

1 **Beyond Lux: Methods for Species and Photoreceptor-Specific**

2 **Quantification of Ambient Light for Mammals**

3

4 Richard J McDowell ^{1*}, Altug Didikoglu ^{1,2*}, Tom Woelders ¹, Mazie J Gatt ¹, Roelof A Hut³

5 Timothy M Brown ⁴, Robert J Lucas ^{1#}

6

7 ¹ Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty
8 of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK

9 ² Department of Neuroscience, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir,
10 Turkey

11 ³ Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of
12 Groningen, PO BOX 11103, 9700CC Groningen, Netherlands

13 ⁴ Centre for Biological Timing, Division of Diabetes Endocrinology and Gastroenterology,
14 School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester,
15 Manchester M13 9PT, UK

16 * Equal contribution

17 # Corresponding author

18

19 **Abstract**

20 **Background**

21 Light is a key environmental regulator of physiology and behaviour. Mistimed or insufficient
22 light disrupts circadian rhythms and is associated with impaired health and well-being across
23 mammals. Appropriate lighting is therefore crucial for indoor housed mammals. The most

24 commonly used measurement for lighting is lux. However, this employs a spectral weighting
25 function based on human perceived brightness and is not suitable for 'non-visual' effects of
26 light or use across species. In humans, a photoreceptor-specific (α -opic) metrology system
27 has been proposed as a more appropriate way of measuring light.

28 **Results**

29 Here we establish technology to allow this α -opic measurement approach to be readily
30 extended to any mammalian species, accounting for differences in photoreceptor types,
31 photopigment spectral sensitivities, and eye anatomy. Since measuring photopigment
32 spectral sensitivity can be hard to derive for novel animals and photoreceptors, we developed
33 a high-throughput, easy-to-use, method to derive spectral sensitivities for recombinantly
34 expressed melanopsins and use it to establish the spectral sensitivity of melanopsin from 12
35 non-human mammals. We further address the need for simple measurement strategies for
36 species-specific α -opic measures by developing an accessible online toolbox for calculating
37 these units and validating an open hardware, low-cost, multichannel light sensor for 'point
38 and click' measurement. We finally demonstrate that species-specific α -opic measurements
39 are superior to photopic lux as predictors of physiological responses to light in mice and allow
40 ecologically relevant comparisons of photosensitivity between species.

41 **Conclusion**

42 Our study demonstrates that measuring light more accurately using species-specific α -opic
43 units is superior to the existing unit of photopic lux and holds the promise of improvements
44 to the health and welfare of animals, scientific research reproducibility, agricultural
45 productivity, and energy usage.

46

47

48 **Keywords:** α -opic, light, irradiance, illuminance, photoreceptor, opsin, mammal

49

50 **1. Background**

51

52 Light is a crucial environmental factor that allows vision and plays a fundamental role in
53 regulating physiological and behavioural processes(1). Light impacts animal biology by setting
54 the phase of circadian rhythms and via direct effects on numerous aspects of behavioural and
55 physiological state(2, 3). Understanding the effects of light on mammalian biology is therefore
56 an important topic of research in its own right(4-7), while ensuring appropriate lighting is an
57 important element of husbandry and a determinant of reproducible outcomes for common
58 experimental paradigms(8-12). The most accessible method of measuring ambient light is to
59 use a lux meter. These are widely obtainable and easy to use. Accordingly, light is commonly
60 quantified in lux in animal research and husbandry(13-15). However, that approach is prone
61 to error, as lux meters employ a light sensor and spectral filtering that match the spectral
62 sensitivity of human flicker photometry (an assay of perceived brightness under cone-
63 favouring conditions)(16). Given this narrow definition of spectral sensitivity, it is unsurprising
64 that lights differing in spectral composition can have quite different impacts on animal biology
65 even if matched for lux(17-19).

66

67 The challenge of achieving a wider quantification of ambient light than provided by a lux
68 meter was recently addressed with publication of a new SI-compliant measurement system
69 for light(20, 21). This new metrology aims to quantify light not in relation to its ability to elicit
70 any particular biological response (e.g. perceived brightness in humans) but rather in terms
71 of its effective intensity for each of the retinal photoreceptors responsible for detecting light.

72 In the case of humans, this allows quantification of 5 different 'α-opic irradiances' (rod-opic,
73 melanopic, S-cone-opic, M-cone-opic, and L-cone-opic), corresponding to the effective
74 irradiance for each of the 5 retinal photoreceptors in our own species(20). The definition of
75 α-opic irradiance lends itself to adaption to other species. α-opic irradiance is calculated by
76 weighting energy across the spectrum according to the wavelength sensitivity of the target
77 photoreceptor. It follows that 'α-opic irradiance' may be calculated for any photoreceptor of
78 known spectral sensitivity(20). Moreover, the α-opic standard encompasses an additional
79 concept, that of 'equivalent daylight illumination' (EDI), which aides cross-species
80 comparisons of light intensity. EDI is the quantity of daylight (in lux) required to produce the
81 corresponding α-opic irradiance(22). A worked example illustrates how this facilitates
82 ethologically relevant comparisons across species: say an experiment in mouse reveals
83 impacts on learning at melanopic irradiance $> 1 \text{ W/m}^2$. Expressing this in terms of melanopic
84 EDI ($>500 \text{ lux}$) introduces a relation to an environmental condition (an amount of daylight)
85 which could be experienced by any species. If another study shows that in, say, horses effects
86 on learning are observable only at $>1000 \text{ lux}$ melanopic EDI, then one could conclude that
87 mice are twice as sensitive as horses to natural light and make precise predictions of the
88 conditions under which light impacts learning in each species.

89
90 Although conceptually straightforward, there are currently several practical barriers to
91 widespread adoption of the α-opic metrology across species. The first is incomplete
92 knowledge of photoreceptor spectral sensitivity in some species. To calculate α-opic
93 irradiance we need first to know what wavelength-dependent filter to apply, and this is
94 defined by the wavelength sensitivity of that particular photoreceptor in that species. The
95 second barrier is the absence of simple measurement methods (equivalent of a lux meter)

96 returning α -opic quantities. Here we address these problems. We describe an accessible
97 method for determining unknown photoreceptor wavelength sensitivities and combine this
98 with a review of published data to provide spectral sensitivity functions for calculating α -opic
99 EDIs in major domestic mammal species. We provide an online resource for performing these
100 calculations according to the methodology specified in CIE S026 and show that an open
101 hardware multichannel light sensor can be used to quantify common light sources in α -opic
102 metrics with reasonable accuracy.

103

104 **2. Results**

105

106 **2.1. Defining photoreceptor spectral sensitivity**

107

108 The α -opic metrology weights light energy across the spectrum according to the spectral
109 sensitivity of each class of rod, cone or melanopsin photoreceptor. It follows that defining the
110 spectral sensitivity of these photoreceptors in the target species is the critical step in adapting
111 this approach to use across species. The photoreceptor spectral sensitivity itself is determined
112 by two processes: the fundamental spectral efficiency of the photopigment responsible for
113 light absorption; and the cumulative spectral filtering property of all elements upstream of
114 that photopigment in the light path (pre-receptoral filtering).

115

116 A literature review reveals spectral sensitivity information is already available for many
117 photoreceptors across mammalian species (**Supplementary table 1**). The primary exception
118 is melanopsin, whose spectral sensitivity has so far been described in only a few instances. As

119 melanopsin is hard to purify in sufficient quantities for absorbance spectroscopy, we adapted
120 a heterologous action spectroscopy method(23) to determine melanopsin spectral sensitivity
121 for a wider array of species. In brief, HEK293T cells were transfected with an expression vector
122 containing the cDNA sequence of the target melanopsin, presented with an appropriate
123 isoform of retinal as chromophore, and the melanopsin-dependent light response was
124 quantified using a luminescent reporter (**Figure 1A**). Luminescent response amplitude in this
125 assay is dependent on the intensity and spectral composition of the stimulus, providing an
126 opportunity to describe photopigment sensitivity as a function of wavelength(23). Here we
127 exposed cells to 6 spectrally distinct stimuli over a range of irradiances (**Figure 1B**) and used
128 a boot-strap modelling approach to determine the λ_{max} of a putative opsin photopigment
129 which could best predict response amplitude across these stimuli (see methods). When
130 applied to human melanopsin this method returned a λ_{max} estimate of $481 \pm 1.1\text{nm}$, similar to
131 published estimates for this species(23, 24) (**Figure 1D**). As a sense check, we confirmed the
132 ability of a pigment with these characteristics to predict the luminescence responses, by
133 plotting response amplitude as a function of effective irradiance for this pigment (weighting
134 irradiance across the spectrum according to pigment sensitivity; **Figure 1E,F**). Having
135 confirmed the suitability of this approach for human melanopsin, we tested it with 3 further
136 melanopsins of known λ_{max} (mouse, crab-eating macaque, and brown rat). In each case our
137 process returned $\lambda_{\text{max}} \sim 480\text{nm}$ (mouse = $480 \pm 1.1\text{nm}$; macaque = $483 \pm 1.2\text{nm}$; rat =
138 $481 \pm 1.1\text{nm}$) (**Table 1; Supplementary table 2**), closely matching published spectral sensitivity
139 estimates for melanopsin in these species(25-27).
140
141 Opsin photopigments can employ different *cis* isoforms of retinal as chromophore. As the
142 identity of the isoform alters pigment λ_{max} , and as retinoids may be present in culture

143 medium, we finally wished to confirm that the outcome of our assay was determined by the
144 retinaldehyde added to the medium. To this end, we repeated the assay for our 4 test species
145 but adding 9- rather than 11-*cis* retinaldehyde to the culture medium. In other opsins, 9-*cis*
146 retinaldehyde causes a blue shift in spectral sensitivity(28), and this was also the case for
147 melanopsin with a mean \pm SD short wavelength shift of 16 \pm 2.5nm (range = 14 to 20nm) across
148 human, mouse, macaque and rat melanopsins (**Supplementary table 2**).

149

150 Having fully validated our approach, we turned to using it to define melanopsin spectral
151 sensitivity for 9 additional domestic mammalian species. To ensure consistency with future
152 work which may make use of commercially available 9-*cis* (in place of harder to obtain 11-*cis*)
153 retinaldehyde, we used the 9-*cis* chromophore for these experiments and applied a 16nm
154 correction. In all cases, the predicted λ_{max} for the 11-*cis* retinaldehyde photopigment was
155 close to 480nm (mean = 483nm; range 476-491nm; **Figure 1G**).

156

157 We next turned to the problem of how to account for the contribution of pre-receptoral
158 filtering on photoreceptor spectral sensitivity *in vivo*. In principle this can only be achieved by
159 measuring spectral transmittance of every element upstream of the photoreceptor in the
160 light path, or by describing the wavelength sensitivity of the target photoreceptor *in vivo*. The
161 latter approach has been used in a limited number of species for melanopsin but is not readily
162 applicable to new species. Turning to the former, we identified published reports of spectral
163 transmission for cornea, lens, and vitreous humor for seven mammalian species
164 (**Supplementary figure 1**). Each component of ocular media in all species had good
165 transmission across longer wavelengths. The extent of filtering at shorter wavelengths was
166 species-dependent and predominantly determined by the lens(18, 29). As lens transmission

167 is described for many mammalian species (**Supplementary data 1**) we wondered whether
168 accounting for this parameter alone may adequately predict *in vivo* spectral sensitivity. To
169 this end we identified species in which there was information available for lens transmittance;
170 the absorbance spectrum of purified photopigment; and *in vivo* photoreceptor spectral
171 sensitivity. In these cases, we calculated hypothetical *in vivo* photoreceptor λ_{\max} as the
172 product of photopigment *in vitro* spectral sensitivity and lens transmission. In all cases this
173 estimated *in vivo* λ_{\max} was similar to the experimentally measured value (**Supplementary**
174 **table 1**) providing confidence that lens transmittance alone provides a reasonable
175 approximation of pre-receptoral filtering in mammals. The literature contains information
176 about lens transmission for at least 56 mammalian species, including humans
177 (**Supplementary data 1**). The wavelength at 50% transmission (in which higher values
178 represent low UV transmission), showed large interspecies variation, ranging from <310nm
179 (European mole) to 494nm (European ground squirrel) (median 401.5 nm). It is well
180 established that age can alter lens coloration and size, thereby modifying filtering
181 properties(29). Thus, human pre-receptoral filtering standards are corrected for age(21).
182 Given the challenges associated with accessing eyes of different ages from different species,
183 we opted to perform our calculations using adult lens filtering for each species.

184

185 **2.2. Calculation of species- and photoreceptor-specific light exposure metrics**

186

187 Having determined methods for estimating *in vivo* spectral sensitivity we applied them to
188 define functions for calculating α -opic irradiance for 12 domestic mammal species. The
189 method of quantifying α -opic irradiance is captured by **equation 1 (Table 2)** and relies on a
190 full description of $s_{\alpha,s}(\lambda)$, the *in vivo* spectral sensitivity of the target photoreceptor (α) in

191 target species (s). We defined $s_{\alpha,s}(\lambda)$ for rod, cone and melanopsin photoreceptors across the
192 12 species of domesticated mammals by using the opsin template of Govardovskii and
193 colleagues(30) and λ_{\max} values from **Table 1** to produce a full *in vitro* spectral efficiency profile.
194 We then multiplied by lens transmittance to provide $s_{\alpha,s}(\lambda)$, our estimate of *in vivo* spectral
195 sensitivity for each pigment. Full functions for all pigments in all species are available in
196 **Supplementary data 2A.**

197
198 Descriptions of α -opic irradiance for humans increasingly employ a derived quantity termed
199 α -opic equivalent daylight illuminance (EDI)(31). EDI represents the illuminance (units = lux)
200 of a standard daylight spectrum (termed D65) that would provide the equivalent α -opic
201 irradiance. The method for calculating species-specific α -opic EDI (s α -opic EDI; e.g. 'mouse
202 melanopic EDI'), involves first determining α -opic efficiency of D65 ($K_{\alpha,s,v}^{D65}$; W/lm) (**Table 2**,
203 **Formula 2**) and then dividing α -opic irradiance ($E_{e,\alpha,s}$) by this value (**Table 2, Formula 3**). For
204 simplicity, $K_{\alpha,s,v}^{D65}$ is provided for all target photoreceptors in **Supplementary data-2B**.

205
206 We provide two resources to facilitate calculation of species specific α -opic irradiance and EDI
207 according to the equations in **Table 2** and the $s_{\alpha,s}(\lambda)$ functions in **Supplementary data 2**: an
208 R package (alphaopics), which includes functions for calculating species and opsin-specific
209 units (<https://doi.org/10.48420/23283059>); and an online toolbox (Alphaopics: Species-
210 specific light exposure calculator) for easy calculation of species-specific metrics
211 (https://alphaopics.shinyapps.io/animal_light_toolbox/). Both require the user to provide a
212 measure of spectral power distribution ($E_{e,\lambda}(\lambda)$ for the light reaching the animal's eye).

213

214 **2.3. Architecture for a miniaturised mammalian α -opic meter**

215

216 Calculating α -opic quantities from full spectral power distributions requires an understanding
217 of the properties of light and investment in appropriate measurement technology. For most
218 users, a more 'point and click' solution to light measurement is required. Widely available lux
219 meters already provide this when measuring photopic illuminance. Lux meters generally
220 achieve the appropriate spectral weighting by combining the spectral sensitivity of the light
221 sensor with an optic filter with an appropriate spectral transmission. Sadly, that strategy is
222 not scalable for the α -opic metrology because, in principle, separate filters may be required
223 for each potential target photoreceptor in each species. We wondered whether multichannel
224 miniaturised (MM) light sensors could provide a solution to this problem and form the basis
225 of easy-to-use light meters recording species specific α -opic units. MM sensors comprise 6 or
226 more detectors, each sitting below an independent narrowband optical filter. They are
227 relatively cheap, have high measuring accuracy of around 90% against calibrated sources, and
228 have been used successfully to estimate human α -opic metrics(32-34). We set out to
229 determine whether this technology could form the basis of accessible species-specific light
230 meters. To this end, we attempted to recalibrate an open-source wearable light dosimeter
231 (SpectraWear)(35) based upon a 10 channel MM sensor chip (AMS AS7341, Premstaetten,
232 Austria) for species specific measurements.

233

234 To facilitate estimation of species- and photopigment-specific light exposures, we generated
235 a set of narrow- and broad-band light stimuli with energy spanning the visible range (**Figure**
236 **2A**; see Methods). We then measured these with a spectroradiometer and applied the
237 'alphaopics' package to calculate species-specific α -opic EDIs. Next, we used nonlinear least-
238 square fitting to derive weighting coefficients for the 10-channel sensor readings from

239 SpectraWear that best recreated the species-specific α -opic EDIs provided by those stimuli.
240 We finally validated the resulting calibration coefficients against a test set of lights generated
241 from the narrow- and broad-band sources used for calibration but spanning a wider range of
242 irradiances. A comparison of measured (based upon full spectral power density
243 measurements) and predicted (based upon SpectraWear) EDIs showed strong correlations for
244 all α -opic irradiances in a single representative species (**Figure 2B**). To provide a more
245 comprehensive description of the device performance across α -opic quantities and species,
246 we calculated the estimation error (difference between measured and predicted α -opic EDI)
247 for each test stimulus for the α -opic quantities of our 12 domestic mammal species and
248 humans (**Figure 2C**). This revealed variations in performance across different α -opic
249 quantities, with consistently high accuracy for melanopic and rhodopic EDIs for all species
250 evaluated (**Figure 2C**; typical estimation errors = 0.06 ± 0.01 & 0.05 ± 0.01 log units respectively;
251 median \pm SD). Despite the substantial variation in cone opsin λ_{\max} across species, L- and M-
252 cone opic EDIs were also estimated with good reliability (**Figure 2D**; typical estimation errors
253 = 0.06 ± 0.02 log units). Conversely, performance was reduced for S-cone-opic EDIs, especially
254 in species where S-cones show peak sensitivity in the UV (**Figure 2D**; typical estimation errors
255 = 0.30 ± 0.45 log units). In sum, the performance of the device allowed us to reconstruct
256 reliable estimates (within $\pm 17\%$) of α -opic EDIs other than S-cone opic. This technology could
257 enable continuous light monitoring in field with a scalable design.

258

259 **2.4. Characterisation of species-specific light exposure amongst common illuminants**

260

261 We finally turned to describing the suitability of the α -opic metrology for predicting the
262 response of animals to light of divergent spectral composition. In the first instance we asked

263 whether α -opic units predicted responses within a single candidate species to spectrally
264 divergent stimuli. That is a prerequisite for using any metric to standardise husbandry or
265 recreate experimental conditions. Many studies of circadian photoentrainment in mice
266 quantify light in photopic lux. We took four datasets describing irradiance response curves for
267 circadian phase shifting in wild-type and retinal degenerate mice across the wavelength
268 range(36-38) and expressed them either as a function of photopic lux, or the mouse α -opic
269 EDIs (**Figure 3A, B, Supplementary figure 2A-C**). We found that the fraction of variance in
270 circadian phase shift predicted by light intensity (R^2 for curve fit) was >0.8 when light intensity
271 was quantified in any of mouse melanopic, rhodopic or M-cone-opic EDIs but substantially
272 reduced when either photopic lux (0.4) or S-cone opic EDI (0.2) were used (**Figure 3C**). This
273 finding highlights the superior capacity of the α -opic metrology to predict mouse circadian
274 phase resetting to spectrally divergent lights.

275
276 We wondered the extent to which this improvement relied upon adoption of species-specific
277 metrics or whether human α -opic units would achieve the same effect. To this end, we
278 generated versions of the mouse irradiance response curves with light intensity expressed in
279 human α -opic units. As there is great cross-species divergence in spectral sensitivity of cone
280 photoreceptors, it is perhaps unsurprising that human L/M-cone-opic EDIs provided an
281 inadequate prediction of the mouse response (**Figure 3C**). The reduction in goodness of fit
282 when expressing light in human melanopic or rhodopic EDI is less expected given the similarity
283 in spectral sensitivity of melanopsin and rod opsin photopigments across mammals. However,
284 there is substantial divergence in lens transmission to short wavelength light across these
285 species. Accordingly, an assessment of relative melanopic sensitivity for mouse vs human as
286 a function of wavelength (**Figure 3C**) reveals that, while the two species have very similar

287 sensitivity >450nm, their sensitivity to shorter wavelengths diverges. It follows that human
288 quantities may be more appropriate for lights that lack strong output at very short
289 wavelengths (as is the case for most artificial sources). We tested this prediction by excluding
290 data for UV wavelengths from our phase shift dataset and recalculating goodness of fit to
291 human melanopic and rhodopic EDI. In both cases the human metrics now provided goodness
292 of fit for the mouse phase shifting irradiance response curve (**Figure 3C**). Together these
293 analyses reveal the advantages of using species-specific versions of the α -opic units, while
294 showing that there may be circumstances (melanopic and rhodopic EDIs for stimuli with little
295 UV output) under which human metrics are an acceptable alternative.

296

297 Having confirmed the advantages of the α -opic metrology for predicting the animal response
298 to light, we quantified the potential error associated with the current practice of quantifying
299 light in photopic lux. An appropriate measurement system should allow the animal's
300 experience of lights differing in spectral composition to be normalised. We therefore took α -
301 opic EDI as a measure of true effective intensity and asked how well the current practice of
302 using measuring light in photopic lux predicted α -opic EDI. We started with the most widely
303 encountered case of broad-spectrum lights of the types used for general illumination
304 applications. Taking 42 such broad-spectrum lights, intensity matched for photopic lux (and
305 thus under current practice considered to be interchangeable for animal work), we calculated
306 their α -opic EDI for each of the 13 mammals. This revealed substantial variation in effective
307 intensity for each photoreceptor (α -opic EDIs) across the various light sources. Shown for a
308 representative species (mouse) in **Figure 4A** left. At the extreme, two broad-spectrum lights,
309 intensity matched in photopic lux, could show 85% difference in melanopic EDI. The poor

310 suitability of the photopic lux metric for predicting α -opic EDI was even starker for
311 monochromatic or ‘coloured’ lights (**Figure 4A** right).

312

313 Thus far, we have considered the advantages of the α -opic EDI metrology for quantifying
314 effective intensity for different light sources within a species. A further aspect of the
315 metrology is its ability to allow informative comparisons of light intensity between species,
316 e.g., to ask whether some species are fundamentally more sensitive to light than others. The
317 α -opic EDI concept incorporates an anchor to the natural world (an equivalent amount of
318 daylight), which should facilitate ecologically relevant comparisons cross-species. To illustrate
319 this, **Figure 4B** shows a plot of the relationship between solar angle and human melanopic
320 irradiance for a range of real-world light measures. The nature of the correction used to
321 convert α -opic irradiance to EDI ensures that this relationship is near identical for all α -opic
322 EDIs across all species ($r>0.99$). It follows that lights of equivalent α -opic EDI should recreate
323 each animal’s experience of a similar solar angle with good accuracy even across species. To
324 confirm this, we calculated the solar angle corresponding to 1000 lux melanopic EDI in each
325 of 13 mammalian species (humans + the 12 domesticated mammals defined above). The
326 result is plotted in **Figure 4C** and confirms that in all species this recreates the experience of
327 natural light when the sun is just above the horizon. For comparison we estimated the
328 appropriate solar angle for our 42 broad-spectrum lights when set to 1000 photopic lux (by
329 converting to melanopic EDI and relating to the function in **Figure 4B**). In this case, the
330 equivalent solar angle became more variable, encompassing sunrise and much of the civil
331 twilight range (**Figure 4C**).

332

333 **3. Discussion**

334 No animal is equally sensitivity to light at all wavelengths. It follows that applying the
335 appropriate spectral weighting function is critical in quantifying light in photobiology. The α -
336 opic concept of light measurement was first proposed in 2014 to account for the then still
337 quite recent discovery of the inner retinal photoreceptor melanopsin, and the related
338 realisation that lights matched for photopic illuminance could have quite divergent ability to
339 elicit important circadian and neurophysiology light responses(20). The α -opic metrology has
340 a quite different conceptual basis than conventional photometry. Whereas photopic
341 illuminance quantifies light according to the spectral sensitivity of a single distinct percept
342 (perceived brightness under cone favouring conditions), the α -opic metrology aims to
343 quantify light according to the experience of each photoreceptor type, remaining agnostic to
344 its final application in supporting vision or reflex light responses. What is lost in simplicity is
345 gained in flexibility. Thus, while the single measure of photopic lux is replaced by 5 α -opic
346 irradiances (for humans), the latter capture all relevant information about incident light,
347 whereas the former only captures information about its perceived brightness. The additional
348 flexibility of the α -opic metrology is especially valuable when quantifying light for non-human
349 animals. Most mammals lack the long-wavelength shifted L/M cones that dominate the
350 photopic sensitivity function in humans(19). Replacement spectral efficiency functions for
351 perceived brightness are not readily obtainable for many species and in any case would not
352 capture important circadian and neurophysiological light responses. By contrast, information
353 about photoreceptor spectral sensitivity is often available, allowing species specific α -opic
354 functions to provide a holistic description of the animal's experience of light. This ability of
355 the α -opic metrology to provide species-specific quantification of light was recognised in the

356 initial description of the approach and yet, while α -opic units are now increasingly presented
357 in the context of human light exposure(31) they have not been widely adopted for non-human
358 animals. There are likely several reasons for this. Most importantly, a push for more
359 widespread appreciation of this strategy has awaited formal specification of the α -opic
360 approach as an internationally approved standard metrology. With that in place, more
361 practical problems about how to measure species-specific α -opic units come into focus. Here
362 we have addressed two of these: gaps in our knowledge of photoreceptor spectral sensitivity
363 for some species; and a high barrier to entry for those wishing to measure light in this way.
364 Having addressed these, we provide some simulations to quantify the advantages of applying
365 α -opic units in animal biology.

366
367 Our approach to filling gaps in knowledge of photoreceptor spectral sensitivity has been to
368 employ a heterologous action spectroscopy approach, which we first used to study human
369 melanopsin(23). We have adapted that strategy to make it higher throughput by optimising
370 the range of wavelengths/irradiances used and by applying a bootstrap modelling approach
371 to analysis which provides the optimal pigment λ_{\max} for the data collected and an error
372 estimate for that value. The result is a relatively high-throughput method, requiring little
373 specialist lab equipment and applicable to any photoreceptor with known cDNA sequence.
374 We have applied it to define melanopsin spectral sensitivity because, while other methods
375 (electroretinography or microspectrophotometry) are available for rods and cones in
376 domestic mammals, studying melanopsin *in vivo* is more challenging(27, 39). In principle the
377 method could be applicable to any photoreceptor from any species for which a live cell
378 readout of photoactivation is available. One important consideration in these data is that
379 cDNA sequences for melanopsin are not available for many species. In these instances,

380 predicted coding sequences for genomic data have been used, with the associated potential
381 for errors(40, 41). Indeed, when aligning melanopsin sequences against the confirmed
382 sequence for humans, several sequences listed on databases were missing key regions due to
383 mis-identified splicing. It is for this reason that we did not rely upon one gene database for
384 the generation of melanopsin sequences.

385

386 Our data reveal conservation of melanopsin spectral sensitivity across the 13 mammalian
387 species described here. The total range of predicted λ_{\max} is 15nm, which is similar to that for
388 rod opsin across these species (13nm), but small compared to that of either S- or M-cones
389 (>50nm). The fact that the species showing greatest difference in melanopsin λ_{\max} are both
390 small diurnal mammals from semi-arid environments (striped mouse and mongolian gerbil)
391 adds to the impression that this parameter is not under divergent selection pressure across
392 the species studied here. An interesting question is what features of the light environment
393 and/or structural constraints for the protein may be responsible for restricting melanopsin λ_{\max}
394 to ~480nm.

395

396 Opsin photopigments can employ a range of cis- isoforms of retinaldehyde as chromophore,
397 and in the case of melanopsin there is evidence of diversity in the choice of isoform *in vivo*.
398 As opsin spectral sensitivity is influenced by the retinaldehyde isoform used, it is important
399 to note that the values presented here represent those with the 11-cis isoform of A1
400 retinaldehyde. The resultant estimates for spectral sensitivity match those for whole animal
401 responses in mice, macaque and humans. The reader is directed elsewhere for a complete
402 consideration of factors determining estimates of melanopsin spectral sensitivity in other
403 elements of the literature(42).

404

405 In principle, the method of calculating α -opic EDI is applicable to any photoreceptor from any
406 species. In the case of mammals, future work may extend it to Opn5 and/or Opn3 as further
407 evidence of their sensory functions accumulates, although careful consideration of
408 appropriate pre-receptoral filtering is required for opsins expressed outside of the eye(43-
409 45). The number of α -opic EDIs required to fully quantify the light environment for many non-
410 mammalian species may be large, as these commonly have many photopigment types
411 expressed in different parts of the body (and thus subject to divergent pre-receptoral
412 filtering). Nevertheless, calculating these quantities would represent an advance on
413 alternatives that either assume equal sensitivity across the spectrum (unweighted sum of
414 energy/quanta) or human spectral sensitivity (photopic illuminance).

415

416 Spectrometers capable of providing spectral power density measures, which in combination
417 with a suitable wavelength weighting function can be used to calculate species-specific α -opic
418 metrics, are widely available. The toolbox presented here to facilitate this process represents
419 an extension on previously published versions restricted to a smaller number of species(17,
420 20, 46, 47). More accessible ‘point and click’ solutions to calculate species specific units could
421 take advantage of meters recently developed to measure human α -opic metrics. In particular,
422 we show here that appropriate calibration allows the MM technology forming the basis of
423 several such meters to measure many species specific quantities with acceptable accuracy
424 (<17% error rate). We validate an approach based upon a system developed on open
425 hardware principles (Spectrawear(35)), but commercially available products could in principle
426 be adapted to this purpose. One important caveat here is that core MM chips generally do
427 not have good coverage at short wavelengths (especially UV) over which many domestic

428 mammals are much more sensitive than humans(18, 48). That likely explains the poor
429 performance of Spectrawear for S-cone opic EDI and suggests that meters including separate
430 UV sensitive detector(s) could have superior performance.

431

432 Quantifying light in species-specific α -opic EDI has clear conceptual advantages over current
433 practices of using either photopic illuminance or total energy/quanta. We show here that it
434 also provides superior ability to predict circadian phase shift responses in mice (across
435 numerous studies) and allows sensible comparisons of effective light intensity across species.

436 Application of this metrology could thus bring coherence to the growing literature on light
437 effects on mammalian physiology and behaviour and reproducibility to any experiment in
438 which light influences the outcome. Appropriate measurement can also have a wider
439 significance for animal welfare. Insufficient daytime light and excessive light at night have
440 been shown to disrupt circadian rhythm and sleep, and have negative impacts on the health
441 of animals, as well as research outputs and scientific reproducibility(4-12). Animal-centered
442 approaches are key to enhancing the health and wellbeing of indoor housed animals, and the
443 accurate provision of light is a crucial consideration. Environmental light pollution poses a
444 significant disruptor to many animal ecosystems, emphasizing the need for better
445 characterization of animal-specific light exposure to improve conservation strategies(49, 50).

446 Furthermore, given the significant land and energy usage required for farm animal operations,
447 the identification of optimum lighting conditions that balance productivity, health, and
448 electricity usage has the potential to generate substantial energy savings(51-53). Additionally,
449 the impact of evening and night-time light exposure in the home environment on human
450 sleep is well-documented(54), but remains unknown for pets(55). One process that could
451 facilitate these applications would be simplification of the 4 α -opic quantities required to fully

452 describe irradiance for most mammalian species to a single metric that provides a reasonable
453 prediction of light responses of interest under most circumstances. This could be a single α -
454 opic metric or a composite of several. Such a process has led to the increasing use of
455 melanopic EDI as a single metric for non-visual light responses in humans(31).

456

457 **4. Conclusions**

458

459 Our study reveals an accessible method to measure photopigment-specific “ α -opic” light
460 exposure for mammal species. We present the prerequisite data for defining α -opic metrics;
461 lens transmission, and novel action spectra for melanopsins from most major domesticated
462 mammalian species. We then present the necessary calculations to derive photoreceptor-
463 specific metrics and provide open access software for easy calculation. Our data reveals that
464 species-specific α -opic metrics offer greater accuracy for the description of the physiological
465 effects of light than the current commonly used standard of photopic lux. Finally, we present
466 a prototype low-cost and scalable portable light dosimeter for the measurement of lighting
467 conditions. This method for light measurement allows for the easy monitoring, regulation and
468 intervention of light exposure in animal housings and will lead to increased research accuracy
469 using animal models, agricultural efficiency and improve animal health and wellbeing.

470

471 **5. Methods**

472 **5.1. Recombinant cloning of animal opsins**

473 Coding sequences for mammalian melanopsins were accessed from either NCBI GenBank or
474 Ensembl databases (Ensembl Release 109(56)). Open reading frames for the following
475 sequences were used to construct expression vectors: brown rat Opn4, NM_138860.1; cat

476 Opn4, NM_001009325.2; cattle Opn4, NM_001192399.1; crab-eating macaque Opn4,
477 ENSMFAT00000002526.2; dog Opn4, XM_038662366.1; four-striped grass mouse Opn4, in
478 house cDNA; horse Opn4, XM_023648726.1; human OPN4, NM_033282.4; Mongolian gerbil
479 Opn4, XM_021635996.1; mouse Opn4L, NM_013887.2; Rabbit Opn4,
480 ENSOCUT00000017574; Sheep Opn4, XM_027962232.2; Syrian hamster Opn4,
481 ENSMAUT00000015782 (**Supplementary table 3, 4**). Gene sequences were synthesised using
482 ThermoFisher GeneArt Gene Fragment synthesis and TwistBio Gene Fragment synthesis and
483 underwent codon optimisation where necessary for synthesis. All opsin sequences were
484 tagged with the 1D4 epitope (TETSVQVAPA) on the C-terminus. Opsins were introduced into
485 the multiple cloning site of the pcDNA3 vector (Invitrogen) downstream of the CMV promoter
486 using NEBuilder HiFi Assembly (New England Biolabs).

487

488 **5.2. Heterologous action spectroscopy**

489 HEK293T cells (American Type Culture Collection) were cultured in Dulbecco's modified
490 Eagle's Medium (4.5 g l-1 D-glucose, sodium pyruvate and L-glutamine with 10% foetal calf
491 serum; DMEM). Cells were transiently transfected with 500ng plasmid expression vectors for
492 the relevant opsin and 500ng genetically encoded Ca^{2+} indicator mtAequorin (as described in
493 (23)) using lipofectamine 2000 (Invitrogen) and incubated overnight with 10 μM 9-*cis*-retinal
494 (Sigma-Aldrich) or 10 μM 11-*cis*-retinal (National Eye Institute, National Institutes of Health).
495 The following day, cells were incubated with 10 μM Coelenterazine-h (Promega) in the dark
496 for 2 hours before recording luminescence in a plate reader (Optima FLUOStar, BMG)
497 modified to allow "In-well" stimulation with an external light source (CoolLED pe-4000,
498 CoolLED) via fibre optic. Luminescence recordings were sampled at a temporal resolution of
499 2 seconds per timepoint. Baseline luminescence was recorded for 10 seconds, after which

500 cells were stimulated with light (1s duration) of varying intensities (11 – 16 log
501 photon/cm²/sec total photon flux) at one of 6 different wavelengths (435nm, 460nm, 470nm,
502 490nm, 500nm, 525nm).

503

504 **5.3. Calculation of opsin photon sensitivity peaks**

505 To determine the λ_{\max} values for each opsin, we employed a nonlinear optimization strategy.
506 In this strategy, an optimization algorithm systematically iterates over different values of λ_{\max}
507 (*optim* function in *R* (version 4.3.0), using the Brent search method). Each iteration consisted
508 of two steps. First, the effective photon flux values of the light sources were updated
509 according to the Govardovskii photopigment template(30) corresponding to the currently
510 assumed value for λ_{\max} . Then, a 5-parameter log-logistic model was fitted with cell response
511 and the updated effective photon flux as dependent and independent variables respectively
512 (*drm* function from the *drc* package (version 3.0-1)), from which the estimation error was
513 extracted (i.e., residual sum of squares). The optimization algorithm searched for the λ_{\max}
514 value (within a 400-600 nm range) that would minimize this error. Finally, bootstrapping was
515 performed in which the above optimization procedure was repeated 1000 times, each time
516 using only a random subset of the data (with replacement). The average and standard
517 deviation of the 1000 resulting λ_{\max} values were finally used as the λ_{\max} estimate and
518 estimation error.

519

520 **5.4. Standardization of animal lens transmissions**

521 Literature searches for lens, cornea, and vitreous humor light transmissions for mammal
522 species were performed. We accessed data from 56 adult species. References and data are
523 listed in **Supplementary data 1**. Human pre-receptoral filtering is based on a reference

524 observer of age 32 years(20, 21). If available in the reference source table or supplement,
525 original data was used. Otherwise, data was extracted from reference plot using
526 WebPlotDigitizer (Version 4.6). If relative absorbance was reported, transmission was
527 calculated as $100 \times 10^{-\text{Relative absorbance}}$. To harmonize the data the following steps were
528 performed. If less than 50 data points available, cubic splines with 1 nm step were
529 interpolated. If more than 50 data points available, smoothing splines with 1 nm step and 50
530 knots were interpolated. All raw data were normalized to their maximum values (max. 100%).
531 Data were filled with the last value until 800 nm and were filled until 310 nm using the slope
532 of the first 3 values. Negative values were accepted as zero. Where multiple valid sources
533 were available (e.g., Syrian hamster and Brown rat), mean fits were used. For seven species
534 (European ground squirrel, Syrian hamster, thirteen-lined ground squirrel, coruro, Mongolian
535 gerbil, seal, cattle) cornea or vitreous humor filtering information were available. For those,
536 we compared the wavelength where transmission reached 50% in lens, cornea, and vitreous
537 humor. Lens transmission for European ground squirrel (*Spermophilus citellus*) and Syrian
538 hamster were measured as previously described(57), for tree shrew (*Tupaia belangeri*) and
539 Fat-Tailed Dunnart (*Sminthopsis crassicaudata*) an AvaSpec 2048 (Avantes) UV/VIS
540 spectrometer with a perpendicular fiberoptics transmission setup was used.

541

542 **5.5. Prototyping of a mammal light dosimeter and its calibration**

543 The prototype is based on an open-access human α -opic light dosimeter electronic
544 design(35). The device prototype of 3D-printed black plastic outer case, micro SD card
545 memory storage and Bluetooth control. The device light detection had transparent acrylic disc
546 (Perspex) with 20mm diameter and with a diffuser (Optisaver L-35 Kimoto, Cedartown,
547 Georgia, USA) underneath. The device incorporates AMS AS7341 multichannel spectral colour

548 sensor (ams, Premstaetten, Austria), which had channels having peak wavelengths at 415nm,
549 445nm, 480nm, 515nm, 555nm, 590nm, 630nm, 680nm, 910nm, and a clear channel to read
550 unfiltered spectral input. Sensor reading of a prototype device were collected across 169 light
551 conditions (13 distinct spectra across multiple irradiances). This included ten distinct
552 narrowband spectra, generated via a calibrated multispectral LED light source (CoolLED pE-
553 4000 LED Illumination System; narrowband peaks: 405, 435, 460, 470, 490, 500, 525, 550,
554 595, 635 and 660nm) and three distinct broadband spectra (Philips CorePro white LED 470
555 lumen 4000K, Philips Tornado white fluorescent 1570 lumen 2700K or CoolLED pE-4000 LED
556 Illumination System 365-460-525-635nm colour-mixed white LED) Throughout, stimuli were
557 measured via a calibrated spectroradiometer (SpectroCal, Cambridge Research Systems, UK)
558 and converted to species specific α -opic EDIs as described above. All measurements were
559 performed in a dark room. We then collected an identical set of measurements of the same
560 stimuli user our 10-channel light sensor (integration time 182ms, automatic gain optimisation
561 in the range of 8 – 512X and additional post hoc scaling by a factor of 10^6 such that sensor
562 counts took on positive values ≥ 1). To calibrate the device, we then selected a subset of 3
563 measurements for each of the 13 distinct spectra described above. Based on the known
564 relationship between the measured sensor counts and the α -opic irradiance of these
565 calibration stimuli (and our previous observations that these sensors exhibit good linearity
566 across a very wide range(35)), we extrapolated the expected sensor counts for each spectra
567 across a consistent set of EDI values (-1, 0.5 and 2 log lux). We then fit a set of weighting
568 coefficients such that the sum of the adjusted log sensor counts best recreated the expected
569 log EDIs across stimuli in the calibration dataset (using 'lsqcurvefit' function in Matlab R2018a,
570 Mathworks, MA, USA). We choose to perform fits on log transformed data since this allowed
571 for sensor weightings to be either positive or negative (important for reliable estimates from

572 low channel count sensors such as this) while avoiding the possibility that any resulting
573 estimated α -opic EDI might take on (impossible) negative values. To validate the resulting
574 species- and photoreceptor-specific device calibration, we then used the derived sensor
575 weighting coefficients to estimate EDIs across the remaining 130 spectroradiometrically
576 measured test stimuli that didn't contribute to calibration (n=3-27 irradiances/spectrum at
577 unweighted irradiances of \sim 0.2-80W/m²). Log (absolute) errors for these estimates, relative
578 to the directly measured values, were then determined for each distinct spectrum, species
579 and photopigment.

580

581 **5.6. Characterisation of species-specific light exposure amongst common illuminants**

582 We selected four datasets(36-38) including more than five light stimuli with different spectral
583 distributions. Phase shift values were extracted from graphs using WebPlotDigitizer (Version
584 4.6) and light stimuli spectral power distributions were generated as normal distribution with
585 specified peak wavelength and half width at half maximum values (Matlab R2018a,
586 Mathworks, MA, USA). We then converted them to human photopic lux, the mouse α -opic
587 EDIs and the human α -opic EDIs. We fitted non-linear four-parameter lines to estimate phase
588 shifts using light stimuli.

589

590 All test light sources were arbitrarily set to 100 human photopic lux. Indoor artificial standard
591 illuminants included: CIE standard illuminant A (incandescent 2855 K), CIE standard illuminant
592 HP types (High pressure sodium lamps 1-5; standard, colour-enhanced, metal halide), CIE
593 standard illuminant FL types (Fluorescent 1-12 and 3.1-3.15; standard, broad-band, narrow-
594 band, standard halophosphate, DeLuxe type, three-band, multi-band, D65 simulator), CIE
595 standard illuminant LED types (Light-emitting diode B1-B5, BH1, RGB1 and V1-V2; Phosphor-

596 type LEDs with different correlated colour temperatures, Hybrid-type, RGB-type, and violet-
597 pumped phosphor-types)(58, 59). As narrowband test light source, we measured spectral
598 power distributions of CoolLED pE-4000 LED Illumination System (narrowband peaks: 365,
599 405, 435, 470, 500, 525, 550, 595, 635) using a spectroradiometer (SpectroCal, Cambridge
600 Research Systems, UK). For 13 species which we have both opsin sensitivity and lens
601 transmission information (Human, mouse, four-striped grass mouse, brown rat, Syrian
602 hamster, Mongolian gerbil, cattle, sheep, horse, cat, dog, crab-eating macaque, rabbit), α -
603 opic EDIs were calculated. Using GraphPad Prism 9, between-species mean and range were
604 plotted for each light source.

605
606 Natural daylight spectral irradiances, solar angle (degree) and weather conditions on multiple
607 days were collected in the University of Groningen, the Netherlands (latitude: 53.24°,
608 longitude: 6.54°)(60). Daylengths at the measurement date were calculated using R package
609 ‘suncalc’ (0.5.1). We used a subset of the data (-6° to 60° solar angle, weather conditions >6
610 cloudy or <3 clear, summer daylengths $>15h$). In total, our data included 5 days of clear sunny
611 conditions (4633 measurements) and 11 days of overcast daylight (10433 measurements).
612 Human and mouse melanopic EDIs (mean \pm range) were plotted against solar angle. For 13
613 species, α -opic EDIs representing that solar angle were calculated and compared pairwise
614 using Pearson correlation. Finally, above mentioned CIE light sources matched for either 1000
615 human photopic lux or species-specific melanopic EDI lux (for 13 species). These values were
616 converted to solar angles using the above mentioned curves.

617

618 **6. List of Abbreviations**

619 9-cis – 9-cis retinaldehyde

620 11-*cis* – 11-*cis* retinaldehyde

621 λ_{max} – The wavelength at which maximum activity/absorption occurs

622 EDI - equivalent daylight illumination

623 MM light sensor - multichannel miniaturised light sensor

624 UV - Ultraviolet

625

626 **7. Declarations**

627 **Ethics approval and consent to participate**

628 Transmission data was collected under the University of Groningen Animal Experiments

629 Committee license number BG02197/98.

630

631 **Consent for publication**

632 Not applicable.

633

634 **Availability of data and materials**

635 The datasets generated and/or analysed during the current study are available in the

636 following Figshare repository: <https://doi.org/10.48420/23708610>. Functions for calculating

637 the Functions for calculating species and opsin-specific units are available as an R package

638 (alphaopics) (<https://doi.org/10.48420/23283059>); and an online toolbox (Alphaopics:

639 Species-specific light exposure calculator) for easy calculation of species-specific metrics

640 (https://alphaopics.shinyapps.io/animal_light_toolbox/).

641

642 **Competing interests**

643 RJL and TMB have received investigator-initiated grant funding from Signify/Philips Lighting
644 and RJL has received honoraria from Samsung Electronics. RJL has received a financial support
645 from NASA, UFAW (11-22/23) and the University of Manchester to organize a workshop about
646 the measurement of species-specific light units for laboratory mammals (Manchester, 2023).

647

648 **Funding**

649 This work was funded by a Wellcome Trust Investigator Award (210684/Z/18/Z) and European
650 Research Council (951644-SOL) to RJL.

651

652 **Author's contributions**

653 RJM and RJL designed the opsin sensitivity measurement methodology, and RJM and MJG
654 performed the photopigment sensitivity experimental measurements. AD searched literature
655 for prereceptoral filtering data. RJM searched literature for spectral sensitivities. RAH
656 performed novel transmission measurements. AD, RJM, TW and TMB performed data
657 analysis. TMB, RJL and AD were involved in the design, production and calibration of the light
658 dosimeters. AD, TW, RJM and RJL drafted the manuscript. TMB, RJL, AD and RJM were
659 involved in planning and supervising the project. All authors discussed the results and
660 commented on the manuscript. All authors have read and agreed to the final manuscript.

661

662 **Acknowledgements**

663 We thank Lucien Bickerstaff for his help in calibration of the light dosimeter. We also thank
664 Prof Ron Douglas (City University London) for his guidance on lens transmission of mammals.

665

666 **8. References**

667 1. Vetter C, Pattison PM, Houser K, Herf M, Phillips AJK, Wright KP, et al. A review of
668 human physiological responses to light: implications for the development of integrative
669 lighting solutions. *Leukos*. 2021;18(3):387-414.

670 2. Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming
671 Brain Functions-Positive and Negative Impacts of Increasing Light Availability. *Clocks Sleep*.
672 2023;5(1):116-40.

673 3. Duffy JF, Czeisler CA. Effect of Light on Human Circadian Physiology. *Sleep Med Clin*.
674 2009;4(2):165-77.

675 4. Bano-Otalora B, Martial F, Harding C, Bechtold DA, Allen AE, Brown TM, et al. Bright
676 daytime light enhances circadian amplitude in a diurnal mammal. *Proc Natl Acad Sci U S A*.
677 2021;118(22).

678 5. Dauchy RT, Wren-Dail MA, Hoffman AE, Hanifin JP, Warfield B, Brainard GC, et al.
679 Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the
680 Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and
681 Physiology. *Comp Med*. 2016;66(5):373-83.

682 6. Lucassen EA, Coomans CP, van Putten M, de Kreij SR, van Genugten JH, Sutorius RP,
683 et al. Environmental 24-hr Cycles Are Essential for Health. *Curr Biol*. 2016;26(14):1843-53.

684 7. Tam SKE, Brown LA, Wilson TS, Tir S, Fisk AS, Pothecary CA, et al. Dim light in the
685 evening causes coordinated realignment of circadian rhythms, sleep, and short-term
686 memory. *Proc Natl Acad Sci U S A*. 2021;118(39).

687 8. Aulsebrook AE, Jechow A, Krop-Benesch A, Kyba CCM, Longcore T, Perkin EK, et al.

688 Nocturnal lighting in animal research should be replicable and reflect relevant ecological

689 conditions. *Biol Lett.* 2022;18(3):20220035.

690 9. Nelson RJ, Bumgarner JR, Liu JA, Love JA, Melendez-Fernandez OH, Becker-Krail DD,

691 et al. Time of day as a critical variable in biology. *BMC Biol.* 2022;20(1):142.

692 10. Prager EM, Bergstrom HC, Grunberg NE, Johnson LR. The importance of reporting

693 housing and husbandry in rat research. *Front Behav Neurosci.* 2011;5:38.

694 11. Steel LCE, Tir S, Tam SKE, Bussell JN, Spitschan M, Foster RG, et al. Effects of Cage

695 Position and Light Transmission on Home Cage Activity and Circadian Entrainment in Mice.

696 *Front Neurosci.* 2021;15:832535.

697 12. Emmer KM, Russart KLG, Walker WH, Nelson RJ, DeVries AC. Effects of light at night

698 on laboratory animals and research outcomes. *Behav Neurosci.* 2018;132(4):302-14.

699 13. The Welfare of Farmed Animals (England) Regulations 2000. 2000.

700 14. Directive 2010/63/EU of the European Parliament and the Council of 22 September

701 2010 on the protection of animals used for scientific purposes. 2010.

702 15. Code of Practice for the Housing and Care of Animals Bred, Supplied or Used for

703 Scientific Purposes. 2014.

704 16. ISO/CIE DIS 23539:2021(E): Photometry – The CIE system of physical photometry.

705 2021.

706 17. Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS. Light and the laboratory

707 mouse. *J Neurosci Methods.* 2018;300:26-36.

708 18. Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H. In search of a temporal

709 niche: environmental factors. *Prog Brain Res.* 2012;199:281-304.

710 19. Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of
711 vertebrate visual opsins. *Developmental Biology*. 2023;493:40-66.

712 20. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al.
713 Measuring and using light in the melanopsin age. *Trends Neurosci*. 2014;37(1):1-9.

714 21. CIE S026/E:2018: CIE System for Metrology of Optical Radiation for ipRGC-Influenced
715 Responses to Light. 2018.

716 22. Brown TM. Melanopic illuminance defines the magnitude of human circadian light
717 responses under a wide range of conditions. *J Pineal Res*. 2020;69(1):e12655.

718 23. Bailes HJ, Lucas RJ. Human melanopsin forms a pigment maximally sensitive to blue
719 light ($\lambda_{\text{max}} \approx 479$ nm) supporting activation of Gq/11 and Gi/o signalling cascades.
720 *Proceedings of the Royal Society B: Biological Sciences*. 2013;280(1759):20122987.

721 24. Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and
722 macaque pupil responses driven by melanopsin-containing retinal ganglion cells. *Vision*
723 *Research*. 2007;47(7):946-54.

724 25. Berson DM, Dunn FA, Takao M. Phototransduction by Retinal Ganglion Cells That Set
725 the Circadian Clock. *Science*. 2002;295(5557):1070-3.

726 26. Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable
727 of driving pupillary constriction in mice. *Nature Neuroscience*. 2001;4(6):621-6.

728 27. Liu A, Milner ES, Peng YR, Blume HA, Brown MC, Bryman GS, et al. Encoding of
729 environmental illumination by primate melanopsin neurons. *Science*. 2023;379(6630):376-
730 81.

731 28. Sekharan S, Morokuma K. Why 11-cis-Retinal? Why Not 7-cis-, 9-cis-, or 13-cis-
732 Retinal in the Eye? *Journal of the American Chemical Society*. 2011;133(47):19052-5.

733 29. Douglas RH, Jeffery G. The spectral transmission of ocular media suggests ultraviolet
734 sensitivity is widespread among mammals. *Proc Biol Sci.* 2014;281(1780):20132995.

735 30. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K. In search of the visual
736 pigment template. *Vis Neurosci.* 2000;17(4):509-28.

737 31. Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, et al.
738 Recommendations for daytime, evening, and nighttime indoor light exposure to best
739 support physiology, sleep, and wakefulness in healthy adults. *PLoS Biol.*
740 2022;20(3):e3001571.

741 32. Mohamed A, Kalavally V, Cain SW, Phillips AJK, McGlashan EM, Tan CP. Wearable
742 light spectral sensor optimized for measuring daily α -opic light exposure. *Opt Express.*
743 2021;29(17):27612-27.

744 33. Amirazar A, Azarbayjani M, Molavi M, Karami M. A low-cost and portable device for
745 measuring spectrum of light source as a stimulus for the human's circadian system. *Energy*
746 and *Buildings.* 2021;252:111386.

747 34. Stampfli JR, Schrader B, di Battista C, Häfliger R, Schälli O, Wichmann G, et al. The
748 Light-Dosimeter: A new device to help advance research on the non-visual responses to
749 light. *Lighting Research & Technology.* 2023;14771535221147140.

750 35. Mohammadian N, Didikoglu A, Beach C, Wright P, Mouland JW, Martial F, et al. A
751 wrist worn Internet-of-Things sensor node for wearable equivalent daylight illuminance
752 monitoring. *TechRxiv.* 2023.

753 36. Yoshimura T, Ebihara S. Spectral sensitivity of photoreceptors mediating phase-shifts
754 of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. *J*
755 *Comp Physiol A.* 1996;178(6):797-802.

756 37. van Oosterhout F, Fisher Simon P, van Diepen Hester C, Watson Thomas S, Houben
757 T, VanderLeest Henk T, et al. Ultraviolet Light Provides a Major Input to Non-Image-Forming
758 Light Detection in Mice. *Current Biology*. 2012;22(15):1397-402.

759 38. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al.
760 Melanopsin and rod-cone photoreceptive systems account for all major accessory visual
761 functions in mice. *Nature*. 2003;424(6944):76-81.

762 39. Emanuel AJ, Do MT. Melanopsin tristability for sustained and broadband
763 phototransduction. *Neuron*. 2015;85(5):1043-55.

764 40. van den Burg MP, Vieites DR. Bird genetic databases need improved curation and
765 error reporting to NCBI. *Ibis*. 2023;165(2):472-81.

766 41. Goudey B, Geard N, Verspoor K, Zobel J. Propagation, detection and correction of
767 errors using the sequence database network. *Briefings in Bioinformatics*. 2022;23(6).

768 42. Emanuel AJ, Do MTH. The multistable melanopsins of mammals. *Frontiers in
769 Ophthalmology*. 2023;3.

770 43. Nayak G, Zhang KX, Vemaraju S, Odaka Y, Buhr ED, Holt-Jones A, et al. Adaptive
771 Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. *Cell
772 Reports*. 2020;30(3):672-86.e8.

773 44. Buhr ED, Yue WWS, Ren X, Jiang Z, Liao H-WR, Mei X, et al. Neuropsin (OPN5)-
774 mediated photoentrainment of local circadian oscillators in mammalian retina and cornea.
775 *Proceedings of the National Academy of Sciences*. 2015;112(42):13093-8.

776 45. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, et al. A direct and melanopsin-
777 dependent fetal light response regulates mouse eye development. *Nature*.
778 2013;494(7436):243-6.

779 46. Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas R. A "melanopic" spectral
780 efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic
781 lights. *J Biol Rhythms*. 2011;26(4):314-23.

782 47. Allen AE, Mouland JW, Rodgers J, Bano-Otalora B, Douglas RH, Jeffery G, et al.
783 Spectral sensitivity of cone vision in the diurnal murid *Rhabdomys pumilio*. *J Exp Biol.*
784 2020;223(Pt 11).

785 48. Jacobs GH, Neitz J, Deegan JF, 2nd. Retinal receptors in rodents maximally sensitive
786 to ultraviolet light. *Nature*. 1991;353(6345):655-6.

787 49. Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW. Human alteration of natural light
788 cycles: causes and ecological consequences. *Oecologia*. 2014;176(4):917-31.

789 50. Jägerbrand AK, Bouroussis CA. Ecological Impact of Artificial Light at Night: Effective
790 Strategies and Measures to Deal with Protected Species and Habitats. *Sustainability*.
791 2021;13(11).

792 51. Lee K, Elliott C, Pattison PM. Energy Savings Potential of SSL in Agricultural
793 Applications. 2020.

794 52. Lindkvist S, Ternman E, Ferneborg S, Bankestad D, Lindqvist J, Ekesten B, et al. Effects
795 of achromatic and chromatic lights on pupillary response, endocrinology, activity, and milk
796 production in dairy cows. *PLoS One*. 2021;16(7):e0253776.

797 53. Lutzer A, Nagel C, Murphy BA, Aurich J, Wulf M, Gautier C, et al. Effects of blue
798 monochromatic light directed at one eye of pregnant horse mares on gestation, parturition
799 and foal maturity. *Domest Anim Endocrinol*. 2022;78:106675.

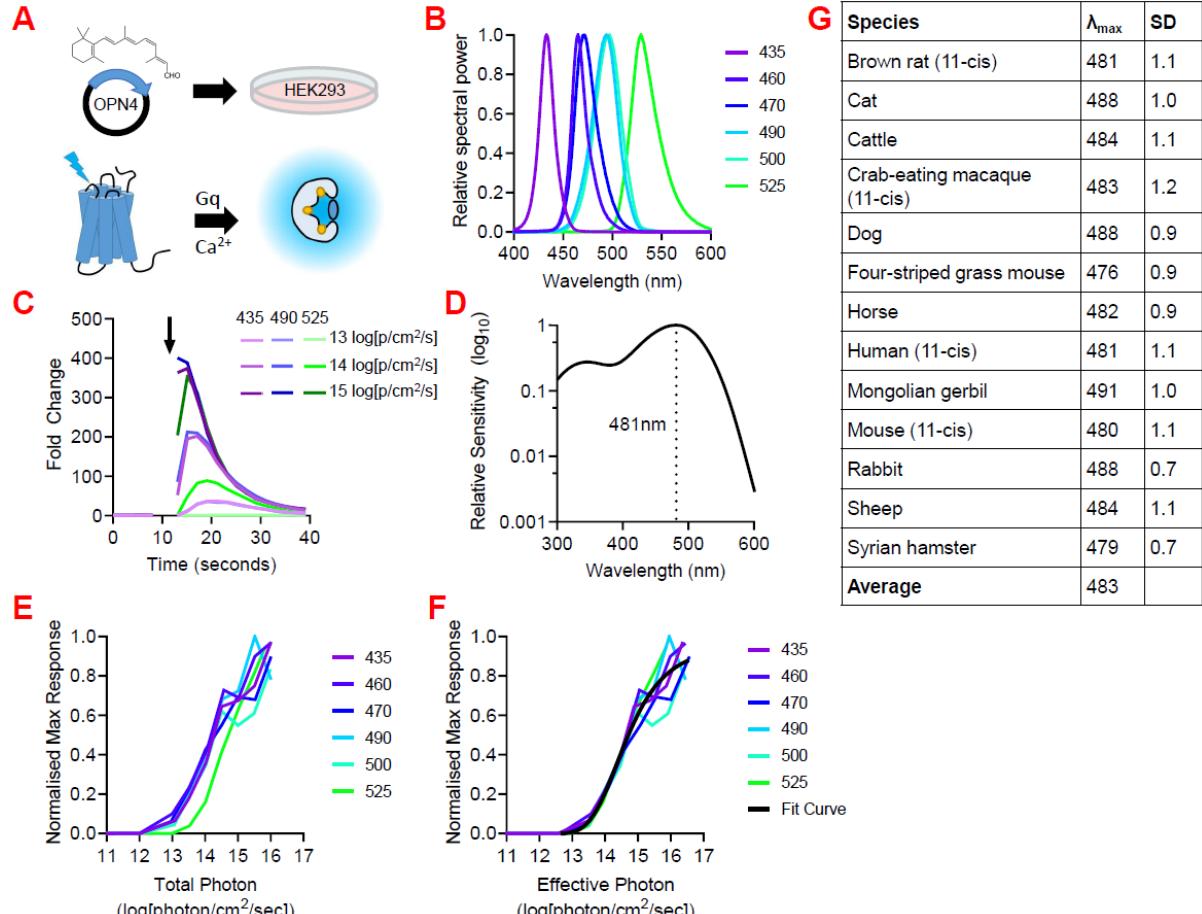
800 54. Cain SW, McGlashan EM, Vidafar P, Mustafovska J, Curran SPN, Wang X, et al.
801 Evening home lighting adversely impacts the circadian system and sleep. *Sci Rep.*
802 2020;10(1):19110.

803 55. Houp KA, Erb HN, Coria-Avila GA. The Sleep of Shelter Dogs Was Not Disrupted by
804 Overnight Light Rather than Darkness in a Crossover Trial. *Animals (Basel)*. 2019;9(10).

805 56. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode M R, Armean Irina M, et al.

806 Ensembl 2022. *Nucleic Acids Research*. 2021;50(D1):D988-D95.

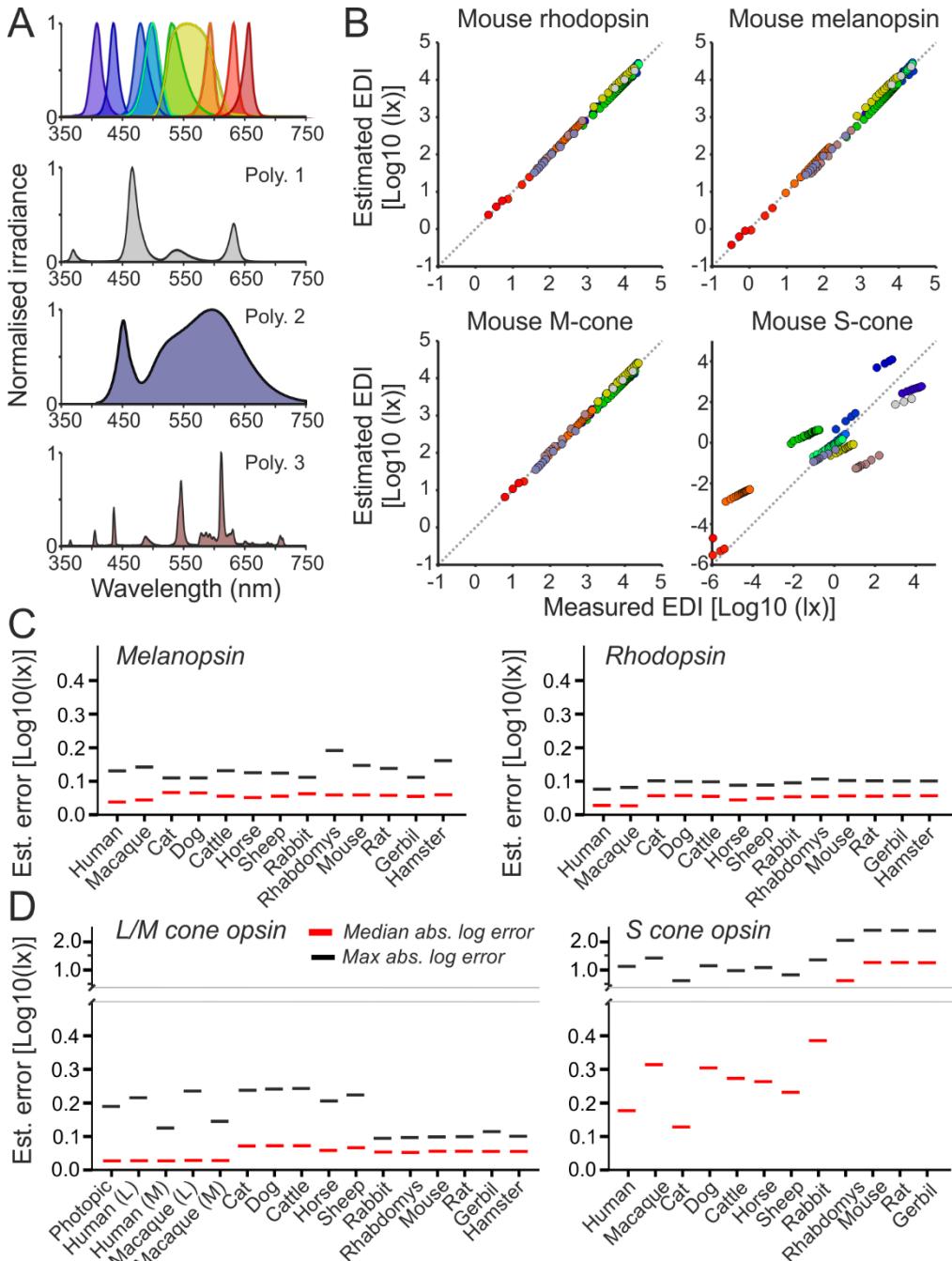
807 57. Hut RA, Scheper A, Daan S. Can the circadian system of a diurnal and a nocturnal
808 rodent entrain to ultraviolet light? *Journal of comparative physiology A*. 2000;186(7-8):707-
809 15.


810 58. CIE 015:2018: Colorimetry, 4th Edition. 2018.

811 59. ISO/CIE 11664-2:2022(E): Colorimetry — Part 2: CIE standard illuminants. 2022.

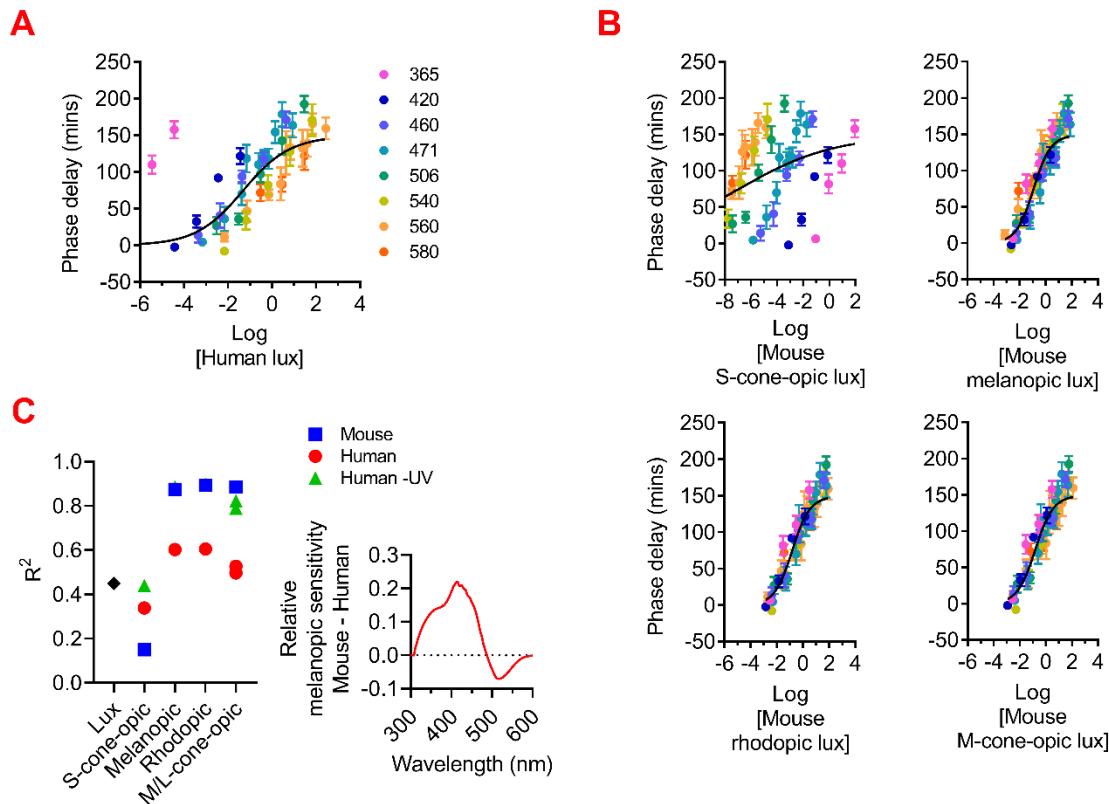
812 60. Woelders T, Wams EJ, Gordijn MCM, Beersma DGM, Hut RA. Integration of color and
813 intensity increases time signal stability for the human circadian system when sunlight is
814 obscured by clouds. *Sci Rep*. 2018;8(1):15214.

815


816

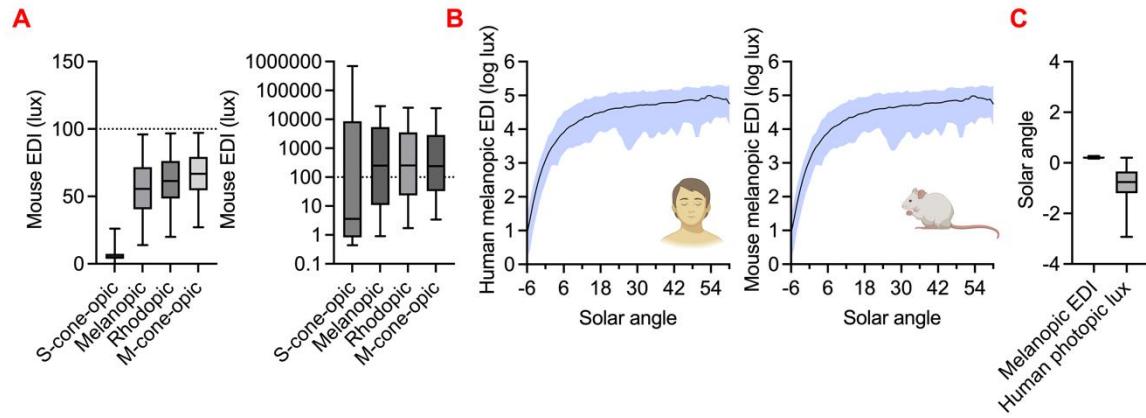
817

818 **Figure 1:** Mammalian melanopsin spectral sensitivities. **(A)** Schematic of action spectra generation. HEK293
 819 cells are incubated with 11-cis or 9-cis retinal and transfected with plasmid DNA containing melanopsin
 820 from the species of interest. Light stimulation drives an increase in intracellular Ca^{2+} via Gq pathway
 821 activation, which causes bioluminescence from the Ca^{2+} indicator mtAequorin. Bioluminescence is detected
 822 by a plate reader. **(B)** Spectra of stimulating lights used to generate action spectra. **(C)** Example time course
 823 showing changes in hOPN4-mediated increases in Ca^{2+} bioluminescence under different stimulating light
 824 spectra and intensities. **(D)** Example Govardovskii template for hOPN4 based on predicted λ_{\max} 481nm. **(E)**
 825 Example irradiance response curves (IRCs) for hOPN4 plotted against uncorrected total photon light
 826 intensity. **(F)** Example irradiance response curves (IRCs) for hOPN4 plotted against corrected effective
 827 photon light intensity weighted for a photopigment with λ_{\max} 481nm. **(G)** Predicted λ_{\max} of mammalian
 828 melanopsins. Data collected with 9-cis retinal and subsequently scaled to λ_{\max} for 11-cis retinal, unless
 829 labelled with '(11-cis)', indicating data was collected with 11-cis retinal.


830

831

832 **Figure 2:** Cross-species light dosimeter validation. (A) Normalised spectral power distributions of ten
 833 narrow- (top) and three broadband stimuli (lower panels) used for device calibration and validation. (B)
 834 Top panels show scatter plots of relationship between mouse α -opsin EDIs, determined based on
 835 spectroradiometric measurements, for stimuli in A across a range of irradiances and the corresponding
 836 estimated melanopic EDIs based on weighted readings from the 10-channel light sensor. (C,D) Plots
 837 showing median and maximum log absolute errors for melanopic (C, left), rhodopsin (C: right), L/M-cone
 838 opic (D, left) and S-cone opic (D, right) EDIs across species.


839

840

841 **Figure 3:** Irradiance response curves for circadian phase shifting in C57 wild-type mouse(37). Phase delays
842 (mean \pm SEM) were plotted against eight narrowband light stimuli with a range of intensities. Light stimuli
843 were presented as human photopic lux in (A), mouse α -optic EDIs in (B). Non-linear four-parameter fit lines
844 were shown in all plots. R^2 for curve fits were shown in (C). In addition to mouse-specific α -optic EDIs, curve
845 fits for human α -optic EDIs were also presented (with and without light stimuli at 365nm). Lower right plot
846 shows comparison of relative melanopic sensitivity for mouse vs human as a function of wavelength.

847
848
849

850

851 **Figure 4:** Cross-species α -opic EDIs across different light sources. **(A)** Comparison of mouse α -opic EDIs
852 across (left, linear Y-axis) 42 broad-spectrum CIE standard white light sources and (right, log-scale Y-axis) 9
853 monochromatic LED light sources matched for 100 human photopic lux. Box plots show mean and ranges.
854 **(B)** Plots of the relationship between solar angle and human (left) and mouse (right) melanopic EDIs for a
855 range of real-world light measures. Natural spectral irradiances over 16 days were collected in the
856 Netherlands (latitude: 53.24°, longitude: 6.54°, summer daylengths >15h) and comprises overcast and clear
857 weather conditions shown with error range(60). **(C)** White light sources in **A** were converted to species-
858 specific melanopic EDIs for 13 species reported in this study. Box plots show mean \pm range of solar angle
859 that represent either 1000 species-specific EDI lux or 1000 human photopic lux matched light inputs.

860

861

862

863

864

865

866

867

868

869

870

Table 1: List of mammal photopigment spectral sensitivities

Species	Species (latin name)	S-cone- opsin λ_{max}	Melano- psin λ_{max}	Rhodop- sin λ_{max}	M- cone- opsin λ_{max}	L-cone- opsin λ_{max}
Mouse	<i>Mus musculus</i>	358	480	498	508	---
Four-striped grass mouse	<i>Rhabdomys pumilio</i>	360	476	493	501	---
Brown rat	<i>Rattus norvegicus</i>	358	481	498	509	---
Syrian hamster	<i>Mesocricetus</i> <i>auratus</i>	---	479	502	504	---
Mongolian gerbil	<i>Meriones</i> <i>unguiculatus</i>	360	491	502	490	---
Cattle	<i>Bos taurus</i>	435	484	500	553*	---
Sheep	<i>Ovis aries</i>	440*	484	500 [#]	549*	---
Horse	<i>Equus ferus caballus</i>	428	482	499	545	---
Cat	<i>Felis catus</i>	450	488	501	553	---
Dog	<i>Canis lupus familiaris</i>	428*	488	506	554*	---
Rabbit	<i>Oryctolagus</i> <i>cuniculus</i>	421*	488	502	509	---
Crab-eating macaque	<i>Macaca fascicularis</i>	415	483	500	535	567

Accepted Rod 500nm

* Adjusted for lens transmission because the raw data come from *in vivo* ERG

References and measurement method in **Supplementary table 1**

Human photopigment spectral sensitivities are based on the CIE metrics for non-visual human light exposure(21): S-cone-opic 447nm, melanopic 488nm, rhodopic 504nm, M-cone-opic 540nm, L-cone-opic 565nm.

871

872

873

874

875

876

877

878 **Table 2:** Formulas used to calculate species and photopigment-specific light exposure metrics

1	Species-specific α -opic irradiance	$E_{e,\alpha,s} = \int E_{e,\lambda}(\lambda) s_{\alpha,s}(\lambda) d\lambda$
2	Species-specific α -opic efficacy of luminous radiation	$K_{\alpha,s,v}^{D65} = \frac{E_{e,\alpha,s}^{D65}}{E_v^{D65}}$
3	Species-specific α -opic equivalent daylight illuminance	$E_{v,\alpha,s}^{D65} = \frac{E_{e,\alpha,s}}{K_{\alpha,s,v}^{D65}}$

879

880

881 **Additional Files**

882 Supplementary Table 1: Literature search for opsin spectral sensitivities in the absence of
883 prereceptoral filtering.

884 Supplementary table 2: Different isoforms of retinal in measurements of OPN4 spectral
885 sensitivities (λ_{max}).

886 Supplementary table 3: Amino acid sequences of mammalian melanopsins used in study.

887 Supplementary table 4: Nucleotide sequences of mammalian melanopsins used in study.

888

889 Supplementary data 1: Literature search for lens transmission for 56 mammalian species.

890

891 Supplementary data 2A: Estimation of *in vivo* spectral sensitivity for each photopigment for
892 each mammalian species.

893 Supplementary data 2B: α -opic efficiency of D65 ($K_{\alpha,s,v}^{D65}$; W/lm) for each photopigment for all
894 target species.