

1 **Praziquantel activates a native cation current in *Schistosoma***
2 ***mansonii***

3

4 Evgeny G. Chulkov, Claudia M. Rohr and Jonathan S. Marchant*

5

6 Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin,
7 Milwaukee, WI, USA

8

9 *Corresponding Author: JM Marchant@mcw.edu

10

11 **Keywords:** parasite; anthelmintic; schistosome; ion channel; TRP channel

12 **Praziquantel (PZQ), an anthelmintic drug discovered in the 1970s, is still used to**
13 **treat schistosomiasis and various other infections caused by parasitic flatworms.**
14 **PZQ causes a triad of phenotypic effects on schistosome worms – rapid**
15 **depolarization, muscle contraction, and damage throughout the worm tegument.**
16 **The molecular target mediating these effects has been intimated as a Ca^{2+} -**
17 **permeable ion channel, but native currents evoked by PZQ have not been reported**
18 **in any schistosome cell type. The properties of the endogenous PZQ activated**
19 **conductance therefore remain unknown. Here, invasive electrophysiology was**
20 **used to probe for responses to PZQ from different locales in a living schistosome**
21 **worm. No direct response was seen in tegument-derived vesicles, or from the sub-**
22 **tegumental muscle layer despite the presence of voltage-operated currents.**
23 **However, PZQ rapidly triggered a sustained, non-selective cation current in**
24 **recordings from neuronal tissue, targeting both the anterior ganglion and the main**
25 **longitudinal nerve cord. The biophysical signature of this PZQ-evoked current**
26 **resolved at single channel resolution matched that of a transient receptor potential**
27 **ion channel named TRPM_{PZQ} , recently proposed as the molecular target of PZQ.**
28 **The endogenous PZQ-evoked current was also inhibited by a validated TRPM_{PZQ}**
29 **antagonist. PZQ therefore is a neuroactive anthelmintic, effecting a robust,**
30 **depolarization through ion channels with the characteristics of TRPM_{PZQ} .**

31 **Key Findings / Scope Statement**

32 • Responses to the anthelmintic drug, praziquantel (PZQ), were examined using
33 invasive electrophysiology in a living schistosome worm.

34 • PZQ evoked a cation current in recordings from neuronal tissue

35 • The biophysical and pharmacological characteristics of the native PZQ current
36 matched the properties of TRPM_{PZQ}.

37 **Introduction**

38 The study of excitable cell physiology in parasitic flatworms has long been a focus for
39 research (Geary et al., 1992, Pax et al., 1996, Greenberg, 2014, McVeigh et al., 2018).
40 This is because of the likelihood for discovering vulnerabilities to chemotherapeutic attack
41 within the transmembrane signaling portfolio of these cells. Many existing anthelmintic
42 agents are known to subvert targets that control parasite neuronal and/or muscular
43 function.

44

45 One such example is the drug praziquantel (PZQ), the key clinical drug used to combat
46 schistosomiasis. PZQ causes a spastic paralysis of schistosome musculature by
47 stimulating rapid depolarization and Ca^{2+} entry that effects a sustained, tetanic increase
48 in muscle tension (Andrews et al., 1983, Park and Marchant, 2020, Waechtler et al.,
49 2023). This activity is widely seen in different parasitic flatworms that are sensitive to PZQ,
50 and is blocked by removal of Ca^{2+} , or application of certain Ca^{2+} channel blockers (Pax
51 et al., 1978, Fetterer et al., 1980a). These observations have long supported a ' Ca^{2+}
52 channel activation' hypothesis for PZQ action (Jeziorski and Greenberg, 2006, Chan et
53 al., 2013). However, the molecular basis for these effects has long proved elusive, with
54 no endogenous target for PZQ unmasked throughout decades of clinical usage. Such
55 lack of insight has been exacerbated by an inability to resolve any native current evoked
56 by PZQ in schistosomes, or indeed any parasitic flatworm.

57

58 The majority of our knowledge about endogenous ion channel function in schistosomes
59 derives from pioneering experiments performed in the 1980s and 1990s which resolved

60 fundamental features of voltage gradients in native worms (Fetterer et al., 1980b, Bricker
61 et al., 1982, Semeyn et al., 1982, Thompson et al., 1982), with examples of
62 electrophysiological recordings from isolated muscle cells (Blair et al., 1991, Day et al.,
63 1993, Day et al., 1995, Mendonca-Silva et al., 2006), tegument (Day et al., 1992) and
64 tegument-derived vesicles (Robertson et al., 1997). These assays lead to the description
65 of several different types of ion fluxes, including currents mediated by Cl^- channels
66 (Robertson et al., 1997), voltage-operated Ca^{2+} channels (Mendonca-Silva et al., 2006),
67 various K^+ channels (Day et al., 1993, Day et al., 1995, Kim et al., 1995a, Kim et al.,
68 1995b, Robertson et al., 1997), a Ca^{2+} -activated K^+ channel (Blair et al., 1991), and other
69 non-selective cation channels (Day et al., 1992, Robertson et al., 1997).

70

71 Despite such efforts, a native response to PZQ remained either unresolved or unreported.
72 A possible reason, beyond the technical challenge of measuring native currents from
73 parasitic flatworms, was the lack of insight as to what exactly to look for, and where
74 exactly to look. Additionally, in the absence of any knowledge about the characteristics of
75 the target, the specific recording conditions to best resolve PZQ-evoked endogenous
76 currents remained undefined.

77

78 Recent advances have however increased the temptation to have another stab at this
79 challenge. First, a candidate target for PZQ has been identified – an ion channel of the
80 transient receptor potential melastatin family, named TRPM_{PZQ} (Park et al., 2019, Park
81 and Marchant, 2020). Second, identification of this target provides direction as to where
82 to look for native currents - based on the atlas of single cell RNA expression data in

83 schistosomes, *Schistosoma mansoni* TRPM_{PZQ} (*Sm*.TRPM_{PZQ}) is expressed in several
84 neuronal and muscle clusters (Wendt et al., 2020). Third, electrophysiological analyses
85 of *Sm*.TRPM_{PZQ} have now been executed (Park et al., 2021, Chulkov et al., 2023b),
86 establishing a search algorithm for the likely PZQ-evoked response, as well as conditions
87 best optimized to resolve TRPM_{PZQ} currents. *Sm*.TRPM_{PZQ} is a non-selective cation
88 channel with a linear current-voltage relationship (Chulkov et al., 2023b)). Of relevance
89 here, *Sm*.TRPM_{PZQ} display a clear permeability toward Cs⁺, and this provides opportunity
90 to record currents in the absence of many types of K⁺ channels. Finally, recent drug
91 screening efforts have yielded antagonists that block *Sm*.TRPM_{PZQ} activity (Chulkov et
92 al., 2021). Capitalizing upon all this new information, electrophysiological recordings were
93 attempted from different types of tissue within a living worm. An endogenous PZQ-
94 activated current was identified in recordings from putative neuronal locales, the
95 biophysical characteristics of which resembled the properties of *Sm*.TRPM_{PZQ}.

96 **Materials and Methods**

97

98 **Materials.** All chemicals were sourced from Sigma or ThermoFisher. Praziquantel was
99 used as a racemic mixture ((\pm)-PZQ). ANT1 was sourced from Maybridge (Chulkov et al.,
100 2021).

101

102 **Adult schistosome worm isolation.** Schistosome-infected mice (*Schistosoma*
103 *mansonii*) were provided by the NIAID Schistosomiasis Resource Center at the
104 Biomedical Research Institute (Rockville, MD) through NIH-NIAID Contract
105 HHSN272201000005I for distribution via BEI Resources. Adult schistosomes were
106 recovered by dissection of the mesenteric vasculature in female Swiss Webster mice
107 previously infected (~49 days) with *S. mansonii* cercariae (NMRI strain). All experiments
108 followed ethical regulations endorsed by the Medical College of Wisconsin IACUC
109 committee. Harvested worms were washed in DMEM high glucose medium,
110 supplemented with HEPES (25mM), pyruvate and 5% heat inactivated FBS (Gibco) and
111 penicillin-streptomycin (100 units/mL) and incubated overnight (37°C/5% CO₂) in vented
112 petri dishes (100x25mm).

113

114 **Electrophysiological assays.** Electrophysiological assays were then performed over a
115 period of four days following worm isolation. For these assays, a single, male, adult
116 schistosome was either pinned with dual needles, or fixed with glue (n-butyryl 3M
117 Vetbond™ surgical glue; 3M, St. Paul MN) onto a 90mm Sylgard™-coated plastic dish
118 (Living Systems, St Albans VT). For recordings from tegument (Figure 1), muscle (Figure

119 2) and lateral nerve cords (Figure 4), the adult worm was pinned to avoid any pervasive
120 damage across the worm surface. For recordings from anterior neurons (Figure 3), where
121 a high degree of immobility was required for successful recordings, the dorsal surface
122 was glued to the dish. Access to the anterior region of the worm was facilitated by
123 immobilizing worms in this manner. Recordings were only made from male worms, owing
124 to their greater size that better facilitated invasive electrophysiology.

125

126 Recording dishes were mounted on the stage of an Olympus BX51WI upright microscope.
127 Electrodes were pulled from borosilicate glass capillaries (#BF150-110-10, Sutter
128 Instrument, Novato, CA) on a vertical pipette puller (Narishige, Amityville, NY, Model PC-
129 10). Except where specified otherwise, the bath solution was Hank's balanced salt
130 solution (HBSS) supplemented with 20 mM HEPES (pH 7.4 at room temperature). For
131 recordings from neuronal tissue, worms were loaded with a Ca^{2+} indicator (fluo-4-NW
132 dissolved in HBSS with 2.5 mM probenecid) by incubation for 30 mins at 37°C, and
133 fluorescence was visualized by epifluorescence illumination using a Spark camera
134 (Hamamatsu, Japan).

135

136 A multiClamp 700B amplifier and Digidata 1440A digitizer (Molecular Devices, San Jose,
137 CA) were used for electrophysiological recordings. Signals were passed through an 8-
138 pole Bessel low pass filter at 1 kHz and sampled at 10 kHz. Data analysis was performed
139 using Clampfit 11 software (Molecular Devices). In current-clamp recordings,
140 microelectrodes (resistance of 2 – 4 $\text{M}\Omega$) filled with 3M KCl were advanced using a
141 micromanipulator, penetrating the worm surface, until a steady signal was obtained in the

142 current-clamp mode (Thompson et al., 1982). For muscle voltage measurements, the
143 bath solution was supplemented with 100 μ M carbachol to impair muscle contraction
144 (Barker et al., 1966, Thompson et al., 1982). Electrical potentials were measured after
145 penetrating the dorsal tegument at an angle of 30° from horizontal. Distinctive steady-
146 state voltages were observed depending on the depth of recording within internal
147 schistosome tissue (Bricker et al., 1982, Thompson et al., 1982). In voltage-clamp mode,
148 current measurements were performed with electrodes pulled to a resistance of 8 – 10
149 $M\Omega$). The pipette solution used throughout was 140mM CsMeSO₃, 10mM HEPES and
150 1mM EGTA (pH 7.4). Recordings from HEK293 cells were performed as detailed
151 previously (Chulkov et al., 2023a).

152

153 **Statistical Analyses.** Data were visualized and processed using Origin (2020b). Tukey's
154 test was applied to evaluate significance between different cohorts of measurements, and
155 reported as mean and standard error of the mean (mean \pm SE). The number of recordings
156 associated with individual experiments are defined in the Figure legends.

157 **Results**

158 Attempts to measure native currents in schistosomes were made by electrophysiological
159 recording from different locales within a living worm. First, recordings were made from
160 tegument-derived vesicles. Second, an invasive electrophysiology approach was used to
161 resolve responses from the muscle layer localized beneath the tegument. Finally, invasive
162 recordings were attempted from nervous tissue. These encompassed measurements
163 targeting either the anterior cephalic ganglion, or the main longitudinal nerve cords.
164 Details of each of these approaches are outlined in the following sections.

165

166 *Recordings from tegument-derived vesicles.* The surface of schistosomes comprises a
167 living syncytium known as the tegument that is bounded by a double outer bilayer,
168 insulating the parasite from the host bloodstream (Wilson and Jones, 2021). While this
169 surface is readily accessible, electrophysiological recording is difficult owing to the rough
170 and spiny nature of the male tegument. This precluded formation of a tight seal (giga-ohm
171 resistance) necessary for single channel recording. However successful recordings have
172 previously been achieved by clamping vesicles derived from the tegument. One method
173 for generating vesicles is exposure of worms to a low pH (pH ~3.75), a manipulation that
174 yielded a population of smooth, bilayered structures (Robertson et al., 1997). Treatment
175 with PZQ also causes extensive vesicularization at the worm surface (Becker et al.,
176 1980), providing an alternative method to generate ‘worm-free’, self-formed vesicles
177 accessible to electrophysiological analysis.

178

179 Treatment of male worms with PZQ (10 μ M, 15 mins) caused surface vesicularization
180 (**Figure 1A &B**), generating unilamellar lipid vesicles that were easily visualized using
181 bright-field illumination (**Figure 1C**). It was facile to form a tight seal ($>1G\Omega$) onto these
182 vesicles with the recording electrode permitting ‘vesicle-attached’ recordings. However,
183 using this preparation, no responses to PZQ application were observed throughout a
184 range of voltage-steps or recording conditions (**Figure 1D**). Given the tight seal between
185 the recording electrode and membrane, a channel such as *Sm.TRPM_{PZQ}* (conductance
186 of $\sim 130pS$ in symmetrical 145mM Na^+ , (Chulkov et al., 2023b)) would be associated with
187 fluctuations of up to 10 pA. For those unfamiliar with electrophysiological approaches, a
188 similar voltage-stepping protocol in *Sm.TRPM_{PZQ}* expressing HEK293 cells is illustrated
189 for comparison (**Figure 1E**). Here, clearly resolvable ion channel activity was seen
190 following addition of PZQ.

191
192 *Recordings from the internal muscle layer.* Layers of circular, longitudinal, and transverse
193 smooth muscle fibers exist below the adult schistosome tegument (Silk and Spence,
194 1969, Sulbaran et al., 2015) The electrical properties of this tissue layer have been
195 investigated by invasive recording approaches, where discrete potential changes are
196 observed when the recording electrode penetrates different compartments of the worm
197 (Bricker et al., 1982, Thompson et al., 1982). For example, in current clamp mode ($I=0pA$),
198 a drop in potential of $\sim 25-30mV$ is associated with penetration into sub-tegumental
199 muscle. A similar drop in voltage ($-21.1 \pm 3.9mV$) was seen in our recordings when the
200 recording electrode penetrated into the tissue immediately beneath the tegument (**Figure**
201 **2A**). In worms treated with PZQ (10 μ M, 10 minutes), this drop in membrane potential

202 was no longer resolved, with only a small voltage change (-4.2 ± 2.0 mV) observed on
203 electrode penetration (Figure 2A). **Figure 2B** collates the electrical potentials observed
204 in either control (-21.1 ± 3.9 mV) or PZQ-treated (-4.2 ± 2.0 mV) worms. The existence of
205 the potential in naïve worms, and the loss of this gradient after incubation with PZQ, is
206 characteristic of recordings being made from sub-tegumental muscle (Bricker et al.,
207 1982). That recordings at this depth beneath the tegument were from muscle tissue was
208 further evidenced by measurements made in voltage-clamp mode. At this depth within
209 the worm body, voltage-dependent currents were observed (**Figure 2C**). With the
210 membrane held at -80 mV, various voltage pulses (-120 mV to 200 mV) were applied.
211 Currents were seen at positive, but not at negative membrane voltages in naïve worms
212 (**Figure 2D**), reaching a peak conductance ratio (G/G_0) at ~ 100 mV of applied voltage
213 (**Figure 2E**). PZQ treatment (10 μ M, 10 minutes) was associated with an increase in
214 overall ionic permeability in muscle, and voltage-dependent responses did not persist
215 after PZQ treatment (**Figure 2F**). The existence of increased cation currents in muscle in
216 the presence of PZQ was shown by addition of La^{3+} (5 mM), which blocked these currents
217 (**Figure 2G**). These data show that PZQ impacts schistosome muscle physiology,
218 causing maintained depolarization associated with a loss of voltage-dependent ion
219 channel activity.

220
221 *Recordings from neural tissue.* In terms of neuroanatomy, the central nervous system of
222 adult schistosomes consists of a bi-lobed, anterior cephalic ganglion from which pairs of
223 longitudinal nerve cords project and run the length of the worm (Hyman, 1951, Halton and
224 Gustafsson, 1996, Halton and Maule, 2004). These longitudinal nerve cords are cross-

225 linked by transverse fibers along the body axis. A peripheral nervous system also
226 interconnects the major body organs. Visualization of these structures in a living worm is
227 challenging in the absence of a selective labelling method. However, we noted that
228 incubation (~30 mins) of intact worms with the Ca^{2+} -sensitive dye fluo-4 (fluo-4-NW)
229 resulted in compartmentalization of the fluorescent indicator within structures apparent
230 both anteriorly and in tracts running longitudinally down both sides of the worm (Figure 3
231 & Figure 4). The concentration of dye, above levels of fluorescence staining apparent in
232 surrounding tissues, was suggestive of neuronal structures with the region of anterior
233 fluorescence likely representing the cephalic ganglion and the lateral structures of
234 elevated fluorescence intensity reminiscent of the longitudinal nerve cords.

235

236 **Figure 3A** (top panel) shows examples of the anterior fluo-4 staining, with several cell
237 bodies visible in the enlarged panel (Figure 3A, bottom). Using the axial distribution of
238 fluo-4 fluorescence as a guide, the recording electrode was positioned with a
239 micromanipulator into close proximity to where fluorescence was resolved. Voltage steps
240 of 10mV (at a holding voltage of -80mV) were repeated at a frequency of 50Hz while the
241 recording electrode was incrementally advanced. When a change in resistance occurred,
242 negative pressure (10-20 mmHg) was applied, with a loose seal (0.2-0.4 $\text{G}\Omega$) being
243 formed in a minority of attempts (equating to a 10-20% success rate). Figure 3A shows a
244 representative current trace recorded from one putative anterior neuron, where addition
245 of PZQ (10 μM , at 40 mV) activated a sustained inward current. **Figure 3B** compares the
246 peak current before ($2.3 \pm 0.8\text{pA}$) and after PZQ ($46 \pm 6\text{pA}$).

247

248 Application of a voltage ramp (10 mV/s) after successful seal formation revealed a slight
249 voltage dependence in the clamped cell in the absence of PZQ (**Figure 3C**). After addition
250 of PZQ, currents were larger and linear, as the voltage-dependence was lost. Pronounced
251 noise was evident at higher voltages (Figure 3C), suggesting the presence of single
252 channel currents in the membrane. To investigate this further, we applied prolonged
253 voltage steps in the presence of PZQ (10 μ M, holding voltage of 0 mV, Cs⁺ as the
254 permeant inward cation, **Figure 3D**). The resulting current traces revealed single channel-
255 like events at different voltages (**Figure 3E**). At 0 mV, no channel like fluctuations were
256 observed (enlarged in Figure 3E). However, at larger positive and negative applied
257 voltages, recognizable single channel like-activity was evident. The single channel
258 current-voltage (I-V) plot was fitted with a linear regression, giving an estimated
259 conductance of 154 ± 7 pS (**Figure 3F**). The open state probability of the endogenous
260 PZQ-evoked channel fluctuations ($P_{open} = 0.49 \pm 0.06$) (**Figure 3G**, recorded at 80 mV)
261 were not statistically different from recordings made in *Sm*.TRPM_{PZQ} expressing HEK293
262 cells ($P_{open} = 0.52 \pm 0.07$).
263

264 A recent target-based screen identified an antagonist (ANT1, 1-(9H-fluoren-9-yl)-4-(5-
265 methyl-3-phenyl-1,2-oxazole-4-carbonyl)piperazine) of *Sm*.TRPM_{PZQ} that blocked PZQ-
266 evoked channel activation and worm contraction (Chulkov et al., 2021). Addition of ANT1
267 (10 μ M) to the bath solution decreased the PZQ-activated neuronal current (**Figure 3H**).
268 Cumulative measurements of peak current prior to, and after, ANT1 addition are shown
269 in **Figure 3I**. The endogenous single channel-like fluctuations evoked by PZQ in worm
270 neurons were also inhibited by addition of ANT1 (10 μ M) (**Figure 3J**). The biophysical and

271 pharmacological signature of the *in vivo* response therefore resembles the properties of
272 *Sm*.TRPM_{PZQ} measured *in vitro*.

273
274 Finally, recordings were attempted from the lateral nervous plexus visualized targeting
275 the fluo-4 fluorescence apparent along the longitudinal axis of the worm (**Figure 4A**).
276 These recordings were especially challenging given the smaller area of fluorescence
277 (success rate <5%). Following a successful seal onto 'excitable' tissue, an endogenous,
278 slow oscillatory behavior was observed (**Figure 4B**). In naïve conditions, the current
279 oscillations rapidly and regularly transitioned from minimum to maximum amplitude with
280 a regular period of 3.6 ± 0.1 s (Figure 4B). Application of PZQ (10 μ M) caused progressively
281 increasing noise, suppressing the amplitude, and disrupting the period of the oscillations
282 resulting in greater irregularity (**Figure 4C**). This was reflected in a broadening of the
283 wave period distribution (**Figure 4D**). Prolonged exposure to PZQ (~ 5 mins) caused the
284 oscillations to cease (Figure 4C, red).

285
286 In the native state, during the endogenous current oscillations, scrutiny of the linear rising
287 phase of the oscillation revealed no recognizable single channel activity (**Figure 4E**).
288 However, evaluation of the current traces after prolonged PZQ exposure revealed
289 distinguishable step-like fluctuations (Figure 4E). These signals, recorded at -160mV,
290 exhibited a single channel current of 19.1 ± 5.4 pA and an open probability, $P_{open} = 0.53 \pm$
291 0.17. These values are consistent with the properties displayed by *Sm*.TRPM_{PZQ}
292 measured in HEK293 under similar recording conditions (Chulkov et al., 2023a, Chulkov
293 et al., 2023b). Therefore, recordings from two different neuronal locales evidenced clear

294 single channel activity in response to the application of PZQ. The properties of this native
295 response were consistent with *Sm*.TRPM_{PZQ}.

296 **Discussion**

297 Here, we were able to resolve a native PZQ-evoked current in recordings from a live
298 schistosome worm. To the best of our knowledge, this represents the first report of an
299 endogenous ion channel current activated by PZQ in any parasitic flatworm. This current
300 was devolved at single channel resolution, and the biophysical properties of this response
301 (Cs^+ permeability, P_{open} and the linear I-V relationship matched the *in vitro*
302 electrophysiological characteristics of the ion channel, *Sm.TRPM_{PZQ}*, which has been
303 proposed as the parasite target of this drug (Park et al., 2019). However, the estimated
304 conductance of the native PZQ channel in anterior neurons was $154 \pm 7 \text{ pS}$ (Figure 3F).
305 This value is higher than the measured conductance of *Sm.TRPM_{PZQ}* ($112 \pm 12 \text{ pS}$) in a
306 similar solution (140mM Cs^+) after heterologously expression in HEK293 cells (Chulkov
307 et al., 2023a). This difference may be due to the different lipid/intracellular ion composition
308 of schistosome neurons versus human HEK293 cells, and the presence of additional
309 outward currents in the worm neuronal background. The native response to PZQ was
310 blocked by ANT1 (Figure 3), a validated antagonist of *Sm.TRPM_{PZQ}* (Chulkov et al.,
311 2021). Overall, the biophysical and pharmacological properties of the ion channel
312 underlying the native response to PZQ are comparable with known properties of
313 *Sm.TRPM_{PZQ}*.

314

315 PZQ-evoked currents were resolvable from two types of neuronal tissue (recordings that
316 targeted either the anterior ganglion or lateral nerve cords). This is consistent with single
317 cell RNAseq data localizing *Sm.TRPM_{PZQ}* expression to various types of neurons (Wendt
318 et al., 2020). Therefore, these data are consistent with a model where PZQ acts directly

319 on TRPM_{PZQ} expressed in neurons to effect neuronal depolarization. The lack of
320 desensitization of TRPM_{PZQ} in response to PZQ would ensure a long-lasting neuronal
321 depolarization, a sustained release of neurotransmitters and thereby protracted paralysis
322 of muscle tissue. A sustained PZQ-evoked depolarization of muscle is consistent with the
323 loss of voltage-sensitivity of currents in muscle after PZQ treatment (Figure 2). This
324 excitotoxic tsunami could also underpin damage to the tegument, analogous to an
325 inflammatory response in skin that is triggered by stimulus-evoked neurotransmitter
326 release from sensory neurons. TRPM channels are well known to regulate exocytosis in
327 various mammalian cell types (Brixel et al., 2010, Held et al., 2015).

328

329 This is the first application of invasive electrophysiology in parasitic flatworms. However,
330 dissected preparations have previously been optimized to allow resolution of single-
331 channel responses in various parasitic nematodes (Qian et al., 2006, Robertson et al.,
332 2011). Here, the challenges inherent to the invasive electrophysiology approach merit a
333 few caveats.

334

335 First, sampling bias. Despite efforts to record at different locations in the worm and at
336 various depths of recording electrode penetration, this method is of course not a
337 comprehensive analysis of all types of cells present in the worm. For example, while we
338 did not observe a *direct* effect of PZQ on worm muscle cells, it is feasible that these
339 recordings have not captured the needed diversity of different muscle cell types. If
340 TRPM_{PZQ} is expressed only in a subtype of muscle cells (as suggested by single cell
341 RNAseq studies (Wendt et al., 2020)), such cells may not have been sampled by our

342 assays. However, noting this qualification, TRPM_{PZQ} single channel activity was never
343 resolved in our assays from muscle cells where voltage-activated currents were apparent
344 (Figure 2). Similarly, recordings from tegument-derived vesicles were also negative for
345 responses to PZQ, even though other channels can be resolved (Robertson et al., 1997).
346 But again, it is possible that these membrane vesicles do not capture the diversity of
347 proteins residing within the tegument. The conclusion that PZQ is directly neuroactive is
348 none-the-less consistent with prior attempts that failed to resolve PZQ-evoked currents in
349 recordings from isolated schistosome muscle cells, or the accessible tegument surface.
350 This is especially notable in light of the large, PZQ-evoked conductance of TRPM_{PZQ}
351 which should make this current easy to resolve.

352
353 Second, assignment of neuronal identity. Caution is needed in qualifying that TRPM_{PZQ}
354 recordings are made from 'putative' neuronal tissue. All labeling was performed using a
355 vital dye rather than a genetically-encoded marker that could unambiguously mark
356 neuronal tissue as used, for example, in genetically tractable models. While *in situ*
357 recordings have long been established with *C. elegans* (Goodman et al., 1998, Qian et
358 al., 2008), progress has been facilitated in this free-living nematode model by various
359 advantages, most notably a well-optimized transgenic toolkit for cell labelling coupled with
360 facile genetic knockout methods (Francis et al., 2003, Goodman et al., 2012). This
361 remains a limitation of the (parasitic) flatworm model as a well-established, routine
362 transgenic methodology is yet to gain traction (but see (Ittiprasert et al., 2023, Weill et al.,
363 2023)). This therefore necessitated the cruder approach of targeting an area of
364 fluorescence signal in a live worm with a recording electrode. Consequently, it is

365 impossible to know with absolute certainty that measurements are truly made from
366 neurons. This is relevant for recordings made from the anterior ganglion area, where no
367 obvious electrical activity was apparent prior to PZQ addition. Even for recordings from
368 the longitudinal nerve cord tissue, where an endogenous oscillatory current was observed
369 (Figure 4), this still cannot unambiguously be attributed to motor neurons, the nerve cord,
370 or the associated nerve plexus. The ability to record this endogenous oscillatory activity
371 does provide opportunity to dissect the underlying ion channels mediating this waveform
372 in future work.

373

374 Recognition of both these methodological caveats does not detract from the key advance
375 reported in this study - the definition of a native current evoked by PZQ in a live
376 schistosome, captured at single channel resolution. The properties of this native current
377 are consistent with those of *Sm.TRPMPZQ* measured in heterologous expression systems.

378 **Acknowledgements.**

379

380 **Author's Contributions.** EC performed electrophysiological studies in schistosome
381 worms. CMR performed other analyses, including worm isolation, drug treatments and
382 microscopy. JSM wrote the initial draft of the manuscript and supervised this project. All
383 authors worked on revisions and approved the final version of the manuscript.

384

385 **Financial Support.** This work was supported by the National Institutes of Health Grant
386 R01-AI145871 (J.S.M.).

387

388 **Competing Interests.** The authors declare there are no conflicts of interest.

389

390 **Ethical Standards.** Isolation of schistosome worms followed ethical regulations
391 approved by the MCW IACUC committee.

392

393 **References**

394 Andrews, P., Thomas, H., Pohlke, R. & Seubert, J. (1983). Praziquantel. *Med Res Rev*, 3, 147-
395 200.

396 Barker, L. R., Bueding, E. & Timms, A. R. (1966). The possible role of acetylcholine in
397 *Schistosoma mansoni*. *Br J Pharmacol Chemother*, 26, 656-65.

398 Becker, B., Mehlhorn, H., Andrews, P., Thomas, H. & Eckert, J. (1980). Light and electron
399 microscopic studies on the effect of praziquantel on *Schistosoma mansoni*, *Dicrocoelium*
400 *dendriticum*, and *Fasciola hepatica* (Trematoda) *in vitro*. *Z Parasitenkd*, 63, 113-28.

401 Blair, K. L., Day, T. A., Lewis, M. C., Bennett, J. L. & Pax, R. A. (1991). Studies on muscle cells
402 isolated from *Schistosoma mansoni*: a Ca(2+)-dependent K⁺ channel. *Parasitology*, 102 Pt
403 2, 251-8.

404 Bricker, C. S., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument and
405 sub-tegumental compartments of male *Schistosoma mansoni*: anatomical location of
406 sources of electrical potentials. *Parasitology*, 85 (Pt 1), 149-61.

407 Brixel, L. R., Monteilh-Zoller, M. K., Ingenbrandt, C. S., Fleig, A., Penner, R., Enklaar, T., Zabel,
408 B. U. & Prawitt, D. (2010). TRPM5 regulates glucose-stimulated insulin secretion. *Pflugers
409 Arch*, 460, 69-76.

410 Chan, J. D., Zarowiecki, M. & Marchant, J. S. (2013). Ca(2)(+) channels and praziquantel: a
411 view from the free world. *Parasitol Int*, 62, 619-28.

412 Chulkov, E. G., Isaeva, E., Stucky, C. L. & Marchant, J. S. (2023a). Use the force, fluke: Ligand-
413 independent gating of *Schistosoma mansoni* ion channel TRPM(PZQ). *Int J Parasitol*,
414 10.1016/j.ijpara.2022.11.004.

415 Chulkov, E. G., Palygin, O., Yahya, N. A., Park, S. K. & Marchant, J. S. (2023b).
416 Electrophysiological characterization of a schistosome transient receptor potential channel
417 activated by praziquantel. *Int J Parasitol*, 53, 415-425.

418 Chulkov, E. G., Smith, E., Rohr, C. M., Yahya, N. A., Park, S. K., Scampavia, L., Spicer, T. P. &
419 Marchant, J. S. (2021). Identification of novel modulators of a schistosome transient
420 receptor potential channel targeted by praziquantel. *PLoS Negl Trop Dis*, 15, e0009898.

421 Day, T. A., Bennett, J. L. & Pax, R. A. (1992). *Schistosoma mansoni*: patch-clamp study of a
422 nonselective cation channel in the outer tegumental membrane of females. *Exp Parasitol*,
423 74, 348-56.

424 Day, T. A., Kim, E., Bennett, J. L. & Pax, R. A. (1995). Analysis of the kinetics and voltage-
425 dependency of transient and delayed K⁺ currents in muscle fibers isolated from the flatworm
426 *Schistosoma mansoni*. *Comp Biochem Physiol A Physiol*, 111, 79-87.

427 Day, T. A., Orr, N., Bennett, J. L. & Pax, R. A. (1993). Voltage-gated currents in muscle cells of
428 *Schistosoma mansoni*. *Parasitology*, 106 (Pt 5), 471-7.

429 Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980a). Praziquantel, potassium and 2,4-
430 dinitrophenol: analysis of their action on the musculature of *Schistosoma mansoni*. *Eur J*
431 *Pharmacol*, 64, 31-8.

432 Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980b). *Schistosoma mansoni*: characterization of
433 the electrical potential from the tegument of adult males. *Exp Parasitol*, 49, 353-65.

434 Francis, M. M., Mellem, J. E. & Maricq, A. V. (2003). Bridging the gap between genes and
435 behavior: recent advances in the electrophysiological analysis of neural function in
436 *Caenorhabditis elegans*. *Trends Neurosci*, 26, 90-9.

437 Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992). The nervous
438 systems of helminths as targets for drugs. *J Parasitol*, 78, 215-30.

439 Goodman, M. B., Hall, D. H., Avery, L. & Lockery, S. R. (1998). Active currents regulate
440 sensitivity and dynamic range in *C. elegans* neurons. *Neuron*, 20, 763-72.

441 Goodman, M. B., Lindsay, T. H., Lockery, S. R. & Richmond, J. E. (2012). Electrophysiological
442 methods for *Caenorhabditis elegans* neurobiology. *Methods Cell Biol*, 107, 409-36.

443 Greenberg, R. M. (2014). Ion channels and drug transporters as targets for anthelmintics. *Curr*
444 *Clin Microbiol Rep*, 1, 51-60.

445 Halton, D. & Gustafsson, M. (1996). Functional morphology of the platyhelminth nervous
446 system. *Parasitology*, 113, S47-S72.

447 Halton, D. W. & Maule, A. G. (2004). Functional morphology of the platyhelminth nervous
448 system. *Parasitology*, 82, 316-333.

449 Held, K., Kichko, T., De Clercq, K., Klaassen, H., Van Bree, R., Vanherck, J. C., Marchand, A.,
450 Reeh, P. W., Chaltin, P., Voets, T. & Vriens, J. (2015). Activation of TRPM3 by a potent
451 synthetic ligand reveals a role in peptide release. *Proc Natl Acad Sci U S A*, 112, E1363-72.

452 Hyman, L. H. (1951). The invertebrates: Platyhelminthes and Rhynchocoela, the acoelomate
453 Bilateria. *The invertebrates: Platyhelminthes and Rhynchocoela, the acoelomate Bilateria*,
454 2.

455 Ittiprasert, W., Moescheid, M. F., Chaparro, C., Mann, V. H., Quack, T., Rodpai, R., Miller, A.,
456 Wistiphongpun, P., Buakaew, W., Mentink-Kane, M., Schmid, S., Popratiloff, A., Grevelding,
457 C. G., Grunau, C. & Brindley, P. J. (2023). Targeted insertion and reporter transgene activity
458 at a gene safe harbor of the human blood fluke, Schistosoma mansoni. *bioRxiv*,
459 2022.09.02.506379.

460 Jeziorski, M. C. & Greenberg, R. M. (2006). Voltage-gated calcium channel subunits from
461 platyhelminths: potential role in praziquantel action. *Int J Parasitol*, 36, 625-32.

462 Kim, E., Day, T. A., Bennett, J. L. & Pax, R. A. (1995a). Cloning and functional expression of a
463 Shaker-related voltage-gated potassium channel gene from *Schistosoma mansoni*
464 (Trematoda: Digenea). *Parasitology*, 110 (Pt 2), 171-80.

465 Kim, E., Day, T. A., Marks, N. J., Johnston, R. N., Halton, D. W., Shaw, C., Chen, G. Z.,
466 Bennett, J. L. & Pax, R. A. (1995b). Immunohistochemical localization of a Shaker-related
467 voltage-gated potassium channel protein in *Schistosoma mansoni* (Trematoda: Digenea).
468 *Exp Parasitol*, 81, 421-9.

469 Mcveigh, P., Mccusker, P., Robb, E., Wells, D., Gardiner, E., Mousley, A., Marks, N. J. & Maule,
470 A. G. (2018). Reasons to Be Nervous about Flukicide Discovery. *Trends Parasitol*, 34, 184-
471 196.

472 Mendonca-Silva, D. L., Novozhilova, E., Cobbett, P. J., Silva, C. L., Noel, F., Totten, M. I.,
473 Maule, A. G. & Day, T. A. (2006). Role of calcium influx through voltage-operated calcium
474 channels and of calcium mobilization in the physiology of *Schistosoma mansoni* muscle
475 contractions. *Parasitology*, 133, 67-74.

476 Park, S. K., Friedrich, L., Yahya, N. A., Rohr, C. M., Chulkov, E. G., Maillard, D., Rippmann, F.,
477 Spangenberg, T. & Marchant, J. S. (2021). Mechanism of praziquantel action at a parasitic
478 flatworm ion channel. *Sci Transl Med*, 13, eabj5832.

479 Park, S. K., Gunaratne, G. S., Chulkov, E. G., Moehring, F., Mccusker, P., Dosa, P. I., Chan, J.
480 D., Stucky, C. L. & Marchant, J. S. (2019). The antihelmintic drug praziquantel activates a
481 schistosome transient receptor potential channel. *J Biol Chem*, 294, 18873-18880.

482 Park, S. K. & Marchant, J. S. (2020). The Journey to Discovering a Flatworm Target of
483 Praziquantel: A Long TRP. *Trends Parasitol*, 36, 182-194.

484 Pax, R., Bennett, J. L. & Fetterer, R. (1978). A benzodiazepine derivative and praziquantel:
485 effects on musculature of *Schistosoma mansoni* and *Schistosoma japonicum*. *Naunyn
486 Schmiedebergs Arch Pharmacol*, 304, 309-15.

487 Pax, R. A., Day, T. A., Miller, C. L. & Bennett, J. L. (1996). Neuromuscular physiology and
488 pharmacology of parasitic flatworms. *Parasitology*, 113 Suppl, S83-96.

489 Qian, H., Martin, R. J. & Robertson, A. P. (2006). Pharmacology of N-, L-, and B-subtypes of
490 nematode nAChR resolved at the single-channel level in *Ascaris suum*. *FASEB J*, 20, 2606-
491 8.

492 Qian, H., Robertson, A. P., Powell-Coffman, J. A. & Martin, R. J. (2008). Levamisole resistance
493 resolved at the single-channel level in *Caenorhabditis elegans*. *FASEB J*, 22, 3247-54.

494 Robertson, A. P., Martin, R. J. & Kusel, J. R. (1997). A vesicle preparation for resolving single-
495 channel currents in tegument of male *Schistosoma mansoni*. *Parasitology*, 115 (Pt 2), 183-
496 92.

497 Robertson, A. P., Puttachary, S. & Martin, R. J. (2011). Single-channel recording from adult
498 *Brugia malayi*. *Invert Neurosci*, 11, 53-7.

499 Semeyn, D. R., Pax, R. A. & Bennett, J. L. (1982). Surface electrical activity from *Schistosoma
500 mansoni*: a sensitive measure of drug action. *J Parasitol*, 68, 353-62.

501 Silk, M. & Spence, I. (1969). Ultrastructural studies of the blood fluke *Schistosoma mansoni*. II.
502 The musculature. *South African Journal of Medical Sciences*, 34.

503 Sulbaran, G., Alamo, L., Pinto, A., Marquez, G., Mendez, F., Padron, R. & Craig, R. (2015). An
504 invertebrate smooth muscle with striated muscle myosin filaments. *Proceedings of the*
505 *National Academy of Sciences of the United States of America*, 112, E5660-8.

506 Thompson, D. P., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument
507 and sub- tegumental compartments of male *Schistosoma mansoni*: an analysis of
508 electrophysiological properties. *Parasitology*, 85 (Pt 1), 163-78.

509 Waechtler, A., Cezanne, B., Maillard, D., Sun, R., Wang, S., Wang, J. & Harder, A. (2023).
510 Praziquantel - 50 years of research. *ChemMedChem*, e202300154.

511 Weill, U., Hall, R. N., Drees, L., Wang, B. & Rink, J. C. 2023. mRNA Transfection of *S.*
512 *mediterranea* for Luminescence Analysis. *In: GENTILE, L. (ed.) Schmidtea Mediterranea: Methods and Protocols*. New York, NY: Springer US.

513

514 Wendt, G., Zhao, L., Chen, R., Liu, C., O'donoghue, A. J., Caffrey, C. R., Reese, M. L. & Collins,
515 J. J., 3rd (2020). A single-cell RNA-seq atlas of *Schistosoma mansoni* identifies a key
516 regulator of blood feeding. *Science*, 369, 1644-1649.

517 Wilson, R. A. & Jones, M. K. (2021). Fifty years of the schistosome tegument: discoveries,
518 controversies, and outstanding questions. *Int J Parasitol*, 51, 1213-1232.

519

520

521 **Figure Legends**

522

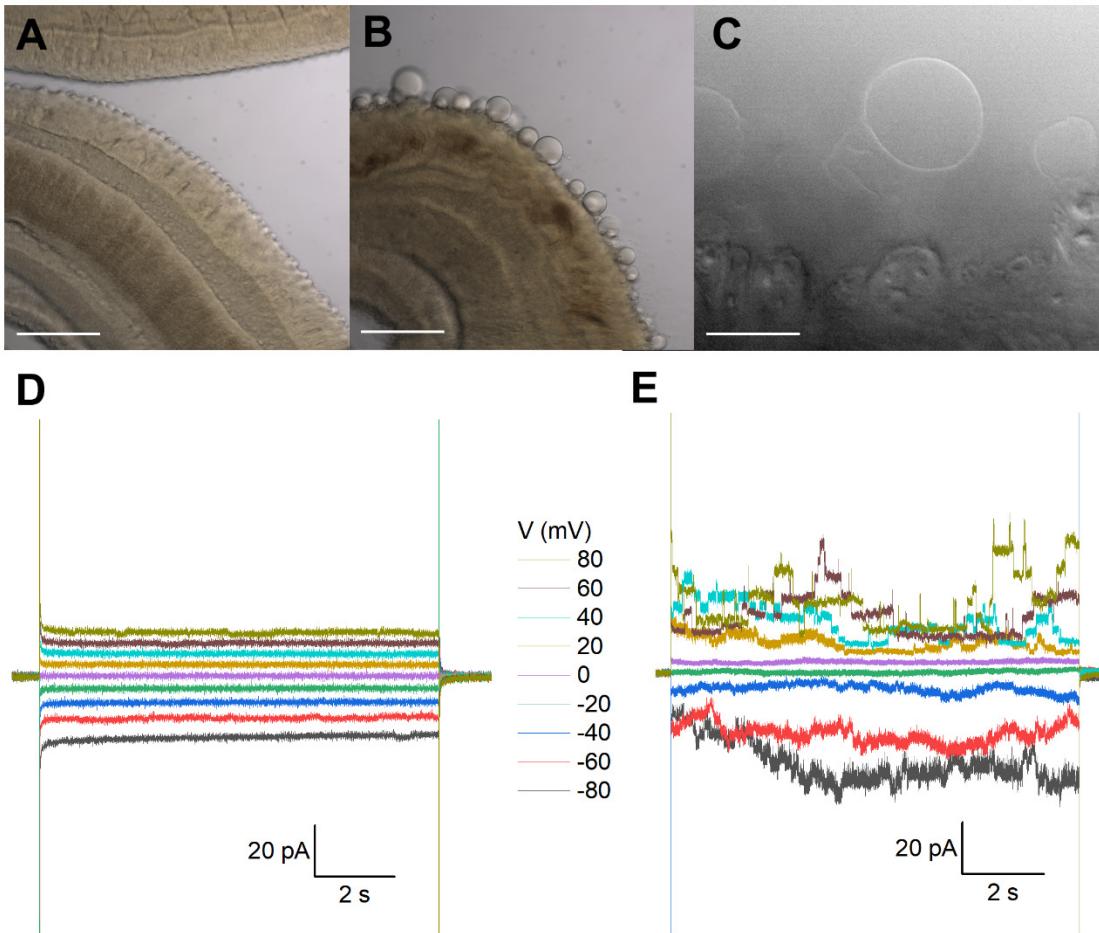
523 **Figure 1. Recordings from tegumental vesicles derived by treatment of *S. mansoni***
524 **with PZQ. (A)** Brightfield image showing a region of an adult, male *S. mansoni* worm
525 under control conditions. **(B)** Brightfield image of an adult, male *S. mansoni* worm after
526 treatment with PZQ (5 μ M, 24 hr) to illustrate blebbing of the tegument. Scalebar, 200 μ m
527 (A&B). **(C)** Examples of giant unilamellar vesicles formed from the worm tegument after
528 exposure of an adult *S. mansoni* worm to PZQ (10 μ M, 15 min). Scalebar, 50 μ m. **(D)**
529 Representative current traces from a vesicle-attached patch at different voltages. **(E)**
530 Representative current traces from a cell-attached patch from a HEK293 cell co-
531 transfected with *Sm*.TRPM_{PZQ} and GFP at different voltages. In all recordings in this
532 figure, bath solution: HBSS with PZQ (10 μ M); pipette solution, 140mM CsMeSO₃, 10mM
533 HEPES, 1mM EGTA, pH 7.4.

534

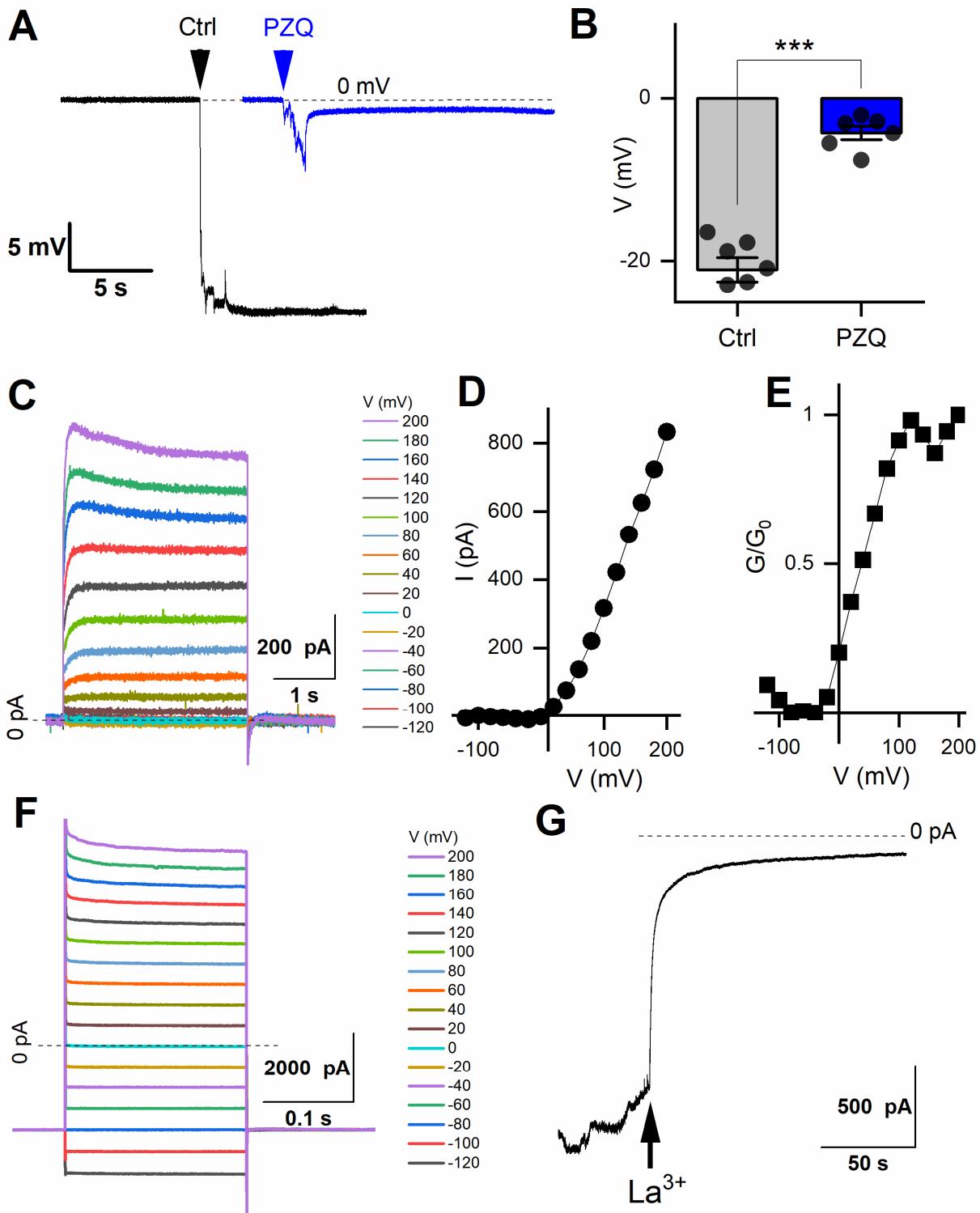
535 **Figure 2. Recordings from schistosome muscle. (A)** Representative traces of
536 electrical potentials (mV) registered upon penetration of the dorsal surface of an adult
537 schistosome worm under either control ('Ctrl') conditions (vehicle, 0.1% DMSO) or in the
538 presence of PZQ (10 μ M in bath solution, 'PZQ'). Arrow indicates the moment of electrode
539 penetration. With the electrode positioned in the bath a stable potential (0 mV) was
540 resolved before penetration into the muscle layer. Bath solution: HBSS (20 mM HEPES,
541 100 μ M carbachol, pH 7.4). Pipette solution: (3M KCl). **(B)** Steady-state value of the peak
542 electrical potential recorded (mean \pm SE, n=6 worms for each group) in these assays (***,
543 p<0.001). **(C)** Representative current traces recorded from a worm muscle at different
544 voltage steps from a holding voltage of -80mV. **(E)** Normalized slope conductance (G/G_0 ,
545 where G is conductance at a specific voltage and G_0 is the maximum slope conductance)
546 versus voltage plot from worm muscle recordings. **(F)** Representative current traces from
547 worm muscle at different voltage steps from a holding voltage of -80mV recorded with
548 PZQ in the bath solution. **(G)** Representative current trace showing blockade of currents
549 in worm muscle exposed to PZQ following addition of 5 mM LaCl₃ (arrow) to the bath.
550 Holding voltage -80 mV. For all experiments in this figure, recordings were made in bath

551 solution: HBSS with 100 μ M carbachol; pipette solution: 140mM CsMeSO₃, 10mM
552 HEPES, 1mM EGTA, pH 7.4.

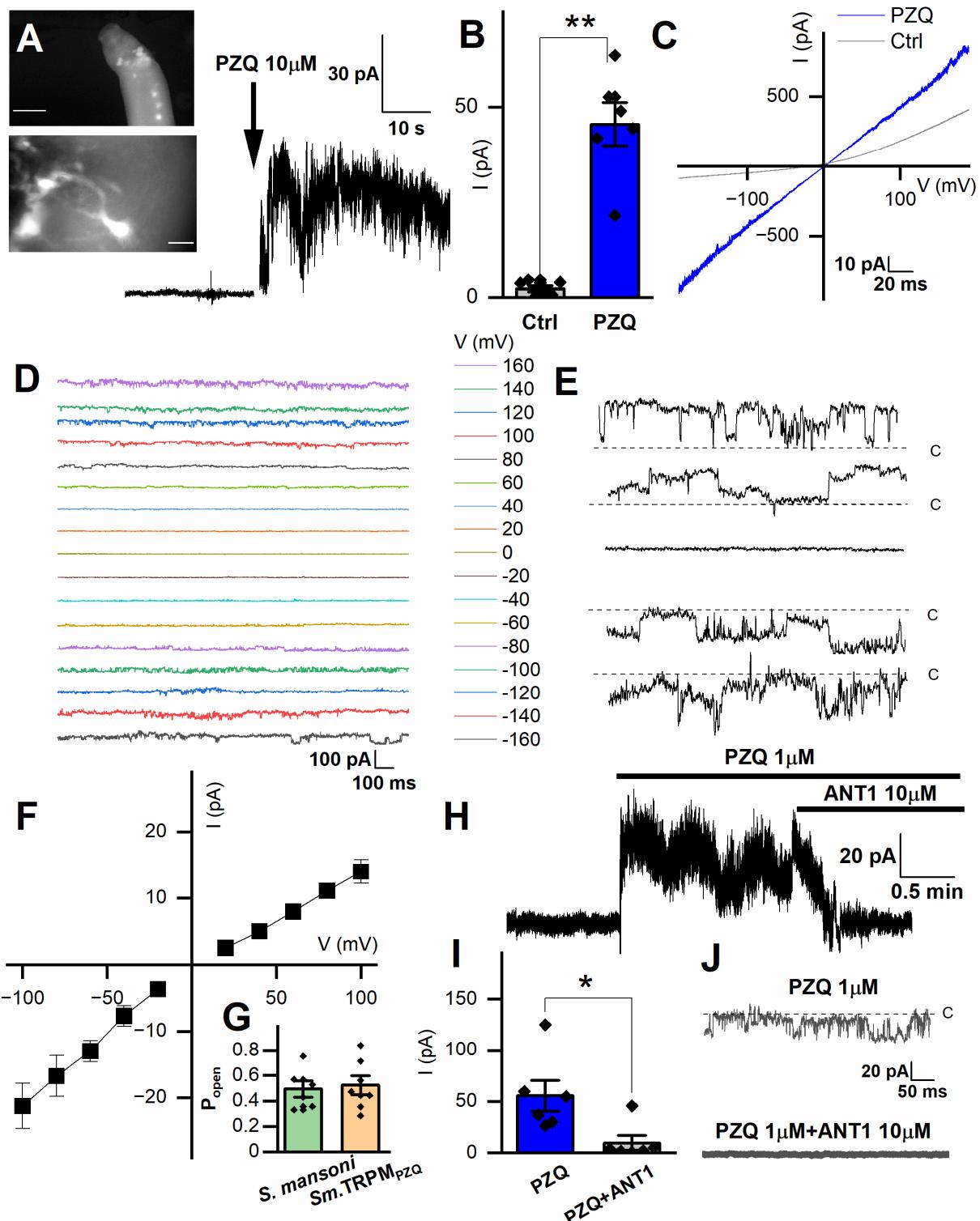
553


554 **Figure 3. Records targeting the anterior ganglion.** **(A)** *Inset top*, image showing fluo-
555 4 fluorescence resolved in the anterior region of a male, adult schistosome worm.
556 Scalebar, 500 μ m. *Inset bottom*, enlarged image of an example cell body with extended
557 processes. Scalebar, 10 μ m. Representative recording from an adult male *S. mansoni*
558 anterior neuron prior to and after addition of PZQ (10 μ M, *arrow*). **(B)** Maximum plateau
559 current (I, pA) before ('Ctrl') and after addition of PZQ (10 μ M), ** p≤0.01, n≥6. **(C)**
560 Representative current (I) – voltage (V) plot in the absence ('Ctrl') and in the presence of
561 PZQ (10 μ M). **(D)** Representative current traces recorded at different voltages from an
562 anterior neuron patch in the presence of PZQ (10 μ M). **(E)** Single channel like fluctuations
563 recorded from an anterior worm neuron in the presence of PZQ (10 μ M) at 120 mV (top),
564 80 mV, 0 mV, -80 mV and -120 mV (bottom). **(F)** Current (I) – voltage (V) plot from single
565 channel like unitary currents recorded from the anterior worm ganglion. **(G)** Open
566 probability (P_{open}) of single channel fluctuations compared between *S. mansoni* and
567 HEK293 cells expressing *Sm.TRPMPZQ* in the presence of PZQ (10 μ M) in the bath
568 solution. **(H)** Representative current trace from an anterior *S. mansoni* neuron before and
569 after addition of PZQ (1 μ M), and then addition of ANT1 (10 μ M). **(I)** Mean steady current
570 in the presence of PZQ (1 μ M) or in the presence of PZQ (1 μ M) and ANT1 (10 μ M). p≤0.05,
571 n≥6. **(J)** Representative current trace from worm neurons at -80 mV in the presence of
572 PZQ (1 μ M) or PZQ (1 μ M) and ANT1 (10 μ M). For all experiments in this figure, recordings
573 were made in bath solution: HBSS; pipette solution: 140mM CsMeSO₃, 10mM HEPES,
574 1mM EGTA, pH 7.4.

575


576 **Figure 4. Recordings targeting the longitudinal nerve cords.** **(A)** Image showing fluo-
577 4 fluorescence resolved along the body of a male, adult schistosome worm. Scalebar,
578 500 μ m. **(B)** Representative current oscillation recorded from the lateral nerve cord
579 resolved after a successful seal is made into neuronal tissue. **(C)** Effect of PZQ (10 μ M)
580 on the endogenous oscillation evident by comparing the waveform before ('Ctrl'),
581 immediately after ('PZQ-initial', blue) and after prolonged (>5min, red) drug exposure

582 ('PZQ-prolonged'). **(D)** Peak-to-peak period (τ , sec) of the current oscillations recorded in
583 the absence ('Ctrl') or after addition of PZQ (10 μ M). Data are from three separate
584 recordings in different worms. **(E)** Representative trace of current from worm lateral cord
585 neurons recorded at -160 mV either in the absence ('Ctrl', slope baseline subtracted) or
586 prolonged presence of 10 μ M PZQ ('PZQ-prolonged'). For all experiments in this figure,
587 recordings were made in bath solution: HBSS; pipette solution: 140mM CsMeSO₃, 10mM
588 HEPES, 1mM EGTA, pH 7.4.


Figure 1

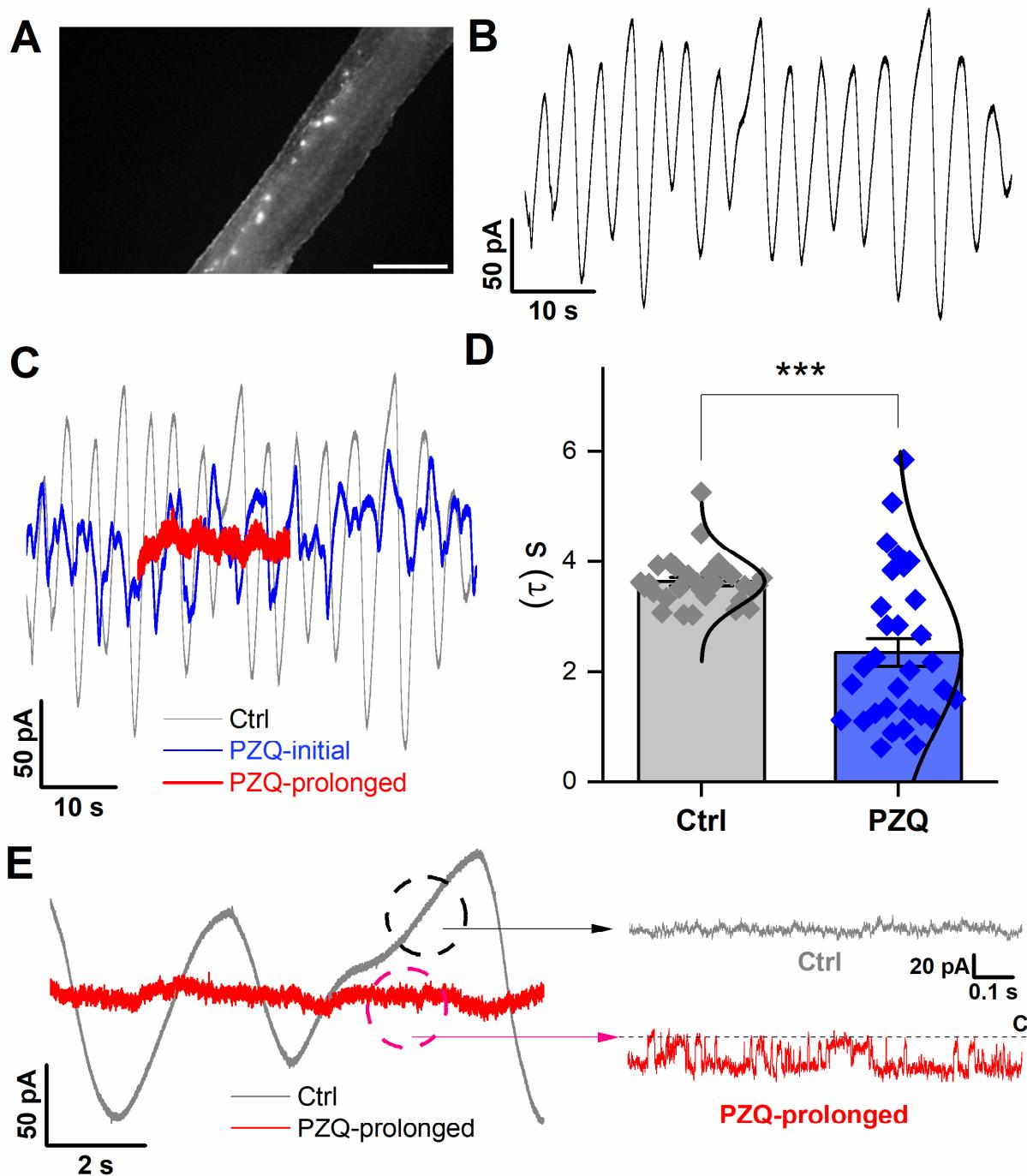

Figure 2

Figure 3

Figure 4

