

1 **Mapping threatened Thai bovids provides opportunities for improved** 2 **conservation outcomes in Asia**

3 Authors:

4 Wantida Horpiencharoen^{1*}, Renata L. Muylaert¹ Jonathan C. Marshall¹, Reju Sam John^{1,2}, Antony J.
5 Lynam³, Alex Riggio⁴, Alexander Godfrey⁵, Dusit Ngoprasert⁶, George A. Gale⁶, Eric Ash⁷, Francesco
6 Bisi⁸, Giacomo Cremonesi⁸, Gopalasamy Reuben Clements⁹, Marnoch Yindee¹⁰, Nay Myo Shwe¹¹,
7 Chanratana Pin¹², Thomas N. E. Gray¹³, Saw Soe Aung¹⁴, Seree Nakbun¹⁵, Stephanie G. Manka¹⁶, Robert
8 Steinmetz¹⁷, Rungnapa Phoonjampa¹⁷, Naret Seuaturien¹⁷, Worrapan Phumanee¹⁷, David T. S.
9 Hayman¹

10 Affiliations:

11 ¹ Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University,
12 Palmerston North 4472 New Zealand

13 ² Department of Physics, Faculty of Science, University of Auckland, Auckland, New Zealand

14 ³ Centre for Global Conservation, Wildlife Conservation Society, New York, USA

15 ⁴ Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand

16 ⁵ Panthera, 8 West 40th Street 18th Floor New York, NY 10018 United States

17 ⁶ Conservation Ecology Program, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

18 ⁷ Wildlife Conservation Research Unit, University of Oxford, UK

19 ⁸ Istituto Oikos E.T.S., Milan, Italy

20 ⁹ Zoological Society of London, Regents Park, London, UK

21 ¹⁰ Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand

22 ¹¹ Friends of Wildlife, Yan-Aung Street (1), Building 296, Room 15 Quarter No.(2), Yankin Township, Yangon,
23 Myanmar

24 ¹² Ministry of Environment, 48 Samdach Preah Sihanouk Blvd., Phnom Penh 12301, Cambodia

25 ¹³ WWF Tigers Alive Initiative, Phnom Penh, Cambodia

26 ¹⁴ Fauna & Flora International, Myanmar Programme, Bahan Township, Yangon, Myanmar

27 ¹⁵ Khaonampu Nature and Wildlife Education Center, Department of National Park, Wildlife and Plant
28 Conservation, Kanchanaburi, Thailand

29 ¹⁶ Fancy Scientist LLC

30 ¹⁷ WWF-Thailand, 9 Pisit Building, Pradiphat Road Soi 10, Phayathai, Bangkok 10400, Thailand

31 * Corresponding author Email: wantidah@gmail.com

32 Keywords: species distribution, herbivores, large mammals, wildlife conservation, habitat
33 suitability, protected areas

34

35 **Abstract**

36 Wild bovids provide important ecosystem functions throughout their ranges. Five wild bovids
37 remain in Thailand: gaur (*Bos gaurus*), banteng (*Bos javanicus*), wild water buffalo (*Bubalus*
38 *arnee*), mainland serow (*Capricornis sumatraensis*) and Chinese goral (*Naemorhedus griseus*).
39 However, their populations and habitats have declined substantially and become fragmented.
40 Here, we identify potentially suitable habitat for these threatened bovids using ecological
41 niche models and quantify how much suitable area remains within protected areas. We
42 combined species occurrence data with environmental variables and used spatially-restricted
43 Biotic-Abiotic-Mobility frameworks with species-specific and single large accessible areas. We
44 used ensembles from eight algorithms for generating maps and out-of-sample predictions to
45 validate model performance against new data. Gaur, banteng, and buffalo models performed
46 well throughout the entire distribution ($\geq 62\%$) and in Thailand ($\geq 80\%$). Mainland serow and
47 Chinese goral performed poorly for the entire distribution and in Thailand, though a 5 km
48 movement buffer markedly improved model performance for serow. Particularly large
49 suitable areas were in Thailand and India for gaur, Cambodia and Thailand for banteng, and
50 India for buffalo. Over 50% of overall suitable habitat is located outside protected areas, with
51 just 9% for buffalo in Thai protected areas, highlighting area for potential habitat
52 management and conflict mitigation.

53 **Introduction**

54 An important task of wildlife research and conservation is to define the distributional
55 ecology of species and to understand how they relate to the environment, climate and other
56 organisms (Franklin, 2009). Ecological niche models (ENM) are applied to predict the
57 geographic distribution suitable for a species by using ecological niche dimensions combined
58 with species' presence data (Soberón & Peterson, 2005). ENM can be approached using the
59 'Biotic-Abiotic-Mobility' (BAM) framework, which considers the relationship between the
60 species' distribution, geographical and climatic factors and explains the influence of factors
61 on predicted habitat suitability (Peterson & Soberón, 2012). Abiotic (A) factors generally
62 determine the potential distribution (or fundamental niche) of a species, and the intersection
63 of abiotic and biotic (B) factors form the realised niche, or the part of this potential
64 distribution where species actually live (Soberón & Nakamura, 2009). Mobility (M) is the area
65 accessible by species related to their distribution over periods of time (the 'accessible area';
66 (Barve et al., 2011)). Selecting the extent of species' accessible areas, including buffer zones,
67 impacts model prediction results (Anderson & Raza, 2010; Barve et al., 2011).

68 Wild Bovidae (Mammalia: Artiodactyla) play significant ecological roles in tropical
69 forests and grasslands (Hassanin, 2014). Bovids are grazers and browsers, modifying plant
70 diversity and abundance within ecosystems (Ripple et al., 2015; Romero et al., 2015). Large
71 wild bovids are also the prey of predators such as tigers (*Panthera tigris*) and leopards
72 (*Panthera pardus*) (Simcharoen et al., 2018). Throughout Asia, wild bovid populations are
73 threatened by poaching (Gray et al., 2018) and habitat loss (Nguyen, 2009), especially in South

74 to Southeast Asia (Giam & Wilcove, 2012). Natural habitats have been disturbed by free-
75 grazing livestock, which can lead to interbreeding (e.g. between domestic and wild water
76 buffalo, (Kaul et al., 2019), increased competition for food and natural resources (Bhandari et
77 al., 2022), and increased risk of disease transmission between wildlife and livestock (Hassell
78 et al., 2017). Moreover, habitat destruction is likely to influence the species' distribution and
79 behaviour adaptation, which could lead to shared natural resources and conflict between
80 humans and wild bovids.

81 In South and Southeast Asia, there are 27 recognised bovid species (IUCN, 2021), of
82 which seven species are listed as vulnerable, five as endangered and three as critically
83 endangered with extinction. Thailand has five bovid species (gaur; *Bos gaurus*, banteng; *Bos*
84 *javanicus*, wild water buffalo; *Bubalus arnee*, mainland serow; *Capricornis sumatraensis* and
85 Chinese goral; *Naemorhedus griseus*) remaining in their natural habitat. These species are
86 distributed in other countries from South to Southeast Asia (Figure 1) and also have different
87 suitable habitats. For example, gaur can be found in evergreen forest or grassland and range
88 from India, Nepal, across Southeast Asia to Peninsula Malaysia (Duckworth et al., 2016).
89 Mainland serow also has a wide distribution from Nepal to Sumatra in Indonesia through hill
90 forests to shrubland habitats (Phan et al., 2020). Nevertheless, the prediction of the remaining
91 habitat quality and suitability in Thailand and other countries have been conducted only in
92 some protected areas (Chaiyarat et al., 2019; Pintana & Lakamavichian, 2013), but not at the
93 regional or national level.

94 Species distribution modelling provides an overview of potential habitats for
95 threatened species and aids in conservation planning (Catullo et al., 2008). For instance,
96 previous studies have focused on identifying potentially high-quality habitat connectivity and
97 fragmentation (Crooks et al., 2011) as well as predicting global biodiversity trends (Araújo et
98 al., 2019). In Thailand, there are several studies that have predicted habitat suitability for
99 some of these five wild bovids in local areas (Prayoon et al., 2021), but habitat suitability
100 studies for larger extents across their distribution are lacking.

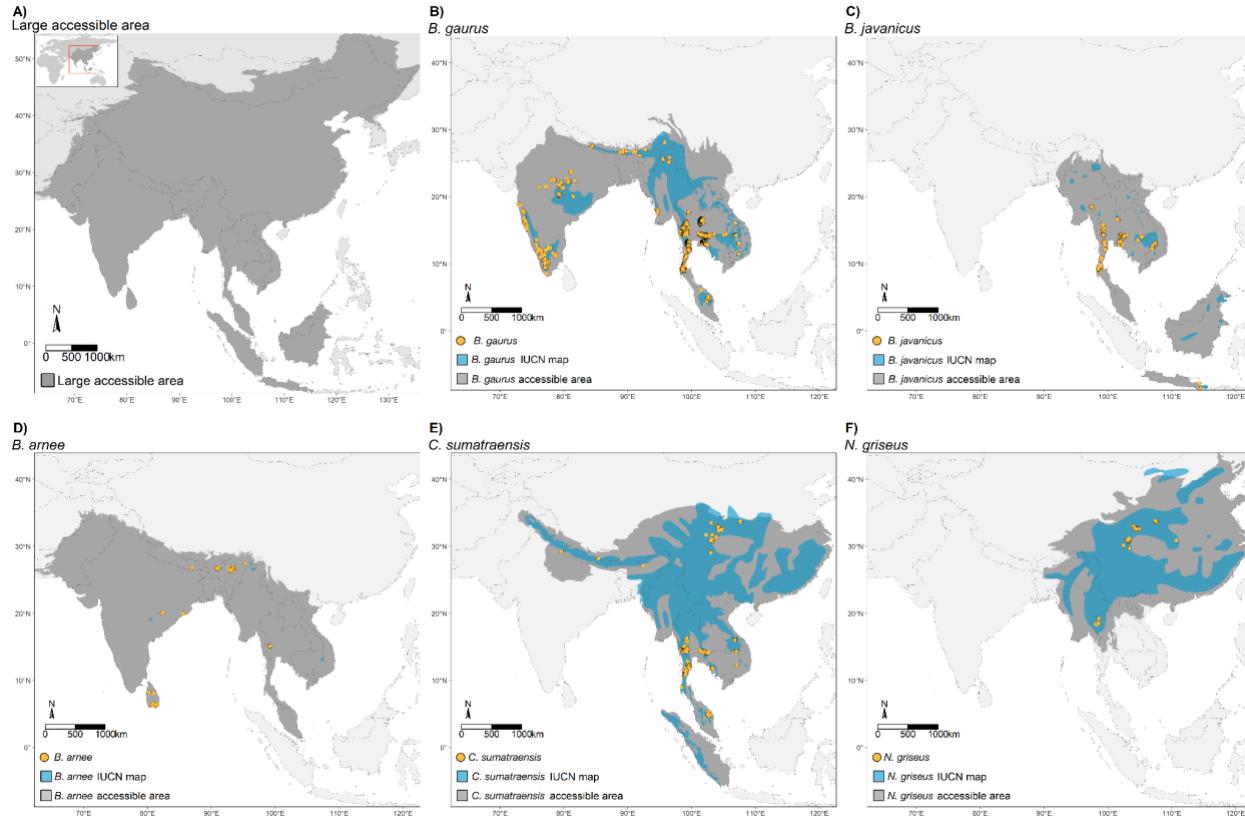
101 Here, we built ENM for the five Thai wild bovid species: gaur, banteng, wild water
102 buffalo, mainland serow and Chinese goral at two scales: first, at the regional scale
103 throughout the entire distribution and, second, at the country scale in Thailand. We aim to 1)
104 identify the potential distribution for these five species in South to Southeast Asia, and 2)
105 identify conservation areas in their geographical distribution, with a particular focus on
106 Thailand.

107 Materials and methods

108 Our workflow consisted of two main processes of data preparation and model building
109 (summarised in Figure S1) that generated habitat suitability maps for all species and
110 accessible areas used. Data preparation consisted of gathering the species occurrence data
111 and environmental data and selecting the accessible areas. Then, the model building
112 consisted of pre-processing, processing and post-processing steps.

113 **Study area**

114 The study area consists of 13 Asian countries: Bhutan, Bangladesh, Cambodia, China,
115 India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Sri Lanka, Thailand and Vietnam (Figure 1),
116 that cover the distribution of gaur, banteng, wild water buffalo, mainland serow and Chinese
117 goral based on the literature (Table S1).



118
119 Figure 1 Species occurrence data before thinning (yellow circles), IUCN polygons (blue areas)
120 and study areas (grey areas) used in model building for five wild bovid species. First, a
121 common large 'accessible area' (A) was used for all species for model building, and then
122 species-specific accessible areas (B-F) for individual species. **Species Occurrence data**

123 We compiled species occurrence data collected from GPS records collected between
124 January 2000 and June 2021 from researchers, government, NGOs (World Wildlife Fund,
125 Wildlife Conservation Society, Freeland [Ash et al. (2021)], Panthera, Fauna & Flora
126 International, Friends of Wildlife and RIMBA) and open data sources, including GBIF
127 (<https://www.gbif.org/>) and eMammal (<https://emammal.si.edu/>). The data coverage by
128 country can be found in Table 1. The occurrence data were collected through observation of
129 animal signs (e.g. footprint and dung) during forest patrols, direct observation during wildlife
130 surveys, camera trapping, and radio-collar signals (Table S2). We used only the research grade
131 observation for GBIF data, which included the photo for species identification. We filtered all
132 the occurrences and excluded occurrence records outside the species-specific accessible area,
133 duplicated records from the same species and museum collections.

134 Table 1 The number of raw and after spatial thinning occurrence points is shown by species
 135 and country.

Country	Raw data					Total
	<i>Bos gaurus</i>	<i>Bos javanicus</i>	<i>Bubalus arnee</i>	<i>Capricornis sumatraensis</i>	<i>Naemorhedus griseus</i>	
Bangladesh	X	X	X	?	X	0
Bhutan	1	X	?	?	X	1
Cambodia	44	355	?	38	X	437
China	?	?	X	109	301	410
India	286	X	78	2	?	366
Indonesia	X	6	X	?	X	6
Laos	2	1	X	11	X	14
Malaysia	1,067	?	X	603	X	1,671
Myanmar	114	5	?	99	?	218
Nepal	4	X	1	2	X	7
Sri Lanka	X	X	21	X	X	21
Thailand	24,258	5,383	50	805	16	30,512
Vietnam	1	?	?	?	?	1
Grand Total	25,777	5,751	150	1,669	317	33,664

Country	Thinning data					Total
	<i>Bos gaurus</i>	<i>Bos javanicus</i>	<i>Bubalus arnee</i>	<i>Capricornis sumatraensis</i>	<i>Naemorhedus griseus</i>	
Bangladesh	X	X	X	?	X	
Bhutan	1	X	?	?	X	1
Cambodia	14	48	?	28	X	90
China	?	?	X	64	130	194
India	244	X	64	2	?	310
Indonesia	X	6	X	?	X	6
Laos	2	1	X	8	X	11
Malaysia	26	1	X	49	X	76
Myanmar	53	2	?	51	?	106
Nepal	4	X	1	1	X	6
Sri Lanka	X	X	20	X	X	20
Thailand	2,387	303	7	185	5	2,887
Vietnam	1	?	?	?	?	1
Grand Total	2,732	361	92	388	135	3,708

136

Colour definitions	
Number	species presence with occurrence data
?	species presence without occurrence data
X	no species presence

137

138 **Environmental variables**

139 Hypothesized environmental variables were selected based on species' habitat and
140 distribution related literature Table S1. We used 28 variables (supplementary material, Table
141 S3) for model construction, including 19 bioclimatic variables (Booth et al., 2014) (average for
142 1970-2000) from WorldClim v2 (Fick & Hijmans, 2017), elevation (Shuttle Radar Topography
143 Mission-SRTM) from WorldClim (Fick & Hijmans, 2017), slope (Amatulli et al., 2020), five land
144 cover fractions (grass, tree, urban, water and crop) (Buchhorn et al., 2019), human population
145 density (Stevens et al., 2015) and greenness through the normalized difference vegetation
146 index (NDVI) (Didan, 2015). All layers were processed using the geographic coordinates
147 system (Datum WGS84) and ~1 km² spatial resolution. We transformed the human population
148 density using logarithm base 10 to adjust for skewness. We rescaled the NDVI layer by
149 multiplying all values with a scale factor (0.0001), based on the Moderate Resolution Imaging
150 Spectroradiometer (MODIS) User's guidelines (Didan et al., 2015).

151 **Accessible areas**

152 The accessible area refers to the parts of the world accessible to species via dispersal
153 over time (Barve et al., 2011). The extent of the accessible area and the inclusion of a buffer
154 zone have an important effect on ENM performance (Anderson & Raza, 2010; Barve et al.,
155 2011). We used two accessible area sizes to delimitate our modelling extent (Figure 1). The
156 first larger accessible area (hereon LA) includes most of the Asian continent and its
157 ecoregions, and all species distributions are included as a common extent. The second
158 accessible area was more restricted and cropped based on individual species-specific
159 distributions (hereon SSA) from literature reviews (Table S1), IUCN polygons or 'ranges' (IUCN,
160 2020) and the terrestrial ecoregions where they occur. For creating the extent, we
161 downloaded the current IUCN range maps for each species, then intersected those on
162 ecoregions (Olson et al., 2001), then combined the results with selected ecoregions based on
163 biogeographic knowledge of the species distributions and habitat preference from the
164 literature reviews. For example, gaur habitat typically contains moist evergreen, semi-
165 evergreen, and dry evergreen forests (Steinmetz et al., 2008; Tanasarnpaiboon, 2016), so we
166 included these regions in our accessible areas. Further details on ecoregions included in
167 accessible areas are in supplementary material, Table S4. To reduce overprediction and make
168 our predictions closer to realised niche estimates, we used an occurrences-based threshold
169 (OBR) method with ensemble models from (Mendes et al., 2020) for creating the spatially
170 restricted ENM (hereon MSDM). OBR is an *a posteriori* method that restricts the suitable areas
171 of our final ensemble models based on presence and the largest nearest neighbour distance
172 among pairs of occurrences. Overall, we built four combinations between two accessible
173 areas with and without MSDM methods for each species, including 1) No MSDM-SSA; 2) No
174 MSDM-LA; 3) MSDM-SSA and 4) MSDM-LA.

175 **Model building**

176 We processed the species occurrence files and environmental datasets in R 4.0.1 (R
177 Core Team, 2020). We developed reproducible ecological niche models with optimized
178 processing times using the ENMTML package (Andrade et al., 2020), following three main
179 steps: 1) pre-processing, 2) processing and 3) post-processing.

180 In pre-processing, we performed occurrence thinning using 2 times the cell-size (1
181 km²) (Velazco et al., 2019) to reduce clustering of species records and sampling bias. We used
182 principal component (PC) analysis (PCA) to reduce the collinearity of the predictors. We
183 assigned species' accessible areas to determine the species' distributions using a mask
184 function. We used random sampling to create pseudo-absence background points in a 1:1
185 ratio with presence points (Barbet-Massin et al., 2012). The occurrence and pseudo-absence
186 data was divided into two sets for fitting the model (75%) and evaluating the fitted models
187 (25%), using the bootstrapping partition method with 10 replications for each algorithm.

188 In the processing step, eight algorithms were used to build the ENMs, namely:
189 BIOCLIM (Booth et al., 2014), Generalized Linear Models (McCullagh & Nelder, 1989),
190 Generalized Additive Models (Hastie, 2018), Random Forest (Liaw & Wiener, 2002), Support
191 Vector Machine (Karatzoglou et al., 2004), Maximum Entropy default (Phillips et al., 2006),
192 Maximum Likelihood (Royle et al., 2012) and Bayesian Gaussian Process (Golding, 2014). All
193 models used the default settings from the ENMTML package, which included the functions
194 from different packages (e.g. dismo, maxnet) based on the algorithms that use to fit the
195 models. The data type used for each algorithm is in supplementary materials, Table S5.

196 In the post-processing step, we created ensemble models using the weighted average
197 (WMEAN) method based on the True Skill Statistic (TSS) values for building final habitat
198 suitability and binary maps. The benefits of ensemble models are 1) robust decision-making
199 (Ahmad et al., 2020); 2) reducing uncertainty (Marmion et al., 2009); and 3) a combination of
200 several models into one model prediction (Kindt, 2018). We used TSS to calculate threshold
201 values to convert habitat suitability maps into binary suitability maps (0 = unsuitable and 1 =
202 suitable). We used TSS and area under the curve (AUC) for evaluating model performance.
203 The TSS threshold is calculated using the maximum summed specificity and sensitivity and is
204 not based on prevalence, where an equal TSS score for given models means similar
205 performance (Allouche et al., 2006). Therefore, we selected the final models from the best
206 TSS of weighted average ensemble models. We assessed the model's accuracy by plotting a
207 new dataset of species occurrences obtained from camera traps and human observations
208 (<https://www.gbif.org/>) on the binary maps. Because, for example, gaur have been recorded
209 to walk up to 6.3 km a day (mean 1.6 km (Rizal et al., 2020)), we created a 5 km buffer zone
210 measured from the edges of the suitable pixels to include occurrences within the travel
211 distance of wild bovids' movement (Ahrestani & Karanth, 2014; Gardner et al., 2014). The
212 percentage of points inside and outside the suitable areas and the buffer zone was calculated
213 for each species. We present all the results, then only models with high prediction accuracy
214 (greater than 80%, (Zhang et al., 2015)) are selected for further analyses. The total suitable
215 areas of the best TSS binary map models were calculated using the zonal function in the raster

216 R package (Hijmans, 2023). Then, we summed the pixels of the best TSS binary maps to
217 generate the map of species number.

218 **Protected area analyses**

219 The source for our protected areas map was the World Database of Protected Area
220 (WDPA) (UNEP-WCMC & IUCN, 2021). We classified protected areas based on IUCN protected
221 areas from WPDA into 8 categories, including categories 1 to 6 as IUCN management
222 categories I to VI; category 7 as 'not applicable', which includes 'not reported', 'not applicable'
223 and 'not assigned' protected areas; and category 8 as non-protected areas, which are the
224 remaining areas that have not been classified as IUCN categories 1 to 7 (UNEP-WCMC and
225 IUCN, 2021). Then, we used the zonal function in the Raster package to calculate overlapping
226 areas between the suitable areas and protected areas for each species.

227 We calculated the percentage of suitable areas in WDPA polygons using the
228 exact_extract function in exactextractr package (Baston et al., 2021) for extracting the
229 suitable areas (values = 1) from binary map rasters in each WDPA polygon. Then, we classified
230 each PA into 5 different suitability categories based on the percentage of suitable habitat in
231 the PA: low suitability (0 - 20%); low - medium suitability (>20 - 40%); medium suitability (>40
232 - 60%); high suitability (>60 - 80%) and very high suitability ($\geq 80\%$), and selected only the PAs
233 that have the proportion of suitable area larger than species home range in the result. We
234 have provided the code for creating the models in a GitHub repository.

235 **Results**

236 We compiled 33,664 occurrence records. After filtering and spatial thinning, we used
237 3,708 points for modelling: 2,732 for gaur, 361 for banteng, 92 for wild water buffalo, 388 for
238 mainland serow, and 135 for Chinese goral. The majority of the thinning occurrences (77%)
239 were collected in Thailand, India and other countries in mainland SEA; see Table 1 **Error!**
240 **Reference source not found.** for details on the data coverage by country and supplementary
241 materials [Table S10](#) for details on the study sites.

242 We found that the PCA reduced the 28 environmental variables into 12 PCs that
243 explained 95% of the environmental variance in the variables for the LA models for all species.
244 The PCs for SSA models explained more than 96% of the total variance and the PC number
245 varied by species, comprising 13 PCs (wild water buffalo), 11 PCs (gaur, mainland serow), and
246 10 PCs (banteng, Chinese goral). The bioclimatic variables were important variables in all
247 species models. For LA models, the first two axes (PC1 and PC2) have high contributions from
248 the annual mean temperature (bio01), mean temperature of the coldest month (bio06), mean
249 temperature of the driest quarter (bio09) and mean temperature of the warmest quarter
250 (bio10). The first two axes of SSA models showed high positive contributions from mean
251 temperature of the coldest month (gaur), minimum temperature of coldest month (banteng,
252 mainland serow), annual mean temperature (wild water buffalo, mainland serow), and
253 precipitation of the wettest quarter (Chinese goral). We also found that NDVI, elevation, slope

254 and human population density have less effect on explaining the variability for the first two
255 PCs for all species. The correlations between PCs and individual environmental variables, PC
256 biplots and percentage of explained variance are summarised in supplementary materials,
257 Table S6 and Figure S2.

258 **Ecological niche models**

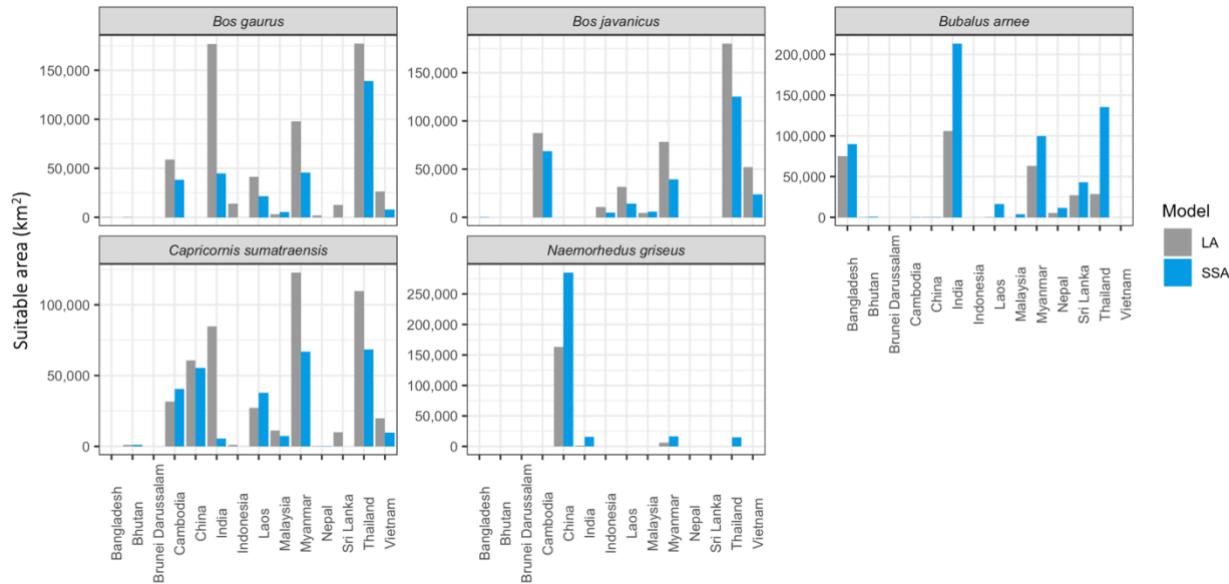
259 Overall, all ensemble models showed high performance both for TSS and the area
260 under the curve (AUC) with the highest performing models over 0.8 for all species (Table 2).
261 Models with species-specific accessible areas were not always the best performing models,
262 but most ensemble models performed above 0.7 TSS. The habitat suitability prediction maps
263 using the best model ensembles are in supplementary materials, Figure S3 (SSA) Figure S4
264 (LA), Figure S5 (selected the best model of SSA and LA) and the binary maps which were used
265 for calculating the suitable area in Figure S6. The performance of spatially restricted
266 ensembles was higher in comparison with the No MSDM models, as the TSS was improved
267 for banteng, Chinese goral and wild water buffalo. The lowest performing model for wild
268 water buffalo was the No MSDM-SSA (TSS = 0.57). The best model for gaur was No MSDM-
269 LA, banteng and Chinese goral is MSDM-LA, wild water buffalo is MSDM-SSA, and mainland
270 serow is No MSDM-SSA. We found that all species have small predicted suitable habitats.
271 Moreover, all species models predicted less than 50% of the suitable areas inside PAs.

272 Table 2 True Skill Statistics (TSS) and Area Under the Curve (AUC) values of the weighted
273 average ensemble, and the threshold values for binary maps for five species classified by
274 accessible area type and MSDM method. Best performing models for each accessible area by
275 TSS are shown in **Boldface**.

Species	Large accessible area						Species specific accessible area					
	No MSDM ^a			MSDM (OBR) ^b			No MSDM ^a			MSDM (OBR) ^b		
	TSS	AUC	TSS	AUC	TSS	AUC	TSS	AUC	TSS	AUC	TSS	AUC
Gaur <i>Bos gaurus</i>	0.92	0.49	0.99	0.92	0.44	0.99	0.88	0.39	0.98	0.88	0.41	0.98
Banteng <i>Bos javanicus</i>	0.93	0.55	0.99	0.94	0.41	1	0.85	0.33	0.96	0.83	0.42	0.97
Wild water buffalo <i>Bubalus arnee</i>	0.67	0.47	0.88	0.72	0.6	0.9	0.57	0.58	0.83	0.85	0.44	0.95
Mainland serow <i>Capricornis sumatraensis</i>	0.87	0.55	0.97	0.76	0.47	0.94	0.93	0.57	0.98	0.93	0.52	0.98
Chinese goral <i>Naemorhedus griseus</i>	0.91	0.29	0.98	0.91	0.59	0.98	0.87	0.47	0.96	0.9	0.39	0.97

276 ^a spatially restricted ENM

277 ^b occurrences-based threshold



278 Figure 2 Total of the suitable area in km² for each species and countries. Blue is the species-
279 specific accessible area (SSA) and grey is the large accessible area models (LA) (see details in
280 the supplementary Table S7).

281 The total of the suitable areas in km² for each species and country are shown in Figure
282 2 and Suitable areas calculated from the best model are in supplementary materials Table S8
283 and the IUCN protected areas for all types of models are in Figure S7.

284 Our model's out-of-sample predictions with new species occurrences demonstrated a
285 higher prediction accuracy within Thailand than the entire distribution, and this was further
286 improved by including 5 km buffer zones, with the exception of Chinese goral, which exhibited
287 poor accuracy across all scales (Table 3 and Figure 3). Implementing a buffer zone improves
288 the accuracy of all four remaining species. For large herbivore species gaur, banteng and wild
289 water buffalo, the model cropped to Thailand showed a higher accuracy (>80%) compared to
290 the entire distribution (~60-80%). We selected only model predictions with a high accuracy
291 percentage, greater than 80%, for further analyses. As a result, three species, including gaur,
292 banteng, and wild water buffalo, were retained, while two species, mainland serow and
293 Chinese goral, were excluded from the rest of the study. Furthermore, we cropped the entire
294 distribution to focus only on the result within Thailand as the number of data collection and
295 model predictions is higher compared to the entire species distribution. The result of the
296 entire distribution for all species can be found in the supplementary material, Figure S3 and
297 Figure S4.

298

299 Table 3 Comparison of the accuracy of the selected best models^a in predicting out-of-sample
 300 data for the entire accessible areas range and Thailand.

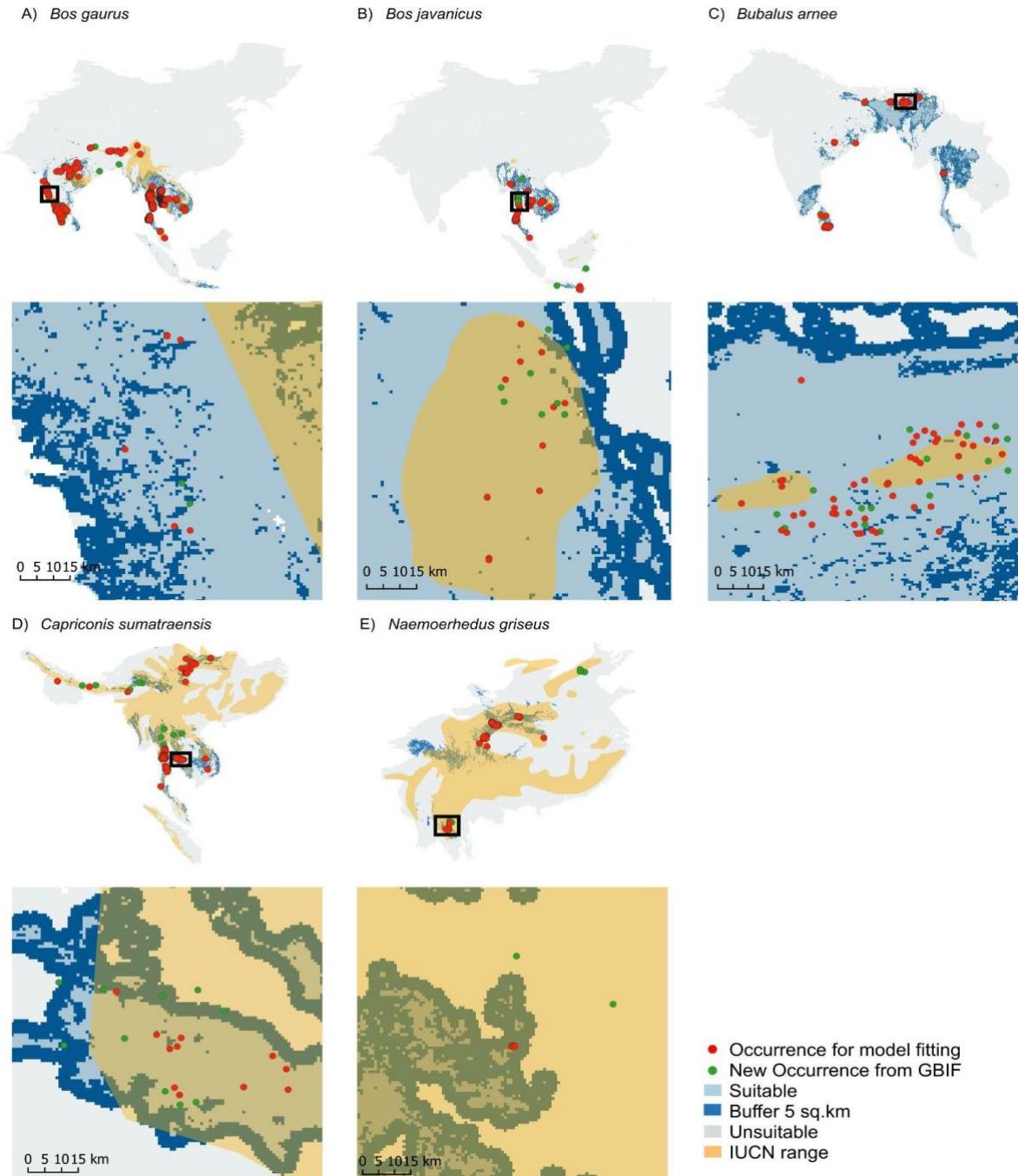
Entire accessible areas	Total	No buffer			Buffer			
		Unsuitable	Suitable	Accuracy %	Unsuitable	Suitable	Buffer 5 km	Accuracy %
<i>B. gaurus</i> (Gaur)	221	85	136	62	23	136	62	90
<i>B. javanicus</i> (Banteng)	12	4	8	67	2	8	2	83
<i>B. arnee</i> (Buffalo)	35	4	31	89	0	31	4	100
<i>C. sumatraensis</i> (Mainland serow)	21	17	4	19	7	4	10	67
<i>N. griseus</i> (Chinese goral)	10	9	1	10	7	1	2	30

Thailand	Total	No buffer			Buffer			
		Unsuitable	Suitable	Accuracy %	Unsuitable	Suitable	Buffer 5 km	Accuracy %
<i>B. gaurus</i> (Gaur)	52	8	44	85	2	44	6	96
<i>B. javanicus</i> (Banteng)	10	2	8	80	0	8	2	100
<i>B. arnee</i> (Wild water buffalo)	1	0	1	100	0	1	1	100
<i>C. sumatraensis</i> (Mainland serow)	14	9	5	36	2	4	8	86
<i>N. griseus</i> (Chinese goral)	2	2	0	0	2	0	0	0

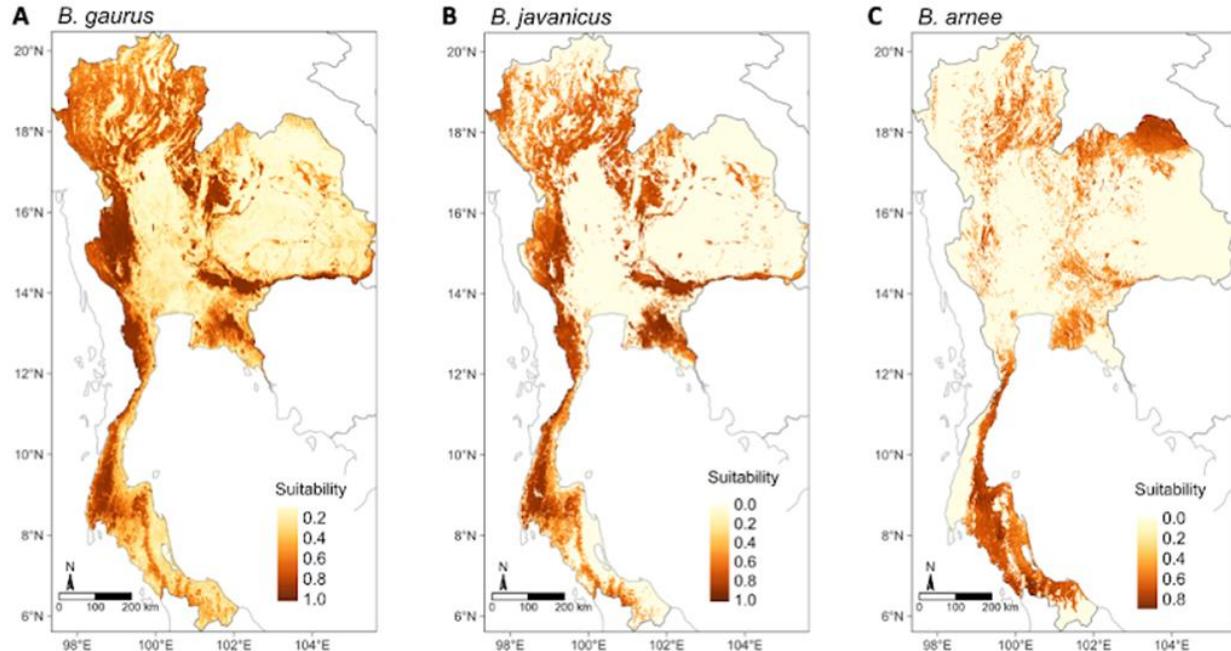
301 ^a The best models for gaur is No MSDM-LA, banteng is MSDM-LA, wild water buffalo and Chinese goral is
 302 MSDM-SSA and mainland serow is No MSDM-SSA.

303 Nearest distance from out of sample points to suitable area

Species	point	Distance (km)		
		Min	Mean	Max
Gaur	52	0.0047	1.54	22.4
Banteng	10	0.0323	4.72	39.9
Wild water buffalo	1	0.811	0.811	0.811
Mainland Serow	14	0.00668	6.07	38.1
Chinese goral	2	0.147	1.54	2.93



304 Figure 3 Model prediction testing for five bovid species (A-E) by calculating the percentage of
305 the out of sample points that fall inside the model predicted suitable areas (blue). The model
306 fitting datasets (red) were mainly within the suitable areas compared to the new occurrence
307 dataset (green). IUCN ranges show greater areas than the predictions for mainland serow and
308 Chinese goral. Some of the occurrence data were distributed outside both the model
309 predicted suitable area and IUCN range.



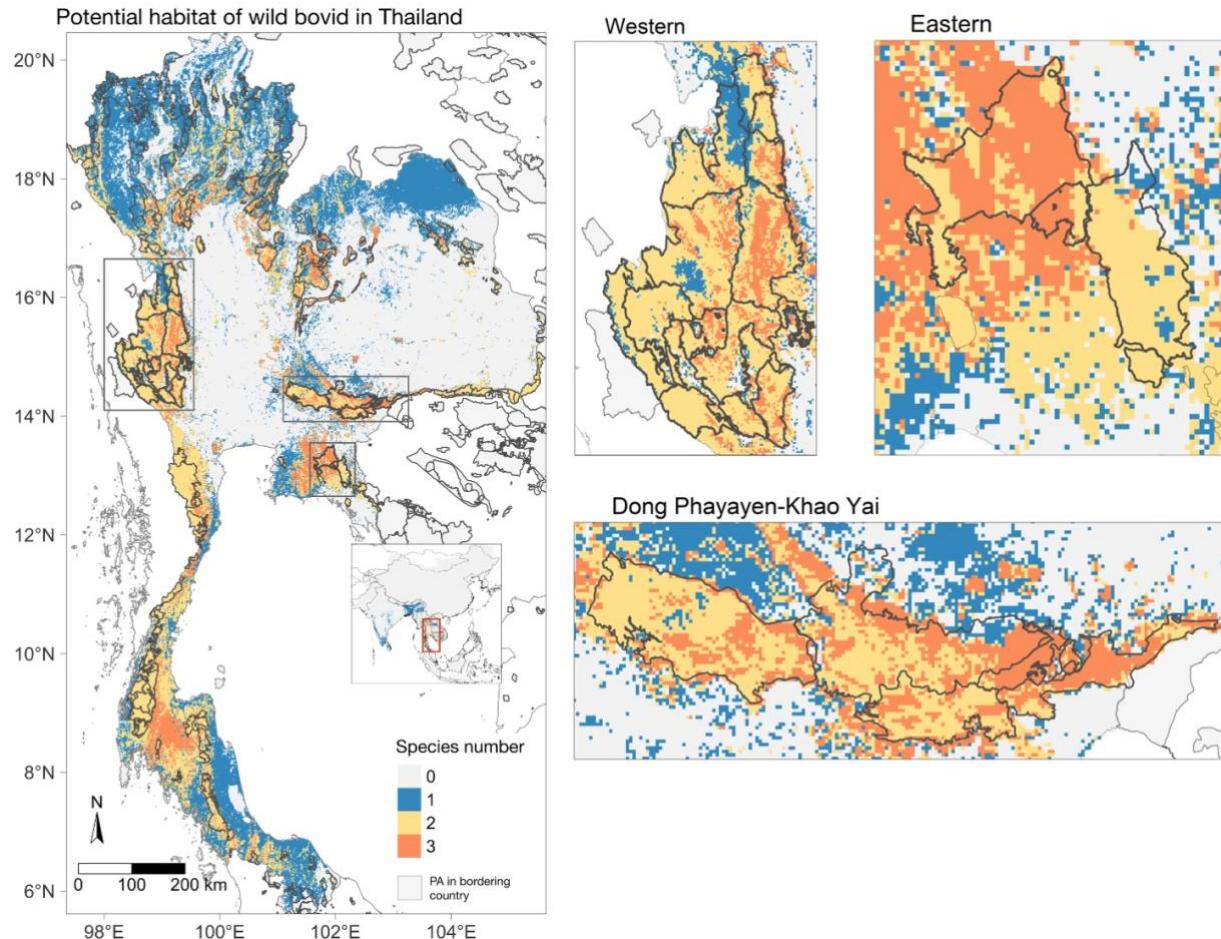
310
311 Figure 4 Habitat suitability prediction maps of three wild bovids species in Thailand: gaur (*B.*
312 *gaurus*), banteng (*B. javanicus*) and wild water buffalo (*B. arnee*) species (A-C) using the best
313 model from the weighted average ensemble. The value ranges from 0-1: yellow represents
314 low suitability and dark brown represents high suitability. Interactive maps are provided in
315 the online supplementary material ([link](#)).

316 Identifying priority areas for conservation

317 Most suitable habitats in protected areas are located in IUCN category Ia (Strict nature
318 reserve), Ib (Wilderness area) and II (National Park) areas for the best TSS models for all
319 species, while IUCN category V (Protected landscape or seascape) has the least. Overall, more
320 than half of the species' suitable habitat is not under any form of protection defined by the
321 WDPA (supplementary materials, Table S8, Figure S8). The proportion of the suitable area in
322 each WDPA of the best models from SSA and LA for each species are presented in
323 supplementary materials, Figure S9 and Figure 10.

324 In Thailand, we identified a high percentage ($\geq 80\%$) of suitable area of Thailand for
325 gaur in 122 PAs ($74,268 \text{ km}^2$; 15% of Thailand), banteng in 102 PAs ($59,528 \text{ km}^2$; 12% of
326 Thailand), and wild water buffalo in 3 PAs (559 km^2 ; 0.1 % of Thailand). A high proportion of
327 the suitable area for gaur and banteng is in Thungyai Naresuan, Kaengkrachan and Huai Kha
328 Khaeng, and for wild water buffalo in Phu Wua WS and Dong Yai WS in eastern DPKY-FC
329 (Figure 4 and Figure 5). The hotspots for five species can be found in supplementary materials,
330 Figure S11.

331 Proportions range from 0 (all unsuitable) to 1 (all suitable), with suitability determined by
332 thresholds from species best performing models. (A) gaur (*Bos gaurus*), (B) banteng (*Bos*
333 *javanicus*), (C) wild water buffalo (*Bubalus arnee*).



334

335 Figure 5 Estimated species richness of three wild bovids in Thailand. The species are gaur,
336 banteng, and wild water buffalo. Frames A-C focus on (A) Western Forest Complex
337 (WEFCOM), (B) Dong Phayayen-Khao Yai Forest Complex (DPKY-FC) and (C) Eastern Forest
338 Complex, where the overlapping suitable areas of all species (n=3). Western, Dong Phayayen-
339 Khao Yai and Eastern forests have suitable areas for gaur, banteng and wild water buffalo for
340 both inside PAs and also in the surrounding areas.

341 We found that the highest percentage of suitable area was comprised of mixed
342 deciduous forest for all species, followed by evergreen forest for gaur and banteng, and dry
343 dipterocarp forest for wild water buffalo. We found a percentage of non-forest areas
344 identified from the total suitable for all species: wild water buffalo (71%), banteng (33%), and
345 gaur (24%). For more details of forest types by suitable areas, see Table 4 and Figure S12.
346

347 Table 4 The suitable areas of five bovid species classified by forest types in Thailand.

Forest types	Gaur (<i>Bos gaurus</i>)		Banteng (<i>Bos javanicus</i>)		Wild water buffalo (<i>Bubalus arnee</i>)		Mainland serow (<i>Capricornis sumatraensis</i>)		Chinese goral (<i>Naemorhedus griseus</i>)	
	km ²	%	km ²	%	km ²	%	km ²	%	km ²	%
Bamboo Forest	390	0.22	348	0.19	178	0.13	250	0.37	2	0.02
Beach Forest	3	-	8	-	26	0.02	1	-	-	-
Dry Dipterocarp Forest	11,119	6.26	12,876	7.13	7,365	5.43	1,415	2.07	3,546	23.91
Dry Evergreen Forest	20,730	11.68	19,209	10.63	5,944	4.38	13,893	20.3	1,027	6.93
Freshwater Swamp Forest	66	0.04	134	0.07	24	0.02	-	-	-	-
Mangrove Forest	609	0.34	1,072	0.59	1,028	0.76	121	0.18	-	-
Mixed Deciduous Forest	66,132	37.25	59,211	32.77	18,837	13.88	25,243	36.88	7,347	49.54
Moist Evergreen Forest	14,802	8.34	15,729	8.7	1,975	1.46	12,213	17.84	-	-
Montane Forest	16,693	9.4	8,497	4.7	812	0.6	7,532	11	1,878	12.66
Peat Swamp Forest	49	0.03	2	-	201	0.15	-	-	-	-
Pine Forest	634	0.36	185	0.1	87	0.06	78	0.11	15	0.1
Savanna	548	0.31	348	0.19	108	0.08	312	0.46	7	0.05
Secondary Forest	2,017	1.14	1,856	1.03	1,189	0.88	602	0.88	153	1.03
Teak Plantation	846	0.48	1,045	0.58	919	0.68	60	0.09	12	0.08
Vegetation on Pen Rock Platform	201	0.11	208	0.11	118	0.09	90	0.13	2	0.01
Other Plantations	37	0.02	42	0.02	29	0.02	9	0.01	-	-
Non-forest Area	42,649	24.02	59,923	33.16	96,883	71.38	6,631	9.69	842	5.68
Total	177,526	100	180,693	100	135,725	100	68,452	100	14,831	100

348 **Discussion**

349 We modelled the potential distribution for the five threatened wild bovid species,
350 distributed in East, South and Southeast Asia. Our aim was to build predictive models to
351 identify conservation areas, and potential species richness maps in their entire geographical
352 distribution. However, the model predictions were better for Thailand, where most data were
353 from for all but Chinese goral (Table 3), therefore we focused on Thailand. We found our
354 models were able to predict the presence of out of sample observations well for three species,
355 gaur, banteng, and wild water buffalo throughout the entire distribution ($\geq 62\%$), but not
356 mainland serow or Chinese goral ($\leq 19\%$). We identified that suitable areas were fragmented
357 and often (50%) located outside PAs. Those suitable areas outside PAs could possibly be
358 managed as corridors or buffer zones to connect currently fragmented bovid populations,
359 thereby enhancing long-term wild bovid conservation success (Karanth, 2016; Penjor et al.,
360 2021) which requires further investigations. For example, a corridor was built within DPKY-FC

361 and showed the possibilities of connecting the western forest complex and Kaengkrachan NP
362 to conserve the endangered tiger population (Sukmasuang et al., 2020; Suttidate et al., 2021).

363 Our study found that most suitable areas for gaur were similar to IUCN range
364 assessments (Duckworth et al., 2016) and consistent with studies that have confirmed species
365 presences, such as in Thailand's PAs (Prayoon et al., 2021), Myanmar (Hein et al., 2020) and
366 Western Ghats in southwestern India and Manas WS in the Himalayan foothills (Choudhury,
367 2002). However, there are differences. Our study predicted larger gaur suitable habitats in
368 Thailand inside ($\sim 82,400 \text{ km}^2$) and outside ($95,000 \text{ km}^2$) PAs than Prayoon et al. (2021), who
369 predicted $39,508 \text{ km}^2$ of total suitable habitat. Choudhury (2002) predicted their distributions
370 in Western Ghats, Central and North-eastern India which included larger than our predictions.
371 Our predictions used NDVI and land coverage fractions (Table S3) for predicting greenness,
372 which may be useful for predicting the vegetation quality and availability for ungulates
373 (Borowik et al., 2013). However, NDVI is difficult to differentiate vegetation variations (Didan
374 et al., 2015; Martinez & Labib, 2023), such as between specific agricultural areas, grassland,
375 and dense forest canopy. This may include other vegetation types other than the species'
376 habitat in suitable areas and estimated larger suitable areas predicted in non-forest areas and
377 non-PAs to be identified in our study, compared to Prayoon et al's study. Other studies
378 suggest that gaur does use crop plantations or man-made grasslands, which may increase the
379 suitable areas in our prediction, even if these are not their natural habitats and lead to conflict
380 between humans and gaur (Chaiyarat et al., 2021).

381 Our best model predicted larger suitable areas ($446,075 \text{ km}^2$) for banteng than the
382 IUCN-SSC report released in 2010 ($\sim 209,000 \text{ km}^2$) (IUCN-SSC AWCS Group, 2010). We found
383 a high percentage of predicted suitable areas in Eastern Plains Landscape (ELP) and Chhaeb
384 WS in Cambodia; the former supports the likely largest banteng population globally (Gray et
385 al., 2012). However, our results showed low habitat suitability in Sundaic Southeast Asia, with
386 just 2% of the total suitable area in Indonesia (mainly in Alas Purwo NP, Java) and 2% of the
387 total suitable area in Malaysia. Banteng populations and habitats in Southeast Asian islands
388 (Borneo, Java, and Bali) are threatened due to hunting for horn and meat consumption and
389 habitat loss (Dewi et al., 2020). In Thailand, we found high suitability similar to previous
390 studies in Eastern (Menkham et al., 2019) and Western forest complexes (Jornburom et al.,
391 2020), including reintroduction areas in Salak Pra WS (Chaiyarat et al., 2019) and where recent
392 recolonisation by natural population movement has occurred in Mae Wong NP (Phoonjampa
393 et al., 2021).

394 Wild water buffalo has been domesticated and bred as livestock, making it hard to
395 distinguish between the free-grazing domestic buffalo and wild water buffalo as
396 domesticated animals may replace wild animals in suitable habitats and cause the high
397 suitable area prediction outside PAs, especially in overlapping habitats (Zhang et al., 2020).
398 We estimate the highest percentages of suitable areas at Kaziranga NP in India, currently with
399 the largest population of wild water buffalo (Kaul et al., 2019). Grasslands and flood plain
400 areas of Manas NP (500 km^2) and Kaziranga NP ($>850 \text{ km}^2$) in India contain the most suitable

401 habitat and are the main population strongholds for wild water buffalo (Choudhury, 2014). In
402 Thailand, this type of habitat can be found in many places, but it is not often represented in
403 protected areas. Wild water buffalo are only found in Huai Kha Kheang WS parts of the
404 Western Forest Complex. Our model predicts that only 43% of Huai Kha Kheang Wildlife
405 Sanctuary is suitable for this species, primarily because the floodplains are mainly situated
406 close to the mainstream in the middle of the PA. Additionally, the population has remained
407 constant for decades, which could be attributed to a single population group or constraints
408 within suitable habitats.

409 The three selected species showed overlapping suitable areas in the Western Forest
410 Complex, Eastern Forest Complex, and Dong Phayayen-Khao Yai Forest Complexes (DPKY-FC).
411 These forest complexes encompass extensive areas of high wildlife biodiversity and diverse
412 forest types, including several contiguous protected areas (PAs) situated at the borders of
413 Cambodia and Myanmar. The Western Forest Complex is the largest conservation area in
414 Thailand where these wild bovids still exist, while the DPKY-FC maintains a higher population
415 of gaur as they are mainly covered by evergreen forest. The Eastern Forest Complex sustains
416 a large population of banteng because most of the main vegetation consists of deciduous and
417 dipterocarp forest. Gaur uses a diversity of types of habitats and prefers denser canopy at
418 higher elevation than banteng, which tends to inhabit in dry and open habitats such as dry
419 dipterocarp and deciduous forests (Gray & Phan, 2011; Steinmetz, 2004). Wild water buffalo
420 also shares overlapping areas with these two species, despite its distribution being found
421 exclusively in Huai Kha Kheang Wildlife Sanctuary. We recommend protecting these
422 important suitable habitats to ensure the protection of wild bovids. This may involve
423 implementing active patrolling to reduce illegal intrusions, snare removal and habitat
424 management based on their diet diversity (McShea et al., 2019). Additionally, one option to
425 maintain wild water buffalo populations is to reintroduce them into their historical range,
426 from which they have been extirpated. This method could be evaluated by combining
427 predicted suitable areas with several important factors such as vegetation types, forage
428 biomass, carrying capacity and hunting pressure (Bora et al., 2024).

429 In this study, we included all subspecies data points in our model ensembles as we aim
430 to extrapolate and predict the entire range of species' habitat suitability, but this may increase
431 uncertainty (Dormann, 2007). These five bovids have multiple subspecies, including 3
432 subspecies of gaur (Duckworth et al., 2016), banteng (Gardner et al., 2016) wild water buffalo
433 (Kaul et al., 2019) and mainland serow (Mori et al., 2019), and 2 subspecies of Chinese goral
434 (Duckworth et al., 2008). Subspecies may vary in niche, climate and biological interactions
435 that could affect the model predictions. The low habitat suitability of our study in Borneo for
436 banteng could be because climatic and geographic conditions differ for *B.j. lowi* compared to
437 those in mainland Asia, affecting model transferability across different regions (Zhu et al.,
438 2021). Equally, Mori et al. (2019) suggest that Chinese goral (*N. griseus*) should be reclassified
439 within Brown goral (*N. goral*) together and Burmese goral (*N. evansi*) that together with *N.*
440 *griseus* should be split to become an individual species. Future analyses must consider these

441 taxonomic reclassifications. However, we modelled species level habitat suitability, rather
442 than the subspecies, as we assume that there is less likely to be habitat and environmental
443 condition variation at the subspecies level for these bovids (Smith et al., 2019).

444 We found that using the MSDM OBR technique showed a better predicted suitable
445 area of the ecological niche, closer to the real distribution for species with more restricted
446 ranges like banteng, wild water buffalo and Chinese goral, with higher performance TSS values
447 compared to No MSDM models. We recommend restricting the accessible area for predicting
448 wild water buffalo potential habitat to reduce overprediction caused by overlapping areas
449 with domestic water buffalo.

450 We also used ensemble approaches, to obtain better predictive performance than
451 from any single model type, but further analyses could also look at individual model results
452 using different parameters, such as differing pseudo-absence background point ratios. The
453 equal ratio of presence to pseudo-absence (1:1 ratio) has been used in several types of model
454 like general linear models, artificial neural networks, and Maxent models, and it is also
455 recommended for use in ensemble models when dealing with small sample sizes (Liu et al.,
456 2019).

457 Limitations

458 We acknowledge sampling deficiencies across the regions. We had fewer occurrences
459 in Vietnam, Laos, Myanmar and Indonesia compared to Thailand, from which a large number
460 of our data points came (30,512 points in Thailand, 3,152 points outside Thailand, **Error!**
461 **Reference source not found.**). Occurrence data based on data accessibility may have
462 sampling bias, particularly with clustered points for gaur, banteng, and mainland serow. We
463 minimised these biases through spatial thinning (Aiello-Lammens et al., 2015). Since we found
464 large amounts of suitable areas outside of Thailand, we suggest that future studies should
465 focus on monitoring bovid populations in other countries, especially in India and Myanmar.
466 However, because of this and the model performance, we focused on Thailand.

467 Missing data data has impacted some results. The model TSS values for endangered
468 banteng and Chinese goral are over 0.8, yet our models predict unsuitable areas in part of
469 Indonesia (east and central Kalimantan; Dewi et al. 2020) for banteng and China (e.g. Beijing
470 and northeast Inner Mongolia; (Yang et al., 2019) for Chinese goral from which these species
471 have been reported. This would likely be improved if more spatial data were available for
472 these species.

473 We used a new dataset of species occurrences to assess our model's performance with
474 a 5 km buffer zone, aiming to enhance modelling accuracy. Given these species have quite
475 large home ranges and daily movements, adding a buffer to represent this movement
476 unsurprisingly lead to better model predictions for all species, but most notably for mainland
477 serow, changing the out of sample prediction from 19% to 67% for the entire region and 36%
478 to 86% for Thailand. The buffer zone may indicate the utilisation of unsuitable areas of the

479 species near forested regions, such as secondary forests, agricultural areas, or water
480 resources, which possibly extend these buffer areas from the protected areas to enhance the
481 wildlife protection.

482 The spatial restriction method, OBR, can be sensitive to the distribution of occurrence
483 data, because it keeps predicted suitable areas close to the occurrence locations. This may
484 lead to the exclusion of potential suitable areas driven by a lack of occurrence data in those
485 areas. For example, the wild water buffalo No MSDM predicted potentially suitable habitat
486 around the Sre Pok Wildlife Sanctuary in Cambodia where the species is distributed (Gray et
487 al., 2012), but after the MSDM, this potential habitat was excluded as we lack occurrence data
488 in Cambodia. Although our study showed slightly different TSS values between two different
489 accessible area extents, we encourage testing the different accessible areas as it affects the
490 model results (Anderson & Raza, 2010). Moreover, model performance varied with accessible
491 area sizes and spatial restrictions, emphasising the need for careful accessible area definition
492 in ecological modelling (Barve et al., 2011). Further, future analyses may try to better account
493 for the current presence of species by accounting for factors such as hunting using other
494 proxies, such as other human-disturbance metrics like distance from roads (Lim et al., 2021).

495 Conclusion

496 Our study provided an overview of the suitable remaining habitat for threatened bovid
497 species at a regional scale using high-resolution environmental variables and species
498 occurrence data from multiple observation methods. Our predictions showed that the
499 suitable areas are small and fragmented for all species, and more than 50% of suitable areas
500 are outside of protected areas. Those suitable areas outside PAs could possibly become
501 efficient conservation areas, such as forest corridors or buffer zones to connect fragmented
502 bovid populations and enhance long-term habitat conservation. Our predictions may inform
503 conservation actions to avoid further defaunation of wild bovidae such as the management
504 of human-wildlife conflicts and habitat quality for long-term species survival.

505 Acknowledgements

506 We thank all the data contributions and collaborations from these institutions:

507 Dr Supagit Vinitpornsawan (Director of Wildlife Conservation Area Management and Education Center,
508 Wildlife Conservation Office, Department of National Parks, Wildlife and Plant Conservation, Thailand) for
509 animal track and sign data in Thailand. For camera trap data in Thailand: Naret Seuaturien (WWF Thailand),
510 Manoon Plionsungnoen, Department of Environmental and Forest Biology, State University of New York College
511 of Environmental Science), Wanlop Chutipong (Conservation Ecology Program, Pilot Plant Development and
512 Training Institute, King Mongkut's University of Technology Thonburi), Nucharin Songsasen (Smithsonian's
513 National Zoo and Conservation Biology Institute), Lon I. Grassman, Jr. (Feline Research Program, Caesar Kleberg
514 Wildlife Research Institute, Texas A&M University, USA), Freeland Foundation, WCS Thailand, Smithsonian
515 Institution, PANTHERA USA in Thailand.

516 WWF Thailand would like to thank: WWF Germany, WWF Sweden, WWF US, B.Grimm, WWF Japan,
517 and WWF Switzerland for wonderful support of field projects, and Department of National Parks, Wildlife, and
518 Plant Conservation for kind permission and collaboration. WCS Cambodia, Friends of Wildlife, Wildlife Alliance

519 and Ministry of Environment, Royal Government of Cambodia for the camera trap data in Cambodia. CarBi
520 Project of WWF Lao and WWF Greater Mekong for the camera trap data in Laos. Camera trap in Myanmar:
521 Friends of Wildlife and Data collecting in Tanintharyi, Myanmar was partially funded by the European Union,
522 Helmsley Charitable Trust and mainly funded by Integrated Tiger Habitat Conservation Project, through the
523 Fauna & Flora International (FFI). Open source databases: <https://www.gbif.org>, camera trap data from
524 eMammals (<https://emammal.si.edu/>) by William J. McShea (Conservation Ecology Center, Smithsonian
525 Conservation Biology Institute) and Megan Baker-Whatton (Smithsonian Conservation Biology Institute, and
526 George Mason University) under the project: Qionglai Mountains Project, Liangshan Mountains Project, Habitat
527 Connectivity in Minshan Mountains, Qinling Project, HKK ForestGEO Project, and Carnivore Intraguild
528 Interactions in Select Thailand Reserves. Also, the other researchers who share the species occurrence data with
529 us. We thank the IUCN specialists for commenting on the early version of the habitat suitability maps. The
530 authors wish to acknowledge the use of New Zealand eScience Infrastructure (NeSI) high-performance
531 computing facilities, consulting support and/or training services as part of this research.

532 **Funding Statement**

533 WH was supported by Manaaki New Zealand Scholarships. DTSW, RLM, RSJ were supported by Bryce Carmine
534 and Anne Carmine (née Percival), through the Massey University Foundation. DTSW was supported by the
535 Percival Carmine Chair in Epidemiology and Public Health and Royal Society Te Apūrangi (grant no. RDF-
536 MAU1701). EA supported by U.S. Fish & Wildlife Service Rhinoceros and Tiger Conservation Fund, David
537 Shepherd Wildlife Foundation, Care for the Wild International/Born Free Foundation, Point Defiance Zoo &
538 Aquarium and 21st Century Tiger. DN was supported by King Mongkut's University of Technology Thonburi
539 (grant no. WOR1-2557-2558); International Association for Bear Research and Management (Research &
540 Conservation grant), 2012 & 2014 and The Asahi Glass Foundation (Research Grant), 2003. Antony Lynam was
541 supported by TRF/BIOTEC Special Program for Biodiversity Research and Training. George A. Gale was
542 supported by TRF/BIOTEC Special Program for Biodiversity Research and Training (BRT R 346001) and National
543 Science and Technology Development Agency (grant no. NSTDA P-11-00390). Data collecting in Tanintharyi,
544 Myanmar was partially funded by the European Union, Helmsley Charitable Trust and mainly funded by
545 Integrated Tiger Habitat Conservation Project - grant no. ITHCP1338, through the Fauna & Flora International.

546 **Data Accessibility**

547 Data available upon request

548

549 **Competing Interests**

550 We have no competing interests.

551

552 **Authors' Contributions**

553 **Alex Riggio:** Investigation, Resources, Writing - Review and Editing.

554 **Alexander Godfrey:** Investigation, Resources, Writing - Review and Editing.

555 **Anony Lynam:** Investigation, Resources, Writing - Review and Editing

556 **David T. S. Hayman:** Conceptualization, Methodology, Validation, Supervision, Writing - Original Draft, Writing
557 - review and Editing, Project administration, Funding acquisition.

558 **Dusit Ngoprasert:** Investigation, Resources, Writing - Review and Editing.

559 **Eric Ash:** Investigation, Resources, Writing - Review and Editing.

560 **Francesco Bisi:** Investigation, Resources, Writing - Review and Editing.

561 **George A. Gale:** Investigation, Resources.

562 **Giacomo Cremonesi:** Investigation, Resources, Writing - Review and Editing.

563 **Gopalasamy Reuben Clements:** Investigation, Resources, Writing - Review and Editing.

564 **Jonathan C Marshall:** Methodology, Software, Validation, Formal analysis

565 Supervision, Writing - Original Draft, Review and Editing.

566 **Marnoch Yindee:** Investigation, Resources, Writing - Review and Editing.

567 **Nay Myo Shwe**: Investigation, Resources.
568 **Pin Chanratana**: Investigation, Resources.
569 **Reju Sam John**: Methodology, Software, Validation, Formal analysis, Supervision, Writing - Original Draft, Review and Editing.
570 **Renata L. Muylaert**: Methodology, Software, Validation, Formal analysis, Supervision, Writing - Original Draft, Review and Editing.
571 **Robert Steinmetz**, Investigation, Resources, Writing - Review and Editing.
572 **Rungnapa Phoonjampa**: Investigation, Resources.
573 **Saw Soe Aung**: Investigation, Resources.
574 **Seri Nakbun**: Investigation, Resources.
575 **Stephanie Schuttler**: Investigation, Resources, Writing - Review and Editing.
576 **Thomas N. E. Gray**: Investigation, Resources, Writing - Review and Editing.
577 **Wantida Horpiencharoen**: Conceptualization, Methodology, Software, Formal analysis, Data Curation, Writing - Original Draft, Writing - review and Editing, Project administration, Funding acquisition.
578 **Worrapan Phumanee**: Investigation, Resources.
579 All authors read the text, provided comments, suggestions and corrections, and approved the final version.

583 References

584 Ahmad, S., Yang, L., Khan, T. U., Wanghe, K., Li, M., & Luan, X. (2020). Using an ensemble modelling approach
585 to predict the potential distribution of Himalayan gray goral (*Naemorhedus goral bedfordi*) in Pakistan.
586 *Global Ecology and Conservation*, 21, e00845. <https://doi.org/https://doi.org/10.1016/j.gecco.2019.e00845>

587 Ahrestani, F. S., & Karanth, K. U. (2014). Gaur *Bos gaurus* C.H. Smith, 1827. In M. Melletti & J. Burton (Eds.),
588 *Ecology, Evolution and Behaviour of Wild Cattle* (pp. 174-193). Cambridge University Press.

589 Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package
590 for spatial thinning of species occurrence records for use in ecological niche models
591 [<https://doi.org/10.1111/ecog.01132>]. *Ecography*, 38(5), 541-545.
592 <https://doi.org/https://doi.org/10.1111/ecog.01132>

593 Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models:
594 prevalence, kappa and the true skill statistic (TSS) [<https://doi.org/10.1111/j.1365-2664.2006.01214.x>].
595 *Journal of Applied Ecology*, 43(6), 1223-1232. <https://doi.org/https://doi.org/10.1111/j.1365-2664.2006.01214.x>

596 Amatulli, G., McInerney, D., Sethi, T., Strobl, P., & Domisch, S. (2020). Geomorpho90m, empirical evaluation
597 and accuracy assessment of global high-resolution geomorphometric layers. *Scientific Data*, 7(1), 162.
598 <https://doi.org/10.1038/s41597-020-0479-6>

599 Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species
600 geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus
601 *Nephelomys*) in Venezuela [<https://doi.org/10.1111/j.1365-2699.2010.02290.x>]. *Journal of Biogeography*,
602 37(7), 1378-1393. <https://doi.org/https://doi.org/10.1111/j.1365-2699.2010.02290.x>

603 Andrade, A. F. A. d., Velazco, S. J. E., & De Marco Júnior, P. (2020). ENMTML: An R package for a
604 straightforward construction of complex ecological niche models. *Environmental Modelling & Software*,
605 125, 104615. <https://doi.org/https://doi.org/10.1016/j.envsoft.2019.104615>

606 Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan,
607 A., Maiorano, L., & Naimi, B. (2019). Standards for distribution models in biodiversity assessments. *Science
608 Advances*, 5(1), eaat4858.

609 Ash, E., Kaszta, Ž., Noochdumrong, A., Redford, T., Chanteap, P., Hallam, C., Jaroensuk, B., Raksat, S.,
610 Srinoppawan, K., & Macdonald, D. W. (2021). Opportunity for Thailand's forgotten tigers: assessment of
611 the Indochinese tiger *Panthera tigris corbetti* and its prey with camera-trap surveys. *Oryx*, 55(2), 204-211.
612 <https://doi.org/10.1017/S0030605319000589>

613 Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species
614 distribution models: how, where and how many? *Methods in Ecology and Evolution*, 3(2), 327-338.
615 <https://doi.org/https://doi.org/10.1111/j.2041-210X.2011.00172.x>

616 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., &
617 Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species
618 distribution modeling. *Ecological Modelling*, 222(11), 1810-1819.

620 Baston, D., ISciences, L., & Baston, M. D. (2021). Package 'exactextractr'. *R Foundation for Statistical*
621 *Computing*. URL: <https://cran.r-project.org>.

622 Bhandari, S., Crego, R. D., & Stabach, J. A. (2022). Spatial segregation between wild ungulates and livestock
623 outside protected areas in the lowlands of Nepal. *PLoS One*, 17(1), e0263122.
624 <https://doi.org/10.1371/journal.pone.0263122>

625 Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). bioclim: the first species distribution modelling
626 package, its early applications and relevance to most current MaxEnt studies
627 [<https://doi.org/10.1111/ddi.12144>]. *Diversity and distributions*, 20(1), 1-9.
628 <https://doi.org/https://doi.org/10.1111/ddi.12144>

629 Bora, J. K., Vardhan, V., Vijh, R. K., Deshmukh, A. V., Srinivas, Y., Mungi, N. A., Goswami, S., Jhala, H., Chauhan,
630 J. S., Kumar, U., & Jhala, Y. (2024). Evaluating the potential for reintroducing the endangered wild water
631 buffalo (*Bubalus arnee*) in Kanha National Park, central India. *Restoration Ecology*, 32(3), e14079.
632 <https://doi.org/https://doi.org/10.1111/rec.14079>

633 Borowik, T., Pettorelli, N., Sönnichsen, L., & Jędrzejewska, B. (2013). Normalized difference vegetation index
634 (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. *European Journal of*
635 *Wildlife Research*, 59(5), 675-682. <https://doi.org/10.1007/s10344-013-0720-0>

636 Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendlbazar, N.-E., Herold, M., & Fritz, S. (2019). Copernicus
637 Global Land Service: Land Cover 100m: collection 2: epoch 2015: Globe (Version V2.0.2) [Data set]. ESA
638 Living Planet Symposium 2019 (LPS2019), Milan, Italy: Zenodo.

639 Catullo, G., Masi, M., Falcucci, A., Maiorano, L., Rondinini, C., & Boitani, L. (2008). A gap analysis of Southeast
640 Asian mammals based on habitat suitability models. *Biological Conservation*, 141(11), 2730-2744.
641 <https://doi.org/https://doi.org/10.1016/j.biocon.2008.08.019>

642 Chaiyarat, R., Prasopsin, S., & Bhumpakphan, N. (2021). Food and nutrition of Gaur (*Bos gaurus* C.H. Smith,
643 1827) at the edge of Khao Yai National Park, Thailand. *Scientific Reports*, 11(1), 3281.
644 <https://doi.org/10.1038/s41598-021-82858-1>

645 Chaiyarat, R., Youngpoy, N., Kongsurakan, P., & Nakbun, S. (2019). Habitat preferences of reintroduced
646 banteng (*Bos javanicus*) into the Salakphra Wildlife Sanctuary, Thailand. *Wildlife Research*, 46(7), 573-586.
647 <https://doi.org/https://doi.org/10.1071/WR18184>

648 Choudhury, A. (2002). Distribution and conservation of the Gaur *Bos gaurus* in the Indian Subcontinent.
649 *Mammal Review*, 32(3), 199-226. <https://doi.org/https://doi.org/10.1046/j.1365-2907.2002.00107.x>

650 Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C., & Boitani, L. (2011). Global patterns of
651 fragmentation and connectivity of mammalian carnivore habitat. *Philosophical transactions of the Royal*
652 *Society of London. Series B, Biological sciences*, 366(1578), 2642-2651.
653 <https://doi.org/10.1098/rstb.2011.0120>

654 Dewi, M. C., Sapari, I., & Santoso, E. (2020). THREATS AND CONSERVATION EFFORTS OF THE LAST REMAINING
655 BANTENG (*Bos javanicus lowi*) IN UNPROTECTED AREAS AT BELANTIKAN HULU, CENTRAL KALIMANTAN.
656 *Media Konservasi*, 25(1), 64-72.

657 Didan, K. (2015). MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006
658 <https://doi.org/https://doi.org/10.5067/MODIS/MOD13A2.006>

659 Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user's guide (MOD13 series).
660 *University of Arizona: Vegetation Index and Phenology Lab*.

661 Dormann, C. F. (2007). Promising the future? Global change projections of species distributions. *Basic and*
662 *applied ecology*, 8(5), 387-397.

663 Duckworth, J., Steinmetz, R., & Chaiyarat, R. (2008). *Naemorhedus griseus*. In *IUCN 2012. IUCN red list of*
664 *threatened species. Version 2012.2*.

665 Duckworth, J. W., Sankar, K., Williams, A. C., Samba Kumar, N., & Timmins, R. J. (2016). *Bos gaurus*. *The IUCN*
666 *Red List of Threatened Species 2016: e.T2891A46363646*. Retrieved 11 February 2021 from
667 <https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T2891A46363646.en>.

668 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land
669 areas. *International Journal of Climatology*, 37(12), 4302-4315.
670 <https://doi.org/https://doi.org/10.1002/joc.5086>

671 Franklin, J. (2009). *Mapping species distributions: spatial inference and prediction*. Cambridge University Press.

672 Gardner, P., Hedges, S., Pudymoko, S., Gray, T. N. E., & Timmins, R. J. (2016). *Bos javanicus*. *The IUCN Red List*
673 *of Threatened Species 2016: e.T2888A46362970*. Retrieved 11 February 2021 from
674 <https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T2888A46362970.en>.

675 [Record #143 is using a reference type undefined in this output style.]

676 Giam, X., & Wilcove, D. S. (2012). The geography of conservation ecology research in Southeast Asia: current
677 biases and future opportunities. *Raffles Bull. Zool*, 25, 29-36.

678 Golding, N. (2014). GRaF: Species distribution modelling using latent Gaussian random fields. *R package*
679 *version 0.1-12*.

680 Gray, T., Hughes, A., Laurance, W., Long, B., Lynam, A., O'Kelly, H., Ripple, W., Seng, T., Scotson, L., &
681 Wilkinson, N. (2018). The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in
682 Southeast Asia. *Biodiversity and Conservation*, 27. <https://doi.org/10.1007/s10531-017-1450-5>

683 Gray, T. N., & Phan, C. (2011). Habitat preferences and activity patterns of the larger mammal community in
684 Phnom Prich Wildlife Sanctuary, Cambodia. *The Raffles Bulletin of Zoology*, 59(2), 311-318.

685 Gray, T. N. E., Prum, S., Pin, C., & Phan, C. (2012). Distance sampling reveals Cambodia's Eastern Plains
686 Landscape supports the largest global population of the Endangered banteng *Bos javanicus*. *Oryx*, 46(4),
687 563-566. <https://doi.org/10.1017/S0030605312000567>

688 Hassanin, A. (2014). Systematic and evolution of Bovini. *Ecology, Evolution and Behavior of Wild Cattle:*
689 *Implications for Conservation*. Cambridge University Press, Cambridge, 7-20.
690 <https://doi.org/https://doi.org/10.1017/CBO9781139568098.003>

691 Hassell, J. M., Begon, M., Ward, M. J., & Fèvre, E. M. (2017). Urbanization and disease emergence: dynamics at
692 the wildlife–livestock–human interface. *Trends in ecology & evolution*, 32(1), 55-67.

693 Hastie, T. (2018). Gam: Generalized Additive Models.

694 Hein, Z. M., Williams, A. C., Soe, P., Cox, N. J., Htun, N. Z., Thaung, N. O., Aye, Y. Y., Htun, Y. L., & Yoganand, K.
695 (2020). Status of two species of threatened wild cattle (*Bos gaurus* and *Bos javanicus birmanicus*) in North
696 Zamari Wildlife Sanctuary, Bago Region, Myanmar. *BULLETIN*.

697 Hijmans, R. J. (2023). *raster: Geographic Data Analysis and Modeling*. In <https://rspatial.org/raster>

698 IUCN. (2020). *The IUCN Red List of Threatened Species Version 2020-3*. Retrieved 14 February 2021 from
699 <https://www.iucnredlist.org>

700 IUCN. (2021). *The IUCN Red List of Threatened Species*. Retrieved 16 October from <https://www.iucnredlist.org>

701 IUCN-SSC AWCS Group. (2010). *IUCN Regional Conservation Strategy for Wild Cattle and Buffaloes in South-
702 east Asia, 2011 to 2020*. Oxford, UK, IUCN SSC AWCSG <https://portals.iucn.org/library/node/9870>

703 Jornburom, P., Duangchantrasiri, S., Jinamoy, S., Pattanavibool, A., Hines, J. E., Arnold, T. W., Fieberg, J., &
704 Smith, J. L. D. (2020). Habitat use by tiger prey in Thailand's Western Forest Complex: What will it take to
705 fill a half-full tiger landscape? *Journal for Nature Conservation*, 58, 125896.
706 <https://doi.org/https://doi.org/10.1016/j.jnc.2020.125896>

707 Karanth, K. K. (2016). Wildlife in the matrix: spatio-temporal patterns of herbivore occurrence in Karnataka,
708 India. *Environmental management*, 57(1), 189-206.

709 Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R.
710 *Journal of statistical software*, 11(9), 1-20. <https://doi.org/10.18637/jss.v011.i09>

711 [Record #597 is using a reference type undefined in this output style.]

712 Kindt, R. (2018). Ensemble species distribution modelling with transformed suitability values. *Environmental
713 Modelling & Software*, 100, 136-145. <https://doi.org/https://doi.org/10.1016/j.envsoft.2017.11.009>

714 Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. *R news*, 2(3), 18-22.

715 Lim, H. Y., Gardner, P. C., Abram, N. K., Yusah, K. M., & Goossens, B. (2021). Identifying habitat and
716 understanding movement resistance for the Endangered Bornean banteng *Bos javanicus lowi* in Sabah,
717 Malaysia. *Oryx*, 55(1), 122-130. <https://doi.org/10.1017/S0030605318001126>

718 Liu, C., Newell, G., & White, M. (2019). The effect of sample size on the accuracy of species distribution
719 models: considering both presences and pseudo-absences or background sites. *Ecography*, 42(3), 535-548.
720 <https://doi.org/https://doi.org/10.1111/ecog.03188>

721 Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus
722 methods in predictive species distribution modelling [<https://doi.org/10.1111/j.1472-4642.2008.00491.x>].
723 *Diversity and distributions*, 15(1), 59-69. <https://doi.org/https://doi.org/10.1111/j.1472-4642.2008.00491.x>

724 Martinez, A. d. I. I., & Labib, S. (2023). Demystifying normalized difference vegetation index (NDVI) for
725 greenness exposure assessments and policy interventions in urban greening. *Environmental Research*, 220,
726 115155. <https://doi.org/https://doi.org/10.1016/j.envres.2022.115155>

727 McCullagh, P., & Nelder, J. A. (1989). Generalized linear models 2nd edition chapman and hall. London, UK.

728 McShea, W. J., Sukmasuang, R., Erickson, D. L., Herrmann, V., Ngoprasert, D., Bhumpakphan, N., & Davies, S. J.
729 (2019). Metabarcoding reveals diet diversity in an ungulate community in Thailand
730 [<https://doi.org/10.1111/btp.12720>]. *Biotropica*, 51(6), 923-937.
731 <https://doi.org/https://doi.org/10.1111/btp.12720>

732 Mendes, P., Velazco, S. J. E., Andrade, A. F. A. d., & De Marco, P. (2020). Dealing with overprediction in species
733 distribution models: How adding distance constraints can improve model accuracy. *Ecological Modelling*,
734 431, 109180. [https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109180](https://doi.org/10.1016/j.ecolmodel.2020.109180)

735 Menkham, K., Sukmasuang, R., Pla-ard, M., Charaspert, K., Panganta, T., Trisurat, Y., & Bhumpakphan, N.
736 (2019). Population and habitat use of Asian elephants (*Elephas maximus*) and five ungulate species in Khao
737 Ang Rue Nai Wildlife Sanctuary, Chachoengsao Province, Thailand. *Biodiversitas Journal of Biological
738 Diversity*, 20(8).

739 Mori, E., Nerva, L., & Lovari, S. (2019). Reclassification of the serows and gorals: the end of a neverending
740 story? [<https://doi.org/10.1111/mam.12154>]. *Mammal Review*, 49(3), 256-262.
741 <https://doi.org/https://doi.org/10.1111/mam.12154>

742 Nguyen, M. H. (2009). The status of Vulnerable gaur *Bos gaurus* and Endangered banteng *Bos javanicus* in Ea
743 So Nature Reserve and Yok Don and Cat Tien National Parks, Vietnam [Article]. *Oryx*, 43(1), 129-135.
744 <https://doi.org/10.1017/s0030605307000440>

745 Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico,
746 J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J.
747 F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of
748 Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving
749 biodiversity. *BioScience*, 51(11), 933-938. [https://doi.org/10.1641/0006-3568\(2001\)051\[0933:Teotwa\]2.0.Co;2](https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2)

750 Penjor, U., Kaszta, Ž., Macdonald, D. W., & Cushman, S. A. (2021). Prioritizing areas for conservation outside
751 the existing protected area network in Bhutan: the use of multi-species, multi-scale habitat suitability
752 models. *Landscape Ecology*, 36(5), 1281-1309. <https://doi.org/10.1007/s10980-021-01225-7>

753 Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: getting the
754 concepts right. *Natureza & Conservação*, 10(2), 102-107. <https://doi.org/10.4322/natcon.2012.019>

755 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic
756 distributions. *Ecological Modelling*, 190(3-4), 231-259.

757 Phoonjampa, R., Steinmetz, R., Phumanee, W., Bunchornratana, K., Kaewsrisod, T., Srirattanaporn, S.,
758 Taraphibarl, K., Bejraburnin, T., & Bhumpakphan, N. (2021). Recolonization of Former Range by Endangered
759 Banteng *Bos javanicus* in Mae Wong National Park, Thailand. *Tropical Conservation Science*, 14,
760 19400829211065359.

761 Pintana, D., & Lakamavichian, S. (2013). Ecology and conservation of Goral outside protected areas by
762 community-based approach in Thailand. *Tigerpaper*, 40(3), 12-21.

763 Prayoon, U., Suksavate, W., Chaiyes, A., Winitpornsawan, S., Tunhikorn, S., Faengbubpha, K., Angkaew, C.,
764 Pattanakiat, S., & Duengkae, P. (2021). Past, present and future habitat suitable for gaur (*Bos gaurus*) in
765 Thailand. *Agriculture and Natural Resources*, 55(5), 743-756-743-756.

766 R Core Team. (2020). *R: A language and environment for statistical computing*. In R Foundation for Statistical
767 Computing.

768 Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I. H.,
769 Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E., Sandom, C. J., Terborgh, J., & Van
770 Valkenburgh, B. (2015). Collapse of the world's largest herbivores. *Science Advances*, 1(4), e1400103-
771 e1400103. <https://doi.org/10.1126/sciadv.1400103>

772 Rizal, A. R. M., Magintan, D., Rahman, Z. A., Nibong, O., Rahim, M. A. B., Hassan, Z. M., & Patah, P. A. (2020).
773 Home range size estimation of a satellite collared female gaur at Ulu Jelai Forest Reserve, Pahang by using
774 minimum convex polygon and fixed kernel analysis: a preliminary study. *Journal of Wildlife and Parks*, 35,
775 49-59.

776 Romero, G. Q., Gonçalves-Souza, T., Vieira, C., & Koricheva, J. (2015). Ecosystem engineering effects on species
777 diversity across ecosystems: a meta-analysis [<https://doi.org/10.1111/brv.12138>]. *Biological Reviews*,
778 90(3), 877-890. <https://doi.org/https://doi.org/10.1111/brv.12138>

779 Royle, J. A., Chandler, R. B., Yackulic, C., & Nichols, J. D. (2012). Likelihood analysis of species occurrence
780 probability from presence-only data for modelling species distributions [Article]. *Methods in Ecology and
781 Evolution*, 3(3), 545-554. <https://doi.org/10.1111/j.2041-210X.2011.00182.x>

782 Simcharoen, A., Simcharoen, S., Duangchantrasiri, S., Bump, J., & Smith, J. L. D. (2018). Tiger and leopard diets
783 in western Thailand: Evidence for overlap and potential consequences. *Food Webs*, 15, e00085.
784 <https://doi.org/https://doi.org/10.1016/j.fooweb.2018.e00085>

785 Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H., & Warren, D. (2019). Niche Estimation Above
786 and Below the Species Level. *Trends in ecology & evolution*, 34(3), 260-273.
787 <https://doi.org/https://doi.org/10.1016/j.tree.2018.10.012>

789 Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions.
790 *Proceedings of the National Academy of Sciences*, 106(Supplement 2), 19644.
791 <https://doi.org/10.1073/pnas.0901637106>

792 Soberón, J., & Peterson, A. T. (2005). Interpretation of Models of Fundamental Ecological Niches and Species'
793 Distributional Areas. *Biodiversity Informatics*, 2. <https://doi.org/10.17161/bi.v2i0.4>

794 Steinmetz, R. (2004). Gaur (*Bos gaurus*) and Banteng (*B. javanicus*) in the lowland forest mosaic of Xe Pian
795 Protected Area, Lao PDR: abundance, habitat use, and conservation. *Mammalia*, 68(2-3), 141-157.
796 <https://doi.org/https://doi.org/10.1515/mamm.2004.015>

797 Steinmetz, R., Chutipong, W., Seuaturien, N., & Chirngsaard, E. (2008). Community Structure of Large
798 Mammals in Tropical Montane and Lowland Forest in the Tenasserim-Dawna Mountains, Thailand.
799 *Biotropica*, 40(3), 344-353. www.jstor.org/stable/30043637

800 Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census Data for Population
801 Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. *PLoS One*, 10(2), e0107042.
802 <https://doi.org/10.1371/journal.pone.0107042>

803 Sukmasuang, R., Charaspert, K., Panganta, T., Pla-ard, M., Khioesree, N., & Thongbanthum, J. (2020). Diversity,
804 abundance, activity period, and factors affecting the appearance of wildlife around the corridors between
805 Khao Yai- Thap Lan National Parks, Thailand by camera trapping. *Biodiversitas Journal of Biological
806 Diversity*, 21(5). <https://doi.org/10.13057/biodiv/d210563>

807 Suttidate, N., Steinmetz, R., Lynam, A. J., Sukmasuang, R., Ngoprasert, D., Chutipong, W., Bateman, B. L., Jenks,
808 K. E., Baker-Whatton, M., Kitamura, S., Ziolkowska, E., & Radeloff, V. C. (2021). Habitat connectivity for
809 endangered Indochinese tigers in Thailand. *Global Ecology and Conservation*, 29, e01718.
810 <https://doi.org/https://doi.org/10.1016/j.gecco.2021.e01718>

811 Tanasarnpaiboon, S. (2016). *Gaur (Bos gaurus) abundance, distribution, and habitat use patterns in Kuiburi
812 National Park, Southwestern Thailand*. The University of Nebraska-Lincoln.
813 <https://digitalcommons.unl.edu/dissertations/AAI10102227>

814 UNEP-WCMC, & IUCN. (2021). *Protected Planet: The World Database on Protected Areas (WDPA)* [Online]
815 www.protectedplanet.net

816 Velazco, S. J. E., Villalobos, F., Galvão, F., & De Marco Júnior, P. (2019). A dark scenario for Cerrado plant
817 species: Effects of future climate, land use and protected areas ineffectiveness
818 [<https://doi.org/10.1111/ddi.12886>]. *Diversity and distributions*, 25(4), 660-673.
819 <https://doi.org/https://doi.org/10.1111/ddi.12886>

820 Yang, J., Zhu, G.-F., Jiang, J., Xiang, C.-L., Gao, F.-L., & Bao, W.-D. (2019). Non-invasive genetic analysis indicates
821 low population connectivity in vulnerable Chinese gorals: concerns for segregated population
822 management. *Zoological Research*, 40(5), 439.

823 Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., & Wang, L. (2015). Consensus Forecasting of Species
824 Distributions: The Effects of Niche Model Performance and Niche Properties. *PLoS One*, 10(3), e0120056.
825 <https://doi.org/10.1371/journal.pone.0120056>

826 Zhang, Y., Colli, L., & Barker, J. (2020). Asian water buffalo: domestication, history and genetics. *Animal
827 Genetics*, 51, 177-191. <https://doi.org/10.1111/age.12911>

828 Zhu, G., Fan, J., & Peterson, A. T. (2021). Cautions in weighting individual ecological niche models in ensemble
829 forecasting. *Ecological Modelling*, 448, 109502.
830 <https://doi.org/https://doi.org/10.1016/j.ecolmodel.2021.109502>

831