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Periodic changes in the concentration or activity of different
molecules regulate vital cellular processes such as cell division
and circadian rhythms. Developing mathematical models is es-
sential to better understand the mechanisms underlying these
oscillations. Recent data-driven methods like SINDy have funda-
mentally changed model identification, yet their application to
experimental biological data remains limited. This study inves-
tigates SINDYy’s constraints by directly applying it to biological
oscillatory data. We identify insufficient resolution, noise, dimen-
sionality, and limited prior knowledge as primary limitations.
Using various generic oscillator models of different complexity
and/or dimensionality, we systematically analyze these factors.
We then propose a comprehensive guide for inferring models
from biological data, addressing these challenges step by step.
Our approach is validated using glycolytic oscillation data from
yeast.
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Introduction

Many important physical, chemical, and biological systems
are characterized by periodic changes, also called oscillations.
Examples of such oscillatory systems are in physics the me-
chanical pendulum or alternating current, in chemistry the
Belousov-Zhabotinsky (BZ) (1, 2) or Briggs-Rauscher (3)
reactions, and in biology circadian rhythms (4), population
dynamics (5, 6) or the early embryonic cell cycle (7).
Because of their ubiquity in a wide variety of systems, scien-
tists have long been interested in understanding the underlying
processes that describe and regulate the observed periodic be-
havior. To do this, they often use the language of mathematical
models in the form of differential equations that can describe
and predict the dynamics of a system. Such models are usu-
ally derived through experimental work, first principles, and/or
scientific intuition (8).

Prominent examples are the derivation of the simple pendu-
lum model from observation and first principles described by
Huygens (9) and later by Newton (10), or the identification of
the underlying mechanism of the BZ reaction by Field, Ké6rés
and Noyes (2) and the formulation of the Oregonator model

(11).

Design principles of biological oscillators. As in biology,
the biochemical regulatory network is typically not completely
characterized, it is difficult to derive model equations from
first principles. However, biological oscillators have also been
found to follow a few key design principles (12). To date, all
biological oscillators have three properties: negative feed-

back, time delay, and nonlinearity. Negative feedback is
crucial to reset the system to its starting point after one oscil-
lation period. Moreover, this feedback needs to be sufficiently
time-delayed, and the interactions must be sufficiently non-
linear, to avoid the system getting stuck in a stable steady
state.

By combining these basic design principles with experimental
measurements, many mathematical models have been con-
structed that are capable of describing biochemical oscillatory
processes. However, there exist many different ways to in-
corporate the three key properties that are required to ensure
oscillations. A time-delayed negative feedback can be imple-
mented explicitly by including a time delay in the equations,
leading to delay differential equations, which are mathemati-
cally quite difficult to study. Examples include the Mackey-
Glass model for the variation of CO5 levels in blood (13) and
the tumor suppressor protein p53 in response to DNA damage
(14). Another way to include a time delay is to introduce
many intermediate steps (thus increasing the dimensionality
of the system), which is how time delays result in mass action
type models (15, 16) or for simpler formulations as in the
Fitzhugh-Nagumo (17, 18) and Goodwin models (19, 20) by
the strength of nonlinear coupling of state variable equations in
the system. Also, where the negative feedback is implemented
can vary; it can e.g. act on the production of the oscillating
variable, or on its degradation (21, 22). Furthermore, nonlin-
earity can be incorporated directly, either in the form of higher
order polynomial terms (as in the Fitzhugh-Nagumo model
(17, 18)), or nonlinear expressions such as ultrasensitivity in
the form of Hill functions (as in the Goodwin model (19, 20)),
or by increasing the amount of state variables (or dimensions)
of a model (as in mass action type models (23, 24)).

This illustrates that formulating models using a combination
of design principles, scientific intuition, and experimental
measurements can potentially lead to ambiguous model for-
mulations where the choice of specific model terms may be
biased towards the scientist’s preference. Furthermore, in the
era of big data in biology identifying underlying patterns and
formulating such models "by hand” may become increasingly
difficult or impossible (25, 26).

Data-driven model inference in biology. The recent emer-
gence of data-driven methods, also called machine learning,
has enabled the identification of such patterns in large data
sets (27). Such methods can be divided into two main types
(28): (i) Black-box methods that are trained on known data and
are capable of predicting future outcomes, but do not provide
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interpretable models (model-free inference). (ii) White-box
methods, which aim for interpretability and provide explicit
mathematical models directly from data (model-based infer-
ence).

The focus of research in systems biology lies mostly in the
identification of network structures (29), such as gene tran-
scription networks or protein-protein interaction networks.
Here one typically uses expression data, applying black-box
methods based on neural networks (30) (e.g. Graph Neural
Networks (31)) or spectral methods (29) (e.g. GOBI (32)).
With these methods it is possible to understand the underlying
structures of a biological system, e.g. causal interactions (33),
but not the actual nature of interactions which lead to e.g.
temporal oscillatory behavior.

To address the issue of interpretability while exploiting the
ability of black-box approaches to identify patterns in mea-
sured data, mixed methods, also called gray-box approaches,
have been developed. Examples of such methods include
e.g. Physics-Informed Neural Networks in physics (34-36)
or similarly termed Biology-Informed Neural Networks in
biology (37), which aim to improve interpretability of results
by intergrating prior knowledge into the design of trained neu-
ral networks. Other methods translate the structure of neural
networks into interpretable mathematical equations via sym-
bolic methods. For example, ’Symbolic Deep Learning’ (38)
aims at achieving this on the entire dynamical system, while
’Universal Differential Equations’ (39) use neural networks
only as a means to describe the most intricate, unknown parts
of a dynamical system.

However, the simplest and most straightforward methods are
white-box applications which are able to provide models of
dynamical systems directly from data. Such methods are
mainly regression-based and their prominent representatives
are the ’Nonlinear Autoregressive Moving Average Model
with Exogenous Inputs’ (NARMAX) (40), ’Symbolic Regres-
sion’ (41) and ’Sparse Identification of Nonlinear Dynamics’
(SINDy) (42).

Especially SINDy has recently gained popularity in physics
(43, 44), engineering (45), chemistry (46) and biology (47, 48)
where it has shown great potential when applied on synthetic
data. However, the SINDy method has been scarcely applied
to real data. Examples include data from generic systems
(48, 49), settlement data (50), gene expression data (51) and
mainly experimental data from predator-prey dynamics (52—
54), where SINDy was able to identify relevant aspects of the
respective biological systems.

Structure of this work. Here we aim to determine why the
original SINDy is not (yet) often used on (biological) exper-
imental data (beyond predator-prey dynamics), with a par-
ticular focus on biological oscillatory systems. We start by
‘naively’ applying SINDy to three selected, experimental data
sets of oscillatory systems. We do so considering limited prior
knowledge, no noise filtering and using RIDGE regression
similarly to the original publication by Brunton et al.(42)). We
explore the simple pendulum, the chemical oscillations of the
BZ reaction, and measurements of glycolytic oscillations in
yeast. This allows us to define the main limiting aspects of the
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SINDy method. We then investigate these limitations using
a set of commonly used, generic oscillator models varying
in complexity and/or dimensionality: the Fitzhugh-Nagumo
model, the Goodwin model, and a mass action type model of
the cell cycle. Based on this study, we formulate specific miti-
gation approaches and propose a step-by-step guide for model
identification of dynamic (oscillatory) systems in biology us-
ing SINDy or other regression-based data-driven methods.
Finally, we apply our guide to the introduced example of
glycolytic oscillations in yeast.

Results

Application of SINDy to experimental data. Before apply-
ing SINDy to experimental data, we briefly explain how we
approach such model identification (see Fig. 1).

We start by acquiring either new or existing data from the lit-
erature on an oscillatory system (see Fig. 1A). Using a single,
measured time series of all available variables, we generate
the target vector X (more precisely the time derivative X;) of
all variables and propose a suitable term library ® containing
all terms to be evaluated (see Fig. 1B, all libraries used in
this manuscript can be found in Tab. 3 in the supplementary
materials). This term library thus also contains the type of
interactions between the different variables that we allow in
the model, leading to a system of linear equations:

X, = O¢. 1)

Finally, we apply a regression algorithm to this system, in our
case RIDGE regression with sequential thresholding (55), and
generate a family of models for different sets of hyperparame-
ters (regression parameter and the underlying threshold). This
approach enforces sparsity in models by cutting off all coeffi-
cients & and respective terms in the equation which fall below
a preset threshold [ or are excluded by varying the regression
parameter o

1
I%ninr—98@+0ﬂﬂh )

We classify the models by complexity (number of terms in-
volved in the model), which we want to be as small as possible,
and a goodness of fit measure, for which we use the coefficient
of determination or R2 score (56) (see Fig. 1C). The RZ score
quantifies how well a model is able to explain the observed
behavior of the variables, where 1 is fully explanatory and O
is not. In special cases, the RZ score can be negative, indicat-
ing that the model is not able to account for any dynamical
behavior in the data.

We use both complexity and the R? score at the same time, as
high complexity correlates with high coefficients of determina-
tion or over fitting. However, we want to obtain the simplest
possible model (low complexity) with the highest possible
R? score. We determine this by investigating the generated
contour plots of complexity and R? score (see Fig. 1C where
we show over-fitted, under-fitted and the ‘best’ results from
visual inspection) and determining the optimal result.

With this simple model identification approach, we set out to
identify models from experimental data of oscillatory systems.
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Fig. 1. Model identification with SINDy from data of selected, real oscillatory system A,B The SINDy method takes experimental data and creates a system of linear
equations with a term library containing all possible terms and their coefficients. C Models are identified by applying a regression algorithm that solves the system. To determine
the ‘best’ model, we scan through the hyperparameters of the regression algorithm and evaluate complexity (the amount of terms selected to be part of a suggested model
by SINDy) and goodness of fit (here with the coefficient of determination or R? score). By overlaying complexity and goodness of fit we can determine for which sets of
hyperparameters the identified models, overfit, underfit or provide the best approximation to the data. In order to identify limitations of the SINDy method, we try to identify
models of three selected oscillatory systems from experimental data: The simple pendulum, the Belousov-Zhabotinksy reaction, and oscillations in the glycolytic pathway. The
systems and the acquired experimental data represent different levels of data quality, sufficient access to state variables, and knowledge of the underlying mechanisms. This
can also be seen by applying the SINDy method to the data: D For the simple pendulum, we are able to determine the correct underlying system that reproduces the observed
dynamical behavior. E For the BZ reaction, we are able to identify a model that captures the behavior but is not sparse, since it has to account for the nonlinear reduction of the
system to only two variables. F Finally, when applied to data from glycolytic oscillations, we see that the SINDy method fails to identify a suitable model. (See Sup. notes 2
and 3)
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For this purpose, we choose three different systems with their
respective data sets (see Fig. 1D-F): the simple pendulum, for
which we acquired the data ourselves from video images; the
well-known BZ reaction, for which we use existing data from
the original publication by Field, Kérés and Noyes (FKN) (2);
and time series of glycolytic oscillations between NADH and
ATP acquired from Ozalp et al.(57).

These three oscillatory systems not only represent three dif-
ferent fields (physics, chemistry, biology/biochemistry), but
also differ in their quality in terms of resolution, noise, access
to all state variables, and prior knowledge of the underlying
mechanisms. The self-generated data of the simple pendulum
represents one end of the spectrum, where we have high qual-
ity data and the mechanism is known. For the BZ reaction, the
data quality is high, but not all state variables are measured.
Finally, in the case of most biological oscillatory systems,
such as glycolytic oscillations, we lack high quality data, only
have information about some of the state variables, and do not
have a complete picture of the underlying mechanisms that
drive the oscillations.

These aspects are also reflected in the quality of model dis-
covery using SINDy. For the self-generated, high-resolution
and low-noise data of the simple pendulum (see Fig. 1D),
combined with the knowledge of all variables (term library
contains sin and cos, see Tab.3) and the underlying mecha-
nism, the correct form of the ordinary differential equation is
easily discovered:

Oy = —24.798 0+ 2.071sin(0) — 0.067sin(6;)  (3)

If we additionally apply the small angle approximation (i.e.
sin(0) = 0,if § < 1) to reformulate the found equation into
its well-known form, we see that SINDy provides us with the
known equation of a damped simple pendulum. Additionally,
we can also derive additional information of the underlying
system, such as the length of the pendulum L, the friction
parameter b or the mass m (for more details see Sup. Note 2):

sin(z)~z

Oy = —22.727sin(0) — 0.067 6,
4)

— Btt = —% sm(6‘) — %Ht

In the case of the BZ reaction, we have high quality (high
resolution, low noise) data, but we only have access to two
of the three relevant state variables (see Fig. 1E). The BZ
reaction, first described by Belousov in 1959 (1), is a family
of chemical systems that are an example of non-equilibrium
thermodynamics and lead to the emergence of temporal or
spatio-temporal oscillations. In their work, FKN studied the
bromate-cerium-malonic acid system, where the main interact-
ing compounds are the negatively charged bromine (bromine
ions) [Br~], the positively charged cerium [Ce**] / [Ce®T],
and the neutral bromic acid [HBrO3] (2), which cannot be
measured potentiometrically due to its neutrality. As a result,
this chemical system that has been modeled with the three-
component Oregonator model (58, 59) must be reduced to two
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components:
v =p' (o +gv —2fw),
w =u—w.
' ; ®)
1-— —1)=—-4
with u(v) = (1=v)+ év ) q7

with uw = [HBrO], v = [Br~ | and w = [CeT] / [Ce®t]. As-
suming that we do not have this knowledge about the un-
derlying mechanism, applying SINDy with a term library
containing only combinations of v and w will only be able
to approximate the reduced system with higher order terms
and thus models of high complexity. This results in a quanti-
tatively correct but does not provide us with an interpretable
model (see Eq. 7 in Sup. Note 3).

For the last case of glycolytic oscillations in yeast, we arrive
at the other side of the spectrum, where provided data from
Ozalp et al.(57) is scarcely sampled and has high noise levels
(see Fig. 1F, for more details see Sup. Note 8). Glycolysis has
been intensely studied over the last 70 years (60, 61) and is
a process that takes place in prokaryotic and eukaryotic cells
in order to convert glucose to smaller substances. The main
function is to provide the cell with adenosine triphosphate
(ATP) when respiration does not take place (62). If dense
suspensions of non-growing cells or cell-free extracts of the
yeast Saccharomyces cerevisiae are starved, temporal oscil-
lations can appear (61). The main driver behind glycolytic
oscillations are dynamics of adenosine diphosphate (ADP)
and ATP interactions (63), which form the basis of the most
prominent model of glycolytic oscillations, the Selkov model
(64):

up = au(uv—1), ©

v = 1—u2v,

with the dimensionless u = [ADP] and v = [ATP].
Glycolytic oscillations are usually measured through the aut-
ofluorescence of the hydrogenated nicotinamide adenine dinu-
cleotide (NADH) which oscillates in phase with ADP (65), as
most chemical compounds taking part in glycolysis are opti-
cally silent (62). The data set we use, measures the oscillations
of NADH, or indirectly of ADP and intracellular oscillations
of ATP (57). However, SINDy is not able to identify suitable
models in the form of the Selkov model (nor any other form)
from the provided experimental data.

Challenges of model inference. From this naive application
of the SINDy method on experimental data, we identify four
main challenges found in (biological) oscillatory systems:

Insufficient resolution Sufficient resolution plays a crucial
role in model identification in general and for SINDy
in particular; SINDy reportedly struggles in low-data
scenarios (50, 66, 67), which has led to proposals to ex-
tend the method(49, 68, 69). However, the limitations
of SINDy and the proposed extensions have not been
sufficiently studied, and their proof of concept has been
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done on generic examples, such as the Lorenz system.
Such systems usually do not reflect the dynamical be-
havior of real biological oscillators, which are often
characterized by alternating slow and fast dynamics
(12), resulting in pulse-like interactions of successive
long/slow and short/fast phases called time scale separa-
tion, which can be difficult to capture if the resolution is
insufficient. Alternative sampling approaches have been
proposed here (70), but optimizing sampling strategies
requires prior knowledge of the dynamics or may be
impossible due to technical limitations.

High noise Besides low-data limits, SINDy has also shown
reduced performance when the data are noisy (42, 66),
since SINDy fits the derivative X; and not the actual
measured time series, which can lead to non-unique
solutions (71). Several ways of dealing with this have
been proposed(49, 69, 72), and Delahunt and Kutz have
developed a toolkit for noise handling when applying
the SINDy algorithm (73). For the special case of
biological transport models Lagergren, Nardini et al.
(74, 75) have shown that using additional noise filtering
via a neural network on (spatio)temporal data can sig-
nificantly improve model identification with regression
algorithms. However, the toolkit and other extensions
also provide a proof of concept in dynamical systems
that do not represent biological oscillatory behavior
or experimental data, i.e., strong time-scale separation
and/or insufficient temporal resolution. Thus, the lim-
its of the methods in experimental situations are not
fully known yet, and several extensions suggest the ap-
plication of additional noise filtering (69, 73) without
evaluating the impact of this choice on model identifi-
cation.

Number of dimensions In order to derive correct models
from data, SINDy needs information about all relevant
state variables (also called dimensions) that are able
to fully describe the dynamical systems. By ‘relevant
state variables’, we refer to the smallest, finite number
of variables needed for an unambiguous description
of a dynamical system (76). Often such knowledge is
not provided and either too many or not enough vari-
ables describing a system are measured, an example
being the BZ reaction where one dimension is missing.
Again, several extensions have been proposed that in-
volve the use of auto-encoders (77, 78) or delay embed-
ding (70, 79) to reconstruct dimensions or reduce the
system. However, these approaches require high quality
data to provide sufficient information to unfold missing
dimensions or reduce existing ones, and therefore do
not reflect data on dynamical systems in biology, where
sometimes a variety of dimensions (e.g., fluorescent
markers) are measured but suitable temporal data are
lacking. Furthermore, in the case of high-dimensional
systems we also encounter the so-called ‘curse of di-
mensionality’ (80), which obstructs the derivation of
relevant information from such systems. Especially for
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biological oscillatory systems, this can pose significant
challenges for parameter estimation, either with SINDy
or other methods (81).

Limited prior knowledge Some of the above challenges can
be overcome if there is prior knowledge about the un-
derlying system. Such knowledge can be respecting
basic physical laws, e.g. conservation of mass, or the
implementation of already known interactions between
certain actors of a system. When such information is
available it is more likely that data-driven model iden-
tification will be able to identify physically-sound, in-
terpretable models, but in many situations in biology,
knowledge beyond basic physical laws is not available.

These challenges are always at least partially present in any
experimental domain, but especially for experimental biologi-
cal systems they can pose challenges for model identification.
In systems such as the simple pendulum, which is a ‘simple’
example with high-resolution, low-noise experimental data
and a substantial amount of prior knowledge, identification is
easy: we know that we have to obtain the angle 6 to identify
the underlying model. However, for more realistic systems it
becomes increasingly difficult (BZ reaction), if not impossible
(glycolytic oscillations). Therefore, we aim to characterize
the influence of low-data limits and noise when evaluating
biological oscillatory systems with SINDy and to answer the
following questions:

Q1. What are the general limitations for the identification
of (biological) oscillator models with respect to data
availability, resolution, and noise?

Q2. How does the choice of common noise filtering tech-
niques affect the success of model inference for oscilla-
tory systems?

Q3. What is the role of strong time-scale separation in bio-
logical processes in model recovery?

Q4. How do different nonlinearities in the formulation of
biological oscillator models affect model inference?

Q5. How can model identification for high-dimensional os-
cillator systems work in low-data limits?

While answering the questions, we aim to address challenges
faced by many experimentalist wanting to apply this method
on their experimental data and provide a broad overview of
relevant aspects that have to be taken into account when doing
sO.

Impact of data availability, sampling, and noise on
model inference from synthetic data. We begin our in-
vestigation by examining the availability of data (the amount
of information provided in a time series), the sampling of data,
and the influence and mitigation of noise. To address these
questions and the other questions, we start with synthetic data
generated from a set of generic, biologically motivated oscil-
lator models that represent a non-exhaustive variety of model
architectures in biology.
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Fig. 2. Classification of oscillator models in the model space of biological
processes. Biological (oscillator) models can be characterized under two aspects:
complexity of interactions and number of dimensions (state variables). There is
a model space where both aspects are leading to functional models. If a model
has low complexity of interactions and low amount of dimensions it is usually (over)
simplified, or if both aspects are high it is (over) complicated. Models on the diagonal
provide a trade-off between both aspects. In our work we consider three generic
biological (oscillatory) models that can be applied to a range of biological systems:
Fitzhugh-Nagumo oscillator (with cubic (bistable) interactions), Goodwin oscillator
(ultra-senitivity in the form of a Hill function) and the (cell cycle) mass action model
(with lower order interactions).

Generating synthetic data sets. Mathematical models used in
biology can generally be classified by their dimension, or set
of state variables, and the complexity of the interactions they
describe, which in this case is the order of the terms included
in the mathematical model (see Fig. 2). Thus, models in the
model space of possible descriptions of a system can be seen
as closer to biological reality if they use only simple lower
order interactions obeying mass action kinetics and provide
complex dynamical behavior through more dimensions. In
contrast, models that take a higher-level approach and abstract
high-dimensional systems with more complex interactions
are a conceptual representation of biological reality. Both
modeling principles have advantages: biological models allow
us to directly relate certain behaviors to biological actors, but
conceptual models allow us to more easily study the dynamical
behavior of a system. Models that lie outside the model space
are either overly complicated or overly simplified, and thus
provide insufficient or redundant information.

From this defined model space, we select three models that
cover specific aspects and have been used to describe different
biological systems:

Fitzhugh-Nagumo  The Fitzhugh-Nagumo (FHN) oscillator
was developed in the 1960s to describe the oscillatory spiking
of neurons (17), but can also be used as a high-level descrip-
tion of other biological systems, such as cardiac dynamics
(82), and early embryonic cell cycle oscillations (83). This
model has a moderate complexity in its interactions between
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the variables, using a cubic nonlinearity instead of typical
mass action dynamics. However, the FHN model allows os-
cillatory behavior in only two dimensions. We used the FHN
equation of the following form:

3 2
uy = —u’ +cu’ +du—w,
(7)

ve=¢e(u—bv+a),

where ¢ is varied in the later stages (other coefficients are
shown in Table 1). Here, the variables u,v correspond to a
membrane potential and potassium and sodium channel re-
activation (for neurons), excitation and recovery of cardiac
cells (cardiac dynamics) or activity of the APC/C complex
that inhibits the activity of Cyclin B-Cdk1 complex by degra-
dation of Cyclin B, which is pushing a cell into mitosis (early
embryonic cell cycle).

Goodwin The Goodwin (G) oscillator was developed by B.
Goodwin, also in the 1960s, in order to describe the phos-
phorylation/dephosphorylation processes of a transcription
factor (19, 20) or circadian rhythms (20). This model has
been widely extended and studied over decades and has a
higher complexity of nonlinear interactions than the FHN os-
cillator through the nonlinear response curve in the form of
a Hill function H (z), while avoiding any other higher order
interactions between the variables. The delay of the negative
feedback is implemented by an additional variable. Here we
use the Goodwin oscillator in the following form,

uy = aH (w) — du,
v = bu — ev, ®

wy =cv— fw

with the Hill-function defined in function of an arbitrary vari-
able x as:
Kn

H(z)= K

)
The coefficients can be found in Table 1. The variables u, v, w
can be, e.g. interpreted as a clock-mRNA, clock-protein, and
a repressor (circadian rhythm).

Mass action Mass action models are used to describe the
dynamics of a wide variety of biological systems. They are
characterized by more variables (higher dimensional), but sim-
pler, mostly low-order interactions as their rate of change is
directly proportional to the product of their activities or con-
centrations (84). Such interactions typically consist of linear
or quadratic terms. In this work we use the cell cycle mass ac-
tion model developed by Hopkins et al.(85), which describes
the oscillations of the early embryonic cell cycle of Xenopus
laevis, based on low-order (mass action type) interactions of
six interacting molecules, avoiding complex descriptions of
interactions in the form of ultrasensitive response curves or
higher order terms (86). The model equations are as follows:
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ut = kp o (A7 —u)v — kg qu(Pr —y),

vt = ks — bgeguv,

wy = kp,g(Gr —w)v —ka,g(Pr —y)w, 10)
oy = —kpexw + kcary,

Yt = kass (ET —T— y) (PT - y) - kdissy - kcaty'

for which the parameters can be found in Table 1. Here,
similarly to the FHN model for the cell cycle, the variables of
u and v are interpreted as CyclinB-Cdk1 and APC/C activity.

In order to study model identification in experiment-like cir-
cumstances, we simulate one single time series of the respec-
tive models with a time step of dt = 10~3. We control the
amount of information by changing the number of periods
T included in the simulated time series tsim = Mperiods I (s€€
Fig. 3A). Using a fixed number of periods in the time se-
ries allows us to compare the results of different oscillatory
systems despite their different period lengths. We further
impose low-data limits by subsampling the simulated time
series equidistantly to mimic typical experimental situations.
To further resemble experimental situations, we add random
(white) noise 1 which is normally ditsributed (Gaussian noise)
to the simulated data sets consisting of fractions of up to 10%
of the standard deviation ¢ of the signal itself!,

ni=pBoX; B=0,..,0.1with A= 0.01.

- 1)
—X; =X+ s
It should be noted, that when scanning over the hyperparam-
eters and using only a single time series can lead to varying
model recover success (for a smaller threshold [ identification
is possible while for a slightly larger not) due to the variable
nature of regression and the use of a random seed to gener-
ate the normally distributed noise. However, in Fig. S1 we
show that despite this variability the overall outcome of our
investigation is independent from the choice of seed.

'In Halley et al.(87) the authors describe measurement noise in ecology
and other biological processes to be pink or 1/f noise which has a linear
frequency spectrum on the logarithmic scale, however both noise colors can
be distributed normally and the choice of noise color should not impact model
identification.

Model Coefficients &
Fitzhugh-Nagumo a,b,c,d,c
0,0.5,1,1,0.3

Goodwin a,b,c,d,e, f,n, K
1,1,1,0.1,0.1,0.1,10,1
Mass action kparkdarkp,g,kdisss Kd,g: kpesKeats
kass,ks,baeq, AT, Pr,GT, ET
0.4,100,0.05,1,20,6,4.5,

100,1.5,0.1,1,1,1,3

Table 1. Coefficients of the respective model and the values used in this work.
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Length of time series, equidistant sampling, and added noise.
The evaluation of the length of the time series is important for
the correct choice of experimental measurements, but also for
the rest of the following study, since we choose the length of
the time series to evaluate the performance of SINDy.

To do this, we simulate sets of time series for all models,
varying the number of periods included: nperiogs = 1...10. At
the same time, we vary the number of points per oscillation
period and determine the minimum sampling rate required to
successfully identify the underlying dynamics (see Fig. 3B).
We see that the required number of points per period (ppp)
increases with the number of dimensions: The two-component
FHN model requires at least 95 ppp, while the Goodwin and
mass action models require 200 ppp (3 components) and 4500
ppp (5 components), respectively.

Furthermore, we see that the amount of ppp is reduced as more
periods than one are included, but when the data set contains
more then 2 periods increasing the number of periods involved
does not influence the performance of SINDy. However, to
avoid any potential influence on oscillations with strong time
scale separation from the low number of periods, we decided
to evaluate the performance of SINDy on time series of length
eval = 4T

In the following section we focus on data and noise bounds
rather than dimensionality, we apply SINDy to synthetic data
from the two-dimensional FHN model (Eq. 7). We define
a successful identification, when SINDy selects all correct
terms from the term library and identified coefficients lie
within 2% of the true coefficients (marked in yellow, see
Fig. 3C-F). If the coefficients lie beyond this threshold, SINDy
was sometimes still able to recover the correct form of the
underlying equation, thus providing important information on
the system’s dynamics (marked in turquoise, see Fig. 3C-F).
Otherwise, when model recovery was entirely unsuccessful,
we colored this in dark blue (see Fig. 3C-F).

We start by applying SINDy to equidistantly sampled data
from the FHN model, where we add different levels of Gaus-
sian noise up to 10%. SINDy is able to correctly identify the
underlying dynamics when there are at least 42 ppp and the
added noise levels are low (below 2%, see Fig. 3C). This high
sensitivity of SINDy to noise has already been reported in
the literature (42, 49, 72, 73, 88-90). To handle such noise
and improve performance, different noise filtering techniques
were proposed (72), and more advanced methods were devel-
oped (49, 89, 90), which we will consider later.

Noise filtering techniques. Recently, in Cortiella et al.(91),
an extensive analysis on the impact of selected noise filter-
ing approaches for accurate model identification with SINDy
has been conducted. Here we partially extend this analysis
by specifically focusing on model recovery in biologically-
motivated oscillatory systems. We select four different, com-
monly applied filtering techniques: A simple low-pass filter,
a Wiener filter, a nonlinear filter based on local phase space
averaging (LPSA) (92) and the Savitzky-Golay filter proposed
in Lejarza et al.(72).

Low-pass filter The low-pass filter is a frequency filter that
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Fig. 3. Investigation of data availability, equidistant sampling and added Gaussian noise for weak and strong time scale separation ¢ in the FHN model of Eq. 7 A
The chosen models are simulated to generate one time series with d¢ = 1 - 10~ which are later subsampled to simulate low-data limits. Noise is added in the form of up to
10% Gaussian noise. B By varying the length of the time series by the information content in information units (periods), we determine that increasing the length of the time
series does not affect the amount of points needed for model recovery if at least 4 periods are present. C Combining simulated time series of length tevas = 47" and added
Gaussian noise, SINDy is able to recover the underlying model correctly (yellow) or its correct form (turquoise) for at least 45 points per period with up to 3% noise. D Noise
reduction techniques (low-pass filter, Wiener filter, LPSA and Savitzky-Golay filter) are able to improve the performance of SINDy for higher noise levels, however the success
depends on underlying methodology (more details in text). E An important aspects of biological oscillatory systems is time-scale separation, which can be changes with the ¢
parameter in the FHN model. For stronger time scale separation (small ) identification requires high-resolution/low-noise data and fails for to strong separation. F The strength
of separation also influences the performance of SINDy with noise filtering, where frequency filters (low-pass and Wiener filter) fail and techniques which estimate noise locally

(LPSA and Savitzky-Golay) are superior.

reduces the amplitude of high frequencies in a signal,
which in the case of time series are the fast fluctuations
of noise.

Wiener filter The Wiener filter is an enhanced low-pass fil-
ter, which assumes that noise is of high frequency and
normal-distributed, which is the case for our added
noise.

LPSA The local phase space averaging is a simple nonlin-
ear filter, which averages the variability of measured

8 | bioRxiv

variables in the phase space.

Savitzky-Golay filter The Savitzky-Golay filter regresses a
low-order polynomial (e.g. third order) within a chang-
ing selected subset of data (moving window) in order
to approximate the local changes while preserving the
global trend.

The application of these methods generally leads to an im-
proved model identification for the FHN model (see Fig. 3D).
In particular, the low-pass filter was able to provide successful
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identification for high noise regimes because it is able to
separate the normally distributed noise from the actual signal.
However, for low-data and lower noise levels, the low-pass
filter was not able to identify the model. This is a result of an
imprecise cutoff frequency, which allows noise frequencies to
be present in the time series. Selecting this cutoff frequency
can be particularly difficult in low-data limits, as it can affect
the shape of the oscillations and thus prevent correct model
identification.

The Wiener filter consistently identifies the correct form of
the underlying FHN model despite high noise levels when
sufficient data is available (> 280 ppp). However, the recovery
fails when less data is available, due to the Wiener filter’s
fundamental assumption that the noise must be normally dis-
tributed: As the amount of data decreases, the identified error
is no longer normally distributed, but uniform (we provide a
detailed overview of the performance of noise filtering in Sup.
Note 4, see Fig.S4).

The LPSA method is able to correctly identify the FHN model
with the same number of points per period as the original
SINDy and the low-pass filter. However, compared to the low-
pass filter, it performs better in low-noise situations, while
inconsistently identifying the dynamics at higher noise levels.
As we show in Sup. Note 4, we see that this method is strongly
dependent on the correct choice of delay in the approximation
and is thus not able to filter stronger variability in high noise
situations.

Finally, we studied the Savitzky-Golay filter, which was pro-
posed by Lejarza et al.(72) to improve SINDy by applying
a moving horizon (or window) optimization approach. We
find that the Savitzky-Golay filter works well, but requires
more data than low-pass filtering or LPSA, i.e. at least 100
ppp. For higher noise levels (above 6%,) using the Savitzky-
Golay filter does not allow SINDy to correctly identify the
underlying system. This is due to the low order polynomial
approximation (regression) in moving windows: The higher
the variability, the more precise must be the window size on
which the regression is applied. Otherwise, the regression will
overestimate the variability of the signal, resulting in a locally
incorrect representation of the signal.

In conclusion, by choosing an appropriate (or wrong) filter-
ing technique for the specific noise and data properties of the
signal one can significantly improve (or hinder) model identifi-
cation with SINDy. Even though all noise filtering techniques
studied are capable of improving system identification, either
too strong or too weak noise filtering can hamper data-driven
discovery, as it can alter the shape of the oscillatory signal.
This is especially important for biological oscillations that
can contain multiple time scales, such as pulse-like behavior.
Changing the shape of such pulses can then lead to a false
description of the system.

Different time scales in the system. Whenever a dynamical
system is characterized by multiple time scales, this has gen-
eral implications for regression-based model identification
techniques such as SINDy. Time scale separation can be eas-
ily controlled in the FHN model by varying the parameter ¢:
for small € < 1 the dynamics of u and v are strongly separated
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in time, resulting in relaxation (pulse-like) oscillations, while
for large € ~ 1 the dynamics are no longer separated and the
oscillations become sinusoidal (see Fig. 3E).

In an equidistant sampling scenario, the strength of the time
scale separation plays an important role for a successful model
identification, as can be seen in Fig. 3E. Here we see our previ-
ously obtained results from Fig. 3B with the FHN and € = 0.3.
If we increase € = 1, SINDy can identify the correct model
equation for a smaller number of points (>15 ppp) and even in
some cases for all tested noise levels (up to 10%). However,
decreasing ¢ increases the amount of data required (¢ = 0.3
— 42 ppp,e =0.1 — 116 ppp). and in the case of ¢ = 0.01 we
are not able to recover the model with the provided amount of
data (500 ppp). If the fast changes are not sufficiently sampled,
the solutions will contain more spurious terms, despite the use
of sparsity-promoting optimization algorithms.

In this context, we also examine how noise filtering can change
the identification success in the presence of time scale separa-
tion. We only evaluate the success with the FHN model and
€ = 0.1 (see Fig. 3F). Here, by applying a low-pass or Wiener
filter, SINDy fails to identify a correct model in the presence
of noise. This is again a consequence of the precise choice of
cutoff frequencies, which can lead to the removal of high fre-
quencies associated with the fast pulses, thus underestimating
the strength of the time scale separation.

In this case, both the nonlinear LPSA method and the Savitzky-
Golay filter are able to provide better results, although only
for larger amounts of data (LPSA - about 200 ppp, Savitzky-
Golay - about 230 ppp). The LPSA is able to handle lower
levels of noise because it does not approximate the time se-
ries globally over time, but locally in phase space. With a
sufficient number of points in time intervals of fast changes
(horizontal and vertical edges of the limit cycle in phase space)
and transitions to these phases (corners of the limit cycle in
phase space, see Fig. 3E), the technique is able to capture the
different time scales correctly. In the case of a Savitzky-Golay
filter, the changes can be captured because again the fast dy-
namics of the oscillations are approximated locally within the
moving window. Thus, with a sufficient temporal resolution,
identification can be successful.

Addressing noise and low-data in equidistant sampling with
multiple trajectories. We see that identification of symbolic
models of oscillatory systems is difficult when the data it-
self and its quality are modified to resemble experimental
situations, even when we apply noise reduction techniques.
Another suggested way to mitigate the problems of both low-
data and high noise is to provide more than a single time series
or trajectory.

Recently, two possible approaches have been proposed: The
Ensemble-SINDy or E-SINDy extension (49), which applies
bootstrapping, or more specifically bagging, to data and/or
term library, thus synthetically increasing the amount of data
that can be used to infer the underlying dynamics (for more
details see STAR methods), and providing more trajectories,
which has been shown to increase the success of model re-
covery (89, 90). Both approaches are conceptually similar
in that they try to feed SINDy with more data from different
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We apply both approaches to data from the FHN model with
€ = 0.3 in Fig. 4. It can be observed in Fig. 4A that E-SINDy
performs worse than SINDy on the data provided, this in
contrast to the results in Fasel et al.(49). For smaller amounts
of noise, E-SINDy is not able to identify the underlying model,
which in this case means that not all relevant terms appear in
90% of all submodels from the bootstrapped data (also called
the inclusion probability pi,c, which has to be larger than
our chosen threshold probability pgres = 0.9). We use this
relatively high threshold compared to the original publication
because in the case of unknown underlying model we are not
able to choose an appropriate pires a-priori.

To understand the reduced performance, we examine the de-
pendence of the inclusion probabilities on the amount of data
and the noise level (see Fig. 4B). We see that without noise
n = 0, E-SINDy needs at least 50 ppp to not only correctly se-
lect the terms, but also to reduce the amount of mostly mixed
terms included in the inferred model of w;. Furthermore, the
identification of the correct term breaks down when noise is
included in the time series. Even at low noise levels, pjpc of
the v term in v, rapidly falls below the assigned pyes, While
at high noise levels a wide range of non-relevant terms are
included in the model. This begs the question why we are
not able to achieve similar results as shown in Fasel et al.(49).
The answer lies in the bagging method itself and the choice
of data used in the original publication: Bagging (93), which
stands for bootstrap aggregation, is a method that improves
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the predictive power of e.g. regression algorithms. However
bagging is a smoothing operation that reduces the variance
of the signal (94), which means that aspects such as time
scale separation in limits of low-data and/or high-noise may
be incorrectly smoothed and thus incorrectly approximated
by SINDy. Indeed, in Fasel et al.(49), the signals either do
not contain multiple time scales when studying a low-data
limit, or large amounts of data are used if the variance is high.
Thus, applying the E-SINDy method to the special case of
biological oscillations may lead to unsatisfactory results due
to bagging.

In contrast, increasing the number of trajectories available to
SINDy without smoothing by bagging, as suggested by Er-
molaev et al.(89), can allow to preserve the slow-fast changes
in the oscillations. Indeed, we see that by introducing more
trajectories of the same system with randomly chosen initial
conditions (IC), we are able to significantly improve the per-
formance of SINDy (see Fig. 4C). With two included time
series, the minimum number of points is reduced to about 25
ppp, but the noise handling does not improve. If more trajec-
tories are included (more than 8, Fig. 4C shows only a subset
of the results), the required amount of data increases to 55
ppp, but SINDy is able to tolerate all introduced noise levels
and can provide the correct form of the underlying model.
The increased number of points is due to the variability in-
troduced by multiple trajectories in low-data limits, which
hinders the identification of the correct equation and simul-
taneously reduces the coefficient values when more data are
available.
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To address this issue, the models, identified with multiple
trajectories, can be used as the basis for an adjacent simple
parameter approximation where only the parameters of the
identified model are optimized. This application leads to the
correct identification of coefficients for low noise levels and
reduced coefficients for high noise levels, thus improving the
performance of SINDy for low noise levels (see Fig. 4D). With
this we are able to improve the performance of SINDy without
any additional noise reduction technique nor an increase in
the sampling of the corresponding time series of experiments.
However, such an approach does not show improved perfor-
mance for stronger time scale separation than € = 0.3. We
have also obtained the results for the FHN with ¢ = 0.1, which
can be found in Sup. Note 5, and despite the slightly improved
handling of up to 6% additional noise, the number of points
required is 2.5 to 8 times higher than for € = 0.3 or when only
SINDy is applied (see Fig. 3E).

Mitigating time scale separation with improved sampling
strategies. Another possibility suggested in Champion et
al.(70) is the use of other sampling strategies, such as burst or
specifically optimized sampling.

Therefore, we set out to evaluate whether optimizing sam-
pling strategies is able to improve model identification in the
presence of strong time scale separation. Here, we apply a dif-
ferent sampling approach that requires more knowledge about
the underlying system than burst sampling, but should be able
to provide more information about the dynamics: We keep
the total number of points per period constant, but vary the
distribution of points in the slow d, or fast § ; changes of the
time series, so that 1 = 65+ 65 = (ds1 +ds2) + (651 + 6 ¢2)
(see Fig. 5A). The part of the time series assigned to fast
changes is a1 + a2 = 0.2T, or 20% of the time period T,
so if s = 0.8,6¢ = 0.2 we get equidistant sampling. For a
timescale separation of ¢ = (.3, already increasing the number
of points in fast changes improves the performance, with an
optimal point at a 50/50 distribution (see Fig. 5B).

The performance improvement is only successful for low noise
levels (as shown in Fig. 5B), because computing derivatives
in fast changes with small steps introduces more error due to
increased variability, thus reducing performance.

However, for low noise levels, this method improves success-
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ful model recovery for even stronger time scale separation of
€ = 0.1 (see Fig. 5C). By increasing the fraction of points d,
we are able to reduce the minimum number of points required
from 115 ppp with equidistant sampling to 40 ppp.

Summary of the impact of data quality aspects on model
identification (Answers to Q1, Q2 and Q3). In the first part
of the study, our goal was to answer what the sampling and
noise limitations of SINDy are, and how do these limitations
interact with the specific feature of time scale separation in
biologically motivated oscillatory systems.

We find that successful recovery of the underlying models
of oscillatory behavior depends more on the number of di-
mensions than on the number of periods provided in the time
series. This has direct implications for experimental investiga-
tions, suggesting that high-frequency measurements should
be preferred over long measurement times. Furthermore, we
have shown that sufficient sampling is a key feature to recover
underlying mechanisms and, as in most model identification,
the more temporal data the better. However, more temporal
data may not provide better performance when faced with
high noise levels and/or strong time scale separation in the
signal of oscillations (Q1). For the first part, we show that the
introduction of noise filtering techniques can indeed provide
a significant improvement in performance, but in low-data
situations it can hinder identification if not set up precisely. In
addition, when considering strong time-scale separation, noise
filtering can significantly reduce the success of the investiga-
tion and can only provide improvement when large data sets
are provided. Thus, even if data cleaning from experiments
is able to provide a visually good signal, it may introduce
artifacts that prevent identification of the underlying dynamics
(Q2).

We have tried to avoid these aspects by studying the E-SINDy
method and introducing more time series trajectories. Here we
see that it is possible to avoid the application of noise reduction
techniques and increasing sampling rates when there is a large
number of trajectories. However, we show that the E-SINDy
application, although undoubtedly applicable to low-data and
high noise situations, is not suitable for relaxation oscillation
data, since the applied bagging smooths the measured signal
and acts as an unwanted signal filtering.
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Fig. 6. Enabling identification of a Hill-type response function with SINDy A SINDy can not find the interpretable Hill-function but is able to approximate the nonlinearity
(n = 10) with higher order polynomials. B SINDy-PI applies the SR3 regression (Eq. 14) using the hyperparameters threshold ! and tolerance . Only for a subset of
hyperparameters the full set of equations (u¢, v, w;) can be identified (see left panel). Using the R? score a majority of models either does not reproduce the data or when
simulated show non physical behavior (explosion of values). Three models with R?>0.9 (called best, shown in Tab. 2) provide the nonlinearity l/w10 ~ H(w), but do not
match the Goodwin model. C Identification of the Hill-function is highly sensitive to data amounts but not towards the amount of noise. D When the Hill functional form is known,
SINDy is not able to identify the underlying model because of existent correlations between library terms, e.g. u and wH (v). E Correlations p;; between different terms are
identified and a threshold pres is applied from which correlated terms are excluded from the term library. F Excluding correlated terms allows SINDy to identify the correct
underlying model. However, correlating the term library is only possible for low noise levels.

To enable identification for smaller time scale separations, we
investigated whether an optimized sampling strategy could
improve SINDy’s performance. Indeed, we were able to re-
duce the number of points to one third even for ¢ = 0.1 when
equidistant sampling is applied. However, locally increased
sampling, besides requiring prior knowledge about the system,
only increases successful recovery when noise levels are low,
since variability introduced in the derivatives on which SINDy
regresses hinders correct identification of fast changes.

In general, the realistic case of strong time scale separation in
experimental oscillatory data (high noise) is the most relevant
limiting aspect when applying SINDy. Even if large amounts
of data are available, identification can become either difficult
or impossible (Q3), which makes SINDy (or the extensions
studied here) applicable only to near-sinusoidal oscillatory
systems, with important implications for its use in the field of
systems biology.

Influence of higher-order nonlinearities and high sys-
tem dimensionality on model inference. After investigat-
ing the importance of data quality when using SINDy, we
now turn to another important aspect of biological oscillatory
systems: balancing the dimensionality of the model (num-
ber of components) and the complexity of the interactions
between those components (see Fig. 2). While more complex
higher-order nonlinear interactions can reduce the number of
required state variables (lower model dimensionality), using
many more components (higher model dimensionality) allows
to use simpler low-order mass action interaction dynamics.

12 | bioRxiv

Ultrasensitivity in the Goodwin oscillator. In the FHN which
we have used to study the data availability aspects, the non-
linearities are introduced in the form of a cubic polynomial
that allows us to be recovered using standard SINDy. How-
ever, some biologically-motivated oscillator models, e.g. the
Goodwin model, chose to introduce nonlinearities in the form
of ultrasensitive response curves that can be described by the
Hill function shown in Eq. 9. For a three dimensional sys-
tem (three interacting components) it has been shown that the
required power of nonlinearity has to be at least 8: n > 8 (95).
The standard SINDy method is not able to identify the Hill
function or any other rational function from data, except if it
can be approximated by higher order terms (as we could see
in the case of the BZ reaction see Fig. 1 and Fig. S3 in Sup.
Note 3) or if the functional form of the nonlinearity is provided.
From Fig. 6A we see that if we generate time series with
oscillatory behavior (n = 10), SINDy is able to approximate
the behavior, but provides uninterpretable expansions of the
Hill function (see Sup. Note 6) of the respective order. To
address this problem multiple extensions have been provided
during the last years, most notably the SINDy-PI (parallel
implicit) which reformulates an equation with rational terms
into an implicit form (96):

SINDy: X; = f(X,§),

Thus the rational form of possible models is translated into a
pure polynomial form and becomes solvable with the original

Prokop etal. | From biological data to oscillator models using SINDy
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SINDy approach. For the Goodwin model in Eq. 8, the first
equation for u; can be transformed into the following target
for SINDy-PI (with K = 1 and a deliberately chosen n):

ur = a—du — duw™ — upw™, (13)

and by including the derivative u; in the model identification
process, the rational terms can be identified. However, the
suggested SINDy-PI extension in Kaheman et al.(96) has
only been shown to provide satisfying results when tested on
synthetic data with more then 900 trajectories. As we have
shown in the previous section, including more trajectories
can indeed improve the identification notably. However, such
large amounts of high-quality data are often not available in
experimental setups, which has lead e.g. Brummer et al.(53)
to reject the use of SINDy-PI in their work.

Nevertheless, the SINDy-PI extension provides the unique
possibility to identify rational terms in a model within a spar-
sity promoting regression framework and we want investigate
if SINDy-PI is able to discover either the underlying model
or at least provide information on the rational nonlinearities
in the Goodwin model. The original SINDy-PI uses STLSQ
to promote sparsity, here we use the SR3 regression with £
regularization instead which is close to LASSO regression
7):

2

1 l
tin 5| X, — O[3+ awlls + 5 € —wl3 with o = 5

14
The SR3 regression introduces an additional auxiliary variable
w which is used to relax the optimization problem. Because
of the use of an ¢; regularization, the regression becomes
sparsity promoting and is able to reduce coefficients &; to 0.
As aresult the threshold [ is no longer a strict threshold, but
it is included in the choice of the regularization parameter
a(l). Instead an additional hyperparameter, tolerance s,
is introduced. Although it is not directly included in the
regression, it defines when the outcome of optimization is
sufficiently good. Through the choice of hyperparameters,
selecting optimal values for them is not intuitive compared to
RIDGE regression.
Therefore we first determine which pair of hyperparameters
provides all three equations (see Fig. 6B). Note that we use a
single time trace (with 398 ppp) and a term library that only
contains terms occurring in the Goodwin model (see Tab. 3).
Using this set of models, we use the R? score as a goodness-
of-fit measure to identify which models provide the best fit.
As can be seen from Fig. 6B, most models either are not able
to describe the provided data (R? < 0), or the model results
in nonphysical dynamics (‘fail‘ - f) and only three models
provide a R? score higher then 0.9 (shown in Table 2). As
can be seen, SINDy-PI is able to discover the true equations
for u; and v; (with 1/(1+ w!?) ~ 1/w!?), however it still
struggles with the simpler equation for w;. Here SINDy-PI
provides approximations of both equations which are able to
qualitatively reproduce the dynamical behavior of the studied
system (see Fig. S6). The correct discovery of the underlying
model could be achieved by increasing the amount of data.
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However, even with a single time series, we are able to at least
identify the correct type of nonlinearity (for high resolution,
no noise data, small library). This knowledge can then be used
to provide a better truncation of the term library for original
SINDy. We therefore decided to identify how robust this
identification is towards sampling and noise only focusing on
how well one can recover the nonlinear Hill function (or its
approximation 1/w1!9), see Fig. 6C. Here, SINDy-PI shows to
be highly dependent on sampling, where sufficient resolution
is required in order to identify the correct nonlinearity, but
when more data is provided identification fails. This results
from more ambiguous model identification of the nonlinearity
when actual sparsity promoting regression methods are used,
which we found not to be dependent on noise (see Fig. 6C).
At this point, it is important to truncate the SINDy-PI library
correctly, as the use of larger libraries can reduce successful
identification of the nonlinearity (see Sup. Note 6).

More recently, SINDy has also been used to identify a model
describing cancer and CAR T-cell dynamics(53), or popula-
tion dynamics within an aphid-ladybeetle system(52) using
extensive prior knowledge on the nonlinear interactions to
provide these in the term library. Beside using SINDy-PI or
extensive prior knowledge, another suitable way to determine
the nonlinear rational term, is to provide new knowledge about
possible nonlinear interactions between components of a bio-
chemical system, which is usually gained from perturbation
experiments. See for example the approach for obtaining a
model of the tumor suppressor protein p53 in response to
DNA damage in Geva-Zatorsky et al.(14), and of glycolytic
oscillations in yeast cells in Nielsen et al.(65).

Assuming that we have the knowledge of the nonlinearity in
Eq. 9, the Hill function can be introduced as an additional term
in the term library in SINDy. However, using SINDy in this
way does not lead to the correct identification of the Goodwin
model. The reason for this is the random correlation of several

Equations
- _ _ 10
GT wu;=-0.1u+ T 0400
ve=u—0.1v
wy =v—0.1w
I up=—0.1u+ 202 4 14
vy =u—0.1v
_ 67.0v 6.0w
Wt = ~15.0w-100.0 T 19.0w—100.0
2 up=—011u+243 4+ LG
ve=u—0.1v
wy = 5000 5.0w 0.5
t = 1T7.0w+21.0  17.0w+21.0 ' 17.0w+21.0
3w =—-011u+ 2% + L5

ve=u—0.1v

50.0v 5.0w

— _ 0.5
w = 17.0w+21.0 17.0w+21.0 + 17.0w+21.0

Table 2. Best discovered equations (R? > 0.9 from Fig. 6B) with data from the
Goodwin oscillator in Eq. 8 with no noise and 398 ppp using the SINDy-PI method
with a library only containing terms already known from the model (compared with
ground truth (GT).
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Fig. 7. Identification of high-dimensional system by reducing set of state variables A Model identification with high-dimensional data of the mass action oscillator requires
high-data/low-noise situation in order to correctly identify the underlying system. B Reducing the system to only two variables, e.g. v and v, and centering the data around the
point (0,0), assuming that the unstable fixed point is symmetric towards the limit cycle can be used to derive important dynamical information while reducing data requirements.
C Applying SINDy to different combinations of state variables w, v, w, z, y and determining the R? score (left) and complexity % (right) within a threshold I and regularization
parameter « scan provides us with a set of models with high R? scores and low complexity (red dots) that can be further studied dynamically and experimentally. These models
occur when the state variables creating the limit cycle are well-separated thus providing sufficient information about the dynamics of the system. Only if the behavior can not be
approximated by a cubic polynomial as for (v, y) (red circle) SINDy struggles to identify a suitable model, similarly as in the BZ reaction.

terms contained in the library, e.g. v and uwH (v) or uH (u)
(see Fig. 6D). If these terms are present in the optimization
problem, the regression algorithm is able to freely choose any
coefficient for these terms, since they are almost identical and
thus indistinguishable for the problem, e.g. for v and vH (v):

——  with O@)=10""
1yoi0 M ) a5)

— uH@Ww)=u-1

uH(v) =u

As a result, after initializing the library, it is important to iden-
tify any existing correlations between library terms. Two li-
brary terms are correlated if the result of the Pearson’s product-
moment coefficient is p = 1. However, there is no common
threshold pynres above which two variables are correlated. We
therefore decided to find a pyes empirically by observing the
distance of the term correlations p;; from 1 (see Fig. 6E).
By applying correlation, we are able to identify the culprits
in the library and achieve successful model recovery when a
sufficient amount of data (195 ppp) is available (see Fig. 6F).
However, it should be noted that this method is highly sensitive
to noise and requires precise noise filtering, which in itself is
a challenge, as we have shown previously.

High dimensionality in the mass action oscillator. For the two
models studied so far, we only considered two or three di-
mensions, where nonlinearities are explicitly expressed either
by cubic terms or by the Hill function. In the case of the
five-component mass action model the increase in dimensions
is able to account for nonlinearity and delay. However, as
we have seen from our investigation of experimental systems,
despite a simpler representation and a closer relationship to
an actual biological system, such an increase can effectively
interfere with data-driven model identification.

14 | bioRxiv

Applying SINDy to the full dataset of a single time series, we
observe that more data are required to correctly identify all
the underlying equations compared to the previously studied
models (2150 ppp in Figs. 3B and 7A).

Furthermore, we find that the identification with all dimen-
sions present in the data is sensitive to noise and is not success-
ful for our model even when large amounts of ppp are present
(see Fig. 7A). Increasing the dimensionality of a system may
decrease the ability to uncover the underlying dynamics. This
is especially true when we have multiple variables acting
on scales that are several orders of magnitude apart. As we
have pointed out before, these limitations could be potentially
overcome if the data set would contain more then one tra-
jectory; however, providing tens or hundreds of trajectories
of adequate quality for a high-dimensional system can be
challenging.

Thus, identifying such high-dimensional systems from all
possible states seems highly impractical, even if all relevant
variables are measured. We could reduce the number of state
variables to the most relevant ones, e.g. by using encoders(77,
78). However, as shown especially in Chen et al.(78), large
amounts of high quality data are needed to identify the most
relevant aspects of an observed dynamical system, while the
set of variables we provide is also the relevant set of state
variables for the model.

At this point, we have shown that if there is not too much
time-scale separation in the data, it is more advantageous to
work with lower dimensional data, since a lower sampling res-
olution is required and SINDy is less sensitive to noise. This
would move us away from a more biological model towards
a conceptual, higher level representation of the dynamical
system (as shown in Fig. 2). Even though we would not un-
cover the actual interactions, we could learn and understand
the underlying mechanisms of the system.

Prokop etal. | From biological data to oscillator models using SINDy
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When studying the BZ reaction (see Fig. S3 in Sup. Note 3)
we have seen that not every reduction of a system is able to
provide an interpretable model. Since we have access to all
variables of the system, we can test the model identification of
every pairwise combination of the state variables u, v, w,x,y.
To do this, we center the limit cycles of the various reduced
systems around (0,0), since for most generic models the un-
stable fixed point lies at (0,0) within the limit cycle, and we
try to reduce the amount of additional terms that account for
an offset (see Fig. 7B). We then scan the hyperparameters
threshold [/ and the regularization parameter « over several
orders of magnitude and determine the complexity k and the
R2 score of the identified models in Fig. 7C. For the scan,
we see that we are able to obtain high R? scores for three
combinations: (u,v), (v,w), and (v, x).

In this analysis, we also plot the projected phase space plots of
the respective combinations, and we clearly see that when the
variables forming the limit cycle are well separated, SINDy
is able to identify important dynamical features of the system
from the phase space. The only exception is the combination
of (v,y) for which SINDy is not able to identify models lead-
ing to a high R2, despite a clear separation in the variables.
This is a situation similar to the identification of the BZ reac-
tion in the previous section. Since we have a sharp change in
two interacting variables, this change cannot be approximated
by a cubic polynomial. For the the mass action oscillator,
such sharp changes are shown with a red circle in the phase
plot of (v,y) in Fig. 7C, and similar behavior is found for
the BZ reaction in Fig. 1E. In the case of the BZ reaction,
polynomials of order 7 or higher were required to obtain a
sufficient, but uninterpretable, approximation of the system,
and for the mass action oscillator we do not provide such high
order terms. This indicates an unfavorable reduction of the
mass action system in the (v, y)-space and it requires either an
additional variable or knowledge of the type of reduction that
leads to this behavior.

However, when comparing the results of the R? score with the
complexity k, we choose the values of the threshold [ and the
regularization parameter that give the best trade-off between
complexity and accuracy for the other well-separated variable
combinations.

For (u,v) Eq. 10 is able to reproduce the dynamical behavior
of the reduced system (see Fig. S8A, both in Sup. Note 7).
Furthermore, the equations are remarkably close to the FHN
equation in Eq. 7 and can even be analyzed analytically. With
this reduction we are able to create a conceptual understanding
of the underlying mass action system without the need for high
quality data or the evaluation of all state variables at once.

Similarly the Eqgs. 11 and 12 for the (v, w) and (v, x) respec-
tively, are able to approximate the corresponding behavior in
the reduced system (see Figs. S8B and C, both figures in Sup.
Note 7). Both equations do not resemble a simple FHN-type
equation, since all equations contain terms up to cubic order.
Furthermore, as recently pointed out(98), a system consisting
of two coupled bistable switches, i.e. the nullclines of a two-
dimensional system are described by cubic polynomials, may
lead to more robust oscillations and may be closer to actual
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biological reality.

High-order nonlinearities and high dimensionality in model
identification (Answers to Q4 and Q5). In the second part of
the study, we tried to answer whether different formulations
of nonlinearities in oscillatory models beyond the polynomial
can be identified using SINDy, in this case evaluating the Hill
function.

Since SINDy by itself is not able to provide rational terms,
i.e. the correct form of the Hill function, it can only provide
approximations of the nonlinearity in polynomial form, which
may not be interpretable without prior knowledge. Therefore,
we evaluated the extension SINDy-PI while applying it only
on a single time trace, which reformulates the optimization
problem with rational terms in an implicit form. When apply-
ing SINDy-PI with a library that is truncated to only contain
terms included in the Goodwin model with the order of the
nonlinear Hill-function n = 10 and on high resolution data
(398 ppp) with no noise, we are able to discover a set of mod-
els that are able to reproduce the provided data. These models
are also able to identify the approximated Hill-function (as
1/w'0, but they struggle to provide the correct form for the
simpler third equation w;. Nevertheless, SINDy-PI can be
used to determine (if data quality and library truncation are
suitable) possible nonlinearities within a model (here H (w)
in u¢). This knowledge can be then used to introduce suitable
terms into the library for the original SINDy method to un-
cover the full correct model. Another possibility to discover
nonlinearities using SINDy requires additional measurements,
i.e. perturbation experiments, or extensive prior knowledge to
determine nonlinear interactions and provide them within the
term library.

We tried this by providing the correct Hill function formulation
in the library, which led to an unsuccessful identification,
from which we deduced that it is necessary to perform a prior
correlation analysis between the library terms. This allowed
us to identify possible correlations and thus enable successful
model identification. Thus, we have shown and emphasized
the importance of truncating the term library by correlation
for regression-based model identification (Q4).

We then investigated the representation of time delay and
nonlinearities in a higher-dimensional system with low-order
interactions by applying SINDy to synthetic data from the five-
component mass action model. As shown, the identification
of this system requires high quality data, since SINDy is not
able to handle additional noise in addition to a large number
of points per period.

As aresult, in the previous part we suggested that especially
low-data limits and certain noise levels can be overcome by
using lower dimensional systems. Using the existing set of
relevant state variables, we attempted to infer models of a
reduced two-dimensional system by cross-testing all variable
combinations.

We find that identification is successful when the state vari-
ables are well separated in phase space and SINDy is able to
unambiguously identify dynamical features.

It can be concluded that the identification of high-dimensional
systems with SINDy, even with simple low-order interactions
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Fig. 8. Overview of suggested step-by-step approach for application of SINDy
on biological oscillator data Resulting from the study on synthetic data, we suggest
a step-by-step guide on how to approach model identification with SINDy when
handling oscillatory experimental data in biology.

and access to all relevant variables, is challenging and requires
high quality data. To enable identification, it is advisable to
study possible reduced systems from which, depending on the
separation and possibly available prior knowledge (to provide
good approximations of terms in the reduced system), one
is able to learn and even interpret analytically the dynamical
behavior using a high-level representation (Q5).

A step-by-step guide to applying SINDy on experimen-
tal data. After studying various limiting aspects of SINDy,
we now summarize our findings in the form of a step-by-step
guide when aiming at model identification with SINDy from
oscillatory experimental data in biology. With this guide,
shown in Fig. 8, we aim not only to systematize our approach
to model identification, but also to provide a guide for ex-
perimentalists who want to better understand their dynamic
biological system through models, without requiring expertise
in classical model identification.

The steps included in the setup start with a first application of
SINDy on experimental data, which is followed by (numbered
as in Fig. 8):

(1) classical data manipulation techniques not discussed
in this work, namely detrending, normalization and
rescaling of time series data (92).

(2) investigating if provided experimental data meets mini-
mal requirements towards temporal resolution (see Sec-
tion ‘Length of time series, equidistant sampling, and
added noise’ and following).

(3) correctly filtering noise without influencing the outcome
of model identification (see Section ‘Noise filtering
techniques’).

(4) suitable inclusion of more experimental data sets, either
by measuring additional time series or optimizing sam-
pling strategies (see Sections ‘Addressing noise and low-
data in equidistant sampling with multiple trajectories’

16 | bioRxiv

and ‘Mitigating time scale separation with improved
sampling strategies’).

(5) investigating if nonlinearities can be identified using
SINDy-PI for only one time series, and then imple-
menting it in the original SINDy approach (see Section
‘Ultrasensitivity in the Goodwin oscillator’).

(6) appropriate handling of correlations within the term
library when an ultrasensitive response from the system
equations is included in the term library (see Section
‘Ultrasensitivity in the Goodwin oscillator’).

(7) an investigation of possibilities to reduce a high-
dimensional system of state variables (see Section ‘High
dimensionality in the mass action oscillator’).

If identification is unsuccessful despite following all suggested
steps, the reason likely lies in the lack of knowledge about im-
portant missing state variables or interactions in the underlying
dynamical system: Missing state variables or (nonlinear) in-
teractions can make the identification of interpretable models
difficult or even impossible if they cannot be well approxi-
mated within a reduced state space. In this situation, other
techniques to uncover missing dimensions of a system have
to be applied.

Nevertheless, using this approach we now return to one of the
first experimental examples, namely glycolytic oscillations in
yeast, for which we could not identify an underlying math-
ematical model (38 ppp, dt = 1s, see Fig. 1)>. We start by
shifting the center of the attractor to (0,0), similar to the eval-
uation of the mass action model, and rescale the data with a
min-max normalization (step (1), see Fig. S9B in Sup. Note 8
and Fig. 9A). These steps improve the identification, but do
not lead to an interpretable model. Thus, we turn to one aspect
of our study and apply a noise filtering technique, in this case
a low-pass filter, since the oscillations do not show strong
time-scale separation and are mostly sinusoidal (steps (3), see
Figs. S9C and D). With this application, we are able to identify
the following model at v = 1-10~7 and [ = 1-10~2 with
R? = 0.7824 and complexity k = 15:

ug =0.016 — 0.058u — 0.227v — 0.043u? — 0.023uv

—0.0200% — 0.015u> 4 0.05403,
vy =0.017 +0.181u+ 0.061v + 0.034uv
—0.0130% — 0.016u> +0.013v>.

(16)

Remarkably, the identified model contains two equations up
to the third order, which in turn can be compared to a model
consisting of bistable interconnected switches as proposed
by Parra-Rivas et al.(98). Due to its form, the equation is
not easy to interpret or to study analytically. However, we
study the equation numerically and are able to retrieve the null-
clines and visualize the behavior in phase space (see Fig. 9B).
Compared to the well-studied two-component model of gly-
colytic oscillations, the Selkov model in Eq. 6, we see that

2Temporal resolution retrieved from personal communication with the
authors.
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Fig. 9. Enabling model identification from experimental data on glycolytic oscillations in yeast A To enable model identification for glycolytic oscillations in yeast, the data
are detrended, normalized and centered around (0,0) in phase space. These steps allow us to identify a model which is able to describe the dynamics (Transformed data not
shown here). B The found model in Eq. 16 with a R> = 0.7824 and a complexity of k = 14 is identified, which is able to describe the dynamical behavior and uncovers steady
states in the system that are found in experiments but not represented in the popular Selkov model (Data has been transformed back to be compared to original experimental

data; data in right plot uses the same color scheme as the left plot).

we identify a more complex description of the interactions,
as the equation generates five fixed points (see Fig. 9B): An
unstable fixed point (UFP) around which the limit cycle of
oscillations occurs; two saddle points (or saddle nodes - SN)
for high NADH and low ATP, and low NADH and high ATP
concentrations/activities; two steady states (stable fixed points
- SFP) for low NADH and low ATP, and high NADH and high
ATP concentrations/activities. With this, we identify a biolog-
ically/biochemically sound model that is able to address the
limitations of the Selkov model, already pointed out by Selkov
himself (64): He points out that his simple model is unable to
account for experimentally identified steady states, although
these have already been described for oscillations in the yeast
Saccharomyces carlsbergensis (99). Our data-driven model
accounts for this behavior even though we provide almost no
prior knowledge.

However, our model shows high complexity making it difficult
to be interpreted analytically, which as a result from our study
we assume to be due to the low temporal resolution (only 38
ppp; step (2)). Therefore, following our decision tree, we must
either collect more additional data or improve the resolution
of the experimental data used for model identification (step
(5)). We suspect that increasing the resolution (either experi-
mentally or even synthetically) could lead to an even simpler
model (steps (4) and (5)).

Enhancing identification by synthetically increasing the res-
olution - an outlook. Since we don’t have access to more data,
we wanted to try out what impact the application of a simple
linear interpolation to our data and synthetically increasing
the number of points would have on model identification (step
(5)). Increasing the number of points by simple interpolation
can be done in this particular case because the oscillations do
not have strong time scale separation, however we do not eval-
uate the influence of interpolation on data-driven identification.
We increase the number of points by a factor of 10, together
with noise filtering, centering and normalizing of the data (see
Fig. 10 and related to it Figs. SOE (increasing resolution), F
(noise filtering), G (normalizing), H (normalizing and noise
filtering)), and we identify a set of equations that preserves the
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Fig. 10. Improving model identification with interpolation of experimental data
Increasing the resolution by 100 times of the original amount of ppp (38 ppp to 3800
ppp) the identified model preserves the dynamical behavior while becoming not only
easily interpretable but can also be studied analytically (Data in right plot uses the
same color scheme as the left plot).

same dynamical behavior as in the low resolution case while
reducing the complexity from k = 15 for Eq. 16 to £ = 12 in
Eq. 13 (for more details see Sup. Note 8).

As aresults, we assume that by increasing the resolution by
a factor of 100 (ca. 3800 ppp, dt2 = 0.01, step (5)), we are
able to achieve an even better approximation. As can be seen,
we are able to identify a set of different models that represent
the highest R? scores and thus reproduce the experimental
data increasingly well. Here we choose an equation that gives
the best trade-off between R? score and identified complexity
k, which we find with hyperparameters o = 1-10~17 and
1=2-10"%

ug = —0.032u — 0.224v — 0.025u2 — 0.052u> + 0.04903,

v = 0.183u 4 0.067v — 0.030u5.
a7

Evaluating how generalizable and/or closely related the model
actually is to biological behavior is beyond the scope of this
work. However, this analysis shows that by overcoming low-
data limits, in this case by using interpolation, the results
can lead to accurate and dynamically interesting and qualita-
tively relevant models that are interpretable. This aspect is an
interesting line of work that was shown by Goyal et al.(69)
to improve the performance of SINDy when a Runge-Kutta
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scheme is applied to the input data. However, to our knowl-
edge, there has not been a comprehensive study of this topic
in the context of SINDy.

Discussion

In this work, we evaluated why, despite its recent popularity,
the SINDy approach for data-driven model identification has
rarely been applied to experimental data and has led to the
identification of new models directly from experimental data.
We focused on the identification of models describing oscil-
latory systems in biology, which are challenging systems for
SINDy due to several factors. We have identified the main
challenges by applying SINDy to self-generated or existing
experimental data, which are insufficient resolution (or more
generally, data availability and quality), high noise levels in
experimental measurements, the number of state variables
(or dimensions) that fully describe a dynamical system, and
limited prior knowledge.

We investigated how the first three aspects in particular can
influence the outcome of model identification in the special
case of biological oscillatory systems. We selected three dif-
ferent oscillatory models (Fitzhugh-Nagumo, Goodwin, and a
mass action model) capable of representing these challenges
and investigated the performance of SINDy.

We have also shown that SINDy identification depends on the
correct choice of noise filtering technique, and if chosen incor-
rectly, can obstruct correct identification. To mitigate this, we
evaluated the performance of generating more data by either
bootstrapping or including more experiments in the analysis
and showed that for the special case of oscillatory systems,
boostrapping can reduce SINDy performance and including
more data is not able to mitigate strong time scale separation
well. At this point, we have also investigated the choice of
optimized sampling strategies and have shown that this can
improve identification to some extent, although again it does
not allow identification for strong time scale separation. We
conclude that SINDy struggles especially when the data reso-
lution is low and the oscillatory behavior is characterized by
strong time scale separation. Here, identification requires very
high resolution or may even be impossible, which is a crucial
limitation of SINDy when applied to biological oscillatory
data.

We then considered the specific aspects of nonlinearity and
time delay in biological oscillatory systems, which are rep-
resented in the model either by high-order and complex ex-
pressions or by an increase in the number of dimensions (state
variables). Here we have shown that for the Hill function
commonly used in biochemical models, that the specially de-
veloped SINDy extensions SINDy-PI is able to provide knowl-
edge on the approximated nonlinearities when data quality
and library truncation is sufficient and SINDy only approxi-
mates the behavior with a high-order polynomial. Therefore,
when using SINDy, prior knowledge about such high-order
interactions must be provided either from SINDy-PI or from
additional experiments and the resulting term library must be
evaluated for possible correlations between terms to ensure
correct identification. For high-dimensional systems, we have
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shown that even when no noise is applied, SINDy requires
large amounts of data to correctly determine the identifica-
tion. Thus, we have proposed and shown that cross-testing
all available data sets of the state variables can enable the
identification of a high-level representation of the dynamics in
a low-dimensional system. As can be seen from our previous
analysis, SINDy needs less data and can handle noise better to
provide a suitable model. With this, we were able to identify
a set of models that could even be dynamically studied.

All these findings have been condensed into a step-by-step
guide for model identification with SINDy that can be applied
to biological experimental data and beyond. Using our elab-
orate guide, we were able to enable the identification of an
improved model for glycolytic oscillations directly from the
original data set. By pushing the resolution by simple inter-
polation, we identified an analytically interpretable model of
interconnected bistable switches directly from the data. This
highlights the need for high resolution data, which is the bot-
tleneck of model identification in general, but especially in
biology. Therefore, model identification with SINDy has not
yet led to the discovery of new interpretable models. In many
cases, increasing the resolution cannot be achieved experi-
mentally, and as we have shown, interpolation can play an
important role.

In conclusion, we have identified the main limiting aspects
of model identification with SINDy when applied to (biologi-
cal) oscillatory experimental data and propose a step-by-step
guide that can improve the identification success. Thus, with
this work we aim to encourage the application of SINDy
by biological experimentalists and increase the success of
model identification directly from experimental data. How-
ever, different aspects require further studies to improve the
performance of SINDy on experimental data, such as correct
normalization and rescaling of data, the generation of more
data without additional experiments through interpolation, and
the discovery of hidden variables from experimental data.

Limitations of study

In our study we apply simple intepolation in experimental
data of the gylcolytic oscillator. However, data interpolation
is a challenging task in data-driven model identification and
SINDy, as if applied incorrectly it can alter the data to rep-
resent the result of the interpolation and not the underlying
dynamics.

Another important aspect that we have not touched on is the
correct positioning of the attractor or limit cycle in phase
space. In our work, for the sake of simplicity, we centered
the limit cycle around the point (0,0), either by removing
the offset from the data or by normalization, which in many
generic oscillatory models (e.g. FHN) is the unstable fixed
point around which oscillations arise. However, even for the
FHN model, the point is not positioned symmetrically within
the limit cycle, and as we show in other work (100), correctly
positioning the limit cycle in phase space is important for
successful model identification.

Furthermore, we did not investigate the identification of hid-
den variables or dimensions directly from experimental data,
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e.g. in the case of the BZ reaction. The identification of such
variables according to the Takens theorem (101) and delay em-
bedding can significantly improve the success of data-driven
model identification(70, 79) and result in successful model
identification from experimental data(53).

Beside this, we also did not delve into other possibilities to
tackle the challenging task of identifying strong nonlinearities
like the Hill-function in a dynamical system. An example of
such methods are ‘Universal Differential Equations‘ (39) that
can be combined with SINDy, to learn ‘simpler* (low-order)
interactions directly from data and use the strength of neural
networks to discover the structure of strong nonlinearities such
as the Hill-function.

Lastly, we did not carry out a detailed study of SINDy ex-
tensions that avoid using derivatives, such as Weak SINDy
(43, 102). Here, the authors apply the weak numerical formu-
lation of the problem, which can improve model identification
for noisy or time scale separated time series data. We con-
firmed this as well, see Fig. S10. Therefore, a further study
of non-derivative based SINDy or other methods that have
shown better performance would be useful. These methods
could improve model identification for oscillatory systems
compared to derivative based SINDy methods.
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STAR methods

Key resource table.

Resource availability.

Lead contact. Further information and requests for data or code should be directed to and will be fulfilled by the lead contact,
Bartosz Prokop (bartosz.prokop @kuleuven.be).

Materials availability. This study did not generate new unique reagents.

Data and code availability.

* All experimental or synthetic data have been deposited at RDR by KU Leuven(103) and GITLAB (104), and are publicly
available as of the date of publication. DOIs are listed in the key resources table.

 All original code has been deposited at RDR by KU Leuven (105) and GITLAB (104), and is publicly available as of the
date of publication. DOIs are listed in the key resources table.

* Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon
request.

Experimental model and subject details. This study did not include experiments with a specific model or subject.

Method details.

The SINDy method and its derivatives. In this work we use the original Sparse Identification of Nonlinear Dynamics (SINDy),
developed by (42), and extensions of it, which are implemented in the PYTHON package PYSINDY (106, 107). SINDy is based
on the assumption that dynamic systems can be described through differential equations in the following form:

X;=N(X,§) (18)

with a variable X = (u,v,...). The time derivative X is a function of the variables X itself, combinations with other state
variables and a set of parameters. Differential equations of this form can be also linearly combined, e.g. for component u:

up = &1 4 Eou+ Equ® + Equv + ... (19)

This equation can be rewritten as a row vector containing all combinations and derivatives of the quantity, called the term library
and a parameter vector £ containing all parameters:

ut:(l u w2 ww )5 (20)

The values of each term in the library can be calculated from a single shot at a given point in time. If this system is extended to all
available time points, a linear system of equations with the unknown parameter vector £ and the term library matrix ® is formed:

u =1 v w? w ..||[&]=0¢ 1)

This system poses an over-determined optimization problem for values of £ and can be solved by using sparsity promoting
regression algorithms. In our work we use the RIDGE regression with sequential thresholding optimization algorithm (see
Eq. 2). We evaluate the performance of SINDy and its extensions mostly using one trajectory (except for the section ‘Addressing
noise and low-data in equidistant sampling with multiple trajectories‘) with a set random seed to ensure that our results are
reproducible.
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The E-SINDy extension. Aside of this we also include the recently developed ensemble SINDy extension (E-SINDy) from (49).
Here, the original system of linear equations in Eq. 21 is divided in to sets of subsystems, also called bootstrapping. The system
can be sub-sampled in two different ways, either row/data wise only including subsets of measured data or column/library wise
only including certain terms into sub-libraries into the optimization problem.

After solving all the subsystems, the solutions are aggregated and terms or their respective coefficients are assigned with a
probability of inclusion. The authors of this approach claim that through bootstrapping application the model identification is
more robust in low-data and high-noise regimes and therefore poses an optimal extension for our analysis.

For the different experimental systems under investigation, suitable term libraries are defined which can be seen in Table 3. The
choice of libraries is motivated by prior knowledge (trigonometric functions for the simple pendulum, higher order terms in BZ
reaction) or the expected behavior (3rd order terms for the glycolytic oscillations in assumption of a FHN type equation and
from the Selkov model (64)).

The SINDy-PI method. The SINDy-PI (parallel implicit) is a further extension of the created implicit SINDy extension. The
implicit SINDy extension changes the target of the optimization approach in order to account for rational terms in the model
identification (47). An example for Michelis-Menten kinetics is also presented in the examples of the PYSINDY package:

1.5z
=0.6— . 22
o 0.3+ 22)
This equation is not solvable for SINDy, but can be translated into an implicit form that then can be solved with SINDy:
3 10
T = B—Bx—ga:mt. 23)

As this formulation is sensitive to noise (47, 96), the parallel implicit extension solves the SINDy regression problem for all
terms as the target of the optimization, e.g. x¢,x,xxy,. ...

Libraries used for SINDy. For the analysis of synthetic and experimental data with SINDy, we have used the following combina-
tions of term libraries and hyperparameters listed in Table 3.

Evaluation of experimental data. For the evaluation, we look at two parameters: the complexity of the equation and the R? score,
which we use as a goodness-of-fit parameter. The R? score is a commonly applied indicator on the goodness-of-fit of a model
derived with regression methods. We apply the R? score in the following form,

(X: — F:)2
Zz ( v 7’0) 5 (2 4)
>i(Xi— Xa)
where the numerator expression describes the residual sum of squares and the denominator expression the total sum of squares
which are calculated with the original data set X; and the respective model X; ; = F;(X).

RZ=1-

Evaluation of synthetic data. We evaluate the performance of the respective SINDy methods by comparing the structure of the
candidate models (CM) to the ground true (GT) models provided. We evaluate them under two aspects: if the model has been
correctly identified where we accept and relative error in the coefficients & which is less then 2%:

- &ijer—&ijem

€ <0.02 (25)
&ij,GT

Or if the coefficients lie beyond this 2% threshold but the model still has the same mechanistic form as the ground true model.
We evaluate these aspects for model specific sampling ranges where we add Gaussian noise between 1 and 10%.
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Table 3. Respective term libraries used for model discovery from experimental data.
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