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Abstract

Motivation

Metagenomic sequencing has provided great advantages in the characterization of
microbiomes, but currently available analysis tools lack the ability to combine strain-level
taxonomic resolution and abundance estimation with functional profiling of assembled
genomes. In order to define the microbiome and its associations with human health, improved
tools are needed to enable comprehensive understanding of the microbial composition and

elucidation of the phylogenetic and functional relationships between the microbes.

Results

Here, we present MAGinator, a freely available tool, tailored for the profiling of shotgun
metagenomics datasets. MAGinator provides de novo identification of subspecies-level
microbes and accurate abundance estimates of metagenome-assembled genomes (MAGS).
MAGinator utilises the information from both gene- and contig-based methods yielding
insight into both taxonomic profiles and the origin of genes as well as genetic content, used
for inference of functional content of each sample by host organism. Additionally,
MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs,

providing a framework to identify clade-level differences within subspecies MAGs.

Availability and implementation: MAGinator is available as a Python module at

https://github.com/Russel88/MAGinator
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Introduction

DNA sequencing has revolutionised our ability to gain insight into microbial compositions
without relying on the ability to cultivate organisms. To explore these compositions various
methods have been developed that either rely on databases of marker genes of known
organisms or attempt to reconstruct the chromosomes directly from the short reads by first
assembling into longer contigs and then binning these based on co-occurrences or DNA

composition.

Mapping reads against marker gene databases with tools such as MetaPhlAn', MetaPhyler?
and mOTUs" is a fast and effective way of recovering the microbial composition both
because the library depth required can be quite shallow and because the computational
requirements are smaller, but have limitations originating from the reliance on predefined
databases, limited ability to estimate abundances at higher taxonomic resolution*?, and the
lack of information on the functional repertoire of the identified taxa. Conversely, de novo
binning strategies require high sequencing depth but can recover high-quality metagenome
assembled genomes (MAGs) from which the functional gene content can be directly linked to
a specific organism. Ideally, this can recover genomes of strains that can be used in
downstream analysis to generate more specific hypotheses about associations with outcomes.
One example of this is the capacity of an organism to break down Human Milk
Oligosaccharides (HMOs), the main source of energy for the developing infant gut
microbiome while being breastfed. Especially Bifidobacteria have this functionality, and it is
known that certain strains or subspecies have specific preferences for certain HMO types®”,
improving the overall utilisation of HMOs and often conferring additional benefits as a
probiotic. Previously, it has been established that specifically the presence of Bifidobacterium
longum subspecies infantis (B. infantis) together with breastfeeding, plays a crucial role in
providing a protective effect to mitigate the impact of antibiotics on the early-life gut
microbiome’. This underlines the significance of being able to accurately profile the

microbiome at higher resolutions than species-level.
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In this work we have developed a pipeline that takes MAGs and original reads as input and
generates output including accurate abundance estimates, strain phylogenies and gene
synteny clusters that can improve insights into the microbiome composition (Figure 1). We
do this by grouping MAGs into clusters that are phylogenetically separated at a higher
resolution than species and estimate the abundances of these. This is done by identifying a set
of signature genes directly from the given data and refining them according to statistical
modelling to pick the ideal set suitable for abundance estimation. The fidelity of our
estimated abundances are demonstrated on the Critical Assessment of Metagenome
Interpretation (CAMI) strain-madness dataset, where we benchmark MAGinator against
similar tools. Additionally we show the functionality of MAGinator on a public dataset of
inflammatory bowel disease (IBD) patients, where we identify differentially abundant taxa

between patients and controls at high phylogenetic resolution.

MAGinator also enables Single Nucleotide Variant (SNV’s) resolution phylogenetic trees,
which are created from the signature genes and used for additional stratification of the MAGs
and can be associated with metadata to obtain subspecies/strain-level differences. We exhibit
MAGinator’s ability to obtain strain-level resolutions for Bifidobacterium from two
real-world infant datasets. In this case the signature genes were found de novo for one dataset

and were then utilised to obtain strain-level resolution in the other cohort.

By combining the information from both contigs and gene content we identify synteny
clusters of genes within strains, yielding information on shared pathways for the genes.
Additionally, we show how we can associate the functional content to the identified clades, to

improve hypotheses-generation on the impact of organisms, illustrated using the COPSAC,,,

cohort.
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Figure 1: Schematic visualisation of the main functions of the MAGinator workflow.
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Methods

Implementation

Input

The input to the MAGinator workflow comprises a set of samples with (1) shotgun
metagenomic sequenced reads, (2) their sample-wise assembled contigs, and (3) sample-wise
MAGs (groups of contigs from the same genome), clustered across samples, as defined by a

metagenomic binning tool (see below).

Reads should be provided in a comma-separated file giving the location of the fastq files and
formatted as: SampleName,PathToForwardReads,PathToReverseReads. The contigs should
be nucleotide sequences in FASTA format. The MAGs should be given as a tab-separated file
including the MAG identifier and contig identifier. The sample-wise MAGs should be
grouped into MAG clusters representing a taxonomic entity found across the samples, which
will usually be species but can also be at the subspecies level, depending on characteristics of
the input data. MAGinator is flexible regarding which tool is being used for creating the

MAGs, however we recommend using VAMB',

Dependencies

The dependencies to run MAGinator are mamba'! and Snakemake'? - all other dependencies
are installed automatically by Snakemake through MAGinator. Additionally MAGinator
needs the GTDB-tk database downloaded for taxonomic annotation of MAGs and as a

reference for the phylogenetic SN'V-level analysis of the signature genes.

Output generated

MAGinator generates multiple outputs and intermediate files useful for additional
downstream analysis (Suppl. Table 1, Suppl. Figure 1). Importantly, MAGinator outputs the
taxonomy of the MAGs, the signature genes of the MAG clusters, the sample-wise relative
abundances of the MAG clusters, a non-redundant gene matrix with sample-wise mapping
counts, synteny clusters and inferred phylogenies for each MAG cluster. Additionally, a

folder is created containing the log information of all the jobs run by Snakemake.

Application
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MAGinator is written in Python 3 and is based on a set of Snakemake'? workflows, and easily
scalable to work for both single servers and compute clusters. MAGinator is implemented as

a python package and is available on GitHub at https://github.com/Russel88/MAGinator.

The MAGs are filtered based on a minimum size for inclusion, with a default size of
200,000bp. The included MAGs are taxonomically annotated using GTDB-tk (v.2.1.1)", by
calling genes using Prodigal (v.2.6.3)", identifying GTDB marker genes and placing them in
a reference tree. As the taxonomic annotation of the MAG clusters are found to be redundant,
clusters with the same taxonomic assignment can be combined into one cluster, with the flag
‘--mgs_collections’ which we identify as a Metagenomic Species (MGS). Redundant genes
are identified by clustering with MMseqs2 (v.13.45111)" easy-linclust using a default
clustering-coverage and sequence identity threshold of 0.8, creating a list of the
representative genes along with their cluster-members. The redundant genes are filtered away,
leaving a nonredundant gene catalogue. The raw reads are mapped to the gene catalogue
using BWA mem?2 (v.2.2.1)'® and counted using Samtools (v.1.10)", leaving a gene count
matrix, which is used as input for the signature gene refinement and following phylogenetic

clade separation and abundance estimates.

Signature Gene Identification
We previously described the method for identifying the signature genes for the data set'®. In
brief, signature genes are selected to ensure that they 1) are unique for the MAG cluster, 2)

are present in all members of the cluster, and 3) are single-copy.

To accomplish this the following steps are taken: Initially the non-redundant gene count
matrix is curated to discard any genes if they have (redundant) cluster-members originating
from more than one MAG cluster, as they are thus not specific for that biological entity.
Subsequently, the remaining genes within each MAG cluster are sorted based on their
co-abundance correlation across the samples. As the genes are unique for the species, if they
are consistently detected in similar abundance across samples, it suggests that they are
single-copy. This step also mitigates differences in read mappings caused by biological or
technical variations. The initial set of signature genes for each biological entity are selected
from the most correlated genes. Subsequently, these signature genes are further refined and
optimised by fitting them to a rank-based negative binomial model that captures the

characteristics of the specific microbial composition in the input data. The signature gene set
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is evaluated across the samples, by calculating the probability of the detected number of
signature genes given the number of reads mapping to the MAG cluster. Finally the
abundance of each MAG cluster is derived from the read counts to the identified signature

genes normalised according to the gene lengths.

SNV-level resolution phylogenetic trees

To elucidate the smaller biological differences within the MAG clusters, MAGinator will
infer a phylogeny based on the sequences of the signature genes. Based on the read mappings
to the signature genes the sample-specific SNVs are called using output from Samtools
mpileup. An alignment for each signature gene is made for all samples containing the
signature genes using MAFFT (v.7)" run with the offset value of 0.123 as no long indels are
expected. MAGinator allows phylogenetic inference to be calculated with either the fast
method Fast-Tree (v.2)* (default) or the more accurate but resource intensive method
IQ-TREE (v.2)*! (--phylo ['fasttree', 'igtree']). In samples where no MAG was found, the
phylogenies can be used to detect rare subspecies-level entities based on just a few reads
mapping to the signature genes and to infer functions and genes from closely related MAGs
from other samples. The criteria for inclusion in the tree can be adjusted by the user. For a
sample to be included in the phylogeny the following three criteria has to be met 1) minimum
fraction of non-N characters in the alignment (default —min_nonN=0.5), 2) minimum number
of GTDB marker genes to be detected (default -min_marker genes=2), 3) minimum number
of signature genes to be detected (default --min_signature genes=50). The trees can be
associated with metadata to obtain clade-level differences associated with study design

variables such as disease phenotype, sampling location, or environmental factors.

Gene synteny

Based on the gene clustering with MMSeqs2 a weighted graph is created, which reflects the
adjacency of the genes on contigs. If genes are close enough in the graph they will be
categorised as part of the same synteny cluster and it is assumed that they have related
functionality and/or are part of the same functional module. Clustering is determined using
mcl (v.14)%, where the user has the options to influence the adjacency count and stringency
of the clusters. Only immediate adjacency is considered. By default, genes found adjacent
just once are included in the graph, but this can be tuned to make more strict clusters (default

—synteny_adj cutoff=1). The inflation parameter for mcl-clustering of the synteny graph are
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important for the size of the gene clusters and are by default set high in order to small and

consistent clusters (default —synteny mcl_inflation=5).

Taxonomic scope of gene clusters

The taxonomic assignment of the sample-specific MAG is done using GTDB-tk. In some
cases it will not be possible to assign a taxonomy to the MAG, which could be due to
contamination, the MAG originating from a currently undescribed organism or due to too
little information found in the MAG. In these cases an alternative is to assign the gene
clusters, found in the MAG, a taxonomy. The taxonomic scope of the genes are described for
the category they are almost all found in, given by a fraction defined by the user (default
—tax_scope_threshold=0.9). E.g. if run with default options and a gene cluster has the
assignment “Bacteria Firmicutes A Clostridia Lachnospirales Lachnospiraceae
Anaerostipes NA”, then at least 90% of the genes should be found in Anaerostipes. The
algorithm will find the most specific taxonomic rank which has at least 90% agreement

across the genes in the cluster assigned by GTDB-tk.

Workflow design

The MAGinator workflow has been constructed to make the information flow between the
different modules automatically (Suppl. Figure 1).

The data goes through a series of filtering and processing steps (Figure 1), including:

A: Input MAG clusters, which are composed of one or more MAGs.

B: The genes are clustered and redundant genes are removed.

C: Reads are mapped to the genes, creating a gene count matrix.

D: Signature genes are identified for each MAG cluster, and used for abundance estimations
E: Based on the signature genes, SNV-level resolution phylogenetic trees are created and the
taxonomic scope of gene clusters are identified.

F: Synteny-clusters of genes are identified, reflecting the adjacency of the genes on the

contigs.

Benchmarking with OPAL on CAMUI’s stimulated strain-madness data set

The construction of the strain-madness benchmarking dataset was part of the second round of
CAMI challenges’. The data consists of 100 simulated metagenomics samples consisting of
paired-end short reads of 150 bp. The samples were run through a preprocessing workflow

prior to the analysis. This involved the removal of adapters with BBDuk (v. 38.96
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) run with the following settings ‘ktrim=r k=23
mink=11 hdist=1 hdist2=0 ptpe tbo’, removal of low-quality and short reads (<75 base pairs)
with Sickle (v. 1.33)* and removal of human contamination (reference version: UCSC hg19,
GRCh37.p13) using BBmap ( ) leaving an average
of 6.6 million reads (SD: £2802 reads) per sample.

To generate de novo assemblies, Spades (v. 3.15.5)* was utilised with the -meta option, with
kmer sizes of 21, 33, 55 and 77, and contigs shorter than 1500 bp being discarded.
Read-to-assembly mapping was carried out using BWA-mem2 (v.2.2.1)'® and SAMTOOLS
(v.1.10)". Contig depths were assessed using Metabat2's jgi_summarize bam_contig_depths
(v.2.12)*, while contigs were binned into MAGs using VAMB (v.3.0.8)'° using default

settings.

The reads, contigs and MAGs were run through the MAGinator workflow (v.0.1.16). For
comparison purposes the VAMB clusters were annotated with a NCBI Taxonomy ID using
CAMITAX?. The profile was created with Python 3 and the lineage found using NCBI’s

lineage taxonomy (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/, accessed May

9th 2023). As the strain-identifiers from the gold-standard does not exist in the NCBI
database (e.g. 1313.1), we have assigned an extra number to the Taxonomy ID for the clusters
which had the same species-level annotation, starting at 1 to the number of redundantly

annotated clusters.

The data for the benchmarking was obtained from CAMI second challenge evaluation of
profiles. The profiles used for the benchmarking in this study were selected based on the
best-performing tools found in the CAMI II paper. The top 10 profiles comprise DUDes?’
(v.0.08), LSHVec?, MetaPhlAn2% (v.2.9.22), MetaPhyler? (v.1.25), mOTUs? (v.2.0.1 and
v.2.5.1) and TIPP*(v.4.3.10). The profiles were compared using OPAL, which was run with
default settings.

Franzosa et al. reanalysis

Processed taxa and metadata tables were obtained from the Franzosa et al.”' supplementary
materials. Raw data were downloaded from ENA using the provided accessions, and run
through the preprocessing, assembly and binning before running the entire MAGinator

pipeline. Four samples failed the assembly (PRISM|7238, PRISM|7445, PRISM|7947,
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PRISM|8550) and were excluded from all downstream analysis, both in the original and the
MAGinator processed tables.

Statistical methods for abundance matrices

Abundance matrices were analysed in R (v.4.1.2). Sample management and beta diversity
calculations were done in {phyloseq}*, along with PCoA analysis. Differential abundance
testing was done with the {DAtest} R package which uses the Wilcoxon test function
(wilcox.test) from the {stats} package, with p-values adjusted by Benjamini-Hochberg false

discovery rate correction. Corrected p-values less than 0.05 were considered significant.

Subspecies resolution of Bifidobacterium longum

COPSAC dataset - data characteristics and preparation

The COPSAC,,, cohort consists of 700 unselected children recruited during pregnancy week
24 and followed closely throughout childhood with extensive sample collection, exposure
assessments and longitudinal clinical phenotyping® . From the cohort, we used 662 deeply
sequenced metagenomics samples taken at 1 year of age. The details of the study and
sequencing protocol have previously been published®. The samples consist of 150-bp

paired-end reads per with mean + SD: 48 + 15.5 million reads.

The data was analysed using the same approach as for the strain-madness data set, with the
exception of filtering away reads shorter than 50 bp in the preprocessing step. This workflow

yielded 880 MAG clusters for the samples.

MAGinator was run using the reads, contigs and MAGs from VAMB as input. Thus creating
a set of signature genes for each MAG cluster which has been found de novo for this

particular dataset.

CHILD dataset - data characteristics and preparation
The Canadian Healthy Infant Longitudinal Development (CHILD) study comprises a large

longitudinal birth cohort with stool collection in infancy for microbiome analysis*®. Stool
samples used in this analysis were sequenced to an average depth of 4.85 million reads (SD:
1.79 million), and samples which included >1 million reads after preprocessing were kept for

the current analysis’.
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We analysed a subset of the CHILD cohort, consisting of 2846 metagenomic sequenced
faecal samples from infants. To overcome the shallow sequencing, the signature genes of the
COPSAC,,, cohort were used to profile the samples instead of running MAGinator. To
ensure that the process of the read mappings was identical to COPSAC, the read mapping
was carried out using the full gene catalogue. Next the read counts for the signature genes

were extracted and used to derive sample-wise abundances for each MAG cluster.

Examining Bifidobacterium MAG clusters

The detection of signature genes for B. infantis for the COPSAC,,,, and CHILD cohorts was
carried out by creating a binary detection matrix and using the standard function (heatmap)
with default values in R. Furthermore, we compared the abundances of all the
Bifidobacterium MAG clusters derived from MAGinator with abundance estimates from
Metaphlan 3 (v.3.0.7) and strain phylogenies from Strainphlan 3 (v.3.0.7) for the species
Bifidobacterium longum. The phylogenetic tree output by Strainphlan was converted into a
distance matrix and clustered using partitioning around medoids into two clusters. The two
clusters were annotated as B. longum subsp. longum (B. longum) and B. infantis based on the

placement of Bifidobacterium longum reference genomes in the phylogenetic tree.

SNV-level phylogenetic trees for COPSAC dataset

For each MAG cluster the sequences of the signature genes were used as a reference to create
an SNV-level phylogenetic tree. The trees for COPSAC,,,, were constructed with the default
values of MAGinator, producing a tree in Newick file format and creating statistics for the

alignment. The tree for Faecalibacterium sp900758465 was visualised in R using {ggtree}*’.

Gene syntenies and functional annotation for COPSAC dataset
The non-redundant genes were annotated using eggNOG mapper (v.2.0.2)***° . Of the 14.7
million non-redundant genes 9.2 million were annotated. The visualisation of the synteny

clusters was done with {igraph}*'.

Results

MAGinator can accurately detect strains in simulated data
The performance of MAGinator was evaluated against the top 10 taxonomic profiles found in

the second round of CAMI challenges using the simulated short-read ‘strain-madness’
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dataset. This dataset has been selected as it represents a heterogeneous strain environment,
making strain and species detection highly relevant.

Running the MAGinator pipeline on the strain-madness data, 73 MAG clusters were
identified, of these 22 clusters were present with less than 3 reads in 3 samples, so the
abundance was set to 0. Of these 51 remaining entities, 30 were assigned with strain-level

annotation by CAMITAX.

The profiles have been compared with the Open-community Profiling Assessment tooLL
(OPAL)* (Figure 2). For the majority of the tools, the performance decreased as the
taxonomic categories became less inclusive (Figure 2B & Suppl. Figure 2). The L1 norm
measures the total error from the predicted and true abundance at each rank. From genus to
species-level we observed drops in the average completeness 82.7-45.6% and the average
purity 73.6-36.5%. MAGinator had the best average completeness at genus (99.8%) and
species-levels (89.6%) (Suppl. Table 2). At the genus-level MAGinator ranked number 5 for
purity at 92.4% and the best-performing tool for the species-level at 90.1%. The LSHVec gsa
had the best performance for purity at genus-level with 100% however at species-level it has

a purity of 37.5%, ranking number 5 in this group (Suppl. Table 3).
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Figure 2: Benchmark using OPAL for comparing taxonomic profiling results for the

CAMI strain-madness data set. (A) Purity and completeness of the profiles are shown at

genus-level (B) Mean of L1 norm error across samples for all ranks.

MAGinator improves detection of relevant differentially abundant organisms

To demonstrate the advantages of quantifying bacterial taxa at high resolutions we have

re-analysed a well-designed metagenomics study from Franzosa et al*'. We chose this

because it has deep sequencing well-suited for de novo MAG construction and a

discovery/replication design with two distinct cohorts. In the absence of ground truth,

replicating discoveries is a compelling strategy for making sure that findings are not false

discoveries.
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Beta diversity analysis of the two abundance matrices (MAGinator vs. their matrix created
using MetaPhlAn2) revealed a similar separation for IBD patients vs healthy controls. For
this study MAGinator produces abundance matrices of much higher dimensionality (2140 vs
201 taxa) because of the higher resolution in taxa identifications, therefore prevalence and/or
abundance filtering might be relevant in MAGinator produced tables for noise reduction
(Figure 3A-C).

To illustrate the improved ability of MAGinator to identify differentially abundant taxa we
performed a regular differential abundance (DA) hypothesis test with Wilcoxon's test (Figure
3D-F). We looked for differentially abundant taxa defined as significant in the discovery
cohort and replicated in the independent validation cohort. In the original analysis, 18 taxa
were successfully validated in the independent cohort. With MAGinator, this increased to 213
taxa (Figure3 D-F).
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Figure 3: IBD case study shows similar performance of MAGinator with beta diversity and
improvements in DA analysis. PCoA and PERMANOVA (999 permutations) for beta
diversity analysis with jsd distances and wilcoxon's test for differential abundance analysis.
(4) PCoA of the original Franzosa et al. data (B) MAGinator abundances (C) filtered
MAGinator abundances showing similar separation of IBD and control samples. (D) DA

analysis of Franzosa et al. data, green points are taxa not significant in both cohorts (E)
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similar analysis on MAGinator abundances (F) Summary of validated discoveries using the

two methods.

MAGinator enables tracking of strains across datasets at a high resolution

B. infantis is a gut microbe particularly adapted to the infant gut due to its ability to
metabolise HMOs, which are complex sugars that infants cannot metabolise themselves®.
These capabilities are different from other major subspecies including B. longum . Early-life
colonisation with B. infantis has been linked to beneficial health outcomes which has sparked
interest in its potential as a health-promoting infant probiotic which may even contribute to
protection from asthma’*. To demonstrate the utility of subspecies abundance estimation in
MAGinator, we identified the signature gene set from one deeply sequenced infant cohort
(COPSAC,,) and used it to track subspecies abundances on another infant cohort (CHILD)
with shallower sequencing but more samples. In the MAGinator pipeline, we identified two
MAG clusters; one annotated as B. infantis and one as B. longum with GTDB-tk. In
MetaPhlAn output we identified only an overall abundance for the species Bifidobacterium
longum. Correlation analysis of these abundances shows that summed abundances of the B.
infantis and B. longum MAG clusters explain 87% of the variance in the MetaPhlAn B.
longum species (Suppl. Figure 3). In addition, we analysed the samples from both cohorts
with StrainPhlAn*’ which detects strains in samples using prespecified species-level marker
genes. Here, clustering of the sample-wise consensus sequences of the B. longum marker
genes identified two clusters, one which clustered with reference strains of B. longum and one
which clustered with reference strains of B. infantis. This result was previously shown for the
CHILD cohort’ and here we found similar results for COPSAC,,, (Suppl. Figure 4). We
hypothesised that this apparent duality may actually represent the underlying balance of these
two subspecies in each sample. We confirmed this by comparing the StrainPhlAn-clusters
with the MAGinator relative abundances of all Bifidobacterium species, where we saw that
the StrainPhlAn clusters depended on the ratio of B. infantis to B. longum (Figure 4), but that
more detailed information was accessible using the MAGinator derived relative abundances
of each subspecies. This is an example of how de novo identification of subspecies-level
MAG clusters and subsequent refinement of signature genes allows a higher resolution

depiction of taxa for which the sequence coverage is sufficient in a given set of samples.
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Additionally we used the signature genes identified from the COPSAC cohort to track the
two subspecies in the CHILD cohort. The relative abundances of the MAGinator clusters and
the StrainPhlAn clusters was likewise examined (Suppl. Figure 5). When using the signature
genes as a reference for the CHILD cohort MAGinator was still able to resolve the two

subspecies into more well-defined clusters yielding detailed profiling of the samples.

In order to estimate the fit of the signature genes for the two cohorts we compared the read
mappings and presence of signature genes (Suppl. Figure 6A). As previously described by
us'® the expected number of detected signature genes within a sample can be calculated from
the number of reads that map to those genes using a negative binomial distribution. We find
that the COPSAC,,,, cohort deviates with a mean squared error (MSE) of 103.95, whereas
the CHILD cohort deviates with a MSE of 878.09, indicating that the signature genes are
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better suited for profiling of the specific strains found in the COPSAC cohort. To examine the
cause of this large deviation for CHILD we created a heatmap of the read mappings to the
signature genes (Suppl. Figure 6B). In accordance with Suppl. Figure 6A the samples cluster
into two groups, which could be due to strain-differences. Additionally the genes are seen to
cluster into multiple groups, wherefrom a group is seen to be absent in a large proportion of
the samples, indicating that these genes have not been adequately selected for this strain for

this dataset.

MAGinator provides SNV-level phylogenetic trees for each MAG cluster

By using the sequences of the signature genes as a reference it is possible to create a
SNV-level phylogenetic tree of the samples, thus even being able to include samples in the
tree, which do not contain enough reads to contain a MAG. For the MAG cluster
Faecalibacterium sp900758465 we identified MAGs in 85 samples. For the tree 13 additional
samples were included (Suppl. Figure 7), since these samples met the inclusion criteria as

described in methods.

MAGinator identifies synteny clusters used for inference of functions

Genes can be grouped into synteny clusters based on their genomic adjacency. Genes close to
each other in the genome will be grouped into a synteny cluster, and they are usually part of
the same pathway or have a related function. Part of the MAGinator workflow creates these
synteny clusters. For the COPSAC,,, cohort 746,251 synteny clusters were identified with an
average of 3 genes per cluster (Suppl. Figure 8A+B). In order to evaluate the accuracy of the
synteny clusters, functional gene annotations were performed using eggNOG mapper.
Subsequently, the predominant KEGG module within each synteny cluster was determined,
and the proportion of genes sharing this annotation within the cluster was calculated (see
Suppl. Figure 8C). Only synteny clusters with 5 or more genes and at least two annotated
genes were included, leaving 35,798 clusters. For 28,341 clusters all genes in the synteny
cluster were assigned the same KEGG module, and 80.5% of the modules had more than

80% agreement.

Discussion

MAGinator is a novel pipeline for quantifying the abundances of de novo generated MAG

clusters. In contrast to reference-based abundance estimations, this allows extensive
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integration of abundance and functional properties for individual members of the microbial
community. Furthermore, it features generation of signature gene derived phylogenies for
MAG clusters and discovery of gene synteny clusters. It is implemented in Snakemake to
take advantage of the integrated work distribution capabilities necessary for processing large
scale metagenomics data. It features logging for ease of monitoring progress and visualisation
for diagnostic purposes. We have demonstrated the functionality and utility of MAGinator via

several avenues, both simulated and real datasets.

The performance of MAGinator was evaluated in comparison to existing profiling tools. We
benchmarked MAGinator using the simulated strain-madness dataset produced by CAMI 1I.
We found that MAGinator is capable of profiling samples at a comparable level to the already
established tools. Notably, while many tools performed well at the genus-level, a decline in
performance was observed when focusing on the species-level classification. This drop in
performance is expected from reference-based methods, as they are limited to identify only
what already exists in their database and are thus unable to annotate novel species.
MAGinator demonstrated a notable advantage in this regard, exhibiting the highest average
completeness and purity when classifying samples at the species-level. This indicates that
MAGinator has the ability to achieve a more accurate and precise characterization of
microbial species present in the samples. It should be noted that the high completeness by
MAGinator implies a greater sensitivity in detecting and including less abundant or rare taxa
in the analysis. However, it may also introduce a certain level of noise or misclassification,

which influences the estimation of beta diversity.

When examining the performance of MAGinator on a real dataset the beta diversity was
comparable to the analysis carried out by Franzosa et al. Reanalysing their data demonstrates
how MAGinator can be used for a metagenomic association study. With the higher resolution
of MAGinator when quantifying MAG clusters investigators have the possibility of
discovering differentially abundant taxa in much richer detail without compromising other
parts of a traditional analysis such as PCoA. Depending on the intention of the study, and the
taxonomic composition of the studied microbiomes, the high resolution can also be utilised to
gain deeper insights into the subspecies taxonomies. This is for instance relevant when

analysing the Bifidobacterium longum subspecies.
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B. infantis is highly relevant to investigate, as it is known for its greater capacity to
metabolise HMOs compared with its closely related subspecies, such as B. longum. As their
genomes are very similar, distinguishing them by database-dependent approaches is
challenging. With StrainPhlAn we are able to identify 2 mutually exclusive clusters, each
representing a subspecies, however we see that the two MAG clusters identified with
MAGinator for B. infantis and B. longum yield higher resolution in the form of individual
abundance estimates for each. MAGinator is able to successfully classify samples containing
the subspecies in samples with low abundance and even when a MAG is not produced in that
sample.

These results were reproduced in the CHILD cohort using the signature genes identified in
COPSAC,,, for the two subspecies. As samples from the CHILD cohort used in this study
had lower sequencing depth, still being able to separate the subspecies is valuable.
Importantly, it is worth noticing that the separation would most likely have been stronger if
the signature genes had been found de novo for the specific cohort. This is supported by the
read mappings to the signature genes showing a subset of the signature genes defined in
COPSAC,,, missing in the CHILD cohort, which presumably resulted in underestimation of
the abundance for a subset of the samples. This phenomenon highlights the importance of de
novo dataset-specific discovery of signature genes to yield the best possible abundance
estimates of closely related taxonomic entities. A similar phenomenon would be expected

when using database-derived strain marker genes.

From the COPSAC,,,, cohort we demonstrated MAGinators ability to create SN'V-level trees
based on the sequences from the signature genes of a MAG cluster, used for more fine
grained stratification of the MAGs. Even in samples where no MAG was found, they are
placed on the tree if they have enough reads that map to the signature genes. By placing these
samples in the tree, information from the closely related MAGs can be utilised and allows
detection of subspecies-level entities even for samples with very low abundance. From the
clusters of the tree it is possible to associate the samples with the gene content of the related
MAG:s yielding information about clade-specific genes, leaving us with the ability to pair the

metadata of the study with the clades and their functions.

Additionally the COPSAC,,, cohort was used to illustrate MAGinators ability to group genes
co-localised on the chromosome into synteny clusters, further combining the strengths of

using both genes and contigs. As genes found close together are often part of the same
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genetic pathway or share the same function, this is a valuable insight for associating
organisms with the outcomes of a study. This has been validated by functionally annotating
the genes of the predicted synteny clusters, confirming that the genes found in synteny are

often annotated to be part of the same metabolic pathway.

Conclusion

In conclusion, we have described the development of MAGinator - a pipeline for quantifying
MAG clusters and demonstrated the benefits of this approach to commonly generated data
types in the metagenomics field. Through reanalysis of publicly available data we have
illustrated how new insights can be gained from MAGinator at a higher taxonomic resolution
than available from commonly used tools. We believe that this higher resolution is key to
unlocking the potential of metagenomics to identify critical strains for human health and
environmental investigations. MAG cluster resolution metagenomics allows for accurate
integration of abundance, taxonomic and functional annotation in microbiome studies, which

is needed to empower investigations in the microbiome field.

Data availability
CAMLI II strain-madness benchmarking dataset is available at

https://frl.publisso.de/data/frl:6425521/strain/short _read/. The gold standard and benchmark profiles

are found at https://github.com/CAMI-challenge/second challenge evaluation/tree/master/profiling.

The dataset from Franzosa et al. used for benchmarking is available as supplementary from their paper

and the raw data is available at ENA accession SAMNO08049618.

The raw COPSAC fastq files are available at NCBI BioProject PRINA715601.

CHILD shotgun metagenomics sequencing data is available at NCBI BioProject PRINA838575.
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