

1 Transcription factors operate on a limited
2 vocabulary of binding motifs in
3 *Arabidopsis thaliana*

4 Sanja Zenker^{1,2}, Donat Wulf^{1,2}, Anja Meierhenrich^{1,2}, Sarah Becker¹, Marion Eisenhut^{1,2}, Ralf
5 Stracke^{2,3}, Bernd Weisshaar^{2,3}, Andrea Bräutigam*^{1,2}

6 ¹Computational Biology, Faculty of Biology, Bielefeld University

7 ²Center of Biotechnology (CeBiTec), Bielefeld University

8 ³Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University

9 *to whom correspondence should be addressed: andrea.braeutigam@uni-bielefeld.de

10

11

12

13 Contributions: SZ analyzed the data and co-wrote the manuscript, DW conceived of the study,
14 AM produced and analyzed ampDAP-Seq data in *Marchantia polymorpha*, SB re-analyzed
15 HY5 experiments, ME edited the manuscript, RS edited the manuscript, BW edited the
16 manuscript, AB suggested analyses, interpreted data, and co-wrote the manuscript.

17

18 **Abstract**

19 Predicting gene expression from promoter sequence requires understanding of the different
20 signal integration points within a promoter. Sequence-specific transcription factors (TFs)
21 binding to their cognate TF binding motifs control gene expression in eukaryotes by activating
22 and repressing transcription. Their interplay generates complex expression patterns in reaction
23 to environmental conditions and developmental cues.

24 We hypothesized that signals are not only integrated by different TFs binding various positions
25 in a promoter, but also by single TF binding motifs onto which multiple TFs can bind. Analyzing
26 2,190 binding motifs, we identified only 76 core TF binding motifs in plants. Twenty-one TF
27 protein families act highly specific and bind a single conserved motif. Four TF families are
28 classified as semi-conserved as they bind up to four motifs within a family, with divisions along
29 phylogenetic groups. Five TF families bind diverse motifs. Expression analyses revealed high
30 competition within TF families for the same binding motif. The results show that singular
31 binding motifs act as signal integrators in plants where a combination of binding affinity and TF
32 abundance likely determine the output.

33

34 **Keywords:** transcription factor, binding motif, gene regulation, *Arabidopsis thaliana*, DAP-Seq

35

36 Introduction

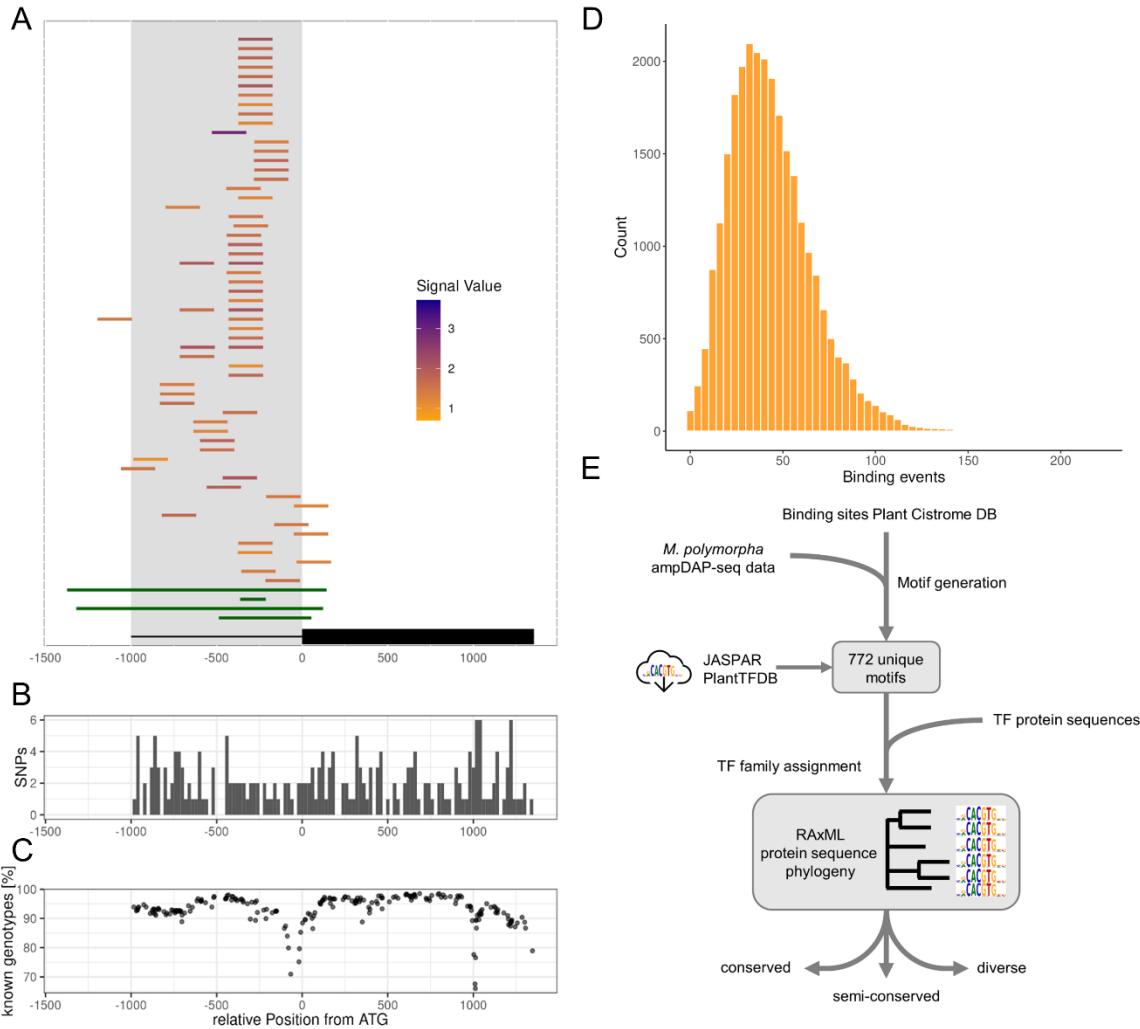
37 Transcription factors (TFs) govern transcriptional regulation in plants by controlling responses
38 to a broad range of abiotic, biotic, and internal stimuli from temperature (Koini et al., 2009;
39 Chung et al., 2020) over bacterial infection (Asai et al., 2002) to phytohormones (Matsuzaki et
40 al., 2010; Powers et al., 2019). We frequently perceive TFs as on/off switches of gene
41 expression as we are influenced, for example, by the pioneering work of Jacob and Monod
42 with the *lac*-operon (Jacob and Monod, 1961) or the early ABC model of floral development
43 (Haughn and Somerville, 1988; Coen and Meyerowitz, 1991).

44 Transcriptional regulation is also mediated by multiple general TFs, which form the
45 transcription preinitiation complex with the RNA polymerase II (Orphanides et al., 1996;
46 Roeder, 1998; Kadonaga, 2012). The regulatory region of a eukaryotic gene generally consists
47 of the core promoter and multiple proximal or distal regulatory regions, e.g., enhancers,
48 silencers, and insulators (Levine and Tjian, 2003). Besides the elements recognized by the
49 general TFs at the core promoter, these regions also contain TF binding motifs (TFBMs), which
50 are DNA sequences that are bound by sequence-specific TFs. The type and position of TFBMs
51 on the DNA in regulatory regions spell out a code, which is read out by the TFs (Seeman et
52 al., 1976; Rohs et al., 2009; O'Malley et al., 2016). If the readout critically depends on positional
53 information and on the completeness of an array of TFBMs, the system acts like an
54 enhanceosome (Arnoldi and Kulkarni, 2005). If elements of the enhancer can be read out
55 individually, the system acts like a billboard (Arnoldi and Kulkarni, 2005). In both cases, the
56 regulatory regions consisting of multiple TFBMs integrate signals to provide a quantitative
57 output. Deep learning has been used to predict TFBMs (Li et al., 2018) and to predict gene
58 expression from DNA sequence features (Avsec et al., 2021b).

59 The TFBMs of TFs are hypothesized to be a main component to binding specificity and to
60 guide the regulatory activity of TFs (Weirauch et al., 2014). TFBMs can be characterized *in*
61 *vivo* and *in vitro*. For *in vivo* characterization, chromatin immunoprecipitation sequencing
62 (ChIP-Seq) is most frequently used. This method is influenced by additional *in vivo* factors,
63 such as chromatin structure and partner proteins (Gordân et al., 2009; Li et al., 2011). In
64 contrast, *in vitro* methods, such as protein binding microarrays, high-throughput *in vitro*
65 selection, and DNA affinity purification sequencing (DAP-Seq) allow derivation of TFBMs from
66 pure DNA binding events (Berger et al., 2006; Jolma et al., 2013; O'Malley et al., 2016). Some
67 studies have demonstrated that similar TFs have similar binding specificities (Rushton et al.,
68 1995; Berger et al., 2008; Weirauch et al., 2014; Galli et al., 2018) while other studies show
69 that small changes in TF amino acid sequence lead to changes in binding specificities (Cook
70 et al., 1994; Noyes et al., 2008; Aggarwal et al., 2010). TFs are grouped into families based
71 on their shared DNA binding domains (DBDs) and additional domains for e.g., protein
72 interaction (Wilhelmsen et al., 2017). Very large-scale cross-kingdom analyses have

73 suggested that TF binding specificity to particular TFBMs is predicted by DBD amino acid
74 sequence similarity and that extensive similarity in binding can be detected (Weirauch et al.,
75 2014). In *Saccharomyces cerevisiae*, however, 60% of TFs have evolved differential binding
76 preferences due to variations mainly outside the DBD (Gera et al., 2022). In contrast, analyses
77 of TFBMs in *Drosophila melanogaster* and *Homo sapiens* have shown striking conservation
78 between structurally similar TFs despite expansion and divergence of families over the span
79 of 600 million years (Nitta et al., 2015). Overall, in animals, extensive conservation is detected
80 in some TF families but not all. The TF family with C2H2 as the DBD, for example, shows much
81 higher variation in TFBMs despite high protein sequence conservation (Lambert et al., 2019).
82 In multicellular organisms, TFs often comprise a larger proportion of the proteome than in
83 unicellular organisms accounting for more than 2% of proteins; seed plants generally reach
84 above 4% (Lang et al., 2010; De Mendoza et al., 2013). In different origins of multicellularity
85 and therefore in different origins of complex development, different families of TFs expanded
86 and still expand, but the evolutionary source of the TF family frequently predates the expansion
87 event (De Mendoza et al., 2013). Expansion correlates with phylogeny as phylogenetic
88 branches share specific family expansion patterns (Lang et al., 2010; De Mendoza et al.,
89 2013). TFs identified in model organisms range from about 750 to 1,600 in number (Riechmann
90 et al., 2000; Gray et al., 2004; Reece-Hoyes et al., 2005; Adryan and Teichmann, 2006;
91 Lambert et al., 2018). The expansion of TF families is caused by whole genome duplications
92 (WGD), local tandem duplications, and more distant duplication events. Duplication allows for
93 sequence and function divergence under relaxed selective pressure (Ohno, 1970; Zhang,
94 2003). WGD evidently leads to higher retention rates for duplicated genes by balancing
95 detrimental gene dosage effects potentially created by single copy duplications (Edger and
96 Pires, 2009; Schmitz et al., 2016). Although most duplicated copies of genes become non-
97 functional within a short evolutionary time by accumulating deleterious mutations leading to
98 pseudogenization (Lynch and Conery, 2000), some gene copies neofunctionalize and adopt
99 completely new functions compared to their paralog. Alternatively, both copies
100 subfunctionalize to cover parts of the function of the original version (Ohno, 1970; Zhang,
101 2003). In contrast to animals, most plant genera are tolerant to autopolyploidy and
102 allopolyploidy, which may provide an opportunity for different TF family expansions and for
103 extensive neofunctionalization.
104 In plants, there are several well described examples of TF families that have expanded. The
105 MYB superfamily, for example, can be found across all Eukaryota, but has increased by 9-fold
106 in member number from *Chlamydomonas reinhardtii* to *Arabidopsis thaliana* (Feller et al.,
107 2011; De Mendoza et al., 2013). MYB TFs are defined by their DNA-binding MYB-domain,
108 which consists of a variable number of (imperfect) MYB repeats, each forming three α -helices,
109 with the second and third forming a helix-turn-helix structure to interact with the DNA binding

110 site. The MYB family can be divided into subfamilies based on the number of MYB repeats
111 (Stracke et al., 2001). The most abundant family of MYB TFs in the plant kingdom are the
112 R2R3-MYBs. Some R2R3-MYB proteins like MYB66/WEREWOLF have been shown to bind
113 the TFBM AACNGC (Wang et al., 2019), while other MYB proteins recognize ACC(T/A)G or
114 TAAC (O'Malley et al., 2016), making this family an example for partially conserved binding
115 specificity. The WRKY TF family has also expanded within the Embryophyta clade. Members
116 of this family are defined by the presence of at least one WRKY domain consisting of
117 approximately 60 amino acids including zinc finger motifs and the conserved WRKYGQK
118 region, which directly contacts the W-box as its TFBM (Eulgem et al., 2000; Rinerson et al.,
119 2015). Although many WRKY TFs are involved in different responses to abiotic and biotic
120 stresses, strong conservation of TFBMs has been reported (Eulgem et al., 2000) making this
121 family an example for a large TF family with a highly conserved TFBM. Many additional TF
122 families and subfamilies, such as basic helix-loop-helix (bHLH) factors have evolved before
123 the water-to-land transition (Catarino et al., 2016; Jin et al., 2017) and expanded in land plants.
124 Fewer TF families, such as ARID, E2F/DP, or GRAS have more or equal members in mosses
125 compared to angiosperms (Feller et al., 2011; De Mendoza et al., 2013; Wilhelmsson et al.,
126 2017). The general increase in TF numbers can be explained by more frequent occurrence of
127 WGD in plant lineages compared to animals and higher rates of parallel expansion in common
128 TF families (Shiu et al., 2005). Results from large-scale efforts to characterize TFBMs (Franco-
129 Zorrilla et al., 2014; O'Malley et al., 2016) indicate that there is extensive conservation of
130 TFBMs within TF families.


131 Here, we explored *in vitro* TFBM data from plants and showed that experimentally verified
132 binding of multiple TFs on identical sites is detectable. We hypothesized that common binding
133 motifs are a product of TF family expansion and tested binding preferences along evolutionary
134 trajectories including dating of diversions with TFs from the bryophyte *Marchantia polymorpha*.
135 We show that the vocabulary of TFBMs is comparatively small and hypothesize that, if
136 expression patterns overlap, there must be considerable competition for binding at a given
137 relevant TFBM. Indeed, the data demonstrates that expression similarity of TFs with the same
138 TFBM contribute to the potential for signal integration at single TFBMs. Taken together, the
139 results suggest that in addition to the well-known signal integration mediated by TF arrays on
140 a plant promoter, the binding preferences and expression patterns of TFs provide ample
141 substrate for signal integration at single TFBMs to control promoter output.

142

143 Results

144 To gain an overview of experimentally validated TF binding events in the genome of *A.*
145 *thaliana*, we mapped these onto individual promoters of genes, here defined as the 1kb region

146 upstream of the ATG using narrowPeak DAP-Seq data from O'Malley et al. (2016) (Figure 1A).
147 Visualizations were amended with accessible chromatin regions from five publications (Lu et
148 al., 2017; Maher et al., 2018; Sijacic et al., 2018; Sullivan et al., 2019; Lu et al., 2019) to
149 visualize accessibility and overlaid with conservation of sequence information based on the
150 1001 genome project (Alonso-Blanco et al., 2016). It is immediately apparent that peak stacks
151 can be observed over defined promoter regions (Figure 1A) showing substantial overlap in TFs
152 binding to the same TFBM. Many of these TFBMs are indeed accessible in three different
153 tissues (Figure 1A). Sequence conservation of these TFBMs in the *A. thaliana* pangenome is
154 high, as validated by low sequence variation detected by the 1001 genome project (Figure 1B)
155 in regions with utilizable data (Figure 1C). Analyzing 27,206 promoters of nuclear protein
156 coding genes in *A. thaliana*, there is experimental evidence for 0 to 219 (one outlier with 786)
157 binding events with median number of 41 binding events and on average 43 binding events
158 per promoter (Figure 1C, <https://doi.org/10.4119/unibi/2982196>). This analysis of individual
159 promoters qualitatively shows that there is indeed large positional overlap in TF binding and
160 therefore likely large overlap in TFBMs.
161 To quantify TFBM identity and similarity across TF families in plants, we retrieved all available
162 TFBMs in databases (Jin et al., 2017; Castro-Mondragon et al., 2022) and to reduce bias, we
163 determined one representative TFBM for each TF through a common pipeline, preferring
164 ampDAP-Seq based TFBMs due to the coverage of all genomic binding sites without
165 methylation influence (Figure 1E). All peaks from the Plant Cistrome database (O'Malley et al.,
166 2016) and, to analyze evolutionary trajectories, peaks from 14 *M. polymorpha* TFs were
167 obtained and TFBMs generated using MEME-ChIP (Machanick and Bailey, 2011). All TFs with
168 a TFBM were grouped into families based on their DBDs according to TAPscan TF family
169 definitions for *A. thaliana* (Wilhelmsen et al., 2017), aligned and phylogenetically clustered.
170 We then evaluated each TF family based on how many different TFBMs exist within this family
171 and classified the families into either conserved, semi-conserved, or diverse (see methods for
172 details, see Table S1).
173

174
175 **Figure 1 TFBM conservation analysis.** **A:** Representative visualization of DAP-Seq binding events,
176 colored from orange to purple by log10-transformed peak height and open chromatin regions (green) on
177 the AT2G46310 promoter (all promoter figures as interactive visualizations deposited under
178 <https://doi.org/10.4119/unibi/2982196>). **B:** Conservation of the AT2G46310 promoter nucleotide
179 sequence in *A. thaliana* pangenome visualized by position dependent SNPs. **C:** Pangenome data
180 density visualized by percentage of successfully called genotypes at the SNP positions of the
181 AT2G46310 promoter. **D:** Histogram showing the number of experimentally determined TF binding
182 events on nuclear protein coding gene promoters (one outlier with 786 binding events not shown). **E:**
183 Workflow for TFBM conservation analysis.

184
185 Database queries yielded a total of 2,190 redundant data points from the Plant Cistrome
186 (O'Malley et al., 2016), JASPAR (Castro-Mondragon et al., 2022) and PlantTF (Jin et al., 2017)
187 databases (Table 1). The majority of known plant TFBMs are present in multiple databases,
188 leading to extensive redundancy. After removal of redundant entries, 772 different TFs from
189 14 different plant species and 50 TF families remained. Data density for plants other than *A.*
190 *thaliana* is quite low. Of the 1,725 DNA-binding TFs in *A. thaliana*, 680 have a known TFBM
191 (Table 1). These 680 represent 50 of 71 annotated families in the TAPscan database

192 (Wilhelmsson et al., 2017). Within these 50 families, we know on average 40.6% of all
193 annotated TFBMs in *A. thaliana*. The databases also contain 18 TFBMs, which could not be
194 assigned to a TAPscan TF family. We tested for overall TFBM identity and similarity and found
195 that the 772 TFBMs represent 76 different core TFBMs, which are between 5 and 21 bp in
196 length with an average length of 8.9 bp (Table 1). Some TFBMs like the WRKY W-box TTGAC
197 TFBM are limited to one specific family, while the E-/G-box (C)ACGTG can be found as a
198 TFBM for BES1, bHLH, bZIP family members, and one Trihelix family member (see Table S2).
199 Taken together, the currently known promoter vocabulary of TFBMs consists of 76 distinct
200 TFBMs in plants with most of the syntax (positioning, interaction, affinity, etc.) unknown.

201

202 **Table 1** Overview of general TFBM statistics.

203

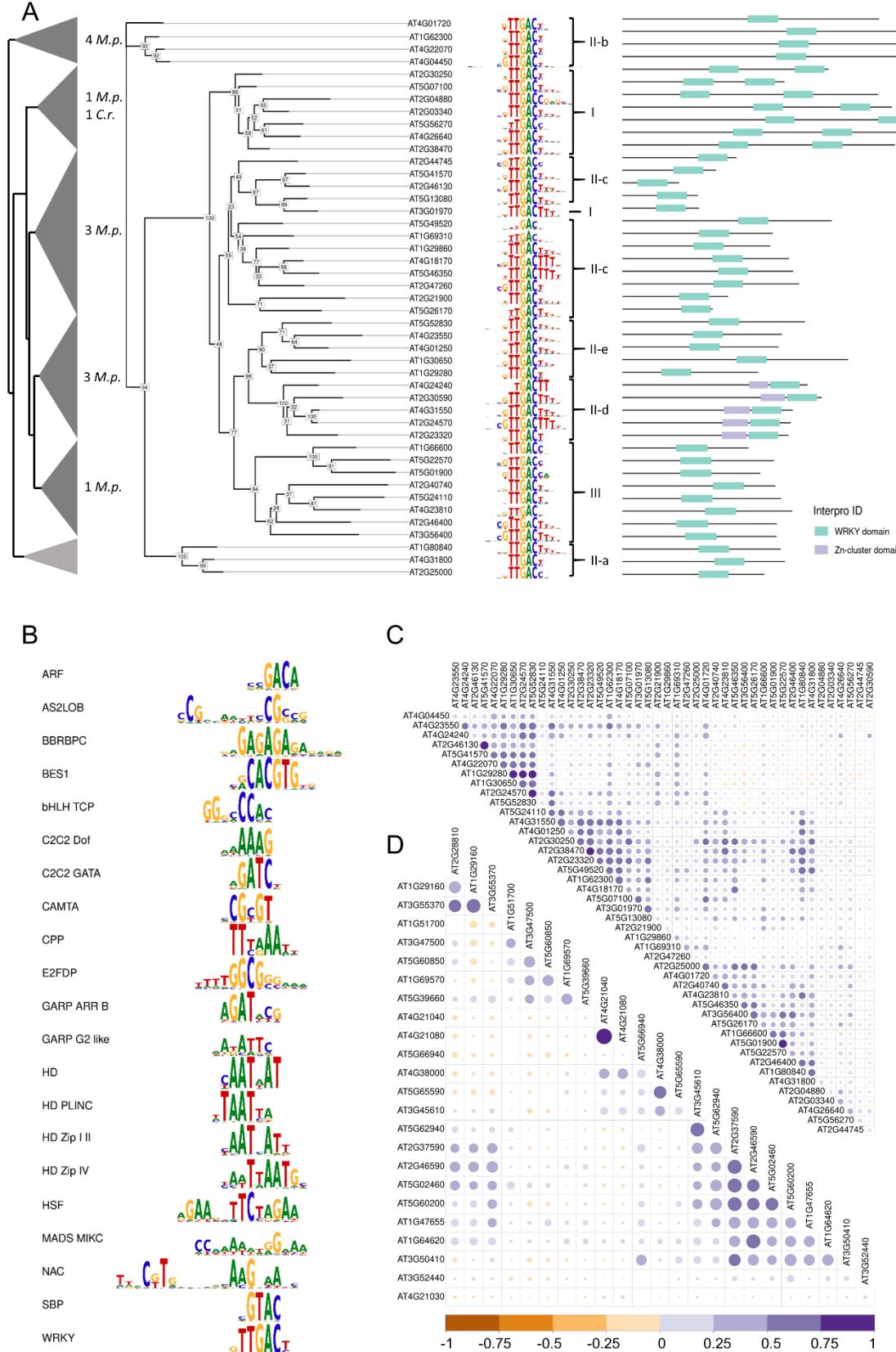
Feature	Number
Total TFBMs JASPAR	757
Total TFBMs Plant Cistrome DB	814
Total TFBMs PlantTFDB	619
Total TFs (<i>A. thaliana</i>)	1725
TFs with TFBM (<i>A. thaliana</i>)	680
TFs with TFBM (other species)	92
Distinct core TFBMs	76
Average TFBM length [bp]	8.9
TF families (<i>A. thaliana</i>)	71
TF families with TFBM (<i>A. thaliana</i>)	50
TFBMs not assigned to TAPscan family	18
Average TFBMs known per family (<i>A. thaliana</i>) [%]	40.6

204

205 **Many families show high levels of TFBM conservation**

206 The majority of TFBMs are available for *A. thaliana* (680), followed by *Zea mays* (37). The TF
207 families with the most known TFBMs are the AP2/EREBP family (107) and the MYBs of R2R3-
208 and 3R-MYB families (67). Phylogenetic analyses were performed on amino acid sequences
209 for 32 families, which contained at least four TFs with TFBMs to assess the relationship
210 between amino acid sequence and TFBM similarity. To date the age of a phylogenetic
211 subgroup, we assessed the presence of *M. polymorpha* and *C. reinhardtii* orthologs
212 determined by Orthofinder2 (Emms and Kelly, 2019) which, if present, indicate an age of at

213 least 500 or 950 million years, respectively, for the branch (Hedges et al., 2004; Harris et al.,
214 2022).


215 Based on the low number of distinct TFBMs (Table 1) and the literature (Ciolkowski et al.,
216 2008), we hypothesized that some TF families retain conserved TFBMs despite extensive
217 family expansion dating back at least 500 million years. A phylogeny of the WRKY TFs
218 resolved six subclades of which all except clade II-a contain at least one *M. polymorpha*
219 ortholog (Figure 2A). We confirmed the known TFBM conservation in the WRKY family, with
220 TFBMs available for 45 out of 73 members in *A. thaliana*, all binding the TFBM TTGAC across
221 all clades with minimal variation in the flanking sequences (Figure 2A). One WRKY TF ortholog
222 from *C. reinhardtii* with a known TFBM was identified belonging to subclade I, which has been
223 proposed to be the oldest group, from which all others potentially evolved (Rinerson et al.,
224 2015). Subclade II-d has an additional annotated Zn cluster domain, which does not appear to
225 influence the recognized TFBM (Figure 2A). In principle, all WRKY TFs compete for the same
226 TFBM (Figure 2A). To test whether competition is allowed via similar expression patterns, we
227 compiled expression data from 6,033 RNA-Seq experiments and tested for expression
228 similarity by Pearson correlation. Of the 45 family members with a TFBM in *A. thaliana*, 15
229 share expression with at least one other family member based on a correlation coefficient of
230 >0.7. 33 have similar expression with at least one other family member based on a correlation
231 coefficient of at least >0.5 (Figure 2C).

232 Examination of the other 31 TF families (see Figures 3A, 5, S1-S29) with at least four
233 characterized TFBMs revealed that 20 additional TF families show extensive TFBM
234 conservation within the TF family (Figure 2B). For example, TFs of the C2C2 Dof zinc finger
235 family have been identified in *A. thaliana*, *Z. mays*, and *Physcomitrium patens* and
236 unanimously bind the consensus TFBM AAAG with little variation in the adjacent bases (see
237 Figure S10). One *A. thaliana* TFBM stands out, as the AAAG is followed by the reverse TFBM
238 CTTT, indicating a potential binding by a TF dimer, which was not picked up by MEME-ChIP
239 for other members of the family (see Figure S10). One ortholog was found in *M. polymorpha*
240 and one in *C. reinhardtii*, suggesting conservation of this TFBM since approximately 950 mya
241 (Hedges et al., 2004). Expression analyses in the C2C2 Dof family show that two family
242 members share expression with at least one other family member based on a correlation
243 coefficient of >0.7. Thirteen C2C2 Dof TF family members have similar expression with at least
244 one other family member based on a correlation coefficient of at least >0.5 (Figure 2D), which
245 indicates potential for competition at a shared TFBM.

246 Not all TF families with high conservation of TFBMs have existed since 500 mya and some
247 can only be found in land plants. One example is the ARF family, which is defined by a B3
248 binding domain, an ARF domain, and in most members also an AUX/IAA domain (see Figure
249 S3). All analyzed members share the conserved TFBM GACA, which is either preceded by a

250 C or a G-stretch for many members (Figure 2B). These differences in surrounding bases have
251 been postulated to arise from different genomic context of the TFBMs (Galli et al., 2018).
252 Expression analysis in the ARF family shows that members do not share expression based on
253 a correlation coefficient of >0.7. However, five out of six members in *A. thaliana* have similar
254 expression with at least one other family member based on a correlation coefficient of >0.5
255 (see Figure S30) indicating that not all TF families contain members in intense competition for
256 binding sites.

257 Among the 21 TF families, which represent the highest level of TFBM conservation, 21 of the
258 76 different possible TFBMs are represented (Figure 2B). The expression divergence of family
259 members within each family (see Table S3), shows that for each of the 21 TFBMs, TFs are in
260 some degree in competition for binding. In the analysis, we identified a total of 21 families with
261 one conserved family TFBM (Figure 2B), pointing to a large constraint in the *de novo* evolution
262 of TFBMs as a way for neofunctionalization of TFs in at least these families.

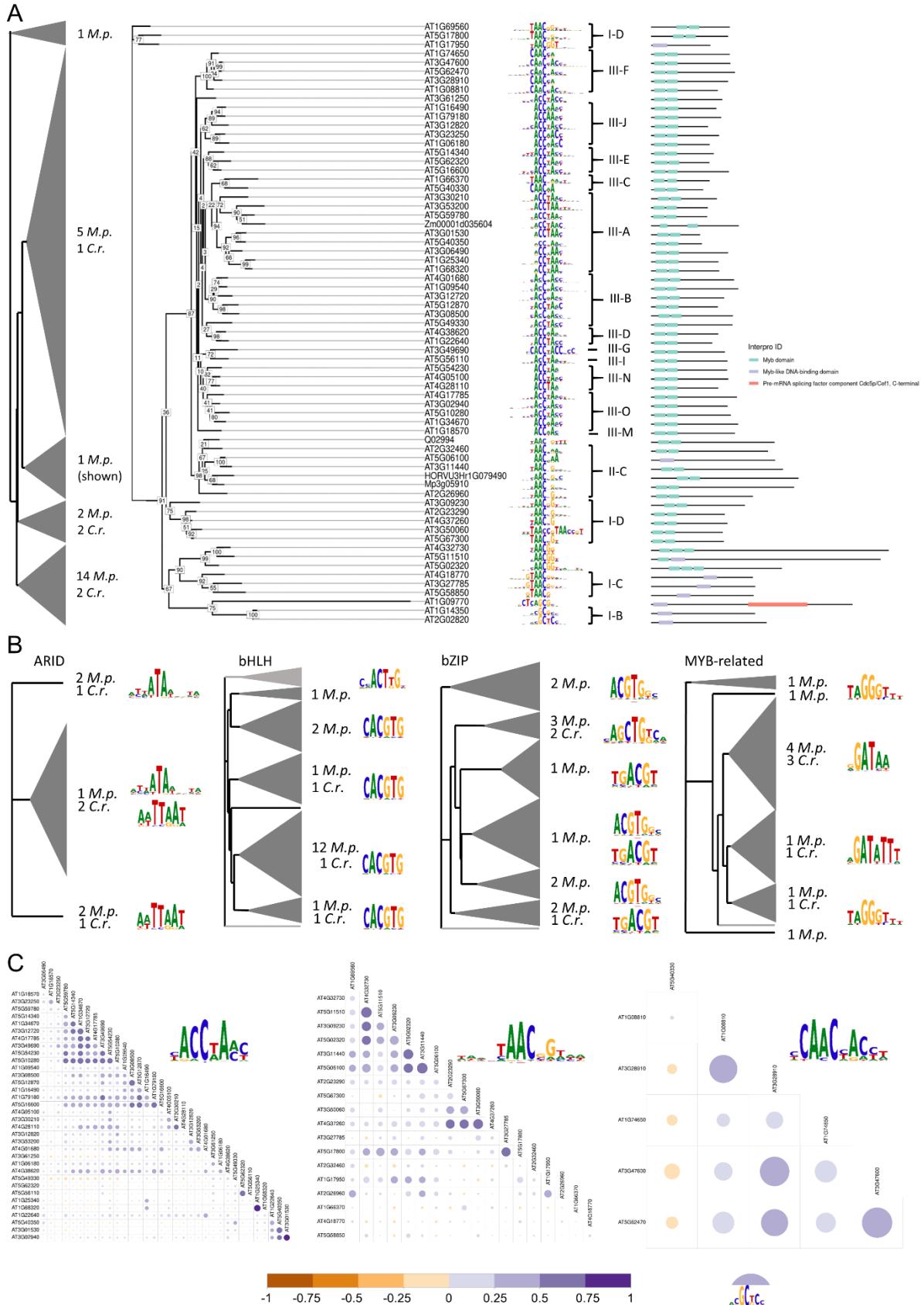
263

264 **Figure 2 Analysis of TF families with high motif conservation. A:** Unrooted phylogenetic tree of the
265 WRKY family TFs with known TFBMs. Support values at the nodes are based on 1,000 bootstrap
266 iterations. Clade annotations are from Eulgem et al. (2000) and Interpro domain annotations. Collapsed

267 phylogenetic tree are shown with indication of orthologues genes from *M. polymorpha* or *C. reinhardtii*
268 in each subgroup. **B:** All TF families with consensus TFBMs of all families are considered as conserved.
269 Base height corresponds to information content. **C:** Expression correlation of 45 WRKY family members
270 in *A. thaliana*. The correlation coefficient is indicated by color and dot size. **D:** Expression correlation of
271 24 C2C2 Dof family members in *A. thaliana*.

272

273 **Semi-conservation of TFBMs follows phylogenetic relationships**


274 Not all TF families are under a similarly strict constraint for their member TFBMs. We expected
275 that some families acquired more variation in the recognized TFBM as a potential way to
276 neofunctionalize and regulate different pathways in more than 500 million years of evolution.
277 Our analysis revealed a continuous transition between completely conserved families binding
278 to one single TFBM (Figure 2B) and families that bind up to 14 different TFBMs across 35
279 analyzed members (C2H2) (see Figure S13). Therefore, we established the classification of
280 semi-conservation to cover families with up to four different consensus TFBMs and no more
281 than 15% outliers (TFBMs bound by only one member). This applied to the five families ARID,
282 bHLH, bZIP, MYB, and MYB-related (see Table S1).

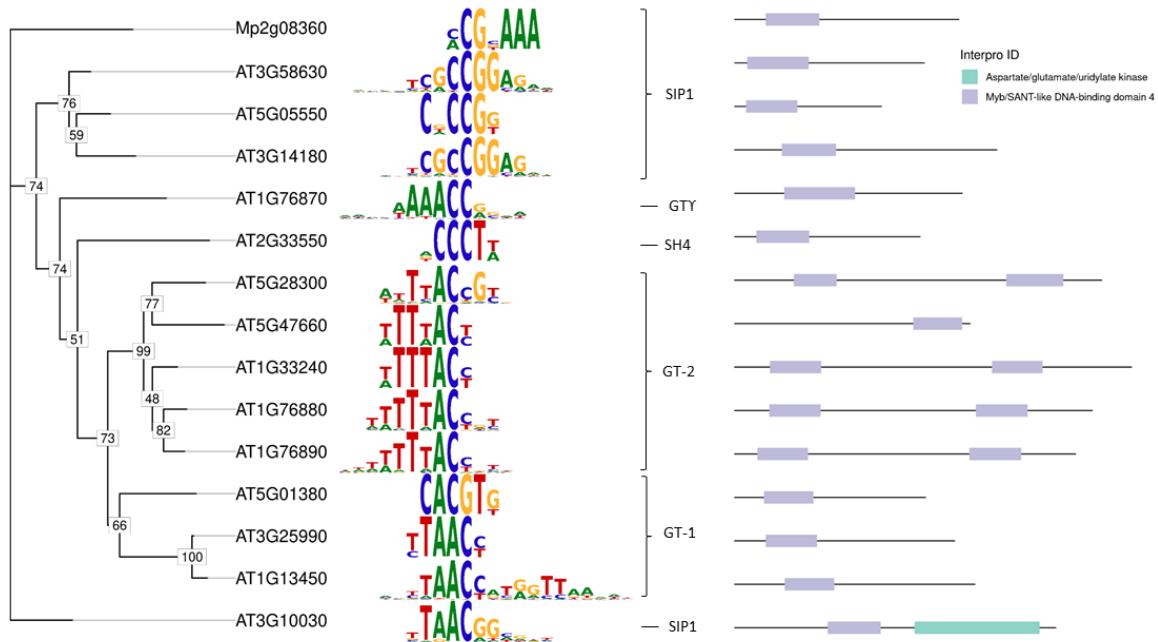
283 Many TFBMs of MYB TFs have been identified in *A. thaliana*, but there is also data available
284 from *Hordeum vulgare*, *Z. mays*, and *Petunia hybrida* (Figure 3A) in openly accessible
285 databases. We additionally determined the TFBM of one MYB TF in *M. polymorpha* using
286 ampDAP-Seq. The phylogeny of the MYB TFs with known TFBM (Figure 3A) recaptures
287 published groupings of the MYB family and breaks along protein domain lines (Figure 3A,
288 Chang et al., 2020). When the TFBMs are overlaid over the phylogeny, they appear grouped
289 along the phylogenetic tree corresponding to previously annotated clades (Chang et al., 2020),
290 including non-*A. thaliana* TFBMs. The TFBMs thus reflect phylogeny, highlighting conservation
291 of these TFBMs across selected plant species. We found a total of 15 *M. polymorpha*
292 orthologues MYB TFs in subclade I, two additional ones in subclade II and five more in
293 subclade III, demonstrating that these clades existed at least 500 mya. Four orthologs from *C.*
294 *reinhardtii* are found in subclade I and, unexpectedly, one in subclade III, which was previously
295 found to be unique to embryophyta (Chang et al., 2020). The MYB family has one known
296 outlier, *AT1G09770* (*CDC5*), which is visibly more distant at the amino acid level and has a
297 TFBM that is not found for other MYB TFs or MYB-related TFs. *CDC5* has two MYB repeats
298 with a 31% identity to the typical R2R3-MYB domains (Stracke et al., 2001). Taken together,
299 we can conclude that different TFBMs in the MYB family have existed since at least 500 mya
300 followed by expansion of the different subclades. Within each subclade, the MYB TFs
301 potentially compete for their respective TFBM. Expression analysis in *A. thaliana* show that
302 within the 35 members binding the consensus TFBM ACC(T/A)A, nine share expression with
303 at least one other family member based on a correlation coefficient of >0.7. Nineteen TFs have

304 similar expression patterns with at least one other family member based on a correlation
305 coefficient of >0.5 (Figure 3C). Among the 19 members binding the consensus TFBM TAAC,
306 12 have similar expression with at least one other family member based on a correlation
307 coefficient of at least >0.5 (Figure 3C). Among the 6 members binding the consensus TFBM
308 CAACNAC, none have shared or similar expression patterns with at least one other family
309 member (Figure 3C). The two members binding the TFBM GCTC have distinct expression
310 patterns with a correlation coefficient <0.5 (Figure 3C). Although the higher level of divergence
311 of the TFBMs reduces the potential for competition, we detected similar expression patterns
312 between at least two members binding the same TFBM for 40 TFs, indicating that, also in the
313 MYB family, TFs compete for the same TFBM.

314 The bHLH family members bind two different TFBMs that differ predominantly in two base
315 positions. The initial C of the G-box TFBM CACGTG is missing in the second variant and the
316 first G is replaced by a T, leaving a core of ACTTG, which was found to be bound by four bHLH
317 TFs (Figure 3B). The bHLH TFs binding to ACTTG are more distant from all other members in
318 the tree and the only subgroup with no orthologs in *M. polymorpha* or *C. reinhardtii* (Figure
319 3B). Again, expression analysis suggests potential competition of different bHLHs for the same
320 TFBM. Within the 28 *A. thaliana* bHLH TFs binding the G-box CACGTG, four share expression
321 patterns with at least one other bHLH family member based on a correlation coefficient of >0.7
322 and 13 have similar expression patterns with at least one other family member based on a
323 correlation coefficient of at least >0.5 (Figure S50). The four members binding ACTTG have
324 distinct expression patterns with a correlation coefficient <0.5 (Figure S50).

325 Grouping of TFBMs along the phylogenetic relationship is also observed in the bZIP family and
326 the MYB-related family (Figure 3B), suggesting stability of TFBMs during clade-specific
327 expansion. At the same time, expression analyses showed that there is extensive sharing of
328 expression patterns within group members binding the same TFBM (see Table S3, Figures
329 S49-S52). This group of five semi-conserved TF families covers 18 of the 76 core TFBMs
330 including TFBMs that are only bound by one member in a family and were excluded from
331 consensus TFBM generation. The level of competition for each TFBM is reduced compared to
332 the TF families for which the TFBMs are highly conserved with a lower number of TFs who
333 share expression or have a similar expression pattern. The analysis of phylogeny compared
334 to binding specificity points to a reduced constraint of evolvability of binding specificity
335 compared to the highly conserved TFs.

336


337 **Figure 3 Analysis of TF families with semi-conserved TFBMs. A:** Phylogenetic tree of the MYB
 338 family with support values based on 1,000 bootstraps. Interpro domain annotations indicate structural
 339 similarities. Clade annotations are from (Chang et al., 2020) and domain annotations are from Interpro.

340 Collapsed phylogenetic tree with indication of orthologues proteins from *M. polymorpha* or *C. reinhardtii*
341 in each subgroup. **B:** Collapsed phylogenetic relations with orthologues proteins found. Light grey
342 indicates orthologues were not found. TFBMs represent the consensus TFBM of the clade. **C:**
343 Correlation of expression for the given TFBM subgroups.

344 Diverse TF families bind a variety of different TFBMs

345 We identified five TF families that have more than four different consensus TFBMs or more
346 than 15% outliers and classified them as diverse. The diverse TF families are those that contain
347 the DBDs of the type ABI3/VP1, AP2/EREBP, C2H2, C3H and Trihelix (see Table S1).
348 Trihelix TFs have only been identified in land plants, suggesting that the family evolved after
349 the transition from water to land. Members of this family have one or two binding domains
350 similar to the MYB domain and are therefore called MYB/SANT-like (Figure 4). The Trihelix
351 family is divided into five clades based on amino acid sequence similarities and the phylogeny
352 largely recapitulates the grouping (Kaplan-Levy et al., 2012) (Figure 4). As of now, TFBMs are
353 available for 14 out of 26 members in *A. thaliana*, and we generated one TFBM using ampDAP-
354 Seq in *M. polymorpha* of a member of the SIP1 clade. All previously defined clades of the
355 Trihelix family have at least one known TFBM (Figure 4). The GT-2 clade has a conserved
356 TFBM of TTTAC. Two TFs in the GT-1 clade, as well as one TF in the SIP1 clade bind to the
357 known GT-element. The third TFBM from the GT-1 clade for TF GT-3a (AT5G01380) is known
358 as the G-box (CACGTG) (Figure 5) (Ayadi et al., 2004). Despite the observed TFBM similarity
359 within clades, members of the Trihelix family TFs bind to a wide range of TFBMs across and
360 within clades.

361

362

363 **Figure 4 The Trihelix family is an example of a TF family with diverse binding motifs.** Unrooted
364 phylogenetic tree of the Trihelix TFs with known TFBMs. Support values at the nodes are based on

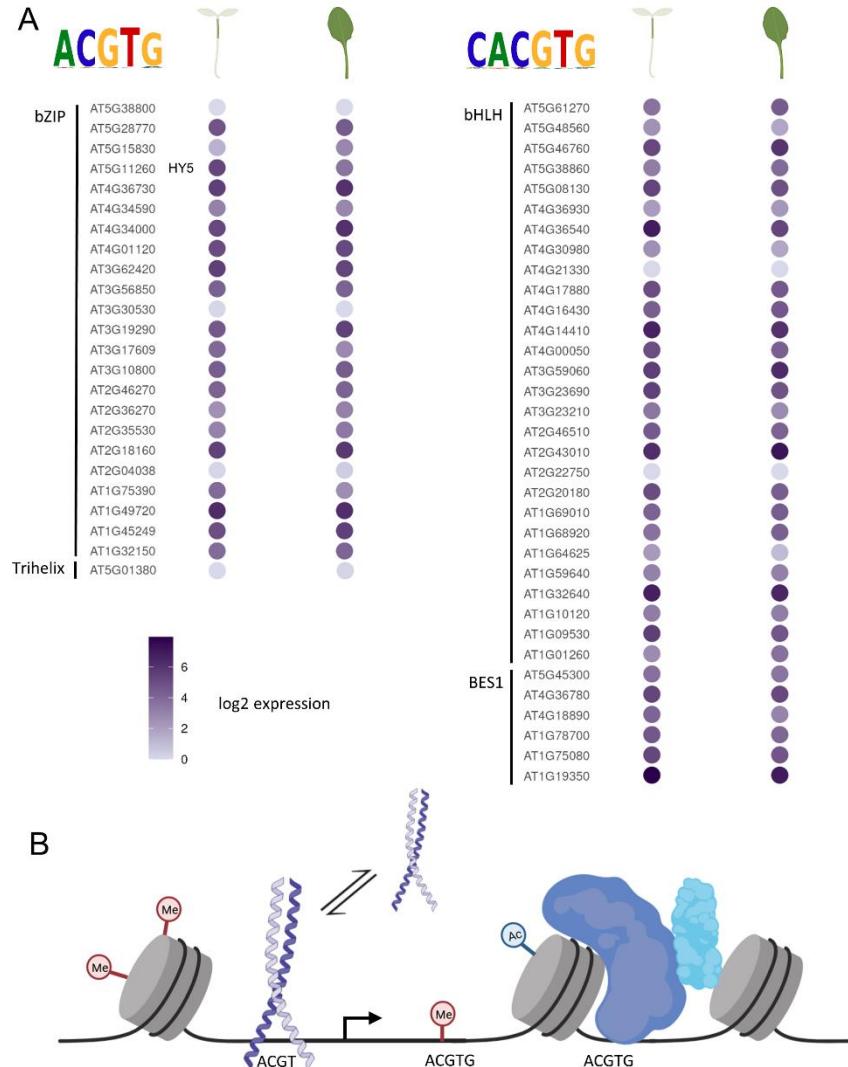
365 1,000 bootstrap iterations. Clade annotations from Kaplan-Levy et al. (2012) and domain annotations
366 are from Interpro.

367
368 In this analysis, we also identified a high diversity of TFBMs bound by the C2H2 TF family
369 members in plants (see Figure S12), as it has been reported for fruit fly and human C2H2 TFs
370 (Lambert et al., 2018; Lambert et al., 2019). The 188 members in the TF families with less
371 TFBM conservation cover 39 of the 76 identified distinct TFBMs (Table 1). In the C2H2 family
372 multiple different domains are annotated compared to the WRKY or Trihelix family, potentially
373 correlating with the number of TFBMs within the family with a Pearson coefficient of 0.69 (see
374 Figure S53). Diverse families have on average four domains annotated while semi-conserved
375 families have 3.4 and conserved families have only about 1.7 domains per family (Figures 2,
376 3). More diversity of annotated protein domains and variation in repeat number of protein
377 domains might explain part of the TFBM diversity in a TF family. The TF families identified as
378 diverse readily evolve TFBMs *de novo* compared to conserved and semi-conserved families,
379 thus creating possibility for neofunctionalization of TFs.

380

Discussion

381 The analyses presented here indicate that despite having a large portfolio of thousands of
382 sequence-specific TFs, plants like *A. thaliana* operate with a limited vocabulary of TFBMs.
383 More than half of the TF families in *A. thaliana* show a high level of TFBM conservation. In
384 cases of multiple groups of highly similar TFBMs within one family, these groups overlay with
385 phylogenetic clades, suggesting that a difference in protein sequence goes along with changes
386 in TFBMs. Similar findings have been reported in human (Lambert et al., 2018) and yeast (Nitta
387 et al., 2015). As in animals, we observe a number of diverse TF families *in planta* that have
388 evolved multiple TFBMs over time. The C2H2 family was reported as diverse in all studies
389 (Nitta et al., 2015; Lambert et al., 2019; Han et al., 2020), proposing that some families are
390 inherently more diverse across multiple kingdoms of life. Large scale eukaryotic analyses of
391 TF binding characteristics have pointed to amino acid conservation in the protein DBD as a
392 predictor of TFBM conservation (Weirauch et al., 2014). This study proposes a TF family
393 argument for plant TFs: in 21 families, only a single core TFBM has been identified so far,
394 irrespective of the degree of conservation on the protein sequence level (Figure 2). For these
395 TFs, WGD and/or tandem duplications have not expanded the repertoire of TFBMs. Given the
396 presence of *M. polymorpha* orthologs in the subclades of the phylogenetic tree, it can be
397 inferred that the subclades are at least 500 million years old (Harris et al., 2022). Therefore, it
398 can be assumed that members of the same TF family within *A. thaliana* and also within
399 angiosperms likely bind the same TFBM. The TFBMs are shown to be stable on an
400 evolutionary scale from bryophytes to dicotyledons. For additional four families, a high degree


401 of conservation within subclades was observed (Figure 3). The *de novo* evolution of binding
402 sites deep within the phylogenetic branches indicates that, in principle, TF families have the
403 ability to evolve new binding specificity but this is a very rare occurrence. It is likely that
404 uncharacterized TFs bind the known subclade TFBM within the families with high TFBM
405 conservation (Figure 2) and semi-conservation (Figure 3). The third, diverse group of TF
406 families demonstrates a high ability to evolve new and different TFBMs. To expand the
407 currently known vocabulary of 76 TFBMs in *A. thaliana* and other plants, TF families with
408 diverse TFBMs (i.e. Figure 4), especially those with large phylogenetic distance to TFs with
409 known TFBMs, present attractive targets. The expression analyses throughout 6,033 *A.*
410 *thaliana* wildtype RNA-Seq experiments demonstrate that TFs binding the same TFBM
411 frequently have similar expression patterns (Figures 2C, 3C) indicating that these TFs compete
412 for binding to the TFBM. Therefore, single TFBMs act as integrators of signals in plants where
413 a combination of binding affinity (Jolma et al., 2013; Sielemann et al., 2021) and TF abundance
414 determine the output.

415 Competition at TFBMs also provides an explanation for the high variation in complementation
416 experiments for TFs on genomic sites, which are bound by many partners (Lee et al., 2007;
417 Stracke et al., 2010; Gangappa and Botto, 2016). The bZIP TF ELONGATED HYPOCOTYL 5
418 (HY5) and its binding to the partial G-box motif ACGT TFBM is a prime example (Figure 5).
419 This TFBM and its variations can be bound by at least 58 TFs (Figure 5, Table S1) (Ang et al.,
420 1998; Chattopadhyay et al., 1998; Yadav et al., 2002). In all tissues at all times under all
421 conditions where at least a subset of these competing TFs is expressed, they compete with
422 HY5 for TFBM binding. For example, in leaf, 52 competing TFs are expressed with at least >1
423 transcript per kilobase million (tpm) compared to HY5 at 11 tpm and in the hypocotyl. The
424 same 52 competing TFs are expressed with at least >1 tpm compared to HY5 at 39 tpm (Figure
425 5). As a consequence, one expects both an effect of HY5 dosage and a strong effect of
426 condition on the outcome of a HY5 binding experiment and/or RNA-Seq experiment. In
427 addition, potential binding at a TFBM will be affected by chromatin openness (Maher et al.,
428 2018; Lu et al., 2019), potential histone modifications (Charron et al., 2010; Zhao et al., 2019),
429 changes in DNA-shape due to binding of other proteins (Rohs et al., 2009) and TFBM flanking
430 regions (Gordân et al., 2013). Indeed, detailed analyses of complementation experiments for
431 HY5 with varying gene doses and varying tags on the protein show the expected large degree
432 of variation in both binding sites and RNA-Seq results (Lee et al., 2007; Stracke et al., 2010;
433 Gangappa and Botto, 2016). In the absence of a competing TF, i.e. in a knock-out of a TF, it
434 is highly likely that at least some of the binding sites previously preferentially occupied by that
435 TF are occupied by closely related TFs. If this occupancy is above a certain threshold it
436 prevents an observable phenotype, and the TFs are called redundant (Finkelstein et al., 2005;
437 Leivar and Monte, 2014). However, it is likely that RNA-Seq analyses of single mutants will

438 uncover subtle shifts in transcript abundances, which do not necessarily lead to observable
439 phenotypes i.e. single *phytochrome interacting factor (pif)* mutants (Leivar et al., 2012). If TFs
440 operate in concert, with their affinities and their abundance also regulating promoter output,
441 one would expect that TFs are preferentially retained after WGDs, even if they do not
442 immediately sub- or neofunctionalize. Such retention has indeed been observed (Van de Peer
443 et al., 2009; De Smet et al., 2013; Schmitz et al., 2016). The large degree of TFBM similarity
444 and the co-occurrence of TFs binding the same TFBM extends the network argument
445 previously made for preferential TF retention (Van de Peer et al., 2009; De Smet et al., 2013;
446 Schmitz et al., 2016) to the output of individual promoters. Similar to the argument of the
447 evolutionary ratchet that preserves interacting partners in a protein complex since mutation of
448 a single one could expose hydrophobic surfaces and throw the system out of equilibrium
449 (Hochberg et al., 2020), TFs integrating on the same binding site require equilibrium for stability
450 after WGD.

451 The 76 distinct TFBMs present TF binding sites on which transcriptional regulation signals can
452 be integrated. It has long been known that the promoter syntax, i.e. the positioning of binding
453 sites relative to each other and relative to the transcription start site, carries critical information
454 (Arnosti and Kulkarni, 2005). The current analyses show that not only TFs have the same core
455 TFBM, but they also co-occur based on expression studies (Figure 2, 3). This suggests that
456 binding affinity, perhaps modulated by other factors i.e. TF:TF interactions, DNA shape, or
457 histone interactions, and spatial TF abundances likely play a major role in regulation (Figure
458 5). Indeed, binding affinity is modulated by DNA shape, which in turn is defined by the bases
459 surrounding the TFBM (Rohs et al., 2009; Gordân et al., 2013; Sielemann et al., 2021). These
460 DNA-shape differences explain why a TFBM is preferentially bound by some TF family
461 members and not others (Sielemann et al., 2021). Signal integration at single TFBMs may
462 provide one explanation for the still substantial gap in predictability of gene expression from
463 sequence (Li et al., 2018; Avsec et al., 2021b; de Almeida et al., 2022). Finally, competition for
464 binding at single sites may explain why TFs counterintuitively act as both activators and
465 repressors (Mahendrawada et al., 2023). If a TF activates expression in an enhanceosome
466 context, any competitive binding at its site will turn the different, competitive TF into a repressor
467 for that particular gene irrespective of whether that TF is an activator on other genes. This may
468 explain, why HY5 experiments with the TF carrying an activator or repressor domain still fail to
469 clarify if native HY5 acts as a repressor or activator on its targets (Burko et al., 2020).

470 Modeling of transcriptional regulation will likely have to go beyond TF binding sites and
471 promoter syntax (Avsec et al., 2021a; Reiter et al., 2023). Modeling transcriptional regulation
472 and predicting gene expression from sequence (DNA and protein) will likely require kinetic
473 parameters, such as K_D for TFs with respect to specific TFBMs and amounts of TFs to account
474 for signal integration at TFBMs bound by multiple, frequently co-occurring TFs.

481 Methods

482 Amplified DNA affinity purification sequencing (ampDAP-Seq)

483 Plants were grown for six weeks on half-strength Gamborg's medium (Gamborg B5; Duchefa
484 Biochemie B.V., Netherlands) in petri dishes with a 16h/8h light/dark cycle at room
485 temperature. DNA was extracted from male G2 generation *M. polymorpha* subsp. *ruderaria*
486 BoGa (Busch et al., 2019) with the cetyltrimethylammonium bromide (CTAB) method
487 (<https://dx.doi.org/10.17504/protocols.io.bcvyiw7w>).

488 DNA (5 µg) was fragmented by sonication to 200 bp with the M220 Focused-Ultrasonicator
489 (Covaris, USA). End-repair, A-tailing and Y-adaptor ligation were performed following the

490 protocol of (Bartlett et al., 2017): For the sample clean-up the DNA was purified using AMPure
491 XP beads (Beckman Coulter, USA) instead of ethanol precipitation. To obtain an ampDAP
492 library 15 ng of the DAP library was amplified with 11 cycles PCR. For the binding assay, genes
493 were cloned in pFN19A (HaloTag®7) T7 SP6 Flexi® vector (Promega, USA) by Gibson
494 assembly (Gibson et al., 2009). Halo-tagged TFs were expressed with TnT® Coupled Wheat
495 Germ Extract System (Promega, USA) using 2 µg plasmid DNA. Halo-fusion proteins were
496 purified with Magne® HaloTag® Beads (Promega, USA) and then incubated with 50 ng
497 ampDAP library. DNA was recovered, amplified and indexed with 20 PCR cycles. Large
498 fragments (200-400 bp) were extracted from a 1% agarose gel with QIAquick Gel Extraction
499 Kit (Qiagen, Netherlands). The final library was sequenced as 85 bp long single-end reads on
500 a NextSeq™ 550 (Illumina, USA).

501 **TFBM acquisition**

502 TF families and their members in *A. thaliana* were retrieved from TAPscan (Lang et al., 2010;
503 Wilhelmsson et al., 2017). DAP- and ampDAP-Seq data from O’Malley et al. (2016) was
504 obtained from the Gene Expression Omnibus (GEO) database (Barrett et al., 2013) under the
505 accession [GSE60143](#) and analyzed according to Sielemann et al., (2021): peak sequences
506 were extracted from the TAIR10 reference genome (<https://www.arabidopsis.org/>) of *A.*
507 *thaliana* and TFBMs were determined using MEME-ChIP (Machanick and Bailey, 2011). The
508 TFBM with the lowest e-value and less than 21 bases was chosen to avoid long artifacts.
509 AmpDAP-Seq data from *M. polymorpha* was mapped to the reference genome Tak v6.1
510 (<https://marchantia.info/>) using Bowtie v. 2.4.2 (Langmead and Salzberg, 2012). Output files
511 were converted to BAM format with SAMtools (Danecek et al., 2021) view and sorted (samtools
512 sort -n). To remove duplicates, the SAMtools commands fixmate, sort and markdup were
513 executed with default parameters. Peaks were called using GEM (Guo et al., 2012) or MACS2
514 (Zhang et al., 2008) only if GEM could not identify TFBMs. Sequences of 500 bp around the
515 peak summit were submitted to MEME-ChIP for TFBM extraction. Additionally, we accessed
516 TFBMs directly from the open access databases JASPAR (Castro-Mondragon et al., 2022)
517 and PlantTFDB (Jin et al., 2017).

518 **Family allocation**

519 All TFs were assigned to TAPscan TF families in *A. thaliana*. If a corresponding TF family in
520 another database exists in TAPscan, annotations were converted to TAPscan names.
521 Accurate allocation was validated via annotated Interpro domains (Blum et al., 2021). TFBMs
522 from other species were assigned to the TF families using blastp (Altschul et al., 1990) with
523 the corresponding protein sequence against the *A. thaliana* TAIR10 proteome
524 (<https://www.arabidopsis.org/>). The protein sequences of the TFs were retrieved from Uniprot
525 or the respective proteome from Phytozome (Goodstein et al., 2012) if available. The best blast

526 hit ranked by e-value and secondly percentage of identity was chosen to determine the nearest
527 *A. thaliana* ortholog, whose TF family annotation was then transferred. The MYB family was
528 manually reduced to contain only MYB3R and R2R3-MYB factors in accordance with
529 annotations from Table 1 in Stracke et al., (2001) and Plant Cistrome database annotations.
530 Other MYB-type TFs were grouped as MYB-related.

531 Some TFs had multiple TFBMs generated by different methods, requiring the selection of one
532 representative TFBM per protein per species. We preferred ampDAP-Seq data over DAP-Seq
533 data followed by other methods, because DAP-Seq is a high throughput method capturing the
534 most complete set of binding sites on gDNA (O'Malley et al., 2016) and ampDAP additionally
535 requires less input material and binding is solely based on sequence and not influenced by
536 methylation state. We reassigned the JASPAR TFBMs originally retrieved from ReMap to the
537 original method of either ChIP-Seq or DAP-Seq.

538 Phylogenetic analyses

539 Full protein sequences were aligned per family using MUSCLE v3.8.31. Phylogenetic trees
540 were generated with RAxML v7.4.4 with 1,000 bootstraps and the PROTGAMMAJTT matrix
541 (method modified from Guedes Corrêa et al., 2008) for similarity measure. The phylogenetic
542 trees with TFBMs were visualized using the R package motifStack (Ou et al., 2018) (see
543 Figures S1-S29). Protein sequences were scanned for domain annotations from Pfam and
544 Prosite using InterProScan (Jones et al., 2014).

545 The similarity of TFBMs within a family was assessed using compare_motifs from the R
546 package universalmotif with default parameters. Clusters were generated by cutting a
547 dendrogram resulting from the distances of the TFBMs at 0.5 followed by manual curation
548 (method modified from Jores et al., 2021). Since gapped TFBMs are more difficult to detect
549 (Bailey et al., 2009) we considered sufficiently similar parts of a gapped TFBM as the same
550 cluster. Consensus TFBMs were generated with mergeMotifs (motifStack) and for gapped
551 TFBMs merge_motifs (universalmotif) for each cluster and trimmed with trim_motifs
552 (universalmotif). We defined TFBMs appearing only once in a family as outliers and excluded
553 them from consensus TFBM generation (method modified from Jores et al., 2021). Distinct
554 TFBMs across all TF families were established by TFBM comparison as described before and
555 the clusters generated from an hclust analysis.

556 We considered TF families with at least four TFs with a known TFBM for our assessment of
557 conservation level within the family. Families with one consensus TFBM, subtracting outliers,
558 and less than 15% outlier TFBMs were considered as a conserved family. Up to four different
559 consensus TFBMs and less than 15% outliers classified families as semi-conserved (see Table
560 S1).

561 Orthologues proteins were determined using OrthoFinder2 (Emms and Kelly, 2019) for the TFs
562 with a TFBM in a given phylogenetic clade of the tree.

563 **Expression data**

564 Wild-type RNA-Seq experiments of *A. thaliana* were downloaded from the SRA (Leinonen et
565 al., 2011) and mapped onto the TAIR10 reference genome (as described in Halpape & Wulf
566 et al., 2023). Pearson correlation was calculated within conserved families and within groups
567 binding to the same TFBM in semi-conserved families and visualized using the corrplot R
568 package. Expression levels in the leaf and hypocotyl of *A. thaliana* from Klepikova et al., (2016)
569 were averaged across the two replicates and log2 transformed.

570

571 **Data availability**

572 Raw ampDAP-Seq data for *M. polymorpha* subsp. *ruderaleis* BoGa is available under the
573 Bioproject [PRJNA1007631](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1007631) on the NCBI SRA. All *A. thaliana* (amp)DAP-Seq binding sites on
574 nuclear encoded gene promoters are deposited under <https://doi.org/10.4119/unibi/2982196>.
575 Code to analyze binding motifs and the expression of TFs binding a specific motif and all
576 binding motifs in MEME-format are available from GitHub (https://github.com/sanjaze/meta-analysis_TFBMs).
577

578 **Acknowledgements**

579 This study was funded by the German Research Foundation (Deutsche
580 Forschungsgemeinschaft; DFG) through the Sonderforschungsbereich 175 (SFB-TR175):
581 “The Green Hub, Central Coordinator of Acclimation in Plants”, and through “Evolutionary
582 network analysis based on the transcriptome atlas of *Marchantia polymorpha*” FundingID:
583 BR4617/1-1. We gratefully acknowledge support by the BMBF-funded de.NBI Cloud within the
584 German Network for Bioinformatics Infrastructure, and the CeBiTec compute cluster for
585 computational resources.

586

587 **References**

588 **Adryan, B., and Teichmann, S. A. (2006).** FlyTF: a systematic review of site-specific transcription
589 factors in the fruit fly *Drosophila melanogaster*. *Bioinformatics* **22**:1532–1533.

590 **Aggarwal, P., Das Gupta, M., Joseph, A. P., Chatterjee, N., Srinivasan, N., and Nath, U. (2010).**
591 Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in
592 *Arabidopsis*. *Plant Cell* **22**:1174–1189.

593 **Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., Cao, J., Chae,
594 E., Dezwaan, T. M., Ding, W., et al. (2016).** 1,135 Genomes Reveal the Global Pattern of
595 Polymorphism in *Arabidopsis thaliana*. *Cell* **166**:481–491.

596 **Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).** Basic local alignment
597 search tool. *J Mol Biol* **215**:403–410.

598 **Ang, L.-H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.-W.
599 (1998).** Molecular Interaction between COP1 and HY5 Defines a Regulatory Switch for Light
600 Control of *Arabidopsis* Development. *Mol Cell* **1**:213–222.

601 **Arnosti, D. N., and Kulkarni, M. M.** (2005). Transcriptional enhancers: Intelligent enhanceosomes or
602 flexible billboards? *J Cell Biochem* **94**:890–898.

603 **Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel,**
604 **F. M., and Sheen, J.** (2002). MAP kinase signalling cascade in *Arabidopsis* innate immunity.
605 *Nature* **415**:977–983.

606 **Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., McAnany, C.,**
607 **Gagneur, J., Kundaje, A., et al.** (2021a). Base-resolution models of transcription-factor binding
608 reveal soft motif syntax. *Nat Genet* **53**:354–366.

609 **Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael, Y.,**
610 **Jumper, J., Kohli, P., and Kelley, D. R.** (2021b). Effective gene expression prediction from
611 sequence by integrating long-range interactions. *Nature Methods* **2021 18:10** **18**:1196–1203.

612 **Ayadi, M., Delaporte, V., Li, Y. F., and Zhou, D. X.** (2004). Analysis of GT-3a identifies a distinct
613 subgroup of trihelix DNA-binding transcription factors in *Arabidopsis*. *FEBS Lett* **562**:147–154.

614 **Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., and**
615 **Noble, W. S.** (2009). MEME Suite: tools for motif discovery and searching. *Nucleic Acids Res*
616 **37**:W202.

617 **Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A.,**
618 **Phillippy, K. H., Sherman, P. M., Holko, M., et al.** (2013). NCBI GEO: archive for functional
619 genomics data sets—update. *Nucleic Acids Res* **41**:D991–D995.

620 **Bartlett, A., O’Malley, R. C., Huang, S. C., Galli, M., Nery, J. R., Gallavotti, A., and Ecker, J. R.** (2017).
621 Mapping genome-wide transcription-factor binding sites using DAP-seq. *Nat Protoc* **12**:1659–
622 1672.

623 **Berger, M. F., Philippakis, A. A., Qureshi, A. M., He, F. S., Estep, P. W., and Bulyk, M. L.** (2006).
624 Compact, universal DNA microarrays to comprehensively determine transcription-factor binding
625 site specificities. *Nat Biotechnol* **24**:1429–1435.

626 **Berger, M. F., Badis, G., Gehrke, A. R., Talukder, S., Philippakis, A. A., Peña-Castillo, L., Alleyne, T.**
627 **Mnaimneh, S., Botvinnik, O. B., Chan, E. T., et al.** (2008). Variation in Homeodomain DNA
628 Binding Revealed by High-Resolution Analysis of Sequence Preferences. *Cell* **133**:1266–1276.

629 **Blum, M., Chang, H. Y., Chuguransky, S., Grego, T., Kandasamy, S., Mitchell, A., Nuka, G., Paysan-**
630 **Lafosse, T., Qureshi, M., Raj, S., et al.** (2021). The InterPro protein families and domains
631 database: 20 years on. *Nucleic Acids Res* **49**:D344–D354.

632 **Burko, Y., Seluzicki, A., Zander, M., Pedmale, U. V., Ecker, J. R., and Chory, J.** (2020). Chimeric
633 Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback
634 Mechanism. *Plant Cell Advance Access* published 2020, doi:10.1105/tpc.19.00772.

635 **Busch, A., Deckena, M., Almeida-Trapp, M., Kopischke, S., Kock, C., Schüssler, E., Tsiantis, M.,**
636 **Mithöfer, A., and Zachgo, S.** (2019). MpTCP1 controls cell proliferation and redox processes in
637 *Marchantia polymorpha*. *New Phytologist* **224**:1627–1641.

638 **Castro-Mondragon, J. A., Riudavets-Puig, R., Rauluseviciute, I., Lemma, R. B., Turchi, L., Blanc-**
639 **Mathieu, R., Lucas, J., Boddie, P., Khan, A., As Manosalva P’ Erez, N., et al.** (2022). JASPAR
640 2022: the 9th release of the open-access database of transcription factor binding profiles.
641 *Nucleic Acids Res* **50**:D165–D173.

642 **Catarino, B., Hetherington, A. J., Emms, D. M., Kelly, S., and Dolan, L.** (2016). The Stepwise Increase
643 in the Number of Transcription Factor Families in the Precambrian Predicated the Diversification
644 of Plants On Land. *Mol Biol Evol* **33**:2815–2819.

645 **Chang, X., Xie, S., Wei, L., Lu, Z., Chen, Z. H., Chen, F., Lai, Z., Lin, Z., and Zhang, L.** (2020). Origins
646 and Stepwise Expansion of R2R3-MYB Transcription Factors for the Terrestrial Adaptation of
647 Plants. *Front Plant Sci* **11**:2086.

648 **Charron, J.-B. F., He, H., Elling, A. A., and Deng, X. W.** (2010). Dynamic Landscapes of Four Histone
649 Modifications during Deetiolation in Arabidopsis. *Plant Cell* **21**:3732–3748.

650 **Chattopadhyay, S., Ang, L.-H., Puente, P., Deng, X.-W., and Wei, N.** (1998). Arabidopsis bZIP Protein
651 HY5 Directly Interacts with Light-Responsive Promoters in Mediating Light Control of Gene
652 Expression. *Plant Cell* **10**:673–683.

653 **Chung, B. Y. W., Balcerowicz, M., Di Antonio, M., Jaeger, K. E., Geng, F., Franaszek, K., Marriott, P.,
654 Brierley, I., Firth, A. E., and Wigge, P. A.** (2020). An RNA thermoswitch regulates daytime
655 growth in Arabidopsis. *Nature Plants* **2020** *6*:5:522–532.

656 **Ciolkowski, I., Wanke, D., Birkenbihl, R. P., and Somssich, I. E.** (2008). Studies on DNA-binding
657 selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. *Plant
658 Mol Biol* **68**:81–92.

659 **Coen, E. S., and Meyerowitz, E. M.** (1991). The war of the whorls: genetic interactions controlling
660 flower development. *Nature* **353**:31–37.

661 **Cook, W. J., Mosley, S. P., Audino, D. C., Mullaney, D. L., Rovelli, A., Stewart, G., and Denis, C. L.**
662 (1994). Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both
663 DNA binding and transcriptional activation. *Journal of Biological Chemistry* **269**:9374–9379.

664 **Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane,
665 T., McCarthy, S. A., Davies, R. M., et al.** (2021). Twelve years of SAMtools and BCFtools.
666 *Gigascience* **10**.

667 **de Almeida, B. P., Reiter, F., Pagani, M., and Stark, A.** (2022). DeepSTARR predicts enhancer activity
668 from DNA sequence and enables the de novo design of synthetic enhancers. *Nat Genet* **54**:613–
669 624.

670 **De Mendoza, A., Sebé-Pedrós, A., Šestak, M. S., Matejčíč, M., Torruella, G., Domazet-Lošo, T., and
671 Ruiz-Trillo, I.** (2013). Transcription factor evolution in eukaryotes and the assembly of the
672 regulatory toolkit in multicellular lineages. *Proc Natl Acad Sci U S A* **110**:E4858–E4866.

673 **De Smet, R., Adams, K. L., Vandepoele, K., Van Montagu, M. C. E., Maere, S., and Van de Peer, Y.**
674 (2013). Convergent gene loss following gene and genome duplications creates single-copy
675 families in flowering plants. *Proceedings of the National Academy of Sciences* **110**:2898–2903.

676 **Edger, P. P., and Pires, J. C.** (2009). Gene and genome duplications: the impact of dosage-sensitivity
677 on the fate of nuclear genes. *Chromosome Research* **2009** *17*:5 **17**:699–717.

678 **Emms, D. M., and Kelly, S.** (2019). OrthoFinder: phylogenetic orthology inference for comparative
679 genomics. *Genome Biol* **20**:238.

680 **Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E.** (2000). The WRKY superfamily of plant
681 transcription factors. *Trends Plant Sci* **5**:199–206.

682 **Feller, A., MacHemer, K., Braun, E. L., and Grotewold, E.** (2011). Evolutionary and comparative
683 analysis of MYB and bHLH plant transcription factors. *The Plant Journal* **66**:94–116.

684 **Finkelstein, R., Gampala, S. S. L., Lynch, T. J., Thomas, T. L., and Rock, C. D.** (2005). Redundant and
685 Distinct Functions of the ABA Response Loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR
686 (ABF)3. *Plant Mol Biol* **59**:253–267.

687 **Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., and Solano, R.** (2014).
688 DNA-binding specificities of plant transcription factors and their potential to define target
689 genes. *Proceedings of the National Academy of Sciences* **111**:2367–2372.

690 **Galli, M., Khakhar, A., Lu, Z., Chen, Z., Sen, S., Joshi, T., Nemhauser, J. L., Schmitz, R. J., and
691 Gallavotti, A.** (2018). The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family.
692 *Nat Commun* **9**:1–14.

693 **Gangappa, S. N., and Botto, J. F.** (2016). The Multifaceted Roles of HY5 in Plant Growth and
694 Development. *Mol Plant* **9**:1353–1365.

695 **Gera, T., Jonas, F., More, R., and Barkai, N.** (2022). Evolution of binding preferences among whole-
696 genome duplicated transcription factors. *Elife* **11**.

697 **Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., and Smith, H. O.** (2009).
698 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* **6**:343–
699 345.

700 **Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W.,**
701 **Hellsten, U., Putnam, N., et al.** (2012). Phytozome: A comparative platform for green plant
702 genomics. *Nucleic Acids Res* **40**:D1178–D1186.

703 **Gordân, R., Hartemink, A. J., and Bulyk, M. L.** (2009). Distinguishing direct versus indirect
704 transcription factor–DNA interactions. *Genome Res* **19**:2090–2100.

705 **Gordân, R., Shen, N., Dror, I., Zhou, T., Horton, J., Rohs, R., and Bulyk, M. L.** (2013). Genomic
706 Regions Flanking E-Box Binding Sites Influence DNA Binding Specificity of bHLH Transcription
707 Factors through DNA Shape. *Cell Rep* Advance Access published 2013,
708 doi:10.1016/j.celrep.2013.03.014.

709 **Gray, P. A., Fu, H., Luo, P., Zhao, Q., Yu, J., Ferrari, A., Tenzen, T., Yuk, D. I., Tsung, E. F., Cai, Z., et al.**
710 (2004). Mouse brain organization revealed through direct genome-scale TF expression analysis.
711 *Science* **306**:2255–2257.

712 **Guedes Corrêa, L. G., Riaño-Pachón, D. M., Guerra Schrago, C., Vicentini dos Santos, R., Mueller-**
713 **Roeber, B., and Vincentz, M.** (2008). The Role of bZIP Transcription Factors in Green Plant
714 Evolution: Adaptive Features Emerging from Four Founder Genes. *PLoS One* **3**:e2944.

715 **Guo, Y., Mahony, S., and Gifford, D. K.** (2012). High Resolution Genome Wide Binding Event Finding
716 and Motif Discovery Reveals Transcription Factor Spatial Binding Constraints. *PLoS Comput Biol*
717 **8**:e1002638.

718 **Halpape, W., Wulf, D., Verwaaijen, B., Stasche, A. S., Zenker, S., Sielemann, J., Tschikin, S.,**
719 **Viehöver, P., Sommer, M., Weber, A. P. M., et al.** (2023). Transcription factors mediating
720 regulation of photosynthesis. *bioRxiv* Advance Access published 2023,
721 doi:10.1101/2023.01.06.522973.

722 **Han, G., Lu, C., Guo, J., Qiao, Z., Sui, N., Qiu, N., and Wang, B.** (2020). C2H2 Zinc Finger Proteins:
723 Master Regulators of Abiotic Stress Responses in Plants. *Front Plant Sci* **11**.

724 **Harris, B. J., Clark, J. W., Schrempf, D., Szöllősi, G. J., Donoghue, P. C. J., Hetherington, A. M., and**
725 **Williams, T. A.** (2022). Divergent evolutionary trajectories of bryophytes and tracheophytes
726 from a complex common ancestor of land plants. *Nature Ecology & Evolution* **2022** **6**:11 6:1634–
727 1643.

728 **Haughn, G. W., and Somerville, C. R.** (1988). Genetic control of morphogenesis in Arabidopsis. *Dev*
729 *Genet* **9**:73–89.

730 **Hedges, S. B., Blair, J. E., Venturi, M. L., and Shoe, J. L.** (2004). A molecular timescale of eukaryote
731 evolution and the rise of complex multicellular life. *BMC Evol Biol* **4**:1–9.

732 **Hochberg, G. K. A., Liu, Y., Marklund, E. G., Metzger, B. P. H., Laganowsky, A., and Thornton, J. W.**
733 (2020). A hydrophobic ratchet entrenches molecular complexes. *Nature* **588**:503–508.

734 **Jacob, F., and Monod, J.** (1961). Genetic regulatory mechanisms in the synthesis of proteins. *J Mol*
735 *Biol* **3**:318–356.

736 **Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., and Gao, G.** (2017). PlantTFDB 4.0: toward a
737 central hub for transcription factors and regulatory interactions in plants. *Nucleic Acids Res*
738 **45**:D1040–D1045.

739 **Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K. R., Rastas, P., Morgunova, E., Enge, M.,**
740 **Taipale, M., Wei, G., et al.** (2013). DNA-Binding Specificities of Human Transcription Factors.
741 *Cell* **152**:327–339.

742 **Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J.,**
743 **Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function**
744 **classification. *Bioinformatics* **30**:1236–1240.**

745 **Jores, T., Tonnes, J., Wrightsman, T., Buckler, E. S., Cuperus, J. T., Fields, S., and Queitsch, C. (2021).**
746 **Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. *Nat***
747 ***Plants* **7**:842–855.**

748 **Kadonaga, J. T. (2012). Perspectives on the RNA polymerase II core promoter. *Wiley Interdiscip Rev***
749 ***Dev Biol* **1**:40–51.**

750 **Kaplan-Levy, R. N., Brewer, P. B., Quon, T., and Smyth, D. R. (2012). The trihelix family of**
751 **transcription factors – light, stress and development. *Trends Plant Sci* **17**:163–171.**

752 **Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D., and Penin, A. A. (2016). A high**
753 **resolution map of the *Arabidopsis thaliana* developmental transcriptome based on RNA-seq**
754 **profiling. *The Plant Journal* **88**:1058–1070.**

755 **Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., and Franklin, K. A.**
756 **(2009). High Temperature-Mediated Adaptations in Plant Architecture Require the bHLH**
757 **Transcription Factor PIF4. *Current Biology* **19**:408–413.**

758 **Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes,**
759 **T. R., and Weirauch, M. T. (2018). The Human Transcription Factors. *Cell* **172**:650–665.**

760 **Lambert, S. A., Yang, A. W. H., Sasse, A., Cowley, G., Albu, M., Caddick, M. X., Morris, Q. D.,**
761 **Weirauch, M. T., and Hughes, T. R. (2019). Similarity regression predicts evolution of**
762 **transcription factor sequence specificity. *Nature Genetics* **2019** **51**:981–989.**

763 **Lang, D., Weiche, B., Gerrittimmerhaus, Richardt, S., Riano-Pachon, D. M., Correak, L. G. G., Reski,**
764 **R., Mueller-Roeber, B., and Rensing, S. A. (2010). Genome-wide phylogenetic comparative**
765 **analysis of plant transcriptional regulation: A timeline of loss, gain, expansion, and correlation**
766 **with complexity. *Genome Biol Evol* **2**:488–503.**

767 **Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat Methods***
768 **9:357–359.**

769 **Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.**
770 **W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical**
771 **Role in Light Regulation of Development. *Plant Cell* **19**:731–749.**

772 **Leinonen, R., Sugawara, H., and Shumway, M. (2011). The Sequence Read Archive. *Nucleic Acids Res***
773 **39:D19–D21.**

774 **Leivar, P., and Monte, E. (2014). PIFs: Systems Integrators in Plant Development. *Plant Cell* **26**:56–78.**

775 **Leivar, P., Tepperman, J. M., Cohn, M. M., Monte, E., Al-Sady, B., Erickson, E., and Quail, P. H.**
776 **(2012). Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix**
777 **Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive**
778 **Transcriptional Network in *Arabidopsis*. *Plant Cell* **24**:1398–1419.**

779 **Levine, M., and Tjian, R. (2003). Transcription regulation and animal diversity. *Nature* **2003** **424**:6945**
780 ****424**:147–151.**

781 **Li, X.-Y., Thomas, S., Sabo, P. J., Eisen, M. B., Stamatoyannopoulos, J. A., and Biggin, M. D. (2011).**
782 **The role of chromatin accessibility in directing the widespread, overlapping patterns of**
783 **Drosophila transcription factor binding. *Genome Biol* **12**:R34.**

784 **Li, Y., Shi, W., and Wasserman, W. W. (2018). Genome-wide prediction of cis-regulatory regions**
785 **using supervised deep learning methods. *BMC Bioinformatics* **19**:202.**

786 **Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M., and Schmitz, R. J. (2017). Combining ATAC-seq**
787 **with nuclei sorting for discovery of cis-regulatory regions in plant genomes. *Nucleic Acids Res***
788 ****45**:e41–e41.**

789 **Lu, Z., Marand, A. P., Ricci, W. A., Ethridge, C. L., Zhang, X., and Schmitz, R. J.** (2019). The
790 prevalence, evolution and chromatin signatures of plant regulatory elements. *Nat Plants*
791 5:1250–1259.

792 **Lynch, M., and Conery, J. S.** (2000). The evolutionary fate and consequences of duplicate genes.
793 *Science (1979)* 290:1151–1155.

794 **Machanick, P., and Bailey, T. L.** (2011). MEME-ChIP: motif analysis of large DNA datasets.
795 *Bioinformatics* 27:1696–1697.

796 **Mahendrawada, L., Warfield, L., Donczew, R., and Hahn, S.** (2023). Surprising connections between
797 DNA binding and function for the near-complete set of yeast transcription factors. *bioRxiv*
798 Advance Access published 2023, doi:10.1101/2023.07.25.550593.

799 **Maher, K. A., Bajic, M., Kajala, K., Reynoso, M., Pauluzzi, G., West, D. A., Zumstein, K., Woodhouse,
800 M., Bubb, K., Dorrity, M. W., et al.** (2018). Profiling of Accessible Chromatin Regions across
801 Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New
802 Control Modules. *Plant Cell* 30:15–36.

803 **Matsuzaki, Y., Ogawa-Ohnishi, M., Mori, A., and Matsubayashi, Y.** (2010). Secreted Peptide Signals
804 Required for Maintenance of Root Stem Cell Niche in Arabidopsis. *Science (1979)* 329:1065–
805 1067.

806 **Nitta, K. R., Jolma, A., Yin, Y., Morgunova, E., Kivioja, T., Akhtar, J., Hens, K., Toivonen, J.,
807 Deplancke, B., Furlong, E. E. M., et al.** (2015). Conservation of transcription factor binding
808 specificities across 600 million years of bilateria evolution. *Elife* 2015.

809 **Noyes, M. B., Christensen, R. G., Wakabayashi, A., Stormo, G. D., Brodsky, M. H., and Wolfe, S. A.**
810 (2008). Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred
811 Recognition Sites. *Cell* 133:1277–1289.

812 **Ohno, S.** (1970). *Evolution by Gene Duplication*. Springer-Verlag Berlin Heidelberg.

813 **O'Malley, R. C., Huang, S. S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti,
814 A., and Ecker, J. R.** (2016). Cistrome and Epicistrome Features Shape the Regulatory DNA
815 Landscape. *Cell* 165:1280–1292.

816 **Orphanides, G., Lagrange, T., and Reinberg, D.** (1996). The general transcription factors of RNA
817 polymerase II. *Genes Dev* 10:2657–2683.

818 **Ou, J., Wolfe, S. A., Brodsky, M. H., and Zhu, L. J.** (2018). motifStack for the analysis of transcription
819 factor binding site evolution. *Nature Methods* 2018 15:1 15:8–9.

820 **Reece-Hoyes, J. S., Deplancke, B., Shingles, J., Grove, C. A., Hope, I. A., and Walhout, A. J. M.** (2005).
821 A compendium of *Caenorhabditis elegans* regulatory transcription factors: a resource for
822 mapping transcription regulatory networks. *Genome Biol* 6.

823 **Reiter, F., De Almeida, B. P., Stark, A., and Program, P.** (2023). Enhancers display constrained
824 sequence flexibility and context-specific modulation of motif function. *Genome Res Advance*
825 Access published March 20, 2023, doi:10.1101/GR.277246.122.

826 **Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., Adam, L., Pineda, O.,
827 Ratcliffe, O. J., Samaha, R. R., et al.** (2000). Arabidopsis transcription factors: Genome-wide
828 comparative analysis among eukaryotes. *Science (1979)* 290:2105–2110.

829 **Rinerson, C. I., Rabara, R. C., Tripathi, P., Shen, Q. J., and Rushton, P. J.** (2015). The evolution of
830 WRKY transcription factors. *BMC Plant Biol* 15:1–18.

831 **Roeder, R. G.** (1998). Role of General and Gene-specific Cofactors in the Regulation of Eukaryotic
832 Transcription. *Cold Spring Harb Symp Quant Biol* 63:201–218.

833 **Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S., and Honig, B.** (2009). The role of DNA shape
834 in protein-DNA recognition. *Nature* 461:1248–1253.

835 **Rushton, P. J., Macdonald, H., Huttly, A. K., Lazarus, C. M., and Hooley, R.** (1995). Members of a
836 new family of DNA-binding proteins bind to a conserved cis-element in the promoters of α -
837 Amy2 genes. *Plant Mol Biol* **29**:691–702.

838 **Schmitz, J. F., Zimmer, F., and Bornberg-Bauer, E.** (2016). Mechanisms of transcription factor
839 evolution in Metazoa. *Nucleic Acids Res* **44**:6287–6297.

840 **Seeman, N. C., Rosenberg, J. M., and Rich, A.** (1976). Sequence-specific recognition of double helical
841 nucleic acids by proteins. *Proceedings of the National Academy of Sciences* **73**:804–808.

842 **Shiu, S. H., Shih, M. C., and Li, W. H.** (2005). Transcription Factor Families Have Much Higher
843 Expansion Rates in Plants than in Animals. *Plant Physiol* **139**:18–26.

844 **Sielemann, J., Wulf, D., Schmidt, R., and Bräutigam, A.** (2021). Local DNA shape is a general principle
845 of transcription factor binding specificity in *Arabidopsis thaliana*. *Nature Communications* **2021**
846 **12**:1 **12**:1–8.

847 **Sijacic, P., Bajic, M., McKinney, E. C., Meagher, R. B., and Deal, R. B.** (2018). Changes in chromatin
848 accessibility between *Arabidopsis* stem cells and mesophyll cells illuminate cell type-specific
849 transcription factor networks. *The Plant Journal* **94**:215–231.

850 **Stracke, R., Werber, M., and Weisshaar, B.** (2001). The R2R3-MYB gene family in *Arabidopsis*
851 *thaliana*. *Curr Opin Plant Biol* **4**:447–456.

852 **Stracke, R., Favory, J.-J., Gruber, H., Bartelniewoehner, L., Bartels, S., Binkert, M., Funk, M.,**
853 **Weisshaar, B., and Ulm, R.** (2010). The *Arabidopsis* bZIP transcription factor HY5 regulates
854 expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. *Plant Cell*
855 *Environ* Advance Access published January 2010, doi:10.1111/j.1365-3040.2009.02061.x.

856 **Sullivan, A. M., Arsovski, A. A., Thompson, A., Sandstrom, R., Thurman, R. E., Neph, S., Johnson, A.**
857 **K., Sullivan, S. T., Sabo, P. J., Neri, F. V., et al.** (2019). Mapping and Dynamics of Regulatory
858 DNA in Maturing *Arabidopsis thaliana* Siliques. *Front Plant Sci* **10**:1434.

859 **Van de Peer, Y., Maere, S., and Meyer, A.** (2009). The evolutionary significance of ancient genome
860 duplications. *Nat Rev Genet* **10**:725–732.

861 **Wang, B., Luo, Q., Li, Y., Yin, L., Zhou, N., Li, X., Gan, J., and Dong, A.** (2019). Structural insights into
862 target DNA recognition by R2R3-MYB transcription factors. *Nucleic Acids Res* Advance Access
863 published November 16, 2019, doi:10.1093/nar/gkz1081.

864 **Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A., Drewe, P., Najafabadi,**
865 **H. S., Lambert, S. A., Mann, I., Cook, K., et al.** (2014). Determination and inference of
866 eukaryotic transcription factor sequence specificity. *Cell* **158**:1431–1443.

867 **Wilhelmsson, P. K. I., Mühlich, C., Ullrich, K. K., and Rensing, S. A.** (2017). Comprehensive Genome-
868 Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in
869 Streptophyte Algae. *Genome Biol Evol* **9**:3384–3397.

870 **Yadav, V., Kundu, S., Chattopadhyay, D., Negi, P., Wei, N., Deng, X.-W., and Chattopadhyay, S.**
871 (2002). Light regulated modulation of Z-box containing promoters by photoreceptors and
872 downstream regulatory components, COP1 and HY5, in *Arabidopsis*. *The Plant Journal* **31**:741–
873 753.

874 **Zhang, J.** (2003). Evolution by gene duplication: an update. *Trends Ecol Evol* **18**:292–298.

875 **Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers,**
876 **R. M., Brown, M., Li, W., et al.** (2008). Model-based analysis of ChIP-Seq (MACS). *Genome Biol*
877 **9**:1–9.

878 **Zhao, L., Peng, T., Chen, C.-Y., Ji, R., Gu, D., Li, T., Zhang, D., Tu, Y.-T., Wu, K., and Liu, X.** (2019). HY5
879 Interacts with the Histone Deacetylase HDA15 to Repress Hypocotyl Cell Elongation in
880 Photomorphogenesis. *Plant Physiol* **180**:1450–1466.

881

882