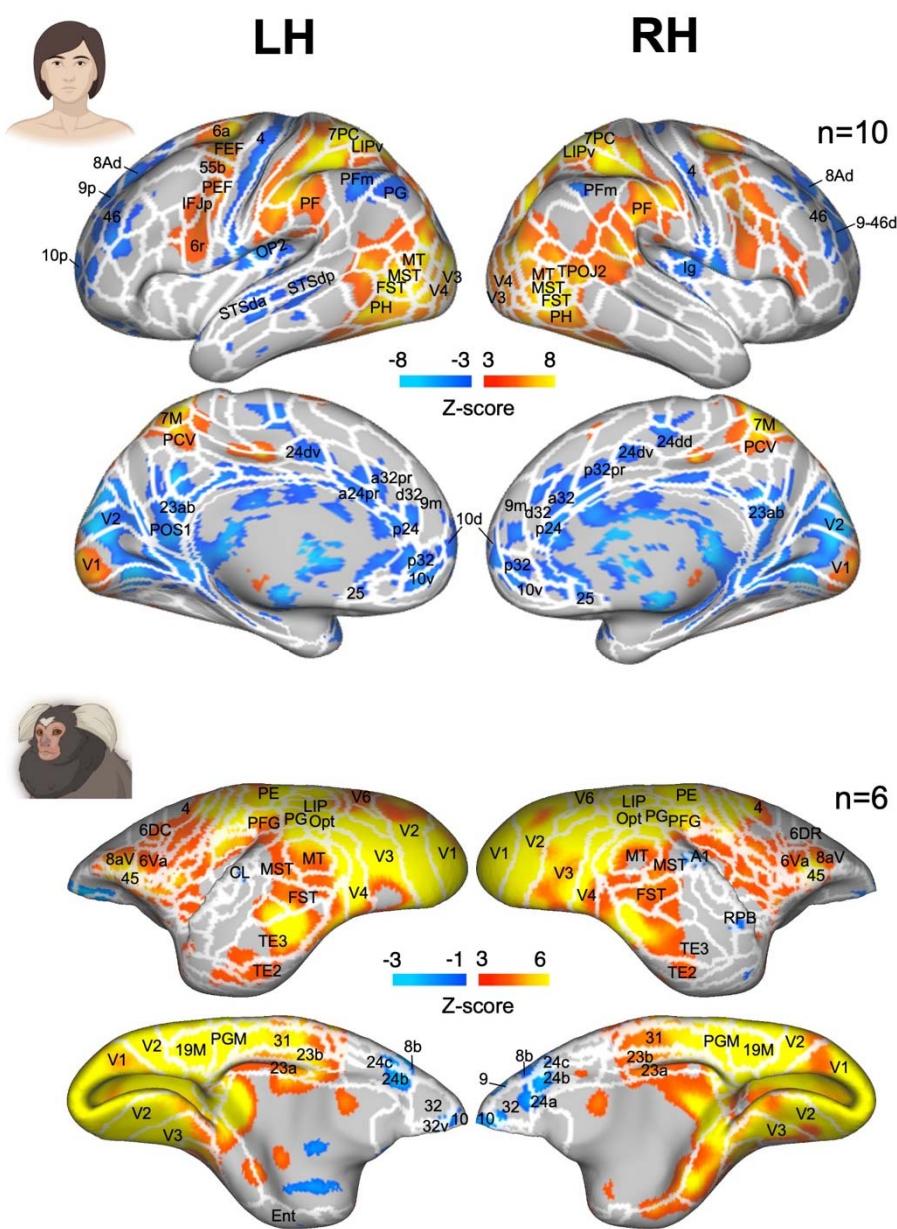
627 minimizing head motion during awake marmoset functional magnetic resonance imaging.
628 *Neuroimage* **193**, 126–138 (2019).

629 51. Gilbert, K. M. *et al.* Radiofrequency coil for routine ultra-high-field imaging with an
630 unobstructed visual field. *NMR Biomed.* **34**, (2021).

631 52. Cox, R. W. AFNI: Software for analysis and visualization of functional magnetic
632 resonance neuroimages. *Comput. Biomed. Res.* **29**, 162–173 (1996).

633 53. Smith, S. M. *et al.* Advances in functional and structural MR image analysis and
634 implementation as FSL. *Neuroimage* **23**, S208–S219 (2004).

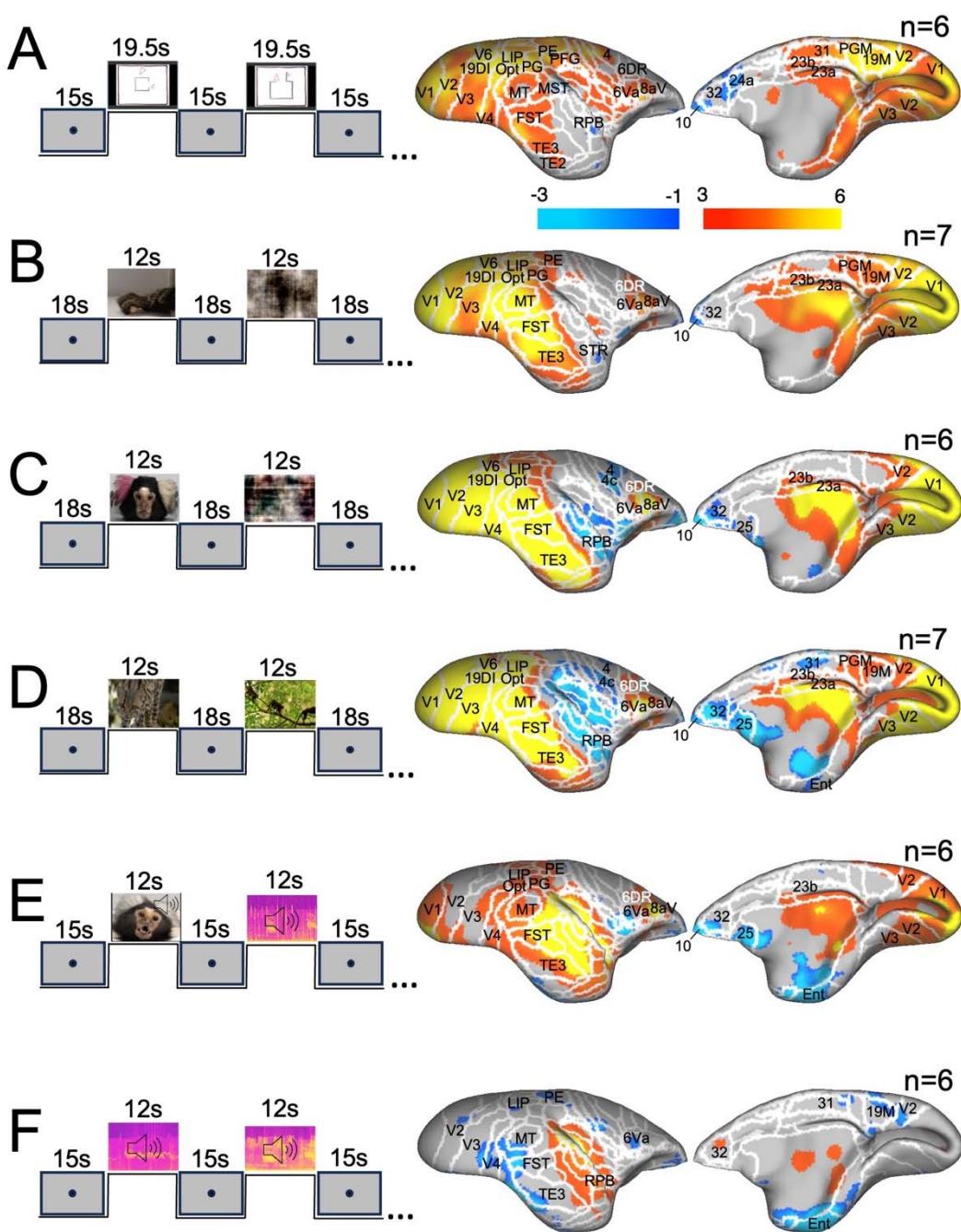
635 54. Penny, W., Friston, K., Ashburner, J., Kiebel, S. & Nichols, T. Statistical Parametric
636 Mapping: The Analysis of Functional Brain Images. *Stat. Parametr. Mapp. Anal. Funct.*
637 *Brain Images* (2007) doi:10.1016/B978-0-12-372560-8.X5000-1.


638 55. Marcus, D. S. *et al.* Informatics and data mining tools and strategies for the human
639 connectome project. *Front. Neuroinform.* **5**, 4 (2011).

640

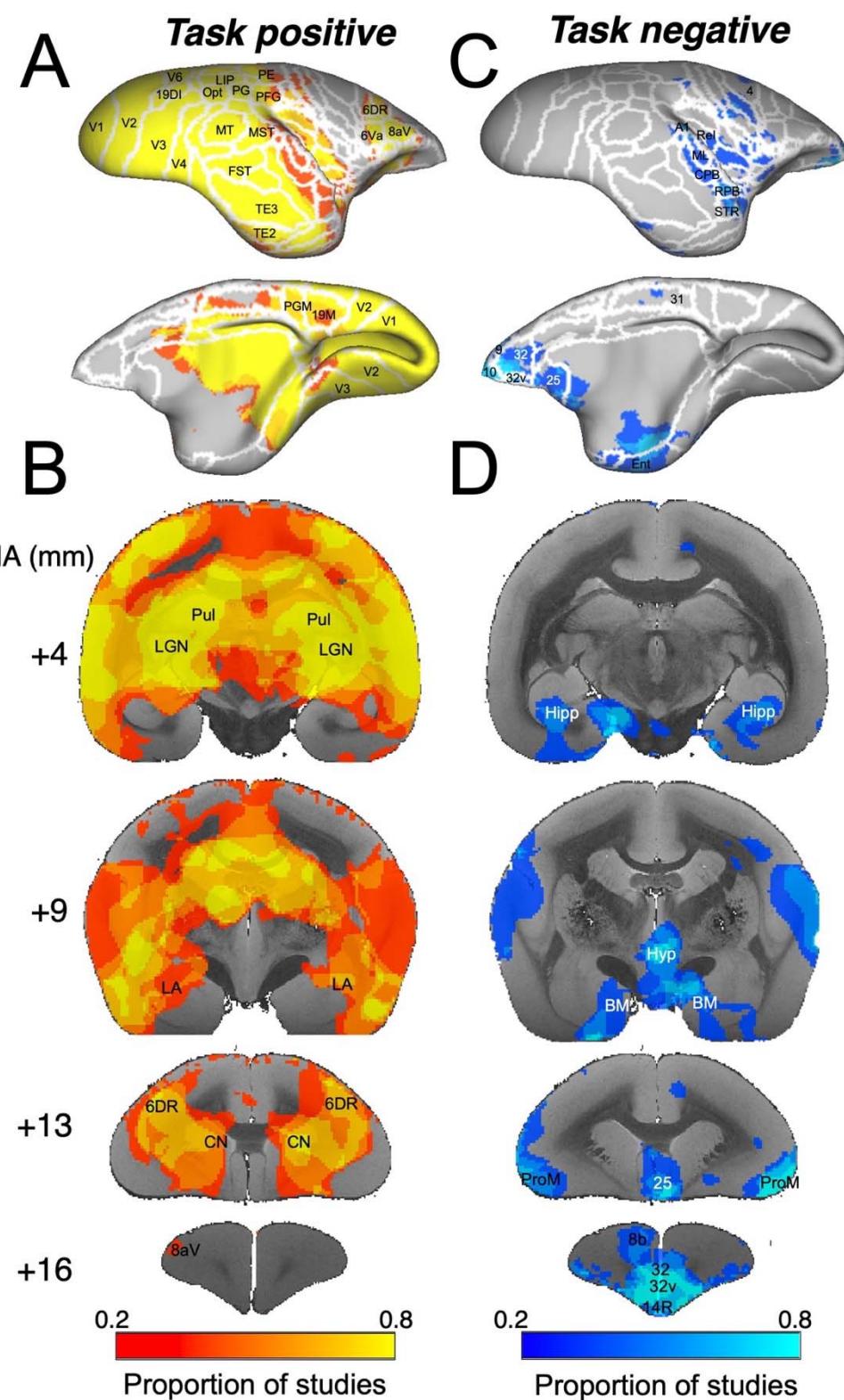
641

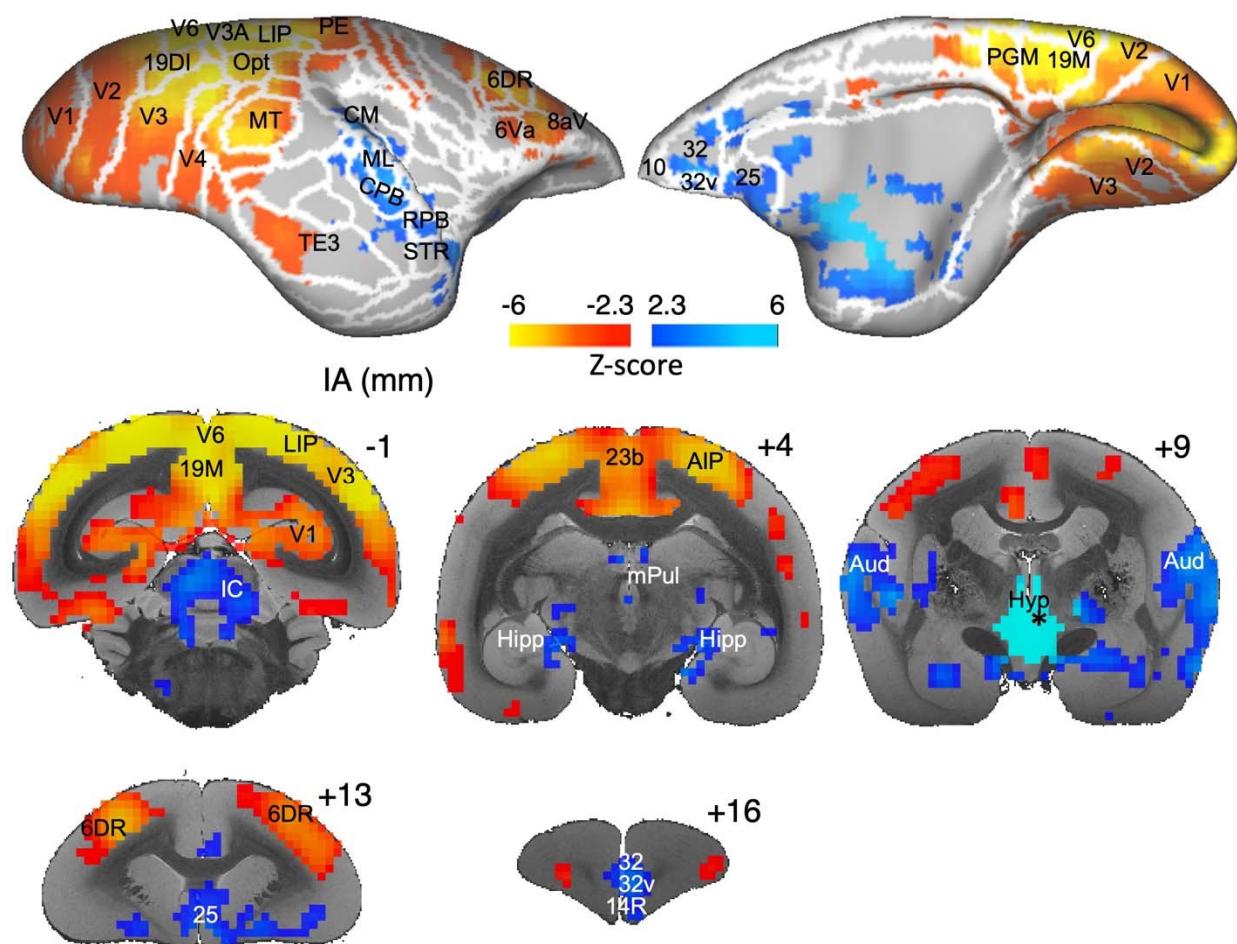
642 **FIGURES**


643 **Figure 1**

644

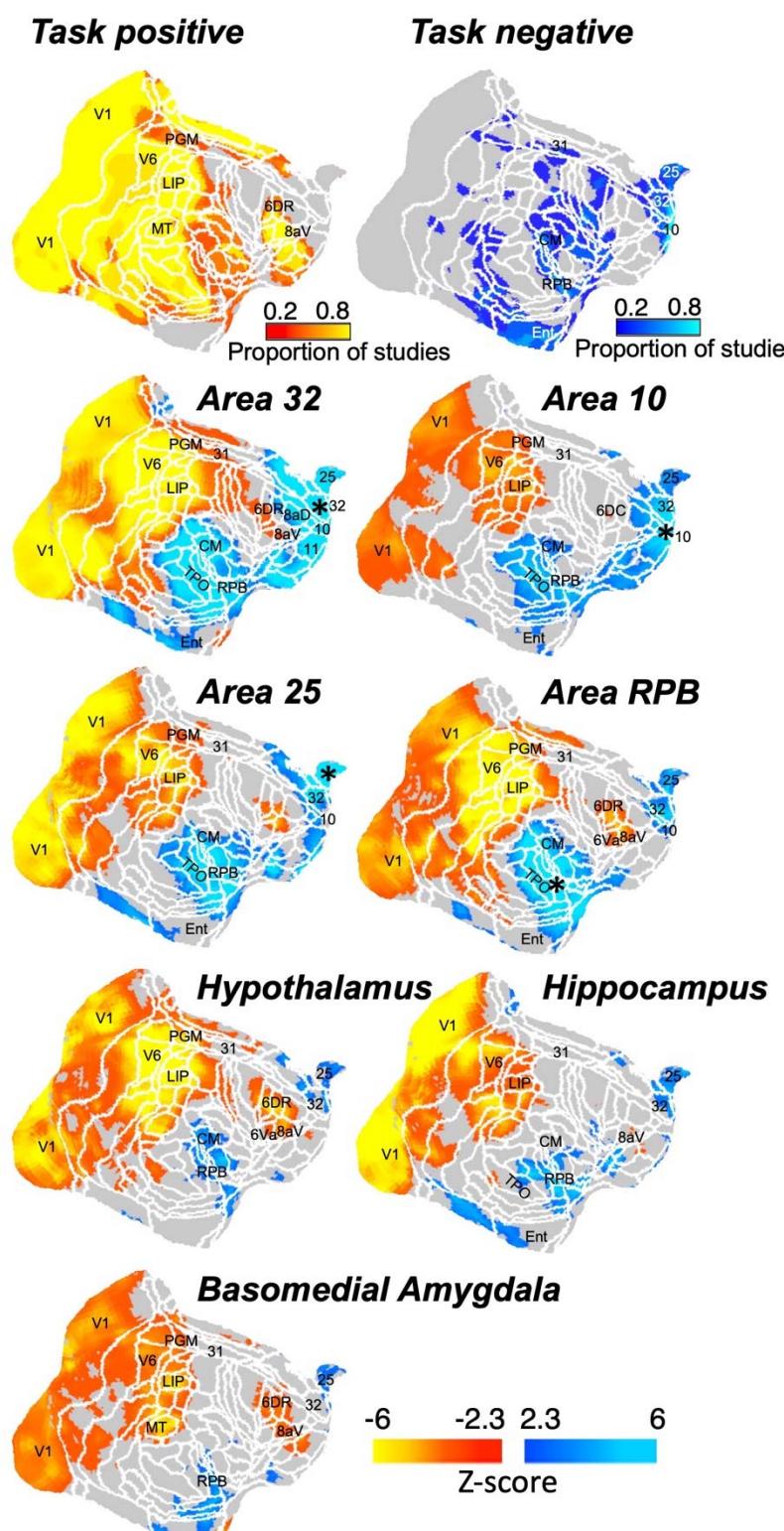
645


646 **Figure 2**

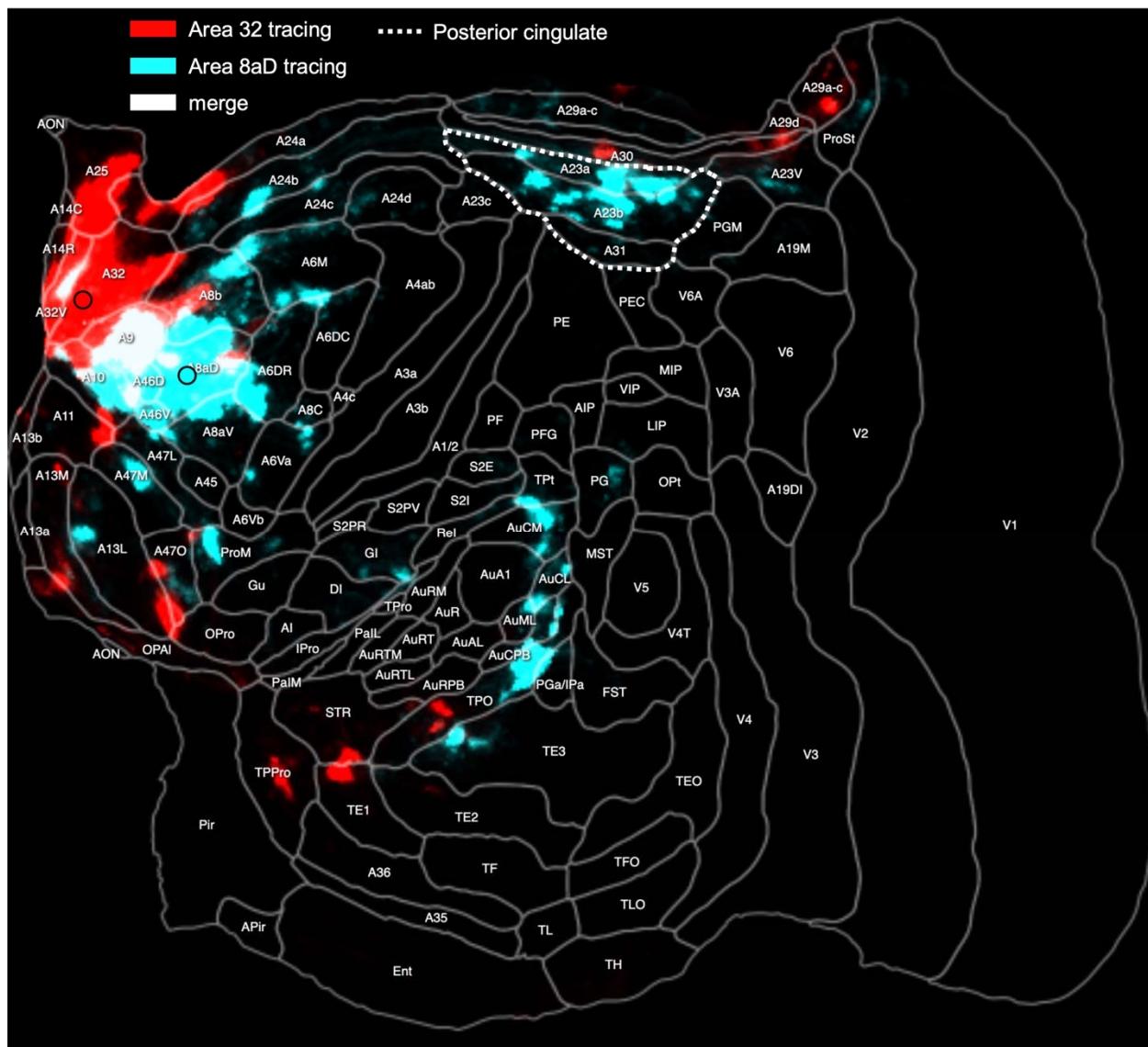

647

648

649 **Figure 3**



651 **Figure 4**



652
653
654

655 **Figure 5**

657 **Figure 6**

658