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Abstract

Recent advances in spatial omics methods are revolutionising biomedical research by
enabling detailed molecular analyses of cells and their interactions in their native state. As
most technologies capture only a specific type of molecules, there is an unmet need to enable
integration of multiple spatial-omics datasets. This, however, presents several challenges as
these analyses typically operate on separate tissue sections at disparate spatial resolutions.
Here, we established a spatial multi-omics integration pipeline enabling co-registration and
granularity matching, and applied it to integrate spatial transcriptomics, mass spectrometry-
based lipidomics, single nucleus RNA-seq and histomorphological information from human
prostate cancer patient samples. This approach revealed unique correlations between lipids
and gene expression profiles that are linked to distinct cell populations and histopathological
disease states and uncovered molecularly different subregions not discernible by morphology
alone. By its ability to correlate datasets that span across the biomolecular and spatial scale,
the application of this novel spatial multi-omics integration pipeline provides unprecedented
insight into the intricate interplay between different classes of molecules in a tissue context. In
addition, it has unique hypothesis-generating potential, and holds promise for applications in
molecular pathology, biomarker and target discovery and other tissue-based research fields.

Introduction

Recent developments in spatial-omics technologies have revolutionised tissue-based
research, enabling a deeper understanding of the cellular architecture of tissues, cell-cell
interactions as well as the intricate relationship between molecular identity and tissue
structure. These technologies find broad applications in studying normal tissue development!,
as well as in deciphering complex diseases like neurodegenerative disorders?2 and different
types of cancer*®. To investigate the various classes of molecules (RNA, proteins,
metabolites, lipids) in a spatial context, different technologies are applied, including in situ
hybridization, in situ sequencing and in situ RNA capturing followed by ex situ sequencing for
spatial transcriptomics'0-'° (ST), histochemistry using fluorescently labelled antibodies'®-2"! or
genetically encoded fluorescent protein tags??23 for spatial proteomics, and mass
spectrometry imaging (MSI) to study the distribution of peptides, metabolites, and lipids?4-2°.

The biological questions addressed by such platforms are often complex and involve
molecular alterations at multiple levels of the gene expression cascade. As each of the spatial-
omics technologies often captures only a partial aspect of a single molecular layer in a tissue,
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integration of spatial multi-omics (SMO) datasets that span across the biomolecular scale is
essential to provide insight in the complex interplay between the different molecular layers and
to better understand the intricacy of these biological processes, and their molecular drivers.
Pipelines aiming to align and correlate these datasets encounter several obstacles, with the
limited coverage of the molecular landscape being a prominent example. Moreover, distinct
spatial technologies may not be compatible on a single tissue section, making the use of
neighbouring tissue sections necessary®°. As the structural organisation of tissues can differ
between consecutive sections, and the experimental handling for the various platforms may
result in tissue deformation, precise co-registration of adjacent datasets has proved difficult
but is essential in order to align corresponding regions and prevent misinterpretation. This
operation may be additionally complicated by the fact that many spatial technologies acquire
data at different spatial resolutions, ranging from sub-cellular for microscopy-based
technologies®'32 to 55 ym for the Visium ST platform3 and 1-100 ym for commercial MSI
platforms®4. Therefore, a granularity matching step is required to ensure that the spatial
positioning of data points from the different modalities is reasonably equivalent. Finally, in
spatial-omics studies, sensitivity, especially for detecting low-abundance molecules and
achieving quantitative accuracy, poses further challenges. To address these limitations,
spatial omics approaches can be complemented with bulk or single-cell omics technologies.
Bulk-omics methods offer high coverage and sensitivity, enabling a more comprehensive and
quantitative analysis of molecular profiles®, while single-cell omics provides insights into
cellular heterogeneity within tissues, enhancing the resolution and sensitivity of spatial
data30:36,

Recent studies have used a variety of different omics integration strategies, including co-
registration and/or the use of a weighted nearest neighbour strategy to partially address the
issues related to the combination of multiple spatial omics technologies®?37:38. Here, we have
applied a novel spatial multi-omics pipeline (SMOXx), which involves multi-point co-registration
and Gaussian weighted granularity matching steps for more accurate data point matching,
resulting in improved integration of various spatial omics modalities. Using this pipeline, we
combined Visium ST (further referred to as ST) with MALDI-MSI coupled with post-ionisation
(MALDI-2), which has increased sensitivity for detecting lipids compared to conventional
MALDI®®40, and single-nucleus RNA sequencing (snRNA-seq) to perform cell-type
deconvolution of ST data*' and high resolution pathology annotations. To explore the potential
of this pipeline, we applied it to study human prostate cancer (PCa), which in view of its highly
inter- and intra-tumoural heterogeneous nature*? is an ideal case study for the SMOx
integration pipeline. In fact, PCa often exhibits multiple morphological disease states within a
single tissue section, ranging from prostatic intraepithelial neoplasia (PIN) to various
histological malignant states (ISUP grades) and cribriform, each representing distinct disease
subtypes with unique biological characteristics and clinical outcomes#*:. Moreover, PCa
development involves molecular changes across multiple omics classes. Besides alterations
in genes and transcripts, prominent changes also occur in lipids, offering unique potential for
novel therapeutic interventions*445. Using PCa as a paradigm, we showcase the potential of
our novel spatial multi-omics pipeline to uncover lipid-gene expression pairs that are linked to
different cell populations and histopathological disease states not discernible by morphology
alone and can aid in the annotation of histologically ambiguous regions. These findings
illustrate the potential application of our data integration pipeline to diverse fields of tissue-
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based research, including molecular pathology and for the generation of novel research
hypotheses.

Results

Establishment of a novel spatial multi-omics data integration pipeline (SMOx) and its
application in prostate cancer

With the aim to more comprehensively map the molecular heterogeneity within tissues and to
better understand the interplay between different classes of molecules in a tissue context, we
established a spatial multi-omics pipeline (SMOx) and applied it to the field of PCa (Fig. 1A).
After collecting tumour and matching non-malignant biopsies from men that underwent a
radical prostatectomy (n=8, Supplementary Table 1), 10 um thick frozen tissue sections were
cut. Neighbouring tissue sections were subjected to ST analysis using the Visium Spatial Gene
Expression platform (n=16) and MALDI-2-MSI based lipidomics (n=16). From the ST analysis,
we obtained curated expression data of 18,950 genes across 42,475 individual capture spots
on the ST array slides (summarised across all samples). Only spots under the tissue sections
were considered for downstream computational analysis. From the MSI data, peak picking
identified 12,510 peaks across the samples. The average overall spectra of cancer and non-
cancer samples are presented in Supplementary Fig. 1. High-resolution digital H&E images
of the MSI sections were annotated by two independent expert uro-pathologists. Additionally,
we collected three 100um thick cryo-sections and isolated nuclei for snRNA-seq (n=13) from
the remaining tissue directly adjacent to the cryo-sections used for ST and MSI analysis, to
enable the identification and mapping of distinct cell populations across the tissue by applying
the ‘cell2location’ deconvolution algorithm4e.

To integrate the data from the ST and MSI spatial-omics modalities, which are generated on
separate (neighbouring) tissue sections and are acquired at different spatial resolutions, the
SMOx pipeline was designed to allow co-registration and granularity matching (Fig. 1B-C). As
both ST and MSI routinely include H&E staining of tissue sections in their workflows*—4°, we
used the H&E-stained images to align the ST and MSI data. To facilitate cross-modality
comparison and uncover inherent molecular patterns, the data from the different modalities
were independently subjected to dimensionality reduction using uniform manifold
approximation and projection (UMAP)%. The UMAP representation (i.e., mapped 3
dimensional embeddings) of the MSI data®' was used to guide the co-registration with the
respective post-MSI| H&E image. Subsequently, the MSI H&E image was co-registered to the
H&E image of the ST Visium slide. Alignment of ST data with the respective H&E histological
images was done automatically using the Space Ranger pipeline (10X Genomics), eliminating
the need for manual co-registration52. This strategy of using H&E-stained images to align ST
and MSI data reduces the complex multimodal registration to a mono-modal one between their
respective H&E-stained images, to which each modality has previously been co-registered,
and removes the selection effect of registering to a template image. Subsequently, a shared
spatial coordinate system was created by linking the MSI data with the ST data. This approach
produces a readout that can be considered a “virtual section”, between the sections used for
ST and MSI analysis (Fig. 1B). Following co-registering of MSI and ST data, we addressed
the disparity in spatial scales of data acquisition points through granularity matching. In this
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study, MSI was conducted at a spatial resolution (pixel size) of 30 ym, whereas the Visium
assay has spot diameters of 55 ym with a 100 ym centre-to-centre distance between spotss3s.
Consequently, each Visium spot corresponds to multiple MSI pixels with uneven amounts of
coverage (Fig. 1C). To match the granularity of the spatial readouts, we employed Gaussian
weighting to the MSI pixels close to each ST spot after registration®3. This procedure resulted
in the generation of a comprehensive aggregated MSI feature spectrum linked to each ST
spot, ensuring synchronised spatial readouts between MSI and ST data (Fig. 1C). The
resulting co-registered and matched MSI-ST data structure can be interpreted as a data frame
consisting of matched readouts for each Visium spot. Within this data frame, each row
represents a single matched spot, while the columns encompass distinct dataset information
at that specific spot, such as gene expression, lipid content, pathology annotations,
deconvoluted cell types, etc. Thus, this integrated spatial multi-omics pipeline could link
transcript-lipid pairs with tissue features.
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Figure 1: Study design and overview of the spatial multi-omics integration pipeline (SMOx). A. Schematic
representation of the various datasets generated on prostate cancer samples and the applied integrated spatial
multi-omics workflow. B. Strategy for co-registration and integration of different spatial multi-omics data layers
generated on consecutive tissue sections. To link ST data with MSI data, UMAP visualizations of different
modalities were co-registered in two steps based on the haematoxylin and eosin (H&E) stainings of the respective
slides and MSI data, and a UMAP visualisation of transformed MSI data was generated after granularity matching.
C. Overview of the granularity matching step to bridge the scale gap between MSI and ST data. Spatial readouts
were aligned, and Gaussian weighting was applied to generate a transformed MSI spot.

Application of the SMOx pipeline to identify correlated transcript-lipid pairs linked with
histological annotations

Using our spatial multi-omics integration strategy, we explored the spatial correlation of
transcripts and lipids in a PCa tissue section of a single patient (patient 929) as a proof of
concept. The level of detail in the annotations created by the histopathologist on the digital
H&E image, along with the transformation of annotations in the shared coordinate system, is
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depicted in Fig. 2A. In this tissue section, five histologically distinct regions could be discerned:
benign epithelium, stroma, PIN, tumour ISUP 3 and immune cells. When UMAP embeddings
are projected onto tissue locations, similar patterns emerge among the distinct spatial
modalities, indicating that despite the diverse nature of spatial data readouts (genes, lipids,
etc.) (Fig. 2B), they all contain relevant molecular information reflecting the distinct
histopathological features in the sample.

To link the different levels of molecular information, we conducted correlation analysis
assessing the relationship between individual transcripts and MSI features (most of which are
lipids), along with their spatial localization in the tissue (Fig. 2C-D, Supplementary Fig. 2).
Among the positively correlated lipid-transcript pairs (correlation coefficient over 0.65), we
observed PC 34:2 [M+H]* and TMEFF2 (a transmembrane proteoglycan with multiple roles in
cancer®) as one of the most highly correlated pairs in regions annotated as tumour ISUP3.
PIN included PE 40:6 [M+H]* and AMACR (an established PCa marker5®) as a highly
correlated pair. LPE 16:0 [M+H]* and NEFH (a neurofilament-encoding gene maintaining cell
integrity) were identified in the benign epithelium region. In contrast, a notable spatial negative
correlation (-0.631) was observed between the lipid SM 34:1;02 [M+H]+ and the AGR2 gene
(a disulphide isomerase gene family implicated in tumour metastasis®®), with their expression
detected in tumour ISUP 3 and PIN regions, respectively. Interestingly, several of the identified
transcripts listed in Fig. 2C encode enzymes that are directly involved in lipid metabolism,
including DEGS1 (a sphingolipid desaturase®”’), HPGD (a 15-hydroxyprostaglandin
dehydrogenase associated with PCa risk®), AMACR (an enzyme involved in peroxisomal
beta-oxidation of branched-chain fatty acids and one of the most widely used histological
markers upregulated in PCa%?), and ACSM1 (a medium chain Acyl-CoA Synthetase that is
overexpressed in PCa®61). Importantly, these genes are up-regulated in areas annotated by
pathologists as PIN and tumour ISUP3, in comparison to the regions annotated as benign
epithelium. Many other transcripts are not directly implicated in lipid metabolism but are known
to have a cell type-specific expression pattern and are differentially expressed upon cancer
development. These include transcripts of genes TMEFF2, KLK3 (encoding the prostate-
specific antigen biomarker), PCA3, AGR2, and NEFH. These observations suggest that
transcript-lipid correlations are associated with disease state and specific cell populations, and
may reveal functional interactions.
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Figure 2. Integration of spatially resolved multi-omics reveals spatially correlated lipid-gene pairs in a
prostate cancer sample. A. Highly detailed pathologist annotations of a representative prostate cancer sample
(929_cancer) on the post-MSI H&E-stained tissue section and their spatial distribution projected on the shared
coordinate system. B. UMAP representations of individual modalities including MS imaging data, ST data,
morphological features extracted from pathology annotations, and cell types derived from snRNA-seq data after
spot deconvolution. The top row represents a hyperspectral visualisation of the UMAP data on the shared
coordinate system using the RGB colour scheme. The bottom row shows the scatter plots of the resulting 3-
dimensional UMAP embeddings for each modality. C. Hierarchically clustered heatmap of the correlation matrix
between MSI features and ST data. D. Spatial visualisation of representative positively and negatively correlated
lipid-transcript pairs in the 929-cancer sample.

Identification of molecular expression patterns associated with histological
annotations

To further explore the alignment of MSI data and ST expression patterns with pathology
annotations, we applied non-negative matrix factorisation (NMF) to extract correlated features
from the individual modalities of the integrated spatial multi-omics dataset of sample
929_cancer. The resulting correlation heatmap between MSI NMF components and pathology
annotations demonstrated significant positive correlations for each pathological annotation
(PIN, benign epithelium, tumour [IUSP3 and stroma) except for immune cells (likely due to their
greater cell type variability) (Fig. 3A top panel). The spatial distribution of these NMF
components, along with pathology annotations within the common coordinate system are
illustrated in Fig. 3B, accentuating the congruence between lipidome and histology. Similarly,
significant positive correlations were observed between ST NMF components and the different
annotated regions (including immune cells) (Fig. 3A bottom panel and Fig. 3B). For MSI
NMF component 9, which highly correlates with PIN, the pseudo-spectrum of the biomolecular
ion peaks that are involved in the expression of the MSI NMF component’s spatial patterns is
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shown, along with the gene expression profile of the PIN-associated ST NMF component 13
(Fig 3A). Integration of both spatial-omics modalities within the shared coordinate system and
subsequent hierarchical clustering revealed strong correlations between specific NMF
components of both modalities (Fig. 3C). Differentially expressed lipids and genes that
contribute significantly to the molecular characteristics of the different annotated areas are
listed in Fig. 3D. The high level of correlation provides further credence to a spatial relationship
between readouts of the ST and MSI data, and overall agreement with the pathology
annotations.
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Figure 3. Correlation between histological and molecular profiling. A. Heatmap showing correlations between
MSI NMF components and the five histologically distinct regions from sample 929_cancer. A representative
pseudospectrum for MSI NMF component 9 and the most enriched genes of the correlating ST component 13 are
shown. B. Spatial visualisation of representative MSI NMF components (top panels) correlating with ST NMF
components (bottom panels) for each histological feature (middle panel). C. Hierarchically clustered heatmap of
the overall correlations between MSI NMF and ST NMF components. Numerical values correspond to the
respective correlation coefficient of each MSI NMF — ST NMF pair. D. Heatmaps illustrating MSI features (mostly
lipids) (left panel) and genes (right panel) exhibiting the most significant differential expression within each of the
five histological regions in the 929_cancer sample.

Linking lipids and transcripts to specific cell types in the spatial coordinate system

Due to the granularity of the matched MSI-ST data set with a spatial resolution defined by the
spatial-omics analysis techniques used (ST: 55 pym resolution; MSI 30 ym resolution), each
spot in the spatial coordinate system corresponds to multiple cells, hampering the assignment
of lipids and transcripts to specific cell types. To address this issue, we applied snRNA-seq-
based spot deconvolution using the ‘cell2location’ deconvolution algorithm?6, based on
snRNA-seq data from a set of 100 um thick serial tissue sections neighbouring those utilised
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for ST. The resulting UMAP clusters were annotated based on curated marker genes®2-4,
leading to the identification of 14 distinct cell types (Fig. 4A). Of note, the TC1 (Tumour Cell
1) cell type was mainly enriched in both the tumour ISUP 3 and PIN region, whereas TC2
(Tumour Cell 2) was linked mainly to the PIN region only (Fig. 4B-C). Interestingly, cells with
a club cell-specific gene signature, which have recently been associated with PCa
carcinogenesis®3, localised to sub-regions within the PIN-annotated areas. Correlation
analysis between MSI and ST data from spots enriched in specific cell types revealed unique
lipid profiles associated with a cell type along with marker genes and enzymes involved in lipid
metabolism, as illustrated or TC1 and TC2 cells, club cells and macrophages (Fig. 4D). This
analysis revealed that ISUP 3-associated TC1 cells and PIN-associated TC2 cells correlated
with long chain polyunsaturated phospholipids (mainly PE), with an additional enrichment for
hexosylceramides (HexCer) in the TC2 cell component. Cholesteryl esters (CE), mainly
identified as [2M+H]+ ions® and known to accumulate in lipid droplets, were associated with
club cells. Macrophage marker genes, like HLA-D genes®s, LYZ%” and CXCL5%8, correlated
best with ether lipids, CE and long polyunsaturated phosphatidylcholines (PC).
Complementary gene signature analysis of lipid metabolism pathways revealed an overall
high expression of genes linked to lipid metabolism pathways in luminal and TC2 cells, along
with cell type-specific pathway activations (Fig. 4E). Examples include the upregulation of fatty
acid biosynthesis and elongation in cancer cells (TC1 and/or TC2), steroid biosynthesis in
luminal cells, and arachidonic acid metabolism in macrophages and mast cells, in line with
expectations and data available in the literature*46970, Projection of these pathways in the
UMAP representations confirmed these links and provided an additional layer of granularity,
for instance revealing a specific subset of cells within the TC1 and TC2 clusters displaying
elevated expression of genes involved in linoleic acid metabolism (Fig. 4F). These findings
illustrate the benefit of linking lipids and transcripts to specific cell types in the spatial
coordinate system.
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Figure 4. Spot deconvolution reveals cell type specific transcriptional and lipidomic profiles. A. UMAP
representation of annotated snRNA-seq clusters and spatial localisation of the main cell types in the spatial
transcriptomics data after spot deconvolution using cell2location42. TC1: tumour cluster 1, TC2: tumour cluster 2.
B. Dot plot displaying the enrichment (orange) and depletion (blue) of cell types within the regions demarcated by
the pathologist. C. Dot plot illustrating the relative abundance of a specific cell type within each pathologically
annotated region. D. MSI features (pink) and transcripts (purple) with the highest positive correlations with TC1,
TC2, club cells and macrophages. E. KEGG enrichment of differentially expressed genes involved in lipid
metabolism per annotated cell type based on the snRNA-seq data. Colours indicate mean up- (red) or down- (blue)
regulation of the pathway, while colour intensity indicates significance level. F. UMAP representation of the
enrichment of different lipid metabolism pathways per cell type.

Integrated data analysis reveals molecular heterogeneity in neoplastic disease areas

Whereas the spatial distributions of MSI NMF components and ST NMF components in
sample 929_cancer overall matched well with the histological annotations, the region
annotated as PIN by the pathologists, was captured by two NMF components in both
modalities — MSI NMF component 9 and 18 and ST NMF components 13 and 15 (Fig. 5A-B).
Additionally, snRNA-seqg-based spot deconvolution revealed that one of the components of
each modality (MSI NMF 9 and ST NMF 13) corresponded well with the spatial distribution of
TC2 cells (Fig. 5C). The other component (MSI NMF component 18 and ST NMF component
15) aligned with a specific subregion of PIN corresponding to the spatial distribution of
epithelial club cells and macrophages. Examination of the H&E stainings of these latter regions
confirmed the presence of a neoplastic gland-like structure. These observations underscore
the potential of the integrated data analysis approach to reveal molecular heterogeneity in
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neoplastic disease areas that might not be discernible through morphological examination
alone.

A PIN region B MsI NMF components ST NMF components
¢ 9 (yellow) +18 (green) 13 (yellow) + 15

(od TC2 Club cells Macrophages

e
400 pm

Figure 5. Integration of spatially resolved omics unveils molecular heterogeneity in PIN. A. Pathologist
annotation of PIN in sample 929_cancer (highlighted in yellow). B MSI and ST NMF components correlating with
the annotated PIN region in panel A. C. Localisation of TC2, club cells and macrophages based on snRNA-seg-
deconvoluted ST data. Inserts show H&E stainings of the indicated areas.

Integrated spatial multi-omics aids in the histological annotation of morphologically
ambiguous tissue areas

Integrated SMOx analysis of the entire set of 8 PCa samples overall revealed a strong
concordance with the pathologist’s annotations. Nevertheless, in several instances our
integrated data-analysis pipeline (based on ST and MSI NMF components) suggested
alternative histopathological assignments for areas in the tissues. This was for instance the
case in sample 941_normal in which a region initially labelled as PIN exhibited closer
molecular concordance with tumour ISUP4 (Fig. 6A-B). This observation was further
supported by the snRNA-seq data, which indicated the presence of a population of TC1 cells.
Furthermore, we observed a match between the top correlated MSI features, predominantly
lipids, and genes of the ISUP 4-associated component with the top correlated MSI features
and genes of the TC1 cell population (Fig. 6C). Re-examination of this region by the
pathologist confirmed the presence of a micro-area of infiltrating prostate adenocarcinoma
cells (lower inset box, Fig. 6A-B). Another ambiguous tissue area was identified in sample
931_cancer, which, based on the H&E staining of the frozen tissue section was annotated by
the pathologist as "other” (Fig. 6D). Based on the ST and MSI NMF components (the latter
one showing the strongest spatial correlations), our integrated approach identified this region
as a subcluster within the ISUP5 tumour region. snRNA-seq data deconvolution further
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revealed the presence of two distinct tumour clusters, TC1 highly correlated with ISUP5 and
TC2 correlated with the ambiguous region (Fig. 6E-F). Histopathological re-evaluation of this
region assigned it as cribriform. These results highlight the potential of spatial multi-omics to
aid in histopathological annotation of ambiguous tissue areas.
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Figure 6. Integrated spatial multi-omics supporting histological annotation of ambiguous tissue areas. A.
Highly detailed pathologist annotations of a non-malignant prostate sample (941_normal) on the post-MSI H&E-
stained tissue section and their spatial distribution projected on the shared coordinate system. Inserts show H&E
stainings of tumour ISUP 4 and a morphologically ambiguous region. B. Distributions of MSI NMF component 5,
ST NMF component 0 and TC1 cell population based on snRNA-seq-deconvoluted ST data. Numerical values
(0.63 and 0.89) correspond to the respective correlation coefficient of the MSI and ST NMF with the region
annotated by the pathologists as tumour ISUP 4. C. Top correlated MSI features and genes of MSI NMF component
5 and ST NMF component 0, respectively. D. Highly detailed pathologist annotations of a high-grade prostate
cancer sample (931_cancer) on the post-MSI H&E-stained tissue section and their spatial distribution projected on
the shared coordinate system. Inserts show H&E stainings of an area annotated by the pathologist as “other”. E.
Distributions of MSI NMF component 0, ST NMF component 7 and TC1 cell population based on snRNA-seq-
deconvoluted ST data. Numerical values (0.51 and 0.47) correspond to the respective correlation coefficient of the
MSI and ST NMF with the region annotated by the pathologists as tumour ISUP 5. F. Distributions of MSI NMF
component 9, ST NMF component 5 and TC2 cell population based on snRNA-seg-deconvoluted ST data.
Numerical values (0.61 and 0.49) correspond to the respective correlation coefficient of the MSI and ST NMF with
the region annotated by the pathologists as “other”.

Implementation of the SMOx workflow across the entire prostate cancer sample cohort
reveals tumour-specific correlations between transcripts and lipids

Having demonstrated the ability of the integrated SMOx pipeline to extract relevant information
from multi-layered molecular expression patterns within a tissue sample, we expanded our
analysis to the entire PCa cohort with additional Pearson correlation analysis. Examination of
pairs of transcripts and MSI features with correlation coefficients exceeding 0.4 across all 16
biopsies (comprising 8 cancer samples and 8 matching non-malignant samples), allowed us
to identify pairs of transcripts and MSI features with a spatial distribution that either correlated
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or anti-correlated throughout the cohort (Fig. 7A). These included well-established links i.e.,
between FASN expression and PC34:144, confirming the validity of this approach, as well as
several novel links illustrating the hypothesis-generating potential of the SMOx pipeline. Next,
Cohen’s d values were calculated between tissue types i.e., tumour versus non-tumour tissue
(as annotated by pathologists on the H&E microscopy), aiming to detect transcript-MSlI feature
correlations that significantly changed between these tissue types. One key example is the
MSMB - PE 40:2 [M+H]* pair displaying an associated Cohen’s d value of 1.54, indicating a
substantial effect size”, which in this case implies a considerable difference in spatial co-
expression between tumour and non-tumour samples. In fact, as illustrated by a line plot of
correlation coefficients for the pair across the 16 biopsies (Fig. 7B) and the actual spatial
distributions of the transcript and the lipid in the shared coordinate system of both tumour and
non-tumour samples (Fig. 7C), these markers exhibited a clear spatial co-expression in non-
tumour samples, which was absent in the tumour samples (quantified with average correlation
coefficients of approximately 0.5 and 0, respectively). Specifically, in the non-tumour samples
a striking alignment was observed between the gene MSMB and lipid PE 40:2 [M+H]*,
whereas in tumour samples, while MSMB continued to exhibit a robust spatial correlation, the
lipid PE 40:2 [M+H]* lost its correlation with the benign epithelial cells (highlighted in green).
This spatial correlation between PE 40:2 with tumour regions was observed in the majority of
tumour samples. While the precise function of this lipid remains elusive, MSMB has been
previously shown to exhibit a higher expression in normal prostate tissue than in cancerous
tissue’273. These observations highlight the hypothesis-generating potential of our SMOXx
approach.
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Figure 7. Implementation of the spatial multi-omic workflow across the entire prostate cancer sample
cohort. A. Heatmap illustrating correlations between genes and MSI features, mostly lipids, where correlation
coefficients greater than 0.4 are observed across the entirety of the sample cohort consisting of 16 biopsies (8
cancer samples and 8 matching non-malignant samples). B. Line plot depicting the correlation coefficients for the
gene/lipid pair MSMB/PE 40:2 [M+H]+ across the entirety of the sample cohort. C. Spatial distribution of the
gene/lipid pair MSMB/PE 40:2 [M+H]* observed across the eight cancer biopsies (upper section) and the
corresponding non-malignant samples (lower section). Green polygons indicate regions predominantly composed
of benign epithelial cells within the cancer samples.

Discussion

Spatial multi-omics is progressively establishing itself as a powerful tool to better understand
molecular events and its interactions in a native tissue context. One of the key challenges
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related to this approach is the integration of multiple layers of molecular information that are
generally acquired using a range of technologies to optimally capture the molecular
information in each layer. Although the ability to conduct diverse spatial approaches, including
ST and MSI analyses on a single slide has recently been reported, hitherto, most spatial
multi-omics studies are performed on neighbouring tissue sections and generate spatial
molecular maps with different spatial resolutions. These factors are further complicated by
different tissue deformations due to technology-specific tissue processing, different inter-spot
distances and offset of the spots. Our study, which integrates ST and MSI analysis aimed to
overcome these hurdles by establishing a data-processing pipeline involving spatial co-
registration and granularity matching. Co-registration refers to the mapping of pixels between
modalities and is a crucial step in multimodal imaging analysis. Registration of imaging
datasets is typically contingent on shared anatomical structures but can be especially
challenging when modalities have distinct characteristics, or if measurements are performed
at vastly different spatial scales’. The former challenge is typically addressed by generating
a number of representative images for each modality e.g., by manually selecting from the
imaging datasets or by generating images that capture spatial trends in the data by
dimensionality reduction methods. The latter, multi-scale challenge refers to the fact that a
spatial data point, typically referred to as a pixel or voxel, in one modality can cover a different
surface area from that in another modality. These areas can range in the order of magnitude
from square nanometres to hundreds of square micrometres. This problem is receiving
increasing attention in the spatial biology field, due to the increasing number and complexity
of spatial omics applications”. A granularity matching step is required to make data points
reasonably equivalent between different modalities, typically via an aggregation strategy such
as interpolation8, averaging, or more advanced methods e.g., Gaussian smoothing%376. In a
recent spatial multi-omics study, combining MSI at 15 ym pixel size with multispectral
immunofluorescence microscopy?®’, a two-step co-registration was used reporting subcellular
accuracy and ROls from the microscopy projected onto the MSI data, however no granularity
matching step was reported. Another study combining MSI and ST using the Visium platform
used a spatial resolution of 100 ym, corresponding to the largest modality used, when
integrating their data, but do not report whether aggregation was used to account for capture
areas not being distributed equally across three modalities®. Another study used a weighted
nearest neighbour strategy that mechanistically paired Visium spots in the centre of one 50
um MSI pixel®. In contrast to these studies, we used a Gaussian approach that accounts for
sample coverage per data acquisition area (Visium spot/MSI pixel). Together with our two-
step co-registration tool, a full data analysis pipeline was established that has the ability to
deal with the mentioned hurdles in spatial multi-omics data integration.

When applied to a set of clinical PCa samples, downstream integrated analysis revealed a
strong spatial concordance amongst the individual modalities as seen in UMAP and NMF
analysis. Importantly, agreement between the modalities in this combined approach allows
more confidence in defining tissue profiles in spatial atlas approaches, assignment of
molecularly heterogeneous regions not discernible by morphology, and potential uses for
identifying missed cancerous regions e.g., in a diagnostic context. Using our approach to
combine ST, MSI and snRNA-seq analysis on PCa samples, we were able to find lipid and
transcript profiles that correlated to specific histological states and to specific cell populations.
Based on these correlations between lipids and transcript profiles, we were able to assign
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unique lipid profiles to specific cell types and disease states and to generate unprecedented
insight into the heterogeneity of PCa pathology in the context of a native tissue.

One striking example of the power of our approach was the discovery of a molecularly distinct
profile in a PIN region based on both ST and MSI profiling, providing more confidence in the
pathological characterisation. Integrated snRNA-seg-based deconvolution revealed the
presence of club cells, which recently have been linked to the pathogenesis of PCa®. Although
the clinical significance of this finding will have to confirmed, our observation of the presence
of club cells in a specific pre-malignant histological structure, may point towards that region’s
future potential to develop into adenocarcinoma and warrants further investigation.

When applied to the entire cohort of PCa and matched benign samples, we found that spatial
transcriptomics and spatial lipidomics data largely followed histomorphological patterns. In
addition, combining the two analyses allowed us to identify genetic and lipid expression
profiles corresponding to different cell populations and tissue states. Our integrated spatial
multi-omics approach was able to identify transcript — MSI feature pairs that correlate or anti-
correlate throughout the cohort. Besides well-known associations, including the correlation
between FASN and PC34:144, which provides validation for our approach, several new
correlations were found that warrant future investigation. One striking example was the loss
of co-expression of specific lipid-gene pairs such as PE 40:2 [M+H]* and MSMB in cancer
samples. While the role of MSMB as a secreted protein with decreased expression in
cancerous tissue is well established”, the implications of a change in the abundance of
correlating lipid currently remains unknown. Based on transcript — MSI feature pairs and
snRNA-seg-based deconvolution of the entire cohort of samples our approach also discovered
the presence of tumour cells in a histological region previously assigned as PIN and in a
normal tissue section, demonstrating the ability of this approach to aid in pathological
annotations. Taken together, these observations illustrate the potential of integrated spatial
multi-omics approaches to reveal tissue heterogeneity and to generate new hypotheses as
potential starting points for further investigation. Drawing biological conclusions from this
concept study should be taken with care in view of the small number of samples that were
measured and were selected based on morphological heterogeneity rather than for testing a
specific hypothesis. One issue to be further resolved is the presence of batch effects”,
restricting the comparison of multiple samples to correlation analysis on each sample
individually rather than collectively. While various strategies have been proposed to alleviate
this issue in both ST and MSI78, further method development is required to determine how to
mitigate its effects.

As spatial technologies are rapidly evolving and are continuously gaining sensitivity, molecular
coverage and spatial resolution, flexible approaches to integrate different layers of spatial and
bulk molecular information will become indispensable. Integration approaches, such as the
one presented here, will be crucial to better understand the complex interactions between
different classes of molecules in a spatial cellular context and to apply this knowledge in
diverse fields such as biomarker or target discovery, molecular pathology, and automated
tissue annotation.


https://doi.org/10.1101/2023.08.28.555056
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.28.555056; this version posted August 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Methods
DATA ACQUISITION
Sample collection

Matched prostate tumour and normal samples were obtained from treatment naive high-risk
PCa patients (advanced clinical stage and/or biopsy Gleason 8-10 and/or PSA = 20 ng/mL)
who underwent radical prostatectomy at University Hospitals Leuven, Belgium. This study was
approved by the local Ethics Committee (approval number S54424) and followed the Code of
Conduct for Responsible Use of Human Tissue for Research. All patients provided informed,
signed consent. After surgery, 6 mm biopsy cores were extracted from the primary tumour site
and a matching non-malignant biopsy was taken from the opposite side. The selection of
biopsy cores was guided by a urologist and magnetic resonance imaging reports. Immediately
after surgery, these biopsy cores were embedded in 3% carboxymethyl cellulose (CMC)
(Sigma-Aldrich, cat.no C4888), snap-frozen in isopentane pre-chilled in liquid nitrogen, then
stored at -80°C until further processing.

For each prostate biopsy, 10um thick cryo-sections were obtained at -20°C using a Microm
HM525 NX cryostat (Thermo Scientific), followed by H&E staining. Subsequently, two
independent expert pathologists performed a thorough examination to verify the presence of
tumours in the tumour samples. In this study, a cohort of 8 patients was selected based on
detailed pathological information including classification, ISUP grade and morphological
features present (see Supplementary Table 1 for patient-related information). Tissue blocks
from the selected patients were subsequently checked for RNA quality. RNA was isolated from
ten 10um sections from the selected tissue blocks using Direct-zol RNA Miniprep (Zymo
Research, cat.no. R2050), and RIN score was determined using a Bioanalyzer RNA 6000
Nano kit (Agilent, cat.no 5067-1511) in combination with the Agilent Bioanalyzer software. All
samples had a RIN > 7. 10um thick sections were collected on ITO-coated glass slides (Delta
Technologies, Loveland, USA) to enable matrix-assisted laser desorption/ionisation (MALDI)
MSI analysis, and adjacent tissue sections of 10um was mounted onto pre-equilibrated 10x
Genomics Visium Gene Expression slides (10x Genomics, Pleasanton, CA, USA) for ST
analysis. Finally, three to five tissue sections with a thickness of 100um were collected in a
pre-cooled centrifuge tube for subsequent single-nuclei RNA sequencing (snRNA-seq)
analysis.

Spatial transcriptomics sample preparation and data acquisition

Tissue preparation for Visium ST analysis was performed according to the Tissue Preparation
Guide (CG000240 rev C, 10x Genomics), except for embedding in 3% CMC which was
conducted to stabilise the tissue for both ST and MSI analysis. Methanol fixation, H&E staining
and imaging were performed according to the recommended protocol (CG000160 rev B, 10x
Genomics), and subsequent cDNA and library preparation was performed according to the
Visium Spatial Gene Expression Reagent Kit User guide (CG000239 rev D, 10x Genomics).
The optimal tissue permeabilization time was determined upfront to be 20 minutes, following
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the Visium Spatial Gene Expression Reagent Kit - Tissue Optimization User guide (CG000238
rev A, 10x Genomics). Final libraries were sequenced to at least 50.000 reads/covered spot
using a NextSeq2000 platform (lllumina, San Diego, CA, US).

Mass spectrometry imaging sample preparation and data acquisitions

Tissue sections were coated in 2,5-dihydroxybenzoic acid (DHB, AK Scientific, CA, USA)
matrix using a sprayer robot (TM-Sprayer, HTX Technologies, LLC, Chapel Hill, NC, USA).
DHB was dissolved in a 1:1 mixture of methanol:chloroform (v:v) at a concentration of 20
mg/mL. 12 layers of matrix solution were deposited using a flow rate of 0.12 mL/min, 10 psi of
N2 pressure, nozzle temperature of 30 °C, and a 1200 mm/min velocity.

All data was acquired using an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific
GmbH, Bremen, Germany) coupled to an intermediate pressure MALDI source (Spectroglyph
LLC, WA, USA) as described previously™. A frequency tripled Nd:YLF laser (Explorer One,
Spectra Physics, Mountain View, CA) emitting at 349 nm operating at 300 Hz was used for
MALDI. The laser was operated using a diode current of 1.80 A and pulse energy fine-tuned
using an external attenuator (PowerXP, Altechna, Vilnius, Lithuania) positioned immediately
in front of the laser to yield a post-attenuation pulse energy of 1.2 uJ. A frequency quadrupled
laser Nd:YAG laser emitting at 266 nm and operating at 300 Hz (NanoDPSS, Litron Lasers,
Warwickshire, England) was used for laser post-ionisation (MALDI-2). This setup has been
described in detail previously®®. MALDI-2 laser pulse energy was adjusted using the internal
attenuator to be 600 pJ just prior to entering the ion source. Laser pulse energy measured
using a calibrated energy sensor (QE12HR-H-MB-DO0, Gentec-EO, Quebec, Canada). Both
lasers were externally triggered using a pulse/delay generator (QC9200, Quantum
Composers, Bozeman, Montana) such that the time delay between the MALDI and MALDI-2
laser pulse was 20 ps. The mass spectrometer was operated in positive ion mode using an
ion injection time of 250 ms, automatic gain control turned off, m/z range 350-2000 and a
nominal mass resolution of 120,000 @ m/z 400. The pixel size was 30 ym.

All raw files were first recalibrated with Thermo Scientific Xcalibur RecalOffline using ion
signals of [Vitamin E]+* at m/z430.38053, [PC(34:1)+K]+ at m/z798.54096 and a background
PDMS peak at m/z371.10124. Data was then converted to imzML format using Image Insight
software (Spectroglyph LLC, Kennewick, WA, USA).

Tissue Staining and Histopathology Annotations

Tissue staining using H&E was conducted on tissue sections following MSI analysis. The
matrix was first removed from the slide by rinsing in methanol. For the H&E staining, the glass
slides were immersed in 95% ethanol, 70% ethanol and H2O for 2 minutes each and then
immersed in haematoxylin for 3 minutes. Slides were then washed with running tap water for
3 minutes and immersed in eosin for 30 seconds following another washing step with water
for 3 minutes and immersion in 100% ethanol for 1 minute and then in xylene for 30 seconds.
The tissues were air-dried and mounted with coverslips. Optical images were acquired using
a ZEISS Axio Scan.Z1 Slide Scanner (Carl Zeiss AG, Jena, Germany) with 40x objective, pixel
size 0.22 ym* 0.22 um. The files were exported as .TIFF images.

The digitalized H&E images were annotated and verified by prostate cancer specialists from
the Department of Pathology, University Hospitals Leuven and Weill Cornell Medical College,
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in a blinded fashion using the web-based annotation tool ‘Annotation studio’ (Aspect Analytics
NV, Genk, Belgium). Pathologists annotated the whole slides in detail by placing 14 different
labels 'Inflammatory infiltrate', 'Normal epithelium', 'Stroma’, 'Necrosis', 'Atrophy', 'Cribriform’,
'PIN', 'Nerve', Tumour ISUP 5', Tumour ISUP 4', Tumour ISUP 3', Tumour ISUP 2', Tumour
ISUP 1', and 'Other".

Single cell RNA sequencing sample preparation and data acquisition

Tissue sections (2-3x100 ym) adjacent to those used for spatial transcriptomics and lipidomics
sections were collected in a microcentrifuge tube and subjected to single nuclei dissociation.
For this, 0.8mL Tween with Salts and Tris (TST) buffer (96mM NaCl (Sigma-Aldrich, cat.no.
59222C), 10mM Tris-HCI pH 7.5 (ThermoFisher, cat.no. 15567027), 1mM CaCl2 (Merck,
cat.no. 21115), 21mM MgCI2 (Sigma-Aldrich, cat.no M1028), 0.03% Tween-20 (Biorad, cat.no
1662404), 0.01% BSA (New England Biolabs, cat.no B9000S) and 0.2U/ul RNAsin (Promega,
cat.no N2615)) were added to the sections and the tissue was cut into small pieces using
scissors. The tissue was subsequently transferred to a KIMBLE Dounce tissue grinder (Sigma-
Aldrich, cat.no D8938), together with 0.7mL TST that was used to wash the original tube. The
tissue was homogenised by 10 strokes of the large clearance pestle and 10 strokes of the
small clearance pestle. The homogenate was subsequently filtered using a 40um cell strainer
(pluriSelect, cat.no. 43-50040-51) and the tissue grinder and filter were washed with Salts and
Tris (ST) buffer (96mM NaCl (Sigma- Aldrich, cat.no 59222C), 10mM Tris-HCI pH 7.5
(ThermoFisher, cat.no 15567027), 1mM CaCl2 (Merck, cat.no. 21115), 21mM MgCI2 (Sigma-
Aldrich, cat.no M1028) and 0.2U/ul RNAsin (Promega, cat.no. N2615)). Filtered nuclei were
pelleted twice for 5 minutes at 500g at 4°C, first followed by resuspension in 500 ul ST buffer,
and second followed by resuspension in 50yl of Chromium loading (CL) buffer (PBS + 0.04%
BSA + 1U/ul Sigma Protector RNase Inhibitor (Millipore Sigma, cat.no. 3335399001). Nuclei
were counted using a PhotonSlide™ (Logos Biosystems, South Korea) with Acridine Orange
& Propidium lodide Cell Viability assay (Westburg, cat.no. LB F23001) on a LUNA-FL™ Dual
Fluorescence Cell Counter (Logos Biosystems). Nuclei were counted as the ‘dead’ cell
fraction, and the suspension was diluted to ~1.000.000 nuclei/mL in CL buffer.

Single nuclei suspensions were used for single-nuclei gene expression analysis using the
Chromium Next GEM Single Cell 3° Reagent Kits v3.1, according to the user guide (CG000315
Rev C). 7000-8000 nuclei were loaded per sample, and final libraries were sequenced to at
least 25.000 reads/cell using a NextSeq2000 platform (lllumina, San Diego, CA, US).

DATA PREPROCESSING
Spatial transcriptomics data pre-processing

FASTQ-files were mapped to the GRCh38 human reference genome and spatially projected
using Space Ranger v1.1.0 (10x Genomics). Before merging the datasets, ambient RNA was
removed using an adjusted version of SpotClean v1.1.1 where all relevant genes are
maintained®’. Next Scanpy v.1.9.1 was used for quality control and processing®?. Spots with
less than 700 genes and 1000 reads were excluded, while genes were filtered for expression
in more than 100 spots. The Scanpy toolkit was used to perform downstream processing per
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sample, including normalisation with the Scran R package (v1.26.1), log transformation and
variable gene detection. The number of significant principal components for Leiden clustering
and UMAP dimensionality reduction was determined using bootstrapping with a maximum of
30 components. Clustering resolutions ranging from 0.1-1.0 were assessed for stability with
steps of 0.1 using clustree v0.4.283,

Spatial lipidomics data preprocessing

The mass spectrometry imaging data was preprocessed by performing TIC normalization,
peak picking and subsequent rebinning. Peak picking was performed on the mean spectrum
across all datasets. Peaks in the mean spectrum with an intensity below 0.005% of the base
peak were discarded, resulting in a total of 12510 retained peaks. Intensities were binned per
spectrum using a 5 ppm window around the selected peaks.

Spatial multi-omics integration pipeline

As the ST and MSI data were acquired from two serial sections, the spatial lipidomics and
transcriptomics data were indirectly registered to each other by their respective H&E
microscopy images. This strategy of co-registering multiple sections via one proxy section
(i.e., microscopy) is inevitable in applications where multiple sections are involved. Before co-
registration, representative images from the MSI data were generated for guiding the later
registration step. These representative images were created via applying dimensionality
reduction methods, such as NMF and UMAP. The MSI data was co-registered with its
respective H&E microscopy images via a non-rigid registration workflow8* (Aspect Analytics
NV). Next, the MSI-slide H&E was co-registered to the H&E from the ST Visium slide. No
additional co-registration is required to link the ST data and ST-slide microscopy as their
spatial reference is inherent to the Visium ST data format. Finally, the MSI was directly linked
with the ST data via a shared spatial coordinate system. MSI data was acquired at a spatial
resolution (pixel size) of 30 um, whereas the ST data was obtained with spot diameters of 55
um. Multiple MSI pixels were aggregated into a single representative spectrum to match the
ST spot via a Gaussian weighting algorithm53.

Morphological feature extraction from microscopy data

Morphological features from high resolution H&E microscopy image of the MSI section were
extracted using a pre-trained model that was adapted originally from the SimCLR model
introduced by Chen et alf5. The model tries to maximize the agreement between two
stochastically augmented views of the same image via a contrastive loss function. Ciga et al.
later applied this SImCLR model with minor modifications and pre-trained it on 57 multi-organ
histopathology datasets without any labels®. These 57 histopathology datasets contained
microscopy images with various types of staining and resolutions, which helped the model
learn features with better quality. We applied this pre-trained model on high-resolution H&E-
stained microscopy data, acquired at a 40x magnification, and extracted the morphological
features using overlapping windows of 512 x 512-pixel patches of the image centred on each
spot. Thus, each patch covers approximately 128x128 pym?2, which is similar in size to the
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patches extracted from histopathology datasets that the model was pre-trained on by Ciga et
alss.

Dimensionality reduction via non-negative matrix factorization

We applied NMF to reduce the high dimensionality of our MSI and ST data. NMF has been
widely used in both fields®-0 as it has the non-negativity constraint and can generate
interpretable parts-based representation. We used NMF to get a more in-depth understanding
of each modality in a fully unsupervised manner, based on their resulting distinct spatial
distributions and associated spectral or gene expressions. In short, NMF factorizes the matrix
X into two non-negative matrices X=WH, where W represents the loading matrix and H is the
score matrix which represents the data in lower dimensions. For example, in the case of MSI
data, the lipid spectral signature of each pixel can be approximated by the additive linear
combination of the column vector (spectral basis element) from W, weighted by H, which
describes the contribution of each basis element to the spectrum at each pixel. We
implemented NMF by the Python package sklearn.decomposition.NMF. As both MSI and ST
data are known to follow Poisson distribution, we used Kullback—Leibler divergence (KL-NMF)
as the cost function to incorporate Poisson noise. Multiplicative Update was used as the
solver. The number of components was selected as 20.

Correlation analysis

We applied Pearson correlation by Python package numpy.corrcoef and scipy.stats.pearsonr
to measure the relationship between two datasets. The output correlation coefficient ranges
from -1 to 1 with 0 implying no correlation. Correlations of -1 or 1 represent an exact linear
relationship (negative or positive).

Cohen’s d

We calculated the Cohen’s d value for gene-lipid correlations across different tissue types.
Cohen’s d is defined as the difference between two means divided by the pooled standard
deviation for the data. The resulting Cohen’s d values were ranked to find the most different
gene-lipid correlations between normal and tumour tissue types. Using this approach, a set of
changes in correlation were identified. We firstly calculated the Cohen’s d value for gene-lipid
correlations across different tissue types via computing their mean correlations in 8 tumour
samples and 8 ‘normal’ samples separately.

Processing of the single-nuclei RNA-sequencing data and cell type deconvolution

FASTQ-files were mapped to the GRCh38 human reference genome with Cell Ranger v6.1.2
(10x Genomics). Before merging the datasets, ambient RNA was removed using SoupX®!,
while scDblFinder®? was used to indicate doubles. Next Scanpy v.1.9.1 was used for quality
control and processing®. Only cells with the following criteria were considered for further
analysis: more than 500 uniquely expressed genes, less than 10% of the UMI counts mapping
to mitochondrial sequences and less than 5% of the UMI counts assigned to ribosomal genes.
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All genes that were not expressed in at least 100 cells were not considered in the downstream
analysis. The Scanpy toolkit was used to perform downstream processing per sample,
including normalisation, log transformation and variable gene detection. The number of
significant principal components for Leiden clustering and UMAP dimensionality reduction was
determined using bootstrapping with a maximum of 60 components. Clustering resolutions
ranging from 0.1-1.0 were assessed for stability with steps of 0.1 using clustree v0.4.283. Cell
types and states were assigned to the clusters using marker genes obtained from the
PanglaoDB®% database (version of 27/03/2020), the canonical markers from Song et al.% and
the NMF signatures obtained from the analysis of matching ST samples. Copy-number
landscapes were inferred from the transcriptomic data with inferCNV®4 v.1.3.3 to validate
clusters annotated as tumorigenic. Integration of the samples was performed in a semi-
supervised manner using scCANVI®. First the transcriptome data was integrated using scVI%
(v.0.14.5, n_hidden=128, n_latent=50, n_layers=2, dispersion='gene-batch') with correcting
batch effects and removing unwanted source of variations (total counts, percent mitochondrial
genes, and percent ribosomal genes for ‘continuous_covariate_keys’). After training the model
for 400 epoch, scANVI using the cluster labels obtained at single-cell level, was trained for an
additional 10 epochs. The integrated latent embedding generated by scANVI was used for
downstream analysis (clustering and visualisation). For gene-level analyses, uncorrected
counts were used. Spot deconvolution was performed using the integrated single-nuclei data
per patient and Cell2Location*6. The lipid metabolism gene sets of the KEGG pathway
database?®” and the ‘score genes’ function of scanpy were used to asses pathway activities.

Lipid Annotation/Identification

Lipids were annotated with mass accuracy of 3 ppm based on the LipidMaps guidelines on
shorthand notation for lipid structures published by Liebisch et al.®8%® For the
glycerophospholipids (GPL), the following shorthand notations of lipid classes were used: PC
— phosphatidylcholines, LPC — lysophosphatidylcholines, PC O — phosphatidylcholine ethers,
PC P - phosphatidylcholine plasmalogens, PE — phosphatidylethanolamines, LPE -
lysophosphatidylethanolamines, PE O - phosphatidylethanolamine ethers, PE P -
phosphatidylethanolamine  plasmalogens, PS -  phosphatidylserines, Pl -
phosphatidylinositols. For the sphingolipids (SPL), the following class name abbreviations
were used: Cer — ceramides, SM — sphingomyelins, and Hex(n)Cer — hexosyl ceramides,
where n refers to the number of hexosyl units. Cholesterol is referred to as ‘Chol’, cholesteryl
esters as CE, acylcarnitines as CAR, monoacylglycerols as MG, and diacylglycerols as DG.
Lipids are annotated at the lipid species level, namely the lipid class abbreviation is followed
by a total number of carbons in fatty acyl(s) rest(s), colon, and total number of double bonds
in fatty acyl rest(s). For example, PC 36:3 refers to phosphatidylcholine with a total number of
carbons in both fatty acyls equal to 36 and total number of double bonds equal to 3. The same
principle was used for annotation of signals corresponding to sphingolipids, but additionally
the total number of oxygen was indicated after semi-colon, for example, SM 36:2;02 refers to
a sphingomyelin with sum composition of carbon atoms in N-linked fatty acyl rest and
sphingoid base of 36, the number of double bonds equal to 2, and total number of O-atoms
equal to 2. CE 16:0 means cholesteryl ester with palmitic acid attached to cholesterol via an
ester bond. In MALDI-2 mode cholesteryl esters form dimers as showed recently by Bowman
et al.%5 For m/z values annotated as dimers of cholesteryl esters, the following shorthand
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notations were used: 2CE for cholesteryl ester dimer, followed by total number of carbons in
both fatty acyls, colon, and total number of double bonds in both fatty acyls e.g., 2CE 38:4.
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