

1 Automappa: An interactive interface for

2 metagenome-derived genome bins

3 Evan R. Rees¹, Samantha C. Waterworth¹, Shaurya C. Chanana^{1, 2} and Jason C. Kwan^{1*}

4

5 ¹Pharmaceutical Sciences Department, School of Pharmacy, University of Wisconsin - Madison, 777 Highland
6 Ave Madison, WI 53703, United States

7 ²Current address: Enveda Biosciences, 1880 S Flatiron Ct, Boulder, CO 80301, United States

8 *Correspondence: jason.kwan@wisc.edu

9 Abstract

10 **Background:** Studies attempting to observe microbes commonly considered uncultivable under standard
11 laboratory conditions are turning to so-called “deep” environmental sequencing approaches whereby they may
12 access these unculturable organisms’ genomes via *in silico* approaches. A typical workflow involves
13 metagenome assembly, annotation, and binning for reconstruction of each respective organism’s genome (or
14 metagenome-assembled genome, MAG). Many automated genome binning approaches have been developed
15 and have displayed a wide range of variation in performance. Therefore, refinement methods have been
16 developed in order to aid manual curation following the automated genome binning process. Current manual
17 curation tools were developed with a focus towards teaching metagenomics concepts and may fail when
18 handling complex datasets containing many microbes. Automappa was developed with a focus on overlaying a
19 variety of annotations such as taxonomy, coverage and marker-gene prevalence while maintaining an
20 implementation that may scale to the complexity of environmental samples.

21

22 **Results:** We present Automappa, a companion tool and interactive interface for exploration and refinement of
23 Autometa taxon and genome binning results from metagenomes. Selections provide real-time updates of MAG
24 metrics to aid manual curation. Furthermore, researchers may detect unbinned MAGs as well as manually
25 improve their draft-quality MAGs with contigs that closely match the MAG's genome characteristics.
26 Automappa's utility has previously been demonstrated on host-associated, marine and terrestrial systems with
27 a total of 242 curated MAGs across fourteen published metagenomes. Of these refined MAGs, the number of
28 high-quality and medium-quality bins increased, consequently lowering the number of low-quality bins and
29 decreasing the amount of data discarded from downstream analyses. The recovery of higher quality MAGs
30 improved the confidence in results and strengthened the resultant conclusions of these respective studies.
31 Automappa consists of three tabs, one for uploading a user's metagenome data, another for exploration and
32 refinement and the last for providing an overall summary of the refined MAG results.

33
34 **Conclusions:** Automappa is an open source software package that allows researchers to easily assess and
35 refine undetected or draft-quality MAGs from their respective metagenomes. It is freely available under the
36 GPLv3 license at <https://github.com/WiscEvan/Automappa> and through Figshare (doi:
37 10.6084/m9.figshare.22593235).

38
39 **Keywords:**

40 Metagenomic genome binning, Graphical user interface, Autometa, genome-refinement, Open source

41 Background

42 Innovations in next-generation sequencing methods have democratized studies reliant on analysis and
43 exploitation of complex microbial communities. As sequencing continues to become more cost-effective, an
44 even greater influx of researchers will employ these technologies. Un-targeted environmental studies have
45 vastly expanded the diversity represented in the Tree of Life and consequently revealed many limitations in
46 microbial cultivation [1–5]. However, whole genomes can be obtained through shotgun metagenomics (random
47 direct environmental DNA sequencing), and this may lead researchers to insights regarding primary and

18 secondary metabolism, ultimately aiding culturing efforts [6]. Such genomes obtained through metagenomics
19 are termed metagenome-assembled genomes, or MAGs, and their quality is estimated through the presence of
50 specific genes universally conserved in microbes [7]. Researchers may access *who* is in a particular sample as
51 well as each species' genetic capabilities at the same time, affording meaningful information across a wide
52 range of industries. For example, in detection of agricultural pathogens, human-health monitoring through city
53 waste systems and drug discovery efforts in de-orphaning therapeutically-relevant biosynthetic gene clusters
54 (BGCs). Metagenomics is particularly well-suited for host-associated systems where culturing efforts have
55 been deemed intractable and have allowed researchers to unravel previously misunderstood symbiotic
56 relationships [8, 9]. The democratization of next-gen sequencing has generated “big data” and is accompanied
57 with the development of a panoply of automated approaches.

58

59 The general computational workflow for genome-resolved metagenomics involves assembly of DNA
60 sequencing data, various sequence annotation methods, binning of these annotated sequences into genome
61 groups (MAGs) and finally characterization of the binned MAGs. In this context, a flawless automated
62 approach should recover fully-assembled and classified genomes from the metagenome, eliminating any
63 requirements of expert analysis or post-processing. However, genome binning of complex samples has
64 remained recalcitrant with current state-of-the-art methods, limited in their ability to recover more than half of
65 the members in both marine samples and communities with high amounts of strain-level overlap [10].
66 Achieving high-quality assemblies may require more sequencing, often including long-reads, which may be
67 cost prohibitive to research groups. Furthermore, current long read technologies require sequencing coverage
68 as well as DNA quality and quantity that may be unobtainable due to the scarcity of the sample. Consequently,
69 one approach to improve the total recovery of MAGs has been to determine the best representative MAGs by
70 consensus of various binners' predictions with programs called “binning refiners” [11–13]. These binning
71 refiners have been developed to circumvent the individual limitations across different genome binning
72 methods. Binning refinement in this manner is constrained by the sensitivity of the aggregate binners'
73 predictions and consequently will fail to recover any members not initially recovered. Due to these limitations,
74 many environmental metagenomics analyses often require expert curation.

75

Given current limitations, tools enabling manual analysis by researchers become indispensable. To this end, software is available to guide refinement of MAGs from metagenomic samples following (or in place of) an automated approach. There currently exist such tools as VizBin, ICoVeR and uBin that allow visualization of various metagenome annotations to provide a means to manually deconvolute microbes from their community [14–16]. VizBin provides a 2D scatterplot of metagenome sequences visualized as points corresponding to their dimension-reduced tetra-nucleotide frequencies [15] and the interface allows a user to select groupings of sequences to correspond to putative MAGs. ICoVeR allows verification and refinement with a set of interactive plots displaying annotations of sequence abundance, nucleotide composition and predictions from other binners. Additionally, ICoVeR provides automated refinement algorithms to further guide the MAG refinement process [16]. Similar to ICoVeR, uBin supplies the end-user with a multitude of charts and graphs to curate a genome from a metagenome, although the intended purpose for uBin is to aid teaching metagenomics to students by familiarizing them with common metagenomic annotations [14]. However, all these software packages are limited to datasets less than approximately 90,000 contigs, and are limited in their user-customization options.

70

To overcome these problems and to aid our own binning efforts, we have developed Automappa. This is a companion tool to its automated binner, Autometa, which was constructed to address recovery of host-associated microbes [17]. Autometa is an automated workflow which aims to scale to the most complex communities that have been assembled. Therefore, Automappa was implemented to handle manual curation of MAGs at the scale of these complex datasets. Similarly, to address the aforementioned shortcomings of automated binning approaches, Automappa gives the user the ability to detect these divergent community members using a variety of visualizations. Previous binning refiners depict metagenomic data using GC content, contig coverage, taxon-binning annotations as well as nucleotide composition differences through the use of the dimension reduction technique, Barnes-Hut *t*-distributed stochastic neighbor embedding (tSNE). Automappa extends these metagenomic representations with the inclusion of an assortment of recently developed dimension reduction methods such as Uniform Manifold Approximation (UMAP) [18], the density-

71

)2 preserving version DensMAP [19] and TriMap [20], a reduction method that uses triplet constraints to form the
)3 low-dimensional representation. Furthermore, metadata such as marker gene and taxonomy information are
)4 layered on top of the various embeddings to assist curation across all recovered MAGs.

)5 Implementation

)6 Automappa was developed as a companion tool to the binning software, Autometa [17]. It was
)7 designed to visualize, verify and refine genome binning results to aid curation of high-quality MAGs. It is
)8 composed of interactive and inter-connected tables and figures that support selection with real-time MAG
)9 quality updates. The Automappa web user interface is implemented in Python and packaged with a docker-
)10 compose configuration file for ease of setup. Automappa was implemented to scale to metagenomics-sized
)11 data by connecting a variety of production-quality services, and it may be deployed on a lab server or an
)12 individual's personal computer. Multiple services communicate with the Automappa server, allowing distribution
)13 and asynchronous execution of long-running metagenome annotation tasks. A Celery task-queue distributes
)14 tasks with RabbitMQ and Redis to manage the user's input metagenome annotations [21–23]. These
)15 annotation tasks include a k -mer frequency analysis pipeline and retrieval of various MAG summary statistics.
)16 The back-end is managed by a Flask server, Redis, RabbitMQ and PostgreSQL while the front-end uses the
)17 Dash framework provided by Plotly [24–26]. Automappa is distributed with a Dockerfile for easy construction of
)18 an isolated server environment for use with various compute systems. The interface consists of three tabs. The
)19 first is the home page, where the user may upload results from Autometa's automated binning workflow (Fig.
)20 1). The second is the MAG refinement page, where the user can explore binning results and curate MAGs to
)21 improve overall MAG quality (Fig. 2). The third tab is a MAG summary page, where the user can access an
)22 overview of binning results as well as get an overview of any specific MAG of interest (Fig. 3).

)23

)24 The home tab allows the user to upload their dataset and displays an assortment of sample cards
)25 indicating various statistics determined for each of the user's samples. The cards are persistent between runs,
)26 so data does not have to be uploaded each time Automappa is started. Three files are required for upload: (1)
)27 the main binning annotation file written by the autometa-binning command using taxonomy information, (2) the

28 markers file written by the autometa-markers command and (3) the corresponding fasta formatted
29 metagenome assembly. Upon upload, annotations are ingested into a PostgreSQL database and then their
30 files are removed. After this, the user may select these data by selecting the corresponding sample card for
31 use during the MAG refinement process. Subsequent navigation throughout Automappa will use the data
32 selected at this step.
33
34

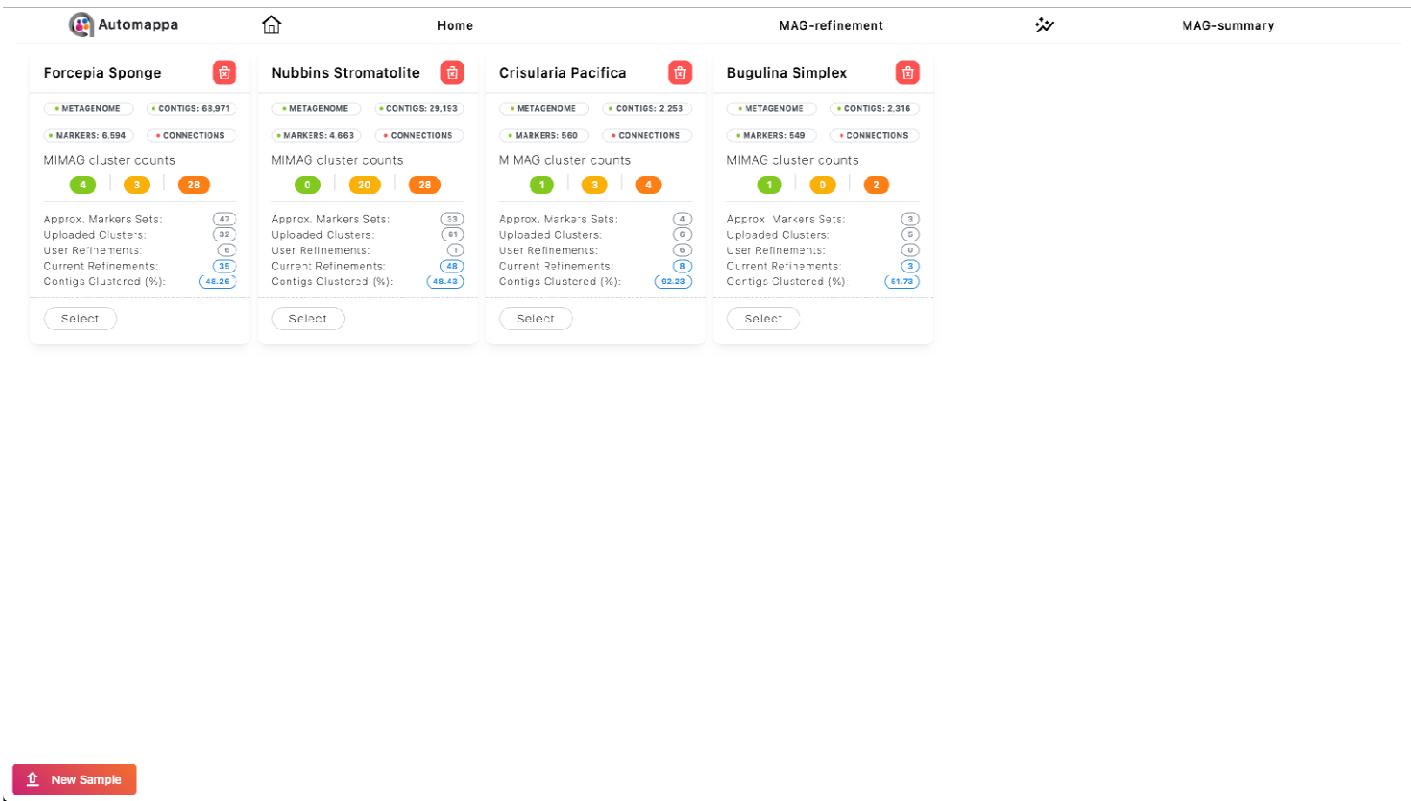


Figure 1. Home tab with four example datasets uploaded. Each sample card displays information with respect to the dataset, such as number of sequences, number of markers, number of initial MAGs uploaded and the total MAGs currently available. A breakdown of MAG counts corresponding to MIMAG quality are also determined for the currently available MAGs in the corresponding sample. These sample cards serve as an overview to the user for surveying their available datasets and refinement progress.

36 The main view of the MAG refinement tab is composed of multiple connected and interactive figures

37 (Fig. 2): (A) A 2D scatterplot of contigs where the user may specify each axis reflecting a variety of contig
38 annotations. The default axes are contig annotations of GC content and coverage. Additional annotations of
39 embedded k -mer coordinates are computed upon dataset selection. These coordinates are determined by a k -
40 mer frequency analysis workflow. Briefly, a window of size k , is used (typically 4 or 5) to construct all possible
41 combinations of nucleotides at the given k . These k -mers are searched and counted for each contig then all
42 counts are normalized by a center-log ratio transformation. Finally the normalized k -mer frequencies are
43 processed by a dimension reduction technique, also known as embedding, to project the high-dimensional k -
44 mer frequencies down to two dimensions, shown as “ X_1 ” and “ X_2 ” in Automappa’s settings pane. In this
45 embedded space the relation of one contig to another represents the similarity or difference by nucleotide
46 composition. The user can change the scatterplot’s axes within the settings menu between either GC content
47 vs. coverage or X_1 vs. X_2 , and can specify that points be colored by cluster or specific taxonomic rank. Contig
48 marker annotations are overlaid in this scatterplot based on their marker count to aid the user in the MAG
49 refinement process. Users are able to select groups of contigs using either rectangular or lasso selection tools,
50 and in addition there is a slider underneath the main 2D plot that hides points outside of the specified coverage
51 range, allowing for selection within that range only. (B) A datatable summarizing the characteristics of the
52 selected contig group, including completeness and purity inferred through single-copy marker genes. (C) A
53 Sankey diagram to visualize each selected contig’s taxon distribution across each canonical rank from
54 superkingdom to genus. (D) A 3D scatterplot displaying the selected coordinates from the 2D scatterplot
55 (utilizing the same x and y axes) with an additional axis of contig coverage, length or GC content. Coverage in
56 this context is especially useful for resolving samples with strain-overlap or for observing possible incidences of
57 horizontal gene transfer. (E) Box plots to assess the distribution of MAG characteristics such as GC content,
58 coverage and length in the selected points. Distributions of GC content and coverage help the end-user to
59 determine whether the possible MAG refinement is feasible, while the MAG refinement assembly quality can
60 be inferred by looking at the distribution of fragment lengths. Most useful regarding the MAG refinement page
61 is the interconnectedness of these figures and the associated tables. Contigs may be selected in the 2D
62 scatterplot causing the other figures to be updated based on the selection. Furthermore, MAG completeness

3 and purity measures are updated in real-time with additional single-copy marker metrics displayed alongside
4 the figures. This allows the user to manually curate MAGs with selections guided by repeated measures of
5 increasing completeness and decreasing contamination (or increasing purity). When the user has finalized
6 their curation, they may save their manual refinements which can be exported when they are finished with the
7 refinement process. To aid the user during the refinement process, a table at the bottom of the page is updated
8 with the user's MAG refinements. To avoid accidental duplication of a contig's membership into multiple MAGs
9 (and potentially erroneous interpretation of results), a contig is assigned to its latest MAG classification and
10 removed from its previous MAG assignment. Contigs that have already been placed in a manually curated
11 MAG may be hidden by a toggle located at top of the page. When the user has resolved all of their MAGs and
12 has deemed the refinement process as complete, they may navigate to the MAG summary page for a general
13 overview.

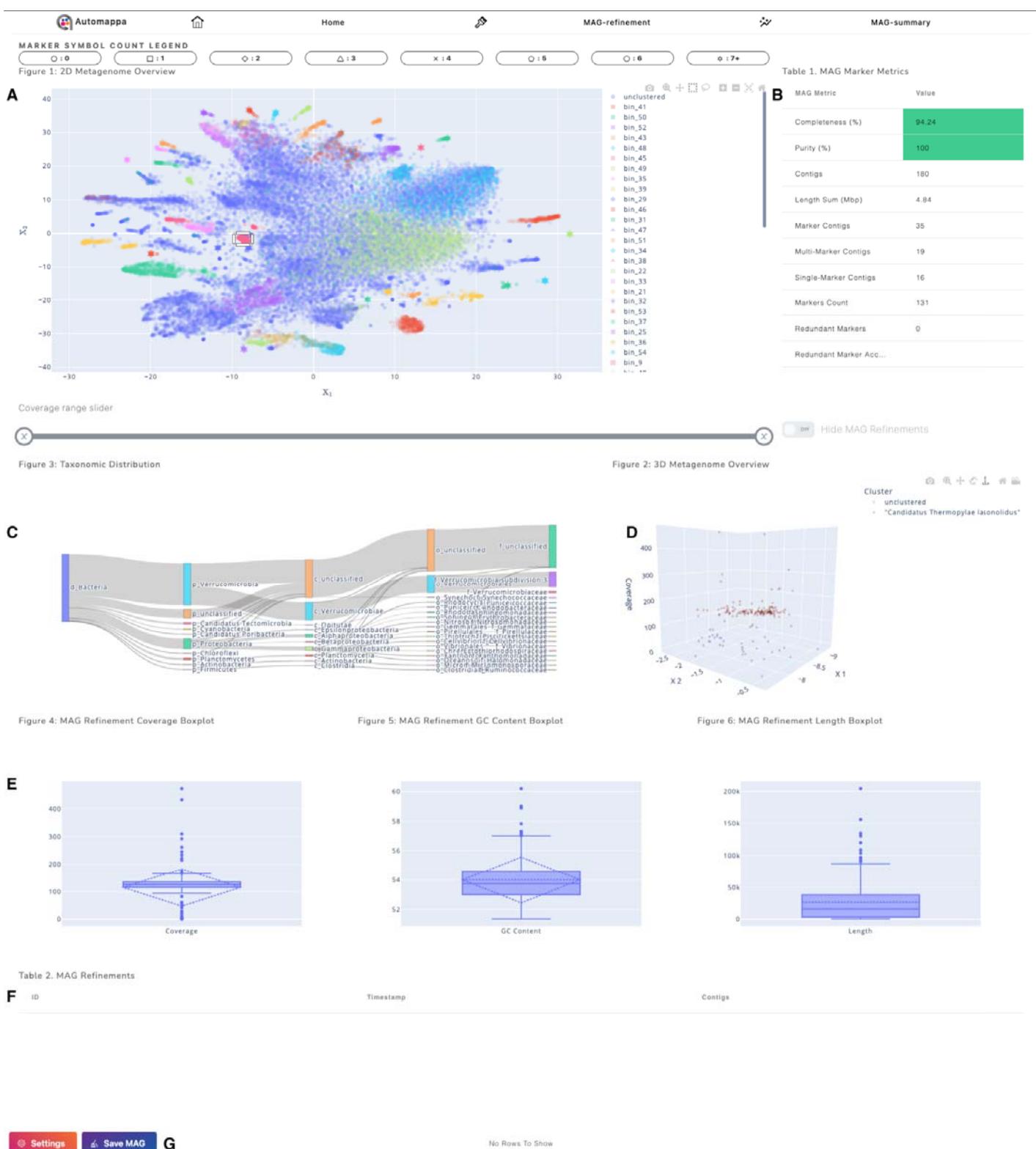


Figure 2. MAG refinement tab with uploaded *Forcepia* sponge data [27] displaying X₁ and X₂ embedded *k*-mer axes selected. (A) Points colored blue in the top left are unclustered contigs while the other colors

represent specific MAG assignments. (B) The computed MAG marker metrics of the user-selected points from the 2D scatterplot. (C) The taxonomy designations from superkingdom to species canonical rank are directly below the top left scatterplot. By default this reflects all points except when a subset is selected. (D) To the right of the taxon binning annotations is a 3D scatterplot with the same x and y axes as the 2D scatterplot and coverage for the z axis. The 3D scatterplot automatically updates to show the selected points only. (E) Boxplots depicting coverage, GC content and length distributions are available, after selection (similar to the MAG summary in Figure 3, below). (F) MAG refinements table containing information of user refinements. (G) Two buttons affixed for changing figure settings (for example, mapping of axes to different variables), deleting, downloading and saving user's MAG refinements. This view is accessed directly after navigation to the *MAG Refinement* tab, so all contigs are represented across the figures as well as within the MAG Marker Metrics table. Selection of a subset of contigs in the 2D plot results in other figures and tables updating to show information for the selected contigs only as is shown for the group of points encompassed by the rectangle in A.

74

75

76 The MAG summary page (Figure 3) provides aggregated statistics of the recovered MAGs to easily
77 assess binning performance. The page is composed of various figures and a MAG summary table. Upon
78 navigation to the MAG Summary tab, four boxplots are generated providing an overview of binning results and
79 metagenome information. The first box plot displays the distribution of completeness and purity estimates
80 across all of the recovered MAGs. The other three boxplots are updated with metagenome distributions of GC
81 content, length and coverage. Underneath these boxplots is a MAG summary table which provides aggregated
82 MAG-specific statistics available to the end-user for review and scrutiny. These statistics allow the user to
83 critique a MAG's fragmentation or assembly quality (N50, N90, N10, size, contig count), marker gene
84 estimates and length-weighted distributions of coverage and GC content.

85

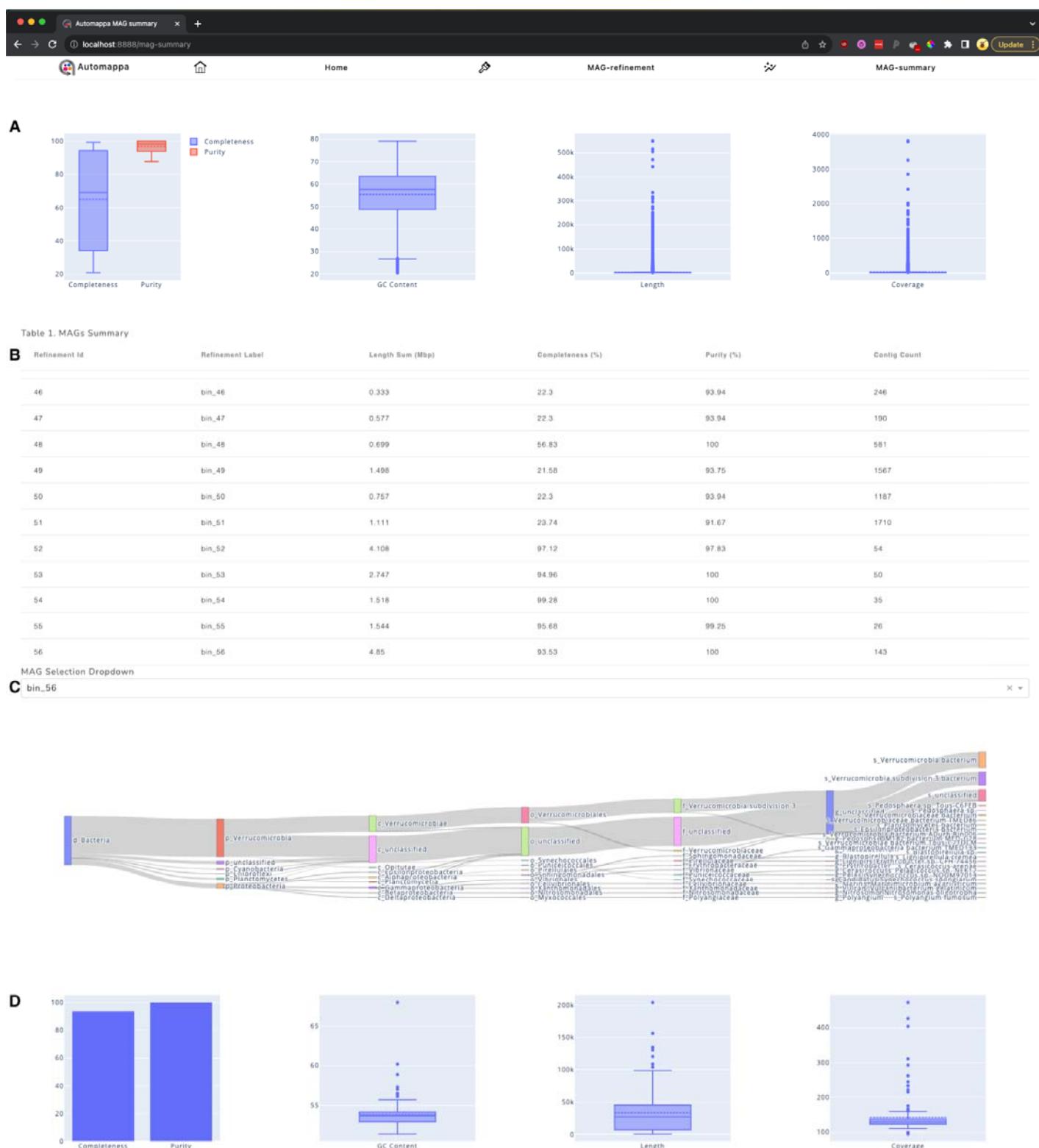


Figure 3. MAG summary overview. (A) Box plots showing completeness, purity, GC content, length and coverage of all MAGs both imported and refined. (B) Table of MAG characteristics, including total length,

estimated completeness and purity. (C) A dropdown for MAG selection which will populate the Sankey diagram showing the distribution of taxonomic classifications at each rank for the selected MAG. (D) Characteristics of the selected MAG represented through bar and box plots.

36

37 The user may inspect an individual MAG by use of the MAG selection dropdown beneath the MAG
38 summary table. Upon MAG selection, a Sankey diagram of the respective MAG's contig taxonomy distribution
39 across canonical ranks is generated neighboring three additional box plots to assess the MAG-specific
40 distribution of GC content, length and coverage with their corresponding quartiles. A bar plot of the MAG's
41 completeness and purity is also created adjacent to the aforementioned boxplots, as shown in figure 3D. When
42 a user has completed their MAG refinements, they can be downloaded through the Settings menu under the
43 MAG refinement page.

44

45 Results and discussion

46 Several automated genome binning algorithms have been developed, each striving to produce the
47 highest quality MAGs possible. However, these tools fail individually and in aggregate to recover complete and
48 pure metagenomic communities [10]. Some of these tools may exhibit a black-box effect, where the user may
49 not fully understand how their final MAGs were binned due to the obscurity of the genome binning methods.
50 For example, a k -mer frequency analysis is a measure of nucleotide composition which first requires counting
51 k -mers of length k , leading to a high-dimensional distribution of counts which are then normalized before being
52 reduced to two dimensions via a non-linear dimensionality reduction technique, such as tSNE. Consequently,
53 the dimension-reduced representation of the original similarities and differences within the high-dimensional k -
54 mer counts becomes obscured. Additionally, recursive binning predictions may further obfuscate a method's
55 decision-making, limiting the user's ability to discern the properties of why sequences were clustered as they
56 were. Manual curation of metagenomic bins gives researchers control over their final resolved bins, for

)7 example through inclusion of unclustered contigs, splitting of MAGs by abundance or coverage, or combination
)8 of incomplete MAGs to produce higher quality bins.

)9

I0 We suggest users take the following deliberate approach to manually curating their clusters: Within the
I1 MAG Refinement tab, moving down the cluster legend of the 2D scatterplot in the upper left, one can iteratively
I2 manually curate each cluster by 1) examining the 3D plot to determine if coverage is approximately uniform
I3 across the cluster. If a cluster appears to have a stark difference in coverage (as seen in the 3D plot,
I4 previously mentioned), it is recommended that this bin be split into two or more clusters by utilizing the
I5 coverage slider underneath the 2D scatterplot, which may result in improved gene marker purity. 2) If coverage
I6 appears uniform, the user can proceed to assess whether combining the cluster with a neighboring MAG or
I7 surrounding unclustered contigs improves completeness with minimal or no change to the purity levels.

I8 Alongside coverage and completeness, the user may also inspect uniformity between the contig selection's
I9 taxonomic distributions. This is done by iteratively selecting different contig groupings. For example, inclusion
I20 or exclusion of marker-containing contigs (indicated in Automappa with distinct shapes corresponding to their
I21 respective marker counts outlined by the *Marker Symbol Count Legend* above the 2D scatterplot in Figure 2A)
I22 will alter the MAG quality completeness and purity metrics as well as potential change the taxonomic
I23 composition of the selection if there are contaminants. As Autometa errs on the side recovering incomplete
I24 clusters of high purity, improvement of bin quality can often be achieved by the addition of unbinned contigs or
I25 the combination of two or more clusters. This process, at the expense of introducing limited contamination
I26 (below 3% contamination per bin is advised), can achieve large increases in MAG completion. Toggling
I27 between coloring contigs by genus or species may also be useful in determining which contigs to include in a
I28 given cluster. When the user decides their refinements represent the highest quality MAGs possible, they can
I29 save the selection and move on to the next MAG refinement.

I30

I31 With this approach, Automappa has been used in our group to manually curate 242 MAGs from
I32 fourteen metagenomic samples across a diverse range of environments, including stromatolites, marine
I33 sponges and beetles which have been successfully published in scientific literature [8, 27–29]. Moreover, this

34 tool has been used to produce an additional 376 final clusters from 13 more unpublished metagenomes
35 derived from a similar diverse range of environments. Of these metagenomes were sponge (Phylum *Porifera*)
36 microbiomes within which a genome representing a novel *Tethybacterales* family was recovered as well as
37 eleven other genomes in the *Tethybacterales* order [29]. The refined MAGs comprising these broadly-
38 distributed *Tethybacterales* families were compared to discern any potential functional differences. Automappa
39 assisted in gaining these insights by enabling expert curation of metabolic pathways respective to each of the
40 *Tethybacterales* MAGs. Similarly, microbiomes from geographically distinct stromatolite formations were
41 curated using Automappa allowing comparison of the conserved MAGs' functional gene sets recovered [28].
42 Automappa was also utilized to better understand a terrestrial host-associated metagenome. MAGs were
43 curated from the eggs of the *Lagria villosa* beetle, leading to the surprising discovery of a reduced genome
44 symbiont, *Burkholderia* sp. LvStB, as the exclusive producer of the antifungal compound, lagriamide [8].
45 Furthermore, multiple horizontally transferred genes were found within the genome of strain LvStB, shedding
46 light on the initial stages of the evolutionary process of genome reduction. More recently a sponge (Phylum
47 *Forcipia*) microbiome was analyzed and with Automappa assisted in identifying "*Candidatus Thermopylae*
48 *lasonolidus*", a candidate producer of lasonolide A and helped to suggest the potentially horizontally
49 transferred lasonolide A biosynthetic gene cluster using pentanucleotide frequency and GC content, which are
50 readily available for inspection in the MAG refinement view [27].

51 Future development

52 All current automated genome binning approaches fail to recover greater than fifty percent of the
53 genomes from any of the most recent CAMI2 challenge datasets [10]. These datasets consisted of a
54 community with high amounts of strain overlap and a marine metagenome, containing many less represented
55 taxa in the NCBI databases. Future methods will need to address the complexities of separating closely-related
56 genomes as well as for handling highly-divergent, erroneous database matches. Not only must binners
57 account for these challenges, but they must also be capable of scaling to highly populous communities, such
58 as collections of soil samples. Forthcoming developments within the Autometa workflow will attempt to address
59 these intricacies. Automappa will pursue follow-up implementations to continue to aid the end-user in

30 exploration and refinement of their sample, regardless of environment. Some of the planned future
31 developments include integration of pre and post-processing workflows such as genome binning with
32 Autometa, taxon binning with the Genome Taxonomy Database Toolkit (GTDB-Tk), lineage-resolved MAG
33 quality analysis using CheckM [30, 31] and addition of MAG-specific KEGG annotations using tools such as
34 kofamscan [32] or METABOLIC [33]. Outside of incorporation of commonly used comparative genomics tools,
35 additional interactive figures and features embedded within these interactive features are outlined. For
36 example, with datasets containing more than 100,000 sequences, overplotting may become problematic. To
37 reduce overplotting, putative MAGs may be consolidated by visualizing their geometric median thereby dually
38 increasing app performance and better differentiating consolidated MAGs with the surrounding unclustered
39 contigs. Supplementary to selections whereby MAG metrics are iteratively improved, an interactive plot of
40 contigs' assembly graph connections may be added allowing the user to easily apprehend the respective
41 MAGs inter and intra-MAG connections. This would help the end-user to determine possible horizontal gene
42 transfer events and help to resolve contigs with highly different coverage profiles. Automappa is open-source
43 and has undergone multiple iterations with features requested by its users. The core Automappa framework
44 allows extension of additional features that are requested as Automappa is continually employed on a variety
45 of datasets from distinct environments.

46 Conclusions

47 We present Automappa, an interactive interface for exploration and refinement of metagenomes. The
48 application is capable of recovering and improving undetected and draft-quality MAGs. Automappa is open-
49 source and freely available to be deployed on a lab server or personal machine. It has been designed to allow
50 integration of post-processing steps to further facilitate the end-user's interpretations and conclusions for their
51 respective comparative genomic studies. Automappa was conceived out of necessity to enable lab-members
52 to carry out metagenomic analyses where current fully-automated state-of-the-art metagenomics workflows fail
53 to resolve members from complex microbial communities. We previously demonstrated Automappa's utility by
54 manual curation and refinement of MAGs across marine, terrestrial and host-associated metagenomes. These
55 refinements lead to improved downstream functional and evolutionary analyses enriching the insights and

36 conclusions respective to each study. We also suggest future improvements to the application as well as
37 integrations of post-processing comparative genomic tools to further enable experts during their metagenomics
38 workflow.

39 Availability and Requirements

40 Project name: Automappa
41 Project home page: <https://github.com/WiscEvan/Automappa>
42 Operating system(s): Platform independent
43 Programming language: Python
44 Other requirements: Python >=3.9
45 License: AGPL-3.0 License
46 Any restrictions to use by non-academics: None

47 List of abbreviations

48 MAG: Metagenome-Assembled Genome; CAMI: Critical Assessment of Metagenome Information; GTDB-Tk:
49 Genome Taxonomy Database Toolkit

50 Competing interests

51 The Kwan lab is planning to offer their metagenomic binning pipeline Autometa on the paid bioinformatics and
52 computational platform BatchX in addition to distributing it through open source channels.

53 Funding

54 This work was supported by the U.S. National Science Foundation (DBI-1845890) and the Gordon and Betty
55 Moore Foundation (Grant number 6920).

16 Availability of data and materials

17 All data and materials are available as supplementary files or can be downloaded from the software website
18 <https://github.com/WiscEvan/Automappa>. Automappa is released under GPLv3 license.

19 Consent for Publication

20 Not applicable

21 Ethics approval and consent to participate

22 Not applicable

23 Authors' contributions

24 ER, SW and SC designed the application. ER and SC created the application. ER and SW wrote the
25 manuscript. JK coordinated the study and helped to draft the manuscript. All authors read and approved the
26 final manuscript.

27 Authors' information

28 ¹Pharmaceutical Sciences Department, School of Pharmacy, University of Wisconsin - Madison, 777 Highland
29 Ave Madison, WI 53703, United States

30 ²Enveda Biosciences, 1880 S Flatiron Ct, Boulder, CO 80301, United States

31

32 References

33

24 1. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al.: **Recovery of nearly**
25 **8,000 metagenome-assembled genomes substantially expands the tree of life.** *Nat Microbiol*
26 2017,2:1533–42.

27 2. Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al.: **A genomic catalog of Earth's**
28 **microbiomes.** *Nat Biotechnol* 2021,39:499–509.

29 3. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al.: **Thousands of microbial**
30 **genomes shed light on interconnected biogeochemical processes in an aquifer system.** *Nat Commun*
31 2016,7:13219.

32 4. Tully BJ, Graham ED, Heidelberg JF: **The reconstruction of 2,631 draft metagenome-assembled**
33 **genomes from the global oceans.** *Sci Data* 2018,5:170203.

34 5. Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, Neely CJ, et al.: **Eukaryotic genomes from a**
35 **global metagenomic dataset illuminate trophic modes and biogeography of ocean plankton.** *bioRxiv*
36 2021,:2021.07.25.453713.

37 6. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al.: **Isolation of an archaeon at the**
38 **prokaryote-eukaryote interface.** *Nature* 2020,577:519–25.

39 7. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al.: **Minimum**
40 **information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG)**
41 **of bacteria and archaea.** *Nat Biotechnol* 2017,35:725–31.

42 8. Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC: **Horizontal Gene Transfer to a**
43 **Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome.** *mBio*
44 2020,11:e02430–19.

45 9. Miller IJ, Vanee N, Fong SS, Lim-Fong GE, Kwan JC: **Lack of Overt Genome Reduction in the**
46 **Bryostatin-Producing Bryozoan Symbiont “Candidatus Endobugula sertula.”** *Appl Environ Microbiol*
47 2016,82:6573–83.

18 10. Meyer F, Fritz A, Deng Z-L, Koslicki D, Lesker TR, Gurevich A, et al.: **Critical Assessment of**
19 **Metagenome Interpretation: the second round of challenges.** *Nat Methods* 2022, 19:429–40.

20 11. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al.: **Recovery of genomes from**
21 **metagenomes via a dereplication, aggregation and scoring strategy.** *Nat Microbiol* 2018, 3:836–43.

22 12. Olm MR, Brown CT, Brooks B, Banfield JF: **dRep: a tool for fast and accurate genomic comparisons**
23 **that enables improved genome recovery from metagenomes through de-replication.** *ISME J*
24 2017, 11:2864–8.

25 13. Uritskiy GV, DiRuggiero J, Taylor J: **MetaWRAP—a flexible pipeline for genome-resolved**
26 **metagenomic data analysis.** *Microbiome* 2018, 6:1–13.

27 14. Bornemann TLV, Esser SP, Stach TL, Burg T, Probst AJ: **uBin – a manual refining tool for**
28 **metagenomic bins designed for educational purposes.** *bioRxiv* 2020, :2020.07.15.204776.

29 15. Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian HH, et al.: **VizBin - an**
30 **application for reference-independent visualization and human-augmented binning of metagenomic**
31 **data.** *Microbiome* 2015, 3:1.

32 16. Broeksema B, Calusinska M, McGee F, Winter K, Bongiovanni F, Goux X, et al.: **ICoVeR - an interactive**
33 **visualization tool for verification and refinement of metagenomic bins.** *BMC Bioinformatics* 2017, 18:233.

34 17. Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J, et al.: **Autometab: automated extraction of**
35 **microbial genomes from individual shotgun metagenomes.** *Nucleic Acids Res* 2019, 47:e57.

36 18. McInnes L, Healy J, Melville J: **UMAP: Uniform Manifold Approximation and Projection for Dimension**
37 **Reduction.** *arXiv [stat.ML]* 2018.

38 19. Narayan A, Berger B, Cho H: **Assessing single-cell transcriptomic variability through density-**
39 **preserving data visualization.** *Nat Biotechnol* 2021, 39:765–74.

40 20. Amid E, Warmuth MK: **TriMap: Large-scale Dimensionality Reduction Using Triplets.** *arXiv [cs.LG]*

71 2019.

72 21. **Messaging that just works — RabbitMQ.** <https://www.rabbitmq.com/>. Accessed 1 Aug 2022.

73 22. **Redis.** *Redis* 2022 <https://redis.com/>. Accessed 1 Aug 2022.

74 23. **Celery - Distributed Task Queue — Celery 5.2.7 documentation.**

75 <https://docs.celeryq.dev/en/stable/index.html>. Accessed 1 Aug 2022.

76 24. Inc PT: **Collaborative data science.** *Montreal: Plotly Technologies Inc Montral* 2015.

77 25. **PostgreSQL.** *PostgreSQL* 2022 <https://www.postgresql.org/>. Accessed 1 Aug 2022.

78 26. **Welcome to Flask — Flask Documentation (2.1.x).** <https://flask.palletsprojects.com/en/2.1.x/>. Accessed

79 1 Aug 2022.

80 27. Uppal S, Metz JL, Xavier RKM, Nepal KK, Xu D, Wang G, et al.: **Uncovering Lasonolide A Biosynthesis**

81 **Using Genome-Resolved Metagenomics.** *MBio* 2022,13:e0152422.

82 28. Waterworth SC, Isemonger EW, Rees ER, Dorrington RA, Kwan JC: **Conserved bacterial genomes from**

83 **two geographically isolated peritidal stromatolite formations shed light on potential functional guilds.**

84 *Environ Microbiol Rep* 2021,13:126–37.

85 29. Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA: **Comparative Genomics Provides Insight**

86 **into the Function of Broad-Host Range Sponge Symbionts.** *MBio* 2021,12:e0157721.

87 30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW: **CheckM: assessing the quality of**

88 **microbial genomes recovered from isolates, single cells, and metagenomes.** *Genome Res*

89 2015,25:1043–55.

90 31. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH: **GTDB-Tk: a toolkit to classify genomes with the**

91 **Genome Taxonomy Database.** *Bioinformatics* 2019,36:1925–7.

92 32. Kanehisa M, Sato Y, Kawashima M: **KEGG mapping tools for uncovering hidden features in biological**

33 **data.** *Protein Sci* 2022,31:47–53.

34 33. Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K, Cowley ES, et al.: **METABOLIC: high-throughput profiling**
35 **of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale**
36 **functional networks.** *Microbiome* 2022,10:33.

37