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ABSTRACT 43 

Salvia hispanica L. (chia) is an abundant source of ω-3 polyunsaturated fatty acids (PUFAs) that 44 

are highly beneficial to human health. The genomic basis for this accrued PUFA content in this 45 

emerging crop was investigated through the assembly and comparative analysis of a chromosome-46 

level reference genome for S. hispanica (321.5 Mbp). The highly contiguous 321.5Mbp genome 47 

assembly, which covers all six chromosomes enabled the identification of 32,922 protein coding 48 

genes. Two whole-genome duplications (WGD) events were identified in the S. hispanica lineage. 49 

However, these WGD events could not be linked to the high α-linolenic acid (ALA, ω-3) 50 

accumulation in S. hispanica seeds based on phylogenomics. Instead, our analysis supports the 51 

hypothesis that evolutionary expansion through tandem duplications of specific lipid gene 52 

families, particularly the stearoyl-acyl carrier protein (ACP) desaturase (ShSAD) gene family, is 53 

the main driver of the abundance of ω-3 PUFAs in S. hispanica seeds. The insights gained from 54 

the genomic analysis of S. hispanica will help leveraging advanced genome editing techniques and 55 

will greatly support breeding efforts for improving ω-3 content in other oil crops.  56 
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1 INTRODUCTION 57 

Salvia hispanica L. (chia) is an oleaginous short-day flowering plant originating from Mexico and 58 

widely cultivated throughout Latin America, Australia, and Southeast Asia (Jamboonsri et al., 59 

2012). Member of the Lamiaceae family, which comprises nearly 7,100 species of flowering 60 

plants, S. hispanica belongs to the largest genus, Salvia spp. (sages) which regroups more than 61 

1,000 species. Salvia spp. are increasingly recognised as commercially important crops due to their 62 

nutraceutical and bioactive compounds among which sterols, flavonoids, diterpenes, triterpenes 63 

and polyphenols (Cahill, 2003; Harley et al., 2004; Walker et al., 2004; Georgiev & Pavlov, 2017). 64 

Amongst the Salvia spp., S. hispanica is the most nutritionally valuable crop due to its health-65 

promoting properties, including high levels of dietary fibre (35%), carbohydrates (5%), protein 66 

(18-24%), lipids (31-34%), antioxidants and essential vitamins (Timilsena et al., 2016; da Silva et 67 

al., 2017; Zare et al., 2019). S. hispanica seeds are rich in essential fatty acids (EFAs) (81%), 68 

including α-linolenic acid (ALA, ω-3, 62%) and linoleic acid (LA, ω-6, 19%) with low ω-6:ω-3 69 

ratio (0.3), which makes it one of the best sources of plant-based ω-3 (Oteri et al., 2023). Several 70 

studies examining the effect of ω-3 polyunsaturated fatty acids (PUFAs) supplementation on 71 

human health suggest they may help reduce several chronic diseases such as diabetes, 72 

cardiovascular and inflammatory disorders, hypertension, dyslipidemia, and kidney dysfunction  73 

(Creus et al., 2017; Meyer & De Groot, 2017; Onneken, 2018; Arredondo-Mendoza et al., 2020; 74 

Penson & Banach, 2020; El-Feky et al., 2022; Xiao et al., 2022; Zhang et al., 2022; Liu et al., 75 

2023; Ong et al., 2023). 76 

The biosynthesis of PUFAs in plants involves a series of complex reactions in different subcellular 77 

compartments. The de novo biosynthesis of 16- or 18-carbon fatty acids (FAs) takes place in 78 

plastids through the action of acetyl-CoA carboxylase (ACC) and FA synthase (FAS) (Li-Beisson 79 
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et al., 2013). After the conversion/elongation of C16:0 to C18:0, the C18:0-ACP (SA, stearic acid) 80 

is desaturated to C18:1-ACP (OA, ω-9, oleic acid) in the chloroplast stroma by a soluble stearoyl-81 

ACP desaturase (SAD) (Bates et al., 2013). The C18:1-ACP is further desaturated into C16:3 and 82 

C18:2/C18:3 by different plastidial membrane-bound FA desaturases (FAD5, FAD6, 83 

FAD7/FAD8) (Browse & Somerville, 1991). FAs are next exported to the endoplasmic reticulum 84 

(ER) for conversion into acyl-CoAs before forming phosphatidylcholines (PCs) and triglycerides 85 

(TGs) (Block & Jouhet, 2015). Once synthesised, TGs are assembled into oil bodies and exported 86 

from the ER to be stored in the seed (Banaś et al., 2013). 87 

High-quality genomes are providing valuable information on the evolution and functional 88 

divergence of key genes involved in oil biosynthetic pathways (Wang et al., 2014; Badouin et al., 89 

2017; Unver et al., 2017; Lin et al., 2022; Shen et al., 2022). Expansion of the type 1 lipid transfer 90 

(LTP1) gene family and contraction of lipid degradation genes have been linked to the high oil 91 

accumulation in sesame seeds (Wang et al., 2014). Neo-functionalization and expansion of the 92 

SAD gene family is thought to be responsible for the increased levels of OA in olives (Unver et 93 

al., 2017). However, the lack of sufficient genomic information for S. hispanica had limited the 94 

exploration of the genetic basis of ω-3 PUFAs accumulation in this plant. 95 

Early research determined chia’s somatic chromosome number and DNA content (2n = 2x = 12, 96 

C-value = 0.93 ± 0.016 pg, genome size = ~ 460 Mb) (Haque, 1980; Estilai et al., 1990; Maynard 97 

& Ruter, 2022). In recent years, several studies have provided multi-tissue transcriptomes for S. 98 

hispanica in order to identify genes involved in secondary metabolite and oil biosynthesis 99 

(Sreedhar et al., 2015; Peláez et al., 2019; Wimberley et al., 2020; Gupta et al., 2021). In addition, 100 

a set of studies functionally characterised genes encoding fatty acid desaturases (FADs) against 101 

different biotic/abiotic stresses  (Xue et al., 2018)  (Xue et al., 2023). These studies, together with 102 
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a genome assembly for S. hispanica (Wang et al., 2022), provided new insights, but relatively little 103 

is known about the main drivers of high ω-3 PUFA accumulation in S. hispanica seeds. 104 

Our study investigated the molecular mechanisms of oil biosynthesis in S. hispanica leveraging  105 

the assembly of a near-complete, high-quality chromosome-level reference genome (RefSeq: 106 

GCF_023119035.1). This enabled comparative genomic analysis to determine the occurrence of 107 

WGD events and gene family size and sequence evolution between S. hispanica and a subset of 108 

relevant species species. We investigated if specific biological functions overrepresented among  109 

significantly expanded gene families. In particular, our analysis seek to probe the hypothesis that 110 

duplication and nucleotides substitutions in oil biosynthesis genes support the high production of 111 

ω-3 FAs in S. hispanica. 112 

 113 

2 MATERIALS AND METHODS 114 

2.1 Plant material and genomic DNA extraction 115 

A black-seed variety of S. hispanica L. was sourced from Chia Co. and Northern Australia 116 

Crop Research Alliance (NACRA; Kununurra, Western Australia). Fresh young leaves were 117 

harvested from a four-week-old individual S. hispanica plant, immediately frozen in liquid 118 

nitrogen and stored at -80 °C prior to the isolation of genomic DNA (gDNA). High molecular 119 

weight gDNA was isolated using a cetyltrimethylammonium bromide (CTAB) method (Murray & 120 

Thompson, 1980; Supplemental Figure S1). The isolated gDNA was treated with RNase A 121 

following the method developed by Yoshinaga & Dalin (Yoshinaga & Dalin, 2016); and purified 122 

using NucleoMag™ NGS magnetic beads (Macherey-Nagel, Düren, Germany) prior to DNA 123 

libraries synthesis. 124 
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2.2 Library construction, sequencing, and processing of the sequencing reads 125 

For short-read sequencing, DNA libraries were synthesised from 3.9 μg of gDNA using the 126 

Illumina TruSeq DNA PCR-Free kit (Illumina, San Diego, CA, USA) and sequenced on Illumina 127 

NovaSeq 6000 platform (Illumina, San Diego, CA, USA) in 2×150bp sequencing mode. Genewiz 128 

(Suzhou, China) conducted the Illumina library synthesis and sequencing. The reads quality was 129 

assessed using FastQC v0.11.9 (Andrews, 2010). Low-quality reads with an average quality per 130 

base below Q20 calculated over 4bp sliding windows and leading bases with a quality score below 131 

Q20 were removed using Trimmomatic v0.39 (Supplemental Table S1; Bolger et al., 2014). A 132 

total of 476Gb of high-quality Illumina reads with an average length of 145bp was retained for 133 

genome assembly. 134 

For long-read sequencing, DNA libraries were prepared using the SQK-LSK109 ligation 135 

sequencing kit (Oxford Nanopore Technologies, Oxford, UK) and sequenced on a MinION Mk1B 136 

portable device with FLO-MIN106D flowcell. The long-read sequencing was run for 48hrs at 137 

180mV using the MinKNOW software v.2.0. Basecalling of long sequencing reads was performed 138 

with Guppy v5.0.11+2b6dbffa5 using the basecalling template_r9.4.1_450bps_hac.jsn  (Oxford 139 

Nanopore community, https://community.nanoporetech.com). Long reads were error-corrected 140 

with fmlrc2 v0.1.5 (Wang et al., 2018) resulting in 9Gb of high-quality resds with average length 141 

2,825bp. 142 

For Hi-C sequencing, nuclei were isolated from young leaves of an individual S. hispanica 143 

plant, and in situ Hi-C library synthesis was performed by DNA Zoo at the University of Western 144 

Australia (Perth, Australia) as described in Rao et al. (2014; Supplemental Figure S2). The 145 

sequencing of the Hi-C libraries (~300bp insert size) was carried out on an Illumina NovaSeq 6000 146 

platform (Illumina, San Diego, CA, USA) in the 2×150bp mode by Genewiz (Suzhou, China). 147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.27.555029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.27.555029
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

8 
 

2.3 Estimation of the genome size and genomic heterozygosity 148 

The genome size of S. hispanica was estimated through k-mer frequency analysis of the 149 

sequencing reads. The k-mer distributions for size ranging from 15-mer to 21-mer were computed 150 

using Jellyfish v2.3.0 (Marçais & Kingsford, 2011) and the genome size, level of the 151 

heterozygosity, and abundance of genomic repeats were estimated using GenomeScope v1.0.0 152 

(Vurture et al., 2017). 153 

2.4 De novo genome assembly and scaffolding 154 

A meta-assembly approach was conducted using a hybrid combination of long and short reads. 155 

The hybrid assembly consisted in combining the contigs assembled from short-reads and error-156 

corrected long reads using Platanus-allee with default parameters v2.2.2 (Kajitani et al., 2019). 157 

The error-corrected long reads were also used to generate a long-read only assembly using Wtdbg2 158 

v2.5 (Ruan & Li, 2020) with default parameters. Long-read only assembly and the consensus 159 

scaffolds from the hybrid assembly were integrated into a non-redundant meta-assembly using 160 

QuickMerge v0.3 (Chakraborty et al., 2016) with the parameters “-hco 5.0 -c 1.5 -l 1000 -ml 8000 161 

-t 16”. Iterative polishing was performed using Racon v1.4.22 (Vaser et al., 2017) with Illumina 162 

short and corrected long reads sequencing data. Ambiguous regions (N’s) and gaps within contigs 163 

were filled using Cobbler v0.6.1 (Warren, 2016). The gap-free contigs were then re-merged using 164 

RAILS v1.5.1 (Warren, 2016), and duplicated regions (haplotigs) were purged using purge_dups 165 

v1.2.5 (Guan et al., 2020) to remove misassembled or redundant contigs from the final set of 166 

haplotigs retained in the assembly. The final contig assembly was obtained after one round of 167 

Illumina short-read polishing and two rounds of corrected long-read polishing with Racon v1.4.22 168 

(Vaser et al., 2017). The final contig assembly was subsequently scaffolded with Hi-C reads using 169 
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the Juicer pipeline (Durand et al., 2016). The Hi-C-based contact map was constructed using 3D-170 

DNA v180419 (Dudchenko et al., 2017) and manually curated using the JuiceBox v1.11.08 171 

(Durand et al., 2016). 172 

2.5 Assessment of the assembly completeness 173 

Short and long reads were mapped to the assembled genome using bwa-mem v0.7.17 (Li & 174 

Durbin, 2009). Genome completeness was evaluated using Benchmarking Universal Single-Copy 175 

Orthologs (BUSCO) v5.2.2 (Simão et al., 2015) with different databases: “eukaryota_odb10”, 176 

“eudicots_odb10”, “viridiplantae_odb10”, and “embryophyta_odb10”. Published transcriptomes 177 

from different tissues of S. hispanica (Sreedhar et al., 2015; Peláez et al., 2019; Wimberley et al., 178 

2020; Gupta et al., 2021; Klein et al., 2021) were mapped to the assembled genome using blastn 179 

v2.10.1 (Camacho et al., 2009) to further validate the completeness of the assembly. 180 

2.6 Genome annotation 181 

The genome of S. hispanica was annotated using the National Center for Biotechnology 182 

Information (NCBI) Eukaryotic Genome Annotation Pipeline (Pruitt et al., 2007, 2014; O'Leary 183 

et al., 2016). Transposable elements (TEs) were identified by constructing a de novo library of 184 

repetitive sequences based on the assembled genome using the RepeatModeler v2.0.3 (Flynn et 185 

al., 2020). The generated library was then used to classify the TEs and tandem genomic repeats 186 

and to mask the low complexity sequences within the genome using RepeatMasker v4.1.2 (Tarailo-187 

Graovac & Chen, 2009). Annotation features over the genome assembly were visualised as a circos 188 

plot generated by pyCircos v0.3.0 (https://github.com/ponnhide/pyCircos) and Matplotlib package 189 

v3.5.1 (Hunter, 2007). 190 
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2.7 Comparative genomics analysis 191 

Comparative analysis of the S. hispanica genome was performed against that of Salvia 192 

splendens (scarlet sage) as a closely related species, Sesamum indicum (sesame) and Erythranthe 193 

guttata (monkey flower) as representatives of the Lamiales order, Solanum lycopercicum (tomato) 194 

as a relatively close species with a high quality genome; and Arabidopsis thaliana (thale cress) 195 

and Vitis vinifera (wine grape) as outgroups. The reference genome sequences and annotations for 196 

these species were retrieved from NCBI (Sayers et al., 2021). The comparative genome analysis 197 

in this study was conducted using the compare_genomes analysis pipeline (Paril et al., 2022; Paril 198 

et al., 2023). 199 

Protein sequences from S. hispanica and the species compared were used to define gene 200 

families or orthogroups as clusters of homologous genes using OrthoFinder v2.5.4 (Emms & 201 

Kelly, 2019). The hmmsearch function from HMMER v3.3.2 (Mistry et al., 2013) was used to 202 

search for gene families that corresponded to the orthogroups identified in the Protein Analysis 203 

Through Evolutionary Relationships (PANTHER, http://pantherdb.org) gene family database 204 

using PantherHMM v16.0 (Mi et al., 2021). Evolutionary relationships between gene families and 205 

contraction and expansion of gene families across species were tested using CAFE5 v5.0 (Mendes 206 

et al., 2020). Gene enrichment among the expanded or contracted gene families was analysed using 207 

the Gene Ontology (GO) enrichment analysis tool (Ashburner et al., 2000) from the Universal 208 

Protein Resource (UniProt) database (Bateman et al., 2020). 209 

The orthogroups containing only single-copy orthologs across every species (one-to-one 210 

orthologs) were aligned with MACSE v2.06 (Ranwez et al., 2011) and used to construct a 211 

phylogenetic tree through maximum likelihood as implemented in IQ-TREE v2.0.7 (Minh et al., 212 

2020). IQ-TREE software was also used to estimate site-specific evolutionary rates and divergence 213 
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times between species through an empirical Bayes approach. Divergence times between A. 214 

thaliana and V. vinifera (115 million years, MYA) and S. indicum and S. lycopersicum (82 MYA) 215 

were inferred from the TimeTree of Life database (http://timetree.org; Kumar et al., 2017). The 216 

divergence time between S. splendens and S. hispanica (9.6 MYA) was retrieved from Wang et al. 217 

(2022). The rates of nucleotide substitution amongst pairs of paralogs/orthologs were measured 218 

using the third codon transversion rates at four-fold degenerative (synonymous) sites (4DTv) to 219 

estimate the likelihood of WGD events. The 4DTv values were calculated based on the alignment 220 

of each pair of CDSs within orthogroups across the selected species using MACSE v2.06 (Ranwez 221 

et al., 2011). 222 

2.8 Analysis of oil biosynthesis genes 223 

The evolution of key lipid biosynthesis pathway enzymes was compared between S. hispanica 224 

and S. splendens, S. indicum, E. guttata, S. lycopercicum, V. vinifera and A. thaliana. We focused 225 

on 35 well-characterized genes involved in lipid and FAs biosynthesis pathways retrieved from 226 

NCBI and UniProt (Supplemental Table S2). The protein sequences encoded by these lipid 227 

pathway genes were queried against the protein sequences of  genes annotated in our focal species 228 

using blastp (E-value ≤1e-4) to identify the orthogroups encoding for a specific gene activity. 229 

Contraction and expansion of these gene families and rates of nucleotide substitution were tested 230 

as described in the previous section. 231 

Gene duplication events, including WGD, tandem duplication, proximal duplication, 232 

transposed duplication, and dispersed duplication, were identified using the DupGen_finder 233 

pipeline (Qiao et al., 2019). Protein sequences were first aligned using blastp with e-value < 1e-5, 234 

and the different modes of gene duplications between homologous gene pairs determined using 235 
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the DupGen_finder.pl function from MCScanX (Qiao et al., 2019) with the following parameters 236 

were used: match_score: 50, match_size: 5, gap_penalty: -1, overlap_window: 5, e_value: 1e-5, 237 

max gaps: 25. The chromosome ideogram plot and homologous synteny blocks were generated 238 

using the R\RIdeogram package (Hao et al., 2020). 239 

The ratio between the number of nonsynonymous substitutions per nonsynonymous site (Ka) 240 

and the number of synonymous substitutions per synonymous site (Ks) in a pairwise alignment of 241 

two orthologous sequences was used to measure evolutionary differences between sequences. The 242 

KaKs_Calculator2.0 v2.0 (Wang et al., 2010) was used to calculate Ka/Ks ratio over 15bp sliding 243 

windows of the CDSs of paralogs associated with lipid metabolism in the S. hispanica genome 244 

and homologous genes in other species. 245 

 246 

3 RESULTS 247 

3.1 Chromosome-scale reference genome assembly and annotation of S. hispanica 248 

The genome assembled for S. hispanica (RefSeq: GCF_023119035.1) consisted in 5,304 249 

contigs spanning 1,556 scaffolds. The assembly covered ~321Mb (N50=53Mb; L50=3; largest 250 

scaffold=57Mb) with a GC content of 36% (Table 1). Hi-C reads analysis identified ~173 million 251 

contacts (Supplemental Table S3), of which ~127 million and ~46 million were inter- and intra-252 

chromosomal contacts used for genome super-scaffolding, respectively. The size of S. hispanica 253 

pseudo-chromosomes obtained through Hi-C scaffolding ranged from 40Mb to 58Mb with 254 

spanned gaps of 491bp to 741bp (Supplemental Table S4); The L90=6 matched the chromosome 255 

number determined through flow cytometry (Figure 1 and Supplemental Figure S3; Maynard & 256 

Ruter, 2022). The best k-mer distribution model was obtained for k=19 and supported diploidy 257 
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with 0.24% heterozygosity and 5.28% duplicated regions (Supplemental Figure S4). Analysis of 258 

k-mer frequencies estimated a haploid genome size of 466Mbp, consistent with the size of 460Mbp 259 

reported by Maynard and Ruter (2022). 260 

The completeness of the assembly assessed against a different set of lineage-specific core 261 

eukaryotic genes (Eukaryota n=255, Eudicots n=2117, Embryophyte n=1538, and Viridiplantae 262 

n=410), resulted in the retrieval of 98.4%, 93.6%, 95.3%, and 96.5% of complete single copy gene 263 

models, respectively (Supplemental Figure S5). The average BUSCO score was relatively high (> 264 

95%) across all lineage sets. Around 94% of the previously published S. hispanica transcripts 265 

(Sreedhar et al., 2015; Peláez et al., 2019; Wimberley et al., 2020; Gupta et al., 2021; Klein et al., 266 

2021) mapped to the assembled genome (Supplemental Figure S6). The high BUSCO score and 267 

the high mapping rate of transcripts indicated that the genome assembly contained nearly all the 268 

S. hispanica genes.  269 

Additionally, 97.56% of the short reads re-mapped against the assembled genome indicating 270 

the high quality of the S. hispanica reference genome. However, 0.6% of the reads did not have 271 

their paired read mapped to the genome and 5.9% of paired reads were mapped to a different 272 

chromosome. This potentially highlights repetitive sequences in the assembled genome and closely 273 

matches the estimated genome duplication rate of 5.28% determined by GenomeScope. 274 

A total of 46,508 CDSs were annotated, encompassing 209,379 exons and 166,729 introns 275 

across all transcripts including mRNAs, misc_RNAs, and ncRNAs of class lncRNA. The repeat-276 

masked assembly contained 39,616 genes, corresponding to 32,922 protein-coding genes, 4,071 277 

non-coding genes and 2,623 pseudogenes (Supplemental Table S5). The total number of annotated 278 

transcripts (54,009) included 46,423 messenger RNAs (mRNAs), 3,758 long non-coding RNAs 279 

(lncRNAs), 739 transfer RNAs (tRNAs), 436 small nucleolar RNAs (snoRNAs), 233 small nuclear 280 
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RNAs (ncRNAs), 49 ribosomal RNAs (rRNAs), and 2,381 miscellaneous RNAs (misc_RNAs; 281 

Table 2). 282 

The genome of S. hispanica contained 44.14% of interspersed repeats, 0.80% and 0.19% of 283 

which were simple and low complexity repeats, respectively (Supplemental Table S6 and 284 

Supplemental Figure S7). Long terminal repeats (LTRs) represented 11.05% of the genome, with 285 

Copia (5.60%) and Gypsy (5.45%) being the most abundant (Figure 1h), when DNA transposons 286 

only represented 3.69% of the genome (Supplemental Table S6 and Supplemental Figure S7). 287 

3.2 Gene family evolution in the S. hispanica genome 288 

The CDSs from the S. hispanica genome annotation were compared to those of S. splendens, 289 

S. indicum, E. guttata, S. lycopercicum, V. vinifera and A. thaliana (Figure 2). The phylogeny 290 

inferred from 134 single-copy orthologs (SCOs) supported previously described evolutionary 291 

relationships among species. The SCOs alignment placed the S. splendens and S. hispanica with 292 

maximum nodal support, confirming their close ancestral relationship (Figure 2a). Their most 293 

recent common ancestor was dated to 9.6 million years ago (MYA) which supported previous 294 

report by Wang et al. (2022). The oilseed crops S. indicum and S. hispanica were estimated to have 295 

diverged approximately 58-59 MYA, similar to the estimated divergence time between E. guttata 296 

and S. hispanica (Figure 2a). 297 

From the 320,180 genes found across all seven species, 305,234 genes (95.3%) were assigned 298 

to one or more of the 27,963 orthogroups. In S. hispanica, a total of 45,108 genes were assigned 299 

to orthogroups, 134 being SCOs, and 2,814 unique paralogs form 682 orthogroups, leaving 1,400 300 

unassigned genes (Figure 2b). S. splendens contained the highest average number of paralogs 301 

within orthogroup (1.85), showing the highest genetic redundancy, followed by A. thaliana (1.12), 302 
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S. hispanica (1.08), V. vinifera (0.96), S. lycopersicum (0.88), S. indicum (0.83), and E. guttata 303 

(0.74). The highest number of unique orthogroups was observed for A. thaliana (3047; 13074 304 

paralogs), followed by S. splendens (1471; 6,236 paralogs), V. vinifera (1257; 6,892 paralogs), S. 305 

lycopersicum (972; 4,601 paralogs), S. hispanica (682; 2814 paralogs), E. guttata (617; 3,738 306 

paralogs), and S. indicum (402; 1,790 paralogs; Figure 2b). The number of genes not assigned to 307 

any orthogroup varied across species, with the highest value for S. splendens (5,081) followed by 308 

A. thaliana (3,503), S. lycopersicum (1,489), V. vinifera (1,452), S. hispanica (1400), E. guttata 309 

(1,216), and S. indicum (805; Figure 2b). 310 

In total, 10,827 orthogroups were shared among all species, with 682 orthogroups being unique 311 

to S. hispanica (Figure 2c). The two closely related Salvia species (i.e., S. splendens and S. 312 

hispanica) contained the largest number of orthogroups (18,974 and 17,986, respectively), which 313 

is 15-22% higher than that observed for other species. The high number of unique orthogroups in 314 

A. thaliana (3,047) reflected the distant evolutionary relationships with the other species analysed 315 

and its relevance as an outgroup (Figure 2c). 316 

We next explored gene family expansion and contraction in S. hispanica compared to other 317 

selected species. A. thaliana, S. indicum, S. lycopersicum and V. vinifera showed a relatively even 318 

number of expanded vs. contracted gene families (Figure 2a). E. guttata and S. hispanica, on the 319 

other hand, show a much higher number of contracted gene families, while S. splendens was the 320 

only species with significant number of expanded gene families (7936). Interestingly,  closely 321 

related S. hispanica exhibited the opposite pattern with a significant excess of contracted gene 322 

families (5,919). 323 

Among the gene families expanded in S. hispanica., a significant enrichment was found for 324 

maintenance of plant homeostasis, response to stress and activation of defence mechanisms 325 
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(Supplemental Table S7). The top 10 gene families most unique to S. hispanica were highly 326 

enriched for specific biological processes: xenobiotic detoxification by transmembrane export in 327 

plasma membrane (GO:1990961; P<5.70E-10), xenobiotic export from cell (GO:0046618; P 328 

<5.70E-10), xenobiotic transport (GO:0042908; P <9.63E-11), plant-type primary cell wall 329 

biogenesis (GO:0009833; P<3.22E-04), galactose metabolic process (GO:0006012; P<9.83E-04), 330 

peptidyl-threonine dephosphorylation (GO:0035970; P<4.17E-08), toxin catabolic process 331 

(GO:0009407; P<8.70E-07), nucleotide-sugar transmembrane transport (GO:0015780; P<2.30E-332 

02); S-glycoside catabolic process (GO:0016145; P<2.14E-04), and glucosinolate catabolic process 333 

(GO:0019762; P<2.14E-04; Supplemental Figure S8). The 20 most enriched molecular function 334 

and cellular component ontologies in the S. hispanica genome are presented in Supplemental Table 335 

S8 and S9, respectively. 336 

3.3 Whole genome duplications and speciation events 337 

The occurrence of WGD events in species studied was determined based on the distribution of 338 

the 4DTv among multi-copy paralogs (Supplemental Figure S9). The 4DTv distribution for S. 339 

hispanica (Supplemental Figure S9h) showed a high density at 0.1 (relative time to the most recent 340 

common ancestor) and at 0.3. The first peak corresponded to a relatively recent WGD event in S. 341 

hispanica that is only shared with closely related species S. splendens. However, this peak in the 342 

4DTv distribution of S. splendens is masked by a very recent WGD event at 0.03 (Supplemental 343 

Figure S9h). Both S. indicum and S. lycopersicum showed similar peaks at around 0.2 and 0.4 344 

suggesting a more recent WGD; these peaks are less apparent for E. guttata, A. thaliana and V. 345 

vinifera (Supplemental Figure S9h). 346 
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The pairwise comparison of the 4DTv distribution in the two Salvia species indicated that the 347 

speciation event between them might have occurred quite recently (9.6 MYA as shown in Figure 348 

2a), after a common WGD event shared across all Salvia species (Figure 3) and before the recent 349 

WGD event private to S. splendens. A comparison of S. hispanica with S. indicum and E. guttata 350 

(Figure 3) revealed that the S. hispanica genome has diverged from both species at the same time, 351 

supporting the estimated divergence time of 58.4 MYA (Figure 2a) and the absence of WGD 352 

private to S. hispanica in the Salvia lineage. 353 

3.4 Analysis of oil biosynthesis genes in S. hispanica 354 

We investigated gene family expansion and particularly segmental duplication as a potential 355 

hypothesis for the high production of ω-3 FAs in S. hispanica. Key lipid synthesis genes including 356 

SAD and 3-ketoacyl-acyl carrier protein reductase (KAR) were significantly expanded in S. 357 

hispanica. The increased number of SAD genes in S. hispanica cannot be explained by the WGD 358 

events: the S. splendens genome is twice larger than that of S. hispanica, having recently undergone 359 

a WGD event, but does not contain twice the number of SAD genes. To understand the mechanisms 360 

underlying the expansion of specific gene families in S. hispanica, we investigated different modes 361 

of gene duplications (i.e., whole-genome, tandem, proximal, transposed, or dispersed 362 

duplications). 363 

In S. hispanica, most of the SAD genes are located in the telomeric region of chromosome 1 364 

(11 out of 13 genes), and the remaining two are located on chromosomes 3 and 4 (Figure 4). Gene 365 

duplication analysis (e-value < 10-5) revealed that 6 of the ShSAD genes (ShSAD2: 366 

XP_047955596.1; ShSAD3: XP_047970931.1; ShSAD4-a isoform X1:  XP_047970902.1; 367 

ShSAD4-b isoform X2: XP_047970909.1; ShSAD5: XP_047970920.1; ShSAD6: 368 
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XP_047955488.1; and ShSAD7: XP_047954777.1) form a tandem array located in the telomeric 369 

region of chromosome 1 (Figure 4a). Interestingly, the genes in this tandem array (excluding 370 

ShSAD7) were specific to S. hispanica, absent in other species studied. One gene upstream of this 371 

tandem array, the ShSAD1 gene (XP_047969270.1) was unique to S. hispanica, resulting from a 372 

duplication of ShSAD13 (XP_047982897.1) located on chromosome 4. 373 

ShSAD13 belongs to an orthogroup shared across species that included 4 genes from S. 374 

hispanica. This orthogroup included ShSAD13, ShSAD7, and ShSAD11-a isoform X1 375 

(XP_047955195.1), ShSAD11-b isoform X2 (XP_047955196.1) and ShSAD12 376 

(XP_047971758.1), which are dispersed duplicates located on chromosome 1 and 3, respectively. 377 

The remaining three ShSAD genes formed an orthogroup unique to S. hispanica with ShSAD8 378 

(XP_047966762.1) and ShSAD9 (XP_047955361.1) which are proximal duplicates (ie. one gene 379 

apart) and ShSAD10 (XP_047938734.1) which is a transposed duplicate of ShSAD1. This is 380 

different to the finding by Xue and colleagues who showed that all ShSAD genes are tandem 381 

duplicates (Xue et al., 2023). Instead, our analysis suggested that the ShSAD genes have been 382 

repeatedly duplicated in S. hispanica, after its divergence from S. splendens (Figure 4b). 383 

The eleven ShKAR genes are spread across chromosomes 2 to 6, six of which directly resulted 384 

from WGD, including ShKAR1 (XP_047958713.1), ShKAR2 (XP_047960775.1), ShKAR3 385 

(XP_047964327.1), ShKAR5 (XP_047940213.1), ShKAR9 (XP_047939697.1), and ShKAR10 386 

(XP_047952057.1). ShKAR5 is also a tandem duplicate of ShKAR6 (XP_047944250.1) which is 387 

one gene away from the pair of tandem duplicates formed by ShKAR7 (XP_047940355.1) and 388 

ShKAR8 (XP_047944629.1). In addition, ShKAR4 (XP_047937601.1) and ShKAR11 389 

(XP_047945899.1) are transposed duplicate and proximal duplicate pairs of ShKAR10, 390 

respectively. 391 
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Three characteristics were unique to the SAD gene family compared to the KAR gene family. 392 

First, the S. hispanica genome contained the highest number of SAD gene orthologs (13 copies) of 393 

all species studied here. However, the number of KAR family genes in S. hispanica was similar to 394 

that of other species. Second,  SAD genes had the highest number of paralogs (10 genes including 395 

a private orthogroup of 3 genes) unique to S. hispanica, while S. hispanica KAR genes only showed 396 

one unique paralog. Third, ShSAD genes included a six-gene tandem array including 5 genes 397 

unique to S. hispanica, while ShKAR genes included two tandem pairs with only one gene unique 398 

to S. hispanica. 399 

We evaluated the evolutionary constraint on the ShSAD genes by analysing the Ka/Ks ratio in 400 

orthogroups containing at least two genes. Comparison of pairwise Ka/Ks ratios between CDSs of 401 

ShSADs unique to S. hispanica and orthologs from other species revealed a set of ShSAD genes 402 

with functional characteristics unique to S. hispanica. The orthogroup containing ShSAD8, 403 

ShSAD9, and ShSAD10 showed an excess of non-synonymous substitution, with 14 to 16% of the 404 

alignment length displaying a Ka/Ks ratio greater than 1 (Supplemental Figure 10; Fisher's exact 405 

test: P<0.05). In contrast, Ka/Ks ratios were less than 1 for 22 to 27% of the alignments (Fisher's 406 

exact test: P<0.05), indicative of purifying selection at other sites. However, most of the  407 

alignments length showed no substitutions, either being fully conserved (ShSAD8-ShSAD9) or not 408 

present across all species investigated (ShSAD8-ShSAD10 and ShSAD9-ShSAD10). For the 409 

orthogroup containing ShSAD7, ShSAD11-a/b, ShSAD12, and ShSAD13, 68 to 90% of the 410 

alignments length showed Ka/Ks ratios lesser than 1 (Fisher's exact test: p-value=0.05) and only 411 

0-6% of Ka/Ks ratios greater than 1 (Fisher's exact test: P<0.05), suggesting a strong purifying 412 

selection (Supplemental Figures 11, 12 & 13). 413 

 414 
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4 DISCUSSION 415 

4.1 Gene family evolution in S. hispanica 416 

WGD is common in angiosperms, allowing the neofunctionalization of duplicated genes and 417 

the potential adaptation to novel conditions (Hahn et al., 2005; Hughes et al., 2014; Li et al., 2020). 418 

In addition to the WGD event previously reported for S. hispanica (Wang et al., 2022; Li et al., 419 

2023) shared with S. splendens, we identified an ancestral γ-WGD event shared with other species. 420 

Salvia species having undergone these two WDGs (e.g., S. splendens) neither show an increased 421 

expression of lipid genes nor a high oil accumulation in seeds. Therefore, the higher ω-3 422 

production in S. hispanica compared to the other species studied here cannot be due to one of its 423 

WGD events. 424 

Whole genome duplication events do not alter the dosage balance across molecular pathways, 425 

including protein modification and transcriptional regulation (Chang et al., 2022). The consistent 426 

gene expression after WGDs is due to dosage sharing and tight regulatory control mechanisms; in 427 

contrast, tandem duplications lead to the shuffling of regulatory elements (Rogers et al., 2017). 428 

Tandem duplications in A. thaliana, S. lycopersicum, and Z. mays were shown to impact dosage 429 

balance in protein-protein interactions and could explain that ShSAD genes tandem duplications 430 

increased FA synthesis in S. hispanica seeds. The effect of duplicated genes on dosage balance is 431 

more profound when genes encode for a limiting step of a metabolic pathway (Defoort et al., 2019), 432 

which is the case for ShSAD genes in FA biosynthesis. 433 

The genome of S. hispanica showed the highest number of contracted gene families (5,919), 434 

when S. splendens showed the highest number of expanded gene families (7,936). The expansion 435 

or contraction of gene families has been associated with gene regulation (Baroncelli et al., 2016; 436 
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Najafpour et al., 2020). Biological pathways are often regulated at the gene network level through 437 

regulatory hubs with key regulatory gene families expanded (Yu et al., 2017). In contrast, genes 438 

performing independent functions under purifying selection often show gene family contraction 439 

(Hess et al., 2018). Consequently, non-synonymous mutations cause immediate loss of function in 440 

single-copy genes but are neutral in expanded gene families due to functional redundancy (Force 441 

et al., 1999; Hahn et al., 2005). 442 

The S. hispanica genome with predominantly contracted gene families is under purifying 443 

selection, and the selective removal of deleterious alleles potentially explains the genomic stability 444 

of key biological functions (Bray & West, 2005; Hough et al., 2013; Cvijović et al., 2018; dos 445 

Santos Maraschin et al., 2019). Intense purifying selection has been observed across plant species. 446 

In Zea mays (maize), highly expressed genes experience stronger purifying selection and 447 

regulatory neofunctionalization leading to unique and independent functions that have increased 448 

photosynthetic efficiency and stress tolerance (Hughes et al., 2014). Similarly, paralogs with 449 

deleterious effects might have been removed from the S. hispanica genome, and a structural 450 

reorganisation could have occurred within gene families involved in oil biosynthesis. 451 

4.2 Tandem duplication as an essential evolutionary genomic mechanism 452 

Tandem duplication, one of the main mechanisms of the gene family expansion (Achaz et al., 453 

2000; Lan & Pritchard, 2016), is also supporting phenotypic plasticity (Chang et al., 2022) by 454 

mediating the adaptive response of the secondary metabolism to environmental stress (Defoort et 455 

al., 2019). Tandem duplications are lineage-specific and often affect membrane proteins and biotic 456 

and abiotic response genes (Rizzon et al., 2006; Hanada et al., 2008; Carretero-Paulet & Fares, 457 

2012; Kondrashov, 2012; Jiang et al., 2013; Denoeud et al., 2014; Fischer et al., 2014; Picart-458 
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Picolo et al., 2020; Cai et al., 2023). In the Lamiaceae family, species-specific tandem duplicates 459 

are responsible for the biosynthesis of flavonoids in Scutellaria baicalensis (Xu et al., 2020a), 460 

terpenoids in the Lavandula angustifolia (lavender) (Li et al., 2021), and diterpenoids in Isodon 461 

rubescens (Sun et al., 2023). 462 

The tandem array of six ShSAD genes located in the telomeric region of chromosome 1 463 

suggests a shared regulation. Tandem duplicates are known to be co-regulated with sub-464 

functionalization of expression at higher levels compared with segmental duplicates or WGD 465 

genes (Cannon et al., 2004; Casneuf et al., 2006). For example, tissue specific co-expression of 466 

unique tandem duplications involved in the biosynthesis of flavonoids was observed in Carthamus 467 

tinctorius (safflower; Wu et al., 2021). Similarly, seed specific tandem duplicated gene pairs 468 

responsible for oil biosynthesis in S. indicum were shown to be co-expressed (Song et al., 2021). 469 

Tandem duplications of lipid biosynthesis genes with effects consistent with those found here 470 

in S. hispanica have been evidenced across different species. In Cajanus cajan (pigeon pea), 471 

tandem duplicates control the biosynthesis of ALA (Liu et al., 2021). In S. indicum, a combination 472 

of lipid transfer gene family expansion due to tandem duplication and contraction of lipid 473 

degradation genes was identified as driving the high accumulation of FAs in seeds (Wang et al., 474 

2014). The highly conserved domains in segmental and tandem duplicated wax ester synthase 475 

(WSD1) and DGAT genes in Gossypium hirsutum (cotton) were related to a rate-limiting process 476 

during high unsaturated FAs accumulation in  seeds (Zhao et al., 2021). The expansion of 477 

GmFAD2 genes in Glycine max (soybean) (Lakhssassi et al., 2021) and OeB3 genes in Olea 478 

europaea (olive) (Qu et al., 2023) were associated with tandem duplications. 479 
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4.3 SAD gene family expansion is an adaptive multi-stress response mechanism affecting FA 480 

biosynthesis 481 

Contrary to most gene families involved in lipid synthesis in S. hispanica, the ShSAD and 482 

ShKAR gene families are substantially expanded. This extends previous findings from 483 

transcriptomic analysis which only showed that the SAD gene family was expanded (Wang et al., 484 

2022). In plants, the SAD and KAR gene families are critical for FA biosynthesis and the initiation 485 

of FA desaturation in the chloroplast (Li-Beisson et al., 2013; González-Thuillier et al., 2021). 486 

SAD genes encode the only known soluble desaturase in chloroplast stroma, which is essential for 487 

ALA biosynthesis. The SAD enzyme also controls the synthesis of ACP-bound oleic acid (18:1) 488 

from stearate, resulting in the first double bond at the α-end (You et al., 2014). 489 

In Camellia chekiangoleosa seeds, the expansion of the SAD gene family leads to the high 490 

production of unsaturated FAs, which is thought to be adaptive (Shen et al., 2022). Similarly, in S. 491 

hispanica seeds with high FA content, a high number of unique SAD genes sit in a tandem array. 492 

SAD genes sitting in tandem have also been reported in Linum usitatissimum L. (flax seeds; You 493 

et al., 2014) and Olea europaea var. sylvestris (wild olive) where the expansion of duplicated SAD 494 

genes has allowed neofunctionalization to support the high production of OA (Unver et al., 2017). 495 

The increased number of tandem-duplicated SAD genes in the S. hispanica genome, leading to 496 

the abundant production of PUFAs, might represent an adaptive response to environmental stress 497 

as shown in other plants (Feng et al., 2017; Zhao et al., 2021; Chen et al., 2023). The ShSAD2 and 498 

ShSAD7 genes in S. hispanica are overexpressed in response to cold stress (Xue et al., 2023). 499 

Differential substrate specificity of tandem duplicates is believed to be the  mechanism behind this 500 

adaptive response to stress also leading to enhanced secondary metabolite synthesis (Wang et al., 501 
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2015; Picart-Picolo et al., 2020; Tohge & Fernie, 2020; Xiao et al., 2020; Xu et al., 2020b; Li et 502 

al., 2021; Chang et al., 2022). 503 

The function of ShSAD11a in seed oil formation was confirmed through heterologous 504 

expression studies in yeast and A. thaliana transgenic lines (Xue et al., 2023). The higher number 505 

of SAD genes in S. hispanica (13 genes) compared to Perilla frutescens (7 genes) is currently the 506 

main hypothesis for the higher accumulation of ALA in S. hispanica seeds (Xue et al., 2023). 507 

However, we also specifically hypothesise that the six-gene tandem array of ShSAD genes in the 508 

telomeric region of chromosome 1, including five species-specific, co-expressed genes might 509 

further explain the high accumulation of ω-3 FAs in S. hispanica seeds. For example, regulation 510 

of the very long-chain monounsaturated nervonic acid (NA, C24:1ω-9) in Acer truncatum (purple 511 

blow maple) is controlled by a 10-gene tandem array of 3-ketoacyl CoA synthetase (KCS) genes, 512 

encoding a rate-limiting enzyme defining substrate and tissue specificity during FA elongation, 513 

and highly expressed in mature seeds (Ma et al., 2020). 514 

The ShSAD tandem array includes five paralogs unique to S. hispanica, which were duplicated 515 

after the divergence from S. splendens. The overactivity of this SAD gene tandem array produces 516 

an abundance of C18:1-ACP as a substrate for the desaturation of FAs in both the plastid and ER, 517 

and consequently the relatively high accumulation of ω-3 FAs in S. hispanica seeds. This 518 

contradicts the hypothesis that the high expression of ER localised ShFAD3 drives the high ω-3 519 

FA accumulation in S. hispanica seeds (Li et al., 2023). The WGD ShSAD genes (ShSAD7, 520 

ShSAD11-a/b, ShSAD12, and ShSAD13) have been under evolutionary constraints to maintain their 521 

function. On the other hand, ShSAD orthologs unique to S. hispanica (ShSAD8, ShSAD9, and 522 

ShSAD10) show diverging non-synonymous mutations and increased rate of substitution at 523 
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specific sites (Kryazhimskiy & Plotkin, 2008) while showing evidence of purifying selection 524 

elsewhere. 525 

 526 

5 CONCLUSIONS 527 

This study generated a high-quality, chromosomal-level reference genome for S. hispanica to 528 

analyse the evolution of oil biosynthesis genes in this valuable oil-seed crop. Our analysis 529 

suggested that the expansion of the ShSAD gene family through tandem duplications is a driver of 530 

high ω-3 FAs accumulation in S. hispanica seeds. Comparative analysis of multiple chromosomal-531 

level genomes is able to assess the putative effect of gene copy number variation and other source 532 

of structural genome variation. This work establishes valuable genomic resources in chia and 533 

prompts the need to investigate further structural variants at FA biosynthesis gene loci within and 534 

among species. This will enable the breeding of emerging crop or the horizontal transfer of genes 535 

across species, with the possibility of altering gene dosage through the introgression of arrays of 536 

paralogous genes to improve key traits. 537 
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FIGURES AND TABLES 987 

 988 

Figure 1. Genomic features of the S. hispanica reference genome assembly. (a) Chromosome layer 989 

showing the length of each chromosome with ticks indicating 5Mbp intervals. (b) Distribution of 990 

the GC content at a window size of 250kbp over the entire genome as a bar plot of percentage 991 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.27.555029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.27.555029
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

47 
 

values with a lower bound of 30% and upper bound of 43%. (c) Distribution of protein coding 992 

gene density over 250kbp windows (values normalized between 0 and 50 across chromosomes). 993 

(d) Distribution of pseudogene density over 250kbp windows (values normalized between 0 and 994 

10 for all chromosomes). (e) and (f) Distribution of Gypsy and Copia LTR density, respectively, 995 

over 500kbp windows (values normalized between 0 and 100 across chromosomes). (g) The chord 996 

plot shows the synteny relationships for the top five orthogroups (paralogs) across the genome. 997 

The color of the internal chords is that of the chromosome containing the highest number of 998 

paralogs within each orthogroup. 999 
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 1000 

Figure 2. Evolution of S. hispanica and distribution of orthologous gene families across species. 1001 

(a) Phylogenetic tree inferred from single-copy orthologs among selected species. Numbers on 1002 

branches show divergence time in MYA. The pie charts at the terminal branches show the 1003 

contraction (pink) and expansion (dark blue) of gene families for each species. (b) Distribution of 1004 

multiple orthologs, single copy orthologs, unique paralogs and genes not associated with orthologs 1005 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.27.555029doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.27.555029
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

49 
 

per species from orthogroup clustering by OrthoFinder. (c) The UpSet plot of the interactions 1006 

between unique and shared orthologous gene clusters identified by OrthoFinder. The horizontal 1007 

bar plot on the left shows the total number of orthogroups assigned to each species. The dark dots 1008 

connected by solid lines show the species that include in each cluster where the number of 1009 

orthogroups within that cluster is indicated by the vertical bars on the top. Colored dots on the 1010 

cluster map represent orthogroups unique to a species. Plant images are created with 1011 

BioRender.com. 1012 

 1013 

Figure 3. Distribution of transversion substitutions at fourfold degenerate sites (4DTv). 1014 

Distribution of 4DTv for S. hispanica and pairwise 4DTv with S. splendens, S. indicum, and E. 1015 

guttata. Peaks in pairwise 4DTv density indicate the relative time of divergence between species. 1016 
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 1017 

Figure 4. Chromosome ideogram and synteny analysis of S. hispanica genome. (a) Ideogram 1018 

showing the gene density distribution and position of key FA synthesis genes on S. hispanica 1019 

chromosomes. The tandem array of ShSAD genes is located in the telomeric region of chromosome 1020 

1. (b) Synteny analysis of S. hispanica with A. thaliana and S. splendens using synteny blocks 1021 

from DupGen_finder. Colours represent S. hispanica chromosomes. Black cords represent only 1022 

synteny blocks containing ShSAD genes.  1023 
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Table 1. Statistics for the chromosome-level reference genome assembly of S. hispanica. 1024 

Assembly Features S. hispanica Genome Assembly 
Total assembly length (bp) 321,469,233 
Contigs ≥ 1k bp 5,301 
Contigs ≥ 10 kbp 4,307 
Contigs ≥ 25 kbp 4,016 
Contigs ≥ 50 kbp 3,858 
Largest contig length (kbp) 894 
Scaffolds ≥ 1 kbp 1,553 
Scaffolds ≥ 10 kbp 572 
Scaffolds ≥ 25 kbp 288 
Scaffolds ≥ 50 kbp 130 
Largest Scaffold length (kbp) 57,985 
% Main genome in scaffolds > 50 kbp 95.66 
GC (%) 36 
N50 53,190,533 
L50 3 
N90 40,175,719 
L90 6 
Mismatches (N’s) 613,150 
Gap (%) 0.19 

  1025 
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Table 2. Count and length of the annotated genomic features in the S. hispanica genome 1026 

(excluding pseudogenes). 1027 

Feature Count 
Mean 
length 
(bp) 

Median 
length 
(bp) 

Min 
length 
(bp) 

Max 
length 
(bp) 

Genes 36,993 2,901 2,291 62 163,900 
All transcripts 54,009 1,671 1,452 62 16,722 
mRNA 46,423 1,753 1,515 165 16,722 
Misc_RNA 2,381 2,122 1,859 167 13,008 
tRNA 739 74 73 71 93 
lncRNA 3,758 979 729 78 5,754 
snoRNA 436 106 103 62 229 
snRNA 223 138 120 98 197 
rRNA 49 384 119 103 3,191 
Single exon transcripts 5,396 1,149 957 233 6,688 
CDSs 46,508 1,379 1,155 90 16,188 
Exons 209,379 302 162 2 7,672 
Exons in coding transcripts 197,070 302 161 2 7,062 
Exons in non-coding transcripts 19,006 274 153 2 7,672 
Introns 166,729 355 142 30 99,611 
Introns in coding transcripts 158,426 343 139 30 99,611 
Introns in non-coding transcripts 14,710 437 196 32 63,506 

 1028 
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