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Abstract

An accurate genome at the chromosome level is the key to unraveling the mysteries of gene
function and unlocking the mechanisms of disease. Irrespective of the sequencing
methodology adopted, Hi-C aided scaffolding serves as a principal avenue for generating
genome assemblies at the chromosomal level. However, the results of such scaffolding are
often flawed and require extensive manual refinement. In this paper, we introduce AutoHiC,
an innovative deep learning-based tool designed to identify and rectify genome assembly
errors. Diverging from conventional approaches, AutoHiC harnesses the power of high-
dimensional Hi-C data to enhance genome continuity and accuracy through a fully automated
workflow and iterative error correction mechanism. AutoHiC was trained on Hi-C data from
more than 300 species (approximately five hundred thousand interaction maps) in DNA Zoo
and NCBLI. Its confusion matrix results show that the average error detection accuracy is over
90%, and the area under the precision-recall curve is close to 1, making it a powerful error
detection capability. The benchmarking results demonstrate AutoHiC's ability to substantially
enhance genome continuity and significantly reduce error rates, providing a more reliable
foundation for genomics research. Furthermore, AutoHiC generates comprehensive result

reports, offering users insights into the assembly process and outcomes. In summary,
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AutoHiC represents a breakthrough in automated error detection and correction for genome

assembly, effectively promoting more accurate and comprehensive genome assemblies.

Introduction

The landscape of genomics research has undergone a remarkable transformation, unveiling
the intricate tapestry of gene functionality and species evolution. Central to these
breakthroughs is the pursuit of accurate', chromosome-level genome sequences — an
overarching goal that serves as the bedrock for unraveling the mysteries of biology and
catalyzing the exploration of disease mechanisms.

Recent strides in genome assembly”? have been propelled by the emergence of long-read
sequencing technologies, such as PacBio's Single Molecule Real-Time* (SMRT) sequencing
and Oxford Nanopore Technologies’ (ONT). These technological marvels have shattered the
constraints of traditional next-generation sequencing (NGS) methods®, offering read lengths
that defy conventional limits. These factors have led to a spectacular surge in comprehensive
and contiguous genome assemblies. However, even with these advancements, the elusive goal
of achieving chromosome-scale assembly remains a challenge, underscoring the complexity
of the task at hand.

In the intricate dance of genome assembly, Hi-C sequencing has arisen as a pivotal partner.
This technique, an ingenious blend of proximity ligation and sequencing, promises to scaffold
contigs into chromosome-scale assemblies by capitalizing on the higher density of Hi-C

712 'While a slew of tools, such as Lachesis'?, 3D-

linkage pairs between adjacent contigs
DNA', SALSA'>'S, YaHS"’, instaGRAAL'®, EndHiC'’, and Pin_hic** have emerged to
translate Hi-C data into chromosome-scale scaffolds, each harbors limitations and is
susceptible to various influences. Some software requires the number of chromosomes to be
specified in advance, but this is very difficult for the user. Moreover, the presence of errors in

the output generated by these tools necessitates manual correction, extending the process and

inviting human error. This dependence on manual intervention has cast a shadow over the


https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.27.555031; this version posted August 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

dream of fully automated genome assembly, particularly when striving for chromosome-level
precision with Hi-C data.

As a symphony of large-scale genomic research initiatives such as the Bird 10,000
Genomes (B10K) Project*!, the Earth Bio Genome Project” (EBP), and the i5k initiative”
take the global stage, the need to automate the process of high-quality chromosome-level
genome assembly at scale has emerged as an urgent imperative. Nevertheless, with the
ongoing expansion and increasing complexity of datasets, conventional assembly approaches
come with challenges in terms of algorithmic precision and available human resources. This
is where innovative assembly software, empowered by cutting-edge technologies such as
artificial intelligence and deep learning, shines. This confluence promises to create a
transformative force capable of untangling the intricate puzzle of genome splicing and
assembly.

Furthermore, deep learning has come to play an increasingly pivotal role in the life

sciences>*%¢

, significantly contributing to data analysis and processing. Transformers*’, which
are a type of attention-based architecture designed for long sequences, have made remarkable
strides in language processing and have demonstrated applicability in other domains,
including image analysis, gene expression, and protein folding. Despite the emergence of
software such as DeepC?*, EagleC*’, VEHICLE®’, DeepLoop®', SnapHiC-D*?, and hicGAN??,
the full potential of Hi-C data in the detection of assembly errors remains underutilized. Large
datasets provide a potential basis for deep learning to fully exploit Hi-C information.

Here, we present AutoHiC, a scalable and computationally efficient deep learning-based
error correction method. Leveraging genome-wide chromatin interaction data from over five
hundred thousand Hi-C images derived from Hi-C data from approximately 300 species,
AutoHiC automates realize Hi-C assembly error correction, significantly improving genome
assembly continuity and accuracy. We demonstrate the feasibility of the AutoHiC recognition
and error correction algorithm by comparing the interaction heatmaps before and after
adjustment. From the continuity comparison results, it was found that AutoHiC can
significantly improve genome continuity compared to other software. Moreover, to more
accurately reflect the actual situation of the genome, we performed genome accuracy tests on

the T2T genomes, and the results showed that AutoHiC can improve the accuracy of
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genomes. Finally, to prove the universality of AutoHiC, we tested it in several species,
including those with large genomes, a large number of chromosomes, and polyploidy. The
results showed that AutoHiC can be well applied to different situations.

In summary, AutoHiC harnesses the power of deep learning and Hi-C to automate
chromosome-level genome assembly and advance scaffold assembly. By automatically
identifying and correcting Hi-C assembly errors and achieving exceptional chromosome-level
assembly results, AutoHiC supersedes laborious and error-prone manual adjustments,
revolutionizing the final step of genome sequencing data to chromosome-level genome
assembly with automation and efficiency. This groundbreaking advancement holds immense
promise for advancing genomics research and deepening our understanding of genome three-

dimensional structure and functionality.

Results

Overview of the AutoHiC pipeline

To provide a fully automated, deep learning-based approach to identifying and correcting
misassembled genomes, we aimed to develop a genome tool using a deep learning-based
approach. AutoHiC draws primarily on the lessons learned from manual error correction with

assembly tools**>

to provide a fully automated, deep learning-based approach to identifying
and correcting misassembled genomes. This tool empowers users without computational
backgrounds who are unfamiliar with Hi-C images to enhance genome quality and reduce the
costs associated with manual adjustment of genome assembly. The overall workflow of
AutoHiC is illustrated in Fig. la. A detailed description is available in the Methods section.
At a macroscopic level, AutoHiC operates in three stages. In the first stage, AutoHiC
leverages Juicer’® and 3D-DNA to generate preliminary assembly results based on the
existing contig and Hi-C reads. The outcomes of this step include scaffolds (uncorrected) and
Hi-C interaction maps at various resolutions. In the second which is the most crucial step of

the pipeline, AutoHiC incorporates an error correction module (Methods) to refine assembly

quality, thereby facilitating downstream analyses. The error correction module effectively
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rectifies translocation, inversion, and debris errors at their identified locations. Subsequently,
based on the model's detection of the number of chromosomes, the AutoHiC split module
divides the previously corrected genome results into the final scaffold genome at the
chromosome level. In the final stage, a visual report is generated, showcasing the genome
before and after error correction. This report plays a pivotal role as it enables users to assess
genome quality, examine pertinent indicators, and review details of the error correction

process for subsequent analyses.

Assembly report

The detailed assembly result report is the bridge between the user and the assembly result. It
allows users to fully understand their own data. In addition, the comprehensive assessment of
AutoHiC corrections is facilitated through a detailed result report, serving as a pivotal tool for
validation. This report encompasses essential aspects of the final genome assembly, error
rectification intricacies, and pertinent details. Structurally, the report is compartmentalized
into four sections, each strategically addressing distinct facets of the genomic correction
process.

The initial segment of the report furnishes fundamental genome attributes, encompassing
pivotal parameters such as genome size, N50 value, L50 value, Hi-C anchor rate, scaffold
count, and GC content. This segment is instrumental in offering an overview of the genome's
characteristics post AutoHiC correction, serving as a foundation for subsequent analysis and
interpretation (Supplementary Figure 1).

The subsequent section of the report undertakes a comparative evaluation of the genome-
wide interaction heatmaps before and after the error correction process. This visual
juxtaposition provides clear insight into the efficacy of AutoHiC corrections in enhancing the
precision and reliability of genomic interactions, bolstering the overall integrity of the
assembly (Supplementary Figure 2).

The third section delves into the granular intricacies of the error correction process. It
meticulously outlines the specifics of identified errors, encompassing their dimensions,

positional coordinates within the genome, and the visual representation of the nature and
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context of the errors. This detailed exposition not only facilitates an in-depth comprehension
of the corrective process but also supports downstream investigations and potential
optimizations (Supplementary Figure 3). For example, when studying a 3D genome, it is
possible to focus on whether these regions have an impact on the formation of the 3D
structure of the genome.

Finally, the report culminates with an appendix containing supplementary information.
This section is instrumental in recording and tracking the dynamic evolution of errors during
the correction process. It encapsulates the fluctuation in error count and the consequential
impact on chromosome length determinations. This comprehensive archive of data affords
deeper insight into the iterative nature of AutoHiC corrections, enriching the overall picture
of the algorithm's performance (Supplementary Figure 4). In essence, the results report stands
as a cornerstone for the comprehensive assessment of the efficacy of AutoHiC in refining
genome assemblies. Through its structured segments, AutoHiC provides a multifaceted lens
to scrutinize genomic attributes, error rectification outcomes, and their subsequent
implications, thereby underscoring the robustness and applicability of AutoHiC in

contemporary genomics research.

The AutoHiC model

Accurately identifying the type of error and where it occurred is key to correcting assembly
errors. We developed the AutoHiC tool, which can eliminate the effects of complex features
caused by assembly errors, including error size, resolution, and color gamut (Fig. 1b).
AutoHiC is a deep neural network that utilizes two-stage object detectors to enhance the
detection of genome assembly errors and extract error features by leveraging Hi-C data
(Methods). AutoHiC is based on the Swin Transformer’’ architecture, which incorporates
self-attention mechanisms. We chose this architecture as a starting point based on substantial
evidence indicating that quantized architectures presently yield superior image
representations.

The AutoHiC model employs a streaming sliding window approach (Methods) to scan

the entire Hi-C contact map. The contact map is then converted into an image to capture error
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signals, and corresponding log files are generated for subsequent error processing. A trained
neural network (Methods) is used to extract error features for each image, encoding the
location, type, and score of the error in the image. High-confidence error predictions are
refined and mapped back from the image to the scaffold genome coordinates, and this

information is utilized in the error correction module (Methods).

Principles of AutoHiC’s algorithm

We subsequently assessed the capability of the AutoHiC algorithm in identifying critical
features such as translocations, inversions, debris, and chromosomes, which are pivotal for
studying and rectifying errors in genome assembly. The AutoHiC model, as depicted in
Figure 1b, employs a two-stage object detection framework within a deep neural network. It
effectively pinpoints and locates erroneous regions in misassembled scaffolds, subsequently
rectifying them using information provided by the model in conjunction with the Hi-C
interaction matrix. AutoHiC retrieves pertinent interaction matrix data based on error position
information provided by the model and employs the peak algorithm to precisely identify the
erroneous insertion position and boundary.

For translocation errors, the algorithm extracts the regions characterized by the error
detection model. Interaction curves are then generated for the corresponding regions. It can be
clearly seen that the interaction law of the interaction curve corresponds to the interaction
heatmap and can indicate the location where the translocation error occurs and the site that
needs to be inserted (Fig. 2a). Due to the presence of interfering signals, AutoHiC eliminates
peaks at its own site and filters redundant peaks to determine the exact insertion site of the
translocation error. In addition, AutoHiC shifts the sequence of the region where translocation
occurs to the corresponding insertion site. As seen from the interaction heatmap and the
interaction curve (Fig. 2b), after the AutoHiC adjustment, the interaction is more in line with
the interaction law, the translocation error is also eliminated on the heatmap, and the
interaction curve returns to normal. Inversion errors have their own specific characteristics in
both interaction heatmaps and interaction curves (Fig. 2¢). On the interaction heatmap, the

area where the inversion error occurs is shaped like a butterfly, and the corresponding
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interaction curve has a peak area of a certain length. AutoHiC calculates the length of the
inversion error based on the area of the peak on the interaction curve and then adjusts the
sequence in that area in the opposite direction. After AutoHiC adjustment, the features on the
interaction heatmap and the peaks on the interaction curve are eliminated, indicating that the
algorithm can adjust the inversion error well (Fig. 2d). Debris errors are usually short in
length and appear as blanks on the interaction heatmap and as a region of zero interaction on
the interaction curve (Fig. 2e). Similar to the inversion error, the algorithm calculates the error
length based on the interaction curve and then deletes this sequence from the genome.
Compared to the interaction heatmap and interaction curve before adjustment, the blank area
on the interaction heatmap after adjustment is eliminated, and there is no segment with an
interaction value of 0 on the interaction curve (Fig. 2f).

In addition to identifying and rectifying genome misassembly, AutoHiC can also be
applied to chromosome splitting (Supplementary Figure 5). Upon correcting all errors,
AutoHiC infers the number of chromosomes in the genome by utilizing the global interaction
heatmap and subsequently assigns the genome sequence to their respective chromosomes
(Methods).

The exceptional capability of AutoHiC in accurately identifying and positioning both
large and small translocations, inversions, debris, and chromosomes underscores its high
potential for studies involving genome structure comparison. Furthermore, its proficiency in
detecting and correctly assigning error regions with low rates of false positives sets AutoHiC

apart from previous methodologies.

Performance evaluation of AutoHiC

We present the training results of AutoHiC for assembly error detection and chromosome
detection (Supplementary Figure 6). The accuracy and loss during model training are depicted
to illustrate the convergence and fitness of the model to the training data after 200 epochs
(Fig. 3a, b), indicating an effective learning process. To assess the model's performance
comprehensively, we employ the confusion matrix and precision—recall curve. The confusion

matrix provides valuable insights into the model's performance across different classes
p g p
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(translocation, inversion and debris). Evaluating the model's performance for each specific
class offers an internal perspective on its effectiveness, yielding a more nuanced assessment
compared to overall accuracy. Notably, the confusion matrix (Fig. 3c) indicates that the
model predicts translocation, inversion, and debris errors with image accuracy exceeding
90%, while inversion prediction achieves 85% accuracy. The instances where the model
incorrectly predicted images predominantly occurred in complex situations. The consistent
patterns observed in the confusion matrix align with the dataset's regularity, validating the
reliability of the AutoHiC model for error detection.

Furthermore, we compared the performance of the AutoHiC model using the precision-
recall curve (Fig. 3d) and the area under the curve (AUC). Multiple precision-recall pairs
were calculated by varying thresholds, and their visualization allowed us to compute the AUC
using the composite trapezoidal rule. A higher AUC value, ranging from 0 to 1, indicates
superior model performance. The precision-recall curve demonstrates that when the threshold
is set between 0.5 and 0.95, the area under the curve approaches 1, highlighting the model's

strong performance.

AutoHiC outperforms in improving assembled genome quality

To further benchmark™ the performance of AutoHiC, we conducted a comparison of
AutoHiC with several competitive and representative tools, including 3D-DNA, SALSA2,
YaSH, and Pin_hic (Supplementary Note 1; Supplementary Table 1). Our primary goal was to
evaluate the effect of AutoHiC on improving genome continuity. To achieve this, we selected
five species: Caenorhabditis elegans, Arabidopsis thaliana, Drosophila melanogaster, Danio
rerio, and Homo sapiens. The selection of these species is based on the fact that they
represent a good representation of currently studied model species, including plants, animals,
and humans. Currently used for continuity assessment is N50*°, which indicates the degree of
continuity of the genome assembly, which is defined by the length of the shortest contig for
which longer and equal length contigs cover at least 50 % of the assembly. Higher N50 values
indicate better continuity. Additionally, the L50 value corresponds to the N50 value and

indicates the number of contigs (or scaffolds) required to achieve the N50 value. Lower L50
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values indicate better continuity. Therefore, we calculated the Nx (Fig. 4a, b, ¢, d, ¢;
Supplementary Table 2) and L50 (Supplementary Figure 7) of these software assembly results
using QUAST (Methods). Unexpectedly, we observed from the results that the N50 values of
YaSH and Pin_hic were very large, almost approaching the size of the entire genome, which
is clearly problematic (Supplementary Note 2; Supplementary Table 3). Consequently, we
analyzed the assembly results obtained by these two software programs separately
(Supplementary Figure 8; Supplementary Table 4) and found that they merged the sequence
of the entire genome into a single chromosome. After excluding these problematic outcomes,
AutoHiC performed remarkably well on the five test species, exhibiting the highest N50
value. Compared to the raw data and the output of other software programs, AutoHiC
improved the continuity by approximately 18-fold (compared to Contig) and 7-fold
(compared to SALSA2).

For a more robust assessment of continuity, we also introduce the CC ratio®, a score that
intuitively reflects continuity regardless of contig length or intrinsic chromosomal length. The
results (Fig. 4f) showed that the output from all the software tools had significantly higher CC
values, with the exception of AutoHiC, which remained at 1. This shows that the genome
assembled with AutoHiC had high continuity and was at the chromosome level. Based on the
aforementioned evaluation results, AutoHiC demonstrates superior performance compared to

the other four scaffolds in terms of enhancing genome continuity.

Validation of AutoHiC results using the T2T genome

We selected five T2T genomes**? (Caenorhabditis elegans, Arabidopsis thaliana, Bombyx
mori, Oryza sativa and Homo sapiens) to evaluate the effect of AutoHiC on improving
genome continuity and accuracy (Methods). The selection of the T2T genome is mainly based
on the following rationale. First, the T2T genome, as the gold standard, can truly reflect the
actual situation of the genome and can then be compared with the adjusted results from
AutoHiC. Second, we can check whether AutoHiC is overtuned by comparing the number of

structural variations before and after AutoHiC correction. Finally, this approach also enables
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validation of whether AutoHiC-adjusted genomes are closer in accuracy to T2T genomes than
genomes from conventional methods.

Initially, we utilized QUAST to analyze the assembled genome before and after AutoHiC
error correction (Supplementary Table 5). Remarkably, AutoHiC significantly improved
genome continuity (Fig. 5a, b; Supplementary Figure 14), with the number of scaffolds in the
corrected genome approaching the number of chromosomes (approximately equal to the
number of chromosomes). The NGA50 and NG50 values were also greatly improved.
Additionally, we employed MUM&Co to compare the assembly results with the T2T
reference genome and quantified the number of structural variations (Fig. 5¢; Supplementary
Figure 14). This evaluation partly reflects the performance of the assembly software in terms
of accuracy and completeness. Notably, compared to the assembly results from other
software, the AutoHiC assembly results showed the lowest number of structural variations,
highlighting the superiority of AutoHiC in improving genome accuracy and indicating that
there was no overtuning of AutoHiC. If AutoHiC is overtuned, there will be a large difference
between the genome assembly results of AutoHiC and the T2T genome, and more structural
variations will be found after the whole genome comparison between them.

In addition, to verify the accuracy of the AutoHiC error correction and the degree of
consistency between the alignment results and the T2T genome, we compared the Homo
sapiens and Bombyx mori genomes with the T2T reference genome by synteny analysis
(Methods). Based on the structural error information detected by MUM&Co, we selected
three types of error corresponding sequences and constructed a block collinearity map. For
translocation errors (Fig. 5d, g), it can be seen from the collinearity map that, using the T2T
genome as a reference, the region where the translocation error occurred was where the
sequence had obvious placement errors. However, after AutoHiC adjustment, this issue was
eliminated, the position of the sequence returned to normal, and there was a better collinearity
result in the same region. For inversion errors (Fig. Se, h), the regions where the translocation
errors occurred showed opposite sequence characteristics on the collinearity map, and after
correction by AutoHiC, the collinearity with the T2T genome was more consistent.
Additionally, there was a debris error (Fig. 51, 1). From the collinearity map we can see that

there is a fragment without collinearity in the original genome, resulting from accidental
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insertion or other methods, but it is certain that it does not belong to this region. Therefore,
AutoHiC would adjust the position of this fragment so that the genome has a higher identity
with the T2T genome.

In conclusion, AutoHiC significantly improves genome assembly accuracy. We
anticipate that when the AutoHiC model is integrated with genome assembly software, it will

more effectively address Hi-C assembly errors.

Extending AutoHiC to more complex situations

To further verify the performance of AutoHiC and demonstrate its broad applicability and
robustness, we applied AutoHiC to seven more extensive datasets from DNA Zoo and NCBI:
very large genome (Schistocerca americana), large number of chromosomes (Chiloscyllium
punctatum), plants (Oryza sativa), polyploidy (Arachis hypogaea), etc.

To assess genome continuity, we calculated the N50 value, L50 value and CC ratio
(Supplementary Figures 15, 16, 17) and observed a significant improvement in genome
continuity after AutoHiC correction. Moreover, we developed an independent error rate index
(Methods) to facilitate the visualization of the correction effect. Typically, translocation and
inversion errors disappear after one round of correction, while some debris errors remain
(Supplementary Figure 18). Some specific genomes required four corrections to achieve error
elimination. The error rate is computed based on the error length relative to the genome size.
As a result, its value exhibits minimal fluctuation; however, a discernible downward trend is
evident.

To compare the changes before and after processing, the Hi-C interaction heatmaps of
the seven species are presented before and after correction (Figure 6a, b, c, d, e, f). It is
evident that the assembly errors observed in the Hi-C interaction heatmap prior to correction
were eliminated, and redundant sequences were removed. In addition, some interaction
heatmaps were visually compared before and after error correction to clearly illustrate the
changes (Supplementary Figures 19, 20, 21).

The changes in the number of assembly errors were recorded during the correction of the

genome with AutoHiC. After error correction by AutoHiC, the number of errors in the Hi-C
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heatmap was significantly reduced. Due to debris errors in the Hi-C heatmap, no unified
conclusion was reached. Consequently, AutoHiC did not entirely delete this part of the
sequence. Users can choose to clear all errors based on their needs.

The above results clearly demonstrate that the correction of genomic misassemblies by
AutoHiC significantly improves both continuity and correctness in terms of genome
assembly. In summary, we demonstrate the effectiveness of AutoHiC when applied to
complex genomic datasets and highlight its broad applicability, which is critical for

downstream analyses.

Discussion

In this study, we present an innovative deep learning-based tool called AutoHiC, which
is designed to identify and correct misassembled contigs within assemblies. We highlight its
profound impact on enhancing both genome continuity and accuracy across a diverse array of
datasets characterized by varying complexities. AutoHiC stands apart from prior
methodologies in two main pivotal aspects. First, unlike conventional assembly approaches**
% that predominantly rely on 1D or 2D data from Hi-C, AutoHiC harnesses the potency of
higher-dimensional Hi-C information to facilitate error correction during the genome
assembly process. The traditional assembly method uses only the relationship between the
interaction matrix and the genome sequence for assembly. On this basis, AutoHiC converts
the two-dimensional interaction matrix into a three-dimensional interaction heatmap to detect
and correct assembly errors. A genome can be assembled more comprehensively and
accurately, compensating for certain shortcomings of the traditional method. Second,
AutoHiC assembly pipeline operates in a fully automated manner (depicted in Figure 1a);
neither error correction nor chromosome splitting (as illustrated in Figure 2 and
Supplementary Figure 5) necessitates manual intervention—only the provision of genome and
Hi-C data. Furthermore, AutoHiC provides an explicit report for each assembled genome, a
feature with substantial potential value for downstream analyses. Notably, owing to its

algorithm agnostic nature, AutoHiC exhibits versatility in accommodating varying sizes and
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styles of genomes, transcending species-specific constraints (as evidenced in Figure 6).
Leveraging the computational resources optimally, AutoHiC capitalizes on the multithreading
capabilities of both central processing units and graphics processing units, thereby delivering
swift outcomes.

There are several directions that hold promise for further improvements to AutoHiC.
First, AutoHiC takes into account the rapid iteration of the scaffolding algorithm at the
beginning of the design so that AutoHiC can seamlessly change the scaffolding to take full
advantage of the scaffolding. The combination of AutoHiC and scaffolding algorithms is
therefore a promising direction for future research, leading to effective approaches for
reconstructing genomes from sequencing data with higher quality and completeness. In fact,
interaction types have a wide variety of forms and appearances, reflecting a variety of states.
This rich diversity is much more difficult to model and analyze than, for example, sequence
variability. Therefore, it may be necessary in the future to increase the type of error detection
to correct assembly errors more comprehensively.

Anticipating future improvements, AutoHiC strategically accounts for the rapid iteration
of scaffolding algorithms in its design, enabling seamless alignment with evolving scaffolding
techniques. This convergence of AutoHiC and scaffolding algorithms offers a promising
trajectory for subsequent research, leading to advanced strategies in genome reconstruction
with heightened quality and comprehensiveness. Importantly, the diverse array of interaction
types, with their intricate forms and manifestations, present a more challenging modeling and
analytical scenario than sequence variability presents. Consequently, augmenting the
spectrum of error detection to encompass a wider array of types may be warranted for more
comprehensive assembly error correction.

With the escalating availability of high-quality Hi-C datasets, we envision that the
potency of AutoHiC will continue to flourish. To encapsulate, AutoHiC serves as a tool,
showcasing the transformative potential of the transformer architecture in modeling biological
sequencing data. As the landscape of genome project burgeons and achievements in
sequencing technology scale to new heights, we assert that AutoHiC is primed to make a
substantial contribution to the genomics domain, liberating scientists from labor-intensive

manual curation.
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Methods

AutoHiC workflow

AutoHiC comprises three primary steps. To initiate the process, users are required to prepare
preexisting contig data, Hi-C sequencing data, and details pertaining to the restriction
enzymes employed in the Hi-C experimental setup. The initial stage involves the invocation
of Juicer to perform the alignment of Hi-C reads onto the contig genome, thereby securing a
robust alignment outcome. Subsequently, an intermediary file is generated, encapsulating a
comprehensive spectrum of genome-wide interaction information. This intermediary file,
serving as a foundation, is then seamlessly integrated into the 3D-DNA platform to
orchestrate a refined assembly of contigs into scaffold structures. Notably, this phase
engenders an array of outputs, among which the hic, assembly, and scaffolds files hold pivotal
significance as input materials for AutoHiC's subsequent error correction module.

The second phase ushers in AutoHiC's error identification and rectification module, a
cornerstone of its innovative workflow. By leveraging the preliminary outputs generated thus
far, this module detects assembly anomalies, iteratively navigating through the error
correction process. This error correction endeavor is complemented by the allocation of
sequences to their respective chromosomal contexts, determined through predictive analytics
concerning chromosome count.

The culmination of the entire assembly process resides in the third and final stages. Here, a
holistic synthesis of all relevant assembly information materializes, culminating in the fruition
of the adjusted genome. Finally, the genome is statistically analyzed and a comprehensive
results report is generated.

A notable caveat pertains to the prevalent utilization of 3D-DNA as a linchpin in the initial
phase of AutoHiC's automated assembly process. This selection is primarily rooted in the
software's preeminence and pervasive adoption within the domain of genome assembly.
However, it is imperative to underscore that for users operating distinct assembly software,
the interaction outcomes can be transformed into requisite formats, thereby enabling the

independent utilization of AutoHiC for assembly correction and associated tasks.
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Error identification

AutoHiC employs a specific methodology known as the Hi-C contact matrix to accurately
pinpoint instances of misassembly breakpoints within the genome. The construction of the Hi-
C contact matrix involves the alignment of contact reads against the reference genome,
yielding invaluable insights into both intra- and interchromosomal interactions. These
assumptions are rooted in the empirical observation that Hi-C interaction maps faithfully
depict the actual physical distances separating different genome sequences. In essence,
AutoHiC transforms the Hi-C interaction map into multichannel images, adeptly capturing a
diverse array of error-indicative signals. Subsequently, a network of transformers is harnessed
to predict the precise error type and genomic locus depicted in each image. Through this
intricate process, AutoHiC effectively identifies instances of misassembled contigs.

In the operational context, AutoHiC converts the interaction heatmap into a three-channel
RGB image through a sliding window approach tailored to the resolution and dimensions of
the interaction matrix. Each image, enriched with interaction-related information, is then fed
into a pretrained error detection model. This model scrutinizes the presence of assembly
errors within the image and, if detected, records pertinent information about the type and
location of the error. AutoHiC integrates an inherent information conversion script that
translates error positional data identified within the image into corresponding genomic
coordinates. This information is subsequently utilized by the AutoHiC error correction

module to effectively rectify the errors.

Error correction

The AutoHiC algorithm's pivotal component is its error correction module. Operating as the
algorithm's core, this module is designed to rectify errors within the genome by leveraging
information about their specific locations. Functioning as a subsequent step following error
detection, it is primarily responsible for addressing three major categories of errors:
translocation, inversion, and debris. Among these, translocation errors present the most

intricate challenge. Their resolution entails extracting the corresponding interaction matrix
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within the identified interval and subsequently transforming this matrix into a peak map.
Through the application of the peak algorithm, the insertion interval for the translocation error
is meticulously identified. Ultimately, the pertinent genomic sequence undergoes precise
adjustments to restore accuracy.

In contrast, inversion and debris errors do not necessitate the same level of complexity in
terms of locating insertion points. Rather, their rectification primarily involves refining the
sequences associated with the genomic region. In instances where scaffold assemblies exhibit
high-quality attributes, a single iteration of AutoHiC correction often proves sufficient to
comprehensively rectify all identified errors. This iterative strategy contributes significantly
to heightening the algorithm's accuracy and overall reliability.

The meticulous orchestration of the error correction module within AutoHiC underscores
its critical role in enhancing the fidelity of genome assemblies. By systematically addressing
various types of misassemblies, AutoHiC ensures the integrity of genomic data, which is

imperative for downstream analyses and the advancement of genomics research.

Peak algorithm

The main task of the peak algorithm is to find insertion sites of translocation errors. It extracts
the interaction matrix

(M X N,M = Min{abs (M

— resolution)},N = genome length)

with the best resolution based on the incorrect length.
Then, the peaks in the interaction matrix are extracted, and after excluding the position of the
error and the peaks (Max{i,, i,, i3 ... i,}) of the accessory, the site selected according to the

maximum value is the insertion site of the translocation error.

Chromosome number prediction

Chromosome number prediction relies on the global interaction heatmap (Supplementary
Figure 5). Initially, the error-corrected interaction matrix, which has been purged of redundant

sequences, is transformed into a visual representation through a visualization tool. The


https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.27.555031; this version posted August 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

chromosome detection model then analyzes these generated visual representations to ascertain
both the count and size of chromosomes. Subsequently, AutoHiC allocates the genomic

sequences to their respective chromosomes according to the deduced information.

Model architecture

AutoHiC consists of four essential components: backbone, neck, densehead, and roihead. To
enhance the extraction of error features from images, we employ the Swin Transformer as the
backbone network of AutoHiC. This network adopts a layered transformer structure, dividing
the image into different blocks and performing self-attention operations within each block.
Such a hierarchical architecture enables efficient handling of large-scale Hi-C interaction
images. To mitigate computational complexity, the model incorporates a windowed attention
mechanism, confining self-attention operations within local windows of each block rather
than performing global computations. Additionally, a deep cross-local area attention
mechanism is introduced to establish long-range dependencies among different blocks,
capturing a broader range of contextual information.

To facilitate feature transformation and fusion, AutoHiC integrates the feature pyramid
network*” (FPN) as a neck. FPN is adept at handling visual tasks at various scales and layers,
making it an ideal choice for AutoHiC architecture. Finally, for the precise screening and
localization of extracted error features, the Cascade Region of Interest (Rol) Head and Region
Proposal Network* (RPN) Head are employed. For comprehensive technical details, readers

can refer to the implementation code.

Streaming sliding window

The sliding window algorithm is based on the set size to extract the local matrix by sampling
the interaction matrix extracted at different resolutions. For different resolutions, the size of
the sliding window is M (resolution * 700), and the sliding step is N (resolution x 400).
The whole process is performed along the diagonal of the interaction matrix from top left to

bottom right.
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Datasets

The dataset used in this article is divided into two parts. One part is the training data of the
model, mainly the original interaction information in hic format. Another part is test data used
to evaluate the real data of AutoHiC performance and application range, which includes
genome, Hi-C sequencing data, etc. All the data utilized in the study presented in this article
are sourced from DNA Zoo and NCBI. Details regarding the genome and Hi-C sequencing
data can be found in Supplementary Table 17. The raw data used for model training are

obtained from DNA Zoo, and specific information is available in Supplementary Table 18.

Generation of training data

The data used for training the model are primarily generated and simulated based on collected
Hi-C data. The generated data are created using a script that follows predetermined length
gradients and resolutions, while the simulated data are produced by randomly adjusting
interaction matrix values derived from actual data, resulting in data that closely resemble real-
world observations. The color thresholds applied to heatmaps are determined by extracting

the 95th quantile of the interaction matrix distribution.

Image data preprocessing

The initial data are subjected to preprocessing to convert them into localized interaction
heatmaps represented in jpg format. Due to the substantial volume of generated data, direct
utilization for model training becomes unfeasible. To address this, a classification network is
implemented to curate usable images from the generated dataset. Subsequently, manual
annotation was performed on the selected data using the labelme (v.5.3.1) tool. Prior to the
training phase, data augmentation procedures are applied, encompassing transformations such
as flipping, rotation, scaling, cropping, and shifting. These augmentations are designed to

amplify the diversity and robustness of the training dataset.
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Classification network

The training data for the error detection model come from the screening of the classification
model. The classification model is used for preliminary screening of generated and simulated
Hi-C data for subsequent manual screening and labeling. The classification model is based on

EfficientNetV2%. Its training data come from errors that were originally detected by humans.

Model training

The dataset is partitioned into two distinct subsets, with approximately two-thirds of the data
serving as the training set to iteratively refine the model parameters. The remaining one-third
is allocated as the test set, a set-aside corpus intended to meticulously assess the performance
of the trained models. It is crucial to underscore that the test set remains entirely unseen and

untapped during the training regimen, thus guaranteeing an impartial appraisal of the model's

efficacy.

Model evaluation

Furthermore, we ascertained the generalization proficiency of AutoHiC through an evaluation
conducted on an independent test subset that remained entirely segregated from the training
process. In appraising the detector's efficacy posttraining, we leverage both the confusion
matrix and the area under the precision-recall curve (AUPRC). For each pair of adjacent
precision and recall rates, treat them as the upper and lower bases of a trapezoid and calculate
the area of the trapezoid to estimate the area under the PR curve at the current stage. For all
trapezoids, calculate their areas and add them together to obtain an approximation of the area
under the PR curve. During the cross-validation procedure, we judiciously select
hyperparameters that yield the highest AUPRC, thus ensuring the optimal configuration

settings.
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Algorithm verification

To assess the feasibility of the AutoHiC error correction algorithm, we employed a
comparative approach involving the generation of interaction heatmaps and interaction curves
before and after the error correction process. The interaction heatmap was produced using
pyStraw, targeting two distinct resolutions corresponding to the intervals where errors
occurred. Notably, the intervals remained consistent between the pre- and postcorrection
phases. Higher resolutions were adopted to amplify the precision of erroneous details.
Simultaneously, the interaction curve was derived from the interaction matrix, specifically by
focusing on the positions where errors were identified. While the data within the interaction
matrix remained unnormalized, the extracted interaction matrix underwent normalization to
achieve a range of 0 to 1, subsequently facilitating the generation of the associated interaction

curve.

Benchmarking the performance of AutoHiC

All the compared software programs were obtained, installed, and evaluated following the
procedures outlined in the provided publication sources. When assessing the performance of
different software programs on the same species (Caenorhabditis elegans, Arabidopsis
thaliana, Drosophila melanogaster, Danio rerio, and Homo sapiens), uniform datasets were
employed to ensure consistency. The input data for software such as SALSA2, YaSH, and
Pin_hic consisted of BAM or BED files generated by the HiC-Pro™ pipeline. Parameter
configurations for each of the compared software programs were maintained at their default
settings as stipulated by the original documentation for each program.

The genome continuity assessment predominantly relied on key metrics such as the N10-
N90, L50, NGAS0, and NG50 values and the CC ratio. Specifically, the N10-N90 and L50
metrics were computed utilizing the QUAST software package (v5.2.0). The parameter
settings for all compared software were retained in their default states, as prescribed by the
original documentation. The CC ratio, representing the proportion of contig count to

chromosome count, was established manually.


https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.27.555031; this version posted August 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

For the quantitative analysis of structural variations, an appropriate reference genome was
selected from Supplementary Table 12. The analysis was conducted using MUM&Co
software (v3.8), maintaining parameter configurations in line with the default specifications

as provided in the original documentation.

Synteny analysis

For comparative analysis, we assessed the genomes assembled by 3D-DNA and those
corrected by AutoHiC against their respective T2T reference genomes. This evaluation
involved utilizing the MUM&Co tool to capture structural variation information. Leveraging
the structural variation data from MUM&Co, we employed NGenomeSyn®' (v.1.41) to
visualize structural variation regions within the 3D-DNA assembly outcomes. Subsequently,
we harnessed SeqKit** (v.2.5.1) to extract sequences containing structural errors, followed by
employing blastn to conduct sequence comparisons between these sequences and the genomes
adjusted by AutoHiC. This comparison enabled the derivation of corresponding sequence
positional information. Criteria for filtering the comparison results were primarily guided by
sequence length and alignment consistency. Ultimately, we utilized SeqKit to extract the
aligned sequences, facilitating comprehensive comparison and collinearity analysis with the

T2T reference genome.

Genome assembly with AutoHiC

During testing, all genomes only require the original genome files and Hi-C sequencing data.
AutoHiC automatically performs error correction and generates result reports. The genome
and interaction matrix files before and after correction are made available in the AutoHiC
results for visualization and statistical analysis. The number of assembly errors can be directly
obtained from the result report. Depending on the genome size, the Hi-C data size and the
running time of AutoHiC for the number of correction iterations can be obtained from

Supplementary Table 19.
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Implementation of the AtuoHiC framework

The deep learning architectures are implemented using MMDetection® v.2.11.0 and PyTorch

v.1.10.1 on Python v.3.7. Training is conducted on NVIDIA GeForce RTX 3080 Ti GPUs.

Data availability

No new data were generated for this study. All data used in this article are available from

Supplementary Table 17 and 18.

Code availability

The AutoHiC source code and documentation are available on GitHub under the MIT license

at https://github.com/Jwindler/AutoHiC.
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Fig. 1: Overview of the AutoHiC framework.

a AutoHiC runs processes and data flows. The AutoHiC assembly process is divided into
three main steps. Users only need to prepare contigs and Hi-C reads the data. First, scaffold
software is used to generate candidate genomes and global interaction files. Next, the
AutoHiC model detects and iteratively corrects assembly errors and partitions chromosomes
based on the interaction matrix. Finally, the assembly result report is generated. Data and
steps are marked with different colors. b AutoHiC model description. The architecture of the
Swin Transformer network employed in AutoHiC is depicted. The input is a three-channel

interaction image, and the output is the type of error detected by the model and the
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corresponding location information. Different layers adopt different configurations, which are

distinguished by colors, and the specific information subscripts are visible.
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Fig. 2: Comparison of AutoHiC error correction effects.

a, ¢, e Interaction heatmaps and interaction curves with assembly errors. The interaction
heatmap is at two resolutions, with the high resolution on the right. The resolution and
interaction boundaries are marked at the top. The lower boundary has a marker indicating the
extent of the interaction area. Interaction curves are generated from the interaction matrix
used by the interaction heatmap. Interaction values have been normalized to 0-1. b, d, f

Interaction heatmaps and curves after error corrections without assembly errors.


https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.27.555031; this version posted August 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

1.0 1.0
0.8 08
5 06 5 06
Q Q
g w—training loss g = \aildation loss
< training accuracy < vaildation accuracy
= =
@ 04 Q04
(=} o
— -
0.2 0.2
. N
0.0 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
Normalized confusion matrix 10
10 \

Transolcation
08 0.8

0.6

o
>

— iou=0.5
fou=0.55
— jou=0.6
= i0u=0.65
s jou=0.7
02 — i0u=0.75
02 iou=0.8

= jou=0.85
iou=0.9

=== iou=0.95

Inversion

Precison

04

=
=

Predicted label

Debris

0.0

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

True label

Fig. 3: AutoHiC model effect verification.

a, b Changes in model accuracy and loss rate during training and validation. On the left is the
training process and on the right is the verification process. The lower curve is the training
loss and the upper curve is the training accuracy. ¢ Confusion matrix results for the AutoHiC
error detection model. The horizontal axis of the graph represents the actual error, and the
vertical axis represents the model-predicted error. The diagonal line is the correct prediction
result, and the darker the color of the cube, the more images are correctly predicted. d
Precision recall (PR) curve for the different IOU thresholds as in panel. Curves without color

represent PR results at different IOU thresholds.
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Fig. 4: Comparison of genome continuity benchmarks.

a, b, ¢, d, e The radar chart shows the continuity of the assembly results. Different colors
represent different software programs. The radar chart shows N10, N30, N50, N70 and N90.
Different species are shown separately. f Histogram of CC rate values of different software
contig results. It contains the results of the contig, and different colors represent different

software.
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Fig. 5: Assessing the performance of correcting the T2T genome.

a, b Comparison of the contiguity of assemblies scaffolded by 3D-DNA and AutoHiC as
measured by QUAST. The Y-axes show the range of NGA50 to NG50 lengths to indicate the
uncertainty caused by true genomic variation between the individual and the reference
genome. ¢ Comparison of the accuracy of assemblies scaffolded by 3D-DNA and AutoHiC as
measured by MUM&Co. The X-axis shows the total number of structural variations to show
AutoHiC's ability to correct errors. d, e, f, g, h, i Collinearity block plots before and after
three error corrections for translocation, inversion and debris. Above is the uncorrected
collinearity with the T2T genome. Below is the AutoHiC-corrected collinearity with the T2T

genome in the same region. The names and positions of the sequences are marked on the left.
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Fig. 6: Genomic dataset extension validation.
a, b, ¢, d, e, f Global interaction heatmaps before and after AutoHiC error correction. The left

is before correction. The right is corrected. Resolution and interaction thresholds are marked
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at the top. The lower value is the genome length (ratio). g Histogram of the number of errors
before and after AutoHiC error correction. The histogram above is the sum of the three error
numbers. A colored circle below indicates the presence of such errors. The 6 on the left are

before AutoHiC corrects the error, and the ones on the right are after the correction.
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