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33 ABSTRACT

34  Object recognition and categorization are essential cognitive processes which
35 engage considerable neural resources in the human ventral visual stream. However,
36 the tuning properties of human ventral stream neurons for object shape and category
37 are virtually unknown. We performed the first large-scale recordings of spiking activity
38 in human Lateral Occipital Complex in response to stimuli in which the shape
39 dimension was dissociated from the category dimension. Consistent with studies in
40 nonhuman primates, the neuronal representations were primarily shape-based,
41 although we also observed category-like encoding for images of animals.
42  Surprisingly, linear decoders could reliably classify stimulus category even in data
43  sets that were entirely shape-based. In addition, many tuning curves showed an
44  interaction between shape and category tuning. These results represent the first
45 detailed study on shape and category coding at the neuronal level in the human
46  ventral visual stream, furnishing essential evidence that reconciles human imaging

47  and macaque single-cell studies.
48
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63
64 INTRODUCTION

65 Object recognition and categorization are fundamental cognitive processes, essential for

66  understanding and interpreting the visual world. The lateral and ventral occipitotemporal cortices

12

67 (OTC) are key regions involved in these processes. Nevertheless, the precise functional

68  organization, neuronal tuning properties and hierarchical structure of this large cortical region remain

69 unclear.

70 Functional magnetic resonance (fMRI) studies in humans have shown that the Lateral

3,4

71  Occipital Complex (LOC) is particularly sensitive to shape features, and bears remarkable

72 similarities with the macaque inferior temporal cortex. >~

Along the hierarchy organization of the
73 human ventral visual stream, functional activations emerge suggesting the existence of more
74  categorical object representations for diverse stimuli, including faces®, bodies °, scenes *°, hands ™,

75  letter strings %, and food items.****

76 However, the current body of evidence is insufficient to draw definitive conclusions regarding
77  category selectivity at the neuronal level in the human OTC. First, prior research has tested a relatively
78  small number of categories. Additionally, the limited spatiotemporal resolution of fMRI does not allow
79 to make strong inferences about the underlying neuronal selectivities without a number of

80  assumptions.

Thus, to gain a deeper understanding of the neural mechanisms underlying object
81  processing, single-cell recordings in macaques have been crucial, a model that has been validated by

82  evidence of a common organization of object space in humans and monkeys.®

83 In macaques, neurons in prefrontal and posterior parietal cortex exhibit distinct categorical

84  representations, indicating their crucial involvement in higher-level visual processing. Conversely, the

85 inferior temporal cortex (ITC) shows only weak or absent category effects ****

22,23 4

(except in face or body

86 patches ). However, in humans, an fMRI study 2 manipulated shape type and category
87 independently, and reported both shape and category sensitivity in lateral and ventral occipitotemporal
88  cortex, with a gradual progression from more shape-based representations posteriorly to more
89  category-based representations in more anterior brain regions. Yet again, in the absence of data on
90 the actual neuronal tuning properties of human visual neurons it is difficult to relate these fMRI findings
91 on human lateral occipitotemporal cortex to the existing electrophysiological evidence in the macaque

92 ventral visual stream.

93 To bridge this looming gap between human fMRI and macaque electrophysiology, we
94  recorded multi-unit activity (MUA) and high-gamma responses in the human LOC using intracortical
95 microelectrode arrays during the presentation of shapes belonging to different categories, in which the
96 shape dimension was dissociated from the category dimension as in Bracci et al. * We employed a
97 diverse set of analysis techniques to investigate shape and category representations both at the
98 individual channel level and at the population level. We found mainly shape-based representations
99  with a large number of shape-category interactions in individual recording channels. At the population
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100 level, the neuronal dissimilarities did not correlate with behavioral category judgments, but linear
101  decoders could correctly classify category information in every array tested. These results represent
102  the first detailed study of shape — and category coding at the level of spiking activity in human visual

103 cortex.

104 RESULTS

105 Figure 1A shows the reconstructed anatomical locations of the arrays (Montreal Neurological Institute
106  (MNI) coordinates in Table 1) and the average normalized net responses of all visually-responsive
107  channels to the intact versus scrambled stimuli (classic LOC stimuli and naturalistic LOC images). The
108  significantly stronger responses to intact images of objects compared to scrambled ones demonstrate

109 that all arrays were located in shape-sensitive cortex, in agreement with Decramer et al. *°

However, it
110  should be noted that there is diversity in our findings across the four arrays. While the stronger
111 responses to intact images compared to scrambled ones are observed in most arrays, for array 3, this
112  statement only holds true for the classic localizer, and in array 1, the selectivity is minor. One possible
113  reason for this variability is that the localizer stimuli were not optimal for each array. The stimuli
114  presented during the localizer task may not have fully captured the preferred shapes or specific
115 categories for each array. Had the arrays been presented with optimal intact and scrambled stimuli
116  tailored to their specific preferences, the differences in selectivity among the arrays may have been
117 more pronounced.

118

119 Single — channel responses reveal tuning complexity

120 We recorded from 237 visually responsive MUA sites (array 1: 51, array 2: 94, array 3: 27,
121 array 4: 65) and 332 visually responsive LFP sites (high — gamma, 60 — 120 Hz; array 1: 85, array 2:
122 96, array 3: 86, array 4. 65). First, we determined the selectivity for shape, for category and any
123 shape-category interactions (Fig 1B) using 2 — way ANOVA on the net MUA and LFP responses (see
124 Methods). Figure 2 shows the MUA (Fig 2A, B and C) and LFP (Fig 2D, E, and F) responses for six
125 (three MUA sites and three LFP sites) example channels. The first example channel (recorded in array
126 2, Figure 2A) responded strongly to several shape types (e.g. shape type 5,6 and 8), but much less to
127  other shape types (e.g. shape type 7 and 9, main effect of shape pshape = 0.0001). The different
128 categories within each shape type evoked similar responses in this MUA site (Pcategory = 0.52, Pinteraction=
129  0.65, Supplementary table 1 for details on statistics). The robust shape selectivity and lack of category
130  selectivity were also evident in the average responses of the LFP example site (recorded in array 2)
131  (Figure 2D). In contrast, the example site in Figure 2B (recorded in array 3) responded strongly to
132 certain exemplars of the category ‘animals’ (those from shape types 5 and 6), which represents a
133  significant shape x category interaction (p = 0.0007) with a weak main effect of category (p = 0.026)
134  and no significant main effect of shape (p = 0.06, Supplementary table 1). The shape x category
135 interaction effect was even more pronounced in the high — gamma example site than in the MUA
136  example site (eta’yua = 0.07, eta’rp = 0.19, Figure 2E and Supplementary Table 1). Finally, the
137  example site shown in Figure 2C (from array 2) displayed stronger neural responses to certain
138 members of a particular shape type (e.g. ‘Fruits’ for shape type 6), which constituted another type of

139 interaction between shape and category (p = 0.000), combined with a main effect of shape (p =
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140  0.00002), but no significant effect of category (p = 0.46, Supplementary table 1). These interactions
141 could be due to selectivity for the specific exemplar (e.g., the fruit for shape type 6 is a bunch of
142  grapes), to subtle differences between the members of the same shape or category in their shape and
143  category properties, or due to variations in other dimensions such as variations in contour or texture.
144  Overall, these results suggest that while shape selectivity is a dominant feature of the visual
145 responses in the sites of human occipitotemporal cortex that we sampled, interactions between shape

146  and category were also observed in a subset of neural sites.

147 To illustrate the shape and category responses of all visually-responsive channels, Figures 3A
148 and B show an overview of the z-scored responses (see Methods) per array at the MUA and LFP
149 level, respectively. We ordered the channels from top to bottom based on their selectivity as
150 determined in the 2-way ANOVA with factors shape type and category: channels indicated by the blue
151  bracket showed a main effect of shape type only, channels indicated by the yellow bracket showed a
152 main effect of category only, and channels with the green bracket showed a significant shape type x
153  category interaction (sometimes in combination with a main effect of shape type and/or category). The
154  channels below the green bracket were visually-responsive but did not show any significant effect in
155 the two-way ANOVA. The order of the columns (from left to right) was determined based on the
156  average response of all visually-responsive channels across each array separately. The plots ordered
157  according to shape type (left panels in Figure 3A and B) clearly illustrate that our stimulus set evoked
158 strong MUA and LFP responses on a large number of recording channels. Additionally, the stimulus
159 selectivity was relatively broad for all arrays (FigS1) (median Syign MUA: Sgrayr = 0.69, Saraye = 0.62,
160 Sarrays = 0.86, Saraya = 0.7, median Syigin LFP: Saray1 = 0.5, Saray2 = 0.52, Sarays = 0.69, Saraya = 0.52).

161 Visual inspection does not suggest a clear preference for specific shape types in any of the
162  arrays. When plotting the responses according to category (right panels in Figure 3A and B), the
163 results were qualitatively similar, except for the category ‘animals’ in array 3, which clearly evoked
164  strong responses to a subset of shape types belonging to this category, as illustrated in the example
165 channels in Figure 2B and 2D. To investigate the overall shape type or category preference for each
166  array more quantitatively, we averaged the MUA and high — gamma responses across all visually-
167 responsive channels (Fig 4A). Arrays 1, 2 and 4 responded significantly less to shape types 7, 8 and 9
168 (which were characterized by a lower surface area and high aspect ratio), whereas for array 3, the
169 MUA response to the category ‘animals’ was significantly higher compared to the other categories
170  (Fig. 4A). The high-gamma responses ranked according to shape type (Figure 3B left panel) appeared
171 very similar to the MUA responses, which was supported by the significant correlations between MUA
172 and high-gamma responses for all arrays (Fig. 4B). When plotted according to category, the high
173 gamma responses of array 3 contained an even more pronounced preference for the category
174 ‘animals’ than the MUA responses (Fig. 3B and eta’ values in Fig S2B).

175 Further analysis of all individual visually-responsive electrodes (using two-way ANOVA with
176  factors shape type and category) confirmed the high diversity of neural tuning for shape type and
177  category. At the MUA level, the highest number of channels showed a significant interaction between
178 shape type and category for all arrays (Fig 3C). More specifically, out of the 237 visually responsive
179 MUA sites, 39 sites (16%) were significantly selective for the shape type dimension alone, merely 8
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180 sites (3%) showed a significant main effect of category alone, compared to 114 sites (48%) with
181  interactions between shape type and category (chi2 = 143, p < 0.0001). At the LFP level, we also
182  observed mainly shape type selectivity and shape-category interactions, although Array 1 and Array 2
183  showed more channels with a significant main effect of shape type (chi2 = 6.8, p < 0.0001). In two
184  arrays, the proportion of significant shape type x category interactions was significantly higher in the
185 MUA (27 and 63% for array 1 and 2, respectively) compared to the LFP responses (12 and 22% for
186 array 1 and 2, respectively; array 3 had a similar proportion of interactions in MUA and LFP, and for
187  array 4 the LFP signal was of low quality).

188 To test the effect sizes for shape type and category, we compared the eta’ of all sites with
189  significant effects (Fig. S2). Overall, the eta2 values for shape type were higher than for category in
190 array 1, 2 and 4, and this difference in eta’ was more pronounced for sites displaying a main effect of
191 shape. Interestingly, in arrays 1, 2, and 4, even for channels with only a significant interaction or with
192 both significant shape and category main effects, eta’® was significantly stronger for shape type
193  compared to category. However, this was not the case for the shape type x category interaction
194  channels of array 3, where both shape and category effect sizes were similarly strong.

195

196 Dissimilarity analysis suggests that shape type is the dominant representation in all arrays

197 The average response across individual channels can exhibit weak category selectivity, but
198 the categorical structure of the stimulus set may also appear in the pattern of activity distributed across

199  the entire neuron population. %

Therefore, we investigated how information about shape type and
200 category was represented in the multichannel activity patterns. Per pair of stimuli, we correlated the
201  spatial multi-channel response pattern for each microarray (see Methods). The resulting dissimilarity
202 matrices (1 — correlation, Figure 5A) were correlated with behavioral dissimilarity matrices for the
203  shape type and category dimensions as well as with the physical dissimilarity matrix based on the
204  silhouettes (Figure 5B) by means of Representational Similarity Analysis (RSA). *® For all microarrays,
205 the multi-channel analysis revealed significant shape-based and silhouette representations in the MUA
206  responses, but no significant correlation with the category matrix (Figure 5C and Table 2). At the LFP
207 level, we observed similar results for array 3 and 4 (Figure S3), but array 1 only correlated significantly
208  with the silhouette dissimilarity matrix and array 2 only with the shape dissimilarity matrix (Table S2
209  and Fig S3). Thus, the multichannel response pattern of all 4 arrays in LOC was predominantly shape-
210 type. Moreover, the neural (MUA) dissimilarity matrices correlated significantly with both the
211  perceptual and the physical dissimilarities. Interestingly, these population-level analyses suggest no
212 contribution of category similarity, while the aforementioned single-channel analyses revealed many
213  sites with an interaction between shape and category tuning.

214 Next, we visualized the representation of the stimuli in the neural spaces of each array using
215 MDS on the dissimilarity values. The 2D solutions of the MDS are shown in Figure 6. To evaluate the
216  presence of clustering in each dimension, the stimuli were color coded according to shape type (top
217 row of Figure 6) and semantic category (bottom row of Figure 6). As an additional step to verify the
218 existence of shape and/or category clusters within each array, we applied agglomerative hierarchical

219  cluster analysis (Fig.S5). Shape clustering was evident with both methods in arrays 1, 2, and 4, with
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220  aspect ratio as an important factor mainly in array 1 and 2, while the MDS solution color-coded based
221  on category did not exhibit a clear clustering. Array 3, on the other hand, did not exhibit strong
222  clustering for the shape dimension, but when color-coded according to category, three exemplars of
223  the category "animals" (rabbit, owl, and fish) were clearly separated from the other stimuli (see Fig S4
224  for the LFP results, where a similar observation is made). The hierarchical cluster analysis
225  corroborated this observation, since a subset of animal exemplars clustered together in the neural
226  space of Array 3. Overall, these findings are consistent with the shape-based representations we
227  found in the multivariate correlation analysis, but they also suggest the presence of some additional
228  category information in array 3.

229

230 Linear decoders detect reliably both category and shape information

231 The MDS analysis offers a representation of the stimuli in a limited number of dimensions in
232 the neural space of the recorded population, but a decoder can utilize all the multidimensional
233 information in a population. Moreover, decoding can be performed over time, which can also give
234  insight into the temporal dynamics of the neural responses. Therefore, we trained linear Support
235 Vector Machines on the neural responses per array in 100 ms bins (sliding window of 50 ms), and
236  tested on each time bin of individual trials whether we could correctly classify either the shape type or
237  the category. Figure 7A illustrates the temporal evolution of the normalized decoding accuracy at the
238 MUA level (as described in the Methods section) for the two decoders (shape type and category). The
239 decoding accuracy was normalized by subtracting the chance level accuracy, where the chance level
240  represents the expected accuracy by random chance. In all 4 arrays, we could reliably decode shape
241  type starting as early as 75 ms after stimulus onset for array 1, compared to 100 ms for array 2, and
242 200 ms after stimulus onset for arrays 3 and 4 (Fig 7A). Furthermore, and in line with the previous
243  analyses, array 3 also showed significant classification of category information, which was
244  predominantly restricted to the "animals" category (see confusion matrix in Fig 7B). Remarkably
245 however, despite the presence of primarily shape type representations on the other arrays, we also
246  obtained significant classification of category on arrays 1, 2 and 4, which emerged almost
247  simultaneously with the shape type classification. Thus, although neither individual channels nor the
248 multichannel response pattern appeared to furnish any category information, a population of shape-
249  selective neurons in human visual cortex contained reliable information about object category (Fig S6
250  for LFP decoding).

251 To further investigate the predominant association of category information with the "animals"
252  category, we conducted additional analyses by removing the "animals" category and performing the
253  decoding again (Fig. S7). The decoding accuracy for arrays 1 and 2 at both the MUA and LFP levels
254 remained unaffected. However, a noticeable decline in both accuracy and significance was observed
255  for array 3 at both the MUA and LFP level. These findings were consistent with the observations from
256  the confusion matrices (Fig. 7B, S6B), emphasizing that the category information was predominantly
257 restricted to the "animals" category for array 3.

258 Lastly, we assessed the generalization of the decoders over time (Figure 7C). The shape and
259  category decoders were trained using 100 ms time windows, and then tested on every 100 ms window
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260 that followed or preceded the training bin. Each window was then shifted by 50 ms. The decoding
261  accuracy of array 2 generalized over the entire stimulus duration for both shape type and category,
262  suggesting a very stationary population representation emerging early after stimulus onset, while
263 arrays 1, 3 and 4 exhibited a more transient generalization of the classifier. At the high-gamma
264  frequency range (as depicted in Fig. S6), we observed, on average, highly similar decoding

265  performance, albeit with lower levels of accuracy.

266

267

268 DISCUSSION

269

270 We recorded selective MUA and LFP responses to images of objects on four microelectrode

271  arrays in the human Lateral Occipital Complex. Both single-channel and multi-channel analyses
272 revealed robust encoding of shape type and a very weak representation of category, consistent with
273 previous electrophysiology studies in nonhuman primates. However, from each neuronal population,
274  we could reliably classify semantic category using linear decoders, suggesting population-based
275  category representations in LOC. Furthermore, single-channel analyses revealed that many channels
276  showed interactions between the shape and category dimension, demonstrating the added value of
277 single-channel information to reveal the tuning complexity underlying object processing in the human
278  ventral visual stream.

279 While a large number of studies have been published on shape-sensitive cortex in humans
280  using fMRI, electrophysiological data on the shape selectivity of human visual neurons remain scarce.

281  Decramer et al. ®

showed for the first time single-unit and LFP selectivity for images of objects and
282 line drawings of objects (the LOC classic localizer) in lateral occipitotemporal cortex, including
283 receptive field estimates (on average 22 deg diameter centered on the fovea) and selectivity for
284  disparity-defined curved surfaces. A subsequent study 2’ reported robust face-selective responses at
285 short latencies, which also occurred for feature-scrambled and face-like stimuli. In the same study, a
286  few channels also showed body selectivity in close proximity to the face-selective channels. Compared
287  to these two previous studies, we recorded from considerably larger populations of neurons across a
288 more extensive part of the LOC, with a stimulus set in which the dimensions of shape type and
289  category were orthogonalized. Our data confirm and clarify the abundant shape selectivity in this
290 region, since on average 62% of the channels were visually responsive, while 67% of those were
291  significantly stimulus-selective (for shape type and/or category). Note that the average 2D-shape
292 selectivity index we found (0.72) was comparable to the ones reported in macaque area TE (0.65). *
293  The high incidence of shape selectivity is remarkable given that the use of multielectrode arrays
294  precluded optimizing the stimulus to each recording site (e.g. position, size) and that each array only
295  sampled from a 4 by 4 mm area of cortex. On the other hand, chronic multielectrode recordings of
296 MUA (i.e. large and small action potentials) may furnish a more unbiased sampling of neuronal activity
297 in the recording area, which is crucial for relating our findings with invasive recordings to fMRI results.

298 We used the same stimulus set and analyses as in the event-related fMRI study of Bracci et
299  al., * who reported a transition from shape to category-based representations along the posterior to
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300 anterior direction in the ventral visual stream. While the early visual areas provide a purely shape-
301 based representation correlating with the physical similarities between the stimuli, and the higher-level
302 areas (in prefrontal and parietal cortex) provide a more category-based representation, several
303 intermediate regions in or near the LOC represented both shape- and category information. Here, we
304 not only could confirm the fMRI results, but also clarify the underlying neuronal selectivity of these
305 combined shape/category representations. We mainly observed significant interactions between
306 shape type and category on individual channels of every array. These interactions occurred in two
307  types. The first type of shape-category interactions were responses to a small number of exemplars of
308 a single category, as in array 3. However, on the other arrays we found channels in which the shape
309 type preference differed between the categories tested, most likely due to a selectivity for small shape
310 or texture differences between the members of a given shape type. These interactions remain
311  unnoticed in population-level analyses such as fMRI. Furthermore, the interactions were less prevalent
312  with LFPs than with MUAs, suggesting that measurements of smaller populations of neurons are
313 more likely to detect such interactions.

314 Array 3 demonstrated a clear preference for animal images compared to other objects.
315 Considering this observation and its more dorsal positioning, it is highly likely that Array 3 was located
316  within the region commonly referred to as LOTC - body in fMRI studies. The preference for animals on
317 array 3 was the only category-like (i.e. responding to certain exemplars of one category)
318 representation that was visible at the level of individual channels, whereas individual channels of all
319  other arrays at most showed interactions of the category dimension with shape type. Intriguingly, even
320  multi-channel analyses (dissimilarity analysis or hierarchical clustering) suggested that shape type was
321  the dominant factor in every array. The lack of an explicit category representation (in arrays 1, 2 and 4)
322 s entirely in line with a previous single-cell study in the macaque inferotemporal cortex.'*?

323 In contrast, a linear SVM analysis could reliably extract category information from the
324  population responses of every array. Conceptually, our decoding analysis was equivalent to Multivoxel
325 Pattern Analysis (MVPA), ***! with a limited number of responsive channels (spaced 400 micron
326  apart) being equivalent to the visually-active voxels in the fMRI. Thus, in the high-dimensional space of
327  our LOC arrays (with up to 94 responsive channels), we could extract category information even when
328 no individual channel appeared to code these categories. These results are again in line with previous
329 findings in macaque monkeys, showing that category information can be reliably (and to a similar level
330 as in prefrontal cortex) decoded from the activity of a population of ITC neurons despite the lack of
331  explicit category coding in individual neurons. *

332 Our findings provide evidence that both shape and category representations are present in the
333 human Lateral Occipital cortex, with the SVM approach revealing category-level information which was
334  not apparent using RSA, MDS, or hierarchical clustering for all arrays. Specifically, the RSA analysis
335 demonstrated that the neural representations in the Lateral Occipital cortex were primarily driven by
336  shape and low-level pixel-wise similarities, indicating that the neural responses were more sensitive to
337  the shape of the stimuli. This discrepancy between methods may be due to the fact that the SVM is
338 more sensitive to subtle differences in patterns of neural activity than these other techniques, allowing
339 it to decode information that is not detectable through measures of representational similarity. These
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340  observations match well with the findings from the single-channel analyses, since many channels were
341  tuned to both shape and category in an interactive manner. One such channel would not suffice to
342  decode category, but multiple channels with different interactions would, in the same way as
343 viewpoint-invariant recognition can be obtained by sampling multiple view-tuned neurons. * Likewise,
344  the SVM might use a combination of channels that show interactions between shape and category to
345 make a reliable distinction between categories. In contrast, RSA can reveal the structure of the neural
346  representations of stimuli, which can provide insight into how the brain processes and categorizes
347  different types of information. Note however that a single 4 by 4 mm array samples neural activity from
348  asmall cortical region (equivalent to 4 fMRI voxels in most fMRI studies), which may at best represent
349 a single category (such as ‘animals’ in array 3). In contrast, RSA is typically performed on a very large
350 number of voxels or on behavioral ratings, which encompass all categories in the stimulus set. The
351 limited spatial sampling area of an array may explain why we did not observe a significant correlation

352  with the category dissimilarity matrix in array 3.

353 Together, these findings highlight the complexity of neural mechanisms underlying object
354  processing and the importance of using multiple techniques to uncover these representations. While
355  the population as a whole showed strong shape tuning and only very limited category selectivity, we
356 found a large neuronal diversity and distinct interactions between shape and category at the single-
357  channel level in human LOC. The broader relevance of this diversity in tuning was demonstrated by

358 the ability of classifiers to decode not only shape but also category.

359

360 METHODS

361 Data were collected from three patients (patient 1, 24-y-old male ; patient 2, 54-y-old woman ; patient
362 3, 58-y-old woman) with intracranial depth electrodes as part of their presurgical evaluation for drug —
363 resistant focal epilepsy. Patient 2 was diagnosed with Neurofibromatosis type 1, without any
364 intracranial tumors. At the age of 34, she suffered from a left occipital intracranial hemorrhage due to
365  venous sinus thrombosis. Ethical approval was obtained for microelectrode recordings with the Utah
366  array in patients with epilepsy (study number s53126). Study protocol s53126 was approved by the
367 local ethical committee (Ethische Commissie Onderzoek UZ/KU Leuven) and was conducted in
368 compliance with the principles of the Declaration of Helsinki, the principles of good clinical practice,
369 and in accordance with all applicable regulatory requirements. All human data were encrypted and
370  stored at the University Hospitals Leuven.

371

372 Patients:

373 Three patients were implanted with microelectrode arrays (Utah array) for research purposes to study
374  the microscale dynamics of the epileptic network in the presurgical evaluation (“Microscale Dynamics
375 of Epileptic Networks: Insights from Multiunit Activity analysis in neurosurgical patients with refractory
376  epilepsy”, Bougou et al., EANS 2023, Barcelona). No additional incisions were made for the purpose
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377  of the study. Utah arrays were located in the occipital cortex adjacent to the clinical macroelectrodes,

378  analogous to previous studies using micro-electrode arrays. *>2"3+3¢

Target locations of intracranial
379  electrodes were determined by the epileptologist and based on electroclinical findings and non-

380 invasive multimodal imaging.

381 In all three patients the array was deemed outside the presumed epileptogenic zone (PEZ) after
382  analysis of the intracranial EEG.In patient 1, the array (array 1) was located below the lateral occipital
383  sulcus (LOS), whereas the array was above LOS in patient 2 (array 2). In patient 3, one array was
384  above (array 3) and the other below LOS (array 4) (MNI coordinates of the arrays are provided in
385 Table 1).

386

387 Microelectrode recordings

388 We used 96 — channel microelectrode arrays (4 x 4 mm; electrode spacing of 400 microns; Blackrock
389 Microsystems, UT) in all patients. The arrays were inserted with a pneumatic inserter wand (Blackrock
390 Neurotech). Dura was closed above the array and the bone flap was placed on top to keep the array in
391 place. Reference wires were placed subdural, ground wires epidural. The signal was digitally
392  amplified by a Cereplex M head stage (Blackrock Neurotech), and recorded with a 128 — channel
393 neural signal processor (NeuroPort system, Blackrock Neurotech, Salt Lake City, UT, USA). In each
394  recording session, multi — unit activity (MUA) from all 96 channels was sampled at 30 kHz, and high-
395 pass filtered above 750 Hz. The detection trigger of the MUA was set at the edge of the noise band.
396 The LFP signals were recorded continuously with a sampling frequency of 1000 Hz. All patients stayed
397  at the hospital for 14 days after implantation, but the data reported here was acquired in 1 recording

398 session per array.
399 Stimulus presentation:

400 Experiments were performed in a dimmed hospital room. We presented stimuli on a 60 Hz DELL-
401 P2418HZM LED monitor using custom-built software. The patients fixated a small red square (0.2 x
402  0.2°) appearing in the center of the display at a viewing distance of 60 cm (pixel size 0.026 deg). The
403 left or right pupil position was continuously monitored using a dedicated eye tracker (Eyelink 1000
404 Plus, 1000 Hz) in head free mode. Breaking fixation from an electronically defined 3° by 3° fixation
405 window resulted in trial abortion. The experiment was controlled using Presentation software
406  (Neurobehavioral Systems, Berkeley, CA, USA). For data synchronization, we attached a photodiode
407  to the left upper corner of the screen, detecting a white square that appeared simultaneously with the
408 first frame of the stimulus; this ‘photocell’ was invisible to the patients. Patients performed either a
409 passive fixation task (patient 1) or a variant of the same passive fixation with a distractor (patient 2,
410  patient 3) (in which the patients were asked to press a button with their right hand whenever a
411  distractor (red or green cross) appeared at the fixation point, randomly in approximately 2% of the
412 trials).

413
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414 Stimuli:

415  We first screened for visual responsiveness in the MUA using images of objects and line drawings of
416  objects (LOC classic stimulus set) presented at the center of the screen and at several positions in
417 both hemifields. For each channel, we quantified the strength of the response at the different stimulus
418 positions. This allowed us to determine the optimal position in the visual field per channel. To account
419  for the variability in the receptive fields of individual channels, we presented the stimuli at the fixation
420 point. The fixation point included the average receptive field of the MUA for each array. Therefore,
421  stimulus position was not optimized for each individual channel. This approach allowed us to capture a
422 broader representation of the neural activity across the array.

423 LOC localizer — Classic: This stimulus set consisted of intact and scrambled grayscale images of

424  objects and line drawings of objects *%

(Fig. 1). After a fixation period of 300 ms, each stimulus was
425 presented for 800 ms, 500 ms, and 250 ms for arrays 1, 2, and 3 & 4 respectively, followed by an

426  interstimulus interval of 100 ms for arrays 1 and 2 and 150 ms for arrays 3 and 4.

427 LOC localizer — Naturalistic: This stimulus set consisted of intact and scrambled colored and
428  grayscale naturalistic images (Fig. 1), which were presented for 500 ms followed by an interstimulus
429 interval of 100 ms.

430 Shape - category stimuli: A stimulus set of 54 images in which shape and category were
431  dissociated. ** This stimulus set contained 6 object categories (minerals, animals, fruitivegetables,
432 musical instruments, sport articles and tools) where each category included 9 grayscale images with
433 unique shape properties (shape type). Therefore, the category and shape dimensions were orthogonal
434  since every category contained one stimulus from each of the nine shapes and every shape contained
435  one stimulus from each of the six categories. After a fixation period of 300 ms, individual stimuli were
436 presented for 800 ms (array 1) or 500 ms (arrays 2, 3, 4), followed by an interstimulus interval of 100
437 ms.

438
439 Data preprocessing

440  We analyzed all data using custom-written MATLAB R2020b (MathWorks, Natick, MA, USA) scripts
441  and the EEGLAB toolbox. *’

442 MUA: We calculated net average MUA responses (in 50 ms bins) by subtracting the baseline activity
443 (-300 to 0 ms before stimulus onset) from the epoch (50-350 ms after stimulus onset) in each trial (r;).

444

445 LFP: To remove line noise, data were filtered with a combined spectral and spatial filter * which can
446  eliminate artifacts while minimizing the deleterious effects on non-artifact components. A zero — phase
447 Finite Impulse Response (FIR) bandpass filter between 2 Hz and 300 Hz was then applied to the data.
448  Trials of which the broadband activity deviated more than twice the standard deviation were discarded.
449  The LFP power was analyzed in the high — gamma band (60 — 120 Hz). For every trial, the time —

39,40

450  frequency power spectrum was calculated using Morlet's wavelet analysis with a resolution of 7
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451  cycles. The first and last 100 ms of each trial were discarded to remove any filter artifacts. Power was
452 normalized per trial by dividing the power per frequency by the power for this frequency averaged over
453  time in the 300 ms baseline interval before stimulus onset.

454

455  Visually responsive sites:

456  We acquired at least 10 correct trials per stimulus (ranging from 10 to 19 trials). To detect visually
457 responsive MUA channels in the shape-category test, we compared the average activity across time
458 during the baseline period (- 300 to 0 ms before stimulus onset) with the average activity in a 200 ms
459 interval after stimulus onset using a 1-way ANOVA. Because the response latency differed markedly
460  between the four arrays, we chose different time intervals post stimulus onset for each array: array 1:
461 25 - 225 ms, array 2: 75 — 275 ms, array 3: 125 — 325 ms, array 4: 125 — 325 ms. Channels with a
462  significant increase in activity (p — value lower than 0.05 divided by the number of channels to correct
463  for multiple comparisons) were considered visually responsive. For the high — gamma responses, due
464  to lower Signal to Noise Ratio, we performed the 1 — way Anova between the baseline and the post —
465  stimulus interval only for the two most preferred conditions per channel. We determined the preferred
466  condition for each channel, by averaging the post — stimulus per condition, sorting them in a

467  descending order, and selecting the first two conditions with the strongest responses..

468 MUA normalization for LOC localizer:

469 For comparison with Decramer et al., *° the MUA responses to the LOC localizer stimuli were
470 normalized according to their peak values. More specifically we first averaged the net responses
471  across “intact” stimulus trials and found the peak value per channel. Then, the responses per channel
472  for both “intact” and “scrambled” stimuli were divided by the corresponding peak value.

473

474  Z—score normalization for shape — category stimuli:

475  To visualize the MUA and high-gamma responses, we employed z-score normalization by averaging
476  the MUA activity across the post-stimulus interval and across trials, i.e., for each channel and for each
477  stimulus separately. Subsequently, we performed a per-channel normalization of these averaged
478 responses such that the mean and standard deviation across the 54 different stimuli was 0 and 1,
479 respectively. The MUA and high-gamma normalized responses were plotted (color — coded according
480 to the z - score) following first the order of the mean responses for the shapes and then for the
481  categories (orange square).

482

483 Statistics:

484 To assess the MUA and high — gamma selectivity for intact vs scrambled images in the LOC localizer
485  stimuli for each array, we calculated one-way ANOVAs on the normalized MUA responses across all
486  visually-responsive channels of each array. For the shape — category test, a 2 — way ANOVA with
487  factors category and shape was performed per channel. For all factors that reached significance, we
488  used Tukey's test with 95 % confidence interval to correct for multiple comparisons. To evaluate the
489  size of the effects we calculated the eta’.

490
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491  Selectivity —index:

492  We calculated the selectivity index to evaluate how strongly each channel responds to a preferred
493  stimulus compared to non — preferred stimuli. This measure provides a quantitative measure of the
494  degree to which a channel is tuned to a specific stimulus. It is defined as: (n — ), r;/ max)/(n —1),
495 where n is the number of individual stimuli (54), r; is the mean net response of one channel to stimulus
496 i, and max is the largest mean net response. **

497

498 Behavioral and physical similarity:

499  We used the similarity judgements for the shape and category dimensions rated by a group of
500 participants in Bracci et al. ** to construct shape and semantic category models by means of
501  behavioral shape and category dissimilarity matrices. Additionally, similar to Bracci et al., ** and Op de
502 Beeck et al. ** pixelwise similarities among images were computed in order to construct the physical
503  dissimilarity matrix and evaluate the image low — level shape properties / image silhouette.

504

505 Correlation multivariate analysis:

506 A correlation multivariate analysis was used to analyze whether the multichannel activity pattern per

507 array was category-based or shape-based. ***3

For each visually responsive channel and each
508  stimulus, the averaged net activity (r;, at the MUA level) and the normalized gamma power (at the LFP
509 level) across time after stimulus onset were extracted. The full dataset was then randomly divided into
510 two random and non-overlapping subsets of trials; A and B, which was repeated in 100 iterations to
511 get a measure of variability. For each iteration, the multichannel activity pattern associated with each
512 stimulus in set A was correlated with all the multichannel activity patterns of each stimulus in the set B.
513  Then, the resulting correlation coefficients for each stimulus-pair were averaged across iterations, in
514 order to extract a 54 x 54 correlation matrix for each microarray. Finally, the resulting neural matrices
515  were converted into dissimilarity matrices (1 — correlation) and were correlated with the behavioral
516 dissimilarity matrices for the shape and category dimensions (Pearson r). As described in Op de
517 Beeck et al., ** permutation statistics were used to determine the significance of the entry-wise
518 correlations between vectorized dissimilarity matrices across the corresponding entries of both
519  vectors. Thus, we used a permutation test (n = 1000) to calculate the Spearman’s correlation
520 coefficient between the neural dissimilarity matrices and the behavioral dissimilarity matrices for shape
521 and semantic category (Representational Similarity Analysis — RSA). *® For comparison, we also
522  correlated the neural dissimilarity matrices with the physical dissimilarity matrices.

523

524 Multidimensional Scaling (MDS):

525 MDS was used to visualize the neural similarity structure per array by reducing the multi-channel
526  activity patterns corresponding to each stimulus into a lower — dimensional space, while preserving
527  similarities or distances between them. We used the Matlab function “mdscale” which performs
528 nonmetric multidimensional scaling by transforming monotonically all the dissimilarities in the matrix
529  and approximating corresponding Euclidean distances between the output points. We evaluated the
530 goodness of fit for 1 until 10 dimensions by measuring the difference between the observed
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531  dissimilarity matrix and the estimated one (stress value). We used the 2 — dimensional solution (even
532 with poor goodness — of — fit) to visualize the level of similarity of individual stimuli.
533

534  Agglomerative hierarchical cluster analysis:

535 We used agglomerative cluster analysis on the neural dissimilarity matrices, to identify whether the
536  neural responses to different shapes and/ or categories in each array cluster together in meaningful
537 ways. This involved treating each observation as a separate cluster and iteratively merging clusters
538 based on their similarity until the stopping criterion was met (maximum 10 clusters were allowed). The
539  analysis was performed using the MATLAB function “linkage”, with the nearest distance default
540  method.

541

542 Linear decoding:

543  To further investigate the multichannel responses we applied a linear Support Vector Machine (SVM)
544  to classify sample vectors of which the entries consist of the per-channel net activity (at the MUA level)
545  or the gamma power (at the LFP level) averaged over a time window of 100 ms. We focused on
546  visually responsive channels (net multiunit activity (MUA) and normalized high gamma). To explore the
547  dynamics of decoding accuracy, we applied a sliding window approach with a 100ms duration, shifting
548 it in 50ms steps across the trial duration. Before training and testing the decoder, we performed z-
549  score normalization on the data. The multiclass decoder was trained separately for each time —
550 window, to find the hyperplane that separates the data from either the 9 individual shapes, or the 6
551 individual semantic categories. To prevent data leakage across trials, a cross-validation scheme was

552  employed, dividing the dataset into 10 folds.**

The training and testing phases were strictly
553 independent, ensuring that the model's performance was evaluated on unseen data. Class labels of
554  testing trials were excluded during training to ensure unbiased prediction. To assess the significance
555  of the decoding accuracy, a paired t-test was performed, comparing the observed accuracy against
556 the null hypothesis of random chance. We considered a decoding accuracy as significant if it
557  exceeded the threshold of p < 0.05. To evaluate whether the SVM decoder generalized over time, we
558 first allocate entire trials to the train and test set, we trained a decoder for each window shift and then

559 tested on the activity across all other time windows for the duration of the whole trial.

560
561

562

563

564

565

566
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595
596
597
598
599

600 Figure legends

601 Figure 1: Methods. A) Microarray recording locations plotted on a common brain, with a different
602 number for each array. Lineplots of average normalized multi - unit activity of all visually responsive
603  channels per array for intact (purple) and scrambled (orange) objects for the LOC — Naturalistic
604  images (left plots) and the LOC — classic images (right plots). The stars indicate the significant (p <
605  0.05) difference between the intact and scrambled object responses. B) Experimental stimuli for the
606  shape — category experiment. > The stimulus set consists of 6 object categories (rows) and 9 shape
607  types (columns); 54 unique images in total. The pixelwise overlap is shown in the last row and last
608 column and corresponds to the sum of all images from each shape type and each category type
609 respectively.

610

611 Figure 2: Example sites. Example sites for MUA (A, B, C) and LFP high-gamma (D, E, F)
612 responses. For each channel the height of the bar indicates the average net MUA across time
613 (channel 1: 75 — 275 ms after stimulus onset, channel 2: 125 — 325 ms after stimulus onset) for each
614  of the 54 stimuli, or the average normalized high — gamma activity (channel 1: 25 — 225 ms after
615  stimulus onset, channel 2: 125 — 325 ms after stimulus onset). The different colors correspond to the 6
616  different semantic categories and the different columns to the 9 individual shape types. The error bars
617 indicate the standard error across trials. The line plots below the bar plots show the responses over
618 time, averaged across each shape type (left) and each category (right). The width of the line indicates
619  the standard error across trials.

620

621 Figure 3: Overview of responses for all visually responsive sites. A) Net z-scored MUA
622 responses averaged over time (after stimulus onset) and ordered per array for all visually responsive
623  sites. The numbers indicate the shape group and the letters the semantic category. The channels
624 were ordered according to their selectivity which is indicated by the brackets (blue: significant shape
625 main effect, orange: significant category main effect, green: significant interaction between shape and
626  category). B) Same plots as in A, but for the normalized high — gamma power. C) Summary of the
627  results of the 2 — way ANOVA (upper plots MUA, lower plots LFP; blue: array 1, green: array 2; yellow:
628  array 3; purple: array 4) The first column shows the percentage of visually responsive channels. The
629  second, third, and fourth columns show the percentage of the visually responsive channels that have a

630  significant effect of shape type, of category, and interactions respectively.
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631 Figure 4: Overview of average responses. A) Average MUA (upper panel) and high - gamma (lower
632 panel) both across visually responsive channels and within the category (orange bars) and shape
633 (blue bars) dimensions. The height of each bar represents the mean response, while the error bar
634  indicates the standard error across channels. Brackets indicate significant differences between shape
635 members or semantic categories. B) Spearman correlation between the MUA and the high — gamma
636 average (across visually responsive channels) responses.

637

638 Figure 5: Dissimilarity analysis for MUA. A) Neural dissimilarity matrices for all arrays based on the
639 MUA responses. B) Dissimilarity matrices for the shape and category dimensions as rated
640  behaviorally and for the silhouette as calculated from the pixel — wise overlap between stimuli. C)
641 Results of RSA for category — similarity (orange), shape — similarity (blue), and silhouette — similarity
642 (grey). The asterisks indicate the significance of the correlation.

643

644 Figure 6: Multidimensional scaling for the MUA neural dissimilarity matrices. MDS performed on
645 MUA neural dissimilarity matrices shows pairwise distances in a 2D space for each array. The 2D
646  arrangements are color — coded first according to the 9 different shape — types (upper panel), and
647  then according to the 6 different semantic categories (lower panel).

648

649 Figure 7: Linear decoding of the MUA responses. A) Temporal evolution of the SVM normalized
650 decoding accuracy for the shape (blue) and the category (orange) dimension at the MUA level. The
651 shaded region around the line represents the standard error across the cross validations. The
652 asterisks indicate the significance of the accuracy. B) Confusion matrices are illustrating the
653 performance of the decoding per class for the shape (upper panel) and the category (lower panel)
654  dimension for a specific time — window (arrays 1,2: 75 -275 ms, array 3: 175 — 275 ms, array 4: 125 —
655 225 ms) at the MUA level. The classification performance of array 3 for the category dimension is
656 predominantly restricted to the "animals" category. C) Generalization of the decoders over time for the
657  shape (upper panel) and the category (lower panel) dimension. The y — axis corresponds to the TRAIN
658 time window, the x — axis to the TEST time — window and the colors to the accuracy level of the
659  decoding.

660
661 Tables:
662 Table 1:
663
ARRAYS X Y z
1 42 -76 -1
2 -35 -89 -8
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4 -38 -84 -5
664
665
666
667
668
669
670
671
672
673 Table 2:
674
ARRAYS Category Shape Silhouette
1 Rho =0.02, p=0.27 Rho =0.1, p=0.00 Rho = 0.15, p=0.00
2 Rho=0.02,p=0.27 Rho=0.11,p=0.00 Rho=0.10,p=0.00
3 Rho = 0.002, p = Rho =0.2, p=0.00 Rho = 0.18, p=0.00
0.45
4 Rho=0.03,p=0.16 Rho=0.18,p=0.00 Rho=0.17,p=0.00
675
676  Table 1: MNI coordinates of Utah arrays
677

678  Table 2: Results of Representational Similarity Analysis (RSA) conducted on the MUA neural
679 dissimilarity matrices. The following key measures are reported: Rho (Pearson Correlation): Rho
680  represents the Pearson correlation coefficient, quantifying the similarity between the neural

681  dissimilarity matrices and the behavioral dissimilarity matrices ; p: The p-value associated with the

682  correlation coefficient, indicating the level of statistical significance.

683
684

685
686
687
688

689
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