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Abstract 
 
Recent advances in spatial omics methods are revolutionising biomedical research by 
enabling detailed molecular analyses of cells and their interactions in their native state. As 
most technologies capture only a specific type of molecules, there is an unmet need to enable 
integration of multiple spatial-omics datasets. This, however, presents several challenges as 
these analyses typically operate on separate tissue sections at disparate spatial resolutions. 
Here, we established a spatial multi-omics integration pipeline enabling co-registration and 
granularity matching, and applied it to integrate spatial transcriptomics, mass spectrometry-
based lipidomics, single nucleus RNA-seq and histomorphological information from human 
prostate cancer patient samples. This approach revealed unique correlations between lipids 
and gene expression profiles that are linked to distinct cell populations and histopathological 
disease states and uncovered molecularly different subregions not discernible by morphology 
alone. By its ability to correlate datasets that span across the biomolecular and spatial scale, 
the application of this novel spatial multi-omics integration pipeline provides unprecedented 
insight into the intricate interplay between different classes of molecules in a tissue context. In 
addition, it has unique hypothesis-generating potential, and holds promise for applications in 
molecular pathology, biomarker and target discovery and other tissue-based research fields. 
 
 
Introduction 
 
Recent developments in spatial-omics technologies have revolutionised tissue-based 
research, enabling a deeper understanding of the cellular architecture of tissues, cell-cell 
interactions as well as the intricate relationship between molecular identity and tissue 
structure. These technologies find broad applications in studying normal tissue development1, 
as well as in deciphering complex diseases like neurodegenerative disorders2,3 and different 
types of cancer4–9. To investigate the various classes of molecules (RNA, proteins, 
metabolites, lipids) in a spatial context, different technologies are applied, including in situ 
hybridization, in situ sequencing and in situ RNA capturing followed by ex situ sequencing for 
spatial transcriptomics10–19 (ST), histochemistry using fluorescently labelled antibodies19–21 or 
genetically encoded fluorescent protein tags22,23 for spatial proteomics, and mass 
spectrometry imaging (MSI) to study the distribution of peptides, metabolites, and lipids24–29. 
 
The biological questions addressed by such platforms are often complex and involve 
molecular alterations at multiple levels of the gene expression cascade. As each of the spatial-
omics technologies often captures only a partial aspect of a single molecular layer in a tissue, 
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integration of spatial multi-omics (SMO) datasets that span across the biomolecular scale is 
essential to provide insight in the complex interplay between the different molecular layers and 
to better understand the intricacy of these biological processes, and their molecular drivers. 
Pipelines aiming to align and correlate these datasets encounter several obstacles, with the 
limited coverage of the molecular landscape being a prominent example. Moreover, distinct 
spatial technologies may not be compatible on a single tissue section, making the use of 
neighbouring tissue sections necessary30. As the structural organisation of tissues can differ 
between consecutive sections, and the experimental handling for the various platforms may 
result in tissue deformation, precise co-registration of adjacent datasets has proved difficult 
but is essential in order to align corresponding regions and prevent misinterpretation. This 
operation may be additionally complicated by the fact that many spatial technologies acquire 
data at different spatial resolutions, ranging from sub-cellular for microscopy-based 
technologies31,32 to 55 µm for the Visium ST platform33 and 1-100 µm for commercial MSI 
platforms34. Therefore, a granularity matching step is required to ensure that the spatial 
positioning of data points from the different modalities is reasonably equivalent. Finally, in 
spatial-omics studies, sensitivity, especially for detecting low-abundance molecules and 
achieving quantitative accuracy, poses further challenges. To address these limitations, 
spatial omics approaches can be complemented with bulk or single-cell omics technologies. 
Bulk-omics methods offer high coverage and sensitivity, enabling a more comprehensive and 
quantitative analysis of molecular profiles35, while single-cell omics provides insights into 
cellular heterogeneity within tissues, enhancing the resolution and sensitivity of spatial 
data30,36. 
 
Recent studies have used a variety of different omics integration strategies, including co-
registration and/or the use of a weighted nearest neighbour strategy to partially address the 
issues related to the combination of multiple spatial omics technologies8,9,37,38. Here, we have 
applied a novel spatial multi-omics pipeline (SMOx), which involves multi-point co-registration 
and Gaussian weighted granularity matching steps for more accurate data point matching, 
resulting in improved integration of various spatial omics modalities. Using this pipeline, we 
combined Visium ST (further referred to as ST) with MALDI-MSI coupled with post-ionisation 
(MALDI-2), which has increased sensitivity for detecting lipids compared to conventional 
MALDI39,40, and single-nucleus RNA sequencing (snRNA-seq) to perform cell-type 
deconvolution of ST data41 and high resolution pathology annotations. To explore the potential 
of this pipeline, we applied it to study human prostate cancer (PCa), which in view of its highly 
inter- and intra-tumoural heterogeneous nature42 is an ideal case study for the SMOx 
integration pipeline. In fact, PCa often exhibits multiple morphological disease states within a 
single tissue section, ranging from prostatic intraepithelial neoplasia (PIN) to various 
histological malignant states (ISUP grades) and cribriform, each representing distinct disease 
subtypes with unique biological characteristics and clinical outcomes43. Moreover, PCa 
development involves molecular changes across multiple omics classes. Besides alterations 
in genes and transcripts, prominent changes also occur in lipids, offering unique potential for 
novel therapeutic interventions44,45. Using PCa as a paradigm, we showcase the potential of 
our novel spatial multi-omics pipeline to uncover lipid-gene expression pairs that are linked to 
different cell populations and histopathological disease states not discernible by morphology 
alone and can aid in the annotation of histologically ambiguous regions. These findings 
illustrate the potential application of our data integration pipeline to diverse fields of tissue-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


based research, including molecular pathology and for the generation of novel research 
hypotheses. 
 
 
Results 
 
Establishment of a novel spatial multi-omics data integration pipeline (SMOx) and its 
application in prostate cancer 
With the aim to more comprehensively map the molecular heterogeneity within tissues and to 
better understand the interplay between different classes of molecules in a tissue context, we 
established a spatial multi-omics pipeline (SMOx) and applied it to the field of PCa (Fig. 1A). 
After collecting tumour and matching non-malignant biopsies from men that underwent a 
radical prostatectomy (n=8, Supplementary Table 1), 10 μm thick frozen tissue sections were 
cut. Neighbouring tissue sections were subjected to ST analysis using the Visium Spatial Gene 
Expression platform (n=16) and MALDI-2-MSI based lipidomics (n=16). From the ST analysis, 
we obtained curated expression data of 18,950 genes across 42,475 individual capture spots 
on the ST array slides (summarised across all samples). Only spots under the tissue sections 
were considered for downstream computational analysis. From the MSI data, peak picking 
identified 12,510 peaks across the samples. The average overall spectra of cancer and non-
cancer samples are presented in Supplementary Fig. 1. High-resolution digital H&E images 
of the MSI sections were annotated by two independent expert uro-pathologists. Additionally, 
we collected three 100μm thick cryo-sections and isolated nuclei for snRNA-seq (n=13) from 
the remaining tissue directly adjacent to the cryo-sections used for ST and MSI analysis, to 
enable the identification and mapping of distinct cell populations across the tissue by applying 
the ‘cell2location’ deconvolution algorithm46. 
To integrate the data from the ST and MSI spatial-omics modalities, which are generated on 
separate (neighbouring) tissue sections and are acquired at different spatial resolutions, the 
SMOx pipeline was designed to allow co-registration and granularity matching (Fig. 1B-C). As 
both ST and MSI routinely include H&E staining of tissue sections in their workflows47–49, we 
used the H&E-stained images to align the ST and MSI data. To facilitate cross-modality 
comparison and uncover inherent molecular patterns, the data from the different modalities 
were independently subjected to dimensionality reduction using uniform manifold 
approximation and projection (UMAP)50. The UMAP representation (i.e., mapped 3 
dimensional embeddings) of the MSI data51 was used to guide the co-registration with the 
respective post-MSI H&E image. Subsequently, the MSI H&E image was co-registered to the 
H&E image of the ST Visium slide. Alignment of ST data with the respective H&E histological 
images was done automatically using the Space Ranger pipeline (10X Genomics), eliminating 
the need for manual co-registration52. This strategy of using H&E-stained images to align ST 
and MSI data reduces the complex multimodal registration to a mono-modal one between their 
respective H&E-stained images, to which each modality has previously been co-registered, 
and removes the selection effect of registering to a template image. Subsequently, a shared 
spatial coordinate system was created by linking the MSI data with the ST data. This approach 
produces a readout that can be considered a “virtual section”, between the sections used for 
ST and MSI analysis (Fig. 1B). Following co-registering of MSI and ST data, we addressed 
the disparity in spatial scales of data acquisition points through granularity matching. In this 
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study, MSI was conducted at a spatial resolution (pixel size) of 30 µm, whereas the Visium 
assay has spot diameters of 55 µm with a 100 µm centre-to-centre distance between spots33. 
Consequently, each Visium spot corresponds to multiple MSI pixels with uneven amounts of 
coverage (Fig. 1C). To match the granularity of the spatial readouts, we employed Gaussian 
weighting to the MSI pixels close to each ST spot after registration53. This procedure resulted 
in the generation of a comprehensive aggregated MSI feature spectrum linked to each ST 
spot, ensuring synchronised spatial readouts between MSI and ST data (Fig. 1C). The 
resulting co-registered and matched MSI-ST data structure can be interpreted as a data frame 
consisting of matched readouts for each Visium spot. Within this data frame, each row 
represents a single matched spot, while the columns encompass distinct dataset information 
at that specific spot, such as gene expression, lipid content, pathology annotations, 
deconvoluted cell types, etc. Thus, this integrated spatial multi-omics pipeline could link 
transcript-lipid pairs with tissue features. 
 

 
Figure 1: Study design and overview of the spatial multi-omics integration pipeline (SMOx). A. Schematic 
representation of the various datasets generated on prostate cancer samples and the applied integrated spatial 
multi-omics workflow. B. Strategy for co-registration and integration of different spatial multi-omics data layers 
generated on consecutive tissue sections. To link ST data with MSI data, UMAP visualizations of different 
modalities were co-registered in two steps based on the haematoxylin and eosin (H&E) stainings of the respective 
slides and MSI data, and a UMAP visualisation of transformed MSI data was generated after granularity matching. 
C. Overview of the granularity matching step to bridge the scale gap between MSI and ST data. Spatial readouts 
were aligned, and Gaussian weighting was applied to generate a transformed MSI spot. 
 
 
Application of the SMOx pipeline to identify correlated transcript-lipid pairs linked with 
histological annotations 
Using our spatial multi-omics integration strategy, we explored the spatial correlation of 
transcripts and lipids in a PCa tissue section of a single patient (patient 929) as a proof of 
concept. The level of detail in the annotations created by the histopathologist on the digital 
H&E image, along with the transformation of annotations in the shared coordinate system, is 
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depicted in Fig. 2A. In this tissue section, five histologically distinct regions could be discerned: 
benign epithelium, stroma, PIN, tumour ISUP 3 and immune cells. When UMAP embeddings 
are projected onto tissue locations, similar patterns emerge among the distinct spatial 
modalities, indicating that despite the diverse nature of spatial data readouts (genes, lipids, 
etc.) (Fig. 2B), they all contain relevant molecular information reflecting the distinct 
histopathological features in the sample. 
To link the different levels of molecular information, we conducted correlation analysis 
assessing the relationship between individual transcripts and MSI features (most of which are 
lipids), along with their spatial localization in the tissue (Fig. 2C-D, Supplementary Fig. 2). 
Among the positively correlated lipid-transcript pairs (correlation coefficient over 0.65), we 
observed PC 34:2 [M+H]+ and TMEFF2 (a transmembrane proteoglycan with multiple roles in 
cancer54) as one of the most highly correlated pairs in regions annotated as tumour ISUP3. 
PIN included PE 40:6 [M+H]+ and AMACR (an established PCa marker55) as a highly 
correlated pair. LPE 16:0 [M+H]+ and NEFH (a neurofilament-encoding gene maintaining cell 
integrity) were identified in the benign epithelium region. In contrast, a notable spatial negative 
correlation (-0.631) was observed between the lipid SM 34:1;O2 [M+H]+ and the AGR2 gene 
(a disulphide isomerase gene family implicated in tumour metastasis56), with their expression 
detected in tumour ISUP 3 and PIN regions, respectively. Interestingly, several of the identified 
transcripts listed in Fig. 2C encode enzymes that are directly involved in lipid metabolism, 
including DEGS1 (a sphingolipid desaturase57), HPGD (a 15-hydroxyprostaglandin 
dehydrogenase associated with PCa risk58), AMACR (an enzyme involved in peroxisomal 
beta-oxidation of branched-chain fatty acids and one of the most widely used histological 
markers upregulated in PCa59), and ACSM1 (a medium chain Acyl-CoA Synthetase that is 
overexpressed in PCa60,61). Importantly, these genes are up-regulated in areas annotated by 
pathologists as PIN and tumour ISUP3, in comparison to the regions annotated as benign 
epithelium. Many other transcripts are not directly implicated in lipid metabolism but are known 
to have a cell type-specific expression pattern and are differentially expressed upon cancer 
development. These include transcripts of genes TMEFF2, KLK3 (encoding the prostate-
specific antigen biomarker), PCA3, AGR2, and NEFH. These observations suggest that 
transcript-lipid correlations are associated with disease state and specific cell populations, and 
may reveal functional interactions. 
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Figure 2. Integration of spatially resolved multi-omics reveals spatially correlated lipid-gene pairs in a 
prostate cancer sample. A. Highly detailed pathologist annotations of a representative prostate cancer sample 
(929_cancer) on the post-MSI H&E-stained tissue section and their spatial distribution projected on the shared 
coordinate system. B. UMAP representations of individual modalities including MS imaging data, ST data, 
morphological features extracted from pathology annotations, and cell types derived from snRNA-seq data after 
spot deconvolution. The top row represents a hyperspectral visualisation of the UMAP data on the shared 
coordinate system using the RGB colour scheme. The bottom row shows the scatter plots of the resulting 3-
dimensional UMAP embeddings for each modality. C. Hierarchically clustered heatmap of the correlation matrix 
between MSI features and ST data. D. Spatial visualisation of representative positively and negatively correlated 
lipid-transcript pairs in the 929-cancer sample.  
 
 
Identification of molecular expression patterns associated with histological 
annotations 
To further explore the alignment of MSI data and ST expression patterns with pathology 
annotations, we applied non-negative matrix factorisation (NMF) to extract correlated features 
from the individual modalities of the integrated spatial multi-omics dataset of sample 
929_cancer. The resulting correlation heatmap between MSI NMF components and pathology 
annotations demonstrated significant positive correlations for each pathological annotation 
(PIN, benign epithelium, tumour IUSP3 and stroma) except for immune cells (likely due to their 
greater cell type variability) (Fig. 3A top panel). The spatial distribution of these NMF 
components, along with pathology annotations within the common coordinate system are 
illustrated in Fig. 3B, accentuating the congruence between lipidome and histology. Similarly, 
significant positive correlations were observed between ST NMF components and the different 
annotated regions (including immune cells) (Fig. 3A bottom panel and Fig. 3B). For MSI 
NMF component 9, which highly correlates with PIN, the pseudo-spectrum of the biomolecular 
ion peaks that are involved in the expression of the MSI NMF component’s spatial patterns is 
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shown, along with the gene expression profile of the PIN-associated ST NMF component 13 
(Fig 3A). Integration of both spatial-omics modalities within the shared coordinate system and 
subsequent hierarchical clustering revealed strong correlations between specific NMF 
components of both modalities (Fig. 3C). Differentially expressed lipids and genes that 
contribute significantly to the molecular characteristics of the different annotated areas are 
listed in Fig. 3D. The high level of correlation provides further credence to a spatial relationship 
between readouts of the ST and MSI data, and overall agreement with the pathology 
annotations. 
 

 
Figure 3. Correlation between histological and molecular profiling. A. Heatmap showing correlations between 
MSI NMF components and the five histologically distinct regions from sample 929_cancer. A representative 
pseudospectrum for MSI NMF component 9 and the most enriched genes of the correlating ST component 13 are 
shown. B. Spatial visualisation of representative MSI NMF components (top panels) correlating with ST NMF 
components (bottom panels) for each histological feature (middle panel). C. Hierarchically clustered heatmap of 
the overall correlations between MSI NMF and ST NMF components. Numerical values correspond to the 
respective correlation coefficient of each MSI NMF – ST NMF pair. D. Heatmaps illustrating MSI features (mostly 
lipids) (left panel) and genes (right panel) exhibiting the most significant differential expression within each of the 
five histological regions in the 929_cancer sample. 
 
 
Linking lipids and transcripts to specific cell types in the spatial coordinate system 
Due to the granularity of the matched MSI-ST data set with a spatial resolution defined by the 
spatial-omics analysis techniques used (ST: 55 µm resolution; MSI 30 µm resolution), each 
spot in the spatial coordinate system corresponds to multiple cells, hampering the assignment 
of lipids and transcripts to specific cell types. To address this issue, we applied snRNA-seq-
based spot deconvolution using the ‘cell2location’ deconvolution algorithm46, based on 
snRNA-seq data from a set of 100 μm thick serial tissue sections neighbouring those utilised 
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for ST. The resulting UMAP clusters were annotated based on curated marker genes62–64, 
leading to the identification of 14 distinct cell types (Fig. 4A). Of note, the TC1 (Tumour Cell 
1) cell type was mainly enriched in both the tumour ISUP 3 and PIN region, whereas TC2 
(Tumour Cell 2) was linked mainly to the PIN region only (Fig. 4B-C). Interestingly, cells with 
a club cell-specific gene signature, which have recently been associated with PCa 
carcinogenesis63, localised to sub-regions within the PIN-annotated areas. Correlation 
analysis between MSI and ST data from spots enriched in specific cell types revealed unique 
lipid profiles associated with a cell type along with marker genes and enzymes involved in lipid 
metabolism, as illustrated or TC1 and TC2 cells, club cells and macrophages (Fig. 4D). This 
analysis revealed that ISUP 3-associated TC1 cells and PIN-associated TC2 cells correlated 
with long chain polyunsaturated phospholipids (mainly PE), with an additional enrichment for 
hexosylceramides (HexCer) in the TC2 cell component. Cholesteryl esters (CE), mainly 
identified as [2M+H]+ ions65 and known to accumulate in lipid droplets, were associated with 
club cells. Macrophage marker genes, like HLA-D genes66, LYZ67 and CXCL568, correlated 
best with ether lipids, CE and long polyunsaturated phosphatidylcholines (PC). 
Complementary gene signature analysis of lipid metabolism pathways revealed an overall 
high expression of genes linked to lipid metabolism pathways in luminal and TC2 cells, along 
with cell type-specific pathway activations (Fig. 4E). Examples include the upregulation of fatty 
acid biosynthesis and elongation in cancer cells (TC1 and/or TC2), steroid biosynthesis in 
luminal cells, and arachidonic acid metabolism in macrophages and mast cells, in line with 
expectations and data available in the literature44,69,70. Projection of these pathways in the 
UMAP representations confirmed these links and provided an additional layer of granularity, 
for instance revealing a specific subset of cells within the TC1 and TC2 clusters displaying 
elevated expression of genes involved in linoleic acid metabolism (Fig. 4F). These findings 
illustrate the benefit of linking lipids and transcripts to specific cell types in the spatial 
coordinate system. 
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Figure 4. Spot deconvolution reveals cell type specific transcriptional and lipidomic profiles. A. UMAP 
representation of annotated snRNA-seq clusters and spatial localisation of the main cell types in the spatial 
transcriptomics data after spot deconvolution using cell2location42. TC1: tumour cluster 1, TC2: tumour cluster 2. 
B. Dot plot displaying the enrichment (orange) and depletion (blue) of cell types within the regions demarcated by 
the pathologist. C. Dot plot illustrating the relative abundance of a specific cell type within each pathologically 
annotated region. D. MSI features (pink) and transcripts (purple) with the highest positive correlations with TC1, 
TC2, club cells and macrophages. E. KEGG enrichment of differentially expressed genes involved in lipid 
metabolism per annotated cell type based on the snRNA-seq data. Colours indicate mean up- (red) or down- (blue) 
regulation of the pathway, while colour intensity indicates significance level. F. UMAP representation of the 
enrichment of different lipid metabolism pathways per cell type. 
 
 
Integrated data analysis reveals molecular heterogeneity in neoplastic disease areas 
Whereas the spatial distributions of MSI NMF components and ST NMF components in 
sample 929_cancer overall matched well with the histological annotations, the region 
annotated as PIN by the pathologists, was captured by two NMF components in both 
modalities – MSI NMF component 9 and 18 and ST NMF components 13 and 15 (Fig. 5A-B). 
Additionally, snRNA-seq-based spot deconvolution revealed that one of the components of 
each modality (MSI NMF 9 and ST NMF 13) corresponded well with the spatial distribution of 
TC2 cells (Fig. 5C). The other component (MSI NMF component 18 and ST NMF component 
15) aligned with a specific subregion of PIN corresponding to the spatial distribution of 
epithelial club cells and macrophages. Examination of the H&E stainings of these latter regions 
confirmed the presence of a neoplastic gland-like structure. These observations underscore 
the potential of the integrated data analysis approach to reveal molecular heterogeneity in 
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neoplastic disease areas that might not be discernible through morphological examination 
alone. 

 
Figure 5. Integration of spatially resolved omics unveils molecular heterogeneity in PIN. A. Pathologist 
annotation of PIN in sample 929_cancer (highlighted in yellow). B MSI and ST NMF components correlating with 
the annotated PIN region in panel A. C. Localisation of TC2, club cells and macrophages based on snRNA-seq-
deconvoluted ST data. Inserts show H&E stainings of the indicated areas. 
 
 
Integrated spatial multi-omics aids in the histological annotation of morphologically 
ambiguous tissue areas 
Integrated SMOx analysis of the entire set of 8 PCa samples overall revealed a strong 
concordance with the pathologist’s annotations. Nevertheless, in several instances our 
integrated data-analysis pipeline (based on ST and MSI NMF components) suggested 
alternative histopathological assignments for areas in the tissues. This was for instance the 
case in sample 941_normal in which a region initially labelled as PIN exhibited closer 
molecular concordance with tumour ISUP4 (Fig. 6A-B). This observation was further 
supported by the snRNA-seq data, which indicated the presence of a population of TC1 cells. 
Furthermore, we observed a match between the top correlated MSI features, predominantly 
lipids, and genes of the ISUP 4-associated component with the top correlated MSI features 
and genes of the TC1 cell population (Fig. 6C). Re-examination of this region by the 
pathologist confirmed the presence of a micro-area of infiltrating prostate adenocarcinoma 
cells (lower inset box, Fig. 6A-B). Another ambiguous tissue area was identified in sample 
931_cancer, which, based on the H&E staining of the frozen tissue section was annotated by 
the pathologist as "other” (Fig. 6D). Based on the ST and MSI NMF components (the latter 
one showing the strongest spatial correlations), our integrated approach identified this region 
as a subcluster within the ISUP5 tumour region. snRNA-seq data deconvolution further 
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revealed the presence of two distinct tumour clusters, TC1 highly correlated with ISUP5 and 
TC2 correlated with the ambiguous region (Fig. 6E-F). Histopathological re-evaluation of this 
region assigned it as cribriform. These results highlight the potential of spatial multi-omics to 
aid in histopathological annotation of ambiguous tissue areas. 
 

 
Figure 6. Integrated spatial multi-omics supporting histological annotation of ambiguous tissue areas. A. 
Highly detailed pathologist annotations of a non-malignant prostate sample (941_normal) on the post-MSI H&E-
stained tissue section and their spatial distribution projected on the shared coordinate system. Inserts show H&E 
stainings of tumour ISUP 4 and a morphologically ambiguous region. B. Distributions of MSI NMF component 5, 
ST NMF component 0 and TC1 cell population based on snRNA-seq-deconvoluted ST data. Numerical values 
(0.63 and 0.89) correspond to the respective correlation coefficient of the MSI and ST NMF with the region 
annotated by the pathologists as tumour ISUP 4. C. Top correlated MSI features and genes of MSI NMF component 
5 and ST NMF component 0, respectively. D. Highly detailed pathologist annotations of a high-grade prostate 
cancer sample (931_cancer) on the post-MSI H&E-stained tissue section and their spatial distribution projected on 
the shared coordinate system. Inserts show H&E stainings of an area annotated by the pathologist as “other”. E. 
Distributions of MSI NMF component 0, ST NMF component 7 and TC1 cell population based on snRNA-seq-
deconvoluted ST data. Numerical values (0.51 and 0.47) correspond to the respective correlation coefficient of the 
MSI and ST NMF with the region annotated by the pathologists as tumour ISUP 5. F. Distributions of MSI NMF 
component 9, ST NMF component 5 and TC2 cell population based on snRNA-seq-deconvoluted ST data. 
Numerical values (0.61 and 0.49) correspond to the respective correlation coefficient of the MSI and ST NMF with 
the region annotated by the pathologists as “other”.  
 
 
Implementation of the SMOx workflow across the entire prostate cancer sample cohort 
reveals tumour-specific correlations between transcripts and lipids 
Having demonstrated the ability of the integrated SMOx pipeline to extract relevant information 
from multi-layered molecular expression patterns within a tissue sample, we expanded our 
analysis to the entire PCa cohort with additional Pearson correlation analysis. Examination of 
pairs of transcripts and MSI features with correlation coefficients exceeding 0.4 across all 16 
biopsies (comprising 8 cancer samples and 8 matching non-malignant samples), allowed us 
to identify pairs of transcripts and MSI features with a spatial distribution that either correlated 
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or anti-correlated throughout the cohort (Fig. 7A). These included well-established links i.e., 
between FASN expression and PC34:144, confirming the validity of this approach, as well as 
several novel links illustrating the hypothesis-generating potential of the SMOx pipeline. Next, 
Cohen’s d values were calculated between tissue types i.e., tumour versus non-tumour tissue 
(as annotated by pathologists on the H&E microscopy), aiming to detect transcript-MSI feature 
correlations that significantly changed between these tissue types. One key example is the 
MSMB - PE 40:2 [M+H]+ pair displaying an associated Cohen’s d value of 1.54, indicating a 
substantial effect size71, which in this case implies a considerable difference in spatial co-
expression between tumour and non-tumour samples. In fact, as illustrated by a line plot of 
correlation coefficients for the pair across the 16 biopsies (Fig. 7B) and the actual spatial 
distributions of the transcript and the lipid in the shared coordinate system of both tumour and 
non-tumour samples (Fig. 7C), these markers exhibited a clear spatial co-expression in non-
tumour samples, which was absent in the tumour samples (quantified with average correlation 
coefficients of approximately 0.5 and 0, respectively). Specifically, in the non-tumour samples 
a striking alignment was observed between the gene MSMB and lipid PE 40:2 [M+H]+, 
whereas in tumour samples, while MSMB continued to exhibit a robust spatial correlation, the 
lipid PE 40:2 [M+H]+ lost its correlation with the benign epithelial cells (highlighted in green). 
This spatial correlation between PE 40:2 with tumour regions was observed in the majority of 
tumour samples. While the precise function of this lipid remains elusive, MSMB has been 
previously shown to exhibit a higher expression in normal prostate tissue than in cancerous 
tissue72,73. These observations highlight the hypothesis-generating potential of our SMOx 
approach. 
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Figure 7. Implementation of the spatial multi-omic workflow across the entire prostate cancer sample 
cohort. A. Heatmap illustrating correlations between genes and MSI features, mostly lipids, where correlation 
coefficients greater than 0.4 are observed across the entirety of the sample cohort consisting of 16 biopsies (8 
cancer samples and 8 matching non-malignant samples). B. Line plot depicting the correlation coefficients for the 
gene/lipid pair MSMB/PE 40:2 [M+H]+ across the entirety of the sample cohort. C. Spatial distribution of the 
gene/lipid pair MSMB/PE 40:2 [M+H]+ observed across the eight cancer biopsies (upper section) and the 
corresponding non-malignant samples (lower section). Green polygons indicate regions predominantly composed 
of benign epithelial cells within the cancer samples. 
 
 
Discussion 
 
Spatial multi-omics is progressively establishing itself as a powerful tool to better understand 
molecular events and its interactions in a native tissue context. One of the key challenges 
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related to this approach is the integration of multiple layers of molecular information that are 
generally acquired using a range of technologies to optimally capture the molecular 
information in each layer. Although the ability to conduct diverse spatial approaches, including 
ST and MSI analyses on a single slide has recently been reported38, hitherto, most spatial 
multi-omics studies are performed on neighbouring tissue sections and generate spatial 
molecular maps with different spatial resolutions. These factors are further complicated by 
different tissue deformations due to technology-specific tissue processing, different inter-spot 
distances and offset of the spots. Our study, which integrates ST and MSI analysis aimed to 
overcome these hurdles by establishing a data-processing pipeline involving spatial co-
registration and granularity matching. Co-registration refers to the mapping of pixels between 
modalities and is a crucial step in multimodal imaging analysis. Registration of imaging 
datasets is typically contingent on shared anatomical structures but can be especially 
challenging when modalities have distinct characteristics, or if measurements are performed 
at vastly different spatial scales74. The former challenge is typically addressed by generating 
a number of representative images for each modality e.g., by manually selecting from the 
imaging datasets or by generating images that capture spatial trends in the data by 
dimensionality reduction methods. The latter, multi-scale challenge refers to the fact that a 
spatial data point, typically referred to as a pixel or voxel, in one modality can cover a different 
surface area from that in another modality. These areas can range in the order of magnitude 
from square nanometres to hundreds of square micrometres. This problem is receiving 
increasing attention in the spatial biology field, due to the increasing number and complexity 
of spatial omics applications75. A granularity matching step is required to make data points 
reasonably equivalent between different modalities, typically via an aggregation strategy such 
as interpolation8, averaging, or more advanced methods e.g., Gaussian smoothing53,76. In a 
recent spatial multi-omics study, combining MSI at 15 µm pixel size with multispectral 
immunofluorescence microscopy37, a two-step co-registration was used reporting subcellular 
accuracy and ROIs from the microscopy projected onto the MSI data, however no granularity 
matching step was reported. Another study combining MSI and ST using the Visium platform 
used a spatial resolution of 100 µm, corresponding to the largest modality used, when 
integrating their data, but do not report whether aggregation was used to account for capture 
areas not being distributed equally across three modalities9. Another study used a weighted 
nearest neighbour strategy that mechanistically paired Visium spots in the centre of one 50 
µm MSI pixel8. In contrast to these studies, we used a Gaussian approach that accounts for 
sample coverage per data acquisition area (Visium spot/MSI pixel). Together with our two-
step co-registration tool, a full data analysis pipeline was established that has the ability to 
deal with the mentioned hurdles in spatial multi-omics data integration.  
 
When applied to a set of clinical PCa samples, downstream integrated analysis revealed a 
strong spatial concordance amongst the individual modalities as seen in UMAP and NMF 
analysis. Importantly, agreement between the modalities in this combined approach allows 
more confidence in defining tissue profiles in spatial atlas approaches, assignment of 
molecularly heterogeneous regions not discernible by morphology, and potential uses for 
identifying missed cancerous regions e.g., in a diagnostic context. Using our approach to 
combine ST, MSI and snRNA-seq analysis on PCa samples, we were able to find lipid and 
transcript profiles that correlated to specific histological states and to specific cell populations. 
Based on these correlations between lipids and transcript profiles, we were able to assign 
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unique lipid profiles to specific cell types and disease states and to generate unprecedented 
insight into the heterogeneity of PCa pathology in the context of a native tissue.  
 
One striking example of the power of our approach was the discovery of a molecularly distinct 
profile in a PIN region based on both ST and MSI profiling, providing more confidence in the 
pathological characterisation. Integrated snRNA-seq-based deconvolution revealed the 
presence of club cells, which recently have been linked to the pathogenesis of PCa63. Although 
the clinical significance of this finding will have to confirmed, our observation of the presence 
of club cells in a specific pre-malignant histological structure, may point towards that region’s 
future potential to develop into adenocarcinoma and warrants further investigation.  
 
When applied to the entire cohort of PCa and matched benign samples, we found that spatial 
transcriptomics and spatial lipidomics data largely followed histomorphological patterns. In 
addition, combining the two analyses allowed us to identify genetic and lipid expression 
profiles corresponding to different cell populations and tissue states. Our integrated spatial 
multi-omics approach was able to identify transcript – MSI feature pairs that correlate or anti-
correlate throughout the cohort. Besides well-known associations, including the correlation 
between FASN and PC34:144, which provides validation for our approach, several new 
correlations were found that warrant future investigation. One striking example was the loss 
of co-expression of specific lipid-gene pairs such as PE 40:2 [M+H]+ and MSMB in cancer 
samples. While the role of MSMB as a secreted protein with decreased expression in 
cancerous tissue is well established72, the implications of a change in the abundance of 
correlating lipid currently remains unknown. Based on transcript – MSI feature pairs and 
snRNA-seq-based deconvolution of the entire cohort of samples our approach also discovered 
the presence of tumour cells in a histological region previously assigned as PIN and in a 
normal tissue section, demonstrating the ability of this approach to aid in pathological 
annotations. Taken together, these observations illustrate the potential of integrated spatial 
multi-omics approaches to reveal tissue heterogeneity and to generate new hypotheses as 
potential starting points for further investigation. Drawing biological conclusions from this 
concept study should be taken with care in view of the small number of samples that were 
measured and were selected based on morphological heterogeneity rather than for testing a 
specific hypothesis. One issue to be further resolved is the presence of batch effects77, 
restricting the comparison of multiple samples to correlation analysis on each sample 
individually rather than collectively. While various strategies have been proposed to alleviate 
this issue in both ST and MSI78, further method development is required to determine how to 
mitigate its effects. 
 
As spatial technologies are rapidly evolving and are continuously gaining sensitivity, molecular 
coverage and spatial resolution, flexible approaches to integrate different layers of spatial and 
bulk molecular information will become indispensable. Integration approaches, such as the 
one presented here, will be crucial to better understand the complex interactions between 
different classes of molecules in a spatial cellular context and to apply this knowledge in 
diverse fields such as biomarker or target discovery, molecular pathology, and automated 
tissue annotation. 
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Methods 
 
DATA ACQUISITION 
 
Sample collection 
 
Matched prostate tumour and normal samples were obtained from treatment naive high-risk 
PCa patients (advanced clinical stage and/or biopsy Gleason 8-10 and/or PSA ≥ 20 ng/mL) 
who underwent radical prostatectomy at University Hospitals Leuven, Belgium. This study was 
approved by the local Ethics Committee (approval number S54424) and followed the Code of 
Conduct for Responsible Use of Human Tissue for Research. All patients provided informed, 
signed consent. After surgery, 6 mm biopsy cores were extracted from the primary tumour site 
and a matching non-malignant biopsy was taken from the opposite side. The selection of 
biopsy cores was guided by a urologist and magnetic resonance imaging reports. Immediately 
after surgery, these biopsy cores were embedded in 3% carboxymethyl cellulose (CMC) 
(Sigma-Aldrich, cat.no C4888), snap-frozen in isopentane pre-chilled in liquid nitrogen, then 
stored at -80°C until further processing.  
 
For each prostate biopsy, 10μm thick cryo-sections were obtained at -20ºC using a Microm 
HM525 NX cryostat (Thermo Scientific), followed by H&E staining. Subsequently, two 
independent expert pathologists performed a thorough examination to verify the presence of 
tumours in the tumour samples. In this study, a cohort of 8 patients was selected based on 
detailed pathological information including classification, ISUP grade and morphological 
features present (see Supplementary Table 1 for patient-related information). Tissue blocks 
from the selected patients were subsequently checked for RNA quality. RNA was isolated from 
ten 10µm sections from the selected tissue blocks using Direct-zol RNA Miniprep (Zymo 
Research, cat.no. R2050), and RIN score was determined using a Bioanalyzer RNA 6000 
Nano kit (Agilent, cat.no 5067-1511) in combination with the Agilent Bioanalyzer software. All 
samples had a RIN > 7. 10μm thick sections were collected on ITO-coated glass slides (Delta 
Technologies, Loveland, USA) to enable matrix-assisted laser desorption/ionisation (MALDI) 
MSI analysis, and adjacent tissue sections of 10μm was mounted onto pre-equilibrated 10x 
Genomics Visium Gene Expression slides (10x Genomics, Pleasanton, CA, USA) for ST 
analysis. Finally, three to five tissue sections with a thickness of 100μm were collected in a 
pre-cooled centrifuge tube for subsequent single-nuclei RNA sequencing (snRNA-seq) 
analysis. 
 
Spatial transcriptomics sample preparation and data acquisition 
 
Tissue preparation for Visium ST analysis was performed according to the Tissue Preparation 
Guide (CG000240 rev C, 10x Genomics), except for embedding in 3% CMC which was 
conducted to stabilise the tissue for both ST and MSI analysis. Methanol fixation, H&E staining 
and imaging were performed according to the recommended protocol (CG000160 rev B, 10x 
Genomics), and subsequent cDNA and library preparation was performed according to the 
Visium Spatial Gene Expression Reagent Kit User guide (CG000239 rev D, 10x Genomics). 
The optimal tissue permeabilization time was determined upfront to be 20 minutes, following 
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the Visium Spatial Gene Expression Reagent Kit - Tissue Optimization User guide (CG000238 
rev A, 10x Genomics). Final libraries were sequenced to at least 50.000 reads/covered spot 
using a NextSeq2000 platform (Illumina, San Diego, CA, US).  
 
Mass spectrometry imaging sample preparation and data acquisitions 
 
Tissue sections were coated in 2,5-dihydroxybenzoic acid (DHB, AK Scientific, CA, USA) 
matrix using a sprayer robot (TM-Sprayer, HTX Technologies, LLC, Chapel Hill, NC, USA). 
DHB was dissolved in a 1:1 mixture of methanol:chloroform (v:v) at a concentration of 20 
mg/mL. 12 layers of matrix solution were deposited using a flow rate of 0.12 mL/min, 10 psi of 
N2 pressure, nozzle temperature of 30 °C, and a 1200 mm/min velocity. 
All data was acquired using an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific 
GmbH, Bremen, Germany) coupled to an intermediate pressure MALDI source (Spectroglyph 
LLC, WA, USA) as described previously79. A frequency tripled Nd:YLF laser (Explorer One, 
Spectra Physics, Mountain View, CA) emitting at 349 nm operating at 300 Hz was used for 
MALDI. The laser was operated using a diode current of 1.80 A and pulse energy fine-tuned 
using an external attenuator (PowerXP, Altechna, Vilnius, Lithuania) positioned immediately 
in front of the laser to yield a post-attenuation pulse energy of 1.2 µJ. A frequency quadrupled 
laser Nd:YAG laser emitting at 266 nm and operating at 300 Hz (NanoDPSS, Litron Lasers, 
Warwickshire, England) was used for laser post-ionisation (MALDI-2). This setup has been 
described in detail previously80. MALDI-2 laser pulse energy was adjusted using the internal 
attenuator to be 600 µJ just prior to entering the ion source. Laser pulse energy measured 
using a calibrated energy sensor (QE12HR-H-MB-D0, Gentec-EO, Quebec, Canada). Both 
lasers were externally triggered using a pulse/delay generator (QC9200, Quantum 
Composers, Bozeman, Montana) such that the time delay between the MALDI and MALDI-2 
laser pulse was 20 µs. The mass spectrometer was operated in positive ion mode using an 
ion injection time of 250 ms, automatic gain control turned off, m/z range 350-2000 and a 
nominal mass resolution of 120,000 @ m/z 400. The pixel size was 30 µm. 
All raw files were first recalibrated with Thermo Scientific Xcalibur RecalOffline using ion 
signals of [Vitamin E]+  at m/z 430.38053,  [PC(34:1)+K]+  at m/z 798.54096 and a background 
PDMS peak at m/z 371.10124. Data was then converted to imzML format using Image Insight 
software (Spectroglyph LLC, Kennewick, WA, USA). 
 
Tissue Staining and Histopathology Annotations 
 
Tissue staining using H&E was conducted on tissue sections following MSI analysis. The 
matrix was first removed from the slide by rinsing in methanol. For the H&E staining, the glass 
slides were immersed in 95% ethanol, 70% ethanol and H2O for 2 minutes each and then 
immersed in haematoxylin for 3 minutes. Slides were then washed with running tap water for 
3 minutes and immersed in eosin for 30 seconds following another washing step with water 
for 3 minutes and immersion in 100% ethanol for 1 minute and then in xylene for 30 seconds. 
The tissues were air-dried and mounted with coverslips. Optical images were acquired using 
a ZEISS Axio Scan.Z1 Slide Scanner (Carl Zeiss AG, Jena, Germany) with 40x objective, pixel 
size 0.22 µm* 0.22 µm. The files were exported as .TIFF images. 
The digitalized H&E images were annotated and verified by prostate cancer specialists from 
the Department of Pathology, University Hospitals Leuven and Weill Cornell Medical College, 
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in a blinded fashion using the web-based annotation tool ‘Annotation studio’ (Aspect Analytics 
NV, Genk, Belgium). Pathologists annotated the whole slides in detail by placing 14 different 
labels 'Inflammatory infiltrate', 'Normal epithelium', 'Stroma', 'Necrosis', 'Atrophy', 'Cribriform', 
'PIN', 'Nerve', 'Tumour ISUP 5', 'Tumour ISUP 4', 'Tumour ISUP 3', 'Tumour ISUP 2', 'Tumour 
ISUP 1', and 'Other'. 
 
Single cell RNA sequencing sample preparation and data acquisition 
 
Tissue sections (2-3x100 µm) adjacent to those used for spatial transcriptomics and lipidomics 
sections were collected in a microcentrifuge tube and subjected to single nuclei dissociation. 
For this, 0.3mL Tween with Salts and Tris (TST) buffer (96mM NaCl (Sigma-Aldrich, cat.no. 
59222C), 10mM Tris-HCl pH 7.5 (ThermoFisher, cat.no. 15567027), 1mM CaCl2 (Merck, 
cat.no. 21115), 21mM MgCl2 (Sigma-Aldrich, cat.no M1028), 0.03% Tween-20 (Biorad, cat.no 
1662404), 0.01% BSA (New England Biolabs, cat.no B9000S) and 0.2U/µl RNAsin (Promega, 
cat.no N2615)) were added to the sections and the tissue was cut into small pieces using 
scissors. The tissue was subsequently transferred to a KIMBLE Dounce tissue grinder (Sigma-
Aldrich, cat.no D8938), together with 0.7mL TST that was used to wash the original tube. The 
tissue was homogenised by 10 strokes of the large clearance pestle and 10 strokes of the 
small clearance pestle. The homogenate was subsequently filtered using a 40µm cell strainer 
(pluriSelect, cat.no. 43-50040-51) and the tissue grinder and filter were washed with Salts and 
Tris (ST) buffer (96mM NaCl (Sigma- Aldrich, cat.no 59222C), 10mM Tris-HCl pH 7.5 
(ThermoFisher, cat.no 15567027), 1mM CaCl2 (Merck, cat.no. 21115), 21mM MgCl2 (Sigma-
Aldrich, cat.no M1028) and 0.2U/µl RNAsin (Promega, cat.no. N2615)). Filtered nuclei were 
pelleted twice for 5 minutes at 500g at 4ºC, first followed by resuspension in 500 µl ST buffer, 
and second followed by resuspension in 50µl of Chromium loading (CL) buffer (PBS + 0.04% 
BSA + 1U/µl Sigma Protector RNase Inhibitor (Millipore Sigma, cat.no. 3335399001). Nuclei 
were counted using a PhotonSlide™ (Logos Biosystems, South Korea) with Acridine Orange 
& Propidium Iodide Cell Viability assay (Westburg, cat.no. LB F23001) on a LUNA-FL™ Dual 
Fluorescence Cell Counter (Logos Biosystems). Nuclei were counted as the ‘dead’ cell 
fraction, and the suspension was diluted to ~1.000.000 nuclei/mL in CL buffer. 
Single nuclei suspensions were used for single-nuclei gene expression analysis using the 
Chromium Next GEM Single Cell 3’ Reagent Kits v3.1, according to the user guide (CG000315 
Rev C). 7000-8000 nuclei were loaded per sample, and final libraries were sequenced to at 
least 25.000 reads/cell using a NextSeq2000 platform (Illumina, San Diego, CA, US). 
 
 
DATA PREPROCESSING 
 
Spatial transcriptomics data pre-processing 
 
FASTQ-files were mapped to the GRCh38 human reference genome and spatially projected 
using Space Ranger v1.1.0 (10x Genomics). Before merging the datasets, ambient RNA was 
removed using an adjusted version of SpotClean v1.1.1 where all relevant genes are 
maintained81. Next Scanpy v.1.9.1 was used for quality control and processing82. Spots with 
less than 700 genes and 1000 reads were excluded, while genes were filtered for expression 
in more than 100 spots. The Scanpy toolkit was used to perform downstream processing per 
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sample, including normalisation with the Scran R package (v1.26.1), log transformation and 
variable gene detection. The number of significant principal components for Leiden clustering 
and UMAP dimensionality reduction was determined using bootstrapping with a maximum of 
30 components. Clustering resolutions ranging from 0.1-1.0 were assessed for stability with 
steps of 0.1 using clustree v0.4.283.  
 
Spatial lipidomics data preprocessing 
 
The mass spectrometry imaging data was preprocessed by performing TIC normalization, 
peak picking and subsequent rebinning. Peak picking was performed on the mean spectrum 
across all datasets. Peaks in the mean spectrum with an intensity below 0.005% of the base 
peak were discarded, resulting in a total of 12510 retained peaks. Intensities were binned per 
spectrum using a 5 ppm window around the selected peaks. 
 
Spatial multi-omics integration pipeline 
 
As the ST and MSI data were acquired from two serial sections, the spatial lipidomics and 
transcriptomics data were indirectly registered to each other by their respective H&E 
microscopy images. This strategy of co-registering multiple sections via one proxy section 
(i.e., microscopy) is inevitable in applications where multiple sections are involved. Before co-
registration, representative images from the MSI data were generated for guiding the later 
registration step. These representative images were created via applying dimensionality 
reduction methods, such as NMF and UMAP. The MSI data was co-registered with its 
respective H&E microscopy images via a non-rigid registration workflow84 (Aspect Analytics 
NV). Next, the MSI-slide H&E was co-registered to the H&E from the ST Visium slide. No 
additional co-registration is required to link the ST data and ST-slide microscopy as their 
spatial reference is inherent to the Visium ST data format. Finally, the MSI was directly linked 
with the ST data via a shared spatial coordinate system. MSI data was acquired at a spatial 
resolution (pixel size) of 30 µm, whereas the ST data was obtained with spot diameters of 55 
µm. Multiple MSI pixels were aggregated into a single representative spectrum to match the 
ST spot via a Gaussian weighting algorithm53. 
 
Morphological feature extraction from microscopy data 
 
Morphological features from high resolution H&E microscopy image of the MSI section were 
extracted using a pre-trained model that was adapted originally from the SimCLR model 
introduced by Chen et al85. The model tries to maximize the agreement between two 
stochastically augmented views of the same image via a contrastive loss function. Ciga et al. 
later applied this SimCLR model with minor modifications and pre-trained it on 57 multi-organ 
histopathology datasets without any labels86. These 57 histopathology datasets contained 
microscopy images with various types of staining and resolutions, which helped the model 
learn features with better quality. We applied this pre-trained model on high-resolution H&E-
stained microscopy data, acquired at a 40x magnification, and extracted the morphological 
features using overlapping windows of 512 × 512-pixel patches of the image centred on each 
spot. Thus, each patch covers approximately 128×128 µm2, which is similar in size to the 
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patches extracted from histopathology datasets that the model was pre-trained on by Ciga et 
al86. 
 
Dimensionality reduction via non-negative matrix factorization 
 
We applied NMF to reduce the high dimensionality of our MSI and ST data. NMF has been 
widely used in both fields87–90 as it has the non-negativity constraint and can generate 
interpretable parts-based representation. We used NMF to get a more in-depth understanding 
of each modality in a fully unsupervised manner, based on their resulting distinct spatial 
distributions and associated spectral or gene expressions. In short, NMF factorizes the matrix 
X into two non-negative matrices X=WH, where W represents the loading matrix and H is the 
score matrix which represents the data in lower dimensions. For example, in the case of MSI 
data, the lipid spectral signature of each pixel can be approximated by the additive linear 
combination of the column vector (spectral basis element) from W, weighted by H, which 
describes the contribution of each basis element to the spectrum at each pixel.  We 
implemented NMF by the Python package sklearn.decomposition.NMF. As both MSI and ST 
data are known to follow Poisson distribution, we used Kullback–Leibler divergence (KL-NMF) 
as the cost function to incorporate Poisson noise. Multiplicative Update was used as the 
solver. The number of components was selected as 20. 
 
Correlation analysis 
 
We applied Pearson correlation by Python package numpy.corrcoef and scipy.stats.pearsonr 
to measure the relationship between two datasets. The output correlation coefficient ranges 
from -1 to 1 with 0 implying no correlation. Correlations of -1 or 1 represent an exact linear 
relationship (negative or positive). 
 

Cohen’s d 
 
We calculated the Cohen’s d value for gene-lipid correlations across different tissue types. 
Cohen’s d is defined as the difference between two means divided by the pooled standard 
deviation for the data. The resulting Cohen’s d values were ranked to find the most different 
gene-lipid correlations between normal and tumour tissue types. Using this approach, a set of 
changes in correlation were identified. We firstly calculated the Cohen’s d value for gene-lipid 
correlations across different tissue types via computing their mean correlations in 8 tumour 
samples and 8 ‘normal’ samples separately. 
 
Processing of the single-nuclei RNA-sequencing data and cell type deconvolution 
 
FASTQ-files were mapped to the GRCh38 human reference genome with Cell Ranger v6.1.2 
(10x Genomics). Before merging the datasets, ambient RNA was removed using SoupX91, 
while scDblFinder92 was used to indicate doubles. Next Scanpy v.1.9.1 was used for quality 
control and processing82. Only cells with the following criteria were considered for further 
analysis: more than 500 uniquely expressed genes, less than 10% of the UMI counts mapping 
to mitochondrial sequences and less than 5% of the UMI counts assigned to ribosomal genes. 
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All genes that were not expressed in at least 100 cells were not considered in the downstream 
analysis. The Scanpy toolkit was used to perform downstream processing per sample, 
including normalisation, log transformation and variable gene detection. The number of 
significant principal components for Leiden clustering and UMAP dimensionality reduction was 
determined using bootstrapping with a maximum of 60 components. Clustering resolutions 
ranging from 0.1-1.0 were assessed for stability with steps of 0.1 using clustree v0.4.283. Cell 
types and states were assigned to the clusters using marker genes obtained from the 
PanglaoDB93 database (version of 27/03/2020), the canonical markers from Song et al.63 and 
the NMF signatures obtained from the analysis of matching ST samples. Copy-number 
landscapes were inferred from the transcriptomic data with inferCNV94 v.1.3.3 to validate 
clusters annotated as tumorigenic. Integration of the samples was performed in a semi-
supervised manner using scANVI95. First the transcriptome data was integrated using scVI96 
(v.0.14.5, n_hidden=128, n_latent=50, n_layers=2, dispersion='gene-batch') with correcting 
batch effects and removing unwanted source of variations (total counts, percent mitochondrial 
genes, and percent ribosomal genes for ‘continuous_covariate_keys’). After training the model 
for 400 epoch, scANVI using the cluster labels obtained at single-cell level, was trained for an 
additional 10 epochs. The integrated latent embedding generated by scANVI was used for 
downstream analysis (clustering and visualisation). For gene-level analyses, uncorrected 
counts were used. Spot deconvolution was performed using the integrated single-nuclei data 
per patient and Cell2Location46. The lipid metabolism gene sets of the KEGG pathway 
database97 and the ‘score genes’ function of scanpy were used to asses pathway activities. 
 
Lipid Annotation/Identification 
 
Lipids were annotated with mass accuracy of 3 ppm based on the LipidMaps guidelines on 
shorthand notation for lipid structures published by Liebisch et al.98,99 For  the 
glycerophospholipids (GPL), the following shorthand notations of lipid classes were used: PC 
– phosphatidylcholines, LPC – lysophosphatidylcholines, PC O – phosphatidylcholine ethers, 
PC P – phosphatidylcholine plasmalogens, PE – phosphatidylethanolamines, LPE –
lysophosphatidylethanolamines, PE O – phosphatidylethanolamine ethers, PE P – 
phosphatidylethanolamine plasmalogens, PS – phosphatidylserines, PI – 
phosphatidylinositols. For the sphingolipids (SPL), the following class name abbreviations 
were used: Cer – ceramides, SM – sphingomyelins, and Hex(n)Cer – hexosyl ceramides, 
where n refers to the number of hexosyl units. Cholesterol is referred to as ‘Chol’, cholesteryl 
esters as CE, acylcarnitines as CAR, monoacylglycerols as MG, and diacylglycerols as DG. 
Lipids are annotated at the lipid species level, namely the lipid class abbreviation is followed 
by a total number of carbons in fatty acyl(s) rest(s), colon, and total number of double bonds 
in fatty acyl rest(s). For example, PC 36:3 refers to phosphatidylcholine with a total number of 
carbons in both fatty acyls equal to 36 and total number of double bonds equal to 3. The same 
principle was used for annotation of signals corresponding to sphingolipids, but additionally 
the total number of oxygen was indicated after semi-colon, for example, SM 36:2;O2 refers to 
a sphingomyelin with sum composition of carbon atoms in N-linked fatty acyl rest and 
sphingoid base of 36, the number of double bonds equal to 2, and total number of O-atoms 
equal to 2. CE 16:0 means cholesteryl ester with palmitic acid attached to cholesterol via an 
ester bond. In MALDI-2 mode cholesteryl esters form dimers as showed recently by Bowman 
et al.65 For m/z values annotated as dimers of cholesteryl esters, the following shorthand 
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notations were used: 2CE for cholesteryl ester dimer, followed by total number of carbons in 
both fatty acyls, colon, and total number of double bonds in both fatty acyls e.g., 2CE 38:4. 
 
 
ACKNOWLEDGEMENT  
 
We thank all patients that participated in this study. 
WZ was supported by a Baekeland PhD grant from Flanders Innovation and Entrepreneurship 
(VLAIO) - HBC.20192204. XS is a recipient of a PhD fellowship (SB/1S49218N) from the 
Research Foundation – Flanders (FWO) and was in part supported by Opening the Future 
(OtF). SRE acknowledges support from the Australian Research Council (FT190100082). TS 
acknowledges support through the Australian Government Research Training Program 
Scholarship. SV and VdL were sponsored by an FWO PhD Followship strategic basic research 
(1S93320N and 1157918N, respectively). KV, SK and TV are supported by KU Leuven 
(IDN/19/039, Opening the Future (OtF)). This work was supported by a grant from the Belgian 
Foundation Against Cancer (STK), a Focus Group grant from the LKI Fund for Innovative 
Cancer Research (FIKO), the KU Leuven Opening the Future campaign, KU Leuven 
Incubation financing Lipometrix, a grant PRISMO from the Flemish Resilience Plan, FWO-
EOS projects 30837538 (DECODE), G0F6718N (SeLMA), FWO-SBO projects  S001623N 
(LIPOMACS) and S005319N, KU Leuven Research Fund projects C14/21/095, BOF/23/064, 
C16/15/059, C3/19/053, C24/18/022, C3/20/117, C3I-21-00316), US-DOD project W81XWH-
19-1-0566, Industrial Research Fund (Fellowships 13-0260, IOFm/16/004) and several 
Leuven Research and Development bilateral industrial projects, Infrastructure projects 
TOP/23/014, IO12220N and  I013218N, TBM Project T001919N; PhD Grant (SB/1SA1319N), 
the Flanders AI Research Program, VLAIO CSBO (HBC.2021.0076), Baekeland PhD 
(HBC.20192204), European Research Council under the European Union’s Horizon 2020 
research and innovation programme (ERC Adv. Grant grant agreement No 885682) and EU 
Interreg EMR23 EURLIPIDS, Stand up to Cancer / Kom op tegen Kanker - the Flemish cancer 
society, CM (Christelijke Mutualiteit), and private donations. Figure 1 was created with 
BioRender.com. 
 
  
References 
 
 1. Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the 

Developing Human Heart. Cell 179, 1647-1660.e19 (2019). 
2. Chen, W.-T. et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s 

Disease. Cell 182, 976-991.e19 (2020). 
3. Lee, S. et al. APOE modulates microglial immunometabolism in response to age, amyloid 

pathology, and inflammatory challenge. Cell Rep. 42, 112196 (2023). 
4. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored 

landscape of heterogeneity. Nat. Commun. 9, 2419 (2018). 
5. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates 

tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell 
Carcinoma - PubMed. https://pubmed.ncbi.nlm.nih.gov/32579974/. 

7. A single-cell and spatially resolved atlas of human breast cancers | Nature Genetics. 
https://www.nature.com/articles/s41588-021-00911-1. 

8. Ravi, V. M. et al. Spatially resolved multi-omics deciphers bidirectional tumor-host 
interdependence in glioblastoma. Cancer Cell 40, 639-655.e13 (2022). 

9. Sun, C. et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling 
and interactions in gastric cancer. Nat. Commun. 14, 2692 (2023). 

10. Visualization and analysis of gene expression in tissue sections by spatial 
transcriptomics - PubMed. https://pubmed.ncbi.nlm.nih.gov/27365449/. 

11. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. 
Nat. Biotechnol. 38, 586–599 (2020). 

12. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA 
nanoball-patterned arrays. Cell 185, 1777-1792.e21 (2022). 

13. Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide 
expression at high spatial resolution. Science 363, 1463–1467 (2019). 

14. Liu, Y. et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic 
Barcoding in Tissue. Cell 183, 1665-1681.e18 (2020). 

15. In situ sequencing for RNA analysis in preserved tissue and cells | Nature Methods. 
https://www.nature.com/articles/nmeth.2563. 

16. Spatially resolved, highly multiplexed RNA profiling in single cells - PMC. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662681/. 

17. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA 
profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014). 

18. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial 
transcriptomics. Nature 596, 211–220 (2021). 

19. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell 
biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). 

20. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 
(2015). 

21. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a 
primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022). 

22. Arsić, A., Hagemann, C., Stajković, N., Schubert, T. & Nikić-Spiegel, I. Minimal 
genetically encoded tags for fluorescent protein labeling in living neurons. Nat. Commun. 
13, 314 (2022). 

23. Zhao, N. et al. A genetically encoded probe for imaging nascent and mature HA-tagged 
proteins in vivo. Nat. Commun. 10, 2947 (2019). 

24. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: 
localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 
(1997). 

25. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. 
Nat. Metab. 4, 1109–1118 (2022). 

26. Dewez, F. et al. MS Imaging-Guided Microproteomics for Spatial Omics on a Single 
Instrument. Proteomics 20, e1900369 (2020). 

27. Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. 
Nat. Biotechnol. 40, 1231–1240 (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Ellis, S. R. et al. Automated, parallel mass spectrometry imaging and structural 
identification of lipids. Nat. Methods 15, 515–518 (2018). 

29. Anderson, D. M. G. et al. Lipid Landscape of the Human Retina and Supporting Tissues 
Revealed by High-Resolution Imaging Mass Spectrometry. J. Am. Soc. Mass Spectrom. 
31, 2426–2436 (2020). 

30. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for 
single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023). 

31. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. 
Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 
(2015). 

32. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA 
seqFISH+. Nature 568, 235–239 (2019). 

33. Spatial Gene Expression. 10x Genomics https://www.10xgenomics.com/products/spatial-
gene-expression. 

34. Porta Siegel, T. et al. Mass Spectrometry Imaging and Integration with Other Imaging 
Modalities for Greater Molecular Understanding of Biological Tissues. Mol. Imaging Biol. 
20, 888–901 (2018). 

35. Köfeler, H. C. et al. Recommendations for good practice in MS-based lipidomics. J. Lipid 
Res. 62, (2021). 

36. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic 
inference of cell type topography. Commun. Biol. 3, 1–8 (2020). 

37. Goossens, P. et al. Integrating multiplex immunofluorescent and mass spectrometry 
imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab. 
34, 1214-1225.e6 (2022). 

38. Vicari, M. et al. Spatial Multimodal Analysis of Transcriptomes and Metabolomes in 
Tissues. 2023.01.26.525195 Preprint at https://doi.org/10.1101/2023.01.26.525195 
(2023). 

39. Soltwisch, J. et al. Mass spectrometry imaging with laser-induced postionization. Science 
348, 211–215 (2015). 

40. Ellis, S. R., Soltwisch, J., Paine, M. R. L., Dreisewerd, K. & Heeren, R. M. A. Laser post-
ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced 
MALDI-MS imaging of lipids. Chem. Commun. 53, 7246–7249 (2017). 

41. Sutton, G. J. et al. Comprehensive evaluation of deconvolution methods for human brain 
gene expression. Nat. Commun. 13, 1358 (2022). 

42. Carm, K. T. et al. Interfocal heterogeneity challenges the clinical usefulness of molecular 
classification of primary prostate cancer. Sci. Rep. 9, 13579 (2019). 

43. van Leenders, G. J. L. H. et al. The 2019 International Society of Urological Pathology 
(ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 
44, e87–e99 (2020). 

44. Butler, L. M. et al. Lipidomic Profiling of Clinical Prostate Cancer Reveals Targetable 
Alterations in Membrane Lipid Composition. Cancer Res. 81, 4981–4993 (2021). 

45. Mutuku, S. M. et al. Unravelling Prostate Cancer Heterogeneity Using Spatial 
Approaches to Lipidomics and Transcriptomics. Cancers 14, 1702 (2022). 

46. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial 
transcriptomics. Nat. Biotechnol. 40, 661–671 (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


47. Salmén, F. et al. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling 
in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018). 

48. Walch, A., Rauser, S., Deininger, S.-O. & Höfler, H. MALDI imaging mass spectrometry 
for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130, 
421–434 (2008). 

49. Kaya, I. et al. Histology-Compatible MALDI Mass Spectrometry Based Imaging of 
Neuronal Lipids for Subsequent Immunofluorescent Staining. Anal. Chem. 89, 4685–4694 
(2017). 

50. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 
(2020). 

51. Smets, T. et al. Evaluation of Distance Metrics and Spatial Autocorrelation in Uniform 
Manifold Approximation and Projection Applied to Mass Spectrometry Imaging Data. Anal. 
Chem. 91, 5706–5714 (2019). 

52. What is Space Ranger? -Software -Spatial Gene Expression -Official 10x Genomics 
Support. https://support.10xgenomics.com/spatial-gene-
expression/software/pipelines/latest/what-is-space-ranger. 

53. Van de Plas, R., Yang, J., Spraggins, J. & Caprioli, R. M. Image fusion of mass 
spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. 
Nat. Methods 12, 366–372 (2015). 

54. Masood, M., Grimm, S., El-Bahrawy, M. & Yagüe, E. TMEFF2: A Transmembrane 
Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers 12, (2020). 

55. Rubin, M. A. et al. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for 
prostate cancer. JAMA 287, 1662–1670 (2002). 

56. Bu, H. et al. The anterior gradient 2 (AGR2) gene is overexpressed in prostate cancer 
and may be useful as a urine sediment marker for prostate cancer detection. The Prostate 
71, 575–587 (2011). 

57. Voelkel-Johnson, C., Norris, J. S. & White-Gilbertson, S. Interdiction of Sphingolipid 
Metabolism Revisited: Focus on Prostate Cancer. Adv. Cancer Res. 140, 265–293 
(2018). 

58. Qi, X., Wang, Y., Hou, J. & Huang, Y. A Single Nucleotide Polymorphism in HPGD Gene 
Is Associated with Prostate Cancer Risk. J. Cancer 8, 4083–4086 (2017). 

59. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer - 
PubMed. https://pubmed.ncbi.nlm.nih.gov/11926890/. 

60. Guo, Y., Ren, C., Huang, W., Yang, W. & Bao, Y. Oncogenic ACSM1 in prostate cancer 
is through metabolic and extracellular matrix-receptor interaction signaling pathways. Am. 
J. Cancer Res. 12, 1824–1842 (2022). 

61. Shrestha, R. et al. ACSM1 and ACSM3 regulate prostate cancer fatty acid metabolism to 
promote tumour growth and constrain ferroptosis. 2022.10.13.511039 Preprint at 
https://doi.org/10.1101/2022.10.13.511039 (2022). 

62. Henry, G. H. et al. A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic 
Urethra. Cell Rep. 25, 3530-3542.e5 (2018). 

63. Song, H. et al. Single-cell analysis of human primary prostate cancer reveals the 
heterogeneity of tumor-associated epithelial cell states. Nat. Commun. 13, 141 (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


64. Dissecting the immune suppressive human prostate tumor microenvironment via 
integrated single-cell and spatial transcriptomic analyses | Nature Communications. 
https://www.nature.com/articles/s41467-023-36325-2. 

65. Bowman, A. P. et al. Evaluation of lipid coverage and high spatial resolution MALDI-
imaging capabilities of oversampling combined with laser post-ionisation. Anal. Bioanal. 
Chem. 412, 2277–2289 (2020). 

66. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of 
single-cell omics. Trends Immunol. 43, 546–563 (2022). 

67. Alasoo, K. et al. Transcriptional profiling of macrophages derived from monocytes and 
iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci. 
Rep. 5, 12524 (2015). 

68. Roca, H. et al. Apoptosis-induced CXCL5 accelerates inflammation and growth of 
prostate tumor metastases in bone. J. Clin. Invest. 128, 248–266 (2018). 

69. Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in 
castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 
inhibitors. Cancer Res. 71, 6503–6513 (2011). 

70. Xu, M. et al. Arachidonic Acid Metabolism Controls Macrophage Alternative Activation 
Through Regulating Oxidative Phosphorylation in PPARγ Dependent Manner. Front. 
Immunol. 12, 618501 (2021). 

71. Sawilowsky, S. S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 8, 597–
599 (2009). 

72. Dahlman, A. et al. Evaluation of the prognostic significance of MSMB and CRISP3 in 
prostate cancer using automated image analysis. Mod. Pathol. 24, 708–719 (2011). 

73. Bergström, S. H., Järemo, H., Nilsson, M., Adamo, H. H. & Bergh, A. Prostate tumors 
downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate 
epithelium and this response is associated with tumor aggressiveness. The Prostate 78, 
257–265 (2018). 

74. Tuck, M. et al. Multimodal Imaging Based on Vibrational Spectroscopies and Mass 
Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. 
Anal. Chem. 93, 445–477 (2021). 

75. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue 
biology. Nat. Biotechnol. 40, 308–318 (2022). 

76. Jones, A., Townes, F. W., Li, D. & Engelhardt, B. E. Alignment of spatial genomics data 
using deep Gaussian processes. Nat. Methods 1–9 (2023) doi:10.1038/s41592-023-
01972-2. 

77. Balluff, B., Hopf, C., Porta Siegel, T., Grabsch, H. I. & Heeren, R. M. A. Batch Effects in 
MALDI Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 32, 628–635 (2021). 

78. Deconvolution Tactics and Normalization in Renal Spatial Transcriptomics - PMC. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793484/. 

79. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser 
Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap 
Mass Spectrometry - PubMed. https://pubmed.ncbi.nlm.nih.gov/28613836/. 

80. Sarretto, T. et al. Selective Mass Spectrometry Imaging of Aromatic Antioxidants Using 
Sequential Matrix-Assisted Laser Desorption and Resonant Photoionisation. Anal. Sens. 
2, e202100052 (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/


81. Ni, Z. et al. SpotClean adjusts for spot swapping in spatial transcriptomics data. Nat. 
Commun. 13, 2971 (2022). 

82. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression 
data analysis. Genome Biol. 19, 15 (2018). 

83. Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at 
multiple resolutions. GigaScience 7, giy083 (2018). 

84. Verbeeck, N. et al. Automated Anatomical Interpretation of Ion Distributions in Tissue: 
Linking Imaging Mass Spectrometry to Curated Atlases. Anal. Chem. 86, 8974–8982 
(2014). 

85. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A Simple Framework for Contrastive 
Learning of Visual Representations. in Proceedings of the 37th International Conference 
on Machine Learning 1597–1607 (PMLR, 2020). 

86. Ciga, O., Xu, T. & Martel, A. L. Self supervised contrastive learning for digital 
histopathology. Mach. Learn. Appl. 7, 100198 (2022). 

87. Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and 
molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, 482 (2020). 

88. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with 
single-cell transcriptomes - PubMed. https://pubmed.ncbi.nlm.nih.gov/33544846/. 

89. Verbeeck, N., Caprioli, R. M. & Van de Plas, R. Unsupervised machine learning for 
exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39, 245–
291 (2020). 

90. Nijs, M., Smets, T., Waelkens, E. & De Moor, B. A mathematical comparison of non-
negative matrix factorization related methods with practical implications for the analysis of 
mass spectrometry imaging data. Rapid Commun. Mass Spectrom. RCM 35, e9181 
(2021). 

91. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-
based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020). 

92. Doublet identification in single-cell sequencing data using scDblFinder - PMC. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204188/. 

93. PanglaoDB: a web server for exploration of mouse and human single-cell RNA 
sequencing data - PubMed. https://pubmed.ncbi.nlm.nih.gov/30951143/. 

94. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. Science 344, 1396–1401 (2014). 

95. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics 
data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021). 

96. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling 
for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018). 

97. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 28, 27–30 (2000). 

98. Liebisch, G. et al. Shorthand notation for lipid structures derived from mass 
spectrometry. J. Lipid Res. 54, 1523–1530 (2013). 

99. Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand 
notation for MS-derived lipid structures. J. Lipid Res. 61, 1539–1555 (2020). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555056doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/

