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Abstract 

An accurate genome at the chromosome level is the key to unraveling the mysteries of gene 

function and unlocking the mechanisms of disease. Irrespective of the sequencing 

methodology adopted, Hi-C aided scaffolding serves as a principal avenue for generating 

genome assemblies at the chromosomal level. However, the results of such scaffolding are 

often flawed and require extensive manual refinement. In this paper, we introduce AutoHiC, 

an innovative deep learning-based tool designed to identify and rectify genome assembly 

errors. Diverging from conventional approaches, AutoHiC harnesses the power of high-

dimensional Hi-C data to enhance genome continuity and accuracy through a fully automated 

workflow and iterative error correction mechanism. AutoHiC was trained on Hi-C data from 

more than 300 species (approximately five hundred thousand interaction maps) in DNA Zoo 

and NCBI. Its confusion matrix results show that the average error detection accuracy is over 

90%, and the area under the precision-recall curve is close to 1, making it a powerful error 

detection capability. The benchmarking results demonstrate AutoHiC's ability to substantially 

enhance genome continuity and significantly reduce error rates, providing a more reliable 

foundation for genomics research. Furthermore, AutoHiC generates comprehensive result 

reports, offering users insights into the assembly process and outcomes. In summary, 
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AutoHiC represents a breakthrough in automated error detection and correction for genome 

assembly, effectively promoting more accurate and comprehensive genome assemblies. 

 

Introduction 

The landscape of genomics research has undergone a remarkable transformation, unveiling 

the intricate tapestry of gene functionality and species evolution. Central to these 

breakthroughs is the pursuit of accurate1, chromosome-level genome sequences – an 

overarching goal that serves as the bedrock for unraveling the mysteries of biology and 

catalyzing the exploration of disease mechanisms. 

Recent strides in genome assembly2,3 have been propelled by the emergence of long-read 

sequencing technologies, such as PacBio's Single Molecule Real-Time4 (SMRT) sequencing 

and Oxford Nanopore Technologies5 (ONT). These technological marvels have shattered the 

constraints of traditional next-generation sequencing (NGS) methods6, offering read lengths 

that defy conventional limits. These factors have led to a spectacular surge in comprehensive 

and contiguous genome assemblies. However, even with these advancements, the elusive goal 

of achieving chromosome-scale assembly remains a challenge, underscoring the complexity 

of the task at hand. 

In the intricate dance of genome assembly, Hi-C sequencing has arisen as a pivotal partner. 

This technique, an ingenious blend of proximity ligation and sequencing, promises to scaffold 

contigs into chromosome-scale assemblies by capitalizing on the higher density of Hi-C 

linkage pairs between adjacent contigs7–12. While a slew of tools, such as Lachesis13, 3D-

DNA14, SALSA15,16, YaHS17, instaGRAAL18, EndHiC19, and Pin_hic20 have emerged to 

translate Hi-C data into chromosome-scale scaffolds, each harbors limitations and is 

susceptible to various influences. Some software requires the number of chromosomes to be 

specified in advance, but this is very difficult for the user. Moreover, the presence of errors in 

the output generated by these tools necessitates manual correction, extending the process and 

inviting human error. This dependence on manual intervention has cast a shadow over the 
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dream of fully automated genome assembly, particularly when striving for chromosome-level 

precision with Hi-C data. 

As a symphony of large-scale genomic research initiatives such as the Bird 10,000 

Genomes (B10K) Project21, the Earth Bio Genome Project22 (EBP), and the i5k initiative23 

take the global stage, the need to automate the process of high-quality chromosome-level 

genome assembly at scale has emerged as an urgent imperative. Nevertheless, with the 

ongoing expansion and increasing complexity of datasets, conventional assembly approaches 

come with challenges in terms of algorithmic precision and available human resources. This 

is where innovative assembly software, empowered by cutting-edge technologies such as 

artificial intelligence and deep learning, shines. This confluence promises to create a 

transformative force capable of untangling the intricate puzzle of genome splicing and 

assembly. 

Furthermore, deep learning has come to play an increasingly pivotal role in the life 

sciences24–26, significantly contributing to data analysis and processing. Transformers27, which 

are a type of attention-based architecture designed for long sequences, have made remarkable 

strides in language processing and have demonstrated applicability in other domains, 

including image analysis, gene expression, and protein folding. Despite the emergence of 

software such as DeepC28, EagleC29, VEHiCLE30, DeepLoop31, SnapHiC-D32, and hicGAN33, 

the full potential of Hi-C data in the detection of assembly errors remains underutilized. Large 

datasets provide a potential basis for deep learning to fully exploit Hi-C information. 

Here, we present AutoHiC, a scalable and computationally efficient deep learning-based 

error correction method. Leveraging genome-wide chromatin interaction data from over five 

hundred thousand Hi-C images derived from Hi-C data from approximately 300 species, 

AutoHiC automates realize Hi-C assembly error correction, significantly improving genome 

assembly continuity and accuracy. We demonstrate the feasibility of the AutoHiC recognition 

and error correction algorithm by comparing the interaction heatmaps before and after 

adjustment. From the continuity comparison results, it was found that AutoHiC can 

significantly improve genome continuity compared to other software. Moreover, to more 

accurately reflect the actual situation of the genome, we performed genome accuracy tests on 

the T2T genomes, and the results showed that AutoHiC can improve the accuracy of 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.27.555031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/


genomes. Finally, to prove the universality of AutoHiC, we tested it in several species, 

including those with large genomes, a large number of chromosomes, and polyploidy. The 

results showed that AutoHiC can be well applied to different situations. 

In summary, AutoHiC harnesses the power of deep learning and Hi-C to automate 

chromosome-level genome assembly and advance scaffold assembly. By automatically 

identifying and correcting Hi-C assembly errors and achieving exceptional chromosome-level 

assembly results, AutoHiC supersedes laborious and error-prone manual adjustments, 

revolutionizing the final step of genome sequencing data to chromosome-level genome 

assembly with automation and efficiency. This groundbreaking advancement holds immense 

promise for advancing genomics research and deepening our understanding of genome three-

dimensional structure and functionality. 

 

Results 

Overview of the AutoHiC pipeline 

To provide a fully automated, deep learning-based approach to identifying and correcting 

misassembled genomes, we aimed to develop a genome tool using a deep learning-based 

approach. AutoHiC draws primarily on the lessons learned from manual error correction with 

assembly tools34,35 to provide a fully automated, deep learning-based approach to identifying 

and correcting misassembled genomes. This tool empowers users without computational 

backgrounds who are unfamiliar with Hi-C images to enhance genome quality and reduce the 

costs associated with manual adjustment of genome assembly. The overall workflow of 

AutoHiC is illustrated in Fig. 1a. A detailed description is available in the Methods section. 

At a macroscopic level, AutoHiC operates in three stages. In the first stage, AutoHiC 

leverages Juicer36 and 3D-DNA to generate preliminary assembly results based on the 

existing contig and Hi-C reads. The outcomes of this step include scaffolds (uncorrected) and 

Hi-C interaction maps at various resolutions. In the second which is the most crucial step of 

the pipeline, AutoHiC incorporates an error correction module (Methods) to refine assembly 

quality, thereby facilitating downstream analyses. The error correction module effectively 
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rectifies translocation, inversion, and debris errors at their identified locations. Subsequently, 

based on the model's detection of the number of chromosomes, the AutoHiC split module 

divides the previously corrected genome results into the final scaffold genome at the 

chromosome level. In the final stage, a visual report is generated, showcasing the genome 

before and after error correction. This report plays a pivotal role as it enables users to assess 

genome quality, examine pertinent indicators, and review details of the error correction 

process for subsequent analyses. 

 

Assembly report 

The detailed assembly result report is the bridge between the user and the assembly result. It 

allows users to fully understand their own data. In addition, the comprehensive assessment of 

AutoHiC corrections is facilitated through a detailed result report, serving as a pivotal tool for 

validation. This report encompasses essential aspects of the final genome assembly, error 

rectification intricacies, and pertinent details. Structurally, the report is compartmentalized 

into four sections, each strategically addressing distinct facets of the genomic correction 

process. 

The initial segment of the report furnishes fundamental genome attributes, encompassing 

pivotal parameters such as genome size, N50 value, L50 value, Hi-C anchor rate, scaffold 

count, and GC content. This segment is instrumental in offering an overview of the genome's 

characteristics post AutoHiC correction, serving as a foundation for subsequent analysis and 

interpretation (Supplementary Figure 1). 

The subsequent section of the report undertakes a comparative evaluation of the genome-

wide interaction heatmaps before and after the error correction process. This visual 

juxtaposition provides clear insight into the efficacy of AutoHiC corrections in enhancing the 

precision and reliability of genomic interactions, bolstering the overall integrity of the 

assembly (Supplementary Figure 2). 

The third section delves into the granular intricacies of the error correction process. It 

meticulously outlines the specifics of identified errors, encompassing their dimensions, 

positional coordinates within the genome, and the visual representation of the nature and 
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context of the errors. This detailed exposition not only facilitates an in-depth comprehension 

of the corrective process but also supports downstream investigations and potential 

optimizations (Supplementary Figure 3). For example, when studying a 3D genome, it is 

possible to focus on whether these regions have an impact on the formation of the 3D 

structure of the genome. 

Finally, the report culminates with an appendix containing supplementary information. 

This section is instrumental in recording and tracking the dynamic evolution of errors during 

the correction process. It encapsulates the fluctuation in error count and the consequential 

impact on chromosome length determinations. This comprehensive archive of data affords 

deeper insight into the iterative nature of AutoHiC corrections, enriching the overall picture 

of the algorithm's performance (Supplementary Figure 4). In essence, the results report stands 

as a cornerstone for the comprehensive assessment of the efficacy of AutoHiC in refining 

genome assemblies. Through its structured segments, AutoHiC provides a multifaceted lens 

to scrutinize genomic attributes, error rectification outcomes, and their subsequent 

implications, thereby underscoring the robustness and applicability of AutoHiC in 

contemporary genomics research. 

 

The AutoHiC model 

Accurately identifying the type of error and where it occurred is key to correcting assembly 

errors. We developed the AutoHiC tool, which can eliminate the effects of complex features 

caused by assembly errors, including error size, resolution, and color gamut (Fig. 1b). 

AutoHiC is a deep neural network that utilizes two-stage object detectors to enhance the 

detection of genome assembly errors and extract error features by leveraging Hi-C data 

(Methods). AutoHiC is based on the Swin Transformer37 architecture, which incorporates 

self-attention mechanisms. We chose this architecture as a starting point based on substantial 

evidence indicating that quantized architectures presently yield superior image 

representations. 

The AutoHiC model employs a streaming sliding window approach (Methods) to scan 

the entire Hi-C contact map. The contact map is then converted into an image to capture error 
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signals, and corresponding log files are generated for subsequent error processing. A trained 

neural network (Methods) is used to extract error features for each image, encoding the 

location, type, and score of the error in the image. High-confidence error predictions are 

refined and mapped back from the image to the scaffold genome coordinates, and this 

information is utilized in the error correction module (Methods). 

 

Principles of AutoHiC’s algorithm 

We subsequently assessed the capability of the AutoHiC algorithm in identifying critical 

features such as translocations, inversions, debris, and chromosomes, which are pivotal for 

studying and rectifying errors in genome assembly. The AutoHiC model, as depicted in 

Figure 1b, employs a two-stage object detection framework within a deep neural network. It 

effectively pinpoints and locates erroneous regions in misassembled scaffolds, subsequently 

rectifying them using information provided by the model in conjunction with the Hi-C 

interaction matrix. AutoHiC retrieves pertinent interaction matrix data based on error position 

information provided by the model and employs the peak algorithm to precisely identify the 

erroneous insertion position and boundary. 

For translocation errors, the algorithm extracts the regions characterized by the error 

detection model. Interaction curves are then generated for the corresponding regions. It can be 

clearly seen that the interaction law of the interaction curve corresponds to the interaction 

heatmap and can indicate the location where the translocation error occurs and the site that 

needs to be inserted (Fig. 2a). Due to the presence of interfering signals, AutoHiC eliminates 

peaks at its own site and filters redundant peaks to determine the exact insertion site of the 

translocation error. In addition, AutoHiC shifts the sequence of the region where translocation 

occurs to the corresponding insertion site. As seen from the interaction heatmap and the 

interaction curve (Fig. 2b), after the AutoHiC adjustment, the interaction is more in line with 

the interaction law, the translocation error is also eliminated on the heatmap, and the 

interaction curve returns to normal. Inversion errors have their own specific characteristics in 

both interaction heatmaps and interaction curves (Fig. 2c). On the interaction heatmap, the 

area where the inversion error occurs is shaped like a butterfly, and the corresponding 
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interaction curve has a peak area of a certain length. AutoHiC calculates the length of the 

inversion error based on the area of the peak on the interaction curve and then adjusts the 

sequence in that area in the opposite direction. After AutoHiC adjustment, the features on the 

interaction heatmap and the peaks on the interaction curve are eliminated, indicating that the 

algorithm can adjust the inversion error well (Fig. 2d). Debris errors are usually short in 

length and appear as blanks on the interaction heatmap and as a region of zero interaction on 

the interaction curve (Fig. 2e). Similar to the inversion error, the algorithm calculates the error 

length based on the interaction curve and then deletes this sequence from the genome. 

Compared to the interaction heatmap and interaction curve before adjustment, the blank area 

on the interaction heatmap after adjustment is eliminated, and there is no segment with an 

interaction value of 0 on the interaction curve (Fig. 2f). 

In addition to identifying and rectifying genome misassembly, AutoHiC can also be 

applied to chromosome splitting (Supplementary Figure 5). Upon correcting all errors, 

AutoHiC infers the number of chromosomes in the genome by utilizing the global interaction 

heatmap and subsequently assigns the genome sequence to their respective chromosomes 

(Methods). 

The exceptional capability of AutoHiC in accurately identifying and positioning both 

large and small translocations, inversions, debris, and chromosomes underscores its high 

potential for studies involving genome structure comparison. Furthermore, its proficiency in 

detecting and correctly assigning error regions with low rates of false positives sets AutoHiC 

apart from previous methodologies. 

 

Performance evaluation of AutoHiC 

We present the training results of AutoHiC for assembly error detection and chromosome 

detection (Supplementary Figure 6). The accuracy and loss during model training are depicted 

to illustrate the convergence and fitness of the model to the training data after 200 epochs 

(Fig. 3a, b), indicating an effective learning process. To assess the model's performance 

comprehensively, we employ the confusion matrix and precision–recall curve. The confusion 

matrix provides valuable insights into the model's performance across different classes 
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(translocation, inversion and debris). Evaluating the model's performance for each specific 

class offers an internal perspective on its effectiveness, yielding a more nuanced assessment 

compared to overall accuracy. Notably, the confusion matrix (Fig. 3c) indicates that the 

model predicts translocation, inversion, and debris errors with image accuracy exceeding 

90%, while inversion prediction achieves 85% accuracy. The instances where the model 

incorrectly predicted images predominantly occurred in complex situations. The consistent 

patterns observed in the confusion matrix align with the dataset's regularity, validating the 

reliability of the AutoHiC model for error detection. 

Furthermore, we compared the performance of the AutoHiC model using the precision-

recall curve (Fig. 3d) and the area under the curve (AUC). Multiple precision-recall pairs 

were calculated by varying thresholds, and their visualization allowed us to compute the AUC 

using the composite trapezoidal rule. A higher AUC value, ranging from 0 to 1, indicates 

superior model performance. The precision-recall curve demonstrates that when the threshold 

is set between 0.5 and 0.95, the area under the curve approaches 1, highlighting the model's 

strong performance. 

 

AutoHiC outperforms in improving assembled genome quality 

To further benchmark38 the performance of AutoHiC, we conducted a comparison of 

AutoHiC with several competitive and representative tools, including 3D-DNA, SALSA2, 

YaSH, and Pin_hic (Supplementary Note 1; Supplementary Table 1). Our primary goal was to 

evaluate the effect of AutoHiC on improving genome continuity. To achieve this, we selected 

five species: Caenorhabditis elegans, Arabidopsis thaliana, Drosophila melanogaster, Danio 

rerio, and Homo sapiens. The selection of these species is based on the fact that they 

represent a good representation of currently studied model species, including plants, animals, 

and humans. Currently used for continuity assessment is N5039, which indicates the degree of 

continuity of the genome assembly, which is defined by the length of the shortest contig for 

which longer and equal length contigs cover at least 50 % of the assembly. Higher N50 values 

indicate better continuity. Additionally, the L50 value corresponds to the N50 value and 

indicates the number of contigs (or scaffolds) required to achieve the N50 value. Lower L50 
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values indicate better continuity. Therefore, we calculated the Nx (Fig. 4a, b, c, d, e; 

Supplementary Table 2) and L50 (Supplementary Figure 7) of these software assembly results 

using QUAST (Methods). Unexpectedly, we observed from the results that the N50 values of 

YaSH and Pin_hic were very large, almost approaching the size of the entire genome, which 

is clearly problematic (Supplementary Note 2; Supplementary Table 3). Consequently, we 

analyzed the assembly results obtained by these two software programs separately 

(Supplementary Figure 8; Supplementary Table 4) and found that they merged the sequence 

of the entire genome into a single chromosome. After excluding these problematic outcomes, 

AutoHiC performed remarkably well on the five test species, exhibiting the highest N50 

value. Compared to the raw data and the output of other software programs, AutoHiC 

improved the continuity by approximately 18-fold (compared to Contig) and 7-fold 

(compared to SALSA2). 

For a more robust assessment of continuity, we also introduce the CC ratio40, a score that 

intuitively reflects continuity regardless of contig length or intrinsic chromosomal length. The 

results (Fig. 4f) showed that the output from all the software tools had significantly higher CC 

values, with the exception of AutoHiC, which remained at 1. This shows that the genome 

assembled with AutoHiC had high continuity and was at the chromosome level. Based on the 

aforementioned evaluation results, AutoHiC demonstrates superior performance compared to 

the other four scaffolds in terms of enhancing genome continuity. 

 

Validation of AutoHiC results using the T2T genome 

We selected five T2T genomes41,42 (Caenorhabditis elegans, Arabidopsis thaliana, Bombyx 

mori, Oryza sativa and Homo sapiens) to evaluate the effect of AutoHiC on improving 

genome continuity and accuracy (Methods). The selection of the T2T genome is mainly based 

on the following rationale. First, the T2T genome, as the gold standard, can truly reflect the 

actual situation of the genome and can then be compared with the adjusted results from 

AutoHiC. Second, we can check whether AutoHiC is overtuned by comparing the number of 

structural variations before and after AutoHiC correction. Finally, this approach also enables 
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validation of whether AutoHiC-adjusted genomes are closer in accuracy to T2T genomes than 

genomes from conventional methods. 

Initially, we utilized QUAST to analyze the assembled genome before and after AutoHiC 

error correction (Supplementary Table 5). Remarkably, AutoHiC significantly improved 

genome continuity (Fig. 5a, b; Supplementary Figure 14), with the number of scaffolds in the 

corrected genome approaching the number of chromosomes (approximately equal to the 

number of chromosomes). The NGA50 and NG50 values were also greatly improved. 

Additionally, we employed MUM&Co to compare the assembly results with the T2T 

reference genome and quantified the number of structural variations (Fig. 5c; Supplementary 

Figure 14). This evaluation partly reflects the performance of the assembly software in terms 

of accuracy and completeness. Notably, compared to the assembly results from other 

software, the AutoHiC assembly results showed the lowest number of structural variations, 

highlighting the superiority of AutoHiC in improving genome accuracy and indicating that 

there was no overtuning of AutoHiC. If AutoHiC is overtuned, there will be a large difference 

between the genome assembly results of AutoHiC and the T2T genome, and more structural 

variations will be found after the whole genome comparison between them. 

In addition, to verify the accuracy of the AutoHiC error correction and the degree of 

consistency between the alignment results and the T2T genome, we compared the Homo 

sapiens and Bombyx mori genomes with the T2T reference genome by synteny analysis 

(Methods). Based on the structural error information detected by MUM&Co, we selected 

three types of error corresponding sequences and constructed a block collinearity map. For 

translocation errors (Fig. 5d, g), it can be seen from the collinearity map that, using the T2T 

genome as a reference, the region where the translocation error occurred was where the 

sequence had obvious placement errors. However, after AutoHiC adjustment, this issue was 

eliminated, the position of the sequence returned to normal, and there was a better collinearity 

result in the same region. For inversion errors (Fig. 5e, h), the regions where the translocation 

errors occurred showed opposite sequence characteristics on the collinearity map, and after 

correction by AutoHiC, the collinearity with the T2T genome was more consistent. 

Additionally, there was a debris error (Fig. 5f, i). From the collinearity map we can see that 

there is a fragment without collinearity in the original genome, resulting from accidental 
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insertion or other methods, but it is certain that it does not belong to this region. Therefore, 

AutoHiC would adjust the position of this fragment so that the genome has a higher identity 

with the T2T genome. 

In conclusion, AutoHiC significantly improves genome assembly accuracy. We 

anticipate that when the AutoHiC model is integrated with genome assembly software, it will 

more effectively address Hi-C assembly errors. 

 

Extending AutoHiC to more complex situations 

To further verify the performance of AutoHiC and demonstrate its broad applicability and 

robustness, we applied AutoHiC to seven more extensive datasets from DNA Zoo and NCBI: 

very large genome (Schistocerca americana), large number of chromosomes (Chiloscyllium 

punctatum), plants (Oryza sativa), polyploidy (Arachis hypogaea), etc. 

To assess genome continuity, we calculated the N50 value, L50 value and CC ratio 

(Supplementary Figures 15, 16, 17) and observed a significant improvement in genome 

continuity after AutoHiC correction. Moreover, we developed an independent error rate index 

(Methods) to facilitate the visualization of the correction effect. Typically, translocation and 

inversion errors disappear after one round of correction, while some debris errors remain 

(Supplementary Figure 18). Some specific genomes required four corrections to achieve error 

elimination. The error rate is computed based on the error length relative to the genome size. 

As a result, its value exhibits minimal fluctuation; however, a discernible downward trend is 

evident. 

To compare the changes before and after processing, the Hi-C interaction heatmaps of 

the seven species are presented before and after correction (Figure 6a, b, c, d, e, f). It is 

evident that the assembly errors observed in the Hi-C interaction heatmap prior to correction 

were eliminated, and redundant sequences were removed. In addition, some interaction 

heatmaps were visually compared before and after error correction to clearly illustrate the 

changes (Supplementary Figures 19, 20, 21). 

The changes in the number of assembly errors were recorded during the correction of the 

genome with AutoHiC. After error correction by AutoHiC, the number of errors in the Hi-C 
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heatmap was significantly reduced. Due to debris errors in the Hi-C heatmap, no unified 

conclusion was reached. Consequently, AutoHiC did not entirely delete this part of the 

sequence. Users can choose to clear all errors based on their needs. 

The above results clearly demonstrate that the correction of genomic misassemblies by 

AutoHiC significantly improves both continuity and correctness in terms of genome 

assembly. In summary, we demonstrate the effectiveness of AutoHiC when applied to 

complex genomic datasets and highlight its broad applicability, which is critical for 

downstream analyses. 

 

Discussion 

In this study, we present an innovative deep learning-based tool called AutoHiC, which 

is designed to identify and correct misassembled contigs within assemblies. We highlight its 

profound impact on enhancing both genome continuity and accuracy across a diverse array of 

datasets characterized by varying complexities. AutoHiC stands apart from prior 

methodologies in two main pivotal aspects. First, unlike conventional assembly approaches43–

46 that predominantly rely on 1D or 2D data from Hi-C, AutoHiC harnesses the potency of 

higher-dimensional Hi-C information to facilitate error correction during the genome 

assembly process. The traditional assembly method uses only the relationship between the 

interaction matrix and the genome sequence for assembly. On this basis, AutoHiC converts 

the two-dimensional interaction matrix into a three-dimensional interaction heatmap to detect 

and correct assembly errors. A genome can be assembled more comprehensively and 

accurately, compensating for certain shortcomings of the traditional method. Second, 

AutoHiC assembly pipeline operates in a fully automated manner (depicted in Figure 1a); 

neither error correction nor chromosome splitting (as illustrated in Figure 2 and 

Supplementary Figure 5) necessitates manual intervention—only the provision of genome and 

Hi-C data. Furthermore, AutoHiC provides an explicit report for each assembled genome, a 

feature with substantial potential value for downstream analyses. Notably, owing to its 

algorithm agnostic nature, AutoHiC exhibits versatility in accommodating varying sizes and 
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styles of genomes, transcending species-specific constraints (as evidenced in Figure 6). 

Leveraging the computational resources optimally, AutoHiC capitalizes on the multithreading 

capabilities of both central processing units and graphics processing units, thereby delivering 

swift outcomes. 

There are several directions that hold promise for further improvements to AutoHiC. 

First, AutoHiC takes into account the rapid iteration of the scaffolding algorithm at the 

beginning of the design so that AutoHiC can seamlessly change the scaffolding to take full 

advantage of the scaffolding. The combination of AutoHiC and scaffolding algorithms is 

therefore a promising direction for future research, leading to effective approaches for 

reconstructing genomes from sequencing data with higher quality and completeness. In fact, 

interaction types have a wide variety of forms and appearances, reflecting a variety of states. 

This rich diversity is much more difficult to model and analyze than, for example, sequence 

variability. Therefore, it may be necessary in the future to increase the type of error detection 

to correct assembly errors more comprehensively. 

Anticipating future improvements, AutoHiC strategically accounts for the rapid iteration 

of scaffolding algorithms in its design, enabling seamless alignment with evolving scaffolding 

techniques. This convergence of AutoHiC and scaffolding algorithms offers a promising 

trajectory for subsequent research, leading to advanced strategies in genome reconstruction 

with heightened quality and comprehensiveness. Importantly, the diverse array of interaction 

types, with their intricate forms and manifestations, present a more challenging modeling and 

analytical scenario than sequence variability presents. Consequently, augmenting the 

spectrum of error detection to encompass a wider array of types may be warranted for more 

comprehensive assembly error correction. 

With the escalating availability of high-quality Hi-C datasets, we envision that the 

potency of AutoHiC will continue to flourish. To encapsulate, AutoHiC serves as a tool, 

showcasing the transformative potential of the transformer architecture in modeling biological 

sequencing data. As the landscape of genome project burgeons and achievements in 

sequencing technology scale to new heights, we assert that AutoHiC is primed to make a 

substantial contribution to the genomics domain, liberating scientists from labor-intensive 

manual curation. 
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Methods 

AutoHiC workflow 

AutoHiC comprises three primary steps. To initiate the process, users are required to prepare 

preexisting contig data, Hi-C sequencing data, and details pertaining to the restriction 

enzymes employed in the Hi-C experimental setup. The initial stage involves the invocation 

of Juicer to perform the alignment of Hi-C reads onto the contig genome, thereby securing a 

robust alignment outcome. Subsequently, an intermediary file is generated, encapsulating a 

comprehensive spectrum of genome-wide interaction information. This intermediary file, 

serving as a foundation, is then seamlessly integrated into the 3D-DNA platform to 

orchestrate a refined assembly of contigs into scaffold structures. Notably, this phase 

engenders an array of outputs, among which the hic, assembly, and scaffolds files hold pivotal 

significance as input materials for AutoHiC's subsequent error correction module. 

The second phase ushers in AutoHiC's error identification and rectification module, a 

cornerstone of its innovative workflow. By leveraging the preliminary outputs generated thus 

far, this module detects assembly anomalies, iteratively navigating through the error 

correction process. This error correction endeavor is complemented by the allocation of 

sequences to their respective chromosomal contexts, determined through predictive analytics 

concerning chromosome count. 

The culmination of the entire assembly process resides in the third and final stages. Here, a 

holistic synthesis of all relevant assembly information materializes, culminating in the fruition 

of the adjusted genome. Finally, the genome is statistically analyzed and a comprehensive 

results report is generated. 

A notable caveat pertains to the prevalent utilization of 3D-DNA as a linchpin in the initial 

phase of AutoHiC's automated assembly process. This selection is primarily rooted in the 

software's preeminence and pervasive adoption within the domain of genome assembly. 

However, it is imperative to underscore that for users operating distinct assembly software, 

the interaction outcomes can be transformed into requisite formats, thereby enabling the 

independent utilization of AutoHiC for assembly correction and associated tasks. 
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Error identification 

AutoHiC employs a specific methodology known as the Hi-C contact matrix to accurately 

pinpoint instances of misassembly breakpoints within the genome. The construction of the Hi-

C contact matrix involves the alignment of contact reads against the reference genome, 

yielding invaluable insights into both intra- and interchromosomal interactions. These 

assumptions are rooted in the empirical observation that Hi-C interaction maps faithfully 

depict the actual physical distances separating different genome sequences. In essence, 

AutoHiC transforms the Hi-C interaction map into multichannel images, adeptly capturing a 

diverse array of error-indicative signals. Subsequently, a network of transformers is harnessed 

to predict the precise error type and genomic locus depicted in each image. Through this 

intricate process, AutoHiC effectively identifies instances of misassembled contigs. 

In the operational context, AutoHiC converts the interaction heatmap into a three-channel 

RGB image through a sliding window approach tailored to the resolution and dimensions of 

the interaction matrix. Each image, enriched with interaction-related information, is then fed 

into a pretrained error detection model. This model scrutinizes the presence of assembly 

errors within the image and, if detected, records pertinent information about the type and 

location of the error. AutoHiC integrates an inherent information conversion script that 

translates error positional data identified within the image into corresponding genomic 

coordinates. This information is subsequently utilized by the AutoHiC error correction 

module to effectively rectify the errors. 

 

Error correction 

The AutoHiC algorithm's pivotal component is its error correction module. Operating as the 

algorithm's core, this module is designed to rectify errors within the genome by leveraging 

information about their specific locations. Functioning as a subsequent step following error 

detection, it is primarily responsible for addressing three major categories of errors: 

translocation, inversion, and debris. Among these, translocation errors present the most 

intricate challenge. Their resolution entails extracting the corresponding interaction matrix 
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within the identified interval and subsequently transforming this matrix into a peak map. 

Through the application of the peak algorithm, the insertion interval for the translocation error 

is meticulously identified. Ultimately, the pertinent genomic sequence undergoes precise 

adjustments to restore accuracy. 

In contrast, inversion and debris errors do not necessitate the same level of complexity in 

terms of locating insertion points. Rather, their rectification primarily involves refining the 

sequences associated with the genomic region. In instances where scaffold assemblies exhibit 

high-quality attributes, a single iteration of AutoHiC correction often proves sufficient to 

comprehensively rectify all identified errors. This iterative strategy contributes significantly 

to heightening the algorithm's accuracy and overall reliability. 

The meticulous orchestration of the error correction module within AutoHiC underscores 

its critical role in enhancing the fidelity of genome assemblies. By systematically addressing 

various types of misassemblies, AutoHiC ensures the integrity of genomic data, which is 

imperative for downstream analyses and the advancement of genomics research. 

 

Peak algorithm 

The main task of the peak algorithm is to find insertion sites of translocation errors. It extracts 

the interaction matrix  

(𝑀 × 	𝑁,𝑀 = 𝑀𝑖𝑛 )𝑎𝑏𝑠 -!""#"	%!&'()
*

− 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛56 , 𝑁 = 𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ)  

with the best resolution based on the incorrect length. 

Then, the peaks in the interaction matrix are extracted, and after excluding the position of the 

error and the peaks (𝑀𝑎𝑥{𝑖+, 𝑖,, 𝑖*…	𝑖&}) of the accessory, the site selected according to the 

maximum value is the insertion site of the translocation error. 

 

Chromosome number prediction 

Chromosome number prediction relies on the global interaction heatmap (Supplementary 

Figure 5). Initially, the error-corrected interaction matrix, which has been purged of redundant 

sequences, is transformed into a visual representation through a visualization tool. The 
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chromosome detection model then analyzes these generated visual representations to ascertain 

both the count and size of chromosomes. Subsequently, AutoHiC allocates the genomic 

sequences to their respective chromosomes according to the deduced information. 

 

Model architecture 

AutoHiC consists of four essential components: backbone, neck, densehead, and roihead. To 

enhance the extraction of error features from images, we employ the Swin Transformer as the 

backbone network of AutoHiC. This network adopts a layered transformer structure, dividing 

the image into different blocks and performing self-attention operations within each block. 

Such a hierarchical architecture enables efficient handling of large-scale Hi-C interaction 

images. To mitigate computational complexity, the model incorporates a windowed attention 

mechanism, confining self-attention operations within local windows of each block rather 

than performing global computations. Additionally, a deep cross-local area attention 

mechanism is introduced to establish long-range dependencies among different blocks, 

capturing a broader range of contextual information. 

To facilitate feature transformation and fusion, AutoHiC integrates the feature pyramid 

network47 (FPN) as a neck. FPN is adept at handling visual tasks at various scales and layers, 

making it an ideal choice for AutoHiC architecture. Finally, for the precise screening and 

localization of extracted error features, the Cascade Region of Interest (RoI) Head and Region 

Proposal Network48 (RPN) Head are employed. For comprehensive technical details, readers 

can refer to the implementation code. 

 

Streaming sliding window 

The sliding window algorithm is based on the set size to extract the local matrix by sampling 

the interaction matrix extracted at different resolutions. For different resolutions, the size of 

the sliding window is 𝑀	(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 700), and the sliding step is 𝑁	(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 400). 

The whole process is performed along the diagonal of the interaction matrix from top left to 

bottom right. 
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Datasets 

The dataset used in this article is divided into two parts. One part is the training data of the 

model, mainly the original interaction information in hic format. Another part is test data used 

to evaluate the real data of AutoHiC performance and application range, which includes 

genome, Hi-C sequencing data, etc. All the data utilized in the study presented in this article 

are sourced from DNA Zoo and NCBI. Details regarding the genome and Hi-C sequencing 

data can be found in Supplementary Table 17. The raw data used for model training are 

obtained from DNA Zoo, and specific information is available in Supplementary Table 18. 

 

Generation of training data 

The data used for training the model are primarily generated and simulated based on collected 

Hi-C data. The generated data are created using a script that follows predetermined length 

gradients and resolutions, while the simulated data are produced by randomly adjusting 

interaction matrix values derived from actual data, resulting in data that closely resemble real-

world observations. The color thresholds applied to heatmaps are determined by extracting 

the 95th quantile of the interaction matrix distribution. 

 

Image data preprocessing 

The initial data are subjected to preprocessing to convert them into localized interaction 

heatmaps represented in jpg format. Due to the substantial volume of generated data, direct 

utilization for model training becomes unfeasible. To address this, a classification network is 

implemented to curate usable images from the generated dataset. Subsequently, manual 

annotation was performed on the selected data using the labelme (v.5.3.1) tool. Prior to the 

training phase, data augmentation procedures are applied, encompassing transformations such 

as flipping, rotation, scaling, cropping, and shifting. These augmentations are designed to 

amplify the diversity and robustness of the training dataset. 
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Classification network 

The training data for the error detection model come from the screening of the classification 

model. The classification model is used for preliminary screening of generated and simulated 

Hi-C data for subsequent manual screening and labeling. The classification model is based on 

EfficientNetV249. Its training data come from errors that were originally detected by humans. 

 

Model training 

The dataset is partitioned into two distinct subsets, with approximately two-thirds of the data 

serving as the training set to iteratively refine the model parameters. The remaining one-third 

is allocated as the test set, a set-aside corpus intended to meticulously assess the performance 

of the trained models. It is crucial to underscore that the test set remains entirely unseen and 

untapped during the training regimen, thus guaranteeing an impartial appraisal of the model's 

efficacy.  

 

Model evaluation 

Furthermore, we ascertained the generalization proficiency of AutoHiC through an evaluation 

conducted on an independent test subset that remained entirely segregated from the training 

process. In appraising the detector's efficacy posttraining, we leverage both the confusion 

matrix and the area under the precision-recall curve (AUPRC). For each pair of adjacent 

precision and recall rates, treat them as the upper and lower bases of a trapezoid and calculate 

the area of the trapezoid to estimate the area under the PR curve at the current stage. For all 

trapezoids, calculate their areas and add them together to obtain an approximation of the area 

under the PR curve. During the cross-validation procedure, we judiciously select 

hyperparameters that yield the highest AUPRC, thus ensuring the optimal configuration 

settings.  
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Algorithm verification 

To assess the feasibility of the AutoHiC error correction algorithm, we employed a 

comparative approach involving the generation of interaction heatmaps and interaction curves 

before and after the error correction process. The interaction heatmap was produced using 

pyStraw, targeting two distinct resolutions corresponding to the intervals where errors 

occurred. Notably, the intervals remained consistent between the pre- and postcorrection 

phases. Higher resolutions were adopted to amplify the precision of erroneous details. 

Simultaneously, the interaction curve was derived from the interaction matrix, specifically by 

focusing on the positions where errors were identified. While the data within the interaction 

matrix remained unnormalized, the extracted interaction matrix underwent normalization to 

achieve a range of 0 to 1, subsequently facilitating the generation of the associated interaction 

curve. 

 

Benchmarking the performance of AutoHiC 

All the compared software programs were obtained, installed, and evaluated following the 

procedures outlined in the provided publication sources. When assessing the performance of 

different software programs on the same species (Caenorhabditis elegans, Arabidopsis 

thaliana, Drosophila melanogaster, Danio rerio, and Homo sapiens), uniform datasets were 

employed to ensure consistency. The input data for software such as SALSA2, YaSH, and 

Pin_hic consisted of BAM or BED files generated by the HiC-Pro50 pipeline. Parameter 

configurations for each of the compared software programs were maintained at their default 

settings as stipulated by the original documentation for each program. 

The genome continuity assessment predominantly relied on key metrics such as the N10-

N90, L50, NGA50, and NG50 values and the CC ratio. Specifically, the N10-N90 and L50 

metrics were computed utilizing the QUAST software package (v5.2.0). The parameter 

settings for all compared software were retained in their default states, as prescribed by the 

original documentation. The CC ratio, representing the proportion of contig count to 

chromosome count, was established manually. 
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For the quantitative analysis of structural variations, an appropriate reference genome was 

selected from Supplementary Table 12. The analysis was conducted using MUM&Co 

software (v3.8), maintaining parameter configurations in line with the default specifications 

as provided in the original documentation. 

 

Synteny analysis 

For comparative analysis, we assessed the genomes assembled by 3D-DNA and those 

corrected by AutoHiC against their respective T2T reference genomes. This evaluation 

involved utilizing the MUM&Co tool to capture structural variation information. Leveraging 

the structural variation data from MUM&Co, we employed NGenomeSyn51 (v.1.41) to 

visualize structural variation regions within the 3D-DNA assembly outcomes. Subsequently, 

we harnessed SeqKit52 (v.2.5.1) to extract sequences containing structural errors, followed by 

employing blastn to conduct sequence comparisons between these sequences and the genomes 

adjusted by AutoHiC. This comparison enabled the derivation of corresponding sequence 

positional information. Criteria for filtering the comparison results were primarily guided by 

sequence length and alignment consistency. Ultimately, we utilized SeqKit to extract the 

aligned sequences, facilitating comprehensive comparison and collinearity analysis with the 

T2T reference genome. 

 

Genome assembly with AutoHiC 

During testing, all genomes only require the original genome files and Hi-C sequencing data. 

AutoHiC automatically performs error correction and generates result reports. The genome 

and interaction matrix files before and after correction are made available in the AutoHiC 

results for visualization and statistical analysis. The number of assembly errors can be directly 

obtained from the result report. Depending on the genome size, the Hi-C data size and the 

running time of AutoHiC for the number of correction iterations can be obtained from 

Supplementary Table 19. 
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Implementation of the AtuoHiC framework 

The deep learning architectures are implemented using MMDetection53 v.2.11.0 and PyTorch 

v.1.10.1 on Python v.3.7. Training is conducted on NVIDIA GeForce RTX 3080 Ti GPUs. 

 

Data availability 

No new data were generated for this study. All data used in this article are available from 

Supplementary Table 17 and 18. 

 

Code availability 

The AutoHiC source code and documentation are available on GitHub under the MIT license 

at https://github.com/Jwindler/AutoHiC. 
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Figure legends 

 

 

Fig. 1: Overview of the AutoHiC framework. 

a AutoHiC runs processes and data flows. The AutoHiC assembly process is divided into 

three main steps. Users only need to prepare contigs and Hi-C reads the data. First, scaffold 

software is used to generate candidate genomes and global interaction files. Next, the 

AutoHiC model detects and iteratively corrects assembly errors and partitions chromosomes 

based on the interaction matrix. Finally, the assembly result report is generated. Data and 

steps are marked with different colors. b AutoHiC model description. The architecture of the 

Swin Transformer network employed in AutoHiC is depicted. The input is a three-channel 

interaction image, and the output is the type of error detected by the model and the 
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corresponding location information. Different layers adopt different configurations, which are 

distinguished by colors, and the specific information subscripts are visible. 
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Fig. 2: Comparison of AutoHiC error correction effects.  

a, c, e Interaction heatmaps and interaction curves with assembly errors. The interaction 

heatmap is at two resolutions, with the high resolution on the right. The resolution and 

interaction boundaries are marked at the top. The lower boundary has a marker indicating the 

extent of the interaction area. Interaction curves are generated from the interaction matrix 

used by the interaction heatmap. Interaction values have been normalized to 0-1. b, d, f 

Interaction heatmaps and curves after error corrections without assembly errors. 

 

84
0 

M
b

10
10

 M
b

= 12

84
0 

M
b

10
10

 M
b

86
3 

M
b

87
7 

M
b

86
3 

M
b

87
7 

M
b

10-kb 10-kb1-Mb 1-Mb = 12= 1 = 1

840 Mb 1010 Mb 840 Mb 1010 Mb863 Mb 863 Mb877 Mb 877 Mb

Before AutoHiC correction After AutoHiC correction
Tr

an
sl

oc
at

io
n

= 200 25-kb 25-kb250-Kb 250-Kb = 200= 4 = 4

17
20

 M
b

17
50

 M
b

17
20

 M
b

17
50

 M
b

16
96

 M
b

17
90

 M
b

16
96

 M
b

17
90

 M
b

1696 Mb 1790 Mb 1696 Mb 1790 Mb1720 Mb 1750 Mb 1720 Mb 1750 Mb

In
ve

rs
io

n

= 5 1-kb 1-kb5-Kb 5-Kb = 5= 1 = 1

95
1 

M
b

95
2 

M
b

95
1 

M
b

95
2 

M
b

951 Mb 952 Mb 951 Mb 952 Mb

94
8 

M
b

95
5 

M
b

94
8 

M
b

95
5 

M
b

948 Mb 955 Mb 948 Mb 955 Mb

D
eb

ris
a b

c d

e f

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

0.2

0.6
0.9

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.27.555031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.27.555031
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Fig. 3: AutoHiC model effect verification. 

a, b Changes in model accuracy and loss rate during training and validation. On the left is the 

training process and on the right is the verification process. The lower curve is the training 

loss and the upper curve is the training accuracy. c Confusion matrix results for the AutoHiC 

error detection model. The horizontal axis of the graph represents the actual error, and the 

vertical axis represents the model-predicted error. The diagonal line is the correct prediction 

result, and the darker the color of the cube, the more images are correctly predicted. d 

Precision recall (PR) curve for the different IOU thresholds as in panel. Curves without color 

represent PR results at different IOU thresholds. 
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Fig. 4: Comparison of genome continuity benchmarks. 

a, b, c, d, e The radar chart shows the continuity of the assembly results. Different colors 

represent different software programs. The radar chart shows N10, N30, N50, N70 and N90. 

Different species are shown separately. f Histogram of CC rate values of different software 

contig results. It contains the results of the contig, and different colors represent different 

software. 
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Fig. 5: Assessing the performance of correcting the T2T genome. 

a, b Comparison of the contiguity of assemblies scaffolded by 3D-DNA and AutoHiC as 

measured by QUAST. The Y-axes show the range of NGA50 to NG50 lengths to indicate the 

uncertainty caused by true genomic variation between the individual and the reference 

genome. c Comparison of the accuracy of assemblies scaffolded by 3D-DNA and AutoHiC as 

measured by MUM&Co. The X-axis shows the total number of structural variations to show 

AutoHiC's ability to correct errors. d, e, f, g, h, i Collinearity block plots before and after 

three error corrections for translocation, inversion and debris. Above is the uncorrected 

collinearity with the T2T genome. Below is the AutoHiC-corrected collinearity with the T2T 

genome in the same region. The names and positions of the sequences are marked on the left. 
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Fig. 6: Genomic dataset extension validation. 

a, b, c, d, e, f Global interaction heatmaps before and after AutoHiC error correction. The left 

is before correction. The right is corrected. Resolution and interaction thresholds are marked 
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at the top. The lower value is the genome length (ratio). g Histogram of the number of errors 

before and after AutoHiC error correction. The histogram above is the sum of the three error 

numbers. A colored circle below indicates the presence of such errors. The 6 on the left are 

before AutoHiC corrects the error, and the ones on the right are after the correction. 
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