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Abbreviations: 

CC  Collaborative Cross 

Chr  chromosome 

DO  Diversity Outbred  

eQTL  expression quantitative trait locus 

FPLC  fast protein liquid chromatography 

GWAS  genome wide association studies 

HFD  high-fat diet 

HFHS  high-fat, high-sucrose diet 

IMA  ion mobility spectrometry analysis 

IMPC  International Mouse Phenotyping Consortium 

LDLR  low-density lipoprotein receptor 

LOD  logarithm of odds 

Mbp  megabase pair 

Pcsk7  Proprotein convertase subtilisin–kexin type 7 

QTL  quantitative trait locus 

TG  triglyceride 
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Abstract 

Despite great progress in understanding lipoprotein physiology, there is still much to be learned about 

the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility 

spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred (DO) mice 

maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein 

abundance. To refine the QTL and link them to disease risk in humans, we asked if the human 

homologues of genes located at each QTL were associated with lipid traits in human genome-wide 

association studies (GWAS). Integration of mouse QTL with human GWAS yielded candidate gene 

drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral 

ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles 

(HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to 

wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our 

results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by 

which lipoprotein subfractions may affect cardiovascular disease risk in humans. 
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Introduction 

High concentrations of LDL-cholesterol (LDL-C) are associated with increased cardiovascular 

disease (CVD) risk. Interventions to reduce LDL-C result in improved cardiovascular outcomes. Small 

dense LDL particles are associated with CVD, including coronary artery disease and stroke (1), and are 

strong predictors of cardiovascular events (2). Likewise, larger HDL-2b particles are better predictors of 

coronary heart disease than small, dense HDL-3, LDL-C, or HDL-C levels (3-5). Variation in protein and 

lipid composition, and particle size can affect lipoprotein function (6-9).  

Genetically diverse mouse populations, resulting from intercrossing or outcrossing inbred strains, can 

be used to discover the genetic drivers of lipoprotein abundance and composition. For example, intercross 

mouse populations identified gene loci affecting apolipoprotein (Apo) A2 (10). In an intercross study 

involving the RIIIS/J and 129S1/SvImJ mouse strains, eight unique loci affecting plasma cholesterol and 

causative genes within the loci were identified (11). Panels of recombinant inbred mouse strains have 

been used to leverage naturally occurring polymorphisms, which showed heterogeneity in lipoprotein size 

and apolipoprotein composition (12). The hybrid mouse diversity panel (HMDP), a collection of 100 

mouse strains, utilizes natural strain variation in a systems genetics approach to identify genetic drivers of 

phenotypes (13). A meta-analysis of nearly 5000 HMDP mice identified 26 significant loci associated 

with HDL-C. Several loci, including one for ApoA2, were consistent with previous reports, while other 

loci provided novel insights into gene-environment interactions (14).  

The use of outcrossed mouse populations, including the Collaborative Cross (CC), brings additional 

genetic diversity to mouse genetic screens. In a study using 25 CC strains, increased adiposity and liver 

steatosis were associated with increasing total, HDL, and LDL cholesterol (15). Key genetic regulators of 

hepatic lipids were linked to diet-induced changes in liver steatosis severity and plasma lipid measures. 

Leveraging the genetic diversity of the Diversity Outbred (DO) mouse population, an outbred stock 

derived from eight founder strains of the CC, three loci were identified for plasma cholesterol (16).  

In the present study, we utilized the DO mouse population to determine quantitative lipoprotein 

subclasses, identify quantitative trait loci (QTL) for several subclasses, and nominate candidate genetic 
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drivers of lipoprotein particle sizes. We identified several known cholesterol-related genes, Apoa2 and 

Foxo1, as well as novel loci associated with plasma cholesterol.  
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Methods 

Animal husbandry – Founder and DO mice 

All animal protocols were approved by the Animal Care and Use Committee at University of 

Wisconsin-Madison. The eight founder strains (C57BL/6J (B6); A/J; 129S1/SvImJ (129); NOD/ShiLtJ 

(NOD); NZO/HILtJ (NZO); PWK/PhJ (PWK); WSB/EiJ (WSB); and CAST/EiJ (CAST)) and DO mice 

were purchased from Jackson Laboratories (Bar Harbor, ME) and maintained at the University of 

Wisconsin-Madison, as previously described (17, 18). Briefly, founder mouse strains were fed standard 

laboratory chow (Formulab Diet 5008, LabDiets, Brentwood, MO) or given a high-fat, high-sucrose diet 

(TD.08811, Envigo, Madison, WI) for 18 weeks. Diversity Outbred (DO) mice were maintained on the 

same high-fat, high-sucrose diet as the founder mice for 16 weeks. Animals were euthanized at 22 weeks 

of age and plasma collected and stored at -80ºC. 

 

Animal husbandry – Asah2 mice 

Asah2 mice were generated by Richard Proia (NIH)(19) and provided to the Summers/Holland lab. 

All animal procedures were performed in compliance with protocols approved by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Utah and adhered to National Institutes of Health 

(NIH) standards. Male (n = 5-6 per genotype) and female (n = 4-7 per genotype) mice were maintained 

under standard laboratory conditions at a temperature of 22°C to 24°C, in groups of 2 to 5 mice, with a 

12-hour light/dark cycle. Mice were allowed ad libitum access to food and water unless fasting conditions 

were required for experimental procedures. Animals were fed a normal chow diet from the age of 4 weeks 

and transitioned to a high-fat diet (60% total energy; D12492; Research Diets Inc, New Brunswick, NJ, 

USA) at 9 weeks of age for 16 weeks. At 25 weeks of age, mice were anesthetized with isoflurane and 

blood collected by cutting the brachial artery. Whole blood was collected into vacutainers coated with 

20% K2EDTA, centrifuged at 7500xg for 7.5 minutes, and plasma separated. Plasma was stored at -80°C.  
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Plasma lipoprotein fractionation by ion mobility analysis 

To analyze lipoprotein class size, plasma lipoproteins were separated by ion mobility analysis as 

previously described (20, 21). Briefly, lipoproteins were harvested on paramagnetic particles, washed to 

remove free salt and proteins (e.g., IgG, albumin, and transferrin), and then resuspended in 25�mM 

ammonium acetate. Lipoproteins were then fractionated and quantified by summing the total number of 

particles within specific size ranges. Supplemental Table S1 shows the lipoprotein subclasses, their size 

ranges, and nomenclature. 

 

QTL mapping of plasma lipoprotein phenotypes 

Mapping of plasma lipoproteins for quantitative trait loci analysis was performed as previously 

described (17). Briefly, 478 Diversity Outbred (DO) mice (236 female, 242 male) were obtained from 

Jackson Laboratories (Bar Harbor, ME) and maintained on a high-fat, high-sucrose diet (TD.08811, 

Envigo, Madison, WI) for 16 weeks and plasma collected for lipoprotein sizing by ion mobility analysis. 

Lipoprotein phenotype data were rankz-transformed to achieve a normal distribution prior to mapping. 

Genetic mapping was performed using the qtl2 package with kinship correction to identify quantitative 

trait loci (QTL) using the GRCm38 genome build and Ensembl 75 for gene annotation. Genome scans 

used sex, mouse cohort (wave), and technical batch as additive covariates. As previously described, 

logarithm of odds (LOD) thresholds were defined through permutation testing to establish a genome-wide 

family-wide error rate (FWER) for genome-wide QTL (22, 23). A LOD greater than 6.0 was used as the 

threshold for identifying suggestive QTL and a LOD greater than 7.4 identified significant QTL. 

 

RT-PCR 

For liver gene analyses, liver samples were homogenized in Qiazol lysis buffer in a TissueLyser II 

and RNA isolated with RNeasy Mini Kit (Qiagen) following manufacturer’s protocols. Hepatic gene 

expression of Asah2 was normalized to β-actin (Actb) and fold change relative to wild-type controls for 

each sex were calculated using the 2–∆∆Ct method (24). Asah2 primer sequences: GATCCATTC 
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TGGGACACTCTTC (Forward), TCCACTGTGAAGCAGGATTG (Reverse). Actb primer sequences: 

AGATGTGGATCAGCAAGCAGG (Forward), TGCGCAAGTTAGGTTTTGTCA (Reverse). 

 

Statistical Analyses 

Founder plasma lipoprotein data were analyzed in JMP Pro version 15.0.0 (SAS Institute, Cary, NC). 

All data were log-transformed prior to statistical analysis. Chow-fed and HFHS-fed data were initially 

analyzed separately for strain and sex effects, prior to assessing the interaction effect of diet on strain and 

sex. Strain, sex, and diet interactions for each lipoprotein subclass was tested using a standard least 

squares model with p<0.05 denoting a significant effect. Least square means differences with Tukey’s 

HSD post-hoc analysis determined statistical differences between groups (p<0.05). For instances where 

the interaction effect and one of the main effects failed to reach significance, a one-way ANOVA was 

used. Heritability calculations were conducted in R (version 4.3.1) using the “lme4” package to fit a linear 

mixed model with restricted maximum likelihood. Chow-fed and HFHS-fed mice were analyzed 

separately, with sex as the fixed effect and strain as the variable effect. Asah2 mouse data were first 

checked for a Gaussian distribution and log-transformed if not normally distributed. Statistical analyses of 

normally distributed data were performed by ANOVA followed by Tukey’s post-hoc analysis. 

Differences were considered significant at p<0.05. 

 

Results 

Strain and sex dependence of diet-induced alterations in lipoproteins 

To estimate heritability (h2) in lipoprotein phenotypes in DO mice, we first analyzed the lipoproteins 

of the eight founder strains of DO mice. The mice were fed a chow or a high-fat, high-sucrose (HFHS) 

diet and their sera were analyzed by ion mobility analysis, a method that quantitates the various size 

categories of lipoproteins (Table S1) (25).  
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Mice fed a standard chow diet showed marked strain-dependent differences in their lipoprotein size 

distribution (Fig. 1A, Fig. S1), with significant interactions between strain and sex for all lipoprotein 

subclasses (p<0.03). NOD, NZO, and PWK mice had increased lipoprotein abundance relative to the 

other strains (p<0.005), with NZO having the highest concentrations of small LDL (LDL-IVa, -IVb, -IVc, 

p<0.0001). PWK mice showed variation in classes by sex where females (F) had increased the small 

lipoprotein particles: HDL-3,2a, HDL-2b and midzone relative to male (M) PWK mice (p<0.007, 

p<0.0001, p<0.0001, respectively). NZO mice had increased concentrations of LDL particles compared to 

the other strains (p<0.0001), whereas B6, WSB, and CAST mice had the lowest LDL particle 

concentrations (p<0.03). Heritability was high for all particles, with strain explaining up to 77% of 

phenotypic variance (Fig. 1C, h2 = 0.49 – 0.77). 

When placed on the HFHS diet for 16 weeks, total lipoprotein concentrations were increased by 

~50% (25±1 nM) in five of the eight mouse strains, compared to chow-fed mice (17±1 nM, p<0.0001). 

NZO, NOD, and PWK mice did not significantly change their total lipoprotein particle concentrations in 

response to the HFHS diet. However, there was no effect of sex or interaction between sex and strain on 

any of the individual subclasses in response to the HFHS diet (Fig. 1B, Fig. S1, p>0.3). Therefore, we 

analyzed the particles by one-way ANOVA to determine differences between strains.  

NOD mice had the lowest LDL-IIIb and LDL-IV particle concentrations relative to the other strains 

(p<0.001). Large LDL-I and LDL-II particles did not vary by strain (p>0.5). HDL-2b concentrations were 

highest in 129 mice and significantly different from CAST (p<0.0004). Interestingly, the average LDL 

diameter was higher in chow-fed mice (204±1 Å) compared to HFHS-fed mice (194±1 Å, p<0.0001). 

LDL peak diameter showed a strong strain dependence for chow-fed mice (p<0.0001) that was not 

present for HFHS-fed mice (p>0.6). Two mouse strains, A/J and B6, had the largest LDL diameter on the 

chow diet (p<0.0001), but were not different from other strains on HFHS diet. Heritability for lipoprotein 

particle concentrations was diminished on the HFHS diet (Fig. 1D), with strain explaining ~40% or less 

of the variance in particle concentrations (h2 = 0-0.36). 
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Genetic association of lipoprotein classes in DO mice 

We surveyed all lipoprotein subclasses in ~500 DO mice genotyped at ~69,000 genome-wide SNPs, 

enabling us to identify 30 quantitative trait loci (QTL) with LOD>6.0 (genome-wide p=0.2) for 

association with plasma lipoprotein subclasses (Fig. 2A, Table S2). For several QTL, multiple 

lipoproteins co-mapped, including one on Chr 10 for LDL-I through LDL-IIIb.  

Because DO mice derive from an outcross of eight founder strains, there are up to eight alleles 

segregating among DO mice across the genome. Through haplotype reconstruction, we could determine 

the association of strain-specific haplotype blocks with each phenotype and thus determine the 

directionality of each allele’s influence on the phenotype, i.e., their allele signatures. Fig. 2B illustrates 

the allele signatures for all lipoprotein QTL.  

We defined lipoprotein QTL based on the genome location of the SNP having the highest LOD score, 

and the allele signatures of co-mapping traits. For example, a single locus on Chr 10 at ~57 Mbp that 

showed five LDL subclasses co-mapping in response to the same allele signature (low for B6 and high for 

129 and WSB) was classified as a single QTL. After refining QTL based on genomic proximity and allele 

effects, we identified 21 unique QTL for all lipoprotein classes. Six QTL were identified for HDL-2b and 

five QTL for the HDL-2a,3 subclasses, the most for individual subclasses in our analyses (Table S2). 

Large VLDL had four QTL, while the remaining subclasses had one to two QTL. 

To nominate causal genes at each QTL, we identified probable genes based on SNP association plots 

at each locus. One lipoprotein subclass, HDL-2b, significantly mapped to 6 loci, with 4 QTL having a 

LOD>6.0 (Fig. 3A). Each locus had a unique allele signature (Fig. 3B), indicating independent genetic 

regulation of this lipoprotein. By integrating mouse SNPs at each locus (Fig. S2, Table S3), candidate 

genetic drivers were identified. The QTL on Chr 1 was located near Apoa2, the second most abundant 

apolipoprotein component of HDL (26). The QTL on Chr 9 was located near several apolipoproteins, 

including Apolipoprotein A1 (Apoa1), as well as proprotein convertase subtilisin/kexin type 7 (Pcsk7). 

APOA1 is the most abundant apolipoprotein in HDL (26, 27) and has been well characterized for its role 
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in HDL function (28). The association of three genetic variants of PCSK7 with HDL-cholesterol and 

acute coronary syndrome have also been recently published (29).  

Finding QTL at the Apoa2 and Apoa1/Pcsk7 loci demonstrated that our genetic screen could identify 

known drivers of cholesterol and lipoprotein levels. We next turned our attention to two distinct HDL-2b 

QTL on Chr 19. The first QTL includes a region between clusters of fatty acid desaturases (Fads1, Fads2, 

Fads3) and membrane-spanning 4A (Ms4a) gene members (Fig. S2C), which have literature support for 

associations to lipid metabolism, total cholesterol, and HDL-C (30-32). The second QTL, on Chr 19 

included two compelling genes (Fig. S2D); N-acylsphingosine amidohydrolase 2 (Asah2) and Apobec1 

complementation factor (A1cf). Due to associations of ceramides with cardiovascular disease (33), we 

sought to investigate Asah2, which encodes a ceramide-catabolizing neutral ceramidase, as a causal gene 

for HDL-2b lipoproteins.  

 

Validation of Asah2 as a novel driver of plasma lipoprotein classes 

To validate Asah2 as a driver of HDL lipoproteins, whole-body Asah2 knockout (Asah2-/-), 

heterozygous (Asah2+/-), or wild-type (Asah2+/+) mice were fed a high-fat diet (HFD) for 16 weeks and 

plasma collected at 25 weeks of age. Loss of Asah2 gene expression was confirmed in liver tissues of 

mice from each sex and genotype (Fig. S3). To assess potential shifts in lipoprotein classes, we used ion 

mobility analysis to measure lipoprotein concentrations by size. Overall, female Asah2-/- mice had 

increased levels of all lipoproteins compared to female Asah2+/+ mice, with significant increases in HDL 

and IDL sub-classes (Fig. 4, Fig. S4, p<0.01). Specifically, female Asah2-/- had significantly higher 

concentrations of small HDL-3,2a (Fig. 4A, p<0.009) and strong trends for large HDL-2b (Fig. 4B, 

p<0.07) particles. Both male and female Asah2-/- mice showed trends for increased particles in the 

midzone size range compared to Asah2+/+ mice (p<0.08, p<0.09, respectively). Three LDL subclasses, 

LDL-IIB (Fig. 4D), LDL-IIa (Fig. 4E) and LDL-1 (Fig. 4F), were increased in female Asah2-/- versus 

Asah2+/+ mice. Similarly, intermediate density lipoproteins, IDL-2 (Fig. 4G) and IDL-1 (Fig. 4H) were 

more abundant in female Asah2-/- mice (p<0.008). LDL-IIa, LDL-1 and both IDL particle classes were 
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increased in female Asah2-/- versus Asah2+/- mice (p<0.04), highlighting a gene dosage effect for these 

particles. Finally, small VLDL (Fig. 4I) were also increased in female Asah2-/- compared to Asah2+/+ 

mice (p<0.03). LDL, IDL and VLDL particle subclasses were not different between genotypes in male 

mice.  

Given the increased concentration of apo-B containing particles in Asah2-/- mice, we asked if the 

abundance of the LDL receptor (LDLR) protein or mRNA were altered in Asah2-/- mice. We assessed 

LDLR protein in liver by western blot. In Asah2-/- females, there was a small, but statistically significant 

increase in LDLR protein compared to Asah2+/+ females (Fig. S4F, S4H); males were not different by 

genotype (Fig. S4G, S4H). Additionally, Ldlr and Pcsk9 expression in liver was similar between 

genotypes of the same sex (Fig. S4I). Thus, the mechanism by which the loss of Asah2 drives increased 

lipoprotein abundance is likely not due to downregulation of the LDLR protein. 

 

Integration of mouse lipoprotein QTL with human GWAS 

To determine the translational significance of our findings to humans, we analyzed the syntenic loci 

for significant traits in human genome-wide associated studies (GWAS). To determine synteny, a 2-Mbp 

flanking region was first identified for each mouse lipoprotein QTL. This 2-Mbp region was then used 

with the LiftOver utility from UCSC Genomic Institute (genome.ucsc.edu/cgi-bin/hgLiftOver) to yield 

the human syntenic locus for each QTL (Table S4). We then asked if these loci were associated with 

cardiometabolic phenotypes, including cardiovascular, glycemic, blood lipid, or anthropometric 

(excluding height) traits in GWAS Central (www.gwascentral.org) (34). 

Approximately 2,000 SNPs with cardiometabolic traits were identified within the syntenic regions 

(Table S5). SNPs syntenic with 20 of the 21 lipoprotein QTL identified in mice were strongly associated 

with metabolic traits in human GWAS (p<10-8, Fig. 5). Fifteen of the 21 loci were highly enriched with 

associations for three or more trait categories surveyed, providing evidence of significant genetic 

associations in the human population.  
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To nominate causal genes for each locus, we considered lipid-associated SNPs in mouse and human 

data and searched for literature support and mouse phenotyping data through the International Mouse 

Phenotyping Consortium (IMPC, www.mousephenotype.org). At mouse QTL, we prioritized SNPs that 

fell within the genomic region with a 1.5 LOD drop. At the syntenic loci in human, we identified SNPs 

with significant associations (p<10-8). Next, we searched published literature for phenotypic or 

mechanistic support. Through this integrated pipeline of mouse lipoprotein QTL, human GWAS data, and 

published, publicly available data, we nominated candidate driver genes for 18 of the 21 lipoprotein QTL 

(Table 1).  

We identified Akna as the candidate gene for HDL-2b and Midzone lipoprotein classes at a QTL on 

Chr 4. Akna, an AT-hook transcription factor (35), promotes Cd40 expression (36), indicating a role in 

inflammatory processes. In human genetic association studies, AKNA variants have been linked to total 

cholesterol (37), HDL cholesterol and ApoA1 (38), and plasma sphingolipids (39). However, no studies 

have mechanistically linked Akna to cholesterol or lipoprotein metabolism. It is possible that Akna may 

reflect HDL’s role in inflammation and/or immune surveillance. 

The second candidate driver for the HDL-2b locus on Chr 19 at ~32 Mbp is A1cf (Apobec1 

complementation factor). A1cf works in conjunction with Apobec1 to catalyze editing of Apob mRNA, 

which results in the introduction of a stop codon and production of a truncated protein product, ApoB48 

(40, 41). In human GWAS, there are strong associations between A1CF missense variants and plasma 

lipoprotein phenotypes (total cholesterol, LDL-C, serum ApoB) (34, 42).  

We identified a single locus associated with both IDL and LDL, mapping to Chr 6 (Figs. 1 and 2). 

Interestingly, when we looked at the syntenic locus in humans, there were no significant associations for 

cardiovascular, lipid, anthropometric or glycemic traits. However, both the mouse and human genomic 

region contain Apobec1 (apolipoprotein B mRNA editing enzyme catalytic subunit 1). In Apobec1-/- mice, 

plasma ApoB-100 is increased 176%, although this was not accompanied by changes to cholesterol 

concentrations in VLDL or LDL lipoprotein classes (43). The lack of genetic association in humans may 

be due to species differences where mice express Apobec1 in both liver and intestine (44), while human 
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expression is restricted to the intestine (45). It may also highlight the minimal contribution of plasma 

ApoB-48 concentration to total ApoB and the poor correlation to plasma cholesterol in humans (46, 47).  

We mapped a single locus spanning five LDL subclasses (Chr 10) and one for LDL diameter (Chr 6). 

Gja1, also known as connexin 43 (Cnx43), is our candidate gene for the LDL species mapping to Chr 10. 

Cnx43+/-/Ldlr-/- mice have a reduction in atherosclerotic lesion formation, compared to Cnx43+/+/Ldlr-/- 

mice, without a change in plasma cholesterol or triglyceride (48). Adamts9, the candidate gene for LDL 

diameter, is a metallopeptidase with a type 1 thrombospondin motif. Adamts9 has not been directly 

studied for a role in lipoprotein metabolism, but has been shown to be a suppressor of mTOR pathway in 

cancer cell lines (49). Both thrombospondin-1 and thrombospondin-2, however, have been studied in 

cardiovascular disease (50, 51) and mediate atherosclerotic plaque development in mice (52, 53).  

We identified seven QTL for the 3 major size ranges within VLDL particles. At these loci, we 

identified five candidate genes. Small VLDL, which mapped to Chr 19, includes the gene Gpam at the 

human syntenic locus. In mice, the founder strains CAST and PWK have splice and untranslated region 

variants (Table S5), consistent with those two strains carrying the low alleles for the Chr 19 QTL (Table 

S1). Within human GWAS, GPAM is strongly associated with HDL, LDL, and total cholesterol, with 

missense variants that are highly associated to each of the three traits (Table S4, (42)). Gpam encodes for 

outer mitochondrial membrane glycerol-3-phosphate acyltransferase, an enzyme in the triglyceride 

synthesis pathway. Consistent with a role in lipoprotein metabolism, Gpam knockout mice have lower 

VLDL secretion rates and decreased liver triglycerides relative to wild-type mice (54).  

We nominate Igf1 as the causal gene at a QTL on Chr 10 for large VLDL. In mice, Igf1 was shown to 

reduce liver cholesterol accumulation by activating Abca1 (55) and an association between plasma Igf1 

cardiovascular disease risk has been found in human subjects (56). In bovine hepatocytes, Apob 

expression and VLDL secretion are increased with addition of exogenous Igf1 (57).  

For two additional VLDL QTL (Chrs 1 and 8), we identified two lesser-known gene candidates: 

Ankrd44 and Cdh11, respectively. In a study looking for genetic drivers of stroke in cerebral arteries, 

Ankrd44 was down-regulated in veins from rabbits with hypercholesterolemia alone and with combined 
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hypercholesterolemia and hypertension (58). ANKRD44 genetic variants are associated with stroke risk in 

African Americans (59), though no mechanistic studies were found. Cadherin-11 (Cdh11), a cell adhesion 

protein, was nominated as the causal gene for intermediate-sized VLDL mapping to Chr 8. Cdh11 has 

been implicated in autoimmune disorders, aortic valve calcification, and recently, scarring following 

myocardial infarction through its effect on fibrosis and inflammation(60). In a mouse model of 

atherosclerosis, Cdh11 expression was increased in atherosclerotic plaques of ApoE-/- mice. 

ApoE-/-/Cdh11-/- double knockout mice had altered immune cell populations and increased atherosclerosis 

(61).  
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Discussion 

Lipoproteins that are isolated based on size or buoyant density represent snapshots of dynamic 

processes involving the transfer of lipids and proteins between particles and between tissues and 

lipoprotein particles. Genetic linkage and association studies help to identify the genes that affect these 

dynamic processes. The heterogeneity of the major lipoprotein classes (VLDL, LDL, HDL) in the DO 

founder strains suggested that we might find QTL that explain this heterogeneity (Fig. 1).  

Prior to embarking on the genetic study in DO mice, we first estimated heritability (h2) of these 

distinct lipoprotein subclasses in the eight founder strains fed either chow or HFHS diets. Heritability 

estimates were reduced by approximately half for mice maintained on the HFHS diet (Fig. 1C, D), which 

in part may reflect increased intra-strain variance in particle concentrations (Fig. S1). Previous reports 

have highlighted an interaction between diet and genetics that alters heritability of metabolic phenotypes. 

In pedigreed baboons, high fat and/or high cholesterol diets increased variance and reduced h2 in plasma 

HDL-C, median HDL size, and ApoA1/ApoB protein abundance compared to a low-fat, low-cholesterol 

diet (62). In a survey of 13 inbred mouse strains fed a Western diet, up to 75% of variance in lean body 

weight could be attributed to genetics (h2), whereas other phenotypes (e.g., plasma glucose) showed 

reduced heritability (h2 < 20%) (63). Finally, a panel of 22 inbred CC strains showed that some traits 

(e.g., body weight and plasma cholesterol) showed higher variation than other traits (e.g., body fat) 

between high-protein or high-fat diets (64). Our results are consistent with these previous findings, 

showing that a metabolically challenging diet can increase non-genetic variance and thus reduce 

estimated h2 of metabolic phenotypes.   

Despite the reduction in estimated heritability observed for mice maintained on the HFHS diet, we 

identified 21 QTL for 16 lipoprotein subclasses in DO mice. Some of the loci contain genes encoding 

well-known apolipoproteins (e.g., the locus harboring apoA1, C3, A4, A5, and PCSK7, and another locus 

containing apoA2), inspiring confidence in the ability of our screen to detect relevant loci. Nearly all 

these QTL, when lifted over into the human genome, are associated with lipid traits, as well as other 

cardiometabolic phenotypes, including cardiovascular disease risk, body weight, and diabetes. 
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At the HDL-2b locus on chromosome 19 at ~32 Mbp, we identified two candidate drivers: Asah2 and 

A1cf. We chose to investigate the relationship between Asah2 and lipoproteins by phenotyping Asah2-/- 

mice. In female mice fed a high-fat diet, Asah2 deletion resulted in increased HDL, midzone, large LDL, 

IDL, and small VLDL particles (Fig. 4). A similar trend was seen in midzone and IDL-2 particles in male 

mice. Asah2 is highly expressed in the intestine and functions as a neutral ceramidase. Although 

sphingolipids, including ceramides, can be carried on LDL and VLDL particles (65), to our knowledge, 

this is the first time a ceramidase has been shown to affect lipoprotein abundance.  

Ceramides have recently been recognized as a cholesterol-independent lipid biomarker of 

cardiovascular disease risk (66), with the potential for being a predictor of endothelial dysfunction and 

early atherosclerosis (67). In a mouse model of atherosclerosis, pharmacological inhibition of HIF-1α in 

adipose tissue decreased ceramide formation through a neutral sphingomyelinase and was associated with 

decreased plasma cholesterol and delayed atherosclerotic plaque progression (68). Moreover, targeted 

disruption of ceramide synthesis similarly blunts plaque formation.  Specifically, genetic deletion(69) or 

pharmacological inhibition (70, 71) of serine palmitoyltransferase, which catalyzes the committed step in 

de novo ceramide synthesis, also blunts plaque formation.  Asah2 is required for intestinal degradation of 

dietary sphingolipids (19). As ASAH2 expression is predominantly in the intestine, its activity may alter 

intestinal absorption of cholesterol. Indeed, strategies that reduce ceramides in the gut, can blunt 

cholesterol absorption (72, 73). Moreover, ASAH2 mediates the body’s response to microbial 

sphingolipids (19, 74). Deletion of Asah2 alleviates diet-induced NASH/NAFLD via down-regulation of 

stearoyl-CoA desaturase (Scd1) and reduces cholesterol accumulation (75). When fed a very low fat diet, 

Scd1-/- mice have increased plasma cholesterol, especially in the LDL and VLDL fractions (76). When fed 

a standard chow diet (13% calories as fat), Scd1-/- mice have increased plasma HDL-C (77). Therefore, 

one might hypothesize that Asah2 modulates lipoprotein metabolism through its effect on Scd1 

expression.  

For many years, elevated HDL was considered to be protective against atherosclerosis. However, 

Mendelian randomization studies and mouse knockout experiments showed this concept was overly 
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simplistic (78). Rather, opposing dynamic processes affect HDL and atherosclerosis risk by affecting the 

dynamics of cholesterol transport. For example, mutations in ABCA1 reduce the ability of cells to 

transport cholesterol and phospholipids out of cells (79, 80). This results in lower HDL and increased 

atherosclerosis (81). In contrast, mutations in SRB1 decrease the transport of cholesterol esters from HDL 

into cells (82-84). This leads to increased HDL and increased atherosclerosis.  

We are not aware of any genetic association between ASAH2 and atherosclerosis. Its modulation of 

HDL could increase or decrease atherosclerosis. Alternatively, ASAH2 could affect atherosclerosis 

through its effects on sphingolipids, independent of its effect on HDL, through their effects on 

inflammatory pathways (85). Indeed, ceramides predict coronary artery disease independently of 

cholesterol (86). Pharmacological inhibition of ceramide synthesis via the serine palmitoyltransferase 

inhibitor, myriocin, reduces atherosclerotic plaque formation in APOE-deficient mice (71, 73). Moreover, 

ceramidases can also increase the formation of sphingosine-1-phosphate, an anti-atherogenic lipid which 

is largely carried in ApoM-containing particles (87).   

In summary, we mapped mouse lipoprotein subclasses to identify 21 unique QTL which we then 

cross-referenced with the human syntenic locus to determine candidate genes associated with 

cardiometabolic traits in human GWAS. By integrating mouse data with human GWAS at the syntenic 

locus, we nominated candidate genes for 18 unique lipoprotein QTL. Deletion of Asah2, a novel 

candidate driver for HDL-2b, resulted in increased HDL, midzone, large LDL, IDL, and small VLDL 

particles in plasma from female mice. Similar validation experiments can be performed to explore the 

candidate genes we have nominated at the remaining QTL. 
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All data for this study are provided in the main text or as supporting information.   
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Figure and Table Captions 

 
Figure 1: Genetics and diet exert a strong influence on circulating lipoproteins.  
Profile of lipoprotein subclasses in female (F) and male (M) mice of the eight Diversity Outbred (DO) 
founder strains maintained on standard rodent chow diet (A) or a Western-style diet high in fat and 
sucrose (B). Heritability (h2) estimates for lipoprotein particles in mice fed a chow diet (C) versus a 
Western-style diet (D). 

Figure 2: Genetic architecture of circulating lipoproteins.  
Heatmaps illustrate average Z-scores across all mice for 3-5 mice per sex/strain. Genome-wide QTL for 
lipoprotein subclasses in ~500 DO mice maintained on Western-style diet (A). Supplemental Table S2 
lists all QTL, their genomic positions, LOD scores and allele effect values. Allele effect values are 
illustrated for 30 QTL for individual lipoprotein subclasses(B). Blue depicts alleles associated with 
reduced lipoprotein values, red for increased values. Founder strains are listed on the left, while 
lipoproteins and their QTL (Chr and Mbp location) are shown along the top and bottom, respectively. 
Loci with similar allele effect patterns (e.g., Chr 10 at ~57 Mpb for LDLIIIb – LDLIIa and HDL-3,2a), 
are considered one QTL. 

Figure 3: Genetic regulation of circulating HDL-2b.  
Genome-wide LOD profile for an HDL subclass (HDL-2b) identifies significant QTL on three 
chromosomes: 1, 9 and 19 (A). Allele effect plots illustrate distinct genetic architecture at each 
locus (B). Colored lines represent alleles derived from founder strains. Genomic position for peak 
SNP listed for each QTL.    
Figure 4: Asah2 is a driver of plasma lipoproteins in female mice.  
Circulating lipoprotein subclasses measured by ion mobility analysis in female and male Asah2-/-, 
Asah2-/+, and Asah2+/+ mice. (A) Small HDL-3,2a (76.5-105 Å) and (B) large HDL-2b (105-145 Å) 
concentrations were increased in Asah2-/- females. (C) Both male and female Asah2-/- showed a trend for 
increased particles in the midzone size range (145-180Å) compared to their Asah2+/+ mice. Three LDL 
subclasses, LDL-IIB (D), LDL-IIa (E) and LDL-1 (F), two intermediate density lipoproteins, IDL-2 (G) 
and IDL-1 (H), and small VLDL particles (I) were all elevated in Asah2-/- female mice.  
 
Figure 5: Mouse lipoprotein QTL are syntenic to regions associated with cardiometabolic traits in 
humans.  
Heatmap illustrates maximum enrichment (-log10 p-value) for SNPs that are present within regions 
syntenic to mouse lipoprotein QTL and associated with lipid, glycemia, anthropometric (excluding 
height) or cardiovascular phenotypes in human GWAS. 
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Table 1: Candidate genes for plasma lipoprotein QTL 
*From GWAS Central; †From Type 2 Diabetes Knowledge Portal; ‡Missense variant 
TC = total cholesterol, TG = triglyceride, N/A = no significant associations to lipid traits in human 
GWAS 
 
 
Figure S1: Genetics and diet converge to influence circulating lipoproteins.   
Circulating concentrations (pM) for 16 lipoprotein subclasses and LDL peak diameter (Å) are 
illustrated for both sexes of the eight DO founder strains maintained on either regular rodent chow 
diet, or a Western-style diet high in fat and sucrose. Subclasses are ordered from small (A) to large (B) 
sizes.  
 
Figure S2: SNP association profiles for four HDL-2b QTL  
SNP association profiles and nearby genes at four QTL for HDL-2b. Chr 1 with 31 genes, 
including Apoa2 (A); Chr 9 with 48 genes, including Apoa1, Apoa4 and Apoc3 genes (B); and 
two QTL on Chr 9, with 40 genes (C) and 24 genes (D).  
 
Figure S3: Confirmation of Asah2 deletion in liver  
Loss of Asah2 mRNA was confirmed in liver tissue of wildtype (Asah2+/+), heterozygous (Asah2+/-), or 
whole-body knockout (Asah2-/-) female and male mice. 
 
Figure S4: Loss of Asah2 increases lipoprotein concentrations in female mice. 
Summed concentration values for total HDL (A), Midzone (B), LDL (C), IDL (D), and VLDL (E) 
lipoproteins are illustrated for female and male wildtype (Asah2+/+), heterozygous (Asah2+/-), and 
whole-body knockout (Asah2-/-) mice maintained on a high-fat diet for 25 weeks. Size ranges for these 
lipoprotein classes are provided in Table S1.  LDLR protein (F – H) and gene expression (I) were 
unchanged in liver tissue for genotypes of each sex.  
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