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Abstract
Motivation

Metagenomic sequencing has provided great advantages in the characterization of

microbiomes, but currently available analysis tools lack the ability to combine strain-level

taxonomic resolution and abundance estimation with functional profiling of assembled

genomes. In order to define the microbiome and its associations with human health, improved

tools are needed to enable comprehensive understanding of the microbial composition and

elucidation of the phylogenetic and functional relationships between the microbes.

Results

Here, we present MAGinator, a freely available tool, tailored for the profiling of shotgun

metagenomics datasets. MAGinator provides de novo identification of subspecies-level

microbes and accurate abundance estimates of metagenome-assembled genomes (MAGs).

MAGinator utilises the information from both gene- and contig-based methods yielding

insight into both taxonomic profiles and the origin of genes as well as genetic content, used

for inference of functional content of each sample by host organism. Additionally,

MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs,

providing a framework to identify clade-level differences within subspecies MAGs.

Availability and implementation:MAGinator is available as a Python module at

https://github.com/Russel88/MAGinator
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Introduction
DNA sequencing has revolutionised our ability to gain insight into microbial compositions

without relying on the ability to cultivate organisms. To explore these compositions various

methods have been developed that either rely on databases of marker genes of known

organisms or attempt to reconstruct the chromosomes directly from the short reads by first

assembling into longer contigs and then binning these based on co-occurrences or DNA

composition.

Mapping reads against marker gene databases with tools such as MetaPhlAn1, MetaPhyler2

and mOTUs3 is a fast and effective way of recovering the microbial composition both

because the library depth required can be quite shallow and because the computational

requirements are smaller, but have limitations originating from the reliance on predefined

databases, limited ability to estimate abundances at higher taxonomic resolution4,5, and the

lack of information on the functional repertoire of the identified taxa. Conversely, de novo

binning strategies require high sequencing depth but can recover high-quality metagenome

assembled genomes (MAGs) from which the functional gene content can be directly linked to

a specific organism. Ideally, this can recover genomes of strains that can be used in

downstream analysis to generate more specific hypotheses about associations with outcomes.

One example of this is the capacity of an organism to break down Human Milk

Oligosaccharides (HMOs), the main source of energy for the developing infant gut

microbiome while being breastfed. Especially Bifidobacteria have this functionality, and it is

known that certain strains or subspecies have specific preferences for certain HMO types6–9,

improving the overall utilisation of HMOs and often conferring additional benefits as a

probiotic. Previously, it has been established that specifically the presence of Bifidobacterium

longum subspecies infantis (B. infantis) together with breastfeeding, plays a crucial role in

providing a protective effect to mitigate the impact of antibiotics on the early-life gut

microbiome7. This underlines the significance of being able to accurately profile the

microbiome at higher resolutions than species-level.
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In this work we have developed a pipeline that takes MAGs and original reads as input and

generates output including accurate abundance estimates, strain phylogenies and gene

synteny clusters that can improve insights into the microbiome composition (Figure 1). We

do this by grouping MAGs into clusters that are phylogenetically separated at a higher

resolution than species and estimate the abundances of these. This is done by identifying a set

of signature genes directly from the given data and refining them according to statistical

modelling to pick the ideal set suitable for abundance estimation. The fidelity of our

estimated abundances are demonstrated on the Critical Assessment of Metagenome

Interpretation (CAMI) strain-madness dataset, where we benchmark MAGinator against

similar tools. Additionally we show the functionality of MAGinator on a public dataset of

inflammatory bowel disease (IBD) patients, where we identify differentially abundant taxa

between patients and controls at high phylogenetic resolution.

MAGinator also enables Single Nucleotide Variant (SNV’s) resolution phylogenetic trees,

which are created from the signature genes and used for additional stratification of the MAGs

and can be associated with metadata to obtain subspecies/strain-level differences. We exhibit

MAGinator’s ability to obtain strain-level resolutions for Bifidobacterium from two

real-world infant datasets. In this case the signature genes were found de novo for one dataset

and were then utilised to obtain strain-level resolution in the other cohort.

By combining the information from both contigs and gene content we identify synteny

clusters of genes within strains, yielding information on shared pathways for the genes.

Additionally, we show how we can associate the functional content to the identified clades, to

improve hypotheses-generation on the impact of organisms, illustrated using the COPSAC2010

cohort.

Figure 1: Schematic visualisation of the main functions of the MAGinator workflow.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555054
http://creativecommons.org/licenses/by/4.0/


Methods

Implementation

Input

The input to the MAGinator workflow comprises a set of samples with (1) shotgun

metagenomic sequenced reads, (2) their sample-wise assembled contigs, and (3) sample-wise

MAGs (groups of contigs from the same genome), clustered across samples, as defined by a

metagenomic binning tool (see below).

Reads should be provided in a comma-separated file giving the location of the fastq files and

formatted as: SampleName,PathToForwardReads,PathToReverseReads. The contigs should

be nucleotide sequences in FASTA format. The MAGs should be given as a tab-separated file

including the MAG identifier and contig identifier. The sample-wise MAGs should be

grouped into MAG clusters representing a taxonomic entity found across the samples, which

will usually be species but can also be at the subspecies level, depending on characteristics of

the input data. MAGinator is flexible regarding which tool is being used for creating the

MAGs, however we recommend using VAMB10.

Dependencies

The dependencies to run MAGinator are mamba11 and Snakemake12 - all other dependencies

are installed automatically by Snakemake through MAGinator. Additionally MAGinator

needs the GTDB-tk database downloaded for taxonomic annotation of MAGs and as a

reference for the phylogenetic SNV-level analysis of the signature genes.

Output generated

MAGinator generates multiple outputs and intermediate files useful for additional

downstream analysis (Suppl. Table 1, Suppl. Figure 1). Importantly, MAGinator outputs the

taxonomy of the MAGs, the signature genes of the MAG clusters, the sample-wise relative

abundances of the MAG clusters, a non-redundant gene matrix with sample-wise mapping

counts, synteny clusters and inferred phylogenies for each MAG cluster. Additionally, a

folder is created containing the log information of all the jobs run by Snakemake.

Application
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MAGinator is written in Python 3 and is based on a set of Snakemake12 workflows, and easily

scalable to work for both single servers and compute clusters. MAGinator is implemented as

a python package and is available on GitHub at https://github.com/Russel88/MAGinator.

The MAGs are filtered based on a minimum size for inclusion, with a default size of

200,000bp. The included MAGs are taxonomically annotated using GTDB-tk (v.2.1.1)13, by

calling genes using Prodigal (v.2.6.3)14, identifying GTDB marker genes and placing them in

a reference tree. As the taxonomic annotation of the MAG clusters are found to be redundant,

clusters with the same taxonomic assignment can be combined into one cluster, with the flag

‘--mgs_collections’ which we identify as a Metagenomic Species (MGS). Redundant genes

are identified by clustering with MMseqs2 (v.13.45111)15 easy-linclust using a default

clustering-coverage and sequence identity threshold of 0.8, creating a list of the

representative genes along with their cluster-members. The redundant genes are filtered away,

leaving a nonredundant gene catalogue. The raw reads are mapped to the gene catalogue

using BWA mem2 (v.2.2.1)16 and counted using Samtools (v.1.10)17, leaving a gene count

matrix, which is used as input for the signature gene refinement and following phylogenetic

clade separation and abundance estimates.

Signature Gene Identification

We previously described the method for identifying the signature genes for the data set18. In

brief, signature genes are selected to ensure that they 1) are unique for the MAG cluster, 2)

are present in all members of the cluster, and 3) are single-copy.

To accomplish this the following steps are taken: Initially the non-redundant gene count

matrix is curated to discard any genes if they have (redundant) cluster-members originating

from more than one MAG cluster, as they are thus not specific for that biological entity.

Subsequently, the remaining genes within each MAG cluster are sorted based on their

co-abundance correlation across the samples. As the genes are unique for the species, if they

are consistently detected in similar abundance across samples, it suggests that they are

single-copy. This step also mitigates differences in read mappings caused by biological or

technical variations. The initial set of signature genes for each biological entity are selected

from the most correlated genes. Subsequently, these signature genes are further refined and

optimised by fitting them to a rank-based negative binomial model that captures the

characteristics of the specific microbial composition in the input data. The signature gene set
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is evaluated across the samples, by calculating the probability of the detected number of

signature genes given the number of reads mapping to the MAG cluster. Finally the

abundance of each MAG cluster is derived from the read counts to the identified signature

genes normalised according to the gene lengths.

SNV-level resolution phylogenetic trees

To elucidate the smaller biological differences within the MAG clusters, MAGinator will

infer a phylogeny based on the sequences of the signature genes. Based on the read mappings

to the signature genes the sample-specific SNVs are called using output from Samtools

mpileup. An alignment for each signature gene is made for all samples containing the

signature genes using MAFFT (v.7)19 run with the offset value of 0.123 as no long indels are

expected. MAGinator allows phylogenetic inference to be calculated with either the fast

method Fast-Tree (v.2)20 (default) or the more accurate but resource intensive method

IQ-TREE (v.2)21 (--phylo ['fasttree', 'iqtree']). In samples where no MAG was found, the

phylogenies can be used to detect rare subspecies-level entities based on just a few reads

mapping to the signature genes and to infer functions and genes from closely related MAGs

from other samples. The criteria for inclusion in the tree can be adjusted by the user. For a

sample to be included in the phylogeny the following three criteria has to be met 1) minimum

fraction of non-N characters in the alignment (default –min_nonN=0.5), 2) minimum number

of GTDB marker genes to be detected (default –min_marker_genes=2), 3) minimum number

of signature genes to be detected (default --min_signature_genes=50). The trees can be

associated with metadata to obtain clade-level differences associated with study design

variables such as disease phenotype, sampling location, or environmental factors.

Gene synteny

Based on the gene clustering with MMSeqs2 a weighted graph is created, which reflects the

adjacency of the genes on contigs. If genes are close enough in the graph they will be

categorised as part of the same synteny cluster and it is assumed that they have related

functionality and/or are part of the same functional module. Clustering is determined using

mcl (v.14)22, where the user has the options to influence the adjacency count and stringency

of the clusters. Only immediate adjacency is considered. By default, genes found adjacent

just once are included in the graph, but this can be tuned to make more strict clusters (default

–synteny_adj_cutoff=1). The inflation parameter for mcl-clustering of the synteny graph are
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important for the size of the gene clusters and are by default set high in order to small and

consistent clusters (default –synteny_mcl_inflation=5).

Taxonomic scope of gene clusters

The taxonomic assignment of the sample-specific MAG is done using GTDB-tk. In some

cases it will not be possible to assign a taxonomy to the MAG, which could be due to

contamination, the MAG originating from a currently undescribed organism or due to too

little information found in the MAG. In these cases an alternative is to assign the gene

clusters, found in the MAG, a taxonomy. The taxonomic scope of the genes are described for

the category they are almost all found in, given by a fraction defined by the user (default

–tax_scope_threshold=0.9). E.g. if run with default options and a gene cluster has the

assignment “Bacteria Firmicutes_A Clostridia Lachnospirales Lachnospiraceae

Anaerostipes NA”, then at least 90% of the genes should be found in Anaerostipes. The

algorithm will find the most specific taxonomic rank which has at least 90% agreement

across the genes in the cluster assigned by GTDB-tk.

Workflow design

The MAGinator workflow has been constructed to make the information flow between the

different modules automatically (Suppl. Figure 1).

The data goes through a series of filtering and processing steps (Figure 1), including:

A: Input MAG clusters, which are composed of one or more MAGs.

B: The genes are clustered and redundant genes are removed.

C: Reads are mapped to the genes, creating a gene count matrix.

D: Signature genes are identified for each MAG cluster, and used for abundance estimations

E: Based on the signature genes, SNV-level resolution phylogenetic trees are created and the

taxonomic scope of gene clusters are identified.

F: Synteny-clusters of genes are identified, reflecting the adjacency of the genes on the

contigs.

Benchmarking with OPAL on CAMI’s stimulated strain-madness data set

The construction of the strain-madness benchmarking dataset was part of the second round of

CAMI challenges5. The data consists of 100 simulated metagenomics samples consisting of

paired-end short reads of 150 bp. The samples were run through a preprocessing workflow

prior to the analysis. This involved the removal of adapters with BBDuk (v. 38.96
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http://jgi.doe.gov/data-and-tools/bb-tools/) run with the following settings ‘ktrim=r k=23

mink=11 hdist=1 hdist2=0 ptpe tbo’, removal of low-quality and short reads (<75 base pairs)

with Sickle (v. 1.33)23 and removal of human contamination (reference version: UCSC hg19,

GRCh37.p13) using BBmap (http://jgi.doe.gov/data-and-tools/bb-tools/) leaving an average

of 6.6 million reads (SD: ±2802 reads) per sample.

To generate de novo assemblies, Spades (v. 3.15.5)24 was utilised with the -meta option, with

kmer sizes of 21, 33, 55 and 77, and contigs shorter than 1500 bp being discarded.

Read-to-assembly mapping was carried out using BWA-mem2 (v.2.2.1)16 and SAMTOOLS

(v.1.10)17. Contig depths were assessed using Metabat2's jgi_summarize_bam_contig_depths

(v.2.12)25, while contigs were binned into MAGs using VAMB (v.3.0.8)10 using default

settings.

The reads, contigs and MAGs were run through the MAGinator workflow (v.0.1.16). For

comparison purposes the VAMB clusters were annotated with a NCBI Taxonomy ID using

CAMITAX26. The profile was created with Python 3 and the lineage found using NCBI’s

lineage taxonomy (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/, accessed May

9th 2023). As the strain-identifiers from the gold-standard does not exist in the NCBI

database (e.g. 1313.1), we have assigned an extra number to the Taxonomy ID for the clusters

which had the same species-level annotation, starting at 1 to the number of redundantly

annotated clusters.

The data for the benchmarking was obtained from CAMI second challenge evaluation of

profiles. The profiles used for the benchmarking in this study were selected based on the

best-performing tools found in the CAMI II paper. The top 10 profiles comprise DUDes27

(v.0.08), LSHVec28, MetaPhlAn229 (v.2.9.22), MetaPhyler2 (v.1.25), mOTUs3 (v.2.0.1 and

v.2.5.1) and TIPP30(v.4.3.10). The profiles were compared using OPAL, which was run with

default settings.

Franzosa et al. reanalysis

Processed taxa and metadata tables were obtained from the Franzosa et al.31 supplementary

materials. Raw data were downloaded from ENA using the provided accessions, and run

through the preprocessing, assembly and binning before running the entire MAGinator

pipeline. Four samples failed the assembly (PRISM|7238, PRISM|7445, PRISM|7947,
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PRISM|8550) and were excluded from all downstream analysis, both in the original and the

MAGinator processed tables.

Statistical methods for abundance matrices

Abundance matrices were analysed in R (v.4.1.2). Sample management and beta diversity

calculations were done in {phyloseq}32, along with PCoA analysis. Differential abundance

testing was done with the {DAtest} R package which uses the Wilcoxon test function

(wilcox.test) from the {stats} package, with p-values adjusted by Benjamini-Hochberg false

discovery rate correction. Corrected p-values less than 0.05 were considered significant.

Subspecies resolution of Bifidobacterium longum

COPSAC dataset - data characteristics and preparation

The COPSAC2010 cohort consists of 700 unselected children recruited during pregnancy week

24 and followed closely throughout childhood with extensive sample collection, exposure

assessments and longitudinal clinical phenotyping33–35. From the cohort, we used 662 deeply

sequenced metagenomics samples taken at 1 year of age. The details of the study and

sequencing protocol have previously been published35. The samples consist of 150-bp

paired-end reads per with mean ± SD: 48 ± 15.5 million reads.

The data was analysed using the same approach as for the strain-madness data set, with the

exception of filtering away reads shorter than 50 bp in the preprocessing step. This workflow

yielded 880 MAG clusters for the samples.

MAGinator was run using the reads, contigs and MAGs from VAMB as input. Thus creating

a set of signature genes for each MAG cluster which has been found de novo for this

particular dataset.

CHILD dataset - data characteristics and preparation

The Canadian Healthy Infant Longitudinal Development (CHILD) study comprises a large

longitudinal birth cohort with stool collection in infancy for microbiome analysis36. Stool

samples used in this analysis were sequenced to an average depth of 4.85 million reads (SD:

1.79 million), and samples which included >1 million reads after preprocessing were kept for

the current analysis7.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555054
http://creativecommons.org/licenses/by/4.0/


We analysed a subset of the CHILD cohort, consisting of 2846 metagenomic sequenced

faecal samples from infants. To overcome the shallow sequencing, the signature genes of the

COPSAC2010 cohort were used to profile the samples instead of running MAGinator. To

ensure that the process of the read mappings was identical to COPSAC, the read mapping

was carried out using the full gene catalogue. Next the read counts for the signature genes

were extracted and used to derive sample-wise abundances for each MAG cluster.

Examining Bifidobacterium MAG clusters

The detection of signature genes for B. infantis for the COPSAC2010 and CHILD cohorts was

carried out by creating a binary detection matrix and using the standard function (heatmap)

with default values in R. Furthermore, we compared the abundances of all the

BifidobacteriumMAG clusters derived from MAGinator with abundance estimates from

Metaphlan 3 (v.3.0.7) and strain phylogenies from Strainphlan 3 (v.3.0.7) for the species

Bifidobacterium longum. The phylogenetic tree output by Strainphlan was converted into a

distance matrix and clustered using partitioning around medoids into two clusters. The two

clusters were annotated as B. longum subsp. longum (B. longum) and B. infantis based on the

placement of Bifidobacterium longum reference genomes in the phylogenetic tree.

SNV-level phylogenetic trees for COPSAC dataset

For each MAG cluster the sequences of the signature genes were used as a reference to create

an SNV-level phylogenetic tree. The trees for COPSAC2010 were constructed with the default

values of MAGinator, producing a tree in Newick file format and creating statistics for the

alignment. The tree for Faecalibacterium sp900758465 was visualised in R using {ggtree}37.

Gene syntenies and functional annotation for COPSAC dataset

The non-redundant genes were annotated using eggNOG mapper (v.2.0.2)38–40 . Of the 14.7

million non-redundant genes 9.2 million were annotated. The visualisation of the synteny

clusters was done with {igraph}41.

Results

MAGinator can accurately detect strains in simulated data

The performance of MAGinator was evaluated against the top 10 taxonomic profiles found in

the second round of CAMI5 challenges using the simulated short-read ‘strain-madness’
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dataset. This dataset has been selected as it represents a heterogeneous strain environment,

making strain and species detection highly relevant.

Running the MAGinator pipeline on the strain-madness data, 73 MAG clusters were

identified, of these 22 clusters were present with less than 3 reads in 3 samples, so the

abundance was set to 0. Of these 51 remaining entities, 30 were assigned with strain-level

annotation by CAMITAX.

The profiles have been compared with the Open-community Profiling Assessment tooL

(OPAL)42 (Figure 2). For the majority of the tools, the performance decreased as the

taxonomic categories became less inclusive (Figure 2B & Suppl. Figure 2). The L1 norm

measures the total error from the predicted and true abundance at each rank. From genus to

species-level we observed drops in the average completeness 82.7-45.6% and the average

purity 73.6-36.5%. MAGinator had the best average completeness at genus (99.8%) and

species-levels (89.6%) (Suppl. Table 2). At the genus-level MAGinator ranked number 5 for

purity at 92.4% and the best-performing tool for the species-level at 90.1%. The LSHVec gsa

had the best performance for purity at genus-level with 100% however at species-level it has

a purity of 37.5%, ranking number 5 in this group (Suppl. Table 3).
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Figure 2: Benchmark using OPAL for comparing taxonomic profiling results for the

CAMI strain-madness data set. (A) Purity and completeness of the profiles are shown at

genus-level (B) Mean of L1 norm error across samples for all ranks.

MAGinator improves detection of relevant differentially abundant organisms

To demonstrate the advantages of quantifying bacterial taxa at high resolutions we have

re-analysed a well-designed metagenomics study from Franzosa et al31. We chose this

because it has deep sequencing well-suited for de novoMAG construction and a

discovery/replication design with two distinct cohorts. In the absence of ground truth,

replicating discoveries is a compelling strategy for making sure that findings are not false

discoveries.
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Beta diversity analysis of the two abundance matrices (MAGinator vs. their matrix created

using MetaPhlAn2) revealed a similar separation for IBD patients vs healthy controls. For

this study MAGinator produces abundance matrices of much higher dimensionality (2140 vs

201 taxa) because of the higher resolution in taxa identifications, therefore prevalence and/or

abundance filtering might be relevant in MAGinator produced tables for noise reduction

(Figure 3A-C).

To illustrate the improved ability of MAGinator to identify differentially abundant taxa we

performed a regular differential abundance (DA) hypothesis test with Wilcoxon's test (Figure

3D-F). We looked for differentially abundant taxa defined as significant in the discovery

cohort and replicated in the independent validation cohort. In the original analysis, 18 taxa

were successfully validated in the independent cohort. With MAGinator, this increased to 213

taxa (Figure3 D-F).

Figure 3: IBD case study shows similar performance of MAGinator with beta diversity and

improvements in DA analysis. PCoA and PERMANOVA (999 permutations) for beta

diversity analysis with jsd distances and wilcoxon's test for differential abundance analysis.

(A) PCoA of the original Franzosa et al. data (B) MAGinator abundances (C) filtered

MAGinator abundances showing similar separation of IBD and control samples. (D) DA

analysis of Franzosa et al. data, green points are taxa not significant in both cohorts (E)
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similar analysis on MAGinator abundances (F) Summary of validated discoveries using the

two methods.

MAGinator enables tracking of strains across datasets at a high resolution

B. infantis is a gut microbe particularly adapted to the infant gut due to its ability to

metabolise HMOs, which are complex sugars that infants cannot metabolise themselves43.

These capabilities are different from other major subspecies including B. longum . Early-life

colonisation with B. infantis has been linked to beneficial health outcomes which has sparked

interest in its potential as a health-promoting infant probiotic which may even contribute to

protection from asthma7,44. To demonstrate the utility of subspecies abundance estimation in

MAGinator, we identified the signature gene set from one deeply sequenced infant cohort

(COPSAC2010) and used it to track subspecies abundances on another infant cohort (CHILD)

with shallower sequencing but more samples. In the MAGinator pipeline, we identified two

MAG clusters; one annotated as B. infantis and one as B. longum with GTDB-tk. In

MetaPhlAn output we identified only an overall abundance for the species Bifidobacterium

longum. Correlation analysis of these abundances shows that summed abundances of the B.

infantis and B. longumMAG clusters explain 87% of the variance in the MetaPhlAn B.

longum species (Suppl. Figure 3). In addition, we analysed the samples from both cohorts

with StrainPhlAn45 which detects strains in samples using prespecified species-level marker

genes. Here, clustering of the sample-wise consensus sequences of the B. longum marker

genes identified two clusters, one which clustered with reference strains of B. longum and one

which clustered with reference strains of B. infantis. This result was previously shown for the

CHILD cohort7 and here we found similar results for COPSAC2010 (Suppl. Figure 4). We

hypothesised that this apparent duality may actually represent the underlying balance of these

two subspecies in each sample. We confirmed this by comparing the StrainPhlAn-clusters

with the MAGinator relative abundances of all Bifidobacterium species, where we saw that

the StrainPhlAn clusters depended on the ratio of B. infantis to B. longum (Figure 4), but that

more detailed information was accessible using the MAGinator derived relative abundances

of each subspecies. This is an example of how de novo identification of subspecies-level

MAG clusters and subsequent refinement of signature genes allows a higher resolution

depiction of taxa for which the sequence coverage is sufficient in a given set of samples.
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Figure 4: Stratification of StrainPhlAn clusters using the relative abundances of

Bifidobacterium longum subspecies from MAGinator Cluster 1 indicates B. infantis and

Cluster 2 indicates B. longum.

(A) Relative abundance of StrainPhlAn clusters stratified by all Bifidobacterium clusters

identified by MAGinator (B) Relative abundance of B. infantis and B. longum identified with

MAGinator coloured by StrainPhlAn cluster. (C) The ratio of B. infantis to B. longum is

displayed for the StrainPhlAn clusters.

Additionally we used the signature genes identified from the COPSAC cohort to track the

two subspecies in the CHILD cohort. The relative abundances of the MAGinator clusters and

the StrainPhlAn clusters was likewise examined (Suppl. Figure 5). When using the signature

genes as a reference for the CHILD cohort MAGinator was still able to resolve the two

subspecies into more well-defined clusters yielding detailed profiling of the samples.

In order to estimate the fit of the signature genes for the two cohorts we compared the read

mappings and presence of signature genes (Suppl. Figure 6A). As previously described by

us18 the expected number of detected signature genes within a sample can be calculated from

the number of reads that map to those genes using a negative binomial distribution. We find

that the COPSAC2010 cohort deviates with a mean squared error (MSE) of 103.95, whereas

the CHILD cohort deviates with a MSE of 878.09, indicating that the signature genes are
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better suited for profiling of the specific strains found in the COPSAC cohort. To examine the

cause of this large deviation for CHILD we created a heatmap of the read mappings to the

signature genes (Suppl. Figure 6B). In accordance with Suppl. Figure 6A the samples cluster

into two groups, which could be due to strain-differences. Additionally the genes are seen to

cluster into multiple groups, wherefrom a group is seen to be absent in a large proportion of

the samples, indicating that these genes have not been adequately selected for this strain for

this dataset.

MAGinator provides SNV-level phylogenetic trees for each MAG cluster

By using the sequences of the signature genes as a reference it is possible to create a

SNV-level phylogenetic tree of the samples, thus even being able to include samples in the

tree, which do not contain enough reads to contain a MAG. For the MAG cluster

Faecalibacterium sp900758465 we identified MAGs in 85 samples. For the tree 13 additional

samples were included (Suppl. Figure 7), since these samples met the inclusion criteria as

described in methods.

MAGinator identifies synteny clusters used for inference of functions

Genes can be grouped into synteny clusters based on their genomic adjacency. Genes close to

each other in the genome will be grouped into a synteny cluster, and they are usually part of

the same pathway or have a related function. Part of the MAGinator workflow creates these

synteny clusters. For the COPSAC2010 cohort 746,251 synteny clusters were identified with an

average of 3 genes per cluster (Suppl. Figure 8A+B). In order to evaluate the accuracy of the

synteny clusters, functional gene annotations were performed using eggNOG mapper.

Subsequently, the predominant KEGG module within each synteny cluster was determined,

and the proportion of genes sharing this annotation within the cluster was calculated (see

Suppl. Figure 8C). Only synteny clusters with 5 or more genes and at least two annotated

genes were included, leaving 35,798 clusters. For 28,341 clusters all genes in the synteny

cluster were assigned the same KEGG module, and 80.5% of the modules had more than

80% agreement.

Discussion

MAGinator is a novel pipeline for quantifying the abundances of de novo generated MAG

clusters. In contrast to reference-based abundance estimations, this allows extensive
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integration of abundance and functional properties for individual members of the microbial

community. Furthermore, it features generation of signature gene derived phylogenies for

MAG clusters and discovery of gene synteny clusters. It is implemented in Snakemake to

take advantage of the integrated work distribution capabilities necessary for processing large

scale metagenomics data. It features logging for ease of monitoring progress and visualisation

for diagnostic purposes. We have demonstrated the functionality and utility of MAGinator via

several avenues, both simulated and real datasets.

The performance of MAGinator was evaluated in comparison to existing profiling tools. We

benchmarked MAGinator using the simulated strain-madness dataset produced by CAMI II.

We found that MAGinator is capable of profiling samples at a comparable level to the already

established tools. Notably, while many tools performed well at the genus-level, a decline in

performance was observed when focusing on the species-level classification. This drop in

performance is expected from reference-based methods, as they are limited to identify only

what already exists in their database and are thus unable to annotate novel species.

MAGinator demonstrated a notable advantage in this regard, exhibiting the highest average

completeness and purity when classifying samples at the species-level. This indicates that

MAGinator has the ability to achieve a more accurate and precise characterization of

microbial species present in the samples. It should be noted that the high completeness by

MAGinator implies a greater sensitivity in detecting and including less abundant or rare taxa

in the analysis. However, it may also introduce a certain level of noise or misclassification,

which influences the estimation of beta diversity.

When examining the performance of MAGinator on a real dataset the beta diversity was

comparable to the analysis carried out by Franzosa et al. Reanalysing their data demonstrates

how MAGinator can be used for a metagenomic association study. With the higher resolution

of MAGinator when quantifying MAG clusters investigators have the possibility of

discovering differentially abundant taxa in much richer detail without compromising other

parts of a traditional analysis such as PCoA. Depending on the intention of the study, and the

taxonomic composition of the studied microbiomes, the high resolution can also be utilised to

gain deeper insights into the subspecies taxonomies. This is for instance relevant when

analysing the Bifidobacterium longum subspecies.
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B. infantis is highly relevant to investigate, as it is known for its greater capacity to

metabolise HMOs compared with its closely related subspecies, such as B. longum. As their

genomes are very similar, distinguishing them by database-dependent approaches is

challenging. With StrainPhlAn we are able to identify 2 mutually exclusive clusters, each

representing a subspecies, however we see that the two MAG clusters identified with

MAGinator for B. infantis and B. longum yield higher resolution in the form of individual

abundance estimates for each. MAGinator is able to successfully classify samples containing

the subspecies in samples with low abundance and even when a MAG is not produced in that

sample.

These results were reproduced in the CHILD cohort using the signature genes identified in

COPSAC2010 for the two subspecies. As samples from the CHILD cohort used in this study

had lower sequencing depth, still being able to separate the subspecies is valuable.

Importantly, it is worth noticing that the separation would most likely have been stronger if

the signature genes had been found de novo for the specific cohort. This is supported by the

read mappings to the signature genes showing a subset of the signature genes defined in

COPSAC2010 missing in the CHILD cohort, which presumably resulted in underestimation of

the abundance for a subset of the samples. This phenomenon highlights the importance of de

novo dataset-specific discovery of signature genes to yield the best possible abundance

estimates of closely related taxonomic entities. A similar phenomenon would be expected

when using database-derived strain marker genes.

From the COPSAC2010 cohort we demonstrated MAGinators ability to create SNV-level trees

based on the sequences from the signature genes of a MAG cluster, used for more fine

grained stratification of the MAGs. Even in samples where no MAG was found, they are

placed on the tree if they have enough reads that map to the signature genes. By placing these

samples in the tree, information from the closely related MAGs can be utilised and allows

detection of subspecies-level entities even for samples with very low abundance. From the

clusters of the tree it is possible to associate the samples with the gene content of the related

MAGs yielding information about clade-specific genes, leaving us with the ability to pair the

metadata of the study with the clades and their functions.

Additionally the COPSAC2010 cohort was used to illustrate MAGinators ability to group genes

co-localised on the chromosome into synteny clusters, further combining the strengths of

using both genes and contigs. As genes found close together are often part of the same
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genetic pathway or share the same function, this is a valuable insight for associating

organisms with the outcomes of a study. This has been validated by functionally annotating

the genes of the predicted synteny clusters, confirming that the genes found in synteny are

often annotated to be part of the same metabolic pathway.

Conclusion

In conclusion, we have described the development of MAGinator - a pipeline for quantifying

MAG clusters and demonstrated the benefits of this approach to commonly generated data

types in the metagenomics field. Through reanalysis of publicly available data we have

illustrated how new insights can be gained from MAGinator at a higher taxonomic resolution

than available from commonly used tools. We believe that this higher resolution is key to

unlocking the potential of metagenomics to identify critical strains for human health and

environmental investigations. MAG cluster resolution metagenomics allows for accurate

integration of abundance, taxonomic and functional annotation in microbiome studies, which

is needed to empower investigations in the microbiome field.

Data availability

CAMI II strain-madness benchmarking dataset is available at

https://frl.publisso.de/data/frl:6425521/strain/short_read/. The gold standard and benchmark profiles

are found at https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/profiling.

The dataset from Franzosa et al. used for benchmarking is available as supplementary from their paper

and the raw data is available at ENA accession SAMN08049618.

The raw COPSAC fastq files are available at NCBI BioProject PRJNA715601.

CHILD shotgun metagenomics sequencing data is available at NCBI BioProject PRJNA838575.
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