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ABSTRACT 33 

Object recognition and categorization are essential cognitive processes which 34 

engage considerable neural resources in the human ventral visual stream. However, 35 

the tuning properties of human ventral stream neurons for object shape and category 36 

are virtually unknown. We performed the first large-scale recordings of spiking activity 37 

in human Lateral Occipital Complex in response to stimuli in which the shape 38 

dimension was dissociated from the category dimension. Consistent with studies in 39 

nonhuman primates, the neuronal representations were primarily shape-based, 40 

although we also observed category-like encoding for images of animals. 41 

Surprisingly, linear decoders could reliably classify stimulus category even in data 42 

sets that were entirely shape-based. In addition, many tuning curves showed an 43 

interaction between shape and category tuning. These results represent the first 44 

detailed study on shape and category coding at the neuronal level in the human 45 

ventral visual stream, furnishing essential evidence that reconciles human imaging 46 

and macaque single-cell studies. 47 
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 63 

INTRODUCTION 64 

Object recognition and categorization are fundamental cognitive processes, essential for 65 

understanding and interpreting the visual world. The lateral and ventral occipitotemporal cortices 66 

(OTC) are key regions involved in these processes. 1,2 Nevertheless, the precise functional 67 

organization, neuronal tuning properties and hierarchical structure of this large cortical region remain 68 

unclear. 69 

Functional magnetic resonance (fMRI) studies in humans have shown that the Lateral 70 

Occipital Complex (LOC) is particularly sensitive to shape features, 3,4 and bears remarkable 71 

similarities with the macaque inferior temporal cortex. 5–7 Along the hierarchy organization of the 72 

human ventral visual stream, functional activations emerge suggesting the existence of more 73 

categorical object representations for diverse stimuli, including faces8, bodies 9, scenes 10, hands 11,  74 

letter strings 12, and food items.13,14 75 

However, the current body of evidence is insufficient to draw definitive conclusions regarding 76 

category selectivity at the neuronal level in the human OTC. First, prior research has tested a relatively 77 

small number of categories. Additionally, the limited spatiotemporal resolution of fMRI does not allow 78 

to make strong inferences about the underlying neuronal selectivities without a number of 79 

assumptions. 15–17 Thus, to gain a deeper understanding of the neural mechanisms underlying object 80 

processing, single-cell recordings in macaques  have been crucial, a model that has been validated by  81 

evidence of a common organization of object space in humans and monkeys.18 82 

In macaques, neurons in prefrontal and posterior parietal cortex exhibit distinct categorical 83 

representations, indicating their crucial involvement in higher-level visual processing. Conversely, the 84 

inferior temporal cortex (ITC) shows only weak or absent category effects 19–21 (except in face or body 85 

patches 22,23). However, in humans, an fMRI study 24 manipulated shape type and category 86 

independently, and reported both shape and category sensitivity in lateral and ventral occipitotemporal 87 

cortex, with a gradual progression from more shape-based representations posteriorly to more 88 

category-based representations in more anterior brain regions. Yet again, in the absence of data on 89 

the actual neuronal tuning properties of human visual neurons it is difficult to relate these fMRI findings 90 

on human lateral occipitotemporal cortex to the existing electrophysiological evidence in the macaque 91 

ventral visual stream. 92 

To bridge this looming gap between human fMRI and macaque electrophysiology, we 93 

recorded multi-unit activity (MUA) and high-gamma responses in the human LOC using intracortical 94 

microelectrode arrays during the presentation of shapes belonging to different categories, in which the 95 

shape dimension was dissociated from the category dimension as in Bracci et al. 24 We employed a 96 

diverse set of analysis techniques to investigate shape and category representations both at the 97 

individual channel level and at the population level. We found mainly shape-based representations 98 

with a large number of shape-category interactions in individual recording channels. At the population 99 
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level, the neuronal dissimilarities did not correlate with behavioral category judgments, but linear 100 

decoders could correctly classify category information in every array tested. These results represent 101 

the first detailed study of shape – and category coding at the level of spiking activity in human visual 102 

cortex. 103 

RESULTS 104 

Figure 1A shows the reconstructed anatomical locations of the arrays (Montreal Neurological Institute 105 

(MNI) coordinates in Table 1) and the average normalized net responses of all visually-responsive 106 

channels to the intact versus scrambled stimuli (classic LOC stimuli and naturalistic LOC images). The 107 

significantly stronger responses to intact images of objects compared to scrambled ones demonstrate 108 

that all arrays were located in shape-sensitive cortex, in agreement with Decramer et al. 25 However, it 109 

should be noted that there is diversity in our findings across the four arrays. While the stronger 110 

responses to intact images compared to scrambled ones are observed in most arrays, for array 3, this 111 

statement only holds true for the classic localizer, and in array 1, the selectivity is minor. One possible 112 

reason for this variability is that the localizer stimuli were not optimal for each array. The stimuli 113 

presented during the localizer task may not have fully captured the preferred shapes or specific 114 

categories for each array. Had the arrays been presented with optimal intact and scrambled stimuli 115 

tailored to their specific preferences, the differences in selectivity among the arrays may have been 116 

more pronounced. 117 

 118 

Single – channel responses reveal tuning complexity  119 

We recorded from 237 visually responsive MUA sites (array 1: 51, array 2: 94, array 3: 27, 120 

array 4: 65) and 332 visually responsive LFP sites (high – gamma, 60 – 120 Hz; array 1: 85, array 2: 121 

96, array 3: 86, array 4: 65). First, we determined the selectivity for shape, for category and any 122 

shape-category interactions (Fig 1B) using 2 – way ANOVA on the net MUA and LFP responses (see 123 

Methods).  Figure 2 shows the MUA (Fig 2A, B and C) and LFP (Fig 2D, E, and F) responses for six 124 

(three MUA sites and three LFP sites) example channels. The first example channel (recorded in array 125 

2, Figure 2A) responded strongly to several shape types (e.g. shape type 5,6 and 8), but much less to 126 

other shape types (e.g. shape type 7 and 9, main effect of shape pshape = 0.0001). The different 127 

categories within each shape type evoked similar responses in this MUA site (pcategory = 0.52, pinteraction= 128 

0.65, Supplementary table 1 for details on statistics). The robust shape selectivity and lack of category 129 

selectivity were also evident in the average responses of the LFP example site (recorded in array 2) 130 

(Figure 2D). In contrast, the example site in Figure 2B (recorded in array 3) responded strongly to 131 

certain exemplars of the category ‘animals’ (those from shape types 5 and 6), which represents a 132 

significant shape x category interaction (p = 0.0007) with a weak main effect of category (p = 0.026) 133 

and no significant main effect of shape (p = 0.06, Supplementary table 1). The shape x category 134 

interaction effect was even more pronounced in the high – gamma example site than in the MUA 135 

example site (eta2
MUA = 0.07, eta2

LFP = 0.19, Figure 2E and Supplementary Table 1). Finally, the 136 

example site shown in Figure 2C (from array 2) displayed stronger neural responses to certain 137 

members of a particular shape type (e.g. ‘Fruits’ for shape type 6), which constituted another type of 138 

interaction between shape and category (p = 0.000), combined with a main effect of shape (p = 139 
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0.00002), but no significant effect of category (p = 0.46, Supplementary table 1). These interactions 140 

could be due to selectivity for the specific exemplar (e.g., the fruit for shape type 6 is a bunch of 141 

grapes), to subtle differences between the members of the same shape or category in their shape and 142 

category properties, or due to variations in other dimensions such as variations in contour or texture. 143 

Overall, these results suggest that while shape selectivity is a dominant feature of the visual 144 

responses in the sites of human occipitotemporal cortex that we sampled, interactions between shape 145 

and category were also observed in a subset of neural sites.  146 

To illustrate the shape and category responses of all visually-responsive channels, Figures 3A 147 

and B show an overview of the z-scored responses (see Methods) per array at the MUA and LFP 148 

level, respectively.  We ordered the channels from top to bottom based on their selectivity  as 149 

determined in the 2-way ANOVA with factors shape type and category: channels indicated by the blue 150 

bracket showed a main effect of shape type only, channels indicated by the yellow bracket showed a 151 

main effect of category only, and channels with the green bracket showed a significant shape type x 152 

category interaction (sometimes in combination with a main effect of shape type and/or category). The 153 

channels below the green bracket were visually-responsive but did not show any significant effect in 154 

the two-way ANOVA. The order of the columns (from left to right) was determined based on the 155 

average response of all visually-responsive channels across each array separately.  The plots ordered 156 

according to shape type (left panels in Figure 3A and B) clearly illustrate that our stimulus set evoked 157 

strong MUA and LFP responses on a large number of recording channels. Additionally, the stimulus 158 

selectivity was relatively broad for all arrays (FigS1) (median Swidth MUA: sarray1 = 0.69, sarray2 = 0.62, 159 

sarray3 = 0.86, sarray4 = 0.7, median Swidth LFP: sarray1 = 0.5, sarray2 = 0.52, sarray3 = 0.69, sarray4 = 0.52).  160 

Visual inspection does not suggest a clear preference for specific shape types in any of the 161 

arrays. When plotting the responses according to category (right panels in Figure 3A and B), the 162 

results were qualitatively similar, except for the category ‘animals’ in array 3, which clearly evoked 163 

strong responses to a subset of shape types belonging to this category, as illustrated in the example 164 

channels in Figure 2B and 2D. To investigate the overall shape type or category preference for each 165 

array more quantitatively, we averaged the MUA and high – gamma responses across all visually-166 

responsive channels (Fig 4A). Arrays 1, 2 and 4 responded significantly less to shape types 7, 8 and 9 167 

(which were characterized by a lower surface area and high aspect ratio), whereas for array 3, the 168 

MUA response to the category ‘animals’ was significantly higher compared to the other categories 169 

(Fig. 4A). The high-gamma responses ranked according to shape type (Figure 3B left panel) appeared 170 

very similar to the MUA responses, which was supported by the significant correlations between MUA 171 

and high-gamma responses for all arrays (Fig. 4B). When plotted according to category, the high 172 

gamma responses of array 3 contained an even more pronounced preference for the category 173 

‘animals’ than the MUA responses (Fig. 3B and eta2 values in Fig S2B).  174 

Further analysis of all individual visually-responsive electrodes (using two-way ANOVA with 175 

factors shape type and category) confirmed the high diversity of neural tuning for shape type and 176 

category. At the MUA level, the highest number of channels showed a significant interaction between 177 

shape type and category for all arrays (Fig 3C). More specifically, out of the 237 visually responsive 178 

MUA sites, 39 sites (16%) were significantly selective for the shape type dimension alone, merely 8 179 
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sites (3%) showed a significant main effect of category alone, compared to 114 sites (48%) with 180 

interactions between shape type and category (chi2 = 143, p < 0.0001). At the LFP level, we also 181 

observed mainly shape type selectivity and shape-category interactions, although Array 1 and Array 2 182 

showed more channels with a significant main effect of shape type (chi2 = 6.8, p < 0.0001). In two 183 

arrays, the proportion of significant shape type x category interactions was significantly higher in the 184 

MUA (27 and 63% for array 1 and 2, respectively) compared to the LFP responses (12 and 22% for 185 

array 1 and 2, respectively; array 3 had a similar proportion of interactions in MUA and LFP, and for 186 

array 4 the LFP signal was of low quality). 187 

To test the effect sizes for shape type and category, we compared the eta2 of all sites with 188 

significant effects (Fig. S2).  Overall, the eta2 values for shape type were higher than for category in 189 

array 1, 2 and 4, and this difference in eta2 was more pronounced for sites displaying a main effect of 190 

shape. Interestingly, in arrays 1, 2, and 4, even for channels with only a significant interaction or with 191 

both significant shape and category main effects, eta2 was significantly stronger for shape type 192 

compared to category. However, this was not the case for the shape type x category interaction 193 

channels of array 3, where both shape and category effect sizes were similarly strong. 194 

 195 

Dissimilarity analysis suggests that shape type is the dominant representation in all arrays  196 

The average response across individual channels can exhibit weak category selectivity, but 197 

the categorical structure of the stimulus set may also appear in the pattern of activity distributed across 198 

the entire neuron population. 20 Therefore, we investigated how information about shape type and 199 

category was represented in the multichannel activity patterns. Per pair of stimuli, we correlated the 200 

spatial multi-channel response pattern for each microarray (see Methods). The resulting dissimilarity 201 

matrices (1 – correlation, Figure 5A) were correlated with behavioral dissimilarity matrices for the 202 

shape type and category dimensions as well as with the physical dissimilarity matrix based on the 203 

silhouettes (Figure 5B) by means of Representational Similarity Analysis (RSA). 26 For all microarrays, 204 

the multi-channel analysis revealed significant shape-based and silhouette representations in the MUA 205 

responses, but no significant correlation with the category matrix (Figure 5C and Table 2). At the LFP 206 

level, we observed similar results for array 3 and 4 (Figure S3), but array 1 only correlated significantly 207 

with the silhouette dissimilarity matrix and array 2 only with the shape dissimilarity matrix (Table S2 208 

and Fig S3). Thus, the multichannel response pattern of all 4 arrays in LOC was predominantly shape-209 

type. Moreover, the neural (MUA) dissimilarity matrices correlated significantly with both the 210 

perceptual and the physical dissimilarities. Interestingly, these population-level analyses suggest no 211 

contribution of category similarity, while the aforementioned single-channel analyses revealed many 212 

sites with an interaction between shape and category tuning. 213 

Next, we visualized the representation of the stimuli in the neural spaces of each array using 214 

MDS on the dissimilarity values. The 2D solutions of the MDS are shown in Figure 6. To evaluate the 215 

presence of clustering in each dimension, the stimuli were color coded according to shape type (top 216 

row of Figure 6) and semantic category (bottom row of Figure 6). As an additional step to verify the 217 

existence of shape and/or category clusters within each array, we applied agglomerative hierarchical 218 

cluster analysis (Fig.S5). Shape clustering was evident with both methods in arrays 1, 2, and 4, with 219 
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aspect ratio as an important factor mainly in array 1 and 2, while the MDS solution color-coded based 220 

on category did not exhibit a clear clustering. Array 3, on the other hand, did not exhibit strong 221 

clustering for the shape dimension, but when color-coded according to category, three exemplars of 222 

the category "animals" (rabbit, owl, and fish) were clearly separated from the other stimuli (see Fig S4 223 

for the LFP results, where a similar observation is made). The hierarchical cluster analysis 224 

corroborated this observation, since a subset of animal exemplars clustered together in the neural 225 

space of Array 3. Overall, these findings are consistent with the shape-based representations we 226 

found in the multivariate correlation analysis, but they also suggest the presence of some additional 227 

category information in array 3.  228 

 229 

Linear decoders detect reliably both category and shape information 230 

The MDS analysis offers a representation of the stimuli in a limited number of dimensions in 231 

the neural space of the recorded population, but a decoder can utilize all the multidimensional 232 

information in a population. Moreover, decoding can be performed over time, which can also give 233 

insight into the temporal dynamics of the neural responses. Therefore, we trained linear Support 234 

Vector Machines on the neural responses per array in 100 ms bins (sliding window of 50 ms), and 235 

tested on each time bin of individual trials whether we could correctly classify either the shape type or 236 

the category. Figure 7A illustrates the temporal evolution of the normalized decoding accuracy at the 237 

MUA level (as described in the Methods section) for the two decoders (shape type and category). The 238 

decoding accuracy was normalized by subtracting the chance level accuracy, where the chance level 239 

represents the expected accuracy by random chance. In all 4 arrays, we could reliably decode shape 240 

type starting as early as 75 ms after stimulus onset for array 1, compared to 100 ms for array 2, and 241 

200 ms after stimulus onset for arrays 3 and 4 (Fig 7A). Furthermore, and in line with the previous 242 

analyses, array 3 also showed significant classification of category information, which was 243 

predominantly restricted to the "animals" category (see confusion matrix in Fig 7B). Remarkably 244 

however, despite the presence of primarily shape type representations on the other arrays, we also 245 

obtained significant classification of category on arrays 1, 2 and 4, which emerged almost 246 

simultaneously with the shape type classification. Thus, although neither individual channels nor the 247 

multichannel response pattern appeared to furnish any category information, a population of shape-248 

selective neurons in human visual cortex contained reliable information about object category (Fig S6 249 

for LFP decoding).  250 

To further investigate the predominant association of category information with the "animals" 251 

category, we conducted additional analyses by removing the "animals" category and performing the 252 

decoding again (Fig. S7). The decoding accuracy for arrays 1 and 2 at both the MUA and LFP levels 253 

remained unaffected. However, a noticeable decline in both accuracy and significance was observed 254 

for array 3 at both the MUA and LFP level. These findings were consistent with the observations from 255 

the confusion matrices (Fig. 7B, S6B), emphasizing that the category information was predominantly 256 

restricted to the "animals" category for array 3. 257 

Lastly, we assessed the generalization of the decoders over time (Figure 7C). The shape and 258 

category decoders were trained using 100 ms time windows, and then tested on every 100 ms window 259 
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that followed or preceded the training bin. Each window was then shifted by 50 ms. The decoding 260 

accuracy of array 2 generalized over the entire stimulus duration for both shape type and category, 261 

suggesting a very stationary population representation emerging early after stimulus onset, while 262 

arrays 1, 3 and 4 exhibited a more transient generalization of the classifier. At the high-gamma 263 

frequency range (as depicted in Fig. S6), we observed, on average, highly similar decoding 264 

performance, albeit with lower levels of accuracy. 265 

 266 

 267 

DISCUSSION 268 

 269 

We recorded selective MUA and LFP responses to images of objects on four microelectrode 270 

arrays in the human Lateral Occipital Complex. Both single-channel and multi-channel analyses 271 

revealed robust encoding of shape type and a very weak representation of category, consistent with 272 

previous electrophysiology studies in nonhuman primates. However, from each neuronal population, 273 

we could reliably classify semantic category using linear decoders, suggesting population-based 274 

category representations in LOC. Furthermore, single-channel analyses revealed that many channels 275 

showed interactions between the shape and category dimension, demonstrating the added value of 276 

single-channel information to reveal the tuning complexity underlying object processing in the human 277 

ventral visual stream. 278 

While a large number of studies have been published on shape-sensitive cortex in humans 279 

using fMRI, electrophysiological data on the shape selectivity of human visual neurons remain scarce. 280 

Decramer et al. 25 showed for the first time single-unit and LFP selectivity for images of objects and 281 

line drawings of objects (the LOC classic localizer) in lateral occipitotemporal cortex, including 282 

receptive field estimates (on average 22 deg diameter centered on the fovea) and selectivity for 283 

disparity-defined curved surfaces. A subsequent study 27 reported robust face-selective responses at 284 

short latencies, which also occurred for feature-scrambled and face-like stimuli. In the same study, a 285 

few channels also showed body selectivity in close proximity to the face-selective channels. Compared 286 

to these two previous studies, we recorded from considerably larger populations of neurons across a 287 

more extensive part of the LOC, with a stimulus set in which the dimensions of shape type and 288 

category were orthogonalized. Our data confirm and clarify the abundant shape selectivity in this 289 

region, since on average 62% of the channels were visually responsive, while 67% of those were 290 

significantly stimulus-selective (for shape type and/or category). Note that the average 2D-shape 291 

selectivity index we found (0.72) was comparable to the ones reported in macaque area TE (0.65). 28 292 

The high incidence of shape selectivity is remarkable given that the use of multielectrode arrays 293 

precluded optimizing the stimulus to each recording site (e.g. position, size) and that each array only 294 

sampled from a 4 by 4 mm area of cortex. On the other hand, chronic multielectrode recordings of 295 

MUA (i.e. large and small action potentials) may furnish a more unbiased sampling of neuronal activity 296 

in the recording area, which is crucial for relating our findings with invasive recordings to fMRI results. 297 

We used the same stimulus set and analyses as in the event-related fMRI study of Bracci et 298 

al., 24 who reported a transition from shape to category-based representations along the posterior to 299 
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anterior direction in the ventral visual stream. While the early visual areas provide a purely shape-300 

based representation correlating with the physical similarities between the stimuli, and the higher-level 301 

areas (in prefrontal and parietal cortex) provide a more category-based representation, several 302 

intermediate regions in or near the LOC represented both shape- and category information. Here, we 303 

not only could confirm the fMRI results, but also clarify the underlying neuronal selectivity of these 304 

combined shape/category representations. We mainly observed significant interactions between 305 

shape type and category on individual channels of every array. These interactions occurred in two 306 

types. The first type of shape-category interactions were responses to a small number of exemplars of 307 

a single category, as in array 3. However, on the other arrays we found channels in which the shape 308 

type preference differed between the categories tested, most likely due to a selectivity for small shape 309 

or texture differences between the members of a given shape type. These interactions remain 310 

unnoticed in population-level analyses such as fMRI. Furthermore, the interactions were less prevalent 311 

with LFPs than with MUAs, suggesting that measurements of smaller populations of  neurons are 312 

more likely to detect  such interactions. 313 

 Array 3 demonstrated a clear preference for animal images compared to other objects. 314 

Considering this observation and its more dorsal positioning, it is highly likely that Array 3 was located 315 

within the region commonly referred to as LOTC - body in fMRI studies. The preference for animals on 316 

array 3 was the only category-like (i.e. responding to certain exemplars of one category) 317 

representation that was visible at the level of individual channels, whereas individual channels of all 318 

other arrays at most showed interactions of the category dimension with shape type. Intriguingly, even 319 

multi-channel analyses (dissimilarity analysis or hierarchical clustering) suggested that shape type was 320 

the dominant factor in every array. The lack of an explicit category representation (in arrays 1, 2 and 4) 321 

is entirely in line with a previous single-cell study in the macaque inferotemporal cortex.19,29  322 

In contrast, a linear SVM analysis could reliably extract category information from the 323 

population responses of every array. Conceptually, our decoding analysis was equivalent to Multivoxel 324 

Pattern Analysis (MVPA), 30,31 with a limited number of responsive channels (spaced 400 micron 325 

apart) being equivalent to the visually-active voxels in the fMRI. Thus, in the high-dimensional space of 326 

our LOC arrays (with up to 94 responsive channels), we could extract category information even when 327 

no individual channel appeared to code these categories. These results are again in line with previous 328 

findings in macaque monkeys, showing that category information can be reliably (and to a similar level 329 

as in prefrontal cortex) decoded from the activity of a population of ITC neurons despite the lack of 330 

explicit category coding in individual neurons. 32 331 

Our findings provide evidence that both shape and category representations are present in the 332 

human Lateral Occipital cortex, with the SVM approach revealing category-level information which was 333 

not apparent using RSA, MDS, or hierarchical clustering for all arrays. Specifically, the RSA analysis 334 

demonstrated that the neural representations in the Lateral Occipital cortex were primarily driven by 335 

shape and low-level pixel-wise similarities, indicating that the neural responses were more sensitive to 336 

the shape of the stimuli. This discrepancy between methods may be due to the fact that the SVM is 337 

more sensitive to subtle differences in patterns of neural activity than these other techniques, allowing 338 

it to decode information that is not detectable through measures of representational similarity. These 339 
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observations match well with the findings from the single-channel analyses, since many channels were 340 

tuned to both shape and category in an interactive manner. One such channel would not suffice to 341 

decode category, but multiple channels with different interactions would, in the same way as 342 

viewpoint-invariant recognition can be obtained by sampling multiple view-tuned neurons. 33 Likewise, 343 

the SVM might use a combination of channels that show interactions between shape and category to 344 

make a reliable distinction between categories. In contrast, RSA can reveal the structure of the neural 345 

representations of stimuli, which can provide insight into how the brain processes and categorizes 346 

different types of information. Note however that a single 4 by 4 mm array samples neural activity from 347 

a small cortical region (equivalent to 4 fMRI voxels in most fMRI studies), which may at best represent  348 

a single category (such as ‘animals’ in array 3). In contrast, RSA is typically performed on a very large 349 

number of voxels or on behavioral ratings, which encompass all categories in the stimulus set. The 350 

limited spatial sampling area of an array may explain why we did not observe a significant correlation 351 

with the category dissimilarity matrix in array 3.  352 

Together, these findings highlight the complexity of neural mechanisms underlying object 353 

processing and the importance of using multiple techniques to uncover these representations. While 354 

the population as a whole showed strong shape tuning and only very limited category selectivity, we 355 

found  a large neuronal diversity  and distinct  interactions between shape and category at the single-356 

channel level in human LOC. The  broader relevance of this diversity in tuning was demonstrated by 357 

the ability of classifiers to decode not only shape but also category.   358 

 359 

METHODS 360 

Data were collected from three patients (patient 1, 24-y-old male ; patient 2, 54-y-old woman ; patient 361 

3, 58-y-old woman) with intracranial depth electrodes as part of their presurgical evaluation for drug – 362 

resistant focal epilepsy. Patient 2 was diagnosed with Neurofibromatosis type 1, without any 363 

intracranial tumors. At the age of 34, she suffered from a left occipital intracranial hemorrhage due to 364 

venous sinus thrombosis. Ethical approval was obtained for microelectrode recordings with the Utah 365 

array in patients with epilepsy (study number s53126). Study protocol s53126 was approved by the 366 

local ethical committee (Ethische Commissie Onderzoek UZ/KU Leuven) and was conducted in 367 

compliance with the principles of the Declaration of Helsinki, the principles of good clinical practice, 368 

and in accordance with all applicable regulatory requirements. All human data were encrypted and 369 

stored at the University Hospitals Leuven. 370 

 371 

Patients: 372 

Three patients were implanted with microelectrode arrays (Utah array) for research purposes to study 373 

the microscale dynamics of the epileptic network in the presurgical evaluation (“Microscale Dynamics 374 

of Epileptic Networks: Insights from Multiunit Activity analysis in neurosurgical patients with refractory 375 

epilepsy”, Bougou et al., EANS 2023, Barcelona). No additional incisions were made for the purpose 376 
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of the study. Utah arrays were located in the occipital cortex adjacent to the clinical macroelectrodes, 377 

analogous to previous studies using micro-electrode arrays. 25,27,34–36 Target locations of intracranial 378 

electrodes were determined by the epileptologist and based on electroclinical findings and non-379 

invasive multimodal imaging.  380 

In all three patients the array was deemed outside the presumed epileptogenic zone (PEZ) after 381 

analysis of the intracranial EEG.In patient 1, the array (array 1) was located below the lateral occipital 382 

sulcus (LOS), whereas the array was above LOS in patient 2 (array 2). In patient 3, one array was 383 

above (array 3) and the other below LOS (array 4) (MNI coordinates of the arrays are provided in 384 

Table 1).  385 

 386 

Microelectrode recordings 387 

We used 96 – channel microelectrode arrays (4 x 4 mm; electrode spacing of 400 microns; Blackrock 388 

Microsystems, UT) in all patients. The arrays were inserted with a pneumatic inserter wand (Blackrock 389 

Neurotech). Dura was closed above the array and the bone flap was placed on top to keep the array in 390 

place. Reference wires were placed subdural, ground wires epidural.  The signal was digitally 391 

amplified by a Cereplex M head stage (Blackrock Neurotech), and recorded with a 128 – channel 392 

neural signal processor (NeuroPort system, Blackrock Neurotech, Salt Lake City, UT, USA). In each 393 

recording session, multi – unit activity (MUA) from all 96 channels was sampled at 30 kHz, and high-394 

pass filtered above 750 Hz. The detection trigger of the MUA was set at the edge of the noise band. 395 

The LFP signals were recorded continuously with a sampling frequency of 1000 Hz. All patients stayed 396 

at the hospital for 14 days after implantation, but the data reported here was acquired in 1 recording 397 

session per array. 398 

Stimulus presentation: 399 

Experiments were performed in a dimmed hospital room. We presented stimuli on a 60 Hz DELL-400 

P2418HZM LED monitor using custom-built software. The patients fixated a small red square (0.2 × 401 

0.2°) appearing in the center of the display at a viewing distance of 60 cm (pixel size 0.026 deg). The 402 

left or right pupil position was continuously monitored using a dedicated eye tracker (Eyelink 1000 403 

Plus, 1000 Hz) in head free mode. Breaking fixation from an electronically defined 3° by 3° fixation 404 

window resulted in trial abortion. The experiment was controlled using Presentation software 405 

(Neurobehavioral Systems, Berkeley, CA, USA). For data synchronization, we attached a photodiode 406 

to the left upper corner of the screen, detecting a white square that appeared simultaneously with the 407 

first frame of the stimulus; this ‘photocell’ was invisible to the patients. Patients performed either a 408 

passive fixation task (patient 1) or a variant of the same passive fixation with a distractor (patient 2, 409 

patient 3) (in which the patients were asked to press a button with their right hand whenever a 410 

distractor (red or green cross) appeared at the fixation point, randomly in approximately 2% of the 411 

trials). 412 

 413 
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Stimuli:  414 

We first screened for visual responsiveness in the MUA using images of objects and line drawings of 415 

objects (LOC classic stimulus set) presented at the center of the screen and at several positions in 416 

both hemifields. For each channel, we quantified the strength of the response at the different stimulus 417 

positions. This allowed us to determine the optimal position in the visual field per channel. To account 418 

for the variability in the receptive fields of individual channels, we presented the stimuli at the fixation 419 

point. The fixation point included the average receptive field of the MUA for each array. Therefore, 420 

stimulus position was not optimized for each individual channel. This approach allowed us to capture a 421 

broader representation of the neural activity across the array.  422 

LOC localizer – Classic: This stimulus set consisted of intact and scrambled grayscale images of 423 

objects and line drawings of objects 4,25 (Fig. 1). After a fixation period of 300 ms, each stimulus was 424 

presented for 800 ms, 500 ms, and 250 ms for arrays 1, 2, and 3 & 4 respectively, followed by an 425 

interstimulus interval of 100 ms for arrays 1 and 2 and 150 ms for arrays 3 and 4. 426 

LOC localizer – Naturalistic: This stimulus set consisted of intact and scrambled colored and 427 

grayscale naturalistic images (Fig. 1), which were presented for 500 ms followed by an interstimulus 428 

interval of 100 ms. 429 

Shape - category stimuli:  A stimulus set of 54 images in which shape and category were 430 

dissociated. 24 This stimulus set contained 6 object categories (minerals, animals, fruit/vegetables, 431 

musical instruments, sport articles and tools) where each category included 9 grayscale images with 432 

unique shape properties (shape type). Therefore, the category and shape dimensions were orthogonal 433 

since every category contained one stimulus from each of the nine shapes and every shape contained 434 

one stimulus from each of the six categories. After a fixation period of 300 ms, individual stimuli were 435 

presented for 800 ms (array 1) or 500 ms (arrays 2, 3, 4), followed by an interstimulus interval of 100 436 

ms. 437 

 438 

Data preprocessing  439 

We analyzed all data using custom-written MATLAB R2020b (MathWorks, Natick, MA, USA) scripts 440 

and the EEGLAB toolbox. 37 441 

MUA:  We calculated net average MUA responses (in 50 ms bins) by subtracting the baseline activity 442 

(-300 to 0 ms before stimulus onset) from the epoch (50-350 ms after stimulus onset) in each trial ����.  443 

 444 

LFP:  To remove line noise, data were filtered with a combined spectral and spatial filter 38 which can 445 

eliminate artifacts while minimizing the deleterious effects on non-artifact components. A zero – phase 446 

Finite Impulse Response (FIR) bandpass filter between 2 Hz and 300 Hz was then applied to the data. 447 

Trials of which the broadband activity deviated more than twice the standard deviation were discarded. 448 

The LFP power was analyzed in the high – gamma band (60 – 120 Hz). For every trial, the time – 449 

frequency power spectrum was calculated using Morlet’s wavelet analysis 39,40 with a resolution of 7 450 
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cycles. The first and last 100 ms of each trial were discarded to remove any filter artifacts. Power was 451 

normalized per trial by dividing the power per frequency by the power for this frequency averaged over 452 

time in the 300 ms baseline interval before stimulus onset. 453 

 454 

Visually responsive sites: 455 

We acquired at least 10 correct trials per stimulus (ranging from 10 to 19 trials). To detect visually 456 

responsive MUA channels in the shape-category test, we compared the average activity across time 457 

during the baseline period (– 300 to 0 ms before stimulus onset) with the average activity in a 200 ms 458 

interval after stimulus onset using a 1-way ANOVA. Because the response latency differed markedly 459 

between the four arrays, we chose different time intervals post stimulus onset for each array: array 1: 460 

25 – 225 ms, array 2: 75 – 275 ms, array 3: 125 – 325 ms, array 4: 125 – 325 ms. Channels with a 461 

significant increase in activity (p – value lower than 0.05 divided by the number of channels to correct 462 

for multiple comparisons) were considered visually responsive. For the high – gamma responses, due 463 

to lower Signal to Noise Ratio, we performed the 1 – way Anova between the baseline and the post – 464 

stimulus interval only for the two most preferred conditions per channel. We determined the preferred 465 

condition for each channel, by averaging the post – stimulus per condition, sorting them in a 466 

descending order, and selecting the first two conditions with the strongest responses..  467 

MUA normalization for LOC localizer:  468 

For comparison with Decramer et al., 25 the MUA responses to the LOC localizer stimuli were 469 

normalized according to their peak values. More specifically we first averaged the net responses 470 

across “intact” stimulus trials and found the peak value per channel. Then, the responses per channel 471 

for both “intact” and “scrambled” stimuli were divided by the corresponding peak value. 472 

 473 

Z – score normalization for shape – category stimuli:  474 

To visualize the MUA and high-gamma responses, we employed z-score normalization by averaging 475 

the MUA activity across the post-stimulus interval and across trials, i.e., for each channel and for each 476 

stimulus separately. Subsequently, we performed a per-channel normalization of these averaged 477 

responses such that the mean and standard deviation across the 54 different stimuli was 0 and 1, 478 

respectively. The MUA and high-gamma normalized responses were plotted (color – coded according 479 

to the z - score) following first the order of the mean responses for the shapes and then for the 480 

categories (orange square). 481 

 482 

Statistics:  483 

To assess the MUA and high – gamma selectivity for intact vs scrambled images in the LOC localizer 484 

stimuli for each array, we calculated one-way ANOVAs on the normalized MUA responses across all 485 

visually-responsive channels of each array. For the shape – category test, a 2 – way ANOVA with 486 

factors category and shape was performed per channel. For all factors that reached significance, we 487 

used Tukey’s test with 95 % confidence interval to correct for multiple comparisons. To evaluate the 488 

size of the effects we calculated the eta2. 489 

 490 
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Selectivity – index:  491 

We calculated the selectivity index to evaluate how strongly each channel responds to a preferred 492 

stimulus compared to non – preferred stimuli. This measure provides a quantitative measure of the 493 

degree to which a channel is tuned to a specific stimulus.  It is defined as: �� � ∑ ��/ 	
�� �� � 1�⁄ , 494 

where � is the number of individual stimuli (54), �� is the mean net response of one channel to stimulus 495 

� , and 	
� is the largest mean net response. 28,41 496 

 497 

Behavioral and physical similarity:  498 

We used the similarity judgements for the shape and category dimensions rated by a group of 499 

participants in Bracci et al. 24 to construct shape and semantic category models by means of 500 

behavioral shape and category dissimilarity matrices. Additionally, similar to Bracci et al., 24 and Op de 501 

Beeck et al. 42 pixelwise similarities among images were computed in order to construct the physical 502 

dissimilarity matrix and evaluate the image low – level shape properties / image silhouette. 503 

 504 

Correlation multivariate analysis:  505 

A correlation multivariate analysis was used to analyze whether the multichannel activity pattern per 506 

array was category-based or shape-based. 24,43 For each visually responsive channel and each 507 

stimulus, the averaged net activity (��, at the MUA level) and the normalized gamma power (at the LFP 508 

level) across time after stimulus onset were extracted. The full dataset was then randomly divided into 509 

two random and non-overlapping subsets of trials; A and B, which was repeated in 100 iterations to 510 

get a measure of variability. For each iteration, the multichannel activity pattern associated with each 511 

stimulus in set A was correlated with all the multichannel activity patterns of each stimulus in the set B. 512 

Then, the resulting correlation coefficients for each stimulus-pair were averaged across iterations, in 513 

order to extract a 54 x 54 correlation matrix for each microarray. Finally, the resulting neural matrices 514 

were converted into dissimilarity matrices (1 – correlation) and were correlated with the behavioral 515 

dissimilarity matrices for the shape and category dimensions (Pearson r). As described in Op de 516 

Beeck et al., 42 permutation statistics were used to determine the significance of the entry-wise 517 

correlations between vectorized dissimilarity matrices across the corresponding entries of both 518 

vectors. Thus, we used a permutation test (n = 1000) to calculate the Spearman’s correlation 519 

coefficient between the neural dissimilarity matrices and the behavioral dissimilarity matrices for shape 520 

and semantic category (Representational Similarity Analysis – RSA). 26 For comparison, we also 521 

correlated the neural dissimilarity matrices with the physical dissimilarity matrices.  522 

 523 

Multidimensional Scaling (MDS):  524 

MDS was used to visualize the neural similarity structure per array by reducing the multi-channel 525 

activity patterns corresponding to each stimulus into a lower – dimensional space, while preserving 526 

similarities or distances between them. We used the Matlab function “mdscale” which performs 527 

nonmetric multidimensional scaling by transforming monotonically all the dissimilarities in the matrix 528 

and approximating corresponding Euclidean distances between the output points. We evaluated the 529 

goodness of fit for 1 until 10 dimensions by measuring the difference between the observed 530 
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dissimilarity matrix and the estimated one (stress value). We used the 2 – dimensional solution (even 531 

with poor goodness – of – fit) to visualize the level of similarity of individual stimuli.   532 

 533 

Agglomerative hierarchical cluster analysis:  534 

We used agglomerative cluster analysis on the neural dissimilarity matrices, to identify whether the 535 

neural responses to different shapes and/ or categories in each array cluster together in meaningful 536 

ways. This involved treating each observation as a separate cluster and iteratively merging clusters 537 

based on their similarity until the stopping criterion was met (maximum 10 clusters were allowed). The 538 

analysis was performed using the MATLAB function “linkage”, with the nearest distance default 539 

method. 540 

  541 

Linear decoding:  542 

To further investigate the multichannel responses we applied a linear Support Vector Machine (SVM) 543 

to classify sample vectors of which the entries consist of the per-channel net activity (at the MUA level) 544 

or the gamma power (at the LFP level) averaged over a time window of 100 ms. We focused on 545 

visually responsive channels (net multiunit activity (MUA) and normalized high gamma). To explore the 546 

dynamics of decoding accuracy, we applied a sliding window approach with a 100ms duration, shifting 547 

it in 50ms steps across the trial duration. Before training and testing the decoder, we performed z-548 

score normalization on the data. The multiclass decoder was trained separately for each time – 549 

window, to find the hyperplane that separates the data from either the 9 individual shapes, or the 6 550 

individual semantic categories. To prevent data leakage across trials, a cross-validation scheme was 551 

employed, dividing the dataset into 10 folds.44 The training and testing phases were strictly 552 

independent, ensuring that the model's performance was evaluated on unseen data. Class labels of 553 

testing trials were excluded during training to ensure unbiased prediction. To assess the significance 554 

of the decoding accuracy, a paired t-test was performed, comparing the observed accuracy against 555 

the null hypothesis of random chance. We considered a decoding accuracy as significant if it 556 

exceeded the threshold of p < 0.05. To evaluate whether the SVM decoder generalized over time, we 557 

first allocate entire trials to the train and test set, we trained a decoder for each window shift  and then 558 

tested on the activity across all other time windows for the duration of the whole trial.  559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 
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 568 

 569 

 570 
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Data availability 572 

The datasets generated during and/or analysed during the current study are available from the 573 

corresponding author on reasonable request. 574 
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 595 

 596 

 597 

 598 

 599 

Figure legends 600 

Figure 1: Methods. A) Microarray recording locations plotted on a common brain, with a different 601 

number for each array. Lineplots of average normalized multi - unit activity of all visually responsive 602 

channels per array for intact (purple) and scrambled (orange) objects for the LOC – Naturalistic 603 

images (left plots) and the LOC – classic images (right plots). The stars indicate the significant (p < 604 

0.05) difference between the intact and scrambled object responses. B) Experimental stimuli for the 605 

shape – category experiment. 24 The stimulus set consists of 6 object categories (rows) and 9 shape 606 

types (columns); 54 unique images in total. The pixelwise overlap is shown in the last row and last 607 

column and corresponds to the sum of all images from each shape type and each category type 608 

respectively. 609 

 610 

Figure 2: Example sites.  Example sites for MUA (A, B, C) and LFP high-gamma (D, E, F) 611 

responses. For each channel the height of the bar indicates the average net MUA across time 612 

(channel 1: 75 – 275 ms after stimulus onset, channel 2: 125 – 325 ms after stimulus onset) for each 613 

of the 54 stimuli, or the average normalized high – gamma activity (channel 1: 25 – 225 ms after 614 

stimulus onset, channel 2: 125 – 325 ms after stimulus onset). The different colors correspond to the 6 615 

different semantic categories and the different columns to the 9 individual shape types. The error bars 616 

indicate the standard error across trials. The line plots below the bar plots show the responses over 617 

time, averaged across each shape type (left) and each category (right). The width of the line indicates 618 

the standard error across trials. 619 

  620 

Figure 3: Overview of responses for all visually responsive sites. A) Net z-scored MUA 621 

responses averaged over time (after stimulus onset) and ordered per array for all visually responsive 622 

sites. The numbers indicate the shape group and the letters the semantic category. The channels 623 

were ordered according to their selectivity which is indicated by the brackets (blue: significant shape 624 

main effect, orange: significant category main effect, green: significant interaction between shape and 625 

category). B) Same plots as in A, but for the normalized high – gamma power. C) Summary of the 626 

results of the 2 – way ANOVA (upper plots MUA, lower plots LFP; blue: array 1, green: array 2; yellow: 627 

array 3; purple: array 4) The first column shows the percentage of visually responsive channels. The 628 

second, third, and fourth columns show the percentage of the visually responsive channels that have a 629 

significant effect of shape type, of category, and interactions respectively. 630 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.554796doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.554796
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Overview of average responses. A) Average MUA (upper panel) and high - gamma (lower 631 

panel) both across visually responsive channels and within the category (orange bars) and shape 632 

(blue bars) dimensions. The height of each bar represents the mean response, while the error bar 633 

indicates the standard error across channels. Brackets indicate significant differences between shape 634 

members or semantic categories. B) Spearman correlation between the MUA and the high – gamma 635 

average (across visually responsive channels) responses.  636 

 637 

Figure 5: Dissimilarity analysis for MUA. A) Neural dissimilarity matrices for all arrays based on the 638 

MUA responses. B) Dissimilarity matrices for the shape and category dimensions as rated 639 

behaviorally and for the silhouette as calculated from the pixel – wise overlap between stimuli. C) 640 

Results of RSA for category – similarity (orange), shape – similarity (blue), and silhouette – similarity 641 

(grey). The asterisks indicate the significance of the correlation.  642 

 643 

Figure 6: Multidimensional scaling for the MUA neural dissimilarity matrices. MDS performed on 644 

MUA neural dissimilarity matrices shows pairwise distances in a 2D space for each array. The 2D 645 

arrangements are color – coded first according to the 9 different shape – types (upper panel), and 646 

then according to the 6 different semantic categories (lower panel).  647 

 648 

Figure 7: Linear decoding of the MUA responses. A) Temporal evolution of the SVM normalized 649 

decoding accuracy for the shape (blue) and the category (orange) dimension at the MUA level. The 650 

shaded region around the line represents the standard error across the cross validations. The 651 

asterisks indicate the significance of the accuracy. B) Confusion matrices are illustrating the 652 

performance of the decoding per class for the shape (upper panel) and the category (lower panel) 653 

dimension for a specific time – window (arrays 1,2: 75 -275 ms, array 3: 175 – 275 ms, array 4: 125 – 654 

225 ms) at the MUA level. The classification performance of array 3 for the category dimension is 655 

predominantly restricted to the "animals" category. C) Generalization of the decoders over time for the 656 

shape (upper panel) and the category (lower panel) dimension. The y – axis corresponds to the TRAIN 657 

time window, the x – axis to the TEST time – window and the colors to the accuracy level of the 658 

decoding. 659 

 660 

Tables: 661 

Table 1:  662 

 663 

ARRAYS X Y Z 

1 42 -76 -1 

2 -35 -89 -8 

3 -41 -83 9 
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4 -38 -84 -5 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

Table 2:  673 

 674 

ARRAYS Category Shape Silhouette 

1 Rho = 0.02, p = 0.27 Rho = 0.1, p = 0.00 Rho = 0.15, p = 0.00 

2 Rho = 0.02, p = 0.27 Rho = 0.11, p = 0.00 Rho = 0.10, p = 0.00 

3 Rho = 0.002, p = 

0.45 

Rho = 0.2, p = 0.00 Rho = 0.18, p = 0.00 

4 Rho = 0.03, p = 0.16 Rho = 0.18, p = 0.00 Rho = 0.17, p = 0.00 

 675 

Table 1: MNI coordinates of Utah arrays 676 

 677 

Table 2: Results of Representational Similarity Analysis (RSA) conducted on the MUA neural 678 

dissimilarity matrices. The following key measures are reported: Rho (Pearson Correlation): Rho 679 

represents the Pearson correlation coefficient, quantifying the similarity between the neural 680 

dissimilarity matrices and the behavioral dissimilarity matrices ; p: The p-value associated with the 681 

correlation coefficient, indicating the level of statistical significance.  682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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