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Abstract

Background: Processing stroke magnetic resonance imaging (MRI) brain data can be susceptible
to lesion-based abnormalities. In this study we developed and validated the Lesion Aware
automated Processing Pipeline (LeAPP) that incorporates mitigation measures, improving
volumetric and connectomics outputs compared to current standards in automated MRI processing
pipelines.

Methods: Building upon the Human Connectome Project (HCP) minimal processing pipeline, we
introduced correction measures, such as cost-function masking and virtual brain transplant, and
extended functional and diffusion processing to match acquisition protocols often found in a
clinical context. A total of 51 participants (36 stroke patients (65.7+£12.96 years, 18 female) and
15 healthy controls (69.2+7.4 years, 7 female)) were processed across four time points for patients
(3-5, 30-40, 85-95, 340-380 days after stroke onset) and one time point for controls. Artificially
lesioned brains (N=82), derived from healthy brains and informed by real stroke lesions were
created, thus generating ground-truth data for validation. The processing pipeline and validation
framework are available as containerized open-source software. Reconstruction quality has been
quantified on whole brain level and for lesion affected and unaffected regions-of-interest (ROISs)
using metrics like dice score, volume difference and center-of-gravity distance. Global and local
level connectome reconstruction was assessed using node strength, node centrality and clustering
coefficient.

Results: The new pipeline LeAPP provides close reconstructions of the ground truth. Deviations
in reconstructed averaged whole brain node strength and all ROI based volume and connectome
metrics were significantly reduced compared to the HCP pipeline without stroke specific
mitigation measures.

Conclusions: LeAPP improves reconstruction quality of multimodal MRI processing for brain
parcellation and structural connectome estimation significantly over the non-adapted HCP in the
presence of lesions and provides a robust framework for diffusion and functional image processing
of clinical stroke data. This novel open-source automated processing pipeline contributes to a
development towards reproducible research.
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Nonstandard Abbreviations and Acronyms

ALE artificial lesion embedding

BIDS Brain Imaging Data Structure

CFM cost function masking

DWI diffusion weighted imaging

FLAIR fluid attenuated inversion recovery

LeAPP lesion aware automated processing pipeline
TVB The Virtual Brain

VBT virtual brain transplant

Introduction

Processing brain imaging data from stroke patients presents challenges for existing workflows
used for standardized processing of multimodal brain imaging data®. Particularly in magnetic
resonance imaging (MRI), large lesions can cause distortions and result in performance loss and
failure of common processing steps, such as surface reconstruction, brain tissue segmentation and
co-registration of different images'?. Established neuroimage processing pipelines often lead to
failure or low-quality outputs when applied to such data sets®. Most stroke related MRI studies
therefore rely on customized tools and individually crafted solutions*, report insufficient details
on lesion specific adjustments made? or use standard processing pipelines originally developed for
healthy subjects with potentially poor processing outcomes. Therefore, a fully automated and
reproducible image processing pipeline that correctly accounts for abnormalities induced by stroke
lesions is needed by the scientific and clinical stroke community®. To address this need, we
developed and validated a lesion aware automated containerized processing pipeline called LeAPP
that performs structural, diffusion and functional MRI processing. We applied this novel pipeline
to a longitudinal dataset of stroke patients and healthy controls®>®, We used the human connectome
project (HCP) minimal processing pipeline’ as the basis for our workflow and added specific
processing steps and already established correction methods to cope with the challenges of stroke
brains.

Those additional methods include (1) cost function masking (CFM)&® for all coregistration steps,
which restricts the fitting optimization of coregistration to healthy brain tissue, therefore
minimizing lesion impact and improving overall accuracy, and (2) virtual brain transplant
(VBT)! which aims to approximate the underlying healthy tissue at the focal lesion by using
contralesional hemisphere information, enabling downstream processing such as segmentation and
surface extraction. Both methods are available within existing frameworks (e.g. FSL flirt variable
for cost function masking or BCBToolkit!? for performing enantiomorphic normalization) but are
not integrated in a fully automated and comprehensive processing pipeline leading to the need for
manual and non-reproducible processing steps.

In addition, we performed an extensive validation of LeAPP and demonstrated significant
improvement in reconstructing the underlying subject specific anatomy over the processing results
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obtained with the HCP pipeline. Furthermore, our pipeline automatically creates data that can serve
as input to the virtual brain (TVB)!3!4, and that can be used to construct patient specific whole
brain models, thus facilitating further research into underlying mechanisms and disease patterns
of stroke™®.

Methods

Where applicable, this study fulfills the TRIPOD checklist (Supplementary Table S4) for
description of the development and validation of the pipeline. The authors declare that the source
code required for replicating the present study is made available and the software is disseminated
via containerized packages for the processing and validation pipelines described here
(www.github.com/brainmodes/LeAPP).

Patients

The here processed human data were acquired at University Hospital Hamburg Eppendorf ®. The
present study was approved by the Ethics Committee of the Charité (EA1/222/22) and written
consent was given by all participants for data acquisition for the original study which was approved
by the ethical board of the Hamburg University Hospital (PVV3777). A total of 51 participants (36
stroke patients (mean age (standard deviation) = 65.7 (12.96) years, 18 female) and 15 healthy
controls (mean age (standard deviation) = 69.2 (7.4) years, 7 female)) with complete datasets (see
definition in Figure 1(D)) at timepoint 1 (acute phase 3-5 days post stroke onset) were selected
from a larger sample (n=80 (43 male). Where available, longitudinal data acquired over up to three
follow up dates (30-40 days, 85-95 days and 340-380 days post stroke onset) were included as
well. The data set included structural MRI, task-based functional MRI as well as diffusion
weighted MRI data® (full description of the included data set in supplementary table S2). Initial
inclusion criteria for stroke patients were first ever ischemic stroke, hand-motor deficit without
accompanying other functional deficits and no MRI contra indicators. Input and result (derivative)
data will be made discoverable via the EBRAINS knowledge graph (https://search.kg.ebrains.eu/).
Sharing of these data is subject to the EU General Data Protection Regulations (GDPR) and
requires the establishment of a research purpose of processing, conclusion of EU standard
contractual clauses between controllers and processors and a data protection impact assessment
(DPIA) approved by the relevant institutional data protection officers.

Pipeline

Image processing was implemented in four steps, structural image processing, diffusion image
processing, functional image processing and output preparation. Lesion specific adjustments were
integrated based on a priori defined lesion mask. Such masks have been manually drawn using
ITK Snap*® incorporating T1w and FLAIR image information. Each processing step, as illustrated
in Figure 1, was specifically adapted for the challenges of processing stroke lesion MRI data as
follows:

Structural image pipeline (Figure 1 (A)) extends the HCP minimal processing pipeline's
structural processing’ to be more robust and broadly applicable when processing MRI data in the
presence of stroke lesions. First, it incorporates CFM in all registration steps, which is necessary
to ensure accurate registration of lesioned images® by restricting the fitting of the coregistration to
voxels outside of the provided lesion mask. Three additional steps are included that add to the HCP
structural processing pipeline: (1) the automated creation of lesion masks, (2) the first fully
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automated implementation of VBT (see Supplementary Material) and (3) the creation of subject
specific brain parcellations. For all structural input modalities including T1w, T2w and/or FLAIR
and reference images for standardized MNI space, including MNILmm and MNI2Zmm template
images, undergoing realignment to other image volumes during structural processing commonly
referred to as coregistration, the initially provided lesion mask is registered. Such an alignment is
performed, by first fitting the linear affine coregistration using the corresponding base image (e.g.,
T1w image for a lesion mask in T1w space) and applying the resulting transformation to the binary
mask followed by Boolean inversion. This ensures spatially aligned lesion masks. For subsequent
CFM across all coregistration steps, the lesion voxels that are encoded as zeros in the aligned mask,
were therefore excluded from the registration fitting process. Following ° we integrated VBT by
imputation of contralesional hemisphere signal into the lesion area (Supplementary Figure S1).
This is achieved by first performing midline alignment of the input image. To this end the
coregistration to the mirror image is computed and the resulting transformation matrix is halved
creating a transformation that moves each point in alignment with the midline, as it represents half
the distance to the mirrored point in the reference image.

The initial lesion mask for the corresponding modality is also aligned at the midline and inverted.
To extract the healthy brain signal from the mirror image and remove the lesion region, the aligned
lesion mask is multiplied with the midline aligned mirror image and the inverse to the aligned
input image. Before extraction of both lesion and healthy signal, the border of the corresponding
lesion mask image is smoothed by applying a Gaussian kernel (with 2mm full width at half
maximum) to ensure a more seamless integration into neighboring voxels during imputation. The
healthy signal is then added to the lesion free input image to create an approximation of the
underlying healthy anatomy. To complete the implementation of VBT, the inverse midline
transform is applied to create the transplanted image in native patient space of the original input
image. This is applied to both T1w and corresponding T2 or FLAIR images. Following VBT, the
CFM adjusted structural processing steps PreFreeSurfer, FreeSurfer and PostFreeSurfer of the
HCP pipeline are initiated. Subject-specific brain parcellations are created in the final step of the
structural image pipeline. A total of 383 distinct brain regions-of-interest (ROI) are identified
using a combination of the HCP-MMP1 atlas!’ for cortical areas and FreeSurfer’s subcortical
areas'®. To ensure improved sensitivity over standard volume space atlas mapping, this study
follows'® performing the mapping of HCP-MMP1 regions on the cortical labels created during
surface extraction in fsaverage space using a previously published mapping of HCP-MMP1
annotation labels?. The resulting annotation files are then mapped back into virtually transplanted
volume space to create an accurate parcellation of the subjects cortical and subcortical regions at
lesion free areas as well as a substantiated approximation of the underlying regions at the lesion
location within high resolution native subject T1w space. In a final step the parcellation image is
multiplied with the final lesion mask in T1w space to extract the lesion load per ROI, defined as
the number of affected voxels divided by the total number of voxels for a given ROLI.

Diffusion image pipeline (Figure 1 (B)) was implemented using the MRTrix3? software
package. The main processing steps for the DWI pipeline are (1) preprocessing and normalization
of raw input images, (2) tissue segmentation of the corresponding anatomical image, and finally
(3) tractography and connectome creation. Preprocessing steps are comprised of denoising,
degibbsing, eddy current and motion correction, coregistration to Tlw space for distortion
correction in the absence of reverse phase encoding data and bias correction. The images are
subsequently intensity normalized at the group level. Each preprocessed T1w image is segmented
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into five tissue types using the MRtrix3 5ttgen function and the corresponding lesion mask is
integrated as a pathological tissue type. This enables anatomically constrained tractography
(ACT)?? after group level response function estimation. The default number of streamlines created
is 100 million feasible tracks with the previously segmented grey matter - white matter barrier as
the seed region. The individual brain parcellation created during structural processing is used to
define boundaries to construct the structural connectome using the SIFT2 algorithm?3,

Functional image pipeline follows the HCP’s fMRIVolume (Figure 1 (C)) pipeline
processing step’ updated with CFM and performs additional steps of (1) coregistration to T1w
space and (2) creation of ROI based average time series and the functional connectome. The
preprocessed output volume of the adjusted fMRIVolume pipeline is linearly registered to the
preprocessed subject T1w image output from the structural pipeline using the created single band
reference image. Applying the brain parcellation image to the registered processed time series data,
the ROI specific average voxel time series are extracted and correlated using Pearson correlation
coefficient to create the functional connectome.

Output file selection creates a collection of the final processing results within a TVB ready
data format (Figure 1 (D)). This set of files includes the processed T1w image, corresponding
brain parcellation, functional connectomes and average time series for all processed tasks,
structural connectome weights and tract lengths as well as a list of ROI specific lesion loads and
ROI center coordinates file. The format of the output files follows the current Brain Imaging Data
Structure (BIDS) computational modelling extension proposal®*.

Validation

Following previous studies®?®>2® we evaluated the performance of LeAPP by creating artificial
stroke patient brains of which a ground-truth was available for statistical comparison of pipeline
outputs. The ground truth consists of the processed data of the healthy controls before integration
of lesion signal.

Artificial lesion embedding (ALE) was performed by imputation of stroke patient lesion
signal into a healthy brain volume (FIGURE 2 (A)). The method is closely related to the above
mentioned VBT method but differs in the following aspects: instead of imputation of healthy
contralesional hemisphere signal, lesion signal from a different subject (stroke patient) was used
to replace healthy tissue of the subject (healthy control) which in turn represented a different
coregistration approach between subjects as opposed to mirror images of the same subject as in
VBT.

The healthy input image was first linearly affine registered to the patient input image with CFM
applied. To incorporate individual anatomical landmarks of the healthy brain in the resulting
artificial stroke patient brains, such as cerebrospinal fluid of the healthy brains, the patient lesion
mask was then adjusted by removing voxels whose intensity value in the registered healthy input
image were below the threshold of the five percent quantile?, thus avoiding the imputation of lesion
signal at voxels that represent for example ventricles, fissures or would span across gyri in the
resulting artificial stroke patient brains. Maintaining the original landmarks of the healthy brain
was necessary in order to facilitate the creation of artificial stroke patients with realistic lesion
manifestations which allowed for a more thorough validation of the processing framework as
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opposed to unrealistic artificial stroke patients potentially introducing biases cause by unrealistic
lesion properties not representative of the true patient population (Figure 2 C). The updated lesion
mask — that excluded important landmarks - was smoothed and used to extract the lesion signal
from the patient image and remove brain signal from the healthy input image. The extracted lesion
signal was rescaled to fit the same scale of intensity values present in the healthy image and
imputed into the adjusted healthy image, and finally, the inverse transformation of the initial
coregistration to patient space was applied to create realistic artificial patient image for an existing
healthy control image. This process was performed for each healthy control subject, integrating
the lesion of fifteen randomly selected stroke patients resulting in 225 ALE data sets. Visual quality
control was performed to ensure appropriate lesion embedding, subsequently excluding ALE
combinations with lesions ranging into cerebrospinal fluid, skull, or other unfeasible areas where
lesions might not manifest in that manner in stroke patient populations, representing a clear
distinction as artificial. This was necessary as the random combination of subjects can lead to
mismatches between source and target brain of the lesion imputation, e.g. in brain size, that cause
inconsistencies in the ALE brain that could not be resolved with the previously described
thresholding and smoothing. A total of 82 ALE samples remained for validation. The validation
data set therefore consisted of three separate datasets (FIGURE 2 (B)): The original healthy
control brain data used to generate the artificial patient brain data, which serves as a ground truth
(LeAPP controls); the artificial stroke patient brain data corrected and processed with LeAPP
(LeAPP patients); and the artificial stroke patient brain data processed using the HCP structural
processing pipeline (HCP patients). We investigated the impact of the artificial stroke lesions and
the corrections made by LeAPP on the final brain parcellations and network properties.

Reconstruction quality metrics: We next compared the performance of LeAPP and the
HCP processing pipeline in recovering the ground truth brain parcellations and connectomes,
which was defined as the parcellation and the connectome of the healthy brains that had been
artificially distorted through the insertion of a stroke lesion. The goal, and hence quality criteria
for pipeline performance, was the recovery of original parcellations and connectomes of the
healthy brains — despite the artefacts introduced by the stroke lesion. We chose the following
metrics to first assess the agreement of the individual brain parcellations providing information on
three base errors of segmentation commonly evaluated in medical image segmentation validation:
area, content and contour?’. To this end dice coefficients, Jaccard scores, volume differences?®2°
and Euclidean distance of the ROI center-of-gravity in voxel space were computed.

Dice coefficients are the most used metric to validate medical image segmentations and provide
an estimate of the overlap of two volumes. Jaccard scores are closely correlated as another overlap-
based metric of agreement?® approximating the base errors of area and contour. Volume
differences have been computed to assess the similarity in content providing an estimate of
potential distortions regarding the overall size of the compared volumes. To first validate global
differences between processing modes, agreement was evaluated by comparing the binarized full
brain parcellations, created during the structural processing of the ground truth controls and ALE
patients, containing cortical and subcortical brain areas within a single volume mask (Figure 3)
and computing dice coefficient, Jaccard score and volume difference. Furthermore, local
differences were investigated using the non-binary individual brain parcellations, by extracting the
corresponding ROI masks for both ground truth and ALE based parcellations for each ROI
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individually and computing dice score, volume difference and Euclidean distance between centers-
of-gravity of both ROI masks.

In a second step processing mode impact on connectomes was investigated focusing on the overall
connectivity and integration of the created networks. Hence node strength, centrality and clustering
coefficient were computed and differences in these metrics between processing modes were
defined as connectome level agreement.

Node strength provides an estimate of the overall connection of a given node, here the ROI of the
brain parcellation, with all other nodes of the network, incorporating not only the existence of a
connection between two nodes but the strength of the connection, here the weight of the structural
connectome, as well. Betweenness centrality is widely used to assess the relative role of a node
within a network in respect to efficient information exchange due to the number of shortest paths
passing through the given node. Clustering coefficient provides an additional measure on the
degree of the forming of local groups of nodes within the overall connectome.

In a first step again, global impact was investigated first using the averaged node strength and
betweenness centrality over all ROIs as well as the clustering coefficient of the full connectome.
Local differences were then evaluated by first computing the node strength and betweenness
centrality for each ROl individually. Agreement was then defined as the difference in the resulting
global and local measures between ground truth and ALE patient values for both processing groups
(Figure 2 B)

Statistical analysis

Python software package®® was used for statistical analysis as integrated in the containerized
validation framework of this study. One-sided dependent t-tests (alpha=0.05) were computed to
compare LeAPP with the HCP on both volume-based and network-based reconstruction quality
metrics (Figure 2) reporting both the p-value for significant and t-statistic as a measure of strength
in difference between the compared distributions. Instances of a single lesion affected ROl in one
subject were excluded, as distribution-based comparisons were not possible. Where applicable p-
values were computed using Fisher’s combined probability test.

Results

The LeAPP pipeline and its integrated correction methods improved the resulting data quality as
compared to the baseline HCP pipeline for brains with stroke lesion. This study further showed
the ability of LeAPP for processing low quality structural and functional stroke patient data as no
stroke patients had to be excluded due to lesion topology causing the processing pipeline to fail as
previously reported on the same data set®, showing the direct relevance for clinical data. While
global parcellation based volumetric agreement measures show no difference between processing
pipelines (p-values: dice score=0.76, Jaccard score=0.49, volume difference=0.56; Figure 4 (A)),
region-wise comparisons found significant improvements of LeAPP across all volumetric
agreement measures for directly lesion affected and not-directly affected ROIs (p-values: dice
score = 3.76e"° and 0.0, volume difference = 4.36e2° and 8.79¢X'%; Figure 4 (C)). We found a
similar impact on the downstream processing step of creating structural connectomes. A significant
difference in global average node strength was identified while the difference in clustering
coefficient and average centrality do not show significance (p-values: node strength=3.09¢e”,
clustering coefficient=0.08, node centrality=0.19; Figure 4 (B)). Similar to the volumetric
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reconstruction quality measures for parcellations, we found a local impact of processing on
network level as well with differences in node strength for directly lesion affected and not-directly
affected ROIs and centrality for not-directly affected ROIs (p-values: node strength = 1.63e%! and
0.0, node centrality = 0.25 and 0.02). Table 1 presents all test statistics comparing reconstruction
quality metrics for LeAPP and HCP structural processing of the validation ALE data set including
effect sizes. While the lower number of directly lesion affected ROIs might contribute to the
reduced effect sizes and lack of significance in e.g. ROI based node centrality compared to not-
directly affected ROIs, an additional interesting finding of this study is that all local measures
showed significance for the subset of not-directly lesion affected ROIs highlighting lesion impact
in downstream processing beyond lesion location. The feasibility of the results is further
strengthened when investigating differences in reconstruction metrics on individual subject level,
as shown in Figure 4 (E), displaying the largest differences between processing frameworks
around the location of the lesion.

Discussion

The objective of this study was to design and validate an automated reproducible processing
pipeline that can specifically meet the challenges of processing stroke patient MRI data that also
enables whole brain network simulation for stroke data using TVB.

In summary, we show that LeAPP leads to a significant improvement in recovering important
structural brain information when processing MRI data that are affected by stroke lesions. The
validation approach presented here shows that LeAPP is widely applicable from structural analysis
to connectomics. An additional benefit of LeAPP is that it automatically creates TVB-ready data
to facilitate accurate brain network modelling (BNM) for stroke. LeAPP further allows for
introduction of ROI specific information such as lesion load, that had been previously linked to
network disruption®!, into individual BNMs. The following part of this paper moves on to discuss
several aspects of such a multi-modal processing approach and presents remaining challenges for
the field to enable accurate incorporation of lesion induced artefacts, while at the same time
minimizing biases in processing and downstream analysis based on processing methods and data
acquisition.

While MRI is the standard for noninvasively investigating brain tissue damage in research?,
previous studies providing automated MRI processing frameworks’?%%23 are currently still
limited to artifact free high resolution imaging data or specific processing steps?>32. The clinical
context of data acquisition for acute stroke patients often severely limits the availability of
scanning protocols. This leads to the common practice of manual adjustments and corrections
during processing for each subject, reducing the automation potential, or applying pipelines
initially used for different disease populations?®. Our results show the advantage of LeAPP over
such prior frameworks, as defined as necessary by, in processing low quality functional imaging
data (Supplementary Figure S3) as well as low resolution FLAIR imaging, which is often
acquired instead of a T2 image in the clinical context of stroke®*. It further represents, to the best
of our knowledge, the first complete and automated multi-modal processing pipeline incorporating
advanced correction methods, that have previously been stand-alone solutions'®?®, These
improvements, in addition to providing high quality reconstruction of volume and network
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information from MRIs, help to avoid excluding data due to poor quality or large artifacts, thereby
facilitating research with larger cohort and longitudinal studies in the future.

Limitations

Previous studies have shown an increase in accuracy of image registration®2® when applying CFM
to lesion data. Nevertheless, a residual distortion of processing results after applying CFM cannot
be avoided®® leading to a baseline error in processing as found in the reduced agreement measures
even in ROIs not directly affected by the lesion. Further research is needed to understand the
impact of CFM and account for its effects on group level comparisons.

The extent of lesion abnormality in MRI images, such as flattened intensity value distributions
(Supplementary Figure S2), has previously been shown to depend on various factors, such as
imaging modality and relative time of acquisition to onset®’ 3, This creates the need for automated
correction measures to enable appropriate processing for all modalities. While performing virtual
brain transplant (VBT), as implemented in this study, offers such a correction for anatomical
modalities like T1w, T2 and FLAIR, the application to EPI sequences, such as fMRI and DWI, is
less feasible for recovering the information distorted in the affected region. A more thorough
investigation of how such lesion abnormalities affect these modalities must be performed. In the
current study we followed previous studies*® and excluded lesion signal from tractography by
incorporating the corresponding lesion mask as pathological tissue in the context of anatomically
constrained tractography. While we did not perform specific corrections to the fMRI lesion signal,
the lesion induced abnormality did affect our decision not to perform independent component
analysis (ICA) for denoising and motion correction (e.g., FIX-ICA;*)). Previous studies have
evaluated the robustness of such frameworks in the presence of stroke lesions* showing a
significant signal loss when applying automated complex approaches. It was further shown that
lesion-based variance patterns differ significantly from healthy tissue, allowing for component-
based lesion identification®® in resting-state fMRI. Further research into our understanding of
signal and noise sources as identified by ICA at the focal lesion is needed in particular in the
presence of task-based clinical fMRI data as present in the current study. The presented pipeline,
LeAPP, currently remains limited to correction at the location of the lesion as defined by a
segmentation mask that must be provided a priori. This limits its ability to correct for distortion
and diaschisis effects caused by the damaged tissue and further research is needed to facilitate
appropriate processing and analysis methods for incorporating distributed lesion impact.
Furthermore, it requires time-consuming lesion segmentation by trained staff. A review by** found
that automated segmentation algorithms perform not yet sufficiently to justify integration into fully
automated pipelines. While there have been several studies further developing such algorithms
across diseases*#" and species®®, the performance for human stroke lesion segmentation did not
yet improve to a level justifying the integration in LeAPP.

Conclusions

In summary, we found that LeAPP represents significant progress for processing multi-modal
neuroimaging patient data with lesion pathologies and its level of automation makes this workflow
readily available to the scientific community. The pipeline can be used as a standard — well
documented and versioned — tool for the processing of stroke imaging data thus ensuring a high
degree of reproducibility and comparability of results. This is an important advancement as it can
aid future studies in processing large cohorts of stroke data. Furthermore, LeAPP generates and
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outputs brain networks in TVB-ready formats that facilitate dynamic brain network modelling of
virtual stroke brains with the TVB software. This will further facilitate simulation-based research
into underlying recovery mechanisms, that so far have not been well understood.
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Figure Legends

Figure 1: Lesion aware automated processing pipeline (LeAPP) overview The major processing steps and adjustments for
processing of structural (blue), diffusion (red) and functional MRI (orange) as implemented in LeAPP as well as required input
files and TVB — ready outputs (green). Structural processing (A) performs the three main adjustments implemented in LeAPP build
around the baseline HCP structural processing step. The output required for subsequent processing are fully processed anatomical
images in native T1w and MNI space, the created brain parcellation volume and lesion properties table containing local lesion load
for all affected ROIs. The diffusion processing workflow (B) performs the main preprocessing steps, tractography and connectome
creation using the output from structural processing. (C) Functional preprocessing is performed based on HCP functional volume-
based processing step followed by registration, average time series extraction and functional connectivity matrix creation. (D) Data
input is following BIDS standard for all input modalities (left) including T1w and FLAIR images, DWI images with corresponding
bval and bvec files, functional MRI with task event files and corresponding fieldmaps. The main results (right) are stored in a new
directory including structural and functional connectomes, parcellation volumes, final T1w images and lesion mask as well as
average ROI based time series with task event files following the BIDS computational modelling extension proposal and can be
integrated into the virtual brain (TVB) simulation platform for individual whole brain network simulations.

Figure 2: Validation framework. Example of the implemented artificial lesion embedding (ALE) pipeline (A) showing the
original healthy control T1w image (top), the artificial lesion embedded in the same T1w(middle) and the original patient data used
for extracting lesion signal (bottom). The resulting ALE data set presents a realistic approximation of a virtual stroke patient as
basis for a robust validation process. (B) The three validation data sets (ground truth, ALE with LeAPP corrections and ALE with
only baseline HCP structural processing) are first processed according to their designation followed by the LeAPP specific
parcellation mapping. Based on the resulting parcellations global and local agreement measures are computed between ground truth
and the ALE based results. The distributions of agreement measures are compared between LeAPP and baseline HCP based results
(left). The brain parcellations are used for structural connectome creation using ground truth DWI data. A range of global and local
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network metrics are computed for the connectomes and agreement between metrics of ground truth and the ALE based connectomes
are computed. The distributions of these agreement measures are compared between LeAPP and baseline HCP (right) (C) Details
showing the enhancements effect during ALE of smoothing and thresholding the lesion mask to fit the underlying healthy control
brain topologies more closely creating realistic artificial lesion brains.

Figure 3 Parcellation masks Example artificial lesion brain and corresponding Processing results. (A) ALE brain with imputed
adjusted lesion signal (red outline) and ground truth parcellation created for healthy control used during ALE (green).
(B) Parcellation mask created using HCP processing pipeline and parcellation mapping (purple) showing a clear reproduction of
lesion topology during extraction of cortical ribbons (left). The difference between ground truth (green) and HCP (purple) with
color coding voxels that are only present in the corresponding parcellation (right). (C) Parcellation mask created using LeAPP
pipeline (yellow) and corresponding difference mask (right). While a mismatch between parcellations for LeAPP and the ground
truth pertains, it shows a reduced difference at the lesion (red outline) compared to HCP.

Figure 4 Reconstruction quality results (A) Metrics for LeAPP (yellow) and HCP (purple) showing similar distributions across
global measures. (B) Differences between LeAPP and HCP in global network metrics show a significant reduction in average
global node strength difference between LeAPP and ground truth compared to HCP and ground truth differences. (C) Median local
ROI based agreement metrics (line) with standard deviation shown as error bar. For visualization only one-sided error bars are
displayed. (D) Median differences in network based local metrics for all ROIs also showing significantly smaller differences for
LeAPP over HCP (see Table 1). Local differences highlight the increased sensitivity of ROI based measures in contrast to global
measures based on full brain properties. (E) Exemplary ROI based agreement metrics for a single subject. Anatomical T1w image
(left) shows the clear lesion artefact. The normalized agreement metrics reproduce the largest differences in processing around the
focal lesion visible in the MRI image. Dice score is shown as 1 — dice score for consistency in visualizations.

Tables

Reconstruction quality  P-value Network metrics P-value
measure (statistic) (statistic)
global
Dice 0.76 (0.71) Node 3.09e-07(5.67)*
Strength
Jaccard 0.49 (0.22) Clustering 0.08 (-1.8)
coefficient
Volume 0.56 (0.14) Centrality 0.19 (1.31)
local
Dice lesioned 3.67¢7°(19.52)" Node lesioned  1.63e°%(875.36)"
Strength
not affected 0.0 (69.81)" not affected 0.0 (4049.77)"
Volume Lesioned 4.36e7%(8,98)" Centrality Lesioned 0.25 (299.44)F
not affected 8.79e176(28.44)" not affected  0.02 (847'0‘2
Distance Lesion 2.76e*° (15.32)"
not affected 0.0 (-52.54)"

Table 1 Test statistics for reconstruction quality measures Differences between LeAPP and HCP processing were evaluated via
reconstruction quality measures for created brain parcellations (left) and differences in network metrics for structural connectomes
(right). Global measures did not show difference for brain parcellations but a significantly smaller difference in average global
node strength between ground truth and LeAPP versus ground truth and HCP based connectomes. Local differences were
significant for brain parcellations across measures. Differences in local network measures were significant for node strength for
affected and not affected ROIS. Centrality did not show differences in lesion ROIs but overall, in not-affected ROIs. * Significance,
f Fisher’s method

Figures
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[ adjusted scriptspd new implementation

sub-{ID}_T1w.json
sub-{ID}_T1w.nii.gz
sub-{ID}_T1w_lesion_mask.nii.gz
sub-{ID}_FLAIR.json
sub-{ID}_FLAIR.nii.gz

./ dwi

sub-{ID}_dwi.nii.gz
sub-{ID}_dwi.json
sub-{ID}_bval.bval
sub-{ID}_bvec.bvec

./ func

sub-{ID}_task-{fmriname}_bold.json
sub-{ID}_task-{fmriname}_bold.nii.gz
sub-{ID}_task-{fmriname}_event.json
sub-{ID}_task-{ffmriname}_event.tsv

./ fmap

sub-{ID}_task-{ffmriname}_part-1-mag_bold.nii.gz
sub-{ID}_task-{fmriname}_part-1-mag_bold.json
sub-{ID}_task-{ffmriname}_part-2-mag_bold.nii.gz
sub-{ID}_task-{fmriname}_part-2-mag_bold.json
sub-{ID}_task-{fmriname}_part-phase_bold.nii.gz
sub-{ID}_task-{fmriname}_part-phase_bold.json

D Data file structures
sub-{ID} sub-{ID}
./ ses-01 ./ ses-01
./ anat Jts

sub-{ID}_fmriname_avg_ts.txt
sub-{ID}_task-{fmriname}_event.json
sub-{ID}_task-{fmriname}_event.tsv
./ net
sub-{ID}_lengths.txt
sub-{ID}_weights.txt
sub-{ID}_{fmriname}_FC.tsv
./ coord
sub-{ID}_centers.txt
JTiw
sub-{ID}_T1w_final_brain.nii.gz
sub-{ID}_T1w_final_mask.nii.gz
sub-{ID}_LeAPP_parcellation.nii.gz
./ lesion
sub-{ID}_ROI_lesionload.txt
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