

1 **Mutational order and epistasis determine the consequences of *FBXW7***

2 **mutations during colorectal cancer evolution**

Dedrick Kok Hong Chan^{1,2}, Amit Mandal¹, Yi Zhou¹, Scott David Collins¹, Richard Owen³, James Bundred¹, Hannah Fuchs³, Sabrina James³, Iolanda Vendrell^{4,5}, Sarah Flannery⁴, David Fawkner-Corbett^{1,6}, Jacob Househam⁷, Trevor A Graham⁷, Roman Fischer^{4,5}, Alison Simmons⁶, Xin Lu³, Simon James Alexander Buczacki^{*1}

7

⁸ ¹ Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom

⁹ ² NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, Singapore

³ Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

⁴ Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

14 ⁵Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine,
15 University of Oxford, Oxford, United Kingdom

¹⁶ ⁶MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University
¹⁷ of Oxford, John Radcliffe Hospital, Headington, Oxford. United Kingdom

18 ⁷ Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.

19

20 Running title: *FBXW7* and mutational order in CRC evolution

21 Correspondence to:

22 simon.buczacki@nds.ox.ac.uk

23 +44 (0) 7885 433458

24 **Summary**

25 Somatic driver mutations, in genes such as *FBXW7*, have been discovered in phenotypically normal
26 colonic tissue, however their role in cancer initiation remains elusive. Using normal and gene-edited
27 patient-derived human colon organoids as models of early tumour evolution we observed that
28 *FBXW7*^{+/−} mutations exerted an epistatic effect on subsequent transcription depending on the
29 mutational background of the cell. Specifically, the timing of acquiring an *FBXW7*^{+/−} mutation
30 respective to an *APC* mutation, led to profound phenotypic and transcriptomic differences. When
31 *FBXW7* was mutated before *APC*, a near-normal cell state was maintained alongside repression of the
32 *APC* transcriptional response. However, when *APC* was mutated before *FBXW7*, cells acquired
33 classical cancer-stem cell features. Single-cell RNA sequencing revealed that mutation of *FBXW7* in
34 normal tissue subtly switched cells from adult to a foetal/regenerative stem cell state. Further analysis
35 using transposase-accessible chromatin sequencing identified this cellular plasticity was driven by
36 changes in chromatin accessibility of transcriptional start site regions associated with TEAD, SNAI1
37 and AP-1 motifs, which in turn activate the foetal-like state. Taken together, we demonstrate a critical
38 role of *FBXW7* mutations in preventing colorectal cancer initiation and provide exemplar evidence for
39 the importance of epistasis and mutational order in cancer biology.

40 **Introduction**

41 Somatic mutations have been detected in a range of normal human tissues, including the liver [1],
42 oesophagus [2], skin [3], and endometrium [4]. Similarly, a catalogue of somatic mutations in normal
43 human colonic epithelium using whole genome sequencing of two thousand crypts, strikingly found
44 mutated cancer genes in phenotypically normal colonic epithelium [5]. In healthy colon such
45 mutations form a distinct category from initiating cancer driving mutations in genes such as *TP53* or
46 *APC*, which are ubiquitously found in colorectal cancer. *FBXW7* is a gene within the catalogue of
47 mutations observed in normal colonic epithelium but its role in cancer initiation has not yet been
48 investigated. *FBXW7* is a key component of the Skp1-Cdc53/Cullin-F-box-protein complex (SCF/β-
49 TrCP), an E3 ubiquitin ligase responsible for marking proteins by ubiquitination and targeting them
50 for proteasomal degradation [6]. Substrates of *FBXW7* are regulators of gene transcription, cell cycle
51 progression or activators of signalling pathways, thus making *FBXW7* a pivotal tumour suppressor
52 gene. Given *FBXW7* appears to acquire mutations before the widely accepted initiating mutations
53 associated with colorectal cancer such as *APC*, *TP53*, *SMAD4* or *KRAS*, raises the possibility that
54 mutated *FBXW7* could play a critical role in early cancer evolution. Furthermore, the timing of the
55 *FBXW7* mutation suggests that the order of mutation acquisition may have important effects on
56 phenotype.

57 Recently, there has also been significant interest in the effects of epigenetic plasticity in cancer
58 evolution. In models of early pancreatic cancer, *KRAS*-mutant cells were shown to demonstrate
59 distinct chromatin accessibility patterns which could predict divergence into either a benign or
60 malignant fate [7]. In colorectal cancer, the impact of epigenetic changes on tumour initiation are
61 beginning to be uncovered. Johnstone et al. highlighted the importance of the three-dimensional
62 architecture, in the form of chromatin loops, topologically activating domains and large-scale
63 compartments, of DNA in restricting malignant progression [8]. A more recent study by Heide et al.
64 found chromatin modifier genes are actively mutated in the early initiation of colorectal cancer and
65 can result in the accumulation of further genetic mutations which herald carcinogenesis [9].

66 In this study, we used normal human adult and foetal colonic organoids, applying CRISPR-Cas9 gene
67 editing to explore the cell autonomous and gene-interactive effects of an *FBXW7* mutation.
68 Combining gene editing with organoid culture fashions a powerful tool ideal for studying the
69 functional consequences of driver mutations in normal tissue for it allows specific mutations to be
70 introduced into tissue devoid of genetic perturbation. By sequentially introducing multiple distinct
71 mutations into the same cell, we also aimed to determine relationships arising between cells with
72 mutant *FBXW7* and the acquisition of subsequent cancer driver mutations. We found that cells with
73 mutant *FBXW7* were transcriptionally like wildtype cells but primed towards a foetal stem cell state.
74 Further, we observed that an initial *FBXW7* mutation repressed the transcriptional effect of a
75 subsequent *APC* mutation, resulting in retention of the near-wildtype phenotype. Whereas when we
76 reversed this order of mutations, despite identical genotype, we generated cancer stem cell organoids.
77 We uncovered this profound mutational order-based cellular plasticity to be driven by epigenetic
78 differences in both global and local chromatin accessibility. Here we provide direct evidence that
79 epistasis, and the order of mutations, as much as the mutations themselves, are key in determining
80 phenotypes.

81

82 **Results**

83 **Mutant *FBXW7*^{-/-} recapitulate known effects on downstream targets**

84 Patient-derived adult stem cell wildtype organoids (W) were generated from normal colon tissue of
85 patients undergoing surgery for colorectal cancer. CRISPR-Cas9 editing was used to generate
86 *FBXW7*^{-/-} organoids (F) [10]. Our gene editing strategy utilizes three sgRNAs to introduce large
87 deletions at exon 2 of the *FBXW7* gene. F and W organoids possessed similar morphology (Fig. 1a).
88 We validated knockout of the *FBXW7* gene using western blot (Fig. 1b), and immunofluorescence
89 (Fig. 1c). Western blotting of known *FBXW7* targets, found upregulation of the expected substrates
90 upon loss of *FBXW7* (Fig. 1d).

91 To characterise transcriptional differences between F and W organoids, we performed bulk-RNA
92 sequencing (bulk-RNAseq) (Fig. 1e). Using a cut-off of $\log_2\text{FC} \leq -1.5$ or ≥ 1.5 , and adjusted p -value <
93 0.05, F and W were transcriptionally similar with only two genes found differentially expressed.
94 Proteomic comparison of F and W organoids showed a larger number of differentially expressed
95 proteins (n=1097, adjusted p -value < 0.05) however most of those identified showed only small fold
96 changes. When applying the same fold change cut-off as used in bulk-RNAseq, this dropped to 31
97 proteins ($\log_2\text{FC} \leq -1.5$ or ≥ 1.5 , and adjusted p -value < 0.05) (Fig. 1f). Gene set enrichment analysis
98 (GSEA) of the top 200 upregulated proteins in F organoids and the ranked bulk-RNAseq gene list
99 comparing F and W organoids showed strong enrichment (Fig. 1g). Pathway analysis of the ranked
100 proteins revealed 42 significant Reactome pathways (5 enriched and 37 depleted: adjusted p -value <
101 0.01 and NES ≤ -2 or ≥ 2). Interestingly, histone-related proteins contributed significantly (Mann-
102 Whitney p -value = 1.64e-07) to the depleted Reactome pathways (Fig. 1h,i). The average recurrence
103 of proteins H2AC21, H2AC6, H2AC7, H2AX, H2AZ1, H2BC11, H2BC17, H2BC26, H2BC3,
104 H2BC5, H3-3A and H4C1 was 24.9, whereas it was 1.7 only for the remaining set of total 270
105 proteins contributing to the leading-edge of the enriched/ depleted pathways (Extended Data Table 1).
106 In summary these analyses confirm *FBXW7*^{-/-} mutations on a wildtype background have a subtle effect
107 on phenotype and transcriptome although proteomic changes were apparent.

108

109 ***FBXW7*^{-/-} mutants do not exhibit a competitive proliferative advantage over wildtype organoids**

110 Given the transcriptional similarities between W and F organoids, we interrogated the possibility for
111 competitive or cooperative effects by co-culturing F organoids with W organoids, analogous to the
112 recently described supercompetitor effect seen with *Apc*^{-/-} intestinal organoids [11]. *APC*^{-/-} (A)
113 organoids were also generated by targetting the hotspot region using CRISPR-Cas9 editing to
114 introducing a biallelic frameshift indel at codon 1499. A were co-cultured with W organoids and A
115 were found to have a significant proliferative advantage in concordance with previous murine data
116 (Extended Data Fig. 1a,c,d). F organoids however did not demonstrate any advantage when co-
117 cultured with W organoids and transcriptional profiling showed minimal differences between W:W-

118 cocultured and F:Fcocultured organoids (Extended Data Fig. 1b, e-i) in contrast to our previous
119 findings in colorectal cancer cell lines [12].

120

121 ***FBXW7* mutation provides evidence of epistasis**

122 In light of the lack of a cooperative/competitive interaction with wildtype cells and building on our
123 earlier finding that F organoids were transcriptionally similar to W organoids, we generated an
124 organoid model mirroring the polypoidal and cancerous phases of CRC carcinogenesis (Fig. 2a). A
125 organoids represent the polypoidal, precancerous phase, while a *TP53*^{-/-} mutation introduced into A
126 organoids, making a double knockout *APC*^{-/-} / *TP53*^{-/-} mutation, generated AT organoids, representing
127 the cancerous phase. Successful targeting was confirmed using Sanger sequencing and western
128 blotting (Extended Data Fig. 2a). On each of these A and AT organoids, an *FBXW7* mutation was then
129 introduced, generating AF and ATF organoids respectively (Fig. 2b) (Extended Data Table 2).

130 As previously described, A organoids were morphologically distinct from W organoids, growing large
131 and cystic [13, 14]. The subsequent acquisition of *TP53* mutation preserved this phenotype.

132 Importantly, the additional mutation of *FBXW7* on both the A and AT organoids also maintained this
133 cystic morphology. To further characterise transcriptional differences between these different
134 organoids bulk-RNAseq of A organoids were compared with AF, while AT organoids were compared
135 with ATF organoids. A organoids were compared with AF organoids, while AT organoids were
136 compared with ATF organoids. Together with our earlier comparison between F and W organoids
137 which found only 2 differentially expressed genes, we observed 87 differentially expressed genes
138 between A and AF, and 294 between AT and ATF (Fig. 2c, and Extended Data Fig. 2b and 2c).

139 Hierarchical clustering of these different groups showed that F and W organoids clustered together,
140 while A, AF and AT, ATF organoids formed separate clusters (Fig. 2d). These results demonstrate an
141 epistatic effect with the loss of *FBXW7* having varying effects on the cells depending on the
142 mutational background. More importantly, it suggests that an *FBXW7* mutation can influence different

143 cellular phenotypes depending on when the mutation was acquired, and that an early mutation will
144 have fewer effects compared with a later mutation.

145 To ensure our observations were not an artefact of repeated iterations of gene editing, we targeted the
146 *AAVS1* safe harbour locus three separate times to replicate the triple-mutant ATF organoids.

147 Morphologically, *AAVS1*-targetted organoids resembled wildtype organoids (Extended Data Fig. 3a).

148 Bulk-RNAseq of *AAVS1*-targetted organoids compared with W organoids showed only two
149 differentially expressed genes with a cut-off of $\log_2\text{FC} \leq -1.5$ or ≥ 1.5 , and adjusted *p*-value < 0.05
150 (Extended Data Fig. 3b), greatly differing from the 493 differentially expressed genes between ATF
151 and W organoids (Extended Data Fig. 3c). These findings confirm that the epistatic effects described
152 earlier were not simply a function of repeated iterations of CRISPR-Cas9 gene editing.

153

154 **Order of *FBXW7* mutation determines effect on transcriptional profile**

155 To ascertain the transcriptional effect of order of mutation, we designed an experiment in which
156 organoids possessed the same mutations, but differed in the order in which the mutations were
157 introduced. As previously described, AF organoids possessed *APC*^{−/−} followed by *FBXW7*^{−/−}. We
158 further generated FA organoids, which acquired *FBXW7*^{−/−} mutation prior to the *APC*^{−/−} (Fig. 3a).
159 Morphologically, FA organoids did not acquire the cystic phenotype characteristic of A or AF
160 organoids (Fig. 3b). Principal component analysis (PCA) of AF and FA organoids processed for bulk-
161 RNAseq, revealed that together with W, A and F organoids gene expression of FA organoids did not
162 cluster with AF organoids (Fig. 3c). Instead, FA organoids clustered with F and W organoids, while
163 AF organoids clustered with A organoids. Organoid clustering for all samples was independent of
164 patient donor (Extended Data Fig. 3d). To analyse the transcriptional effect mutational order, we used
165 a cut-off of $\log_2\text{FC} \leq -0.7$ or ≥ 0.7 to identify differentially expressed genes when AF and FA
166 organoids groups were compared with W organoids. This cut-off selected for 3335 genes in the AF
167 group and 861 genes in the FA group (Fig. 3d). There was a significant overlap of the FA genes where
168 628 (72.9%) were also differentially expressed in the AF organoids compared to W. Further analyses

169 of the gene expression changes for these 628 genes suggested a repressive effect after an initial
170 *FBXW7* mutation, such that the magnitude of the transcriptional perturbation was rendered less
171 positive or negative (Fig. 3e). Using GSEA, we also observed that some key signalling pathways such
172 as the EMT pathway were significantly more prevalent in FA compared with AF organoids
173 (normalised enrichment score (NES) 2.21, adjusted *p*-value= 1.70×10^{-10}). Collectively, these findings
174 promulgate our observation that mutational background alters the transcriptional effect of a mutation.
175 Moreover, our findings also suggest that early loss of *FBXW7* in normal tissue may protect against the
176 future effect of *APC* loss through transcriptional repression, and by extension could be protective
177 against the initiation of CRC.

178

179 **scRNAseq data shows de-differentiation towards a foetal state in *FBXW7* mutant organoids**

180 We endeavoured to explain our finding where an early *FBXW7* mutation was protective to
181 consequences of a later acquisition of an *APC* mutation, considering our observation that mutational
182 order affects transcription. We hypothesised that subtle transcriptomic changes could be present in F
183 organoids, in small subpopulations of cells, which might be masked by bulking during RNAseq. To
184 overcome this, we performed single-cell RNA sequencing (scRNAseq) on F and W organoids.
185 Differential gene expression analysis using pseudobulked F and W cells showed a significant
186 enrichment of upregulated F specific genes between the scRNAseq samples and our previously
187 generated F and W bulk-RNAseq (*p*<0.005) (Extended Data Fig. 4a). Clustering by Uniform Manifold
188 Approximation and Projection (UMAP) uncovered 14 clusters (Fig. 4a). Notably cluster 13 was
189 unique to *FBXW7* mutant cells (Fig. 4b). This cluster was marked by genes such as *TAGLN* ($\log_2\text{FC} =$
190 $-1.33, p = 2.81 \times 10^{-35}$) and *MMP7* ($\log_2\text{FC} = -1.47, p = 7.70 \times 10^{-34}$) and possessed an EMT signature
191 analogous to that recently demonstrated in a separate analysis of murine foetal organoids (Extended
192 Data Fig. 4b) [15]. Importantly, we observed that W cells expressed *FBXW7*, indicating that this gene
193 is expressed in normal epithelium (Fig. 4c). Analysis by RNA velocity indicated that cluster 13 was an
194 important terminal differentiation state, which could only have occurred in *FBXW7* mutant cells (Fig.
195 4d). As expected, quantitative analysis between UMAP plots from F and W organoids demonstrated a

196 statistically significant upregulation of the FA_up gene signature in F organoids relative to W
197 organoids (Fig. 4e). We also observed increased expression of the foetal gene signature [16] (Fig. 4f),
198 and the YAP pathway gene signature [17] (Fig. 4g) in F organoids (Extended Data Table 3). There was
199 also a decreased expression of the adult intestinal stem cell signature (ISC) [18] (Fig. 4h), and
200 decreased expression of the adult crypt-based columnar (CBC) stem cell signature [19] (Fig. 4i) in F
201 organoids. Reanalysis of our bulk-RNAseq data comparing F and W organoids using GSEA found
202 that foetal (Extended Data Fig 5a) and YAP (Extended Data Fig. 5b) signatures correlated with our
203 scRNAseq results. Similarly, overlaying our bulk-RNAseq F signature on a previously published
204 scRNAseq analysis of foetal and adult colonic epithelia demonstrated expression of F-specific genes
205 in foetal cells and W specific genes such as *OLFM4* in adult cells (Extended Data Fig. 5c) [20].
206 Immunofluorescence staining for LY6D validated it as a novel foetal marker; having been found
207 consistently upregulated in F using bulk bulk-RNAseq, scRNAseq and proteomics. (Extended Data
208 Fig. 5d).
209 In F vs W organoids we also observed a downregulation of the adult-ISC (Extended Data Fig. 5e) and
210 adult-CBC (Extended Data Fig. 5f) signatures in bulk-RNAseq as in scRNAseq, though this did not
211 achieve statistical significance. To further explore the YAP pathway, we performed additional GSEA
212 on FA vs W and AF vs W organoids. Intriguingly, this showed greater enrichment of the YAP
213 signature in FA vs W (ES= 0.58) (Extended Data Fig. 6a) compared to AF vs W (ES= 0.36) (Extended
214 Data Fig. 6b). Taken together, these findings point towards a plasticity in stem cell identity, favouring
215 pathways which recall a foetal regenerative/YAP active stem cell state following *FBXW7* mutation.
216 In contrast to F organoids acquiring a foetal stem cell state, bulk-RNAseq comparing A vs W showed
217 loss of the adult ISC signature and acquisition of the recently described proliferative colon stem cell
218 (proCSC) signature in line with findings of others [21] (Extended Data Fig 7a,b). Further comparison
219 of FA and AF transcriptomes showed that AF organoids retained a greater enrichment for the proCSC
220 state whereas FA organoids developed even stronger enrichment for the foetal stem cell state than
221 seen with the initial F mutation (NES Foetal: FA vs W = 2.03; F vs W= 1.99, p<0.0001) (Extended
222 Data Fig 7c and d). To better dissect stem cell changes associated with acquisition of an *APC* mutation

223 we performed scRNAseq on W and A organoids. scRNAseq recapitulated bulk-RNAseq findings
224 demonstrating clear plasticity in stem cell populations with the proCSC population absent in W
225 organoids but a dominant population in A organoids (Extended Data Fig 7e). In summary these data
226 demonstrate that stem cell identity can be determined by order of mutations.

227

228 **Transcriptional effects of mutational order are driven by local and global changes in chromatin
229 accessibility**

230 We next sought to uncover the mechanism which resulted in FA and AF organoids exhibiting such
231 profound transcriptional differences despite their identical genotypes. We hypothesised that changes
232 in chromatin accessibility induced by a preceding *FBXW7* mutation could influence the effects of a
233 subsequent *APC* mutation. To interrogate this, we performed assay for transposase-accessible
234 chromatin with sequencing (ATACseq) on W, F, A, FA, AF and human foetal (Fo) colon organoids
235 (17pcw and 21pcw), as an *in vitro* epigenomic model of tumour evolution. Initially we compared W, F,
236 A (matched for donor) and foetal organoids finding whole genome accessibility to be greater in F, A
237 and foetal organoids when compared to W (Fig. 5a). Foetal and F organoids possessed most
238 euchromatin, compatible with the profound loss of histones seen in our proteomic analysis. We
239 performed a *de novo* transcription factor motif scan using the GADEM algorithm on ATACseq peaks
240 for all comparisons. Accessibility to TEAD, AP-1 and SNAI1 motifs, previously shown to be
241 associated with the foetal/YAP state, were highly enriched in both foetal and F organoids (Extended
242 Data Table 4) (Fig. 5b and c) [15]. However, the genomic loci of these motif sites were distinct
243 between foetal and F organoids suggesting epigenetic differences between induced oncogenic (onco-
244 foetal) and intrinsic foetal states. As expected, the F vs WT and FA vs AF transcriptional signatures
245 were also found more accessible in F and foetal organoids (Extended Data Fig. 8a and b). In line with
246 our bulk-RNAseq, scRNAseq and proteomics data we also found accessibility to *LY6D* to be greater
247 in F organoids (Extended Data Fig. 8c).

248 Next, we compared W, FA and AF organoids (matched for donor). In total, 14 543 peaks differed
249 between AF and W organoids, 16 990 peaks differed between FA and W organoids, and 2 156 peaks
250 differed between AF and FA organoids. Reassuringly, these findings suggest that there was much
251 similarity in the effect of mutational order on chromosome accessibility between AF and FA. We
252 noted that overall whole genome accessibility was reduced in FA vs W organoids compared with AF
253 vs W organoids (Fig. 5d). Concordant with scRNAseq analysis between F and W organoids, we
254 observed that there was increased accessibility to genes in the crypt base columnar (CBC) signature in
255 AF vs W organoids compared with FA vs W organoids (Fig. 5e). De novo motif identification was
256 performed as previous, and two motifs found enriched in the FA vs W organoid comparison included
257 "nCwGCmCwGn" (Fig. 5f) and "rGCAGGTGn" (Fig. 5g). The top 3 closest matches to each of these
258 motifs as per the JASPAR database, were *ZNF449*, *TEAD2*, and *TEAD1*, *SNAI1*, *SCRT2*, and *CTCFL*
259 respectively. Intriguingly, *TEAD1* and *TEAD2* motifs were also more accessible in FA vs W
260 organoids relative to AF vs W organoids (Fig. 5h). Finally, we observed increased chromatin
261 accessibility of FA vs W organoids compared with AF vs W organoids at the *SNAI1* transcription
262 factor motif sites (Fig. 5i), which mediates EMT by repressing E-cadherin expression, therefore
263 concurring with results observed in bulk-RNAseq and scRNAseq analysis of differentially expressed
264 pathways. Taken together, our findings strongly implicate an epigenetic mechanism in which an early
265 *FBXW7* mutation results in transcriptional repression of the consequences of a later *APC* mutation.

266

267 **Effects of mutation order are recapitulated in patient data**

268 To perform human *in vivo* validation of our findings, we turned towards two datasets to infer the
269 transcriptional impact of mutation order. First, we analysed transcriptional data from the recently
270 published EPICC dataset [9]. Here, the authors performed matched single-crypt RNAseq and whole-
271 genome sequencing on a small number of phenotypically normal crypts. We reanalysed transcriptional
272 and genomic data from normal glands and performed PCA (Fig. 6a). Notably, one gland had an
273 *FBXW7*-R578 mutation in the absence of an *APC* mutation, while another gland had an *APC*-S1346
274 mutation in the absence of an *FBXW7* mutation. Two glands from the same patient possessed an

275 identical *FBXW7*-R578 mutation as well as a separate *APC*-G1288 mutation; which can only be
276 explained by the *FBXW7* mutation arising first, clonally expanding and then acquiring an *APC*
277 mutation subsequently. Intriguingly, the gland with an *APC* mutation alone was located on PCA
278 analysis distinct from all other glands. Notably, the two glands possessing both *APC* and *FBXW7*
279 mutations also clustered closer to the wildtype glands and the single *FBXW7* mutant gland, analogous
280 to our findings in gene-edited organoids. Whilst these inferences have been drawn based on a limited
281 number of glands it is evident that FA mutations can also be found in phenotypically normal colon
282 crypts.

283 Next, we adapted a newly described bioinformatic approach to infer mutational order from targeted
284 sequencing data and applied this to a dataset (S:CORT) of 91 pre-malignant human colonic adenomas
285 that had undergone targeted sequencing and transcriptional profiling [22] (Fig. 6b). Modified
286 ASCETIC analysis showed that the invariant mode of adenoma development is an initial *APC*
287 mutation ($p<0.05$). *FBXW7* mutations were never found to occur before *APC* in this cohort. In
288 summary, whilst FA normal crypts can be observed in patient samples, our analysis of adenomas
289 found that AF is the dominant mode of adenoma formation.

290 The foetal stem cell state in advanced malignancy has previously been associated with diminished
291 response to chemotherapy [23, 24]. Chemotherapy can create somatic mutations in cancer and normal
292 cells [25]. Given our findings that induced foetal states appear resistant to effects of further oncogenic
293 transformation we hypothesised that the FA defined onco-foetal signature may also identify tumours
294 resistant to chemotherapy. We analysed gene expression data from the Fluoropyrimidine, Oxaliplatin
295 & Targeted Receptor pre-Operative Therapy for colon cancer study (FOxTROT), where patients were
296 randomised to receive neoadjuvant chemotherapy prior to surgery [26]. Here, tumours were biopsied
297 before and after treatment to identify transcriptional biomarkers of response. We generated differential
298 gene expression lists by segregating patients into responders and non-responders with pre (n=95) and
299 post (n=80) treatment biopsies. Next, we performed GSEA using the MSigDB Hallmarks and foetal
300 gene signatures (n=73) unexpectedly finding the FA_up signature outperformed all previously
301 published foetal and Hallmarks signatures in identifying non-responders to neo-adjuvant

302 chemotherapy on pre-treatment biopsies (Fig. 6c and Extended Data Table 5). The AF signature as
303 well as interferon response signatures on the other hand were strongly associated with improved
304 responsiveness on pre-treatment biopsies. Finally, ssGSEA of TCGA COAD/READ samples showed
305 an inverse relationship between FA_up and FA_down gene signatures (correlation score: -0.55, $p < 2.2$
306 $\times 10^{-16}$) (Fig. 6e) [27]. Thus, whilst FA order of mutations in pre-neoplasia is an evolutionary dead end,
307 the FA-defined onco-foetal signature in advanced malignancy is highly predictive of chemotherapy
308 resistance.

309

310 **Discussion**

311 Recent work has uncovered that molecular background in intestinal tumours influences a complex
312 three-way interplay between revival/regenerative stem cell (foetal/YAP), homeostatic adult stem cell
313 (CBC/ISC) and cancer stem cell populations (proCSC) [19, 21]. Whether similar processes play a role
314 in pre-neoplasia and how this changes temporally remain unexplored. Using *FBXW7* as an example,
315 our analyses demonstrate that epigenetics underlie the context-specific cellular response to somatic
316 driver mutations, progressing the recent notion that tumour genotype alone does not equate to
317 phenotype [28].

318 In our study, we found introducing an *FBXW7*^{-/-} mutation in normal colon organoids generated little
319 transcriptomic or proteomic response and organoids remained broadly ‘wildtype’ although primed
320 towards a foetal state. These findings are compatible with the observation *in vivo* where *FBXW7*
321 mutations are found in histologically normal crypts but failed to explain how *FBXW7* mutations are
322 drivers in established CRC. In answer to this we uncovered an epistatic effect of the mutation when
323 acquired on increasingly complex mutational backgrounds.

324 Building on our demonstration of epistasis we tested whether reordering mutations generated similar
325 results. To our surprise not only were FA mutants phenotypically distinct from AF mutants but
326 transcriptionally they also remained closer to the wildtype profiles, despite having lost two major
327 tumour suppressor genes. Mutational order effects have been described once before in *JAK2/TET2*

328 mutant haematological malignancies [29]. In a highly analogous manner, the authors found that blood
329 cancers with switched order of mutations had alterations in stem cell state and transcriptomes.

330 To understand the link between mutation order, epistasis and stem cell state we tested whether an
331 epigenetic mechanism could underly our data. Chromatin accessibility analyses showed that whilst
332 both FA and AF organoids possessed more permissive chromatin than wildtype, broadly FA chromatin
333 was less accessible than AF accounting for the general repression in the transcriptional consequences
334 of an *APC* mutation. However, we found FA organoids did have increased accessibility to
335 TEAD/SNAI1/AP-1 motifs. These data explain the foetal/YAP active state seen with F and FA
336 mutations. Two very recent studies have explored chromatin landscapes in murine foetal and adult
337 intestinal organoids [15, 30]. In highly concordant findings, these studies show similar TEAD/AP-
338 1/SNAI1 family accessibility in foetal organoids and most importantly find *Fbxw7* to be a top hit in a
339 CRISPR screen for regulators of the adult/foetal intestinal transition. Ultimately, the mechanism by
340 which *FBXW7* mutations effect changes in chromatin accessibility remains cryptic, though a similar
341 observation has been observed previously [31]. Given *FBXW7*'s important role in the E3 ubiquitin
342 ligase complex, we speculate that decreased substrate degradation of one or a number of *FBXW7*
343 targets could result in this change in chromatin accessibility, though further work to elucidate this
344 mechanism will need to be performed.

345 Our study develops on recent work describing Waddington-like plasticity in intestinal stem cell states
346 [21]. We propose that whilst the normal colon crypt adopts predominantly the adult homeostatic stem
347 cell state, altering the order of mutations affects subsequent fate trajectory. *FBXW7* mutation first
348 cause cells to acquire a foetal state whereas an *APC* mutation first induces cells to acquire an
349 additional proliferative/cancer stem cell state (Fig. 6f). These states remain epigenetically fixed and
350 subsequent mutations prevent further plasticity between stem cell states/valleys. Overall, our study
351 explains the basis for why *FBXW7* mutations in normal colonic epithelia fail to induce malignant
352 transformation and provide the rationale for testing the translational impact of mutational order across
353 a wider mutational spectrum and different cancers.

354 **Methods**

355 **Human material for organoid cultures**

356 Ethics approval for the retrieval of human colon specimens was accorded by the University of Oxford
357 – Translation Gastroenterology Unit (16/YH/0247). Foetal samples were acquired under the HBDR
358 project 200462, REC: 18/LO/0822. Written consent was obtained from all patients/donors.

359 **Organoid culture**

360 Foetal organoids were derived from two donors (17pcw, Male, Proximal Colon) and (21pcw, Male,
361 Proximal Colon). Adult colonic tissue was obtained from patients who were undergoing surgery for
362 colorectal cancer. A 1 x 1 cm piece of colon from a region at least 5cm distant from the tumour, and
363 appearing phenotypically normal was resected. Organoids were derived based on a previously
364 published protocol [10]. Organoid culture growth media consists of advanced DMEM/F12 (Gibco),
365 and supplemented with penicillin/streptomycin (Gibco), 10mM HEPES buffer solution (Gibco), 2mM
366 GlutaMAX (Gibco), 50% Wnt3a conditioned medium (produced from ATCC CRL-2647 cell line), 25%
367 R-spondin conditioned medium (produced from Cultrex HA-R-Spondin1-Fc 293T cells), 1X B-27
368 plus supplement (Gibco), 10 μ M SB 202190 (Tocris), 0.5 μ M SB 431542 (Tocris), 1 μ M prostaglandin
369 E2 (Tocris), 50ng/ml Noggin (Peprotech), 50ng/ml EGF (Peprotech), 10mM nicotinamide (Sigma-
370 Aldrich), and 1.25mM N-acetylcysteine (Sigma-Aldrich). For selection of APC mutants, Wnt3a and
371 R-spondin conditioned media were withdrawn from the growth media for at least 3 weeks. For
372 selection of TP53 mutants, growth media was supplemented with 10 μ M of Nutlin-3 for at least 1
373 month (Sigma-Aldrich).

374 **CRISPR/Cas9 gene editing of human organoids**

375 sgRNAs were designed using Synthego's CRISPR Design Tool (Extended Data Table 2). For *FBXW7*,
376 a multiguide approach utilising three different guide RNAs in equal concentration was used. This
377 increased the targeting efficacy given the lack of a selecting agent which can be used to enrich for
378 *FBXW7* mutants. The *AAVS1* site is a commonly used safe harbour locus which served as a control to
379 ensure studied effects were not a function of CRISPR gene editing.

380 Our protocol for gene editing human organoids has been described previously [10]. An
381 electroporation-based approach was used to maximise gene editing efficacy. Cells were first
382 dissociated into a single-cell suspension using TrypLe (Gibco) by incubating in a 37°C water bath for
383 10min. tritutating at regular intervals. Organoids were then pelleted with centrifugation at 400g for 6
384 min. Pelleted organoids were resuspended in advanced DMEM, tritutated and pelleted by
385 centrifugation once more. A ribonucleoprotein (RNP) complex comprising Cas9 (Sigma-Aldrich) and
386 guide RNA in a molar ratio of 1:4 was resuspended in Buffer R (Invitrogen) and left to stand at room
387 temperature for 10min. Pelleted organoids were resuspended in Buffer T (Invitrogen). The RNP
388 complex and resuspended organoids were then mixed. Electroporation was performed using a Neon
389 Transfection System (ThermoFisher) with the following settings – voltage 1350V, width 20ms, and
390 pulses 2. After electroporation, organoids are transferred into advanced DMEM and left to recover for
391 10min. Centrifugation was performed to pellet organoids, which were then resuspended in BME and
392 transferred to cell culture plates as described above. Following electroporation, organoids were
393 incubated for one week and allowed to expand. Primers which generated amplicons of approximately
394 500bp in length were designed on Benchling (Extended Data Table 2). Amplicons were Sanger
395 sequenced by an external vendor (Genewiz). Efficiency of targeting was carried out using Synthego
396 Performance Analysis, ICE Analysis. 2019. V3.0 Synthego.

397 Human colon organoids routinely senesce ~ P7/8 necessitating continual re-derivation, targeting and
398 expansion. In all experiments each replicate represents a distinct clone generated from an individual
399 patient unless stated otherwise. Each edited clone was used for assays once targeting efficiency
400 through selection (APC/TP53) or repeated targeting (FBXW7) was >80%.

401 **Protein lysates and western blot**

402 Proteins were harvested using RIPA (ThermoFisher) with addition of protease and phosphatase
403 inhibitor cocktails (Sigma-Aldrich). Quantification of protein concentration was performed using
404 BCA assay (ThermoFisher).

405 For western blot, 30 μ g of protein was used for each lane. Proteins were separated using a NuPage 4 –
406 12% Bis-Tris gel (Invitrogen) and transferred onto a 0.45 μ m nitrocellulose membrane. For
407 phosphorylated proteins, 5% BSA was used. For non-phosphorylated proteins, 5% low-fat milk was
408 used. The membrane was blocked for 1 hour before overnight incubation with primary antibodies at
409 4°C. Rabbit anti-human FBXW7 antibody (1:2500, BS-8394R, Bioss, USA), rabbit anti-human
410 phosphor-CJUN antibody (1:2500, PA5-40193, Invitrogen, USA), rabbit anti-human CJUN antibody
411 (1:2500, ab40766, Abcam, USA), rabbit anti-human phosphor-CCNE1 antibody (1:2500, ab52195,
412 Abcam, USA), rabbit anti-human CCNE1 antibody (1:2500, ab33911, Abcam, USA), rabbit anti-
413 human phosphor-CMYC (1:2500, ab185655 and ab185656, Abcam, USA), rabbit anti-human CMYC
414 (1:2500, ab32072, Abcam, USA), rabbit anti-human NICD (1:2500, #4147, Cell signalling technology,
415 USA), rabbit anti-human NOTCH1 (1:2500, ab52627, Abcam, USA), rabbit anti-human beta-catenin
416 (1:1000, #8480, Cell signalling technology, USA), rabbit anti-human p53 (1:1000, #9282, Cell
417 signalling technology, USA) and rabbit anti-human GAPDH (1:2500, ab52627, Abcam, USA) was
418 used. The membrane was then incubated with goat anti-rabbit antibody (1:5000, ab6721, Abcam,
419 USA) at room temperature for 1 hour. The membranes were then imaged with a ChemiDoc XRS+
420 system (Bio-Rad).

421 **Immunofluorescence and imaging**

422 Immunofluorescence on organoids was previously described in our protocol [10]. Briefly, media from
423 the wells of organoids was removed and fixation with 2% paraformaldehyde was performed. This was
424 incubated at room temperature for 30min. Organoids were then washed with ice-cold DPBS gently
425 and allowed to settle by gravity. The supernatant was then removed and blocked with Organoid
426 Blocking Solution comprising DPBS supplemented with 3% BSA, 1% Triton X-100, 1% saponin and
427 1% secondary antibody animal serum. Blocking was performed for 3 hours at room temperature.
428 Organoids were again allowed to settle by gravity, and the supernatant was removed. Primary
429 antibody diluted in organoid blocking solution was then added to the organoids for 24 hours at 4°C.
430 Organoids were then washed with DPBS supplemented with 3% BSA, 1% Triton X-100, and 1%
431 saponin. Secondary antibody diluted in the organoid washing solution was then added to the

432 organoids for 2 hours at 4°C. After 2 hours, organoids were again washed with organoid washing
433 solution. Phalloidin stain was added to the organoids for 60min, before DAPI stain was added to the
434 organoids for 5min. Imaging was performed with the Andor Dragonfly High-Speed Confocal
435 Microscope Systems (Oxford Instruments). Antibodies used were mouse anti-human FBXW7
436 antibody (1:100, H00055294-M02, Novus Biologicals, USA), rabbit anti-LY6D goat anti-mouse
437 (1:200, 17361-1-AP, Proteintech, USA), IgG H&L (Dylight 550) (1:500, ab96872, Abcam, USA), IgG
438 H&L (Alexa Fluor 488) (1:1000, Abcam, USA), Phalloidin iFluor 647 (1:400, ab176759, Abcam,
439 USA), and DAPI (300nM, D1306, Invitrogen, USA).

440 **Co-culture of F, A and W organoids**

441 Transduction of organoids was performed to achieve stable expression of GFP or mCherry
442 fluorescence. Lentiviral particles were first generated by transfection of HEK293T cells with
443 pMDLg/pRRE, pRSV-Rev, pSF-CMV-VSVG (Sigma-Aldrich) and either pCDH-EF1-copGFP-T2A-
444 Puro for GFP fluorescence or pCDH-EF1-copGFP-T2A-Puro for mCherry fluorescence.
445 pMDLg/pRRE, and pRSV-Rev were gifts from Didier Trono (Addgene plasmid # 12251;
446 <http://n2t.net/addgene:12251> ; RRID:Addgene_12251) [32], pCDH-EF1-copGFP-T2A-Puro and
447 pCDH-CMV-mCherry-T2A-Puro were gifts from Kazuhiro Oka (Addgene plasmid # 72263 ;
448 <http://n2t.net/addgene:72263> ; RRID:Addgene_72263).

449 To transduce organoids with the lentivirus particle, the organoids were first dissociated into single
450 cells by TrypLe for 10min in a 37°C water bath, with trituration at regular intervals. Single cells were
451 centrifuged at 400g for 6 min to pellet cells, which were then passed through a 50µm filter. The
452 number of cells was then counted using a hemocytometer, and the required number of cells was
453 aspirated, centrifuged and then pelleted. These cells were then resuspended in organoid growth media,
454 and viral particles were added to achieve a multiplicity of infection (MOI) of 20. Cells were infiltrated
455 over wells which had been overlaid with a pre-polymerised BME layer and left in a humidified 37°C
456 incubator for 24 hours. After 24 hours, dead cells were found floating above the BME, while live cells
457 would have become embedded in the BME. The media and dead cells were aspirated and fresh

458 organoid growth media was added. Fluorescence was checked using an EVOS M5000 cell imaging
459 system (ThermoFisher) after 72 hours.

460 For the co-culture of organoids, a GFP-labelled population was co-cultured with an mCherry-labelled
461 population in equal amounts to ascertain differences in proliferation. Cell culture wells were imaged
462 on day 0, 1, 3, 5 and 7 using an EVOS M5000 cell imaging system (ThermoFisher). ImageJ was used
463 to determine fluorescent intensity on each of these days.

464 **Bulk RNA sequencing and analysis**

465 Extraction of total RNA was performed using the RNeasy Mini Kit (Qiagen) as per manufacturer's
466 protocol. The quantity and quality of the RNA was ascertained using the Agilent 2100 Bioanalyzer.
467 Sequencing was performed by the Oxford Genomics Centre, Oxford using an Illumina NextSeq500
468 instrument using the standard paired-end protocol with a read length of 150bp. Fastq reads were
469 processed to clip low quality leading and trailing edges and to remove any adapter content using
470 Cutadapt (v.3.5). Quality checked FASTQ reads were aligned to the GRCh38 human genome and
471 gene annotation (Ensembl release 105) using STAR aligner (v.2.7.3a) two-pass mode to generate
472 gene-level quantification. Raw counts were processed in R (v.4.1.3) for all statistical testing and
473 plotting purposes. Normalisation and differential expression were performed using limma (v.3.50.3).
474 This included the generation of heatmaps using gplots (v.3.1.1) , volcano plots using ggplot2 (v3.3.5)
475 and PCA plots using ggfortify (v.0.4.14). Gene set enrichment analysis was performed using fgsea
476 (v.1.20.0) and GSVA (v.1.42.0).

477 **Single-cell RNA sequencing and analysis**

478 scRNA-seq was conducted using a 5' scRNA-seq gene expression workflow (10x Genomics). Cells
479 were loaded onto a 10x Chromium Controller for GEM generation followed by single cell library
480 construction using 10x Chromium Next GEM Single Cell 5' Library and gel bead kit v1.1 following
481 manufacturer's instructions. Size profiles of amplified cDNA and final libraries for sequencing were
482 verified by electrophoresis (Agilent 2100 Bioanalyzer system, High Sensitivity DNA Kit), and the
483 concentration of final libraries was measured with Qubit (Thermo Fisher Scientific). Libraries were

484 sequenced on an Illumina NextSeq 2000 (26 cycles read 1, 8 cycles i7 index, 98 cycles read 2),
485 achieving a mean of 39,412 reads per cell. Gene by cell barcode quantification matrix were obtained
486 using Cell Ranger (v.7.0.1) and Seurat (v.4.2.0) was used to perform normalisation and UMAP based
487 cluster assignment of pass cells.

488 Single sample gene set enrichment analyses (ssgsea) method from GSVA (v.1.42.0) was used on a
489 custom list of gene signature sets defined by editing the MSigDb (v.7.5.1) pathways to leave out
490 SPERMATOGENESIS, MYOGENESIS and PANCREAS_BETA_CELLS, and replacing the default
491 WNT_BETA_CATENIN_SIGNALING set by WNT_SIGNALING gene set (MSigDb systematic
492 name M5493), as per Househam et al. [33]. Additional gene sets included were – genes up- or down-
493 regulated in bulk RNA-seq comparison of ‘FBXW7-APC’ versus ‘APC-FBXW7’ organoids (adjusted
494 p-value < 0.05 and logFC \geq |1.5|; n= 248 up- and n= 166 down-regulated genes), mouse foetal
495 gastric epithelium gene set from Vallone et al. 2016 (n= 122 human homologues), intestinal stem cell
496 signature from Merlos-Suárez et al. 2011 (n= 74), YAP pathway signature from Gregorieff et al. 2015
497 (n= 213 human homologues), crypt-base columnar (CBC) and regenerative stem cell (RSC) signature
498 sets from Vazquez et al. 2022 (n= 340 and 206 human homologues respectively)(Extended Data Table
499 3). Enrichment scores obtained per gene set was z-score transformed, and cells with scores greater
500 than 3rd quartile or less than 1st quartile of the score distribution were termed as enriched or depleted
501 respectively, for that gene set. To assess statistical enrichment or depletion of a given gene set in
502 FBXW7 mutant versus wildtype categories, chi-square test was applied on contingency table for cell
503 counts from enriched or depleted classes. Pearson residuals were visualised using mosaic plot from R
504 package vcd (v.1.4-11). For RNA velocity analysis, separate count matrices for spliced and unspliced
505 transcripts were created using Kallisto-Bustools (v.0.27.3) with the La Manno et al. 2018 strategy,
506 while using the same reference annotation from Cell Ranger (GRCh38, v.2020-A). Spliced/ unspliced
507 count data were combined with Seurat based UMAP clustering using scVelo (v.0.2.5) under python
508 v.3.10.6. RNA velocity graph computed was overlaid on UMAP cluster embeddings to infer trajectory
509 direction.

510 **Proteomics**

511 Four replicates per condition, each containing 50 µg protein, were solubilised in 5% SDS then
512 processed by S-Trap micro (Protifi) protocol according to the manufacturer's instructions. Digestion
513 was performed overnight with a 1:25 ratio of trypsin (Sequencing Grade, Promega) to protein. Tryptic
514 peptides were dried by vacuum centrifugation, then reconstituted prior to MS analysis in 0.1% formic
515 acid. LC-MS/MS analysis was performed using the Orbitrap Ascend Tribrid instrument (Thermo
516 Scientific) connected to a Thermo Scientific VanquishTM Neo UHPLC system interfaced using a
517 nano-EASY spray source. The VanquishTM Neo was operated in Trap and Elute mode using 0.1 %
518 Formic acid in water as solvent A, 0.1% formic acid in acetonitrile as solvent B and strong wash
519 buffer and 0.1% trifluoroacetic acid as weak wash. Tryptic peptides were loaded onto a PepMap Neo
520 C18 Trap (Thermo Scientific; S/N 174500) at 8 ul/min (total volume of 24ul) and separated on a 50C
521 heated EasySpray Pep Map Neo (Thermo Scientific; S/N ES75500) column using a multistep
522 gradient going from 2% to 18% solvent B in 40 min and from 18% to 35% solvent B in 20 min at
523 300nl/min flow rate. The column was washed for 14 min with 99% B, followed by the fast
524 equilibration on the Vanquish Neo (combine control mode, upper pressure to 1000bar). In parallel, the
525 trap was subjected to the zebra wash and fast equilibrated.

526 MS data were acquired in data-independent mode (DIA) with minor changes from previously
527 described method [34-36]. Briefly, MS1 scans were collected in the orbitrap at a resolving power of
528 45K at m/z 200 over m/z range of 350 – 1650m/z. The MS1 normalised AGC was set at 125%
529 (5e5ions) with a maximum injection time of 91 ms and a RF lens at 30%. DIA MS2 scans were then
530 acquired using the tMSn scan function at 30K orbitrap resolution over 40 scan windows with variable
531 width, with a normalized AGC target of 1000%, maximum injection time set to auto and a 30 %
532 collision energy.

533 Raw data were searched in DIA-NN v1.8.1 in library-free mode against the UniProt human proteome
534 database (UP000005640, downloaded 18th May 2023), plus common contaminants [37]. A maximum
535 of one missed cleavage was permitted for Trypsin/P digestion, with cysteine carbamidomethylation
536 set as a fixed modification. 'Match between runs' and retention time-dependent cross-run
537 normalisation were enabled, with mass accuracy settings inferred from the data. The DIA-NN neural

538 network classifier was set to double-pass mode. Further data analysis was performed in Perseus
539 v2.0.11, where protein groups were filtered to include only those identified in at least three replicates
540 of one experimental condition. Protein intensity values were log2-transformed, then missing values
541 were imputed with random values generated from a downshifted normal distribution (width 0.3,
542 downshift 1.8). Data are available via ProteomeXchange with identifier PXD052352.

543 To identify differential protein expression Student's t-test was applied on replicate level data from
544 *FBXW7* mutant and WT samples, for each of the detected proteins using the “t.test” function. The p-
545 values thus obtained were corrected for multiple-testing using the Benjamini and Hochberg (i.e. FDR)
546 method by using the “p.adjust” function. All calculations were done in R ver. 4.3.3.

547 **Assay for transposase-accessible chromatin sequencing (ATACseq) and analysis**

548 Human colon organoids were generated as previously described and suspended in 40ul of BME in
549 400ul of complete organoid media. At Passage 2, organoids were subjected to electroporation based
550 CRISPR using either no guide, multiguide RNA targeting *FBXW7* or single guide RNA targeting
551 APC (ref STAR protocols). Organoids targeted with guide RNA against APC were subsequently
552 grown in complete organoid media (also in STAR paper) omitting WNT3a conditioned media until 7
553 days prior to ATAC-sequencing. Organoids targeted with *FBXW7* guide RNA underwent a second
554 round of electroporation based CRISPR at passage 3 to achieve >80% knockout of *FBXW7*. Wildtype
555 and knockout organoids were subsequently passaged to achieve 1×10^{12} cells, grown in identical
556 complete organoid media for 7 days and submitted for library preparation and ATAC-sequencing
557 (Genewiz/Azenta). ATAC experiments were carried out separately for W, A, F and Foetal (1) and W,
558 AF and FA (2). To ensure that background epigenetic status was corrected for, all CRISPR-edited
559 organoids for these experiments were generated from the same donor W organoids for each of the two
560 experiments.

561 Library preparation for W/FA/AF ATACseq was performed using the ATAC-Seq Kit (Active Motif) as
562 per the manufacturer's instructions. Multiplexing was performed using unique i7 and i5 indexed
563 primers. The quantity and quality of DNA was assessed using the Agilent High Sensitivity DNA Kit,

564 ensuring that transposed DNA fragments were between 200 and 1000bp, with a periodicity of ~200bp.

565 Sequencing was performed by the Oxford Genomics Centre, Oxford using an Illumina NextSeq2000

566 instrument.

567 Quality checked fastq reads were aligned to the human genome (GRCh38) using bwa aligner

568 (v.0.7.17). Alignment output (BAM files) were filtered, and TA (Tag Alignment) format data created

569 using samtools (v.1.14), picard (v.2.6.0) and bedtools (v.2.30.0). Further, MACS3 (v.3.0.0b2) was

570 used to perform peak calling which were then annotated using ChIPseeker (v.1.30.3). MACS3

571 identified peaks for the ‘AF vs W’ and ‘FA vs W’ comparisons were thresholded to select those with

572 score (i.e., $-10^*\log(q\text{-value})$) $>$ median of the respective distribution, overlapping regions merged and

573 the 50bp span from the centre of the peak region were extracted as input for *de novo* transcription

574 factor motif enrichment analysis using rGADEM (v.2.46.0). Identified motifs were plotted using

575 TFBSTools (v.1.36.0) and annotated for the closest matching core human transcription factors using

576 JASPAR2020 (v.0.99.0). Gene/ motif-set level visualisation of ATAC-seq signal enrichment was

577 performed using deeptools (v.3.5.2). Comparative bigwig files were created for ‘AF vs W’, ‘FA vs W’

578 and ‘FA vs AF’ with BPM (Bins per million) normalisation, non-covered regions skipped, ENCODE

579 blacklist regions filtered out and effective genome size adjusted to reflect the filtering. The bigwig

580 files were then profiled for ATAC-seq signal enrichment with reference-point at the TSS

581 (Transcription Start Site) and upstream/ downstream 5kb region. Signal enrichments were profiled for

582 each of these sets –all genes in the genome (gencode v.38; ‘Whole Genome’), the CBC gene signature

583 set (‘CBC’) and the 50bp genomic regions where *de novo* motif search identified TEAD1/2 motifs

584 (542 regions; ‘TEAD1/2 motif’) or SNAI1 motifs (491 regions; ‘SNAI1 motif’).

585 Comparative bigwig files were created from the final BAM files for ‘F’, ‘A’ and ‘Foetal’ organoids by

586 comparing each to the ‘WT’ organoid BAM, using ‘bamCompare’ from deeptools (v.3.5.2) with

587 parameters: binSize 10, normalisation BPM, ENCODE blacklist regions filtered out and effective

588 genome size adjusted to reflect the filtering. The bigwig files were then used to create the accessibility

589 tracks by extracting UCSC Genome Browser data (ver. GRCh38) and plotting it in R (v.4.3.3) using

590 bwtool (v.1.0) and trackplot (v1.5.10).

591 **Validation of results in published patient datasets**

592 Three independent published datasets were used to validate our findings. Somatic mutation and gene
593 expression for the TCGA-COAD cohort were obtained from NCI-GDC data portal [27], to create a
594 dataset of colon adenocarcinoma cases only from 320 unique patients. Per-sample enrichment scores
595 for the gene sets was calculated using ‘ssgsea’ method in GSVA (v.1.42.0). The second validation
596 made use of transcriptomic results derived from the EPICC dataset [9]. Here, individual gland-level
597 transcriptomic results were obtained. Generation of PCA plots using ggplot2 (v3.3.5). The third
598 S:CORT study provided clinical and molecular data for both ASCETIC analysis of adenomas and
599 transcriptional analysis of predictors of neo-adjuvant chemotherapy (FOxTROT) [26].

600 **Modified ASCETIC analysis**

601 The Agony-based cancer evolution inference (ASCETIC) framework was employed to identify
602 conserved patterns of driver gene mutations across a cohort of bulk sequenced adenomas [22]. For 91
603 adenomas, copy number and ploidy estimate were used to estimate cancer cell fraction of each single
604 nucleotide variant at the single sample level. Functions from the ASCETIC package were used to
605 calculate a partial ordered set of genes based on minimising agony across the entire cohort and
606 generate a ranking estimate of genes containing single nucleotide variants. Genes containing the most
607 commonly occurring single nucleotide variants were displayed graphically, with the y-axis
608 representing overall probability of early mutation, based on recurrent high confidence ($p < 0.05$)
609 evolutionary steps and arrow thickness, representing recurrent evolutionary step number (Fig. 6b).

610

611 **Acknowledgements**

612 S.J.A.B. was supported by The Pharsalia Trust, UK & a Cancer Research UK Advanced Clinician
613 Scientist Fellowship (C14094/A27178). D.K.H.C. was supported by Singapore Ministry of Health’s
614 National Medical Research Council under a research training fellowship (MOH-FLWSHP10may-
615 0001). A.S. was supported by the UK Medical Research Council, Wellcome Investigator Award
616 (219523/Z/19/Z). D.F-C was supported by an NIHR Academic Clinical Lectureship Award. The

617 Stratification in Colorectal Cancer Consortium (S:CORT) was funded by the Medical Research
618 Council and Cancer Research UK (MR/M016587/1). The human foetal material was provided by the
619 Joint MRC/Wellcome Trust (MR/R006237/1) Human Developmental Biology Resource
620 (www.hdbi.org) and we thank B. Crespo, Professor Copp and the entire HDBR team.

621

622 **Author contributions**

623 D.K.H.C. and S.J.A.B. conceived the overall experimental questions and design. D.K.H.C. performed
624 experiments, wrote the initial draft of the manuscript, and was supervised by S.J.A.B. A.M. and
625 S.J.A.B. performed bioinformatic analysis for the project. S.D.C. assisted with immunofluorescence
626 of organoids. Y. Z. generated plasmids for lentiviral labelling of organoids, performed the proteomics
627 experiment and W vs APC scRNAseq experiment. R.O. H.F. S.J. and X.L. assisted with scRNAseq.
628 J.H. and T.G. contributed the EPICC dataset and assisted with its analysis. J.B. performed the
629 ASCETIC and EPICC analysis and carried out the W, F and A ATACseq experiment. I.V. S.F. and R.F.
630 carried out proteomic analysis. D.F.C and A.S. assisted with foetal organoid experiments. S.J.A.B.
631 was overall in-charge of the project. All authors contributed to drafting and final approval of the
632 manuscript.

633

634 **Competing interests**

635 The authors declare no competing interests.

636

637 **Materials and correspondence**

638 Raw sequence data would be made available via the European Genome-Phenome Archive (EGA) and
639 proteomics via PRIDE, on publication of the manuscript. The mass spectrometry proteomics data

640 have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
641 dataset identifier PXD052352. Please relay correspondence to Simon Buczacki.

642

643 **Inclusion and ethics in global research**

644 Research was conducted in accordance with principles of inclusion and good ethics in global research.

645

646 **Code availability**

647 All relevant scripts to replicate the analysis would be made available on Github on publication of the
648 manuscript.

649 **References**

650 1. Brunner, S.F., et al., *Somatic mutations and clonal dynamics in healthy and cirrhotic human*
651 *liver*. *Nature*, 2019. **574**(7779): p. 538-542.

652 2. Colom, B., et al., *Spatial competition shapes the dynamic mutational landscape of normal*
653 *esophageal epithelium*. *Nat Genet*, 2020. **52**(6): p. 604-614.

654 3. Martincorena, I., et al., *Tumor evolution. High burden and pervasive positive selection of*
655 *somatic mutations in normal human skin*. *Science*, 2015. **348**(6237): p. 880-6.

656 4. Moore, L., et al., *The mutational landscape of normal human endometrial epithelium*. *Nature*,
657 2020. **580**(7805): p. 640-646.

658 5. Lee-Six, H., et al., *The landscape of somatic mutation in normal colorectal epithelial cells*.
659 *Nature*, 2019. **574**(7779): p. 532-537.

660 6. Yeh, C.H., M. Bellon, and C. Nicot, *FBXW7: a critical tumor suppressor of human cancers*.
661 *Mol Cancer*, 2018. **17**(1): p. 115.

662 7. Burdziak, C., et al., *Epigenetic plasticity cooperates with cell-cell interactions to direct*
663 *pancreatic tumorigenesis*. *Science*, 2023. **380**(6645): p. eadd5327.

664 8. Johnstone, S.E., et al., *Large-Scale Topological Changes Restrain Malignant Progression in*
665 *Colorectal Cancer*. *Cell*, 2020. **182**(6): p. 1474-1489.e23.

666 9. Heide, T., et al., *The co-evolution of the genome and epigenome in colorectal cancer*. *Nature*,
667 2022. **611**(7937): p. 733-743.

668 10. Chan, D.K.H., S.D. Collins, and S.J.A. Buczacki, *Generation and immunofluorescent*
669 *validation of gene knockouts in adult human colonic organoids using multi-guide RNA*
670 *CRISPR-Cas9*. *STAR Protoc*, 2023. **4**(1): p. 101978.

671 11. van Neerven, S.M., et al., *Apc-mutant cells act as supercompetitors in intestinal tumour*
672 *initiation*. *Nature*, 2021. **594**(7863): p. 436-441.

673 12. Chan, D.K.H., et al., *Biallelic FBXW7 knockout induces AKAP8-mediated DNA damage in*
674 *neighbouring wildtype cells*. *Cell Death Discov*, 2023. **9**(1): p. 200.

675 13. Drost, J., et al., *Sequential cancer mutations in cultured human intestinal stem cells*. *Nature*,
676 2015. **521**(7550): p. 43-7.

677 14. Matano, M., et al., *Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of*
678 *human intestinal organoids*. Nat Med, 2015. **21**(3): p. 256-62.

679 15. Pikkupuura, L.M., et al., *Transcriptional and epigenomic profiling identifies YAP signaling as*
680 *a key regulator of intestinal epithelium maturation*. Sci Adv, 2023. **9**(28): p. eadf9460.

681 16. Fernandez Vallone, V., et al., *Trop2 marks transient gastric fetal epithelium and adult*
682 *regenerating cells after epithelial damage*. Development, 2016. **143**(9): p. 1452-63.

683 17. Gregorieff, A., et al., *Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal*
684 *regeneration and cancer*. Nature, 2015. **526**(7575): p. 715-8.

685 18. Merlos-Suárez, A., et al., *The intestinal stem cell signature identifies colorectal cancer stem*
686 *cells and predicts disease relapse*. Cell Stem Cell, 2011. **8**(5): p. 511-24.

687 19. Vasquez, E.G., et al., *Dynamic and adaptive cancer stem cell population admixture in*
688 *colorectal neoplasia*. Cell Stem Cell, 2022. **29**(8): p. 1213-1228 e8.

689 20. Elmentaitaite, R., et al., *Cells of the human intestinal tract mapped across space and time*.
690 Nature, 2021. **597**(7875): p. 250-255.

691 21. Qin, X., et al., *An oncogenic phenoscape of colonic stem cell polarization*. Cell, 2023.
692 **186**(25): p. 5554-5568 e18.

693 22. Fontana, D., et al., *Evolutionary signatures of human cancers revealed via genomic analysis*
694 *of over 35,000 patients*. Nat Commun, 2023. **14**(1): p. 5982.

695 23. Sole, L., et al., *p53 wild-type colorectal cancer cells that express a fetal gene signature are*
696 *associated with metastasis and poor prognosis*. Nat Commun, 2022. **13**(1): p. 2866.

697 24. Ramos Zapatero, M., et al., *Trellis tree-based analysis reveals stromal regulation of patient-*
698 *derived organoid drug responses*. Cell, 2023. **186**(25): p. 5606-5619 e24.

699 25. Pich, O., et al., *The mutational footprints of cancer therapies*. Nat Genet, 2019. **51**(12): p.
700 1732-1740.

701 26. Morton, D., et al., *Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of*
702 *an International Randomized Controlled Trial*. J Clin Oncol, 2023. **41**(8): p. 1541-1552.

703 27. TCGA-COAD. 7 March 2023]; Available from: <https://portal.gdc.cancer.gov/projects/TCGA-COAD>.

705 28. Gardner, E.E., et al., *Lineage-specific intolerance to oncogenic drivers restricts histological*
706 *transformation*. *Science*, 2024. **383**(6683): p. eadj1415.

707 29. Ortmann, C.A., et al., *Effect of mutation order on myeloproliferative neoplasms*. *N Engl J*
708 *Med*, 2015. **372**(7): p. 601-612.

709 30. Hansen, S.L., et al., *An organoid-based CRISPR-Cas9 screen for regulators of intestinal*
710 *epithelial maturation and cell fate*. *Sci Adv*, 2023. **9**(28): p. eadg4055.

711 31. Thirimanne, H.N., et al., *Global and context-specific transcriptional consequences of*
712 *oncogenic Fbw7 mutations*. *Elife*, 2022. **11**.

713 32. Dull, T., et al., *A third-generation lentivirus vector with a conditional packaging system*. *J*
714 *Virol*, 1998. **72**(11): p. 8463-71.

715 33. Househam, J., et al., *Phenotypic plasticity and genetic control in colorectal cancer evolution*.
716 *Nature*, 2022. **611**(7937): p. 744-753.

717 34. Muntel, J., et al., *Comparison of Protein Quantification in a Complex Background by DIA*
718 *and TMT Workflows with Fixed Instrument Time*. *J Proteome Res*, 2019. **18**(3): p. 1340-1351.

719 35. Dellar, E.R., et al., *Data-independent acquisition proteomics of cerebrospinal fluid implicates*
720 *endoplasmic reticulum and inflammatory mechanisms in amyotrophic lateral sclerosis*. *J*
721 *Neurochem*, 2024. **168**(2): p. 115-127.

722 36. O'Brien, D.P., et al., *Structural Premise of Selective Deubiquitinase USP30 Inhibition by*
723 *Small-Molecule Benzosulfonamides*. *Mol Cell Proteomics*, 2023. **22**(8): p. 100609.

724 37. Mellacheruvu, D., et al., *The CRAPome: a contaminant repository for affinity purification-*
725 *mass spectrometry data*. *Nat Methods*, 2013. **10**(8): p. 730-6.

726

727

728 **Extended data figure legends**

729 **Extended data figure 1: *FBXW7*^{-/-} organoids do not influence growth of neighbouring wildtype
730 organoids.**

731 *APC*^{-/-} cells act as supercompetitors which suppress the growth of neighbouring wildtype cells,
732 evidenced by proliferative advantage of A organoids over neighbouring W organoids (**a, c, d**). A
733 similar effect was not seen in F organoids co-cultured with W organoids (**b, e, f**). **g**, EdU assay for W
734 and F organoids showed no significant differences in proliferation rate. Volcano plot of co-cultured W
735 versus non-co-cultured W (**h**) and co-cultured F versus non-co-cultured F (**i**) organoids showed that
736 the effect of co-culture did not significantly influence the transcriptome. Positive fold change
737 represents upregulated in co-cultured. The values in this figure are mean \pm sd, and statistical
738 significance was measured by unpaired t-test. All experiments were performed with n=3 biological
739 replicates.

740 **Extended data figure 2: Mutational background influences the transcriptomic effect of an
741 *FBXW7* mutation.**

742 **a**, Western blots for beta-catenin and p53 in wildtype and CRISPR-edited organoid. Sanger traces for
743 edited and wildtype organoids as analysed by ICE tool (Synthego). **b**, RNAseq volcano plot
744 comparing transcriptomes of AF vs A organoids. Positive fold change represents upregulated in AF. **c**,
745 RNAseq volcano plot comparing transcriptomes of ATF vs AT organoids. Positive fold change
746 represents upregulated in ATF. All experiments were performed with n=3 biological replicates.

747 **Extended data figure 3: Effect of epistasis not an artefact of CRISPR/Cas9 gene editing.**

748 **a**, Brightfield microscopy of organoids which had been gene edited at the AAVS1 loci three times to
749 mimic triple-mutant ATF organoids. AAVS1 organoids did not adopt a cystic phenotype. Scale bar =
750 100um. **b**, RNAseq volcano plot comparing transcriptomes of AAVS1 vs W organoids. Positive fold
751 change represents upregulated in AAVS1 samples **c**, RNAseq volcano plot comparing transcriptomes
752 of ATF vs W organoids. Positive fold change is upregulated in ATF samples. All experiments were

753 performed with n=3 biological replicates. **d**, Principal component analysis of transcriptomes from all
754 gene-edited models identified by genotype and patient donor.

755 **Extended data figure 4: Cluster 13 in F organoids was marked by EMT signature.**

756 **a**, GSEA plot of the enrichment of the top 100 F specific genes identified through pseudobulk analysis
757 of scRNAseq data compared to ranked bulk RNAseq data derived from F vs W comparison. **b**, UMAP
758 scRNAseq plots comparing F and W organoids with the EMT signature colour coded. Red = enriched.
759 Blue = de-enriched

760 **Extended data figure 5: GSEA of bulk RNAseq data of F vs W organoids using key pathways
761 derived from scRNAseq analysis.**

762 GSEA plots for enrichment of the foetal signature [16] (**a**), and YAP pathway (**b**) in F organoids
763 compared with W organoids. **c**, UMAP scRNAseq plots from Elmentaita et al of human, colon adult
764 and foetal epithelial cells overlaid with enrichment for FvW signature, *ANXA13* and *OLFM4*
765 expression. Blue = enriched. **d**, Immunofluorescence for LY6D in F and W organoids (Blue = DAPI,
766 Green = anti-LY6D) Scale bars = 50um. GSEA plots for enrichments of the ISC (**e**) and CBC (**f**)
767 signatures in F compared to W organoids.

768 **Extended data figure 6: GSEA showing greater enrichment of YAP signalling in FA compared to
769 AF organoids.**

770 GSEA plots of bulk RNAseq data of FA vs W (**a**) and AF vs W (**b**) for the YAP pathway signature.

771 **Extended data figure 7: GSEA and scRNAseq analysis of A organoids compared to W**
772 GSEA plots of bulk RNAseq comparisons between A vs W for the adult intestinal stem cell signature
773 (**a**) and proliferative cancer stem cell signature (**b**). GSEA plots of bulk RNAseq comparisons
774 between FA vs AF for the proliferative cancer stem cell signature (**c**) and the foetal stem cell signature
775 (**d**). **e**, UMAP single cell RNAseq plots of A and W organoids overlaid with enrichment for the
776 proCSC signature (degree of red is equivalent to degree of enrichment).

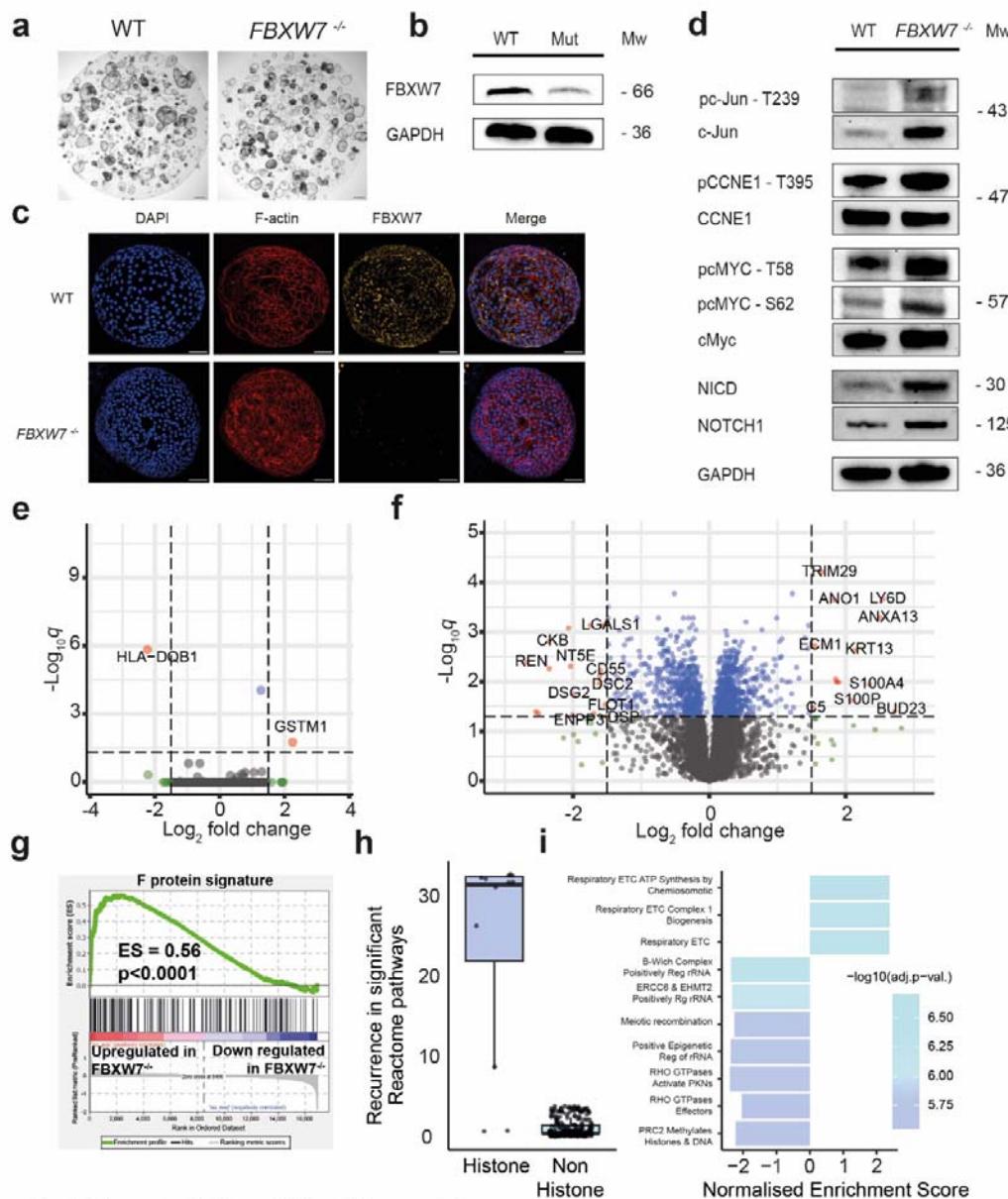
777 **Extended data figure 8: ATACseq profiles for accessibility of F vs W and FA vs AF signatures in**
778 **W, A, F and Foetal organoids**

779 **a**, ATAC accessibility profiles for genomic loci associated with gene in the FvW RNAseq signature.
780 (blue = increased accessibility, red = decreased accessibility). **b**, ATAC accessibility profiles for
781 genomic loci associated with top 200 genes in the FavAF RNAseq comparison. (blue = increased
782 accessibility, red = decreased accessibility). **c**, Chromatin accessibility for the *LY6D* gene region
783 (chr8:142781535-142792411) in ‘A.vs.WT’, ‘F.vs.WT’ and ‘Foetal.vs.WT’ comparisons from ATAC-
784 seq, visualised as track plots after group autoscaling of the input data. The Y-axis notes the track label
785 and the range of the values within the region visualised. The vertical red bar on the ideogram of the
786 chr8 indicates the location of the region. The X-axis indicates the direction of the genome, and the
787 numbers (bottom-most track) are 2kb-spaced positions on the chr8. The canonical protein-coding
788 transcript of LY6D gene (NM_003695) is represented as the dark-blue boxes (exons, n=3) connected
789 by arrows (‘<’) on horizontal bar (introns).

790

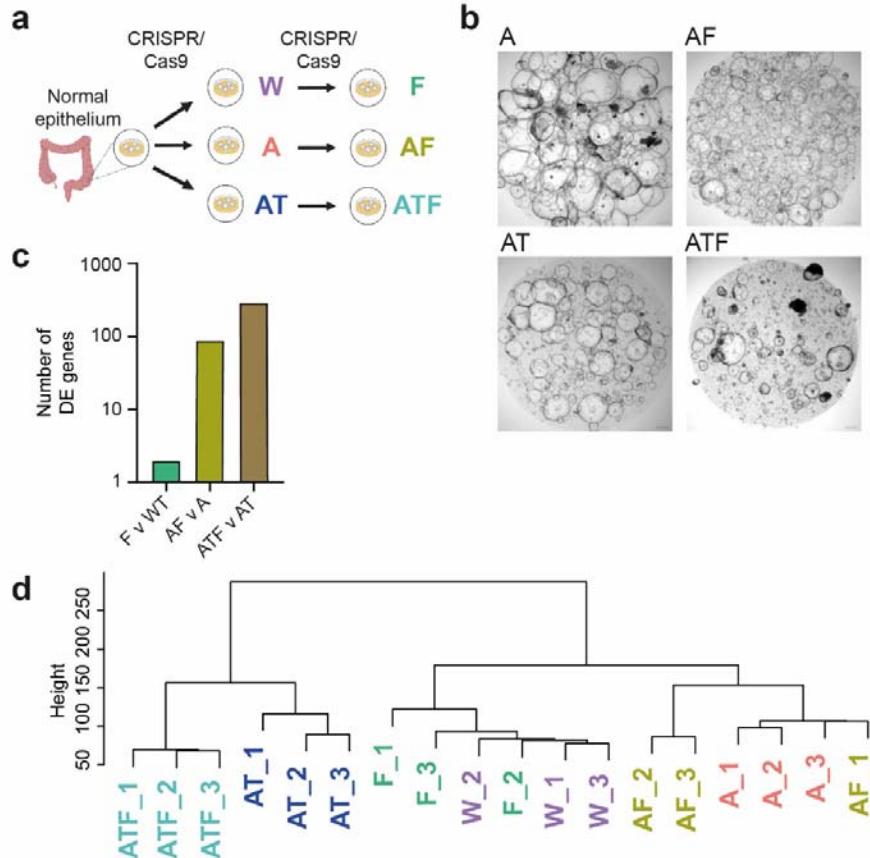
791 **Extended Data Table 1:** Reactome pathway analysis of F vs W proteomics

792 **Extended Data Table 2:** Primer and guide sequences for gene editing

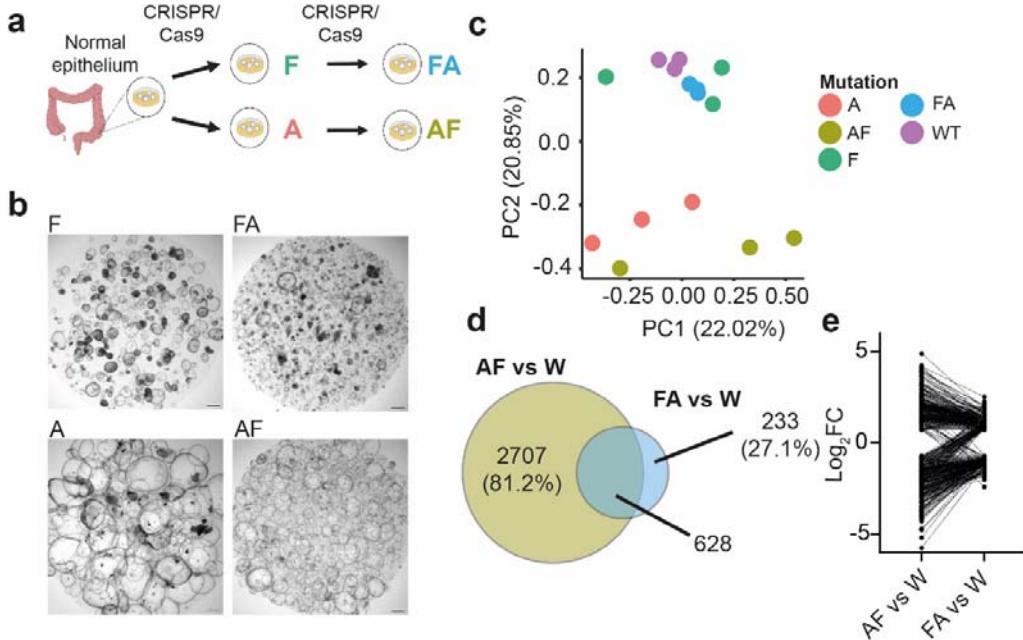

793 **Extended Data Table 3:** Gene signatures used for GSEA and ssGSEA

794 **Extended Data Table 4:** Table of de novo transcription factor identification results in F, A and W
795 organoids

796 **Extended Data Table 5:** GSEA results for Hallmark and stem cell signatures on pre-operative
797 biopsies from the FOxTROT study


798

799


Fig. 1 Characterisation of W and F organoids

a, Brightfield microscopy of W and F organoids revealed no observable phenotypic differences. Scale bars represent 500µm. **b**, Western blot validation showing loss of FBXW7 in F organoids. **c**, Immunofluorescence of W and F organoids with DAPI nuclear stain (blue), F-actin (red), FBXW7 (orange). Scale bars represent 100µm. **d**, Western blot analysis of known ubiquitination substrates of FBXW7. **e**, Volcano plot of bulk RNAseq of F vs W organoids revealed minimal differential expression of genes. Positive fold change = up in F. **f**, Volcano plot of proteomic MS analysis of F and W organoids. Positive fold change = up in F. **g**, GSEA comparing the top 200 proteins over expressed in F compared to the ranked gene list of differentially expressed transcripts between F and W organoids. **h**, Box and whisker plot for the recurrence of histone pathways in depleted Reactome pathways in the F vs W proteomics. Median +/- IQR. **i**, Chart detailing the enrichment scores for the top 10 Reactome pathways altered in F vs W proteomics. All experiments were performed with n=3 biological replicates (proteomics n=4).

Fig. 2 Effect of FBXW7 mutation is dependent on mutational background

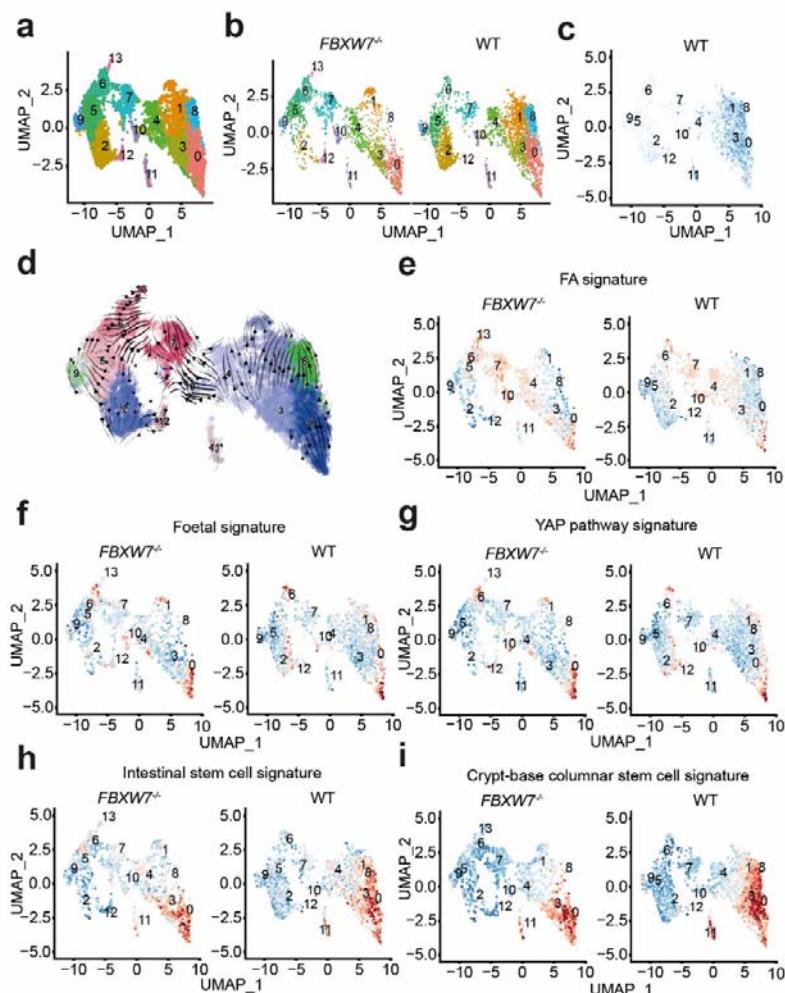

a, Schematic showing the organoid models used. W, A and AT organoids were generated to reflect normal, adenomatous and carcinomatous lesions. On each of these organoid types, an FBXW7 mutation was introduced to generate F, AF and ATF organoids respectively. **b**, Brightfield microscopy of A, AF, AT and ATF organoids. A organoids adopt a cystic phenotype which is representative of increased proliferation. AF organoids appear smaller in size compared with A organoids. AT organoids also recapitulate the cystic appearance of A organoids. ATF organoids appear less cystic than AT organoids. Scale bars represent 100 μ m. **c**, Histogram showing the number of differentially expressed genes on the addition of an *FBXW7* mutation changes based on the mutational background. While 2 genes were differentially expressed between W and F, 87 and 294 genes were differentially expressed between A and AF, and AT and ATF respectively. **d**, Hierarchical clustering, based on gene expression data, of the different organoid types showed that W and F organoids clustered most similarly together. All experiments were performed with n=3 biological replicates.

Fig. 3 Effect of *FBXW7* mutation is dependent on the order of mutation

a, Schematic showing the organoid models used in this analysis. A and F organoids were generated separately. On the A organoid, an *FBXW7* mutation was introduced, generating AF organoids. On the F organoid, an *APC* mutation was introduced, generating FA organoids. AF and FA organoids possessed the same mutations but acquired the mutations in an inverse order. b, Brightfield microscopy of A, AF, F and FA organoids. Although FA organoids acquired an *APC* mutation, this did not recapitulate the cystic phenotype observed in A or AF organoids. Scale bars represent 100 μ m. c, Principal component analysis (PCA) showed not only that FA organoids clustered separately from AF organoids, FA organoids clustered together with W and F organoids, while AF organoids clustered closer to A organoids. d, Venn diagram depicting the overlap of differentially expressed genes at cut-off $\log_2FC \leq -0.7$ or ≥ 0.7 between AF vs W and FA vs W comparisons. 628 genes were differentially expressed in both AF and FA organoids. e, Linked column graph of AFvW and FAvW overlap genes ($n=628$) showed there was a reduction in the magnitude by which the genes were differentially expressed. All experiments were performed with $n=3$ biological replicates.

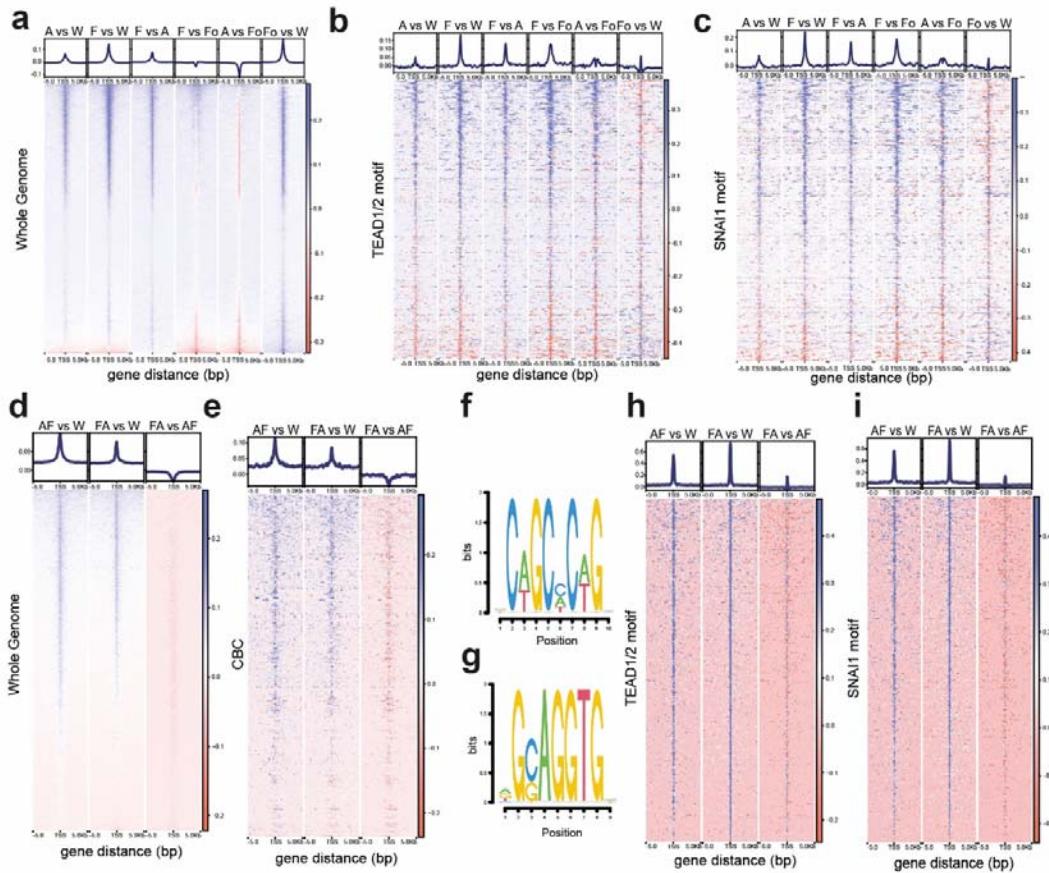

802

Fig. 4 scRNAseq shows FBXW7 mutation induces a switch from an adult to foetal stem cell state

a, Uniform manifold approximation and projection (UMAP) analysis from scRNAseq of W and F organoids yielded 14 clusters. b, Cluster 13 was unique to F organoids. c, *FBXW7* is actively expressed in wildtype organoids. Intensity of blue reflects *FBXW7* level. d, RNA velocity analysis demonstrated that clusters 1, 8 and 13 were terminally differentiating subpopulations. Chi-square analysis of W and F organoids demonstrated that F organoids were enriched for (e) FA_up gene signature ($p<2.22 \times 10^{-16}$), (f) foetal signature ($p=9.4754 \times 10^{-11}$), (g) YAP pathway signature ($p=3.2134 \times 10^{-7}$), and depleted for (h) intestinal stem cell signature ($p=1.4887 \times 10^{-6}$) and (i) crypt-based columnar stem cell signature ($p<2.22 \times 10^{-16}$). Red = increased expression, Blue = decreased expression. Data presented represents two biological replicates for each condition ($n=4$).

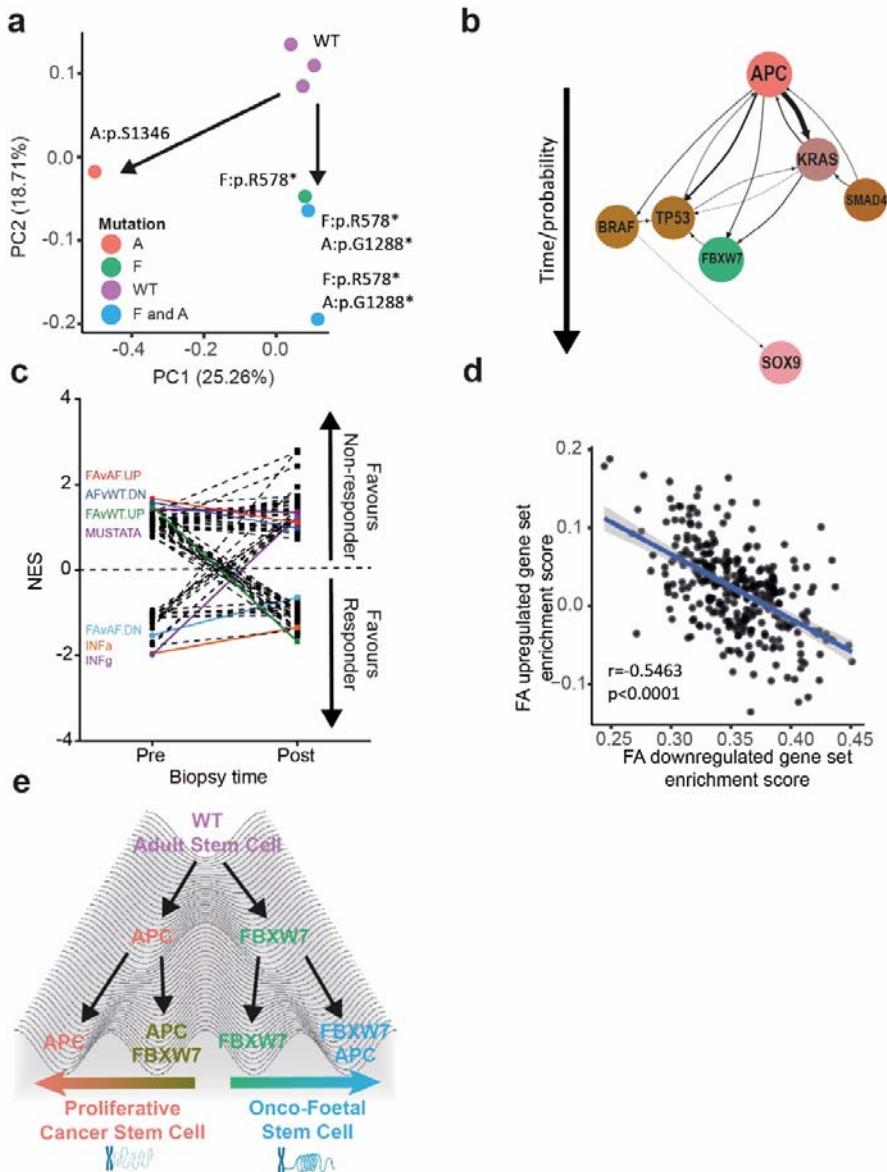

803

Fig. 5 ATACseq analysis demonstrates cell state changes are associated with global and specific alterations in chromatin accessibility

a, Whole genome chromatin accessibility profiles for W, A, F and Fo organoids (blue = increased accessibility, red = less accessibility). b, Chromatin accessibility profiles of TEAD 1/2 motifs for W, A, F and Fo organoids (blue = increased accessibility, red = less accessibility). c, Chromatin accessibility profiles of SNAI1 motifs for W, A, F and Fo organoids (blue = increased accessibility, red = less accessibility). d, Whole genome chromatin accessibility profiles for F, AF and FA organoids (blue = increased accessibility, red = less accessibility). e, Chromatin accessibility profiles for CBC signature genes for W, AF and FA organoids (blue = increased accessibility, red = less accessibility). Motif plots of the two de novo motifs found enriched in the FA vs W organoid comparison were (f) "nCwGCmCwGn" and (g) "rGCAGGTGn". Chromatin accessibility profiles of TEAD1/2 (h) and SNAI1 (i) motifs between W, AF and FA organoids. All experiments were performed with n=3 biological replicates with n=4 for foetal samples.

804

Fig. 6 Patient data confirms FBXW7 mutation order-specific effects and identifies a novel chemotherapy predictive onco-foetal signature

a, PCA plot based on transcriptional grouping of 'normal' crypts containing F, A and no mutations. Mutations highlighted on plot. b, Plot representing ASCETIC analysis of 65 colonic adenomas from the S:CORT study. Arrow thickness represents strength of likelihood of mutation order for seven cancer genes sequenced. c, Linked column graph of GSEA NES for 73 Hallmark and stem cell signatures on FOxTROT trial pre and post treatment biopsies. Highlighted signatures significant on pre-treatment biopsies ($p < 0.05$). d, Dot plot of enrichment scores in TCGA-COAD samples ($n=320$) for FA_UP and FA_DOWN signatures showing an inverse relationship (correlation score: -0.55 , $p < 2.2 \times 10^{-16}$). e, Waddington schematic of the consequences of mutation order on stem cell state. Adult stem cells (ISC/CBC) are driven down two axes: a proliferative cancer stem cell (proCSC) following APC mutation or an onco-foetal route following FBXW7 mutation.