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Abstract 
 

Background: Processing stroke magnetic resonance imaging (MRI) brain data can be susceptible 

to lesion-based abnormalities. In this study we developed and validated the Lesion Aware 

automated Processing Pipeline (LeAPP) that incorporates mitigation measures, improving 

volumetric and connectomics outputs compared to current standards in automated MRI processing 

pipelines. 

 

Methods: Building upon the Human Connectome Project (HCP) minimal processing pipeline, we 

introduced correction measures, such as cost-function masking and virtual brain transplant, and 

extended functional and diffusion processing to match acquisition protocols often found in a 

clinical context. A total of 51 participants (36 stroke patients (65.7±12.96 years, 18 female) and 

15 healthy controls (69.2±7.4 years, 7 female)) were processed across four time points for patients 

(3-5, 30-40, 85-95, 340-380 days after stroke onset) and one time point for controls. Artificially 

lesioned brains (N=82), derived from healthy brains and informed by real stroke lesions were 

created, thus generating ground-truth data for validation. The processing pipeline and validation 

framework are available as containerized open-source software. Reconstruction quality has been 

quantified on whole brain level and for lesion affected and unaffected regions-of-interest (ROIs) 

using metrics like dice score, volume difference and center-of-gravity distance. Global and local 

level connectome reconstruction was assessed using node strength, node centrality and clustering 

coefficient. 

 

Results: The new pipeline LeAPP provides close reconstructions of the ground truth. Deviations 

in reconstructed averaged whole brain node strength and all ROI based volume and connectome 

metrics were significantly reduced compared to the HCP pipeline without stroke specific 

mitigation measures. 

 

Conclusions: LeAPP improves reconstruction quality of multimodal MRI processing for brain 

parcellation and structural connectome estimation significantly over the non-adapted HCP in the 

presence of lesions and provides a robust framework for diffusion and functional image processing 

of clinical stroke data. This novel open-source automated processing pipeline contributes to a 

development towards reproducible research.  
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Nonstandard Abbreviations and Acronyms 
ALE  artificial lesion embedding 

BIDS  Brain Imaging Data Structure 

CFM  cost function masking 

DWI  diffusion weighted imaging 

FLAIR fluid attenuated inversion recovery 

LeAPP lesion aware automated processing pipeline 

TVB  The Virtual Brain 

VBT  virtual brain transplant 

 

 

 

 

Introduction 
Processing brain imaging data from stroke patients presents challenges for existing workflows 

used for standardized processing of multimodal brain imaging data1. Particularly in magnetic 

resonance imaging (MRI), large lesions can cause distortions and result in performance loss and 

failure of common processing steps, such as surface reconstruction, brain tissue segmentation and 

co-registration of different images1,2. Established neuroimage processing pipelines often lead to 

failure or low-quality outputs when applied to such data sets3. Most stroke related MRI studies 

therefore rely on customized tools and individually crafted solutions4, report insufficient details 

on lesion specific adjustments made2 or use standard processing pipelines originally developed for 

healthy subjects with potentially poor processing outcomes. Therefore, a fully automated and 

reproducible image processing pipeline that correctly accounts for abnormalities induced by stroke 

lesions is needed by the scientific and clinical stroke community3. To address this need, we 

developed and validated a lesion aware automated containerized processing pipeline called LeAPP 

that performs structural, diffusion and functional MRI processing. We applied this novel pipeline 

to a longitudinal dataset of stroke patients and healthy controls5,6. We used the human connectome 

project (HCP) minimal processing pipeline7 as the basis for our workflow and added specific 

processing steps and already established correction methods to cope with the challenges of stroke 

brains. 

 

Those additional methods include (1) cost function masking (CFM)8,9 for all coregistration steps, 

which restricts the fitting optimization of coregistration to healthy brain tissue, therefore 

minimizing lesion impact and improving overall accuracy, and (2) virtual brain transplant 

(VBT)10,11, which aims to approximate the underlying healthy tissue at the focal lesion by using 

contralesional hemisphere information, enabling downstream processing such as segmentation and 

surface extraction. Both methods are available within existing frameworks (e.g. FSL flirt variable 

for cost function masking or BCBToolkit12 for performing enantiomorphic normalization) but are 

not integrated in a fully automated and comprehensive processing pipeline leading to the need for 

manual and non-reproducible processing steps.  

 

In addition, we performed an extensive validation of LeAPP and demonstrated significant 

improvement in reconstructing the underlying subject specific anatomy over the processing results 
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obtained with the HCP pipeline. Furthermore, our pipeline automatically creates data that can serve 

as input to the virtual brain (TVB)13,14, and that can be used to construct patient specific whole 

brain models, thus facilitating further research into underlying mechanisms and disease patterns 

of stroke15.  

Methods 
Where applicable, this study fulfills the TRIPOD checklist (Supplementary Table S4) for 

description of the development and validation of the pipeline. The authors declare that the source 

code required for replicating the present study is made available and the software is disseminated 

via containerized packages for the processing and validation pipelines described here 

(www.github.com/brainmodes/LeAPP). 

 

Patients 

The here processed human data were acquired at University Hospital Hamburg Eppendorf 6.  The 

present study was approved by the Ethics Committee of the Charité (EA1/222/22) and written 

consent was given by all participants for data acquisition for the original study which was approved 

by the ethical board of the Hamburg University Hospital (PV3777). A total of 51 participants (36 

stroke patients (mean age (standard deviation) = 65.7 (12.96) years, 18 female) and 15 healthy 

controls (mean age (standard deviation) = 69.2 (7.4) years, 7 female)) with complete datasets (see 

definition in Figure 1(D)) at timepoint 1 (acute phase 3-5 days post stroke onset) were selected 

from a larger sample (n=80 (43 male). Where available, longitudinal data acquired over up to three 

follow up dates (30-40 days, 85-95 days and 340-380 days post stroke onset) were included as 

well. The data set included structural MRI, task-based functional MRI as well as diffusion 

weighted MRI data5 (full description of the included data set in supplementary table S2).  Initial 

inclusion criteria for stroke patients were first ever ischemic stroke, hand-motor deficit without 

accompanying other functional deficits and no MRI contra indicators. Input and result (derivative) 

data will be made discoverable via the EBRAINS knowledge graph (https://search.kg.ebrains.eu/). 

Sharing of these data is subject to the EU General Data Protection Regulations (GDPR) and 

requires the establishment of a research purpose of processing, conclusion of EU standard 

contractual clauses between controllers and processors and a data protection impact assessment 

(DPIA) approved by the relevant institutional data protection officers. 

 

Pipeline 

Image processing was implemented in four steps, structural image processing, diffusion image 

processing, functional image processing and output preparation.  Lesion specific adjustments were 

integrated based on a priori defined lesion mask. Such masks have been manually drawn using 

ITK Snap16 incorporating T1w and FLAIR image information. Each processing step, as illustrated 

in Figure 1, was specifically adapted for the challenges of processing stroke lesion MRI data as 

follows: 

 

 Structural image pipeline (Figure 1 (A)) extends the HCP minimal processing pipeline's 

structural processing7 to be more robust and broadly applicable when processing MRI data in the 

presence of stroke lesions. First, it incorporates CFM in all registration steps, which is necessary 

to ensure accurate registration of lesioned images9 by restricting the fitting of the coregistration to 

voxels outside of the provided lesion mask. Three additional steps are included that add to the HCP 

structural processing pipeline: (1) the automated creation of lesion masks, (2) the first fully 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.555078doi: bioRxiv preprint 

https://search.kg.ebrains.eu/
https://doi.org/10.1101/2023.08.28.555078
http://creativecommons.org/licenses/by/4.0/


5 
 

automated implementation of VBT (see Supplementary Material) and (3) the creation of subject 

specific brain parcellations. For all structural input modalities including T1w, T2w and/or FLAIR 

and reference images for standardized MNI space, including MNI1mm and MNI2mm template 

images, undergoing realignment to other image volumes during structural processing commonly 

referred to as coregistration, the initially provided lesion mask is registered. Such an alignment is 

performed, by first fitting the linear affine coregistration using the corresponding base image (e.g., 

T1w image for a lesion mask in T1w space) and applying the resulting transformation to the binary 

mask followed by Boolean inversion. This ensures spatially aligned lesion masks. For subsequent 

CFM across all coregistration steps, the lesion voxels that are encoded as zeros in the aligned mask, 

were therefore excluded from the registration fitting process. Following 10 we integrated VBT by 

imputation of contralesional hemisphere signal into the lesion area (Supplementary Figure S1).  

This is achieved by first performing midline alignment of the input image. To this end the 

coregistration to the mirror image is computed and the resulting transformation matrix is halved 

creating a transformation that moves each point in alignment with the midline, as it represents half 

the distance to the mirrored point in the reference image. 

 

The initial lesion mask for the corresponding modality is also aligned at the midline and inverted. 

To extract the healthy brain signal from the mirror image and remove the lesion region, the aligned 

lesion mask is multiplied with the midline aligned mirror image and the inverse to the aligned 

input image. Before extraction of both lesion and healthy signal, the border of the corresponding 

lesion mask image is smoothed by applying a Gaussian kernel (with 2mm full width at half 

maximum) to ensure a more seamless integration into neighboring voxels during imputation. The 

healthy signal is then added to the lesion free input image to create an approximation of the 

underlying healthy anatomy. To complete the implementation of VBT, the inverse midline 

transform is applied to create the transplanted image in native patient space of the original input 

image. This is applied to both T1w and corresponding T2 or FLAIR images. Following VBT, the 

CFM adjusted structural processing steps PreFreeSurfer, FreeSurfer and PostFreeSurfer of the 

HCP pipeline are initiated. Subject-specific brain parcellations are created in the final step of the 

structural image pipeline. A total of 383 distinct brain regions-of-interest (ROI) are identified 

using a combination of the HCP-MMP1 atlas17 for cortical areas and FreeSurfer’s subcortical 

areas18.  To ensure improved sensitivity over standard volume space atlas mapping, this study 

follows19 performing the mapping of HCP-MMP1 regions on the cortical labels created during 

surface extraction in fsaverage space using a previously published mapping of HCP-MMP1 

annotation labels20. The resulting annotation files are then mapped back into virtually transplanted 

volume space to create an accurate parcellation of the subjects cortical and subcortical regions at 

lesion free areas as well as a substantiated approximation of the underlying regions at the lesion 

location within high resolution native subject T1w space. In a final step the parcellation image is 

multiplied with the final lesion mask in T1w space to extract the lesion load per ROI, defined as 

the number of affected voxels divided by the total number of voxels for a given ROI.  

Diffusion image pipeline (Figure 1 (B)) was implemented using the MRTrix321 software 

package. The main processing steps for the DWI pipeline are (1) preprocessing and normalization 

of raw input images, (2) tissue segmentation of the corresponding anatomical image, and finally 

(3) tractography and connectome creation.  Preprocessing steps are comprised of denoising, 

degibbsing, eddy current and motion correction, coregistration to T1w space for distortion 

correction in the absence of reverse phase encoding data and bias correction. The images are 

subsequently intensity normalized at the group level. Each preprocessed T1w image is segmented 
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into five tissue types using the MRtrix3 5ttgen function and the corresponding lesion mask is 

integrated as a pathological tissue type. This enables anatomically constrained tractography 

(ACT)22 after group level response function estimation. The default number of streamlines created 

is 100 million feasible tracks with the previously segmented grey matter - white matter barrier as 

the seed region. The individual brain parcellation created during structural processing is used to 

define boundaries to construct the structural connectome using the SIFT2 algorithm23.  

 

Functional image pipeline follows the HCP’s fMRIVolume (Figure 1 (C)) pipeline 

processing step7 updated with CFM and performs additional steps of (1) coregistration to T1w 

space and (2) creation of ROI based average time series and the functional connectome. The 

preprocessed output volume of the adjusted fMRIVolume pipeline is linearly registered to the 

preprocessed subject T1w image output from the structural pipeline using the created single band 

reference image. Applying the brain parcellation image to the registered processed time series data, 

the ROI specific average voxel time series are extracted and correlated using Pearson correlation 

coefficient to create the functional connectome.  

 

Output file selection creates a collection of the final processing results within a TVB ready 

data format (Figure 1 (D)). This set of files includes the processed T1w image, corresponding 

brain parcellation, functional connectomes and average time series for all processed tasks, 

structural connectome weights and tract lengths as well as a list of ROI specific lesion loads and 

ROI center coordinates file. The format of the output files follows the current Brain Imaging Data 

Structure (BIDS) computational modelling extension proposal24. 

 

Validation 
Following previous studies9,25,26 we evaluated the performance of LeAPP by creating artificial 

stroke patient brains of which a ground-truth was available for statistical comparison of pipeline 

outputs. The ground truth consists of the processed data of the healthy controls before integration 

of lesion signal. 

 

 Artificial lesion embedding (ALE) was performed by imputation of stroke patient lesion 

signal into a healthy brain volume (FIGURE 2 (A)). The method is closely related to the above 

mentioned VBT method but differs in the following aspects: instead of imputation of healthy 

contralesional hemisphere signal, lesion signal from a different subject (stroke patient) was used 

to replace healthy tissue of the subject (healthy control) which in turn represented a different 

coregistration approach between subjects as opposed to mirror images of the same subject as in 

VBT. 

 

The healthy input image was first linearly affine registered to the patient input image with CFM 

applied. To incorporate individual anatomical landmarks of the healthy brain in the resulting 

artificial stroke patient brains, such as cerebrospinal fluid of the healthy brains, the patient lesion 

mask was then adjusted by removing voxels whose intensity value in the registered healthy input 

image were below the threshold of the five percent quantile3, thus avoiding the imputation of lesion 

signal at voxels that represent for example ventricles, fissures or would span across gyri in the 

resulting artificial stroke patient brains. Maintaining the original landmarks of the healthy brain 

was necessary in order to facilitate the creation of artificial stroke patients with realistic lesion 

manifestations which allowed for a more thorough validation of the processing framework as 
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opposed to unrealistic artificial stroke patients potentially introducing biases cause by unrealistic 

lesion properties not representative of the true patient population (Figure 2 C). The updated lesion 

mask – that excluded important landmarks - was smoothed and used to extract the lesion signal 

from the patient image and remove brain signal from the healthy input image. The extracted lesion 

signal was rescaled to fit the same scale of intensity values present in the healthy image and 

imputed into the adjusted healthy image, and finally, the inverse transformation of the initial 

coregistration to patient space was applied to create realistic artificial patient image for an existing 

healthy control image. This process was performed for each healthy control subject, integrating 

the lesion of fifteen randomly selected stroke patients resulting in 225 ALE data sets. Visual quality 

control was performed to ensure appropriate lesion embedding, subsequently excluding ALE 

combinations with lesions ranging into cerebrospinal fluid, skull, or other unfeasible areas where 

lesions might not manifest in that manner in stroke patient populations, representing a clear 

distinction as artificial. This was necessary as the random combination of subjects can lead to 

mismatches between source and target brain of the lesion imputation, e.g. in brain size, that cause 

inconsistencies in the ALE brain that could not be resolved with the previously described 

thresholding and smoothing. A total of 82 ALE samples remained for validation. The validation 

data set therefore consisted of three separate datasets (FIGURE 2 (B)): The original healthy 

control brain data used to generate the artificial patient brain data, which serves as a ground truth 

(LeAPP controls); the artificial stroke patient brain data corrected and processed with LeAPP 

(LeAPP patients); and the artificial stroke patient brain data processed using the HCP structural 

processing pipeline (HCP patients). We investigated the impact of the artificial stroke lesions and 

the corrections made by LeAPP on the final brain parcellations and network properties.  

 

Reconstruction quality metrics:  We next compared the performance of LeAPP and the 

HCP processing pipeline in recovering the ground truth brain parcellations and connectomes, 

which was defined as the parcellation and the connectome of the healthy brains that had been 

artificially distorted through the insertion of a stroke lesion. The goal, and hence quality criteria 

for pipeline performance, was the recovery of original parcellations and connectomes of the 

healthy brains – despite the artefacts introduced by the stroke lesion. We chose the following 

metrics to first assess the agreement of the individual brain parcellations providing information on 

three base errors of segmentation commonly evaluated in medical image segmentation validation: 

area, content and contour27. To this end dice coefficients, Jaccard scores, volume differences28,29 

and Euclidean distance of the ROI center-of-gravity in voxel space were computed.  

 

Dice coefficients are the most used metric to validate medical image segmentations and provide 

an estimate of the overlap of two volumes. Jaccard scores are closely correlated as another overlap-

based metric of agreement28 approximating the base errors of area and contour. Volume 

differences have been computed to assess the similarity in content providing an estimate of 

potential distortions regarding the overall size of the compared volumes. To first validate global 

differences between processing modes, agreement was evaluated by comparing the binarized full 

brain parcellations, created during the structural processing of the ground truth controls and ALE 

patients, containing cortical and subcortical brain areas within a single volume mask (Figure 3) 

and computing dice coefficient, Jaccard score and volume difference. Furthermore, local 

differences were investigated using the non-binary individual brain parcellations, by extracting the 

corresponding ROI masks for both ground truth and ALE based parcellations for each ROI 
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individually and computing dice score, volume difference and Euclidean distance between centers-

of-gravity of both ROI masks.  

 

In a second step processing mode impact on connectomes was investigated focusing on the overall 

connectivity and integration of the created networks. Hence node strength, centrality and clustering 

coefficient were computed and differences in these metrics between processing modes were 

defined as connectome level agreement. 

 

Node strength provides an estimate of the overall connection of a given node, here the ROI of the 

brain parcellation, with all other nodes of the network, incorporating not only the existence of a 

connection between two nodes but the strength of the connection, here the weight of the structural 

connectome, as well. Betweenness centrality is widely used to assess the relative role of a node 

within a network in respect to efficient information exchange due to the number of shortest paths 

passing through the given node. Clustering coefficient provides an additional measure on the 

degree of the forming of local groups of nodes within the overall connectome. 

In a first step again, global impact was investigated first using the averaged node strength and 

betweenness centrality over all ROIs as well as the clustering coefficient of the full connectome. 

Local differences were then evaluated by first computing the node strength and betweenness 

centrality for each ROI individually. Agreement was then defined as the difference in the resulting 

global and local measures between ground truth and ALE patient values for both processing groups 

(Figure 2 B) 

  

Statistical analysis 

Python software package30 was used for statistical analysis as integrated in the containerized 

validation framework of this study. One-sided dependent t-tests (alpha=0.05) were computed to 

compare LeAPP with the HCP on both volume-based and network-based reconstruction quality 

metrics (Figure 2) reporting both the p-value for significant and t-statistic as a measure of strength 

in difference between the compared distributions. Instances of a single lesion affected ROI in one 

subject were excluded, as distribution-based comparisons were not possible. Where applicable p-

values were computed using Fisher’s combined probability test.  

Results 

The LeAPP pipeline and its integrated correction methods improved the resulting data quality as 

compared to the baseline HCP pipeline for brains with stroke lesion. This study further showed 

the ability of LeAPP for processing low quality structural and functional stroke patient data as no 

stroke patients had to be excluded due to lesion topology causing the processing pipeline to fail as 

previously reported on the same data set6, showing the direct relevance for clinical data.  While 

global parcellation based volumetric agreement measures show no difference between processing 

pipelines (p-values: dice score=0.76, Jaccard score=0.49, volume difference=0.56; Figure 4 (A)), 

region-wise comparisons found significant improvements of LeAPP across all volumetric 

agreement measures for directly lesion affected and not-directly affected ROIs (p-values: dice 

score = 3.76e-75 and 0.0, volume difference = 4.36e-19 and 8.79e-176; Figure 4 (C)). We found a 

similar impact on the downstream processing step of creating structural connectomes. A significant 

difference in global average node strength was identified while the difference in clustering 

coefficient and average centrality do not show significance (p-values: node strength=3.09e-7, 

clustering coefficient=0.08, node centrality=0.19; Figure 4 (B)). Similar to the volumetric 
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reconstruction quality measures for parcellations, we found a local impact of processing on 

network level as well with differences in node strength for directly lesion affected and not-directly 

affected ROIs and centrality for not-directly affected ROIs (p-values: node strength = 1.63e-61 and 

0.0, node centrality = 0.25 and 0.02). Table 1 presents all test statistics comparing reconstruction 

quality metrics for LeAPP and HCP structural processing of the validation ALE data set including 

effect sizes. While the lower number of directly lesion affected ROIs might contribute to the 

reduced effect sizes and lack of significance in e.g. ROI based node centrality compared to not-

directly affected ROIs, an additional interesting finding of this study is that all local measures 

showed significance for the subset of not-directly lesion affected ROIs highlighting lesion impact 

in downstream processing beyond lesion location. The feasibility of the results is further 

strengthened when investigating differences in reconstruction metrics on individual subject level, 

as shown in Figure 4 (E), displaying the largest differences between processing frameworks 

around the location of the lesion. 

 

Discussion 
The objective of this study was to design and validate an automated reproducible processing 

pipeline that can specifically meet the challenges of processing stroke patient MRI data that also 

enables whole brain network simulation for stroke data using TVB.  

 

In summary, we show that LeAPP leads to a significant improvement in recovering important 

structural brain information when processing MRI data that are affected by stroke lesions. The 

validation approach presented here shows that LeAPP is widely applicable from structural analysis 

to connectomics. An additional benefit of LeAPP is that it automatically creates TVB-ready data 

to facilitate accurate brain network modelling (BNM) for stroke. LeAPP further allows for 

introduction of ROI specific information such as lesion load, that had been previously linked to 

network disruption31, into individual BNMs. The following part of this paper moves on to discuss 

several aspects of such a multi-modal processing approach and presents remaining challenges for 

the field to enable accurate incorporation of lesion induced artefacts, while at the same time 

minimizing biases in processing and downstream analysis based on processing methods and data 

acquisition. 

 

While MRI is the standard for noninvasively investigating brain tissue damage in research2, 

previous studies providing automated MRI processing frameworks7,21,32,33 are currently still 

limited to artifact free high resolution imaging data or specific processing steps25,32. The clinical 

context of data acquisition for acute stroke patients often severely limits the availability of 

scanning protocols. This leads to the common practice of manual adjustments and corrections 

during processing for each subject, reducing the automation potential, or applying pipelines 

initially used for different disease populations2,6. Our results show the advantage of LeAPP over 

such prior frameworks, as defined as necessary by1, in processing low quality functional imaging 

data (Supplementary Figure S3) as well as low resolution FLAIR imaging, which is often 

acquired instead of a T2 image in the clinical context of stroke34. It further represents, to the best 

of our knowledge, the first complete and automated multi-modal processing pipeline incorporating 

advanced correction methods, that have previously been stand-alone solutions10,25,35. These 

improvements, in addition to providing high quality reconstruction of volume and network 
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information from MRIs, help to avoid excluding data due to poor quality or large artifacts, thereby 

facilitating research with larger cohort and longitudinal studies in the future.  

 

Limitations 

Previous studies have shown an increase in accuracy of image registration9,26 when applying CFM 

to lesion data. Nevertheless, a residual distortion of processing results after applying CFM cannot 

be avoided36 leading to a baseline error in processing as found in the reduced agreement measures 

even in ROIs not directly affected by the lesion. Further research is needed to understand the 

impact of CFM and account for its effects on group level comparisons. 

 

The extent of lesion abnormality in MRI images, such as flattened intensity value distributions 

(Supplementary Figure S2), has previously been shown to depend on various factors, such as 

imaging modality and relative time of acquisition to onset37–39. This creates the need for automated 

correction measures to enable appropriate processing for all modalities. While performing virtual 

brain transplant (VBT), as implemented in this study, offers such a correction for anatomical 

modalities like T1w, T2 and FLAIR, the application to EPI sequences, such as fMRI and DWI, is 

less feasible for recovering the information distorted in the affected region. A more thorough 

investigation of how such lesion abnormalities affect these modalities must be performed. In the 

current study we followed previous studies40 and excluded lesion signal from tractography by 

incorporating the corresponding lesion mask as pathological tissue in the context of anatomically 

constrained tractography. While we did not perform specific corrections to the fMRI lesion signal, 

the lesion induced abnormality did affect our decision not to perform independent component 

analysis (ICA) for denoising and motion correction (e.g., FIX-ICA;41). Previous studies have 

evaluated the robustness of such frameworks in the presence of stroke lesions42 showing a 

significant signal loss when applying automated complex approaches. It was further shown that 

lesion-based variance patterns differ significantly from healthy tissue, allowing for component-

based lesion identification43 in resting-state fMRI. Further research into our understanding of 

signal and noise sources as identified by ICA at the focal lesion is needed in particular in the 

presence of task-based clinical fMRI data as present in the current study. The presented pipeline, 

LeAPP, currently remains limited to correction at the location of the lesion as defined by a 

segmentation mask that must be provided a priori. This limits its ability to correct for distortion 

and diaschisis effects caused by the damaged tissue and further research is needed to facilitate 

appropriate processing and analysis methods for incorporating distributed lesion impact. 

Furthermore, it requires time-consuming lesion segmentation by trained staff. A review by44 found 

that automated segmentation algorithms perform not yet sufficiently to justify integration into fully 

automated pipelines. While there have been several studies further developing such algorithms 

across diseases45–47 and species48, the performance for human stroke lesion segmentation did not 

yet improve to a level justifying the integration in LeAPP. 

 

Conclusions 

In summary, we found that LeAPP represents significant progress for processing multi-modal 

neuroimaging patient data with lesion pathologies and its level of automation makes this workflow 

readily available to the scientific community. The pipeline can be used as a standard – well 

documented and versioned – tool for the processing of stroke imaging data thus ensuring a high 

degree of reproducibility and comparability of results. This is an important advancement as it can 

aid future studies in processing large cohorts of stroke data. Furthermore, LeAPP generates and 
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outputs brain networks in TVB-ready formats that facilitate dynamic brain network modelling of 

virtual stroke brains with the TVB software. This will further facilitate simulation-based research 

into underlying recovery mechanisms, that so far have not been well understood. 
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Figure Legends 
 
Figure 1: Lesion aware automated processing pipeline (LeAPP) overview The major processing steps and adjustments for 

processing of structural (blue), diffusion (red) and functional MRI (orange) as implemented in LeAPP as well as required input 

files and TVB – ready outputs (green). Structural processing (A) performs the three main adjustments implemented in LeAPP build 

around the baseline HCP structural processing step. The output required for subsequent processing are fully processed anatomical 

images in native T1w and MNI space, the created brain parcellation volume and lesion properties table containing local lesion load 

for all affected ROIs. The diffusion processing workflow (B) performs the main preprocessing steps, tractography and connectome 

creation using the output from structural processing. (C) Functional preprocessing is performed based on HCP functional volume-

based processing step followed by registration, average time series extraction and functional connectivity matrix creation. (D) Data 

input is following BIDS standard for all input modalities (left) including T1w and FLAIR images, DWI images with corresponding 

bval and bvec files, functional MRI with task event files and corresponding fieldmaps. The main results (right) are stored in a new 

directory including structural and functional connectomes, parcellation volumes, final T1w images and lesion mask as well as 

average ROI based time series with task event files following the BIDS computational modelling extension proposal and can be 

integrated into the virtual brain (TVB) simulation platform for individual whole brain network simulations. 

Figure 2: Validation framework. Example of the implemented artificial lesion embedding (ALE) pipeline (A) showing the 

original healthy control T1w image (top), the artificial lesion embedded in the same T1w(middle) and the original patient data used 

for extracting lesion signal (bottom). The resulting ALE data set presents a realistic approximation of a virtual stroke patient as 

basis for a robust validation process. (B) The three validation data sets (ground truth, ALE with LeAPP corrections and ALE with 

only baseline HCP structural processing) are first processed according to their designation followed by the LeAPP specific 

parcellation mapping. Based on the resulting parcellations global and local agreement measures are computed between ground truth 

and the ALE based results. The distributions of agreement measures are compared between LeAPP and baseline HCP based results 

(left). The brain parcellations are used for structural connectome creation using ground truth DWI data. A range of global and local 
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network metrics are computed for the connectomes and agreement between metrics of ground truth and the ALE based connectomes 

are computed. The distributions of these agreement measures are compared between LeAPP and baseline HCP (right) (C) Details 

showing the enhancements effect during ALE of smoothing and thresholding the lesion mask to fit the underlying healthy control 

brain topologies more closely creating realistic artificial lesion brains.  

Figure 3 Parcellation masks Example artificial lesion brain and corresponding Processing results. (A) ALE brain with imputed 

adjusted lesion signal (red outline) and ground truth parcellation created for healthy control used during ALE (green).  

(B) Parcellation mask created using HCP processing pipeline and parcellation mapping (purple) showing a clear reproduction of 

lesion topology during extraction of cortical ribbons (left). The difference between ground truth (green) and HCP (purple) with 

color coding voxels that are only present in the corresponding parcellation (right). (C) Parcellation mask created using LeAPP 

pipeline (yellow) and corresponding difference mask (right). While a mismatch between parcellations for LeAPP and the ground 

truth pertains, it shows a reduced difference at the lesion (red outline) compared to HCP. 

Figure 4 Reconstruction quality results (A) Metrics for LeAPP (yellow) and HCP (purple) showing similar distributions across 

global measures. (B) Differences between LeAPP and HCP in global network metrics show a significant reduction in average 

global node strength difference between LeAPP and ground truth compared to HCP and ground truth differences. (C) Median local 

ROI based agreement metrics (line) with standard deviation shown as error bar. For visualization only one-sided error bars are 

displayed. (D) Median differences in network based local metrics for all ROIs also showing significantly smaller differences for 

LeAPP over HCP (see Table 1). Local differences highlight the increased sensitivity of ROI based measures in contrast to global 

measures based on full brain properties. (E) Exemplary ROI based agreement metrics for a single subject. Anatomical T1w image 

(left) shows the clear lesion artefact. The normalized agreement metrics reproduce the largest differences in processing around the 

focal lesion visible in the MRI image. Dice score is shown as 1 – dice score for consistency in visualizations. 

Tables 
 

Reconstruction quality 

measure 

P-value 

(statistic) 

Network metrics                P-value 

(statistic) 

global 

Dice 0.76 (0.71) Node 

Strength 

3.09e-07(5.67)* 

Jaccard 0.49 (0.22) Clustering 

coefficient 

0.08 (-1.8) 

Volume 0.56 (0.14) Centrality 0.19 (1.31) 

local 

Dice lesioned 3.67e-75(19.52)* Node 

Strength 

lesioned 1.63e-61(875.36)*f 

 
not affected  0.0 (69.81)* 

 
not affected 0.0 (4049.77)*f 

Volume Lesioned 4.36e-19(8,98)* Centrality Lesioned 0.25 (299.44) f  
not affected 8.79e-176(28.44)* 

 
not affected 0.02 (847.05) 

*f 

Distance Lesion 2.76e-49 (15.32)* 
 

 
not affected  0.0 (-52.54)* 

Table 1 Test statistics for reconstruction quality measures Differences between LeAPP and HCP processing were evaluated via 

reconstruction quality measures for created brain parcellations (left) and differences in network metrics for structural connectomes 

(right). Global measures did not show difference for brain parcellations but a significantly smaller difference in average global 

node strength between ground truth and LeAPP versus ground truth and HCP based connectomes. Local differences were 

significant for brain parcellations across measures. Differences in local network measures were significant for node strength for 

affected and not affected ROIS. Centrality did not show differences in lesion ROIs but overall, in not-affected ROIs. * Significance, 

f Fisher’s method 

Figures 
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Figure 1 
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Figure 2 
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Figure 4 
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