

1 **Sequential breakdown of the complex *Cf-9* leaf mould resistance locus in tomato by *Fulvia*
2 *fulva***

3
4 Silvia de la Rosa^{1,§}, Christiaan R. Schol^{2,3,§}, Ángeles Ramos Peregrina^{2,3}, David J. Winter⁴,
5 Anne M. Hilgers^{2,3}, Kazuya Maeda⁵, Yuichiro Iida⁵, Mariana Tarallo⁶, Ruifang Jia³, Henrike
6 G. Beenen³, Mercedes Rocafort¹, Pierre J.G.M. de Wit³, Joanna K. Bowen⁷, Rosie E.
7 Bradshaw^{6,8}, Matthieu H.A.J. Joosten³, Yuling Bai², Carl H. Mesarich^{1,8,*}

8
9 ¹Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey
10 University, Palmerston North, New Zealand.

11 ²Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands.

12 ³Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The
13 Netherlands.

14 ⁴Bioinformatics Group, School of Natural Sciences, Massey University, Palmerston North,
15 New Zealand.

16 ⁵Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka,
17 Japan.

18 ⁶Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University,
19 Palmerston North, New Zealand.

20 ⁷The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research
21 Centre, Auckland, New Zealand.

22 ⁸Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand.

23
24 [§]These authors contributed equally to this work.

25
26 *Corresponding author: Carl H. Mesarich (c.mesarich@massey.ac.nz).

27
28 ORCIDs: Silvia de la Rosa: [0000-0002-3143-6697](https://orcid.org/0000-0002-3143-6697); Christiaan R. Schol: [0000-0001-8807-6699](https://orcid.org/0000-0001-8807-6699); Ángeles Ramos Peregrina: [0009-0004-4569-8323](https://orcid.org/0009-0004-4569-8323); David J. Winter: [0000-0002-6165-0029](https://orcid.org/0000-0002-6165-0029); Kazuya Maeda: [0000-0001-9858-0362](https://orcid.org/0000-0001-9858-0362); Yuichiro Iida: [0000-0001-5062-3255](https://orcid.org/0000-0001-5062-3255); Mariana
30 Tarallo: [0000-0002-7811-6770](https://orcid.org/0000-0002-7811-6770); Ruifang Jia: [0000-0001-6761-2085](https://orcid.org/0000-0001-6761-2085); Mercedes Rocafort:
31 [0000-0001-7192-695X](https://orcid.org/0000-0001-7192-695X); Pierre J.G.M. de Wit: [0000-0002-4208-288X](https://orcid.org/0000-0002-4208-288X); Joanna K. Bowen:
32 [0000-0001-9863-1078](https://orcid.org/0000-0001-9863-1078); Rosie E. Bradshaw: [0000-0001-5228-2685](https://orcid.org/0000-0001-5228-2685); Matthieu H.A.J. Joosten:
33 [0000-0001-5228-2685](https://orcid.org/0000-0001-5228-2685)

34 [0000-0002-6243-4547](#); Yuling Bai: [0000-0002-9382-6551](#); Carl H. Mesarich: [0000-0002-
35 5207-4074](#).

36

37 **Summary**

38 • Leaf mould, caused by *Fulvia fulva*, is a devastating disease of tomato plants. In many
39 commercial tomato cultivars, resistance to this disease is governed by the *Cf-9* locus, which
40 comprises five paralogous genes (*Cf-9A–9E*) that encode receptor-like proteins. Two of
41 these proteins contribute to resistance: *Cf-9C* recognizes the previously identified *F. fulva*
42 effector *Avr9* and provides resistance during all plant growth stages, while *Cf-9B*
43 recognises the yet-unidentified *F. fulva* effector *Avr9B* and provides mature plant
44 resistance only. In recent years, *F. fulva* strains have emerged that have overcome the *Cf-9*
45 locus, with *Cf-9C* circumvented through *Avr9* deletion. To understand how *Cf-9B* is
46 circumvented, we set out to identify *Avr9B*.

47 • Comparative genomics, *in planta* transient expression assays and gene complementation
48 experiments were used to identify *Avr9B*, while gene sequencing was used to assess *Avr9B*
49 allelic variation across a worldwide strain collection.

50 • A strict correlation between *Avr9* deletion and resistance-breaking mutations in *Avr9B* was
51 observed in strains recently collected from *Cf-9* cultivars, whereas *Avr9* deletion but no
52 mutations in *Avr9B* were observed in older strains.

53 • This research showcases how *F. fulva* has evolved to sequentially break down the two
54 functional resistance genes of the complex *Cf-9* locus and highlights that this locus now
55 has limited value for controlling leaf mould disease in worldwide commercial tomato
56 production.

57

58 **Key words**

59 *Avr9* and *Avr9B* avirulence effector genes, *Cf-9C* and *Cf-9B* resistance genes, *Cf-9* locus,
60 sequential resistance breakdown, tomato leaf mould disease, fungus, *Fulvia fulva*
61 (*Cladosporium fulvum*), *Solanum lycopersicum*.

62

63 **Introduction**

64 Leaf mould, caused by the hemibiotrophic fungus *Fulvia fulva* (formerly known as
65 *Cladosporium fulvum* and *Passalora fulva*) (Videira *et al.*, 2017), is a devastating disease of
66 tomato plants grown in humid settings, such as in greenhouse and high tunnel environments,

67 where it is responsible for severe defoliation and yield losses (Thomma *et al.*, 2005). During
68 infection, *F. fulva* resides in the apoplastic environment located between the mesophyll cells
69 of leaves, where it secretes an arsenal of effector proteins to promote host colonization and
70 lifecycle completion (de Wit, 2016; Mesarich *et al.*, 2023; Rocafort *et al.*, 2020). This arsenal
71 includes at least 75 small, secreted proteins (SSPs) of <300 amino acid residues in length, most
72 of which are stabilized with disulphide bonds that prevent their degradation by apoplastic
73 tomato proteases (Joosten *et al.*, 1997; Luderer *et al.*, 2002a; Mesarich *et al.*, 2018).

74 Resistance to *F. fulva* in tomato is governed by *Cf* (resistance to *Cladosporium fulvum*)
75 immune receptor genes which, based on those cloned to date, encode cell surface-localized
76 receptor-like proteins (RLPs) (Kang & Yeom 2018; Thomas *et al.*, 1998). These RLPs possess
77 an extracellular leucine-rich repeat (LRR) domain that is responsible for the direct or indirect
78 recognition of specific *F. fulva* effectors (termed avirulence (Avr) effectors), as well as a
79 transmembrane domain and a short cytoplasmic tail (Ngou *et al.*, 2023; Snoeck *et al.*, 2023).
80 As RLPs do not have signalling capacity themselves, they typically need to interact with
81 receptor-like kinases (RLKs), such as SOBIR1 and BAK1, which are involved in transducing
82 defence response signals following apoplastic effector recognition (Gust & Felix, 2014;
83 Liebrand *et al.*, 2013; Liebrand *et al.*, 2014; Postma *et al.*, 2016; van der Burgh *et al.*, 2019).
84 Following recognition and signalling, immune responses such as a swift burst of reactive
85 oxygen species (ROS) (Huang *et al.*, 2020), callose deposition and the hypersensitive response
86 (HR), which is a localized form of programmed cell death (de Wit *et al.*, 2009), are initiated
87 that halt *F. fulva* growth.

88 To date, five tomato *Cf* gene/*F. fulva* Avr effector gene pairs have been cloned. These
89 are *Cf-2/Avr2* (Dixon *et al.*, 1996; Luderer *et al.*, 2002b), *Cf-4/Avr4* (Thomas *et al.*, 1997;
90 Joosten *et al.*, 1994), *Cf-4E/Avr4E* (Takken *et al.*, 1999; Thomas *et al.*, 1997; Westerink *et al.*,
91 2004), *Cf-5/Avr5* (Dixon *et al.*, 1998; Mesarich *et al.*, 2014), and *Cf-9C/Avr9* (Jones *et al.*,
92 1994; van den Ackerveken *et al.*, 1992; van Kan *et al.*, 1991). In each of these cases, strains
93 (races) of *F. fulva* have emerged that can overcome resistance mediated by the matching *Cf*
94 gene. With regards to the corresponding Avr effector genes, circumvention has been achieved
95 through gene deletion, indels (resulting in frame-shift mutations and truncations), transposable
96 element insertions, or point mutations (leading to amino acid substitutions) (Joosten *et al.*,
97 1994; Joosten *et al.*, 1997; Luderer *et al.*, 2002b; Mesarich *et al.*, 2014; Westerink *et al.*, 2004;
98 van Kan *et al.*, 1991).

99 Most commercial *F. fulva*-resistant tomato cultivars deployed worldwide are
100 designated Ff:A-E, which indicates that they carry the *Cf-9* resistance locus from the wild

101 tomato species *Solanum pimpinellifolium* (Jones *et al.*, 1993; van der Beek *et al.*, 1992). This
102 locus is made up of five paralogous genes, namely *Cf-9A*, *Cf-9B*, *Cf-9C* (commonly referred to
103 as *Cf-9* in the literature), *Cf-9D* and *Cf-9E* (Jones *et al.*, 1994; Parniske *et al.*, 1997). Of the
104 RLPs that are encoded by these five genes, two provide resistance against *F. fulva*. More
105 specifically, *Cf-9C*, as mentioned above, recognizes the *Avr9* effector protein of *F. fulva* (van
106 den Ackerveken *et al.*, 1992; van Kan *et al.*, 1991) and provides resistance during all stages of
107 plant growth, while *Cf-9B* recognises the putative *Avr9B* effector and provides resistance to
108 mature (flowering and fruiting) plants only (Jones *et al.*, 1994; Laugé *et al.*, 1998; Panter *et al.*,
109 2002). The molecular mechanism governing this mature plant resistance is currently unknown,
110 however developmental control of *Cf-9B* promoter activity does not appear to be responsible
111 (Panter *et al.*, 2002).

112 In addition to the timing of mounting actual resistance, differences also exist in the
113 strength of the resistance response initiated by *Cf-9C* and *Cf-9B*. Indeed, *Cf-9C* is associated
114 with an HR that generally restricts the hyphal growth of *F. fulva* to within one or two epidermal
115 cell lengths of the penetration site (Hammond-Kosack and Jones, 1994; Laugé *et al.*, 1998;
116 Parniske *et al.*, 1997), while *Cf-9B* is associated with leaf chlorosis and a strong accumulation
117 of pathogenesis-related (PR) proteins that ultimately halt fungal growth after some hyphal
118 extension between the mesophyll cells (Laugé *et al.*, 1998; Panter *et al.*, 2002; Parniske *et al.*,
119 1997).

120 Perhaps unsurprisingly, given its extensive use in commercial tomato production
121 worldwide, resistance provided by the *Cf-9* locus has already been partially overcome by many
122 *F. fulva* strains. The first evidence of this circumvention was provided in the Netherlands,
123 Poland, and France, where following the original introgression event of the *Cf-9* locus into
124 commercial tomato cultivars during the 1970s (Schouten *et al.*, 2019), race 9 (*Avr9*⁻) strains of
125 *F. fulva* started to emerge that could overcome resistance mediated by the *Cf-9C* gene (Laterrot,
126 1986; Lindhout *et al.*, 1989). In another example from Japan, race 9 strains were identified in
127 2009, just three years after commercial tomato cultivars carrying the *Cf-9* locus were
128 introduced (Enya *et al.*, 2009; Iida *et al.*, 2010; Iida *et al.*, 2015; Yoshida *et al.*, 2021). More
129 recently, a report stated that all 36 strains of *F. fulva* sampled in Cuba could overcome *Cf-9C*-
130 mediated resistance (Bernal-Cabrera *et al.*, 2021). In the cases where these studies have been
131 supported or followed up with molecular diagnostics, circumvention of *Cf-9C*-mediated
132 resistance has been shown to be exclusively the result of *Avr9* gene deletion (Bernal-Cabrera
133 *et al.*, 2021; Iida *et al.*, 2015; Stergiopoulos *et al.*, 2007a; Yoshida *et al.*, 2021; van Kan *et al.*,
134 1991).

135 Interestingly, even though *Cf-9C*-mediated resistance has been overcome by many
136 strains of *F. fulva* globally, *Cf-9B*-mediated resistance has, until relatively recently, proven to
137 be quite durable. However, over the last decade or so, growers from around the world have
138 reported an increase in the incidence of *F. fulva* strains on mature *Cf-9* tomato plants. This is
139 in addition to a study involving a New Zealand *F. fulva* strain, referred to as IPO 2679, collected
140 in the 1980s, which was shown to have overcome both *Cf-9C*- and *Cf-9B*-mediated resistance
141 (Laugé *et al.*, 1998). With these points in mind, we set out to (i) identify the *Avr9B* gene, (ii)
142 determine whether the *Avr9B* gene has been deleted or mutated across a worldwide collection
143 of race 9 *F. fulva* strains isolated from mature *Cf-9* tomato plants, and (iii) ascertain whether
144 *Cf-9C*- and *Cf-9B*-mediated resistance have been sequentially overcome by *F. fulva*.

145

146 **Results**

147 **Genome sequencing of *F. fulva* strain IPO 2679 reveals two candidate *Avr9B* genes**

148 As a starting point for the identification of *Avr9B*, the genome of New Zealand *F. fulva* strain
149 IPO 2679, which has overcome *Cf-9B*-mediated resistance (Laugé *et al.*, 1998), was sequenced
150 (**Table S1**). A total of 119 previously identified (candidate) effector gene sequences from the
151 *F. fulva* reference strain, 0WU (de Wit *et al.*, 2012; Mesarich *et al.*, 2014; Mesarich *et al.*,
152 2018), which has not overcome *Cf-9B*-mediated resistance, were then compared with the
153 corresponding gene sequences of strain IPO 2679 to identify those genes that have been
154 mutated or deleted (**Table S2**). Sequence alignments revealed that 21 of the 119 genes have
155 non-synonymous substitutions in IPO 2679, when compared to strain 0WU, while *Avr2* has a
156 140-base pair (bp) deletion, and a further two genes, including *Avr9*, have been deleted (**Table**
157 **S2**).

158 Of the 24 genes that have been deleted or mutated in IPO 2679, two were of particular
159 interest based on resistance-breaking mutations observed in other *Avr* effector genes of *F.*
160 *fulva*. The first is *Ecp5* (GenBank ID: EF104527.1), a previously identified candidate *Avr*
161 effector gene corresponding to the *Cf-Ecp5* resistance gene of tomato (Haanstra *et al.*, 2000;
162 Iakovidis *et al.*, 2020; Laugé *et al.*, 2000) that, like *Avr4* in many *Cf-4* resistance-breaking
163 strains of *F. fulva* (Joosten *et al.*, 1997), encodes a protein with a cysteine-to-tyrosine
164 substitution (amino acid position 30 in *Ecp5*; **Table S2**). This non-synonymous substitution
165 was subsequently confirmed by PCR amplicon sequencing. The second gene of interest is
166 *CfCE54* (GenBank ID: KX943086.1) which, like *Avr9* in *Cf-9C*-resistance-breaking strains of
167 *F. fulva* (van Kan *et al.*, 1991), is deleted. A sequence alignment comparison to the recently
168 published chromosome-level assembly of *F. fulva* strain Race 5 (Zaccaron *et al.*, 2022), which

169 is expected to carry a functional copy of *Avr9B*, estimated that the deleted region encompassing
170 *CfCE54* in IPO 2679 is 5,429 bp in length (**Fig. S1a**). Deletion of this region was subsequently
171 confirmed by PCR (**Fig. S1b**).

172 *CfCE54* is 566 nucleotides (nt) in length and comprises two introns and three exons
173 (**Supplementary Information 1**). The gene is predicted to encode a protein of 152 amino acids
174 with an N-terminal signal peptide of 21 amino acids for extracellular targeting, followed by a
175 repeat-rich region made up of four direct imperfect 11-amino acid repeats and a cysteine-rich
176 region with eight cysteine residues (**Fig. S2**). The repeat-rich region largely overlaps with a
177 predicted intrinsically disordered region (IDR) (**Supplementary Information 1**). Like *Ecp5*,
178 *CfCE54* is not predicted to possess a transmembrane domain or a glycosylphosphatidylinositol
179 (GPI) anchor modification site for attachment to the plasma membrane of fungal cells. Unlike
180 *Ecp5*, *CfCE54* was not identified by proteomic analysis in apoplastic washing fluid of *F. fulva*-
181 infected tomato plants (Mesarich *et al.*, 2018).

182

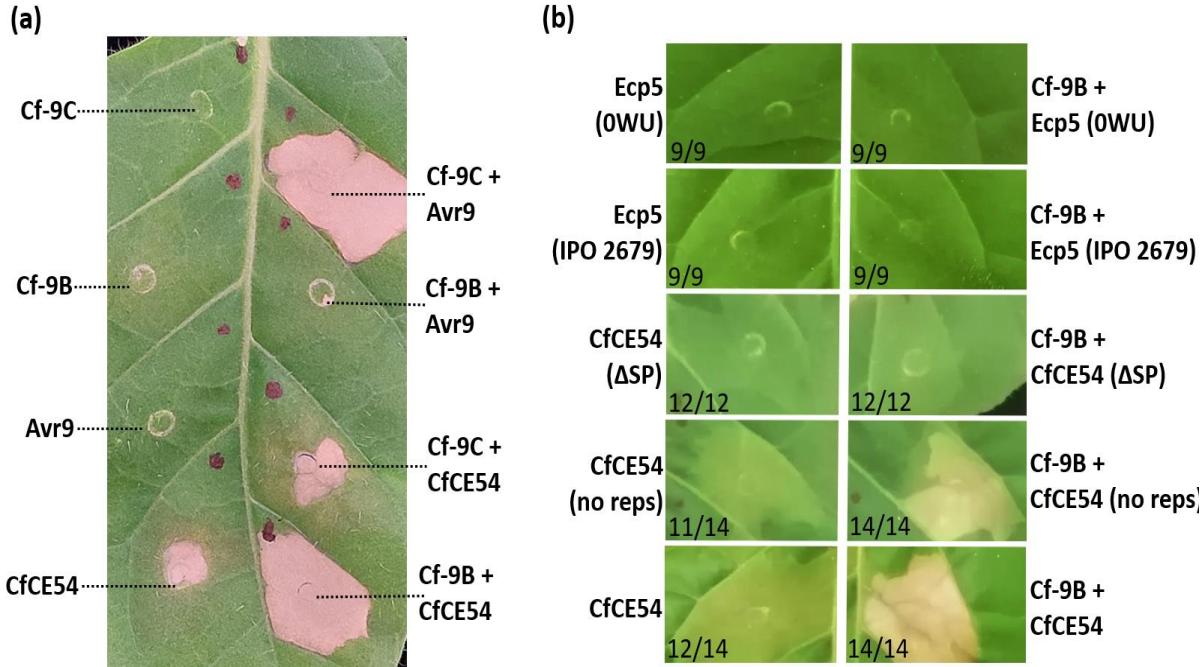
183 ***CfCE54* restores avirulence of *F. fulva* strain IPO 2679 on mature *Cf-9* tomato plants**

184 To determine whether *Ecp5* or *CfCE54* is in fact *Avr9B*, complementation assays were carried
185 out by introducing a single functional copy of the *Ecp5* or *CfCE54* gene from strain 0WU into
186 strain IPO 2679 and then testing the ability of these complemented strains to cause disease on
187 mature 'Moneymaker' (MM)-Cf-9 tomato plants carrying the *Cf-9* locus (**Fig. 1** and **Fig. S3**).
188 As expected, inoculation of mature MM-Cf-0 plants with the wild-type (WT) strains IPO 2679
189 (*Avr9*⁻/*Avr9B*⁻) and ICMP 7320 (*Avr9*⁻/*Avr9B*⁺), an IPO 2679 strain carrying the pFBTS1
190 empty vector (EV), or IPO 2679 strains complemented for *Ecp5* or *CfCE54*, resulted in disease
191 (**Fig. 1** and **Fig. S3**). Likewise, as anticipated, inoculation of mature MM-Cf-9 tomato plants
192 with WT IPO 2679 or the IPO 2679 strain carrying the EV, but not WT ICMP 7320, also
193 resulted in disease (**Fig. 1** and **Fig. S3**). Notably, however, IPO 2679 strains complemented
194 with *CfCE54*, but not with *Ecp5*, were unable to infect mature MM-Cf-9 plants (**Fig. 1** and
195 **Fig. S3**). As such, only *CfCE54* restores avirulence of strain IPO 2679 on *Cf-9* plants,
196 indicating that *CfCE54*, but not *Ecp5*, is likely to be *Avr9B*.

197

198 **Figure 1.** *CfCE54*, but not *Ecp5*, restores avirulence of *Fulvia fulva* strain IPO 2679 on mature
199 *Solanum lycopersicum* plants carrying the *Cf-9* resistance locus. *F. fulva* strains were
200 inoculated onto mature (13-week-old) 'Moneymaker' (MM)-Cf-0 (no *Cf* genes) and MM-Cf-
201 9 (carrying the *Cf-9* resistance locus) tomato plants, with photographs taken at 23 days post-
202 inoculation. IPO 2679 EV, strain IPO 2679 (*Avr9*⁻/*Avr9B*⁻) complemented with the pFBTS1
203 empty vector (no insert); IPO 2679-*CfCE54*, strain IPO 2679 complemented with the *CfCE54*
204 gene from wild-type (WT) strain 0WU; IPO 2679-*Ecp5*, strain IPO 2679 complemented with
205 the *Ecp5* gene from WT strain 0WU; WT ICMP 7320, WT ICMP 7320 (*Avr9*⁻/*Avr9B*⁺) strain;
206 WT IPO 2679, WT IPO 2679 strain. In total, two independent IPO 2679 EV, five independent
207 IPO 2679-*CfCE54*, and two independent IPO 2679-*Ecp5* complementation transformants were
208 tested. Complementation transformants #2 of IPO 2679 EV, #2 of IPO 2679-*CfCE54*, and #2
209 of IPO 2679-*Ecp5* are shown. Results are representative of all complementation strains tested.
210

211


CfCE54 triggers a Cf-9B-dependent cell death response in *Nicotiana tabacum*

212 The MM-Cf-9 tomato plants used above in the complementation assays carry all five genes of
213 the *Cf-9* resistance locus. Thus, it remains possible that an RLP encoded by this locus other
214 than Cf-9B is responsible for recognizing CfCE54, leading to the observed disease resistance
215 in mature plants. Notably, Cf-9B alone often triggers a cell death response in *Nicotiana*
216 *benthamiana* but not in *Nicotiana tabacum* (Chakrabarti *et al.*, 2009). Given the auto-activity
217 of Cf-9B in *N. benthamiana*, we set out to confirm that CfCE54 from strain 0WU specifically

218 triggers a Cf-9B-dependent cell death response upon co-expression with Cf-9B in *N. tabacum*
219 using an *Agrobacterium tumefaciens*-mediated transient transformation assay (ATTA). Here,
220 the CfCE54 (or Ecp5) protein, without its endogenous predicted signal peptide, was fused at
221 its N-terminus to the PR1a signal peptide for extracellular targeting in *N. tabacum* to the
222 apoplastic environment, followed by a 3xFLAG tag for detection by Western blotting. As
223 expected, co-expression of Cf-9C with Avr9 (positive control; Hammond-Kosack *et al.*, 1998)
224 triggered a strong cell death response, while Avr9, Cf-9C or Cf-9B alone (negative controls)
225 did not (**Fig. 2a**). Notably, CfCE54, but not Ecp5 (whether originating from strain 0WU or IPO
226 2679), triggered a strong cell death response upon co-expression with Cf-9B (**Fig. 2a,b**). This
227 response was specific to Cf-9B, as CfCE54 did not trigger this strong response upon co-
228 expression with Cf-9C (**Fig. 2a**). Taken together, these results confirm that CfCE54 is indeed
229 Avr9B.

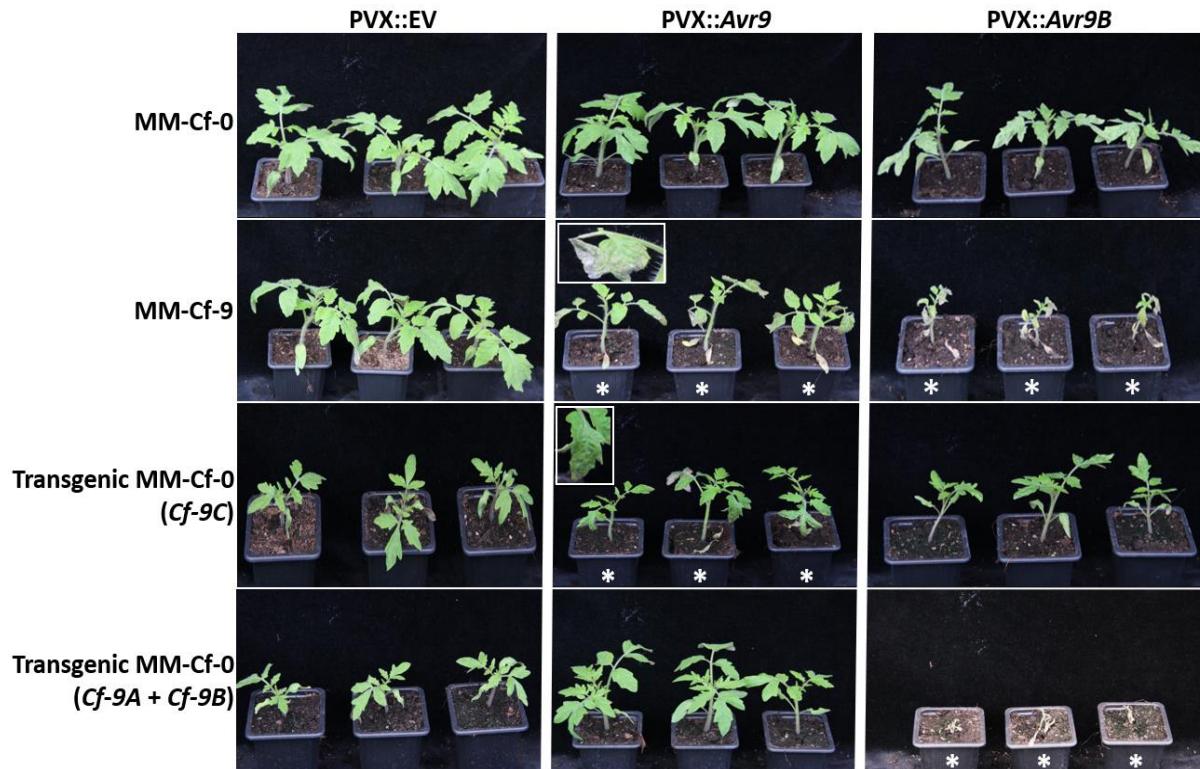
230 Interestingly, when Avr9B was expressed in *N. tabacum* either alone or in combination
231 with any other of the proteins tested above, chlorosis and/or a small patch of cell death, was
232 observed (**Fig. 2a,b**). Both the Cf-9B-dependent cell death response and the Cf-9B-
233 independent chlorosis/cell death could be eliminated upon expression of an Avr9B variant
234 lacking a signal peptide for secretion to the apoplastic environment (**Fig. 2b**), suggesting that
235 extracellular targeting, or post-translational modifications associated with the endoplasmic
236 reticulum–Golgi secretory pathway (e.g. disulphide bond formation and/or glycosylation), are
237 required for these responses. Interestingly, a secreted version of Avr9B with the repeat region
238 (part of the predicted IDR) deleted, maintained the ability to trigger Cf-9B-independent
239 chlorosis/cell death and a Cf-9B-dependent cell death response (**Fig. 2b**), indicating that the
240 four tandem repeats are not required for these responses in *N. tabacum*. Unfortunately, despite
241 several attempts, at no stage following an ATTA could Avr9B or the version of this protein
242 without a signal peptide or the repeat region be detected by Western blotting using antibodies
243 against the 3xFLAG tag (**Fig. S4**). Ecp5 could, however, be detected by Western blotting (**Fig.**
244 **S4**).

245

246
247 **Figure 2.** CfCE54, but not Ecp5, of *Fulvia fulva* triggers a Cf-9B-dependent cell death response
248 in *Nicotiana tabacum*. Wild-type CfCE54 from strain 0WU (a), or a variant of this protein with
249 no signal peptide (Δ SP) or no repeat region (no reps), as well as wild-type Ecp5 from strain
250 0WU or a natural Cys30Tyr variant of this protein from strain IPO 2679 (b), were co-expressed
251 with Cf-9B or Cf-9C from tomato in *N. tabacum* using an *Agrobacterium tumefaciens*-
252 mediated transient transformation assay (ATTA). As a positive control for cell death in (a), Cf-
253 9C was co-expressed with Avr9, whereas as negative controls for cell death in (a), Cf-9, Avr9
254 and Cf-9B were expressed alone. Please note that the ability of CfCE54 to trigger either
255 chlorosis or a small patch of cell death when expressed alone varied from experiment to
256 experiment (compare (a) and (b)). Leaves were photographed at 5 days post-infiltration and the
257 results shown are representative of at least three independent ATTAs. In (b), numbers on the
258 bottom left represent the number of times the response was observed (left) out of the number
259 of times the infiltration was performed (right).

260
261 To determine whether the chlorotic/weak cell death response triggered by Avr9B,
262 independent of Cf-9B, is dependent on the co-receptor SOBIR1, and thus is the result of
263 recognition by an endogenous RLP in *N. tabacum*, we transiently expressed Avr9B in WT and
264 Δ sobir1 *N. benthamiana* plants (Huang *et al.*, 2021) using ATTAs, and compared the
265 responses. As expected, the Cf-9C/Avr9 pair (Hammond-Kosack *et al.*, 1998) triggered cell
266 death in WT (positive control) but not Δ sobir1 *N. benthamiana* plants (negative control) (Fig.
267 S5), consistent with the previous finding that cell death triggered by the Cf-9C/Avr9 pair is

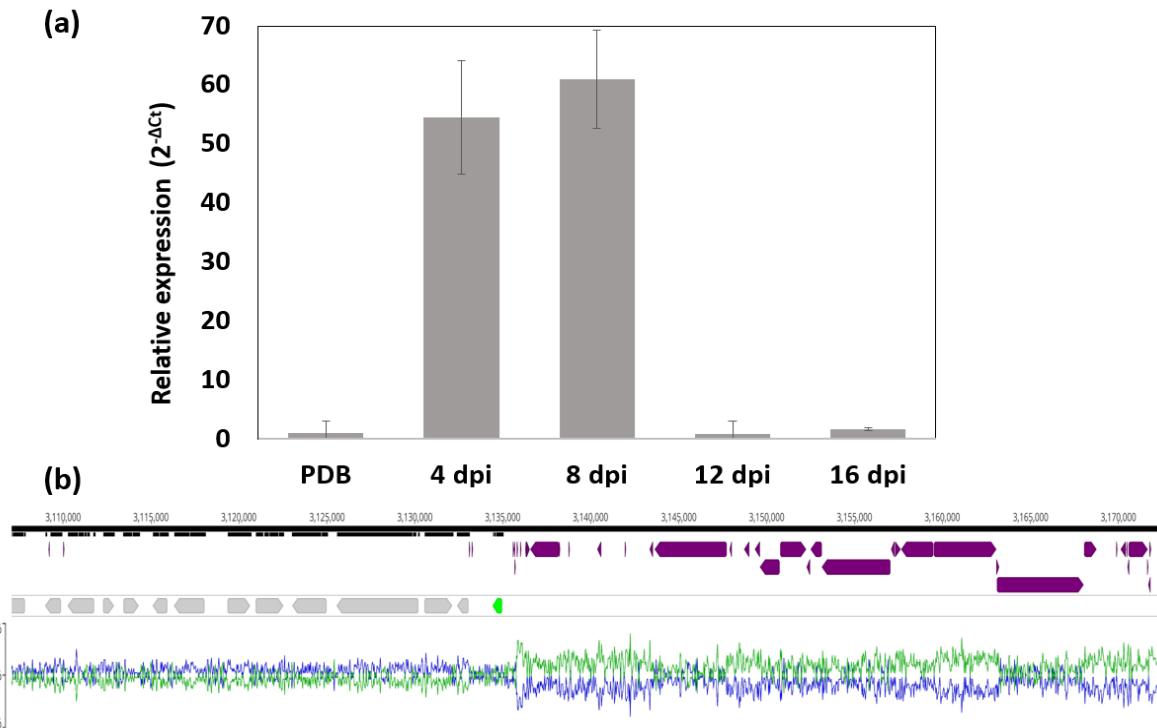
268 SOBIR1-dependent (Huang *et al.*, 2021). In contrast to the chlorotic/weak cell death response
269 observed in *N. tabacum*, Avr9B triggered a strong cell death response when expressed alone in
270 WT *N. benthamiana* (**Fig. S5**). This response was also observed in Δ sobir1 plants (**Fig. S5**),
271 indicating that SOBIR1 is not required for the Cf-9B-independent cell death response triggered
272 by Avr9B in *N. benthamiana*. Given this result, we anticipate that SOBIR1 is likely also not
273 required for the Cf-9B-independent chlorosis/weak cell death response triggered by Avr9B in
274 *N. tabacum*. Notably, as Avr9B alone triggered cell death in both WT and Δ sobir1 *N.*
275 *benthamiana* plants, it was not possible to conclude whether cell death triggered by the Cf-
276 9B/Avr9B pair is SOBIR1-dependent (**Fig. S5**).
277


278 **Avr9B triggers a Cf-9B-dependent cell death response in young *Cf-9* tomato plants, as
279 well as chlorosis, weak necrosis and leaf curling in a wild tomato accession**

280 To gain insights into whether the Cf-9B resistance pathway can be activated in young tomato
281 plants, we systemically expressed Avr9B in young MM-Cf-9 tomato plants, as well as in young
282 transgenic MM-Cf-0 lines expressing both *Cf-9A* and *Cf-9B* (*Cf-9A + Cf-9B*), using the Potato
283 virus X (PVX)-based (pSfinx) expression system (Hammond-Kosack *et al.*, 1995; Takken *et*
284 *al.*, 2000), and compared any responses to those observed in young MM-Cf-0 plants or a young
285 transgenic MM-Cf-0 line expressing *Cf-9C*. For negative and positive controls, we also tested
286 PVX alone (pSfinx empty vector, EV) and Avr9, respectively. As expected, PVX alone did not
287 trigger an HR in any tomato line tested (**Fig. 3**), whereas Avr9 alone triggered a systemic HR
288 in MM-Cf-9 and transgenic *Cf-9C* plants, as evidenced by light necrosis on the leaves and
289 cotyledon drop (**Fig. 3**). Likewise, as anticipated, Avr9B failed to trigger an HR in MM-Cf-0
290 or transgenic *Cf-9C* plants (**Fig. 3**). Interestingly, Avr9B triggered a systemic HR in both MM-
291 Cf-9 and transgenic *Cf-9A + Cf-9B* plants, which was even stronger than the response triggered
292 by Avr9 in MM-Cf-9 and transgenic *Cf-9C* plants (**Fig. 3**). This indicates that the Cf-9B
293 resistance pathway can be activated by Avr9B, in the absence of *F. fulva*, in young tomato
294 plants. Curiously, systemic expression of Avr9B in MM-Cf-0 plants resulted in exaggerated
295 PVX symptoms, when compared to EV-expressing control plants (**Fig. S6a**). These
296 exaggerated PVX symptoms were not observed when several other characterized and candidate
297 Avr effectors of *F. fulva* (Avr2, Avr4, Avr4E, Avr5, Avr9, Ecp5 and Ecp11-1) were
298 systemically expressed in MM-Cf-0 tomato plants using the PVX-based expression system
299 (**Fig. S6b**).

300 In conjunction with the PVX-based expression system, we next sought to determine
301 whether Avr9B triggers a systemic HR in wild tomato species, using the same collection of

302 accessions tested in Mesarich *et al.* (2018). Based on this experiment, only one wild tomato
303 accession (CGN14353; *S. pimpinellifolium*) responded to Avr9B, with leaves showing
304 chlorosis, weak necrosis and inward curling relative to the EV-expressing control plants (Fig.
305 S7a,b). Unlike that observed in MM-Cf-0 plants, there was no evidence that the PVX
306 symptoms were exaggerated, however this may be influenced by the apparent defence
307 responses triggered by Avr9B in this wild species.


308

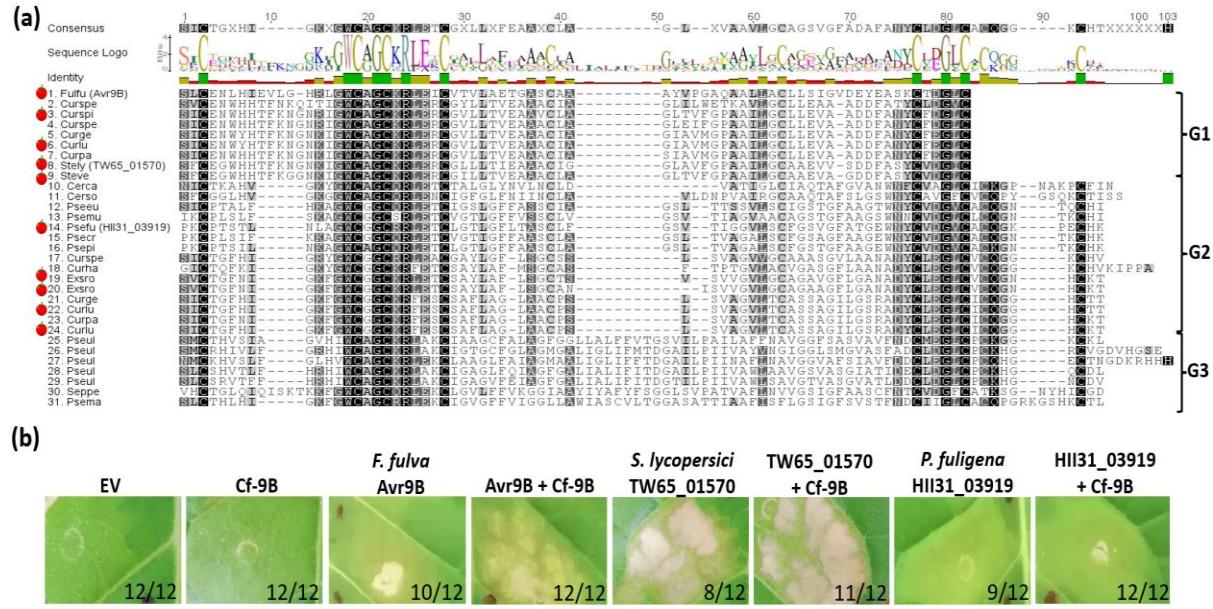
309
310 **Figure 3.** Avr9B triggers a hypersensitive response (HR) in young *Solanum lycopersicum*
311 plants carrying the *Cf-9B* gene. Avr9 and Avr9B were systemically expressed in 'Moneymaker'
312 (MM)-Cf-9 (carrying the *Cf-9* resistance locus), MM-Cf-0 (no *Cf* resistance genes) and
313 transgenic MM-Cf-0 plants carrying either the *Cf-9C* gene or both the *Cf-9A* and *Cf-9B* genes
314 (*Cf-9A + Cf-9B*), using the Potato virus X (PVX)-based expression system. Recombinant
315 viruses PVX::Avr9 and PVX::Avr9B, as well as PVX::EV (pSfinx empty vector), were
316 delivered through cotyledon infiltration of 10-day-old tomato seedlings using *Agrobacterium*
317 *tumefaciens*-mediated transient transformation. Three representatives of each tomato accession
318 were included in the experiment. White asterisks indicate plants undergoing a systemic HR, as
319 evidenced by necrosis (insets) and cotyledon drop. Photographs were taken at 10 days post-
320 infiltration.

321 **Avr9B expression is transcriptionally upregulated during infection of tomato by *F. fulva***
322 To determine whether *Avr9B* is transcriptionally upregulated during infection of tomato,
323 relative to growth of the fungus in culture, a real-time quantitative polymerase chain reaction
324 (RT-qPCR) experiment was performed using *F. fulva* strain Race 5. Based on this analysis,
325 *Avr9B* expression was found to be strongly induced during infection, peaking at 4 and 8 days
326 post-inoculation (dpi), with negligible expression at 12 and 16 dpi, or in culture during growth
327 in potato dextrose broth (PDB) (**Fig. 4a**).
328

329 **Avr9B is adjacent to repetitive elements in the genome of *F. fulva* strain Race 5**
330 To determine whether the *Avr9B* gene is associated with repeats in the *F. fulva* genome, its
331 position relative to previously annotated repetitive elements, identified as part of the strain
332 Race 5 chromosome-level genome assembly (Zaccaron *et al.*, 2022), was investigated. This
333 revealed that *Avr9B* resides on chromosome 10 of the strain Race 5 genome sequence (location
334 3134996–3134431) and is adjacent to a region rich in repeats at its 5' end (**Fig. 4b**).
335

336
337 **Figure 4.** The *Avr9B* gene is transcriptionally upregulated during infection of tomato, relative
338 to growth in culture, and is flanked by repetitive elements in the genome of *Fulvia fulva* strain
339 Race 5. (a) Expression profile of *Avr9B*. Expression was analysed using a real-time quantitative
340 polymerase chain reaction (RT-qPCR) experiment, from a compatible *F. fulva* Race 5–
341 *Solanum lycopersicum* 'Moneymaker' (MM)-Cf-0) interaction at 4, 8, 12 and 16 days post-

342 inoculation (dpi), as well as in culture in potato dextrose broth (PDB) at 4 dpi. Expression was
343 normalized to the *F. fulva* *actin* gene according to the $2^{-\Delta Ct}$ method. Error bars represent the
344 standard deviation across three biological replicates. **(b)** Location of *Avr9B* in the genome of
345 *F. fulva* strain Race 5. A zoomed-in region of Chromosome 10 is shown. The *Avr9B* gene
346 (encoded by CLAFUR5_14678; National Centre for Biotechnology Information accession:
347 XP_047767027.1) is shown in green, while the other genes present in the region are shown in
348 grey. Repetitive elements are shown in purple. The G+C content of the genomic region is
349 shown by a blue line, while the A+T content is shown by a green line.


350

351 **Avr9B-like proteins are restricted to members of the Mycosphaerellaceae and** 352 **Pleosporaceae**

353 To determine whether Avr9B-like proteins are present in other fungi, a BLAST (basic local
354 alignment search tool) analysis was performed against fungal genomes and proteins present in
355 the National Centre for Biotechnology Information (NCBI) and the Joint Genome Institute
356 (JGI) Mycocosm databases using Avr9B (as well as any identified Avr9B-like protein) as a
357 query. This analysis revealed that genes encoding Avr9B-like proteins are exclusively present
358 in plant-pathogenic species from the Mycosphaerellaceae and Pleosporaceae families of the
359 Dothideomycetes class of fungi, with several found in tomato pathogens (**Fig. 5a**). An
360 alignment of all predicted Avr9B-like proteins revealed three main groups. Group 1 proteins,
361 of which one is Avr9B itself, are characterised by eight conserved cysteine residues, while
362 Group 2 proteins are characterized by ten conserved cysteine residues. For the latter, the first
363 eight cysteine residues are shared with Group 1 proteins, while the last two cysteine residues
364 form part of a C-terminal extension. Finally, Group 3 proteins are characterized by eight
365 conserved cysteine residues, with the first six cysteine residues shared with Group 1 and 2
366 proteins, and the last two cysteine residues shared with the C-terminal extension of Group 2
367 proteins. Some members of Group 3 also possess an additional cysteine residue (**Fig. 5a and**
368 **Supplementary Information 1**). All Avr9B-like proteins are predicted to possess an N-
369 terminal signal peptide for extracellular targeting, while only the Avr9B-like proteins from
370 Group 3 are predicted to possess a transmembrane domain (**Supplementary Information 1**).
371 Like Avr9B, many Avr9B-like proteins are also predicted to possess an N-terminal IDR
372 (**Supplementary Information 1**).

373

374

Figure 5. Avr9B-like proteins are restricted to plant-pathogenic Dothideomycete fungi and trigger chlorosis or cell death in *Nicotiana tabacum*. **(a)** Alignment of Avr9B-like proteins from Dothideomycete fungi. Only the cysteine-rich region from each protein is aligned. Group 1 (G1) proteins, sequences 1–9; Group 2 (G2) proteins, sequences 10–24; Group 3 (G3) proteins, sequences 25–31. Cerca, *Cercospora canescens*; Cerso, *Ce. sojina*; Curge, *Curvularia geniculata*; Curha, *Cu. hawaiiensis*; Curlu, *Cu. lunata*; Curpa, *Cu. papendorfii*; Curspe, *Cu. sp. sp.* ZM96; Curspi, *Cu. spicifera*; Exsro, *Exserohilum rostratum*; Fulfu, *Fulvia fulva*; Psecr, *Pseudocercospora cruenta*; Pseeu, *P. eumusae*; Psefu, *P. fuliginea*; Psema, *P. macadamiae*; Psemu, *P. musae*; Psepi, *P. pini-densiflorae*; Pseul, *P. ulei*; Seppe, *Septoria petroselini*; Stely, *Stemphylium lycopersici*; Steve, *St. vesicarium*. Tomato pathogens are indicated by a tomato figure on the left. **(b)** The Avr9B-like proteins from *S. lycopersici* and *P. fuliginea* trigger strong cell death and chlorosis in *N. tabacum* plants, respectively. Avr9B-like proteins TW65_01570 (Franco *et al.*, 2015) and HII31_03919 (Zaccaron *et al.*, 2020) from *S. lycopersici* and *P. fuliginea*, respectively, were either expressed alone or co-expressed with Cf-9B in *N. tabacum* using an *Agrobacterium tumefaciens*-mediated transient transformation assay (ATTA). As positive controls for cell death, Avr9B was either expressed alone (chlorosis/weak cell death) or together with Cf-9B (strong cell death). As negative controls, empty vector (EV; pICH86988) and Cf-9B were expressed alone. Photos were taken at 5 days post-infiltration. Fractions on the bottom right represent the number of times the response was observed (left) out of the number of times the infiltration was performed (right) across at least three biological replicates.

397 **Avr9B-like proteins trigger responses in *Nicotiana benthamiana*, *Nicotiana tabacum* and**
398 ***Solanum lycopersicum* in the absence of Cf-9B**

399 To determine whether Avr9B-like proteins from other fungi also trigger a Cf-9B-dependent
400 cell death response, we expressed the proteins identified from the tomato pathogens
401 *Stemphylium lycopersici* (TW65_01570, NCBI accession: KNG51100.1; Franco *et al.*, 2015)
402 and *Pseudocercospora fuligena* (HII31_03919, NCBI accession: KAF7194657.1; Zaccaron *et*
403 *al.*, 2020) in *N. tabacum* using an ATTA (**Fig. 5b**). TW65_01570 triggered a strong cell death
404 response by itself, as well as when co-expressed with Cf-9B or Cf-9C (**Fig. 5b**). Hence, it was
405 not possible to determine whether TW65_01570 is recognized by Cf-9B in *N. tabacum*. Similar
406 to Avr9B, HII31_03919 triggered a chlorotic response alone in *N. tabacum* (**Fig. 5b**). However,
407 unlike Avr9B, a cell death response was not observed when HII31_03919 was co-expressed
408 with Cf-9B (**Fig. 5b**). As recognition could have theoretically resulted in chlorosis, and because
409 chlorosis is triggered by HII31_03919 independently of Cf-9B, it was again not possible to
410 determine whether HII31_03919 is recognized by Cf-9B in *N. tabacum*. Unlike Avr9B, both
411 Avr9B-like proteins could be detected by Western blotting (**Fig. S4**). Similar to Avr9B, both
412 Avr9B-like proteins triggered a strong cell death response in the absence of Cf-9B in *N.*
413 *benthamiana*, with these responses not dependent on SOBIR1 (**Fig. S5**).

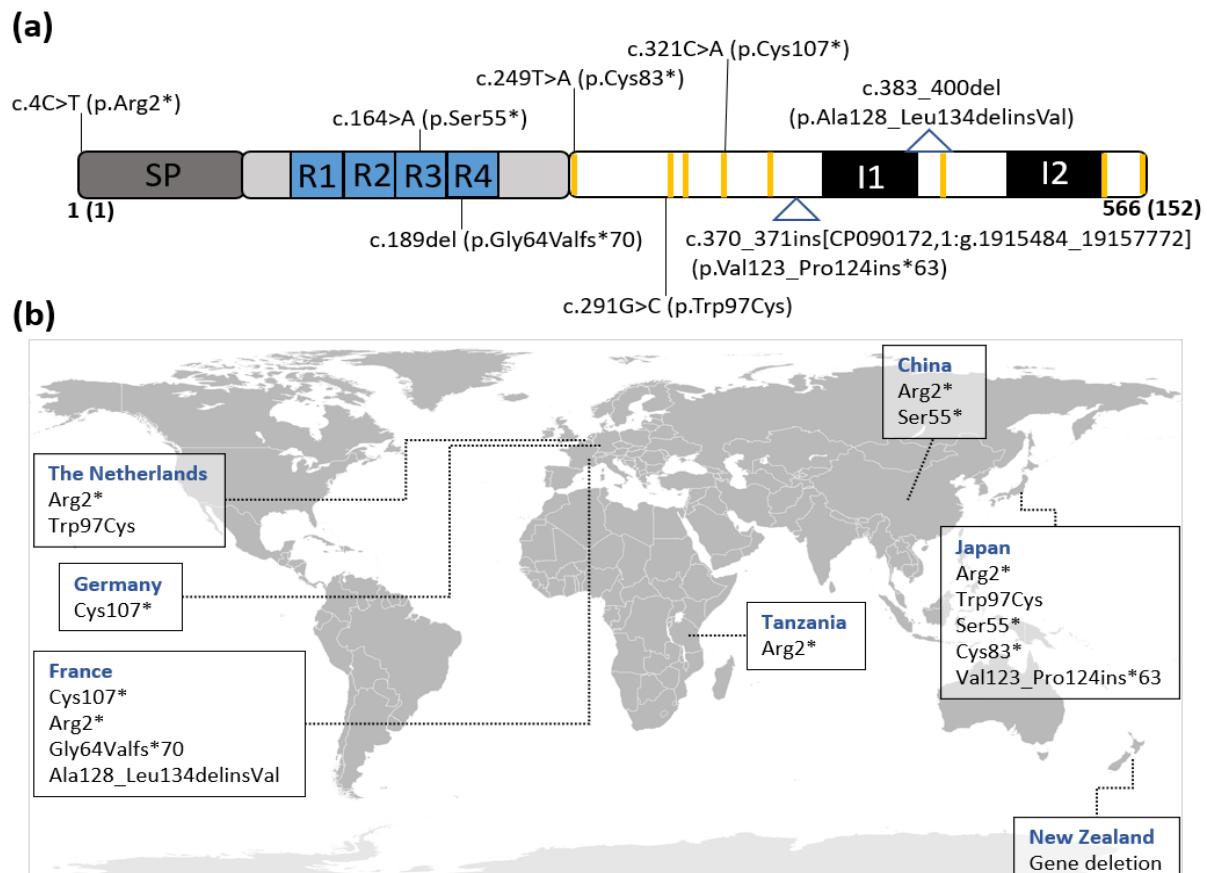
414 To determine whether the Avr9B-like proteins trigger a Cf-9B-dependent HR in
415 tomato, we systemically expressed TW65_01570 in MM-Cf-9 plants using the PVX-based
416 expression system and compared the responses to those observed in MM-Cf-0 (**Fig. S8**). In
417 contrast to expression of Avr9B, no Cf-9B-dependent HR was observed in MM-Cf-9 plants,
418 suggesting that TW65_01570 is not recognized by Cf-9B (**Fig. S8**). Surprisingly, however,
419 systemic expression of TW65_01570 consistently resulted in stunted growth regardless of the
420 plant genotype (**Fig. S8**). This stunting was most obvious when TW65_01570 was systemically
421 expressed in the wild *S. pimpinellifolium* accession CGN14353 (**Fig. S7a**).

422

423 **The Cf-9 resistance locus of tomato has been sequentially broken down by *F. fulva***

424 To determine whether resistance provided by the *Cf-9* locus in tomato has been sequentially
425 broken down by *F. fulva*, with *Cf-9C* overcome prior to *Cf-9B*, the *Avr9* and *Avr9B* genes were
426 screened for deletion or mutation across a collection of 190 geographically diverse *F. fulva*
427 strains, using PCR followed by PCR amplicon sequencing (**Table S3**). Of these strains, 149
428 were collected relatively recently (during or after 2005), and originated from Japan (99), France
429 (27), China (six), Germany (three), New Zealand (three), the Netherlands (two) and Tanzania
430 (one). A further 33 strains were collected prior to 1990, and originated from the Netherlands

431 (17), France (nine), Poland (three), New Zealand (three) and Belgium (one). Of the strains
432 screened, eight were of unknown origin and six did not have a collection date. In addition to
433 strain 0WU from the Netherlands, which was collected in 1997, one strain from Japan was also
434 collected in 1998. In total, 52 of all strains screened are known to have been isolated from *Cf-*
435 *9/Ff:A-E* tomato plants (**Table S3**).


436 The PCR analysis determined (or confirmed from previous studies) that 93 of the *F.*
437 *fulva* strains that were screened, including all strains isolated from *Cf-9/Ff:A-E* tomato plants,
438 were race 9, as the *Avr9* gene was absent (**Table S3**). Notably, in nine out of 11 race 9 strains
439 collected prior to 1990 that lacked the *Avr9* gene (i.e. except strains IPO 2679 from New
440 Zealand and Race 1 from the Netherlands), no mutations were observed in the coding sequence
441 of *Avr9B* (**Table S3**). Strikingly, however, mutations in *Avr9B* were observed in all but one of
442 76 race 9 strains collected during or after 2005, with the only exception being strain 2.4.9 from
443 Japan, which was collected in 2018 (**Table S3**). These mutations included premature stops
444 associated with codons 2 (p.Arg2*), 55 (p.Ser55*), 83 (p.Cys83*), and 107 (p.Cys107*), as
445 well as a frame-shift mutation in codon 64, leading to an alteration in protein sequence and a
446 premature stop after position 69 (p.Gly64Valfs*70) (**Fig. 6a and Table S3**). Additional
447 mutations identified were an amino acid substitution associated with codon 97 (p.Trp97Cys),
448 as well as an insertion of a 289-bp miniature inverted-repeat transposable element (MITE)
449 located in codon 124 (**Fig. 6a and Table S3**), leading to an alteration in protein sequence and
450 a stop after position 185 (p.Val123_Pro124ins*63), and an 18-bp deletion starting in codon
451 128, resulting in the replacement of seven amino acids (including Cys 133) with a single Val
452 residue (p.Ala128_Leu134delinsVal) (**Fig. 6a and Table S3**). In the case of the MITE, a single
453 identical copy was found approximately 1.2 Mb away from *Avr9B* at location 1915484–
454 1915772 on chromosome 10 in the strain Race 5 genome, suggesting it may originate from this
455 location (**Fig. S9**). Remarkably, no synonymous mutations were observed in the coding
456 sequence of the *Avr9B* gene between strains (**Table S3**). Interestingly, only one non-race 9
457 strain (Kaminokawa, isolated in Japan in 2016) was predicted to possess a WT *Avr9* gene but
458 a mutant *Avr9B* gene (**Table S3**).

459 Of the mutations identified, all mutations except p.Arg2*, which was identified in five
460 countries, were restricted to one or two countries only (**Fig. 6b**). Interestingly, the *Avr9B* gene
461 deletion, as seen in IPO 2679, was restricted to New Zealand strains only, with the same region
462 of deleted sequence shown to be absent by PCR in IPO 2679 collected in the 1980s as well as
463 in strains NZ-C1, NZ-P1 and NZ-M6 collected in 2022 (**Fig. S1b**).

464 In addition to investigating *Avr9* and *Avr9B*, the mating type of each strain was
465 determined by PCR or obtained from previous research (Stergiopoulos *et al.*, 2007a;
466 Stergiopoulos *et al.*, 2007b). Based on this analysis, all mutation types were found to be
467 restricted to strains of a particular mating type, except for p.Ser55*, which was observed in
468 strains of both mating types that were predominantly collected from the Gifu prefecture of
469 Japan (**Table S3**).

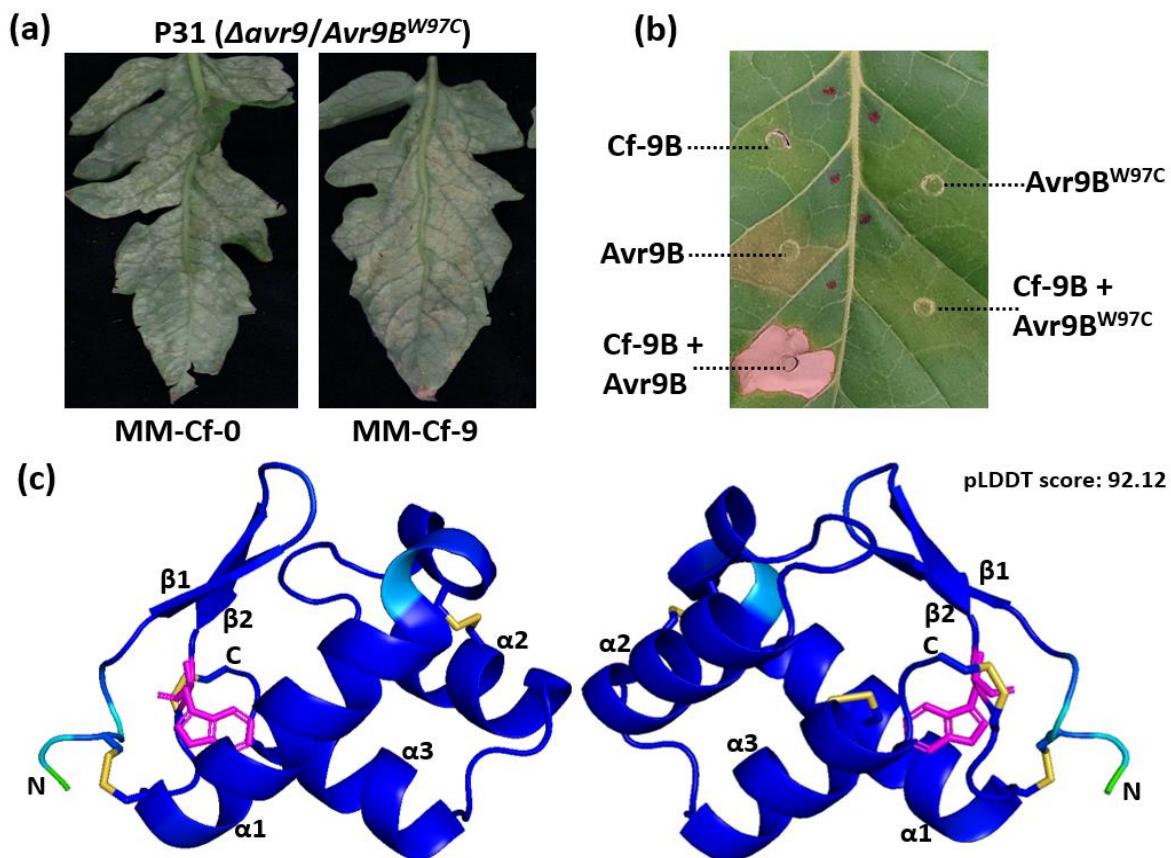
470 Taken together, the PCR and PCR amplicon sequencing results suggest that *Cf-9C*-
471 mediated resistance was overcome first, with most strains collected prior to 1990 lacking *Avr9*
472 but still carrying a functional copy of *Avr9B*, and *Cf-9B*-mediated resistance was overcome
473 second, with strains collected during or after 2005 lacking *Avr9* and possessing a resistance-
474 breaking mutation in *Avr9B*. Furthermore, the mating type data suggest that specific mutations
475 have evolved once in *F. fulva*, with a strong correlation between a given mutation and a
476 particular mating type.

477

478

479 **Figure 6.** Mutations identified in *Avr9B* and distribution of these mutations across *Fulvia fulva*
480 strains collected from around the world. **(a)** Allelic variation in *Avr9B* of *Cf-9B*-resistance-
481 breaking strains. The predicted signal peptide (SP) for extracellular targeting is highlighted in

482 dark grey. The four imperfect 11-amino acid tandem repeats (R1–R4) are shown as blue
483 squares. The cysteine residues are shown in vertical yellow lines. The predicted intrinsically
484 disordered region (IDR) is highlighted in light grey. The introns (I1 and I2) are shown as black
485 boxes. c., coding sequence numbering; p., protein sequence numbering. (b) Distribution of
486 Avr9B mutations across strains collected from around the world. The description of each
487 mutation is based on the nomenclature set forth by the human genome variation society
488 (HGVS) (<http://varnomen.hgvs.org/>). CP090172.1:g.1915484_1915772 represents the likely
489 original location of the miniature inverted-repeat transposable element (MITE) on chromosome
490 10 of the *F. fulva* strain Race 5 genome (Zaccaron *et al.*, 2022). del, deletion; delins, deletion-
491 insertion; fs, frameshift; ins, insertion. Global base map generated by F. Bennet in the public
492 domain and accessed from: <https://commons.wikimedia.org/wiki/File:BlankMap-FlatWorld6.svg>.


494

495 **The W97C mutation in Avr9B restores virulence of *F. fulva* on mature MM-Cf-9 tomato 496 plants**

497 All mutations identified in Avr9B, except for the p.Trp97Cys amino acid substitution, hereafter
498 referred to as W97C, could be confidently assumed to result in the circumvention of Cf-9B-
499 mediated resistance by *F. fulva* on mature *Cf-9* tomato plants. To test whether the W97C
500 mutation also leads to the restoration of *F. fulva* virulence on tomato harbouring the *Cf-9*
501 resistance locus, strain P31 (Δ avr9/avr9B^{W97C}) from Japan was inoculated onto mature MM-
502 Cf-0 and MM-Cf-9 plants and its ability to cause disease was assessed (**Fig. 7a**). At the same
503 time, strain P18 (Δ avr9/avr9B^{C107*}) from Germany, which is expected to overcome both Cf-
504 9C- and Cf-9B-mediated resistance in mature *Cf-9* tomato plants due to deletion of Avr9 and a
505 p.Cys107* mutation, hereafter referred to as C107*, in Avr9B, was also tested. As expected,
506 both the P31 and P18 strains caused disease on MM-Cf-0 plants (**Fig. 7a and Fig. S10**).
507 Notably, both strains were also able to cause disease on MM-Cf-9 plants (**Fig. 7a and Fig.**
508 **S10**), indicating that, like the C107* mutation in strain P18, the W97C mutation enables the
509 P31 strain to evade recognition by Cf-9B and thus restores virulence of *F. fulva* on MM-Cf-9
510 plants. To support this observation, we tested the W97C mutant of Avr9B for its ability to
511 trigger a Cf-9B-dependent cell death response in *N. tabacum* plants using an ATTA. In line
512 with the gene complementation assay, the W97C mutant of Avr9B was unable to trigger a Cf-
513 9B-dependent cell death response in *N. tabacum* (**Fig. 7b**).

514 To gain insights into whether Trp 97 is predicted to be surface-exposed, AlphaFold2
515 (Jumper *et al.*, 2021), in conjunction with ColabFold (Mirdita *et al.*, 2022), was used to predict

516 the tertiary structure of the cysteine-rich region of Avr9B. The predicted structure is
517 characterized by three α -helices and two β -strands and is stabilized by four disulphide bonds
518 (**Fig. 7c**). Based on this tertiary structure, all eight cysteine residues are predicted to be
519 disulphide-bonded with the connectivity pattern Cys83-Cys101, Cys98-Cys152, Cys107-
520 Cys147, and Cys118-Cys133, based on numbering of the full-length protein sequence.
521 Comparison of the predicted structure to other solved tertiary structures revealed no significant
522 structural similarity to other proteins. Intriguingly, Trp 97 is not predicted to be surface-
523 exposed but, rather, to occupy an internal position within the predicted Avr9B tertiary structure
524 (**Fig. 7c**).
525

526
527 **Figure 7.** The W97C mutation in Avr9B results in circumvention of Cf-9B-mediated resistance
528 in *Solanum lycopersicum* and the inability to trigger both Cf-9B-dependent cell death and Cf-
529 9B-independent chlorosis/cell death in *Nicotiana tabacum*. **(a)** *F. fulva* strain P31
530 (Δ avr9/Avr9B^{W97C}) was inoculated onto mature (13-week-old) 'Moneymaker' (MM)-Cf-0 (no
531 Cf genes) and MM-Cf-9 (carrying the Cf-9 resistance locus) plants, with photographs taken at
532 23 days post-inoculation. Results are representative of three biological replicates and the
533 inoculations were performed at the same time as the virulence assays shown in Fig. 1. **(b)** The
534 W97C mutant of Avr9B was co-expressed with Cf-9B in *N. tabacum* using an *Agrobacterium*

535 *tumefaciens*-mediated transient transformation assay (ATTA). As positive controls for cell
536 death, Avr9B was expressed alone (chlorosis/weak cell death) or together with Cf-9B (strong
537 cell death). As a negative control for cell death, Cf-9B was expressed alone. The leaf was
538 photographed five days post-infiltration and is representative of three independent ATTAs. **(c)**
539 Predicted tertiary structure of the cysteine-rich region from Avr9B, rotated 180° around its y-
540 axis, showing that Trp 97 is unlikely to be surface-exposed. The tertiary structure was predicted
541 in conjunction with a multiple sequence alignment of Avr9B-like proteins from Fig. 5a and is
542 coloured according to predicted Local Distance Difference Test (pLDDT) score (confidence:
543 red = very low, yellow = low, green = okay, cyan = high, dark blue = very high). Trp 97 is
544 shown as sticks and is coloured magenta. β -strands and α -helices are numbered sequentially.
545 Predicted disulphide bonds are coloured yellow. N- and C-termini are indicated.

546

547 **Discussion**

548 The *Cf-9* locus, harbouring the *Cf-9B* and *Cf-9C* resistance genes, is present worldwide in most
549 commercially available tomato cultivars that have resistance to leaf mould disease. While the
550 *Cf-9C* resistance gene, which provides protection during all stages of plant growth, was rapidly
551 broken down soon after deployment of the *Cf-9* locus in the 1970s (e.g. Laterrot, 1986;
552 Lindhout *et al.*, 1989), the *Cf-9B* resistance gene, which provides protection to mature plants
553 during flowering and fruiting, proved to be more durable. Over the last 20 years, however, the
554 incidence of leaf mould disease on fruiting and flowering plants has increased. While the
555 breakdown of *Cf-9C*-mediated resistance has been shown to be the result of *Avr9* gene deletion
556 in *F. fulva* strains (Bernal-Cabrera *et al.*, 2021; Iida *et al.*, 2015; Stergiopoulos *et al.*, 2007a;
557 Yoshida *et al.*, 2021; van Kan *et al.*, 1991), the molecular mechanism underlying *Cf-9B*-
558 mediated resistance breakdown remained unclear. To understand how *Cf-9B*-mediated
559 resistance is circumvented, we identified the corresponding *Avr9B* gene of *F. fulva* using a
560 comparative genomics approach based on candidate effector genes identified in previous
561 studies (Mesarich *et al.* 2014; Mesarich *et al.*, 2018).

562 Like other *Avr* effector genes of *F. fulva* identified to date, *Avr9B* is up-regulated during
563 infection of tomato and encodes a small, secreted cysteine-rich protein. Despite these
564 similarities, *Avr9B* is unique among *F. fulva* *Avr* effector proteins in that it is predicted to have
565 a large, repeat-rich IDR at its N-terminus and, therefore, can be classified as a repeat-containing
566 effector protein (Mesarich *et al.*, 2015). These repeats, however, do not appear to be necessary
567 for recognition by Cf-9B, because an ATTA, using a version of *Avr9B* without this region, did
568 not result in compromised Cf-9B-mediated cell death in *N. tabacum*. As such, the C-terminal

569 cysteine-rich part of the protein appears to be the relevant region for recognition by Cf-9B. In
570 line with Avr9B being recognized by an extracellular immune receptor, such as an RLP, Cf-
571 9B-mediated cell death was abolished in *N. tabacum* when a version of Avr9B lacking a signal
572 peptide for secretion to the apoplast was tested. It must be pointed out, however, that as Avr9B
573 did not pass through the ER–Golgi secretory pathway, it would not have undergone appropriate
574 post-translational modifications such as disulphide bond formation, which are anticipated to be
575 required for stability, function and/or recognition.

576 A closer inspection of the genomic region surrounding the *Avr9B* gene in the recently
577 assembled genome sequence of *F. fulva* strain Race 5 (Zaccaron *et al.*, 2022) revealed its
578 proximity to repetitive elements, in common with several other *Avr* effector genes of *F. fulva*
579 identified to date, including *Avr4E*, *Avr5* and *Avr9* (Zaccaron *et al.*, 2022). Interestingly, like
580 these three *Avr* effector genes (van Kan *et al.*, 1991; Westerink *et al.*, 2004; Mesarich *et al.*,
581 2014), the *Avr9B* effector gene was also found to be deleted in some strains of *F. fulva*. This is
582 perhaps not surprising, as it has been reasoned that gene deletion events are largely influenced
583 by the proximity of *Avr* effector genes to repetitive elements (Gout *et al.*, 2007). Eight other
584 confirmed or presumed *Cf*-9B-breaking mutations were identified in the *Avr9B* gene sequence
585 of *F. fulva* strains collected from different geographical locations and were made up of four
586 premature stop codons, one point mutation resulting in a non-synonymous amino acid
587 substitution (W97C), one indel resulting in a five-amino acid deletion (including a cysteine
588 residue predicted to be disulphide-bonded), one frame-shift mutation, and one MITE insertion.
589 Curiously, in the case of the W97C substitution, the tryptophan residue in question was not
590 predicted to be surface-exposed, in line with it being a large hydrophobic amino acid well-
591 suited to the hydrophobic core of proteins. As cysteine is a much smaller hydrophobic amino
592 acid than tryptophan, it is possible that the W97C substitution negatively affects the folding
593 and/or stability of Avr9B, such that it is no longer functional and/or recognized by Cf-9B.

594 While most resistance-breaking mechanisms described above are not uncommon for
595 *Avr* effector genes of *F. fulva*, this is the first time where circumvention of *Cf*-mediated
596 resistance involving a MITE insertion has been reported. Another MITE insertion has,
597 however, been previously found in an *Avr* effector gene of the stem rust fungus, *Puccinia*
598 *graminis* f. sp. *tritici* (*AvrSr35*), enabling this pathogen to overcome resistance mediated by the
599 corresponding *Sr35* resistance gene in wheat (Salcedo *et al.*, 2017). MITEs are a group of non-
600 autonomous Class II transposable elements that do not encode their own transposase but,
601 instead, can commandeer transposases from other mobile genetic elements for their
602 mobilization (Wicker *et al.*, 2007). For *F. fulva*, inspection of the strain Race 5 genome

603 revealed that the MITE in question likely originated from a gene-rich region of the genome
604 that is approximately 1.2 Mb away from *Avr9B* on chromosome 10.

605 Several of the *Cf-9B*-breaking mutations identified in *Avr9B* were restricted to specific
606 geographical areas, indicating independent mutation events around the world. In line with this,
607 deletion of *Avr9B* (and more specifically, the same deletion profile) was, for example, only
608 detected in a New Zealand strain collected in the 1980s and then again in strains collected in
609 2022. The finding that nine independent and mostly geographically specific *Cf-9B*-breaking
610 mutations have so far been identified in the *Avr9B* gene is perhaps not surprising, given the
611 extensive deployment of tomato cultivars carrying the *Cf-9* resistance locus around the world.
612 Remarkably, the p.Ser55* mutation observed in Japan is present in strains of *F. fulva* that carry
613 opposite mating type genes, suggesting that this mutation has independently evolved twice, or
614 that sexual recombination has occurred. In support of the latter, the strains of opposite mating
615 type that share the p.Ser55* mutation are from the same Japanese prefecture (Gifu). While *F.*
616 *fulva* was originally thought to be an asexual fungus (Thomma *et al.*, 2005), this information,
617 together with allelic variation data collected from other *Avr* effector genes of this fungus
618 (Stergiopoulos *et al.* 2007b), suggests that *F. fulva* does indeed undergo sexual reproduction,
619 albeit rarely. Future experiments can now investigate this further by looking for evidence of
620 meiotic recombination between the abovementioned *F. fulva* strains collected from this
621 prefecture.

622 An interesting observation in our study was that, when *Avr9B* was systemically
623 expressed in young tomato plants using the PVX-based expression system, the *Cf-9B* resistance
624 pathway was found to be active. Indeed, the response triggered by *Avr9B* in *Cf-9* plants was
625 stronger in our hands than the response triggered by *Avr9*. This is despite the fact that *Cf-9B*
626 only provides resistance to *F. fulva* in mature tomato plants at flowering and fruiting but is in
627 line with the finding that *Cf-9B* expression is not developmentally regulated (Laugé *et al.*,
628 1998; Panter *et al.*, 2002). Of note, although *Avr9B* is highly expressed during infection of
629 tomato, the protein was not detected in apoplastic washing fluid samples collected from young
630 *F. fulva*-infected tomato leaves (Mesarich *et al.*, 2018). Likewise, the *Avr9B* protein could not
631 be detected in total protein samples from *N. tabacum* ATTAs using Western blotting. Together,
632 these findings may suggest that the stability (and thus abundance) of *Avr9B* is compromised
633 in young tomato plants, rendering *Cf-9B*-mediated resistance ineffective. Correspondingly, in
634 mature tomato plants, presumably due to qualitative and/or quantitative differences in the
635 apoplastic protease profile, *Avr9B* is more stable (and thus more abundant), rendering *Cf-9B*-
636 mediated resistance effective. With regards to the PVX experiment described above, the *Cf-9B*

637 resistance pathway being activated in young tomato plants could then be explained by the
638 largescale production and secretion of Avr9B at the site of the Cf-9B resistance protein in the
639 plasma membrane, above and beyond what would normally be produced and secreted by *F.*
640 *fulva* in the apoplast, thereby effectively bypassing the issue of stability/abundance. In
641 accordance with this, Avr4 variants from *F. fulva* that naturally evade Cf-4-mediated resistance
642 in tomato due to reduced stability in the leaf apoplast are still able to trigger a Cf-4-dependent
643 HR in tomato plants carrying the *Cf-4* resistance gene using the PVX-based expression system
644 (Joosten *et al.*, 1997).

645 It could also be possible that *F. fulva* produces, for example, another effector that
646 specifically suppresses Cf-9B-mediated resistance in young tomato plants. In line with this,
647 suppression of resistance protein-mediated defence has been shown in other pathosystems.
648 Examples include the AvrLm4-7 effector of the blackleg pathogen of *Brassica* crops,
649 *Leptosphaeria maculans*, which suppresses Rlm3-mediated resistance triggered by the effector
650 AvrLm3 (Plissonneau *et al.*, 2016), as well as the Avr1 effector of the tomato wilt pathogen of
651 tomato, *Fusarium oxysporum* f. sp. *lycopersici*, which suppresses I-1- and I-3-mediated
652 resistance triggered by the effectors Avr1 and Avr3, respectively (Houterman *et al.*, 2008). Yet
653 another possibility could be that Avr9B is produced more abundantly in mature tomato plants,
654 thereby exceeding the threshold required for Cf-9B-mediated resistance. However, the
655 expression profile of *Avr9B* in mature tomato plants has not yet been investigated.

656 In any case, it may well be that, in young tomato plants, one or all of these phenomena
657 has played a significant role in the sequential breakdown of the *Cf-9* resistance locus by *F.*
658 *fulva*. This can be explained as follows: First, although *Cf-9B* and *Cf-9C* are stacked in *Cf-9*
659 tomato cultivars, the instability/low abundance of Avr9B or the presence of a Cf-9B resistance-
660 suppressing effector in the apoplastic leaf environment of young plants resulted in only Cf-9C
661 being able to provide effective resistance. As such, there was significant selection pressure on
662 *F. fulva* to overcome *Cf-9C*-mediated resistance through deletion of the corresponding *Avr9*
663 effector gene. This gave *F. fulva* the ability to infect young *Cf-9* plants. Second, during the
664 maturation of young, infected *Cf-9* plants, increasing selection pressure was exerted on *F. fulva*
665 to overcome *Cf-9B*-mediated resistance through deletion or mutation of the corresponding
666 *Avr9B* effector gene, concomitant with increased stability/higher abundance of Avr9B or the
667 absence of a Cf-9B resistance-suppressing effector, subsequently giving *F. fulva* the ability to
668 infect mature *Cf-9* plants.

669 Another factor that could be relevant to the sequential breakdown of the *Cf-9* resistance
670 locus by *F. fulva* is the stability of the genome regions carrying *Avr9* and *Avr9B*. For *Avr9*,

671 the gene is known to be located in a gene-sparse, sub-telomeric, repeat-rich region of the strain
672 Race 5 genome (Zaccaron *et al.*, 2022) whereas, for *Avr9B*, the surrounding genome region is,
673 for the most part, much more gene-rich. Reflective of a much more unstable genome
674 environment, loss of *Avr9* through gene deletion may then occur more quickly than loss or
675 mutation of *Avr9B*, enabling *Cf-9C*-mediated resistance to be overcome prior to *Cf-9B*-
676 mediated resistance. In support of this, all *Cf-9C*-breaking strains of *F. fulva* identified to date
677 lack the *Avr9* gene, with very few other mutations identified in this gene across non-*Cf-9C*-
678 breaking strains (Bernal-Cabrera *et al.*, 2021; Iida *et al.*, 2015; Stergiopoulos *et al.*, 2007a;
679 Yoshida *et al.*, 2021; van Kan *et al.*, 1991).

680 Importantly, regardless of the hypotheses mentioned above, the sequential breakdown
681 of the *Cf-9* locus is supported by our gene sequencing data, which showed that most *F. fulva*
682 strains collected soon after the deployment of *Cf-9* cultivars lost *Avr9* but still carried a
683 functional copy of *Avr9B*, whereas more recently collected strains not only lacked *Avr9*, but
684 also possessed a resistance-breaking mutation in *Avr9B*. The relative ease with which both *Avr9*
685 and *Avr9B* can be lost or mutated without an obvious impact on pathogen fitness (as shown for
686 strain IPO 2679) suggests that neither gene plays a significant role in the virulence of *F. fulva*
687 on tomato, or that their roles in virulence are redundant with other effector genes of this fungus.
688 This possibility, though, would need to be examined further with *F. fulva* biomass
689 quantification assays involving various *Avr9/Avr9B* deletion/complementation strains during
690 infection of young and mature tomato plants.

691 Another interesting finding in our study was that *Avr9B* triggered chlorosis or, in some
692 cases, weak cell death in *N. tabacum*, as well as strong necrosis in *N. benthamiana*, in the
693 absence of *Cf-9B*. Likewise, although unable to trigger *Cf-9B*-dependent chlorosis or cell
694 death, *Avr9B*-like proteins from the black leaf mould pathogen of tomato, *P. fuligina*, as well
695 as the grey leaf spot pathogen of tomato, *S. lycopersici*, triggered *Cf-9B*-independent chlorosis
696 or strong necrosis in *N. benthamiana* and *N. tabacum*. In *N. benthamiana*, the *Cf-9B*-
697 independent responses triggered by *Avr9B* and the *Avr9B*-like proteins were found not to be
698 dependent on the RLP co-receptor, *SOBIR1*, perhaps indicating that these effectors interact
699 with an endogenous resistance protein that does not require *SOBIR1* for transducing defence
700 response signals, following apoplastic effector recognition (e.g. an RLK or a *SOBIR1*-
701 independent RLP). It should be noted that *Avr9B* is not the first effector of *F. fulva* to trigger
702 cell death in these non-host plants, with the candidate Avr effector *Ecp2-1* also triggering cell
703 death in several *Nicotiana* species (de Kock *et al.*, 2004; Laugé *et al.*, 2000). In this example,
704 recognition is thought to be encoded by an endogenous resistance protein that is not

705 homologous to Cf RLPs (de Kock *et al.*, 2004). Another possibility could be that Avr9B and
706 the abovementioned Avr9B-like proteins trigger Cf-9B-independent responses in different
707 way, such as by interacting with and perturbing the plant plasma membrane, as has been shown
708 for NLP effectors of various microbial pathogens (Pirc *et al.*, 2022). Whether Avr9B and
709 Avr9B-like proteins interact with the plasma membrane of plant cells remains to be determined,
710 but in a possible connection to this ability, a subset of Avr9B-like proteins (Group 3 proteins)
711 were predicted to have a transmembrane domain.

712 Intriguingly, expression of the Avr9B-like protein from *S. lycopersici* in tomato using
713 the PVX-based expression system resulted in stunted growth regardless of the tomato genotype,
714 which could indicate that it has a specific function in modulating host physiology.
715 Alternatively, it could be that this protein is recognised by an endogenous resistance protein in
716 tomato, but that this recognition does not result in an HR. This may be similar to a homolog of
717 the Ecp2-1 protein from the black sigatoka pathogen, *Pseudocercospora fijiensis*, which
718 triggers weak necrosis in tomato, independent of genotype (Stergiopoulos *et al.*, 2010). In any
719 case, the response triggered by the Avr9B-like protein from *S. lycopersici* was different to that
720 exhibited in tomato plants expressing Avr9B, since the systemic expression of Avr9B did not
721 result in stunting but, rather, exaggerated PVX symptoms. Such exaggerated PVX symptoms
722 were not observed when any other Avr effector protein of *F. fulva* was systemically expressed
723 in tomato, suggesting that this is a property unique to Avr9B. Whether these exaggerated PVX
724 symptoms have resulted from, for example, suppression of the plant immune system by Avr9B,
725 enabling PVX to more effectively colonise MM-Cf-0 tomato plants, remains to be determined.

726 While the predicted structural fold of the cysteine-rich region from Avr9B did not
727 reveal any insights into the function of this protein, the plant phenotypes mentioned above,
728 together with the apparent intrinsic ability of Avr9B and Avr9B-like proteins to trigger
729 chlorosis or cell death in *Nicotiana* species, provide leads for future research into the virulence
730 roles that these proteins might play during host colonization. Certainly, it will be interesting to
731 determine whether Avr9B is directly or indirectly recognized by Cf-9B, since all mutations in
732 *Avr9B* appear to abolish a functional protein. This may suggest that Avr9B is indirectly
733 recognized by Cf-9B through a guarded host virulence target, since direct recognition is more
734 likely to be overcome by non-synonymous mutations in residues that are located on the surface
735 of the protein, in line with what has been shown for the direct recognition of Avr effector
736 proteins from the flax rust pathogen, *Melampsora lini* (Dodds *et al.*, 2006).

737 In conclusion, we have identified the *Avr9B* effector gene from *F. fulva*, corresponding
738 to the *Cf-9B* resistance gene of tomato, and provided evidence to support the sequential

739 breakdown of the *Cf-9* resistance locus through the evolution of *F. fulva* strains over time.
740 Ultimately, due to the worldwide distribution of *F. fulva* strains capable of overcoming both
741 *Cf-9B* and *Cf-9C*, the *Cf-9* locus, which is present in many commercially available tomato
742 cultivars that are resistant to this fungus, likely now has limited value for controlling leaf mould
743 disease. For breeders, the rate at which *F. fulva* can overcome single *Cf* resistance genes should
744 be of concern and considered in future breeding programmes. Strategies such as the stacking
745 of novel *Cf* resistance genes from wild tomato accessions into tomato cultivars could provide
746 a means of durable resistance (Mesarich *et al.*, 2018). However, as our study highlights, it is
747 crucial to first understand the dynamic relationship between Avr effector proteins and their
748 corresponding resistance proteins to ensure that stacked resistance genes are not sequentially
749 overcome by pathogens. Finally, by identifying *Avr9B*, strains of *F. fulva* that have overcome
750 *Cf-9B* can now be rapidly identified which, in turn, may inform tomato cultivar selection or
751 deployment.

752

753 **Materials and Methods**

754 **Fungal strains and plant material**

755 A list of the *F. fulva* strains used in this study, including their location and year of isolation,
756 where known, is shown in **Table S3**. All strains are currently stored at the Laboratory of
757 Phytopathology, Wageningen University and Research, the Netherlands, The Johanna
758 Westerdijk Institute, the Netherlands, or the Laboratory of Plant Pathology, Setsunan
759 University, Japan. Tomato plants used in this study were the WT near-isogenic *S. lycopersicum*
760 lines MM-Cf-0 (no *Cf* genes) and MM-Cf-9 (carrying the *Cf-9* resistance locus made up of *Cf-*
761 *9A*, *Cf-9B*, *Cf-9C*, *Cf-9D*, and *Cf-9E*) (Tigchelaar, 1984), as well as transgenic lines of MM-
762 Cf-0 carrying *Cf-9C* alone, or both *Cf-9A* and *Cf-9B* (2/9-75) (Parniske *et al.*, 1997). Tobacco
763 plants used in this study were WT and *Δsobir1* *N. benthamiana* (Huang *et al.*, 2021), as well
764 as WT *N. tabacum* cultivar Wisconsin 38.

765

766 **Genome sequencing and assembly**

767 *F. fulva* strain IPO 2679 was cultured in potato dextrose broth (PDB) in the dark at 22°C with
768 gentle orbital shaking for two weeks. High-quality genomic DNA was extracted according to
769 the method described by Schwessinger and McDonald (2017). A TruSeq™ Nano library was
770 prepared and sequenced on the Illumina MiSeq™ (PE150) platform by Novogene
771 (<https://www.novogene.com>). Fastp v.0.20.0 (Chen *et al.*, 2017) was used to remove all low-
772 quality bases from the sequencing reads. A *de novo* genome sequence was then assembled

773 using SPAdes v3.11.1 (Bankevich *et al.*, 2012), with the final assembly generated from a set
774 of different kmers (21,33,55,77,99,127). The final genome assembly was assessed for quality
775 using QUAST v5.0.2 (Gurevich *et al.*, 2013) and searched for potential adapter (Illumina
776 oligonucleotide sequence) contamination at the NCBI UniVec database using BLASTn.

777

778 **Bioinformatic analyses for the identification of candidate *Avr9B* genes**

779 Alignments of *in planta*-expressed (candidate) effector genes and their encoding protein
780 sequences from the *F. fulva* reference strain 0WU and strain IPO 2679 were generated using
781 Geneious v.9.1.8 software (Kearse *et al.*, 2012). These (candidate) effectors were previously
782 identified by Mesarich *et al.* (2018) or Mesarich *et al.* (2014). N-terminal signal peptide
783 predictions were carried out with SignalP v4.1 (Nielsen, 2017), while transmembrane domain,
784 GPI anchor and IDR predictions were performed using TMHMM v2.0 (Krogh *et al.*, 2001),
785 Big-PI (Eisenhaber *et al.*, 1999), and PONDR VLXT (Romero *et al.*, 2001), respectively.
786 BLASTn, tBLASTn and BLASTp were used to identify *Avr9B*-like genes and *Avr9B*-like
787 proteins in NCBI and JGI sequence databases. Preference was given to cysteine number and
788 spacing rather than a low E-value score. Gene exon–intron boundaries were predicted using
789 expression data available at JGI and then mapped onto genes for which expression data were
790 not available.

791

792 **PCR screens and analysis of allelic variation**

793 Genomic DNA was extracted from *F. fulva* strains according to the protocol of van Kan *et al.*
794 (1991), with the presence or absence of *Avr9* and *Avr9B* across these strains subsequently
795 investigated using a PCR experiment in conjunction with the *Avr9*-F/*Avr9*-R and *Avr9B*-
796 F/*Avr9B*-R primer pairs, respectively (Table S4). For this purpose, Phusion High-Fidelity
797 DNA Polymerase (New England Biolabs), Phire Plant Direct PCR Master Mix (Thermo Fisher
798 Scientific) or KOD One PCR Master Mix (TOYOBO) was used, with PCRs carried out as per
799 the supplier's instructions. PCR amplicons were then resolved on a 1% agarose gel by
800 electrophoresis. Finally, to assess allelic variation in *Avr9* and *Avr9B* across *F. fulva* strains,
801 PCR amplicons were purified using an E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek) or the
802 ExoSAP-IT PCR Cleanup Reagent (Applied Biosystems) and then directly sequenced using
803 Sanger sequencing by the Massey Genome Service, Eurofins Scientific or Macrogen Japan
804 with the same gene-specific forward and/or reverse primer employed for PCR amplification.
805 To confirm deletion of the *Avr9B* gene, the region spanning the deleted region in strain IPO
806 2679 was determined through a nucleotide sequence alignment to the genome of isolate Race

807 5 (Zaccaron *et al.*, 2022) using Geneious v9.1.8 software (Kearse *et al.*, 2012). A PCR
808 experiment was then carried out using the Avr9B_deletion-F_1/Avr9B_deletion-R_1 and
809 Avr9B_deletion-F_2/Avr9B_deletion-R_2 primer pairs (**Table S4**), which flank the deleted
810 region, in conjunction with GoTaq G2 DNA Polymerase (Promega), as per the supplier's
811 instructions.

812

813 **RT-qPCR analysis of gene expression**

814 *F. fulva* strain Race 5 (carrying a functional copy of *Avr9B*) was inoculated onto young (4-
815 week-old) *S. lycopersicum* MM-Cf-0 plants and the fourth composite leaf was harvested at 2,
816 4, 8, 12 and 16 dpi. *F. fulva* spore preparation and plant inoculations were identical to those
817 described by Mesarich *et al.* (2014), with subsequent growth of inoculated plants carried out
818 in a greenhouse without climate control under natural light conditions. *F. fulva* Race 5 was also
819 cultured in PDB, and the mycelia were harvested at four dpi. In all cases, samples were
820 harvested in triplicate (i.e. from independent plants or cultures to give three biological
821 replicates) and flash-frozen in liquid nitrogen. Total RNA was extracted from 100 mg of ground
822 leaf or mycelial material using 1 ml TRIzol (Thermo Fisher Scientific) and purified with an
823 RNeasy Mini kit (Qiagen). cDNA was then synthesized from 5 µg of total RNA, using the
824 QuantiTect Reverse Transcription Kit (Qiagen). Genomic DNA was eliminated through use of
825 the gDNA Wipeout Buffer contained in the same kit and confirmed through PCR using the
826 Avr9B-F/Avr9B-R primer pair (**Table S4**). RT-qPCR experiments were performed on cDNA
827 samples according to Mesarich *et al.* (2014) using the qCfActin-F/qCfActin-R and qAvr9B-
828 F/qAvr9B-R primer pairs (**Table S4**), which were designed with Primer3 (Untergasser *et al.*
829 2012). The efficiency and specificity of these primers were determined using a dilution series
830 of cDNA for the *Avr9B* candidate genes, and genomic DNA for the *F. fulva actin* gene before
831 use. The *actin* gene was used as a reference for normalization of gene expression as per
832 Mesarich *et al.* (2014), and results were analysed according to the $2^{-\Delta Ct}$ method described by
833 Livak and Schmittgen (2001). The results are the average of three biological replicates.

834

835 ***A. tumefaciens*-mediated transient transformation assays (ATTAs)**

836 Candidate *Avr9B* genes *Ecp5* and *CfCE54*, a variant of *CfCE54* without its repeat region, as
837 well as *Avr9B*-like genes from *S. lycopersici* and *P. fuligena*, each behind the nucleotide
838 sequence encoding the PR1a signal peptide for secretion to the leaf apoplast and a 3xFLAG
839 tag for detection by Western blotting, were synthesized in the ATTA expression vector,
840 pICH86988 (Weber *et al.*, 2011), by Twist Bioscience. To generate a variant of *CfCE54*

841 without the nucleotide sequence encoding the PR1a signal peptide, the corresponding coding
842 sequence was amplified from the synthesized version of *CfCE54* using the NSPCfCE54_BsaI-
843 F/CfCE54_BsaI-R primer pair (**Table S4**). Likewise, to create a variant of *CfCE54* with a
844 codon conferring the W97C substitution, the corresponding codon sequence was amplified
845 from the synthesized version of *CfCE54*, using the CfCE54_BsaI-F/W97C-R and W97C-
846 F/CfCE54_BsaI-R primer pairs (**Table S4**). In each case, the primers introduced *BsaI*
847 restriction sites, which enabled their subsequent assembly into pICH86988, using the Golden
848 Gate cloning system (Engler *et al.*, 2008). Sequence-verified ATTA expression vectors were
849 transformed into *A. tumefaciens* GV3101 (Holsters *et al.*, 1980), while *A. tumefaciens* strains
850 carrying pCBJ10-based binary ATTA expression vectors with *Cf-9C* or *Cf-9B* (Chakrabarti *et*
851 *al.*, 2009) were kindly provided by David Jones (The Australian National University). The
852 *Avr9* ATTA expression construct was generated by Honée *et al.* (1998). ATTAs were
853 performed in leaves of *N. benthamiana* or *N. tabacum* according to Guo *et al.* (2020), with a
854 final *A. tumefaciens* OD₆₀₀ of 0.5 used. Symptoms were assessed at 7 days post-infiltration.

855

856 **Protein immunoblotting**

857 *N. tabacum* leaves used for ATTAs were flash-frozen in liquid nitrogen at 2 days post-
858 agroinfiltration. Samples were ground to a fine powder in liquid nitrogen, resuspended in
859 GTEN buffer (10% v/v glycerol, 100 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl, 10 mM
860 DTT, 0.2% IGEPAL CA360, 10 µl/ml protease inhibitor cocktail (Sigma-Aldrich), 1% w/v
861 PVP), incubated at 4°C with gentle orbital shaking for 30 min, and then centrifuged at 4°C and
862 5,000 g for 20 min. The supernatant was collected and transferred to a 1.5 mL microtube
863 through Miracloth (Millipore). Protein samples were loaded onto a 12% Tris-glycine gel,
864 transferred to a PVDF membrane (Bio-Rad) and probed with mouse anti-FLAG (1:5,000)
865 primary antibody (Sigma-Aldrich) and chicken anti-mouse IgG-HRP (1:20,000) secondary
866 antibody (Santa Cruz Biotechnology). Blotted membranes were incubated with SuperSignal
867 West Pico chemiluminescent substrate (Thermo Fisher Scientific) and visualized with a C600
868 Gel Imaging System (Azure Biosystems).

869

870 **Gene complementation and virulence assays**

871 Genomic DNA from *F. fulva* strain 0WU was extracted as per van Kan *et al.* (1991). The open
872 reading frames of *Ecp5* and *CfCE54*, including approximately 1 kb from each 5' (promoter)
873 and 3' (terminator) untranslated region, were amplified by PCR using the primer pairs
874 GibEcp5-F/GibEcp5-R and GibCfCE54-F/GibCfCE54-R, which contained an additional 18–

875 25 bp at the 5' end homologous to the pFBTS1 backbone. Amplicons were extracted and ligated
876 into pFBTS1 (a modified version of pFBT004) (Bolton *et al.*, 2008) using a Gibson Assembly
877 approach (Gibson *et al.*, 2009). Amplification of the pFBTS1 vector backbone by PCR was
878 performed with the primer pairs pFBTS1-F/pFBTS1BB-R and pFBTS1BB-F/pFBTS1-R.
879 Sequence-verified complementation constructs, as well as the empty vector pFBTS1, were
880 transformed into *A. tumefaciens* AGL1 and then introduced into WT strain IPO 2679 (Avr9^-
881 / Avr9B^-) as per Ökmen *et al.* (2013). Genomic DNA was extracted from transformants and
882 complementation confirmed with the Comp-F/CompEcp5-R and Comp-F/CompCfCE54-R
883 primer pairs for Ecp5 and CfCE54, respectively (**Table S4**). In addition, complementation with
884 a single-copy gene of either the *Ecp5* or *CfCE54* was confirmed by quantitative PCR using the
885 qAvr9B-F/qAvr9B-R and qECP5-F/qECP5-R primer pairs (**Table S4**) in conjunction with the
886 formula: $\text{Ratio} = [(\text{E}_{\text{target}})^{\Delta\text{Ct target (control-sample)}}]/[(\text{E}_{\text{reference}})^{\Delta\text{Ct reference (control-sample)}}]$. Here, the *F.*
887 *fulva actin* gene was used as a reference single-copy-gene in conjunction with the qCfActin-
888 F/qCfActin-R primer pair (**Table S4**). For virulence assays, conidia from nine independent
889 transformants, representing pFBTS1 EV (two), pFBTS1::*Ecp5* (two), and pFBTS1::*CfCE54*
890 (five), as well as the WT strains IPO 2679 ($\text{Avr9}^-/\text{Avr9B}^-$; control), ICMP 7320 ($\text{Avr9}^-/\text{Avr9B}^+$;
891 control), P13 ($\text{Avr9}^+/\text{Avr9B}^+$; control), P18 ($\Delta\text{avr9}/\text{Avr9B}^{W97C}$; natural variant) and P31
892 ($\Delta\text{avr9}/\text{Avr9B}^{C107*}$; natural variant), were inoculated onto the four compound leaves
893 immediately below the first flowering truss of mature (13-week-old) MM-Cf-0 and MM-Cf-9
894 tomato plants. For this purpose, conidia preparation, inoculation, and growth conditions were
895 as described by Mesarich *et al.* (2014), with two exceptions. Firstly, prior to inoculation, tomato
896 plants were maintained in high humidity conditions (approx. 100% RH), with the main shoot
897 above the first flowering truss, including the apical meristem, removed after appearance of the
898 first inflorescence/flowering truss. Secondly, the lateral shoots of tomato plants were instead
899 periodically removed throughout the experiment. The level of disease severity was assessed at
900 23 dpi.

901

902 **PVX-mediated systemic transient expression assays**

903 PVX-mediated systemic transient expression of Avr2, Avr4, Avr4E, Avr5, Avr9, Avr9B, Ecp5
904 and Ecp11-1, as well as TW65_01570 and pSfinx alone (EV) in MM-Cf-0 and MM-Cf-9
905 plants, transgenic MM-Cf-0 lines expressing *Cf-9C* or both *Cf-9A* and *Cf-9B* (*Cf-9A + Cf-9B*),
906 and *S. pimpinellifolium* accession CGN14353, was performed as per Mesarich *et al.* (2018). In
907 short, both cotyledons of 10-day-old tomato seedlings were infiltrated on the abaxial side with
908 the appropriate *A. tumefaciens* culture, with symptoms assessed 10–18 dpi. The pSfinx::EV,

909 pSfinx::Avr2, pSfinx::Avr4, pSfinx::Avr4E, pSfinx::Avr5, pSfinx::Avr9, pSfinx::Ecp5, and
910 pSfinx::Ecp11-1 expression constructs were generated in previous studies (Hammond-Kosack
911 *et al.*, 1995; Laugé *et al.*, 2000; Luderer *et al.*, 2002b; Mesarich *et al.*, 2014; Mesarich *et al.*,
912 2018; Joosten *et al.*, 1997; Westerink *et al.*, 2004).

913

914 **Prediction of Avr9B tertiary structure**

915 The tertiary structure of the cysteine-rich region from Avr9B was predicted using AlphaFold2
916 (Jumper *et al.*, 2021), in conjunction with ColabFold (Mirdita *et al.*, 2021), and was visualized
917 using PyMOL (DeLano 2002). The tertiary structure prediction was assisted through use of a
918 custom multiple sequence alignment, which was generated using Geneious v9.1.8 (Kearse *et*
919 *al.*, 2012), and was based on the cysteine-rich region of Avr9B and all Avr9B-like proteins
920 identified from other fungi (**Table S3**). The Foldseek server (van Kempen *et al.*, 2023) was
921 used to identify possible structural homologs of the cysteine-rich region from Avr9B in the
922 RCSB Protein Data Bank.

923

924 **Acknowledgements**

925 We thank Matt Templeton (The New Zealand Institute for Plant and Food Research) for
926 critically reviewing the manuscript and David Jones (The Australian National University) for
927 providing the *A. tumefaciens* strains carrying the *Cf-9B* and *Cf-9C* expression constructs. We
928 acknowledge Marie Turner and Claudie Monot of the VEGENOV institute
929 (<https://www.vegenov.com/>), Phillip Nicot of the National Research Institute for Agriculture,
930 Food and the Environment in Montfavet, as well as Yubo Liu and Roelf Schreuder from
931 Gourmet Mokai Ltd for providing *F. fulva* strains, and both the HARNESSSTOM project
932 (HARNESSSTOM Grant Agreement N°: 101000716) and JSPS KAKENHI (20H02993) (YI)
933 for partially funding the research. SdlR was supported by a Massey University Doctoral
934 Scholarship.

935

936 **Author Contributions**

937 CHM, SdlR, CRS, MHAJJ, YI, JKB, REB, PJGMdW and YB designed the research; SdlR,
938 CRS, ÁRP, AMH, KM, YI, MT, RJ, HGB and MR performed the research; SdlR, CRS, DJW,
939 and ÁRP carried out the data analysis, collection, or interpretation; SdlR, CHM and CRS wrote
940 the manuscript. All authors reviewed the manuscript and approved it for publication.

941

942

943 **Data Availability**

944 The assembled genome sequence of *F. fulva* strain IPO 2679 has been deposited under NCBI
945 BioProject ID PRJNA994185, BioSample accession SAMN36418479, and genome accession
946 JAUKVN0000000000.

947

948 **References**

949 **Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al. 2012.** SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of Computational Biology* **19**: 455–477.

950 **Bernal-Cabrera A, Martínez-Coca B, Herrera-Isla L, Ynfante-Martínez D, Peteira-Delgado B, Portal O, Leiva-Mora M, de Wit PJGM. 2021.** The first report on the occurrence race 9 of the tomato leaf mold pathogen *Cladosporium fulvum* (syn. *Passalora fulva*) in Cuba. *European Journal of Plant Pathology* **160**: 731–736.

951 **Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJE, van den Burg GCM, Borrás-Hidalgo O, Dekker HL, de Koster CG et al. 2008.** The novel *Cladosporium fulvum* lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. *Molecular Microbiology* **69**: 119–136.

952 **Chakrabarti A, Panter SN, Harrison K, Jones JDG, Jones DA. 2009.** Regions of the Cf-9B disease resistance protein able to cause spontaneous necrosis in *Nicotiana benthamiana* lie within the region controlling pathogen recognition in tomato. *Molecular Plant–Microbe Interactions* **22**: 1214–1226.

953 **Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. 2017.** AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. *BMC Bioinformatics* **18**: 91–100.

954 **de Kock MJD, Iskandar HM, Brandwagt BF, Laugé R, de Wit PJGM, Lindhout P. 2004.** Recognition of *Cladosporium fulvum* Ecp2 elicitor by non-host *Nicotiana* spp. is mediated by a single dominant gene that is not homologous to known Cf-genes. *Molecular Plant Pathology* **5**: 397–408.

955 **DeLano WL. 2002.** Pymol: An open-source molecular graphics tool. *CCP4 Newsletter on Protein Crystallography* **40**: 82–92.

956 **de Wit PJGM. 2016.** *Cladosporium fulvum* effectors: weapons in the arms race with tomato. *Annual Review of Phytopathology* **54**: 1–23.

957 **de Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali AH, Beenen HG, Chettri P, Cox MP et al. 2012.** The genomes of the fungal plant pathogens *Cladosporium fulvum* and *Dothistroma septosporum* reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. *PLoS Genetics* **8**: e1003088.

958 **de Wit PJGM, Joosten MHAJ, Thomma BHPJ, Stergiopoulos I. 2009.** Gene for gene models and beyond: the *Cladosporium fulvum*-tomato pathosystem. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg.

959

981 **Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG. 1998.** The tomato *Cf-5*
982 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich
983 repeat copy number. *The Plant Cell* **10**: 1915–1925.

984 **Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG. 1996.** The tomato
985 *Cf-2* disease resistance locus comprises two functional genes encoding leucine-rich repeat
986 proteins. *Cell* **84**: 451–459.

987 **Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis
988 JG. 2006.** Direct protein interaction underlies gene-for-gene specificity and coevolution of the
989 flax resistance genes and flax rust avirulence genes. *Proceedings of the National Academy of
990 Sciences* **103**: 8888–8893.

991 **Eisenhaber B, Bork P, Eisenhaber F. 1999.** Prediction of potential GPI-modification sites in
992 proprotein sequences. *Journal of Molecular Biology* **292**: 741–758.

993 **Engler C, Kandzia R, Marillonnet S. 2008.** A one pot, one step, precision cloning method
994 with high throughput capability. *PloS One* **3**: e3647.

995 **Enya J, Ikeda K, Takeuchi T, Horikoshi N, Higashi T, Sakai T, Iida Y, Nishi K, Kubota
996 M. 2009.** The first occurrence of leaf mold of tomato caused by races 4.9 and 4.9.11 of
997 *Passalora fulva* (syn. *Fulvia fulva*) in Japan. *Journal of General Plant Pathology* **75**: 76–79.

998 **Franco MEE, López S, Medina R, Saparrat MCN, Balatti P. 2015.** Draft genome sequence
999 and gene annotation of *Stemphylium lycopersici* strain CIDEFI-216. *Genome Announcements*
1000 **3**: e01069-15.

1001 **Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison III CA, Smith HO. 2009.**
1002 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods* **6**:
1003 343–345.

1004 **Gout L, Kuhn ML, Vincenot L, Bernard-Samain S, Cattolico L, Barbetti M, Moreno-
1005 Rico O, Balesdent M-H, Rouxel T. 2007.** Genome structure impacts molecular evolution at
1006 the *AvrLm1* avirulence locus of the plant pathogen *Leptosphaeria maculans*. *Environmental
1007 Microbiology* **9**: 2978–2992.

1008 **Guo Y, Hunziker L, Mesarich CH, Chettri P, Dupont P-Y, Ganley RJ, McDougal RL,
1009 Barnes I, Bradshaw RE. 2020.** DsEcp2-1 is a polymorphic effector that restricts growth of
1010 *Dothistroma septosporum* in pine. *Fungal Genetics and Biology* **135**: 103300.

1011 **Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013.** QUAST: quality assessment tool for
1012 genome assemblies. *Bioinformatics* **29**: 1072–1075.

1013 **Gust AA, Felix G. 2014.** Receptor like proteins associate with SOBIR1-type of adaptors to
1014 form bimolecular receptor kinases. *Current Opinion in Plant Biology* **21**: 104–111.

1015 **Haanstra JPW, Meijer-Dekens F, Lauge R, Seetanah DC, Joosten MHAJ, de Wit PJGM,
1016 Lindhout P. 2000.** Mapping strategy for resistance genes against *Cladosporium fulvum* on the
1017 short arm of chromosome 1 of tomato: *Cf-ECP5* near the *Hcr9* Milky Way cluster. *Theoretical
1018 and Applied Genetics* **101**: 661–668.

1019 **Hammond-Kosack KE, Jones JDG. 1994.** Incomplete dominance of tomato *Cf* genes for
1020 resistance to *Cladosporium fulvum*. *Molecular Plant–Microbe Interactions* **7**: 58–58.

1021 **Hammond-Kosack KE, Staskawicz BJ, Jones JDG, Baulcombe DC. 1995.** Functional
1022 expression of a fungal avirulence gene from a modified potato virus X genome. *Molecular*
1023 *Plant–Microbe Interactions* **8**: 181–185.

1024 **Hammond-Kosack KE, Tang S, Harrison K, Jones JDG. 1998.** The tomato *Cf-9* disease
1025 resistance gene functions in tobacco and potato to confer responsiveness to the fungal
1026 avirulence gene product Avr9. *The Plant Cell* **10**: 1251–1266.

1027 **Holsters M, Silva B, van Vliet F, Genetello C, de Block M, Dhaese P, Depicker A, Inzé D,**
1028 **Engler G, Villarroel R et al. 1980.** The functional organization of the nopaline *A. tumefaciens*
1029 plasmid pTiC58. *Plasmid* **3**: 212–230.

1030 **Honée G, Buitink J, Jabs T, de Kloe J, Sijbolts F, Apotheker M, Weide R, Sijen T, Stuiver**
1031 **M, de Wit PJGM. 1998.** Induction of defense-related responses in Cf9 tomato cells by the
1032 AVR9 elicitor peptide of *Cladosporium fulvum* is developmentally regulated. *Plant Physiology*
1033 **117**: 809–820.

1034 **Houterman PM, Cornelissen BJ, Rep M. 2008.** Suppression of plant resistance gene-based
1035 immunity by a fungal effector. *PLoS Pathogens* **4**: e1000061.

1036 **Huang WRH, Schol C, Villanueva SL, Heidstra R, Joosten MHAJ. 2021.** Knocking out
1037 *SOBIR1* in *Nicotiana benthamiana* abolishes functionality of transgenic receptor-like protein
1038 Cf-4. *Plant Physiology* **185**: 290–294.

1039 **Iakovidis M, Soumpourou E, Anderson E, Etherington G, Yourstone S, Thomas C. 2020.**
1040 Genes encoding recognition of the *Cladosporium fulvum* effector protein Ecp5 are encoded at
1041 several loci in the tomato genome. *G3: Genes, Genomes, Genetics* **10**: 1753–1763.

1042 **Iida Y, Iwadate Y, Kubota M, Terami F. 2010.** Occurrence of a new race 2.9 of leaf mold
1043 of tomato in Japan. *Journal of General Plant Pathology* **76**: 84–86.

1044 **Iida Y, van't Hof P, Beenen H, Mesarich C, Kubota M, Stergiopoulos I, Mehrabi R, Notsu**
1045 **A, Fujiwara K, Bahkali A et al. 2015.** Novel mutations detected in avirulence genes
1046 overcoming tomato *Cf* resistance genes in isolates of a Japanese population of *Cladosporium*
1047 *fulvum*. *PLoS One* **10**: e0123271.

1048 **Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG. 1993.** Two complex
1049 resistance loci revealed in tomato by classical and RFLP mapping of the *Cf-2*, *Cf-4*, *Cf-5*, and
1050 *Cf-9* genes for resistance to *Cladosporium fulvum*. *Molecular Plant–Microbe Interactions* **6**:
1051 348–348.

1052 **Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG. 1994.**
1053 Isolation of the tomato *Cf-9* gene for resistance to *Cladosporium fulvum* by transposon tagging.
1054 *Science* **266**: 789–793.

1055 **Joosten MHAJ, Cozijnsen TJ, de Wit PJGM. 1994.** Host resistance to a fungal tomato
1056 pathogen lost by a single base-pair change in an avirulence gene. *Nature* **367**: 384–386.

1057 **Joosten MHAJ, Vogelsang R, Cozijnsen TJ, Verberne MC, de Wit PJGM. 1997.** The
1058 biotrophic fungus *Cladosporium fulvum* circumvents *Cf-4*-mediated resistance by producing
1059 unstable AVR4 elicitors. *The Plant Cell* **9**: 367–379.

1060 **Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool**
1061 **K, Bates R, Žídek A, Potapenko A et al. 2021.** Highly accurate protein structure prediction
1062 with AlphaFold. *Nature* **596**: 583–589.

1063 **Kang WH, Yeom SI. 2018.** Genome-wide identification, classification, and expression
1064 analysis of the receptor-like protein family in tomato. *The Plant Pathology Journal*. **34**, 435–
1065 444.

1066 **Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper**
1067 **A, Markowitz S, Duran C et al. 2012.** Geneious Basic: an integrated and extendable desktop
1068 software platform for the organization and analysis of sequence data. *Bioinformatics* **28**: 1647–
1069 1649.

1070 **Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001.** Predicting transmembrane
1071 protein topology with a hidden Markov model: application to complete genomes. *Journal of*
1072 *Molecular Biology* **305**: 567–580.

1073 **Laterrot H. 1986.** Race 2.5.9, a new race of *Cladosporium fulvum* (*Fulvia fulva*) and sources
1074 of resistance in tomato. *Netherlands Journal of Plant Pathology* **92**: 305–307.

1075 **Laugé R, Dmitriev AP, Joosten MHAJ, de Wit PJGM. 1998.** Additional resistance gene(s)
1076 against *Cladosporium fulvum* present on the *Cf-9* introgression segment are associated with
1077 strong PR protein accumulation. *Molecular Plant–Microbe Interactions* **11**: 301–308.

1078 **Laugé R, Goodwin PH, de Wit, PJGM, Joosten MHAJ. 2000.** Specific HR-associated
1079 recognition of secreted proteins from *Cladosporium fulvum* occurs in both host and non-host
1080 plants. *The Plant Journal* **23**: 735–745.

1081 **Liebrand TW, van den Berg GC, Zhang Z, Smit P, Cordewener JH, America AH, Sklenar**
1082 **J, Jones AM, Tameling WI, Robatzek S et al. 2013.** Receptor-like kinase SOBIR1/EVR
1083 interacts with receptor-like proteins in plant immunity against fungal infection. *Proceedings of*
1084 *the National Academy of Sciences* **110**: 10010–10015.

1085 **Liebrand TWH, van den Burg HA, Joosten MHAJ. 2014.** Two for all: receptor-associated
1086 kinases SOBIR1 and BAK1. *Trends in Plant Science* **19**: 123–132.

1087 **Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T. 1989.** Further identification of races of
1088 *Cladosporium fulvum* (*Fulvia fulva*) on tomato originating from the Netherlands, France and
1089 Poland. *Netherlands Journal of Plant Pathology* **95**: 143–148.

1090 **Livak KJ, Schmittgen TD. 2001.** Analysis of relative gene expression data using real-time
1091 quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* **25**: 402–408.

1092 **Luderer R, de Kock MJD, Dees RHL, de Wit PJGM, Joosten MHAJ. 2002a.** Functional
1093 analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen
1094 *Cladosporium fulvum*. *Molecular Plant Pathology* **3**: 91–95.

1095 **Luderer R, Takken FLW, de Wit PJGM, Joosten MHAJ. 2002b.** *Cladosporium fulvum*
1096 overcomes *Cf-2*-mediated resistance by producing truncated AVR2 elicitor proteins. *Molecular*
1097 *Microbiology* **45**: 875–884.

1098 **Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA,**
1099 **Hamelin RC, Joosten MHAJ, Lu M et al. 2023.** Beyond the genomes of *Fulvia fulva* (syn.

1100 *Cladosporium fulvum*) and *Dothistroma septosporum*: new insights into how these fungal
1101 pathogens interact with their host plants. *Molecular Plant Pathology* **24**: 474–494.

1102 **Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. 2015.** Repeat-containing protein
1103 effectors of plant-associated organisms. *Frontiers in Plant Science* **6**: 872.

1104 **Mesarich CH, Griffiths SA, van der Burgt A, Ökmen B, Beenen HG, Etalo DW, Joosten
1105 MHAJ, de Wit PJGM. 2014.** Transcriptome sequencing uncovers the *Avr5* avirulence gene
1106 of the tomato leaf mold pathogen *Cladosporium fulvum*. *Molecular Plant–Microbe
1107 Interactions* **27**: 846–857.

1108 **Mesarich CH, Ökmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M,
1109 Mihajlovski A, Collemare J, Hunziker L, Deng CH et al. 2018.** Specific hypersensitive
1110 response–associated recognition of new apoplastic effectors from *Cladosporium fulvum* in wild
1111 tomato. *Molecular Plant–Microbe Interactions* **31**: 145–162.

1112 **Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022.**
1113 ColabFold: making protein folding accessible to all. *Nature Methods* **19**: 679–682.

1114 **Nielsen H. 2017.** Predicting secretory proteins with SignalP. In: Kihara D. (eds) Protein
1115 function prediction. Methods in Molecular Biology, vol. 1611. Humana Press, New York, NY,
1116 59–73.

1117 **Ngou BPM, Wyler M, Schmid MW, Kadota Y, Shirasu K. 2023.** Evolutionary trajectory of
1118 pattern recognition receptors in plants. *bioRxiv* 2023.07.04.547604.

1119 **Ökmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, de
1120 Wit PJGM. 2013.** Detoxification of α -tomatine by *Cladosporium fulvum* is required for full
1121 virulence on tomato. *New Phytologist* **198**: 1203–1214.

1122 **Panter SN, Hammond-Kosack KE, Harrison K, Jones JDG, Jones DA. 2002.**
1123 Developmental control of promoter activity is not responsible for mature onset of *Cf-9B*-
1124 mediated resistance to leaf mold in tomato. *Molecular Plant–Microbe Interactions* **15**: 1099–
1125 1107.

1126 **Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K,
1127 Wulf BBH, Jones JDG. 1997.** Novel disease resistance specificities result from sequence
1128 exchange between tandemly repeated genes at the *Cf-4/9* locus of tomato. *Cell* **91**: 821–832.

1129 **Pirc K, Albert I, Nürnberg T, Anderluh G. 2023.** Disruption of plant plasma membrane
1130 by Nep1-like proteins in pathogen–plant interactions. *New Phytologist* **237**: 746–750.

1131 **Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent
1132 MH. 2016.** A game of hide and seek between avirulence genes *AvrLm4-7* and *AvrLm3* in
1133 *Leptosphaeria maculans*. *New Phytologist* **209**: 1613–1624.

1134 **Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten
1135 MHAJ, Robatzek S. 2016.** Avr4 promotes Cf-4 receptor-like protein association with the
1136 BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. *New
1137 Phytologist* **210**: 627–642.

1138 **Rocafort M, Fudal I, Mesarich CH. 2020.** Apoplastic effector proteins of plant-associated
1139 fungi and oomycetes. *Current Opinion in Plant Biology* **56**: 9–19.

1140 **Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. 2001.** Sequence
1141 complexity of disordered protein. *Proteins: Structure, Function, and Bioinformatics* **42**: 38–
1142 48.

1143 **Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, Anderson N, De Soto MF,**
1144 **Rouse M, Szabo L et al. 2017.** Variation in the *AvrSr35* gene determines *Sr35* resistance
1145 against wheat stem rust race Ug99. *Science* **358**: 1604–1606.

1146 **Schouten HJ, Tikunov Y, Verkerke W, Finkers R, Bovy A, Bai Y, Visser RG. 2019.**
1147 Breeding has increased the diversity of cultivated tomato in the Netherlands. *Frontiers in Plant
1148 Science* **10**: 1606.

1149 **Schwessinger B, McDonald MC. 2017.** High quality DNA from Fungi for long read
1150 sequencing e.g. PacBio, Nanopore MinION V.4. *Protocols.io*
1151 <https://dx.doi.org/10.17504/protocols.io.k6qczdw>.

1152 **Snoeck S, Garcia AG, Steinbrenner AD. 2023.** Plant receptor-like proteins (RLPs): structural
1153 features enabling versatile immune recognition. *Physiological and Molecular Plant Pathology*,
1154 102004.

1155 **Stergiopoulos I, de Kock MJD, Lindhout P, de Wit PJGM. 2007a.** Allelic variation in the
1156 effector genes of the tomato pathogen *Cladosporium fulvum* reveals different modes of
1157 adaptive evolution. *Molecular Plant–Microbe Interactions* **20**: 1271–1283.

1158 **Stergiopoulos I, Groenewald M, Staats M, Lindhout P, Crous PW, de Wit PJGM. 2007b.**
1159 Mating-type genes and the genetic structure of a world-wide collection of the tomato pathogen
1160 *Cladosporium fulvum*. *Fungal Genetics and Biology* **44**: 415–429.

1161 **Stergiopoulos I, van den Burg HA, Ökmen B, Beenens HG, van Liere S, Kema GHJ, de
1162 Wit PJGM. 2010.** Tomato Cf resistance proteins mediate recognition of cognate homologous
1163 effectors from fungi pathogenic on dicots and monocots. *Proceedings of the National Academy
1164 of Sciences* **107**: 7610–7615.

1165 **Takken FL, Luderer R, Gabriëls SH, Westerink N, Lu R, de Wit PJGM, Joosten MHAJ.
1166 2000.** A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-
1167 inducing cDNAs of plant pathogens. *The Plant Journal* **24**: 275–283.

1168 **Takken FLW, Thomas CM, Joosten MHAJ, Golstein C, Westerink N, Hille J, Nijkamp
1169 JJ, de Wit PJGM, Jones JDG. 1999.** A second gene at the tomato *Cf-4* locus confers
1170 resistance to *Cladosporium fulvum* through recognition of a novel avirulence determinant. *The
1171 Plant Journal* **20**: 279–288.

1172 **Tarallo M, McDougal RL, Chen Z, Wang Y, Bradshaw RE, Mesarich CH. 2022.**
1173 Characterization of two conserved cell death elicitor families from the Dothideomycete fungal
1174 pathogens *Dothistroma septosporum* and *Fulvia fulva* (syn. *Cladosporium fulvum*). *Frontiers
1175 in Microbiology*. **13**, 964851.

1176 **Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones
1177 JD. 1997.** Characterization of the tomato *Cf-4* gene for resistance to *Cladosporium fulvum*
1178 identifies sequences that determine recognitional specificity in *Cf-4* and *Cf-9*. *The Plant Cell*
1179 **9**: 2209–2224.

1180 **Thomas CM, Dixon MS, Parniske M, Golstein C, Jones JD. 1998.** Genetic and molecular
1181 analysis of tomato *Cf* genes for resistance to *Cladosporium fulvum*. *Philosophical Transactions
1182 of the Royal Society of London*. **353**: 1413–1424

1183 **Thomma BPHJ, van Esse HP, Crous PW, de Wit PJGM. 2005.** *Cladosporium fulvum* (syn.
1184 *Passalora fulva*), a highly specialized plant pathogen as a model for functional studies on plant
1185 pathogenic Mycosphaerellaceae. *Molecular Plant Pathology* **6**: 379–393.

1186 **Tigchelaar EC. 1984.** Collections of isogenic tomato stocks. *Report of the Tomato Genetics
1187 Cooperative* **34**: 55–57.

1188 **Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S. 2012.**
1189 Primer3-new capabilities and interfaces. *Nucleic Acids Research* **40**: e115.

1190 **van der Beek JG, Verkerk R, Zabel P, Lindhout P. 1992.** Mapping strategy for resistance
1191 genes in tomato based on RFLPs between cultivars: *Cf9* (resistance to *Cladosporium fulvum*)
1192 on chromosome 1. *Theoretical and Applied Genetics* **84**: 106–112.

1193 **van den Ackerveken GFJM, van Kan JAL, de Wit PJGM. 1992.** Molecular analysis of the
1194 avirulence gene *avr9* of the fungal tomato pathogen *Cladosporium fulvum* fully supports the
1195 gene-for-gene hypothesis. *The Plant Journal* **2**: 359–366.

1196 **van derburgh AM, Postma J, Robatzek S, Joosten MHAJ. 2019.** Kinase activity of
1197 SOBIR1 and BAK1 is required for immune signalling. *Molecular Plant Pathology* **20**: 410–
1198 422.

1199 **van Kan JAL, van den Ackerveken GFJM, de Wit PJGM. 1991.** Cloning and
1200 characterization of cDNA of avirulence gene *avr9* of the fungal pathogen *Cladosporium
1201 fulvum*, causal agent of tomato leaf mold. *Molecular Plant–Microbe Interactions* **4**: 52–59.

1202 **van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CL, Söding J,
1203 Steinegger M. 2023.** Fast and accurate protein structure search with Foldseek. *Nature
1204 Biotechnology* <https://doi.org/10.1038/s41587-023-01773-0>.

1205 **Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, de Wit PJGM, Crous
1206 PW. 2017.** Mycosphaerellaceae—chaos or clarity? *Studies in Mycology* **87**: 257–421.

1207 **Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. 2011.** A modular cloning
1208 system for standardized assembly of multigene constructs. *PLoS One* **6**: e16765.

1209 **Westerink N, Brandwagt BF, de Wit PJGM, Joosten MHAJ. 2004.** *Cladosporium fulvum*
1210 circumvents the second functional resistance gene homologue at the *Cf-4* locus (*Hcr9-4E*) by
1211 secretion of a stable *avr4E* isoform. *Molecular Microbiology* **54**: 533–545.

1212 **Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P,
1213 Morgante M, Panaud O *et al.* 2007.** A unified classification system for eukaryotic
1214 transposable elements. *Nature Reviews Genetics* **8**: 973–982.

1215 **Yoshida K, Asano S, Sushida H, Iida Y. 2021.** Occurrence of tomato leaf mold caused by
1216 novel race 2.4.9 of *Cladosporium fulvum* in Japan. *Journal of General Plant Pathology* **87**: 35–
1217 38.

1218 **Zaccaron AZ, Chen LH, Samaras A, Stergiopoulos I. 2022.** A chromosome-scale genome
1219 assembly of the tomato pathogen *Cladosporium fulvum* reveals a compartmentalized genome
1220 architecture and the presence of a dispensable chromosome. *Microbial Genomics* **8**: 000819.

1221 **Zaccaron AZ, Stergiopoulos I. 2020.** First draft genome resource for the tomato black leaf
1222 mold pathogen *Pseudocercospora fuligena*. *Molecular Plant–Microbe Interactions* **33**: 1441–
1223 1445.