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Abstract 35 

Wild bovids provide important ecosystem functions throughout their ranges. Five wild bovids 36 

remain in Thailand: gaur (Bos gaurus), banteng (Bos javanicus), wild water buffalo (Bubalus 37 

arnee), mainland serow (Capricornis sumatraensis) and Chinese goral (Naemorhedus griseus). 38 

However, their populations and habitats have declined substantially and become fragmented. 39 

Here, we identify potentially suitable habitat for these threatened bovids using ecological 40 

niche models and quantify how much suitable area remains within protected areas. We 41 

combined species occurrence data with environmental variables and used spatially-restricted 42 

Biotic-Abiotic-Mobility frameworks with species-specific and single large accessible areas. We 43 

used ensembles from eight algorithms for generating maps and out-of-sample predictions to 44 

validate model performance against new data. Gaur, banteng, and buffalo models performed 45 

well throughout the entire distribution (≥62%) and in Thailand (≥80%). Mainland serow and 46 

Chinese goral performed poorly for the entire distribution and in Thailand, though a 5 km 47 

movement buffer markedly improved model performance for serow. Particularly large 48 

suitable areas were in Thailand and India for gaur, Cambodia and Thailand for banteng, and 49 

India for buffalo. Over 50% of overall suitable habitat is located outside protected areas, with 50 

just 9% for buffalo in Thai protected areas, highlighting area for potential habitat 51 

management and conflict mitigation. 52 

Introduction 53 

An important task of wildlife research and conservation is to define the distributional 54 

ecology of species and to understand how they relate to the environment, climate and other 55 

organisms (Franklin, 2009). Ecological niche models (ENM) are applied to predict the 56 

geographic distribution suitable for a species by using ecological niche dimensions combined 57 

with species’ presence data (Soberon & Peterson, 2005). ENM can be approached using the 58 

‘Biotic-Abiotic-Mobility’ (BAM) framework, which considers the relationship between the 59 

species' distribution, geographical and climatic factors and explains the influence of factors 60 

on predicted habitat suitability (Peterson & Soberón, 2012). Abiotic (A) factors generally 61 

determine the potential distribution (or fundamental niche) of a species, and the intersection 62 

of abiotic and biotic (B) factors form the realised niche, or the part of this potential 63 

distribution where species actually live (Soberón & Nakamura, 2009). Mobility (M) is the area 64 

accessible by species related to their distribution over periods of time (the ‘accessible area’; 65 

(Barve et al., 2011)). Selecting the extent of species’ accessible areas, including buffer zones, 66 

impacts model prediction results (Anderson & Raza, 2010; Barve et al., 2011). 67 

Wild Bovidae (Mammalia: Artiodactyla) play significant ecological roles in tropical 68 

forests and grasslands (Hassanin, 2014). Bovids are grazers and browsers, modifying plant 69 

diversity and abundance within ecosystems (Ripple et al., 2015; Romero et al., 2015). Large 70 

wild bovids are also the prey of predators such as tigers (Panthera tigris) and leopards 71 

(Panthera pardus) (Simcharoen et al., 2018). Throughout Asia, wild bovid populations are 72 

threatened by poaching (Gray et al., 2018) and habitat loss (Nguyen, 2009), especially in South 73 
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to Southeast Asia (Giam & Wilcove, 2012). Natural habitats have been disturbed by free-74 

grazing livestock, which can lead to interbreeding (e.g. between domestic and wild water 75 

buffalo, (Kaul et al., 2019), increased competition for food and natural resources (Bhandari et 76 

al., 2022), and increased risk of disease transmission between wildlife and livestock (Hassell 77 

et al., 2017). Moreover, habitat destruction is likely to influence the species' distribution and 78 

behaviour adaptation, which could lead to shared natural resources and conflict between 79 

humans and wild bovids. 80 

In South and Southeast Asia, there are 27 recognised bovid species (IUCN, 2021), of 81 

which seven species are listed as vulnerable, five as endangered and three as critically 82 

endangered with extinction. Thailand has five bovid species (gaur; Bos gaurus, banteng; Bos 83 

javanicus, wild water buffalo; Bubalus arnee, mainland serow; Capricornis sumatraensis and 84 

Chinese goral; Naemorhedus griseus) remaining in their natural habitat. These species are 85 

distributed in other countries from South to Southeast Asia (Figure 1) and also have different 86 

suitable habitats. For example, gaur can be found in evergreen forest or grassland and range 87 

from India, Nepal, across Southeast Asia to Peninsula Malaysia (Duckworth et al., 2016). 88 

Mainland serow also has a wide distribution from Nepal to Sumatra in Indonesia through hill 89 

forests to shrubland habitats (Phan et al., 2020). Nevertheless, the prediction of the remaining 90 

habitat quality and suitability in Thailand and other countries have been conducted only in 91 

some protected areas (Chaiyarat et al., 2019; Pintana & Lakamavichian, 2013), but not at the 92 

regional or national level. 93 

Species distribution modelling provides an overview of potential habitats for 94 

threatened species and aids in conservation planning (Catullo et al., 2008). For instance, 95 

previous studies have focused on identifying potentially high-quality habitat connectivity and 96 

fragmentation (Crooks et al., 2011) as well as predicting global biodiversity trends (Araújo et 97 

al., 2019). In Thailand, there are several studies that have predicted habitat suitability for 98 

some of these five wild bovids in local areas (Prayoon et al., 2021), but habitat suitability 99 

studies for larger extents across their distribution are lacking. 100 

Here, we built ENM for the five Thai wild bovid species: gaur, banteng, wild water 101 

buffalo, mainland serow and Chinese goral at two scales: first, at the regional scale 102 

throughout the entire distribution and, second, at the country scale in Thailand. We aim to 1) 103 

identify the potential distribution for these five species in South to Southeast Asia, and 2) 104 

identify conservation areas in their geographical distribution, with a particular focus on 105 

Thailand. 106 

Materials and methods 107 

Our workflow consisted of two main processes of data preparation and model building 108 

(summarised in Figure S1) that generated habitat suitability maps for all species and 109 

accessible areas used. Data preparation consisted of gathering the species occurrence data 110 

and environmental data and selecting the accessible areas. Then, the model building 111 

consisted of pre-processing, processing and post-processing steps. 112 
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Study area 113 

The study area consists of 13 Asian countries: Bhutan, Bangladesh, Cambodia, China, 114 

India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Sri Lanka, Thailand and Vietnam (Figure 1), 115 

that cover the distribution of gaur, banteng, wild water buffalo, mainland serow and Chinese 116 

goral based on the literature (Table S1). 117 

 118 
Figure 1 Species occurrence data before thinning (yellow circles), IUCN polygons (blue areas) 119 

and study areas (grey areas) used in model building for five wild bovid species. First, a 120 

common large ‘accessible area’ (A) was used for all species for model building, and then 121 

species-specific accessible areas (B-F) for individual species.Species Occurrence data 122 

We compiled species occurrence data collected from GPS records collected between 123 

January 2000 and June 2021 from researchers, government, NGOs (World Wildlife Fund, 124 

Wildlife Conservation Society, Freeland [Ash et al. (2021)], Panthera, Fauna & Flora 125 

International, Friends of Wildlife and RIMBA) and open data sources, including GBIF 126 

(https://www.gbif.org/) and eMammal (https://emammal.si.edu/). The data coverage by 127 

country can be found in Table 1. The occurrence data were collected through observation of 128 

animal signs (e.g. footprint and dung) during forest patrols, direct observation during wildlife 129 

surveys, camera trapping, and radio-collar signals (Table S2). We used only the research grade 130 

observation for GBIF data, which included the photo for species identification. We filtered all 131 

the occurrences and excluded occurrence records outside the species-specific accessible area, 132 

duplicated records from the same species and museum collections. 133 
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Table 1 The number of raw and after spatial thinning occurrence points is shown by species 134 

and country.135 
 Raw data 

Country Bos gaurus Bos javanicus Bubalus arnee Capricornis sumatraensis Naemorhedus griseus Total 

Bangladesh X X X ? X 0 

Bhutan 1 X ? ? X 1 

Cambodia 44 355 ? 38 X 437 

China ? ? X 109 301 410 

India 286 X 78 2 ? 366 

Indonesia X 6 X ? X 6 

Laos 2 1 X 11 X 14 

Malaysia 1,067 ? X 603 X 1,671 

Myanmar 114 5 ? 99 ? 218 

Nepal 4 X 1 2 X 7 

Sri Lanka X X 21 X X 21 

Thailand 24,258 5,383 50 805 16 30,512 

Vietnam 1 ? ? ? ? 1 

Grand Total 25,777 5,751 150 1,669 317 33,664 

       

 Thinning data 

Country Bos gaurus Bos javanicus Bubalus arnee Capricornis sumatraensis Naemorhedus griseus Total 

Bangladesh X X X ? X  

Bhutan 1 X ? ? X 1 

Cambodia 14 48 ? 28 X 90 

China ? ? X 64 130 194 

India 244 X 64 2 ? 310 

Indonesia X 6 X ? X 6 

Laos 2 1 X 8 X 11 

Malaysia 26 1 X 49 X 76 

Myanmar 53 2 ? 51 ? 106 

Nepal 4 X 1 1 X 6 

Sri Lanka X X 20 X X 20 

Thailand 2,387 303 7 185 5 2,887 

Vietnam 1 ? ? ? ? 1 

Grand Total 2,732 361 92 388 135 3,708 

       

 136 

Colour definitions  

Number species presence with occurrence data 

? species presence without occurrence data 

X 
 no species presence 

  137 
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Environmental variables 138 

Hypothesized environmental variables were selected based on species’ habitat and 139 

distribution related literature Table S1. We used 28 variables (supplementary material, Table 140 

S3) for model construction, including 19 bioclimatic variables (Booth et al., 2014) (average for 141 

1970-2000) from WorldClim v2 (Fick & Hijmans, 2017), elevation (Shuttle Radar Topography 142 

Mission-SRTM) from WorldClim (Fick & Hijmans, 2017), slope (Amatulli et al., 2020), five land 143 

cover fractions (grass, tree, urban, water and crop) (Buchhorn et al., 2019), human population 144 

density (Stevens et al., 2015) and greenness through the normalized difference vegetation 145 

index (NDVI) (Didan, 2015). All layers were processed using the geographic coordinates 146 

system (Datum WGS84) and ~1 km2 spatial resolution. We transformed the human population 147 

density using logarithm base 10 to adjust for skewness. We rescaled the NDVI layer by 148 

multiplying all values with a scale factor (0.0001), based on the Moderate Resolution Imaging 149 

Spectroradiometer (MODIS) User’s guidelines (Didan et al., 2015). 150 

Accessible areas 151 

The accessible area refers to the parts of the world accessible to species via dispersal 152 

over time (Barve et al., 2011). The extent of the accessible area and the inclusion of a buffer 153 

zone have an important effect on ENM performance (Anderson & Raza, 2010; Barve et al., 154 

2011). We used two accessible area sizes to delimitate our modelling extent (Figure 1). The 155 

first larger accessible area (hereon LA) includes most of the Asian continent and its 156 

ecoregions, and all species distributions are included as a common extent. The second 157 

accessible area was more restricted and cropped based on individual species-specific 158 

distributions (hereon SSA) from literature reviews (Table S1), IUCN polygons or ‘ranges’ (IUCN, 159 

2020) and the terrestrial ecoregions where they occur. For creating the extent, we 160 

downloaded the current IUCN range maps for each species, then intersected those on 161 

ecoregions (Olson et al., 2001), then combined the results with selected ecoregions based on 162 

biogeographic knowledge of the species distributions and habitat preference from the 163 

literature reviews. For example, gaur habitat typically contains moist evergreen, semi-164 

evergreen, and dry evergreen forests (Steinmetz et al., 2008; Tanasarnpaiboon, 2016), so we 165 

included these regions in our accessible areas. Further details on ecoregions included in 166 

accessible areas are in supplementary material, Table S4. To reduce overprediction and make 167 

our predictions closer to realised niche estimates, we used an occurrences-based threshold 168 

(OBR) method with ensemble models from (Mendes et al., 2020) for creating the spatially 169 

restricted ENM (hereon MSDM). OBR is an a posteriori method that restricts the suitable areas 170 

of our final ensemble models based on presence and the largest nearest neighbour distance 171 

among pairs of occurrences. Overall, we built four combinations between two accessible 172 

areas with and without MSDM methods for each species, including 1) No MSDM-SSA; 2) No 173 

MSDM-LA; 3) MSDM-SSA and 4) MSDM-LA. 174 

Model building 175 
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We processed the species occurrence files and environmental datasets in R 4.0.1 (R 176 

Core Team, 2020). We developed reproducible ecological niche models with optimized 177 

processing times using the ENMTML package (Andrade et al., 2020), following three main 178 

steps: 1) pre-processing, 2) processing and 3) post-processing. 179 

In pre-processing, we performed occurrence thinning using 2 times the cell-size (1 180 

km2) (Velazco et al., 2019) to reduce clustering of species records and sampling bias. We used 181 

principal component (PC) analysis (PCA) to reduce the collinearity of the predictors. We 182 

assigned species’ accessible areas to determine the species’ distributions using a mask 183 

function. We used random sampling to create pseudo-absence background points in a 1:1 184 

ratio with presence points (Barbet-Massin et al., 2012). The occurrence and pseudo-absence 185 

data was divided into two sets for fitting the model (75%) and evaluating the fitted models 186 

(25%), using the bootstrapping partition method with 10 replications for each algorithm. 187 

In the processing step, eight algorithms were used to build the ENMs, namely: 188 

BIOCLIM (Booth et al., 2014), Generalized Linear Models (McCullagh & Nelder, 1989), 189 

Generalized Additive Models (Hastie, 2018), Random Forest (Liaw & Wiener, 2002), Support 190 

Vector Machine  (Karatzoglou et al., 2004), Maximum Entropy default (Phillips et al., 2006), 191 

Maximum Likelihood (Royle et al., 2012) and Bayesian Gaussian Process (Golding, 2014). All 192 

models used the default settings from the ENMTML package, which included the functions 193 

from different packages (e.g. dismo, maxnet) based on the algorithms that use to fit the 194 

models. The data type used for each algorithm is in supplementary materials, Table S5. 195 

In the post-processing step, we created ensemble models using the weighted average 196 

(WMEAN) method based on the True Skill Statistic (TSS) values for building final habitat 197 

suitability and binary maps. The benefits of ensemble models are 1) robust decision-making 198 

(Ahmad et al., 2020); 2) reducing uncertainty (Marmion et al., 2009); and 3) a combination of 199 

several models into one model prediction (Kindt, 2018). We used TSS to calculate threshold 200 

values to convert habitat suitability maps into binary suitability maps (0 = unsuitable and 1 = 201 

suitable). We used TSS and area under the curve (AUC) for evaluating model performance. 202 

The TSS threshold is calculated using the maximum summed specificity and sensitivity and is 203 

not based on prevalence, where an equal TSS score for given models means similar 204 

performance (Allouche et al., 2006). Therefore, we selected the final models from the best 205 

TSS of weighted average ensemble models. We assessed the model's accuracy by plotting a 206 

new dataset of species occurrences obtained from camera traps and human observations 207 

(https://www.gbif.org/) on the binary maps. Because, for example, gaur have been recorded 208 

to walk up to 6.3 km a day (mean 1.6 km (Rizal et al., 2020)), we created a 5 km buffer zone 209 

measured from the edges of the suitable pixels to include occurrences within the travel 210 

distance of wild bovids' movement (Ahrestani & Karanth, 2014; Gardner et al., 2014). The 211 

percentage of points inside and outside the suitable areas and the buffer zone was calculated 212 

for each species. We present all the results, then only models with high prediction accuracy 213 

(greater than 80%,(Zhang et al., 2015)) are selected for further analyses. The total suitable 214 

areas of the best TSS binary map models were calculated using the zonal function in the raster 215 
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R package (Hijmans, 2023). Then, we summed the pixels of the best TSS binary maps to 216 

generate the map of species number.  217 

Protected area analyses 218 

The source for our protected areas map was the World Database of Protected Area 219 

(WDPA) (UNEP-WCMC & IUCN, 2021). We classified protected areas based on IUCN protected 220 

areas from WPDA into 8 categories, including categories 1 to 6 as IUCN management 221 

categories I to VI; category 7 as ‘not applicable’, which includes ‘not reported’, ‘not applicable’ 222 

and ‘not assigned’ protected areas; and category 8 as non-protected areas, which are the 223 

remaining areas that have not been classified as IUCN categories 1 to 7 (UNEP-WCMC and 224 

IUCN, 2021). Then, we used the zonal function in the Raster package to calculate overlapping 225 

areas between the suitable areas and protected areas for each species.  226 

We calculated the percentage of suitable areas in WDPA polygons using the 227 

exact_extract function in exactextractr package (Baston et al., 2021) for extracting the 228 

suitable areas (values = 1) from binary map rasters in each WDPA polygon. Then, we classified 229 

each PA into 5 different suitability categories based on the percentage of suitable habitat in 230 

the PA: low suitability (0 - 20%); low - medium suitability (>20 - 40%); medium suitability (>40 231 

- 60%); high suitability (>60 - 80%) and very high suitability (≥80%), and selected only the PAs 232 

that have the proportion of suitable area larger than species home range in the result. We 233 

have provided the code for creating the models in a GitHub repository. 234 

Results  235 

We compiled 33,664 occurrence records. After filtering and spatial thinning, we used 236 

3,708 points for modelling: 2,732 for gaur, 361 for banteng, 92 for wild water buffalo, 388 for 237 

mainland serow, and 135 for Chinese goral. The majority of the thinning occurrences (77%) 238 

were collected in Thailand, India and other countries in mainland SEA; see Table 1Error! 239 

Reference source not found. for details on the data coverage by country and supplementary 240 

materials Table S10 for details on the study sites.  241 

We found that the PCA reduced the 28 environmental variables into 12 PCs that 242 

explained 95% of the environmental variance in the variables for the LA models for all species. 243 

The PCs for SSA models explained more than 96% of the total variance and the PC number 244 

varied by species, comprising 13 PCs (wild water buffalo), 11 PCs (gaur, mainland serow), and 245 

10 PCs (banteng, Chinese goral). The bioclimatic variables were important variables in all 246 

species models. For LA models, the first two axes (PC1 and PC2) have high contributions from 247 

the annual mean temperature (bio01), mean temperature of the coldest month (bio06), mean 248 

temperature of the driest quarter (bio09) and mean temperature of the warmest quarter 249 

(bio10). The first two axes of SSA models showed high positive contributions from mean 250 

temperature of the coldest month (gaur), minimum temperature of coldest month (banteng, 251 

mainland serow), annual mean temperature (wild water buffalo, mainland serow), and 252 

precipitation of the wettest quarter (Chinese goral). We also found that NDVI, elevation, slope 253 
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and human population density have less effect on explaining the variability for the first two 254 

PCs for all species. The correlations between PCs and individual environmental variables, PC 255 

biplots and percentage of explained variance are summarised in supplementary materials, 256 

Table S6 and Figure S2. 257 

Ecological niche models 258 

Overall, all ensemble models showed high performance both for TSS and the area 259 

under the curve (AUC) with the highest performing models over 0.8 for all species (Table 2). 260 

Models with species-specific accessible areas were not always the best performing models, 261 

but most ensemble models performed above 0.7 TSS. The habitat suitability prediction maps 262 

using the best model ensembles are in supplementary materials, Figure S3 (SSA) Figure S4 263 

(LA), Figure S5 (selected the best model of SSA and LA) and the binary maps which were used 264 

for calculating the suitable area in Figure S6. The performance of spatially restricted 265 

ensembles was higher in comparison with the No MSDM models, as the TSS was improved 266 

for banteng, Chinese goral and wild water buffalo. The lowest performing model for wild 267 

water buffalo was the No MSDM-SSA (TSS = 0.57). The best model for gaur was No MSDM-268 

LA, banteng and Chinese goral is MSDM-LA, wild water buffalo is MSDM-SSA, and mainland 269 

serow is No MSDM-SSA. We found that all species have small predicted suitable habitats. 270 

Moreover, all species models predicted less than 50% of the suitable areas inside PAs. 271 

Table 2 True Skill Statistics (TSS) and Area Under the Curve (AUC) values of the weighted 272 

average ensemble, and the threshold values for binary maps for five species classified by 273 

accessible area type and MSDM method.Best performing models for each accessible area by 274 
TSS are shown in Boldface. 275 

 
Large accessible area   Species specific accessible area 

 
No MSDMa MSDM (OBR)b  No MSDMa MSDM (OBR)b 

Species 

TSS AUC TSS AUC  TSS AUC TSS AUC 

Score Threshold Score Score Threshold Score  Score Threshold Score Score Threshold Score 

Gaur 
Bos gaurus 0.92 0.49 0.99 0.92 0.44 0.99  0.88 0.39 0.98 0.88 0.41 0.98 

Banteng 
Bos javanicus 0.93 0.55 0.99 0.94 0.41 1  0.85 0.33 0.96 0.83 0.42 0.97 

Wild water 
buffalo 
Bubalus arnee 0.67 0.47 0.88 0.72 0.6 0.9  0.57 0.58 0.83 0.85 0.44 0.95 

Mainland serow 
Capricornis 
sumatraensis 0.87 0.55 0.97 0.76 0.47 0.94  0.93 0.57 0.98 0.93 0.52 0.98 

Chinese goral 
Naemorhedus 
griseus 0.91 0.29 0.98 0.91 0.59 0.98  0.87 0.47 0.96 0.9 0.39 0.97 

a spatially restricted ENM  276 
b occurrences-based threshold 277 
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Figure 2 Total of the suitable area in km2 for each species and countries. Blue is the species-278 

specific accessible area (SSA) and grey is the large accessible area models (LA) (see details in 279 

the supplementary Table S7).  280 

The total of the suitable areas in km2 for each species and country are shown in Figure 281 

2 and Suitable areas calculated from the best model are in supplementary materials Table S8 282 

and the IUCN protected areas for all types of models are in Figure S7. 283 

Our model’s out-of-sample predictions with new species occurrences demonstrated a 284 

higher prediction accuracy within Thailand than the entire distribution, and this was further 285 

improved by including 5 km buffer zones, with the exception of Chinese goral, which exhibited 286 

poor accuracy across all scales (Table 3 and Figure 3). Implementing a buffer zone improves 287 

the accuracy of all four remaining species. For large herbivore species gaur, banteng and wild 288 

water buffalo, the model cropped to Thailand showed a higher accuracy (>80%) compared to 289 

the entire distribution (~60-80%). We selected only model predictions with a high accuracy 290 

percentage, greater than 80%, for further analyses. As a result, three species, including gaur, 291 

banteng, and wild water buffalo, were retained, while two species, mainland serow and 292 

Chinese goral, were excluded from the rest of the study. Furthermore, we cropped the entire 293 

distribution to focus only on the result within Thailand as the number of data collection and 294 

model predictions is higher compared to the entire species distribution. The result of the 295 

entire distribution for all species can be found in the supplementary material, Figure S3 and 296 

Figure S4.  297 

  298 
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Table 3 Comparison of the accuracy of the selected best modelsa in predicting out-of-sample 299 

data for the entire accessible areas range and Thailand.300 

 

 

Total 

No buffer   Buffer 

Entire  accessible areas Unsuitable Suitable Accuracy % 
  

Unsuitable Suitable Buffer 5 km Accuracy % 

B. gaurus (Gaur) 221 85 136 62   23 136 62 90 

B. javanicus (Banteng) 12 4 8 67   2 8 2 83 

B. arnee (Buffalo) 35 4 31 89   0 31 4 100 

C. sumatraensis (Mainland serow) 21 17 4 19   7 4 10 67 

N. griseus (Chinese goral) 10 9 1 10   7 1 2 30 

  No buffer 
  

Buffer 

Thailand Total Unsuitable Suitable Accuracy %   Unsuitable Suitable Buffer 5 km Accuracy % 

B. gaurus (Gaur) 52 8 44 85   2 44 6 96 

B. javanicus (Banteng) 10 2 8 80   0 8 2 100 

B. arnee (Wild water buffalo) 1 0 1 100   0 1 1 100 

C. sumatraensis (Mainland serow) 14 9 5 36 
  

2 4 8 86 

N. griseus (Chinese goral) 2 2 0 0   2 0 0 0 

a The best models for gaur is No MSDM-LA, banteng is MSDM-LA, wild water buffalo and Chinese goral is 301 
MSDM-SSA and mainland serow is No MSDM-SSA.  302 

Nearest distance from out of sample points to suitable area 303 

  Distance (km) 

Species point Min Mean Max 

Gaur 52 0.0047 1.54 22.4 

Banteng 10 0.0323 4.72 39.9 

Wild water buffalo 1 0.811 0.811 0.811 

Mainland Serow 14 0.00668 6.07 38.1 

Chinese goral 2 0.147 1.54 2.93 
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Figure 3 Model prediction testing for five bovid species (A-E) by calculating the percentage of 304 

the out of sample points that fall inside the model predicted suitable areas (blue). The model 305 

fitting datasets (red) were mainly within the suitable areas compared to the new occurrence 306 

dataset (green). IUCN ranges show greater areas than the predictions for mainland serow and 307 

Chinese goral. Some of the occurrence data were distributed outside both the model 308 

predicted suitable area and IUCN range. 309 
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 310 
Figure 4 Habitat suitability prediction maps of three wild bovids species in Thailand: gaur (B. 311 

gaurus), banteng (B. javanicus) and wild water buffalo (B. arnee) species (A-C) using the best 312 

model from the weighted average ensemble. The value ranges from 0-1: yellow represents 313 

low suitability and dark brown represents high suitability. Interactive maps are provided in 314 

the online supplementary material (link). 315 

Identifying priority areas for conservation 316 

Most suitable habitats in protected areas are located in IUCN category Ia (Strict nature 317 

reserve), Ib (Wilderness area) and II (National Park) areas for the best TSS models for all 318 

species, while IUCN category V (Protected landscape or seascape) has the least. Overall, more 319 

than half of the species' suitable habitat is not under any form of protection defined by the 320 

WDPA (supplementary materials, Table S8, Figure S8). The proportion of the suitable area in 321 

each WDPA of the best models from SSA and LA for each species are presented in 322 

supplementary materials, Figure S9 and Figure 10. 323 

In Thailand, we identified a high percentage (≥80%) of suitable area of Thailand for 324 

gaur in 122 PAs (74,268 km2; 15% of Thailand), banteng in 102 PAs (59,528 km2; 12% of 325 

Thailand), and wild water buffalo in 3 PAs (559 km2; 0.1 % of Thailand). A high proportion of 326 

the suitable area for gaur and banteng is in Thungyai Naresuan, Kaengkrachan and Huai Kha 327 

Khaeng, and for wild water buffalo in Phu Wua WS and Dong Yai WS in eastern DPKY-FC 328 

(Figure 4 and Figure 5). The hotspots for five species can be found in supplementary materials, 329 

Figure S11. 330 

Proportions range from 0 (all unsuitable) to 1 (all suitable), with suitability determined by 331 

thresholds from species best performing models. (A) gaur (Bos gaurus), (B) banteng (Bos 332 

javanicus), (C) wild water buffalo (Bubalus arnee). 333 
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 334 

Figure 5 Estimated species richness of three wild bovids in Thailand. The species are gaur, 335 

banteng, and wild water buffalo. Frames A-C focus on (A) Western Forest Complex 336 

(WEFCOM), (B) Dong Phayayen-Khao Yai Forest Complex (DPKY-FC) and (C) Eastern Forest 337 

Complex, where the overlapping suitable areas of all species (n=3). Western, Dong Phayayen-338 

Khao Yai and Eastern forests have suitable areas for gaur, banteng and wild water buffalo for 339 

both inside PAs and also in the surrounding areas. 340 

We found that the highest percentage of suitable area was comprised of mixed 341 

deciduous forest for all species, followed by evergreen forest for gaur and banteng, and dry 342 

dipterocarp forest for wild water buffalo. We found a percentage of non-forest areas 343 

identified from the total suitable for all species: wild water buffalo (71%), banteng (33%), and 344 

gaur (24%). For more details of forest types by suitable areas, see Table 4 and Figure S12.  345 

346 
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Table 4 The suitable areas of five bovid species classified by forest types in Thailand. 347 

 Gaur Banteng Wild water buffalo Mainland serow Chinese goral 

Forest types 

(Bos gaurus) (Bos javanicus) (Bubalus arnee) (Capricornis 

sumatraensis) 

(Naemorhedus 

griseus) 

km2 % km2 % km2 % km2 % km2 % 

Bamboo Forest 390 0.22 348 0.19 178 0.13 250 0.37 2 0.02 

Beach Forest 3 - 8 - 26 0.02 1 - - - 

Dry Dipterocarp Forest 11,119 6.26 12,876 7.13 7,365 5.43 1,415 2.07 3,546 23.91 

Dry Evergreen Forest 20,730 11.68 19,209 10.63 5,944 4.38 13,893 20.3 1,027 6.93 

Freshwater Swamp Forest 66 0.04 134 0.07 24 0.02 - - - - 

Mangrove Forest 609 0.34 1,072 0.59 1,028 0.76 121 0.18 - - 

Mixed Deciduous Forest 66,132 37.25 59,211 32.77 18,837 13.88 25,243 36.88 7,347 49.54 

Moist Evergreen Forest 14,802 8.34 15,729 8.7 1,975 1.46 12,213 17.84 - - 

Montane Forest 16,693 9.4 8,497 4.7 812 0.6 7,532 11 1,878 12.66 

Peat Swamp Forest 49 0.03 2 - 201 0.15 - - - - 

Pine Forest 634 0.36 185 0.1 87 0.06 78 0.11 15 0.1 

Savanna 548 0.31 348 0.19 108 0.08 312 0.46 7 0.05 

Secondary Forest 2,017 1.14 1,856 1.03 1,189 0.88 602 0.88 153 1.03 

Teak Plantation 846 0.48 1,045 0.58 919 0.68 60 0.09 12 0.08 

Vegetation on Pen Rock 

Platform 201 0.11 208 0.11 118 0.09 90 0.13 2 0.01 

Other Plantations 37 0.02 42 0.02 29 0.02 9 0.01 - - 

Non-forest Area 42,649 24.02 59,923 33.16 96,883 71.38 6,631 9.69 842 5.68 

Total 177,526 100 180,693 100 135,725 100 68,452 100 14,831 100 

Discussion 348 

We modelled the potential distribution for the five threatened wild bovid species, 349 

distributed in East, South and Southeast Asia. Our aim was to build predictive models to 350 

identify conservation areas, and potential species richness maps in their entire geographical 351 

distribution. However, the model predictions were better for Thailand, where most data were 352 

from for all but Chinese goal (Table 3), therefore we were focus on Thailand. We found our 353 

models were able to predict the presence of out of sample observations well for three species, 354 

gaur, banteng, and wild water buffalo throughout the entire distribution (≥62%), but not 355 

mainland serow or Chinese goral (≤19%). We identified that suitable areas were fragmented 356 

and often (50%) located outside PAs. Those suitable areas outside PAs could possibly be 357 

managed as corridors or buffer zones to connect currently fragmented bovid populations, 358 

thereby enhancing long-term wild bovid conservation success (Karanth, 2016; Penjor et al., 359 

2021) which requires further investigations. For example, a corridor was built within DPKY-FC 360 
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and showed the possibilities of connecting the western forest complex and Kaengkrachan NP 361 

to conserve the endangered tiger population (Sukmasuang et al., 2020; Suttidate et al., 2021).  362 

Our study found that most suitable areas for gaur were similar to IUCN range 363 

assessments (Duckworth et al., 2016) and consistent with studies that have confirmed species 364 

presences, such as in Thailand’s PAs (Prayoon et al., 2021), Myanmar (Hein et al., 2020) and 365 

Western Ghats in southwestern India and Manas WS in the Himalayan foothills (Choudhury, 366 

2002). However, there are differences. Our study predicted larger gaur suitable habitats in 367 

Thailand inside (~82,400 km2) and outside (95,000 km2) PAs than Prayoon et al. (2021), who 368 

predicted 39,508 km2 of total suitable habitat. Choudhury (2002) predicted their distributions 369 

in Western Ghats, Central and North-eastern India which included larger than our predictions. 370 

Our predictions used NDVI and land coverage fractions (Table S3) for predicting greenness, 371 

which may be useful for predicting the vegetation quality and availability for ungulates 372 

(Borowik et al., 2013). However, NDVI is difficult to differentiate vegetation variations (Didan 373 

et al., 2015; Martinez & Labib, 2023), such as between specific agricultural areas, grassland, 374 

and dense forest canopy. This may include other vegetation types other than the species' 375 

habitat in suitable areas and estimated larger suitable areas predicted in non-forest areas and 376 

non-PAs to be identified in our study, compared to Prayoon et al’s study. Other studies 377 

suggest that gaur does use crop plantations or man-made grasslands, which may increase the 378 

suitable areas in our prediction, even if these are not their natural habitats and lead to conflict 379 

between humans and gaur (Chaiyarat et al., 2021). 380 

Our best model predicted larger suitable areas (446,075 km2) for banteng than the 381 

IUCN-SSC report released in 2010 (~ 209,000 km2) (IUCN-SSC AWCS Group, 2010). We found 382 

a high percentage of predicted suitable areas in Eastern Plains Landscape (ELP) and Chhaeb 383 

WS in Cambodia; the former supports the likely largest banteng population globally (Gray et 384 

al., 2012). However, our results showed low habitat suitability in Sundaic Southeast Asia, with 385 

just 2% of the total suitable area in Indonesia (mainly in Alas Purwo NP, Java) and 2% of the 386 

total suitable area in Malaysia. Banteng populations and habitats in Southeast Asian islands 387 

(Borneo, Java, and Bali) are threatened due to hunting for horn and meat consumption and 388 

habitat loss (Dewi et al., 2020). In Thailand, we found high suitability similar to previous 389 

studies in Eastern (Menkham et al., 2019) and Western forest complexes (Jornburom et al., 390 

2020), including reintroduction areas in Salak Pra WS (Chaiyarat et al., 2019) and where recent 391 

recolonisation by natural population movement has occurred in Mae Wong NP (Phoonjampa 392 

et al., 2021). 393 

Wild water buffalo has been domesticated and bred as livestock, making it hard to 394 

distinguish between the free-grazing domestic buffalo and wild water buffalo as 395 

domesticated animals may replace wild animals in suitable habitats and cause the high 396 

suitable area prediction outside PAs, especially in overlapping habitats (Zhang et al., 2020). 397 

We estimate the highest percentages of suitable areas at Kaziranga NP in India, currently with 398 

the largest population of wild water buffalo (Kaul et al., 2019). Grasslands and flood plain 399 

areas of Manas NP (500 km2) and Kaziranga NP (>850 km2) in India contain the most suitable 400 
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habitat and are the main population strongholds for wild water buffalo (Choudhury, 2014). In 401 

Thailand, this type of habitat can be found in many places, but it is not often represented in 402 

protected areas. Wild water buffalo are only found in Huai Kha Kheang WS parts of the 403 

Western Forest Complex. Our model predicts that only 43% of Huai Kha Kheang Wildlife 404 

Sanctuary is suitable for this species, primarily because the floodplains are mainly situated 405 

close to the mainstream in the middle of the PA. Additionally, the population has remained 406 

constant for decades, which could be attributed to a single population group or constraints 407 

within suitable habitats. 408 

The three selected species showed overlapping suitable areas in the Western Forest 409 

Complex, Eastern Forest Complex, and Dong Phayayen-Khao Yai Forest Complexes (DPKY-FC). 410 

These forest complexes encompass extensive areas of high wildlife biodiversity and diverse 411 

forest types, including several contiguous protected areas (PAs) situated at the borders of 412 

Cambodia and Myanmar. The Western Forest Complex is the largest conservation area in 413 

Thailand where these wild bovids still exist, while the DPKY-FC maintains a higher population 414 

of gaur as they are mainly covered by evergreen forest. The Eastern Forest Complex sustains 415 

a large population of banteng because most of the main vegetation consists of deciduous and 416 

dipterocarp forest. Gaur uses a diversity of types of habitats and prefers denser canopy at 417 

higher elevation than banteng, which tends to inhabit in dry and open habitats such as dry 418 

dipterocarp and deciduous forests (Gray & Phan, 2011; Steinmetz, 2004). Wild water buffalo 419 

also shares overlapping areas with these two species, despite its distribution being found 420 

exclusively in Huai Kha Khaeng Wildlife Sanctuary. We recommend protecting these 421 

important suitable habitats to ensure the protection of wild bovids. This may involve 422 

implementing active patrolling to reduce illegal intrusions, snare removal and habitat 423 

management based on their diet diversity (McShea et al., 2019). Additionally, one option to 424 

maintain wild water buffalo populations is to reintroduce them into their historical range, 425 

from which they have been extirpated. This method could be evaluated by combining 426 

predicted suitable areas with several important factors such as vegetation types, forage 427 

biomass, carrying capacity and hunting pressure (Bora et al., 2024).  428 

In this study, we included all subspecies data points in our model ensembles as we aim 429 

to extrapolate and predict the entire range of species’ habitat suitability, but this may increase 430 

uncertainty (Dormann, 2007). These five bovids have multiple subspecies, including 3 431 

subspecies of gaur (Duckworth et al., 2016), banteng (Gardner et al., 2016) wild water buffalo 432 

(Kaul et al., 2019) and mainland serow (Mori et al., 2019), and 2 subspecies of Chinese goral 433 

(Duckworth et al., 2008). Subspecies may vary in niche, climate and biological interactions 434 

that could affect the model predictions. The low habitat suitability of our study in Borneo for 435 

banteng could be because climatic and geographic conditions differ for B.j. lowi compared to 436 

those in mainland Asia, affecting model transferability across different regions (Zhu et al., 437 

2021). Equally, Mori et al. (2019) suggest that Chinese goral (N. griseus) should be reclassified 438 

within Brown goral (N. goral) together and Burmese goral (N. evansi) that together with N. 439 

griseus should be split to become an individual species. Future analyses must consider these 440 
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taxonomic reclassifications. However, we modelled species level habitat suitability, rather 441 

than the subspecies, as we assume that there is less likely to be habitat and environmental 442 

condition variation at the subspecies level for these bovids (Smith et al., 2019). 443 

We found that using the MSDM OBR technique showed a better predicted suitable 444 

area of the ecological niche, closer to the real distribution for species with more restricted 445 

ranges like banteng, wild water buffalo and Chinese goral, with higher performance TSS values 446 

compared to No MSDM models. We recommend restricting the accessible area for predicting 447 

wild water buffalo potential habitat to reduce overprediction caused by overlapping areas 448 

with domestic water buffalo. 449 

We also used ensemble approaches, to obtain better predictive performance than 450 

from any single model type, but further analyses could also look at individual model results 451 

using different parameters, such as differing pseudo-absence background point ratios. The 452 

equal ratio of presence to pseudo-absence (1:1 ratio) has been used in several types of model 453 

like general linear models, artificial neural networks, and Maxent models, and it is also 454 

recommended for use in ensemble models when dealing with small sample sizes (Liu et al., 455 

2019).  456 

Limitations 457 

We acknowledge sampling deficiencies across the regions. We had fewer occurrences 458 

in Vietnam, Laos, Myanmar and Indonesia compared to Thailand, from which a large number 459 

of our data points came (30,512 points in Thailand, 3,152 points outside Thailand, Error! 460 

Reference source not found.). Occurrence data based on data accessibility may have 461 

sampling bias, particularly with clustered points for gaur, banteng, and mainland serow. We 462 

minimised these biases through spatial thinning (Aiello-Lammens et al., 2015). Since we found 463 

large amounts of suitable areas outside of Thailand, we suggest that future studies should 464 

focus on monitoring bovid populations in other countries, especially in India and Myanmar. 465 

However, because of this and the model performance, we focused on Thailand. 466 

Missing data data has impacted some results. The model TSS values for endangered 467 

banteng and Chinese goral are over 0.8, yet our models predict unsuitable areas in part of 468 

Indonesia (east and central Kalimantan; Dewi et al. 2020) for banteng and China (e.g. Beijing 469 

and northeast Inner Mongolia; (Yang et al., 2019) for Chinese goral from which these species 470 

have been reported. This would likely be improved if more spatial data were available for 471 

these species. 472 

We used a new dataset of species occurrences to assess our model's performance with 473 

a 5 km buffer zone, aiming to enhance modelling accuracy. Given these species have quite 474 

large home ranges and daily movements, adding a buffer to represent this movement 475 

unsurprisingly lead to better model predictions for all species, but most notably for mainland 476 

serow, changing the out of sample prediction from 19% to 67% for the entire region and 36% 477 

to 86% for Thailand. The buffer zone may indicate the utilisation of unsuitable areas of the 478 
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species near forested regions, such as secondary forests, agricultural areas, or water 479 

resources, which possibly extend these buffer areas from the protected aeras to enhance the 480 

wildlife protection.  481 

The spatial restriction method, OBR, can be sensitive to the distribution of occurrence 482 

data, because it keeps predicted suitable areas close to the occurrence locations. This may 483 

lead to the exclusion of potential suitable areas driven by a lack of occurrence data in those 484 

areas. For example, the wild water buffalo No MSDM predicted potentially suitable habitat 485 

around the Sre Pok Wildlife Sanctuary in Cambodia where the species is distributed (Gray et 486 

al., 2012), but after the MSDM, this potential habitat was excluded as we lack occurrence data 487 

in Cambodia. Although our study showed slightly different TSS values between two different 488 

accessible area extents, we encourage testing the different accessible areas as it affects the 489 

model results (Anderson & Raza, 2010). Moreover, model performance varied with accessible 490 

area sizes and spatial restrictions, emphasising the need for careful accessible area definition 491 

in ecological modelling (Barve et al., 2011). Further, future analyses may try to better account 492 

for the current presence of species by accounting for factors such as hunting using other 493 

proxies, such as other human-disturbance metrics like distance from roads (Lim et al., 2021).  494 

Conclusion 495 

Our study provided an overview of the suitable remaining habitat for threatened bovid 496 

species at a regional scale using high-resolution environmental variables and species 497 

occurrence data from multiple observation methods. Our predictions showed that the 498 

suitable areas are small and fragmented for all species, and more than 50% of suitable areas 499 

are outside of protected areas. Those suitable areas outside PAs could possibly become 500 

efficient conservation areas, such as forest corridors or buffer zones to connect fragmented 501 

bovid populations and enhance long-term habitat conservation. Our predictions may inform 502 

conservation actions to avoid further defaunation of wild bovidae such as the management 503 

of human-wildlife conflicts and habitat quality for long-term species survival. 504 
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