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Abstract

Wild bovids provide important ecosystem functions throughout their ranges. Five wild bovids
remain in Thailand: gaur (Bos gaurus), banteng (Bos javanicus), wild water buffalo (Bubalus
arnee), mainland serow (Capricornis sumatraensis) and Chinese goral (Naemorhedus griseus).
However, their populations and habitats have declined substantially and become fragmented.
Here, we identify potentially suitable habitat for these threatened bovids using ecological
niche models and quantify how much suitable area remains within protected areas. We
combined species occurrence data with environmental variables and used spatially-restricted
Biotic-Abiotic-Mobility frameworks with species-specific and single large accessible areas. We
used ensembles from eight algorithms for generating maps and out-of-sample predictions to
validate model performance against new data. Gaur, banteng, and buffalo models performed
well throughout the entire distribution (262%) and in Thailand (=80%). Mainland serow and
Chinese goral performed poorly for the entire distribution and in Thailand, though a 5 km
movement buffer markedly improved model performance for serow. Particularly large
suitable areas were in Thailand and India for gaur, Cambodia and Thailand for banteng, and
India for buffalo. Over 50% of overall suitable habitat is located outside protected areas, with
just 9% for buffalo in Thai protected areas, highlighting area for potential habitat
management and conflict mitigation.

Introduction

An important task of wildlife research and conservation is to define the distributional
ecology of species and to understand how they relate to the environment, climate and other
organisms (Franklin, 2009). Ecological niche models (ENM) are applied to predict the
geographic distribution suitable for a species by using ecological niche dimensions combined
with species’ presence data (Soberon & Peterson, 2005). ENM can be approached using the
‘Biotic-Abiotic-Mobility’ (BAM) framework, which considers the relationship between the
species' distribution, geographical and climatic factors and explains the influence of factors
on predicted habitat suitability (Peterson & Soberdn, 2012). Abiotic (A) factors generally
determine the potential distribution (or fundamental niche) of a species, and the intersection
of abiotic and biotic (B) factors form the realised niche, or the part of this potential
distribution where species actually live (Soberéon & Nakamura, 2009). Mobility (M) is the area
accessible by species related to their distribution over periods of time (the ‘accessible area’;
(Barve et al., 2011)). Selecting the extent of species’ accessible areas, including buffer zones,
impacts model prediction results (Anderson & Raza, 2010; Barve et al., 2011).

Wild Bovidae (Mammalia: Artiodactyla) play significant ecological roles in tropical
forests and grasslands (Hassanin, 2014). Bovids are grazers and browsers, modifying plant
diversity and abundance within ecosystems (Ripple et al., 2015; Romero et al., 2015). Large
wild bovids are also the prey of predators such as tigers (Panthera tigris) and leopards
(Panthera pardus) (Simcharoen et al., 2018). Throughout Asia, wild bovid populations are
threatened by poaching (Gray et al., 2018) and habitat loss (Nguyen, 2009), especially in South
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74  to Southeast Asia (Giam & Wilcove, 2012). Natural habitats have been disturbed by free-
75  grazing livestock, which can lead to interbreeding (e.g. between domestic and wild water
76  buffalo, (Kaul et al., 2019), increased competition for food and natural resources (Bhandari et
77  al., 2022), and increased risk of disease transmission between wildlife and livestock (Hassell
78 etal.,, 2017). Moreover, habitat destruction is likely to influence the species' distribution and
79  behaviour adaptation, which could lead to shared natural resources and conflict between
80  humans and wild bovids.

81 In South and Southeast Asia, there are 27 recognised bovid species (IUCN, 2021), of
82  which seven species are listed as vulnerable, five as endangered and three as critically
83 endangered with extinction. Thailand has five bovid species (gaur; Bos gaurus, banteng; Bos
84  javanicus, wild water buffalo; Bubalus arnee, mainland serow; Capricornis sumatraensis and
85  Chinese goral; Naemorhedus griseus) remaining in their natural habitat. These species are
86  distributed in other countries from South to Southeast Asia (Figure 1) and also have different
87  suitable habitats. For example, gaur can be found in evergreen forest or grassland and range
88 from India, Nepal, across Southeast Asia to Peninsula Malaysia (Duckworth et al., 2016).
89  Mainland serow also has a wide distribution from Nepal to Sumatra in Indonesia through hill
90 foreststoshrubland habitats (Phan et al., 2020). Nevertheless, the prediction of the remaining
91 habitat quality and suitability in Thailand and other countries have been conducted only in
92 some protected areas (Chaiyarat et al., 2019; Pintana & Lakamavichian, 2013), but not at the
93 regional or national level.

94 Species distribution modelling provides an overview of potential habitats for

95 threatened species and aids in conservation planning (Catullo et al., 2008). For instance,

96 previous studies have focused on identifying potentially high-quality habitat connectivity and

97 fragmentation (Crooks et al., 2011) as well as predicting global biodiversity trends (Araujo et

98 al.,, 2019). In Thailand, there are several studies that have predicted habitat suitability for

99 some of these five wild bovids in local areas (Prayoon et al., 2021), but habitat suitability
100 studies for larger extents across their distribution are lacking.

101 Here, we built ENM for the five Thai wild bovid species: gaur, banteng, wild water
102  buffalo, mainland serow and Chinese goral at two scales: first, at the regional scale
103  throughout the entire distribution and, second, at the country scale in Thailand. We aim to 1)
104 identify the potential distribution for these five species in South to Southeast Asia, and 2)
105 identify conservation areas in their geographical distribution, with a particular focus on
106  Thailand.

107 Materials and methods

108 Our workflow consisted of two main processes of data preparation and model building
109 (summarised in Figure S1) that generated habitat suitability maps for all species and
110  accessible areas used. Data preparation consisted of gathering the species occurrence data
111 and environmental data and selecting the accessible areas. Then, the model building
112  consisted of pre-processing, processing and post-processing steps.
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113  Study area

114 The study area consists of 13 Asian countries: Bhutan, Bangladesh, Cambodia, China,
115 India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Sri Lanka, Thailand and Vietnam (Figure 1),
116  that cover the distribution of gaur, banteng, wild water buffalo, mainland serow and Chinese
117  goral based on the literature (Table S1).
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119  Figure 1 Species occurrence data before thinning (yellow circles), IUCN polygons (blue areas)

120 and study areas (grey areas) used in model building for five wild bovid species. First, a
121  common large ‘accessible area’ (A) was used for all species for model building, and then
122  species-specific accessible areas (B-F) for individual species.Species Occurrence data

123 We compiled species occurrence data collected from GPS records collected between
124  January 2000 and June 2021 from researchers, government, NGOs (World Wildlife Fund,
125 Wildlife Conservation Society, Freeland [Ash et al. (2021)], Panthera, Fauna & Flora
126 International, Friends of Wildlife and RIMBA) and open data sources, including GBIF
127  (https://www.gbif.org/) and eMammal (https://emammal.si.edu/). The data coverage by
128  country can be found in Table 1. The occurrence data were collected through observation of
129  animal signs (e.g. footprint and dung) during forest patrols, direct observation during wildlife
130  surveys, camera trapping, and radio-collar signals (Table S2). We used only the research grade
131  observation for GBIF data, which included the photo for species identification. We filtered all
132  theoccurrences and excluded occurrence records outside the species-specific accessible area,

133  duplicated records from the same species and museum collections.


https://www.gbif.org/
https://emammal.si.edu/
https://doi.org/10.1101/2023.08.25.554763
http://creativecommons.org/licenses/by/4.0/

134
135

136

137

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.25.554763; this version posted April 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Table 1 The number of raw and after spatial thinning occurrence points is shown by species

and country.

Raw data

Country Bos gaurus Bos javanicus Bubalus arnee Capricornis sumatraensis ~ Naemorhedus griseus Total
Bangladesh X X X ? X 0
Bhutan 1 X ? ? X 1
Cambodia 44 355 ? 38 X 437
China ? ? X 109 301 410
India 286 X 78 2 ? 366
Indonesia X 6 X ? X 6
Laos 2 1 X 11 X 14
Malaysia 1,067 ? X 603 X 1,671
Myanmar 114 5 ? 99 ? 218
Nepal 4 X 1 2 X 7
Sri Lanka X X 21 X X 21
Thailand 24,258 5,383 50 805 16 30,512
Vietnam 1 ? ? ? ? 1
Grand Total 25,777 5,751 150 1,669 317 33,664

Thinning data
Country Bos gaurus Bos javanicus Bubalus arnee Capricornis sumatraensis ~ Naemorhedus griseus Total
Bangladesh X X X ? X
Bhutan 1 X ? ? X 1
Cambodia 14 48 ? 28 X 90
China ? ? X 64 130 194
India 244 X 64 2 ? 310
Indonesia X 6 X ? X 6
Laos 2 1 X 8 X 11
Malaysia 26 1 X 49 X 76
Myanmar 53 2 ? 51 ? 106
Nepal 4 X 1 1 X 6
Sri Lanka X X 20 X X 20
Thailand 2,387 303 7 185 5 2,887
Vietnam 1 ? ? ? ? 1
Grand Total 2,732 361 92 388 135 3,708

Colour definitions

Number

?

X

species presence with occurrence data
species presence without occurrence data

no species presence
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138 Environmental variables

139 Hypothesized environmental variables were selected based on species’ habitat and
140  distribution related literature Table S1. We used 28 variables (supplementary material, Table
141  S3) for model construction, including 19 bioclimatic variables (Booth et al., 2014) (average for
142 1970-2000) from WorldClim v2 (Fick & Hijmans, 2017), elevation (Shuttle Radar Topography
143  Mission-SRTM) from WorldClim (Fick & Hijmans, 2017), slope (Amatulli et al., 2020), five land
144  cover fractions (grass, tree, urban, water and crop) (Buchhorn et al., 2019), human population
145  density (Stevens et al., 2015) and greenness through the normalized difference vegetation
146  index (NDVI) (Didan, 2015). All layers were processed using the geographic coordinates
147  system (Datum WGS84) and ~1 km? spatial resolution. We transformed the human population
148  density using logarithm base 10 to adjust for skewness. We rescaled the NDVI layer by
149  multiplying all values with a scale factor (0.0001), based on the Moderate Resolution Imaging
150 Spectroradiometer (MODIS) User’s guidelines (Didan et al., 2015).

151 Accessible areas

152 The accessible area refers to the parts of the world accessible to species via dispersal
153  over time (Barve et al., 2011). The extent of the accessible area and the inclusion of a buffer
154  zone have an important effect on ENM performance (Anderson & Raza, 2010; Barve et al.,
155 2011). We used two accessible area sizes to delimitate our modelling extent (Figure 1). The
156 first larger accessible area (hereon LA) includes most of the Asian continent and its
157  ecoregions, and all species distributions are included as a common extent. The second
158  accessible area was more restricted and cropped based on individual species-specific
159  distributions (hereon SSA) from literature reviews (Table S1), IUCN polygons or ‘ranges’ (IUCN,
160 2020) and the terrestrial ecoregions where they occur. For creating the extent, we
161 downloaded the current IUCN range maps for each species, then intersected those on
162  ecoregions (Olson et al., 2001), then combined the results with selected ecoregions based on
163  biogeographic knowledge of the species distributions and habitat preference from the
164  literature reviews. For example, gaur habitat typically contains moist evergreen, semi-
165 evergreen, and dry evergreen forests (Steinmetz et al., 2008; Tanasarnpaiboon, 2016), so we
166 included these regions in our accessible areas. Further details on ecoregions included in
167  accessible areas are in supplementary material, Table S4. To reduce overprediction and make
168  our predictions closer to realised niche estimates, we used an occurrences-based threshold
169 (OBR) method with ensemble models from (Mendes et al., 2020) for creating the spatially
170  restricted ENM (hereon MSDM). OBR is an a posteriori method that restricts the suitable areas
171  of our final ensemble models based on presence and the largest nearest neighbour distance
172  among pairs of occurrences. Overall, we built four combinations between two accessible
173  areas with and without MSDM methods for each species, including 1) No MSDM-SSA; 2) No
174  MSDM-LA; 3) MSDM-SSA and 4) MSDM-LA.

175 Model building
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176 We processed the species occurrence files and environmental datasets in R 4.0.1 (R
177 Core Team, 2020). We developed reproducible ecological niche models with optimized
178  processing times using the ENMTML package (Andrade et al., 2020), following three main
179  steps: 1) pre-processing, 2) processing and 3) post-processing.

180 In pre-processing, we performed occurrence thinning using 2 times the cell-size (1
181  km?) (Velazco et al., 2019) to reduce clustering of species records and sampling bias. We used
182  principal component (PC) analysis (PCA) to reduce the collinearity of the predictors. We
183  assigned species’ accessible areas to determine the species’ distributions using a mask
184  function. We used random sampling to create pseudo-absence background points in a 1:1
185 ratio with presence points (Barbet-Massin et al., 2012). The occurrence and pseudo-absence
186  data was divided into two sets for fitting the model (75%) and evaluating the fitted models
187  (25%), using the bootstrapping partition method with 10 replications for each algorithm.

188 In the processing step, eight algorithms were used to build the ENMs, namely:
189  BIOCLIM (Booth et al., 2014), Generalized Linear Models (McCullagh & Nelder, 1989),
190 Generalized Additive Models (Hastie, 2018), Random Forest (Liaw & Wiener, 2002), Support
191  Vector Machine (Karatzoglou et al., 2004), Maximum Entropy default (Phillips et al., 2006),
192  Maximum Likelihood (Royle et al., 2012) and Bayesian Gaussian Process (Golding, 2014). All
193  models used the default settings from the ENMTML package, which included the functions
194  from different packages (e.g. dismo, maxnet) based on the algorithms that use to fit the
195 models. The data type used for each algorithm is in supplementary materials, Table S5.

196 In the post-processing step, we created ensemble models using the weighted average
197 (WMEAN) method based on the True Skill Statistic (TSS) values for building final habitat
198  suitability and binary maps. The benefits of ensemble models are 1) robust decision-making
199 (Ahmad et al., 2020); 2) reducing uncertainty (Marmion et al., 2009); and 3) a combination of
200 several models into one model prediction (Kindt, 2018). We used TSS to calculate threshold
201  values to convert habitat suitability maps into binary suitability maps (0 = unsuitable and 1 =
202  suitable). We used TSS and area under the curve (AUC) for evaluating model performance.
203  The TSS threshold is calculated using the maximum summed specificity and sensitivity and is
204  not based on prevalence, where an equal TSS score for given models means similar
205 performance (Allouche et al., 2006). Therefore, we selected the final models from the best
206  TSS of weighted average ensemble models. We assessed the model's accuracy by plotting a
207 new dataset of species occurrences obtained from camera traps and human observations
208  (https://www.gbif.org/) on the binary maps. Because, for example, gaur have been recorded

209 towalk up to 6.3 km a day (mean 1.6 km (Rizal et al., 2020)), we created a 5 km buffer zone
210 measured from the edges of the suitable pixels to include occurrences within the travel
211  distance of wild bovids' movement (Ahrestani & Karanth, 2014; Gardner et al., 2014). The
212  percentage of points inside and outside the suitable areas and the buffer zone was calculated
213 for each species. We present all the results, then only models with high prediction accuracy
214  (greater than 80%,(Zhang et al., 2015)) are selected for further analyses. The total suitable
215  areas of the best TSS binary map models were calculated using the zonal function in the raster
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216 R package (Hijmans, 2023). Then, we summed the pixels of the best TSS binary maps to
217  generate the map of species number.

218 Protected area analyses

219 The source for our protected areas map was the World Database of Protected Area
220 (WDPA) (UNEP-WCMC & IUCN, 2021). We classified protected areas based on IUCN protected
221  areas from WPDA into 8 categories, including categories 1 to 6 as IUCN management
222 categories | to VI; category 7 as ‘not applicable’, which includes ‘not reported’, ‘not applicable’
223  and ‘not assigned’ protected areas; and category 8 as non-protected areas, which are the
224  remaining areas that have not been classified as IUCN categories 1 to 7 (UNEP-WCMC and
225 IUCN, 2021). Then, we used the zonal function in the Raster package to calculate overlapping
226  areas between the suitable areas and protected areas for each species.

227 We calculated the percentage of suitable areas in WDPA polygons using the
228  exact_extract function in exactextractr package (Baston et al., 2021) for extracting the
229  suitable areas (values = 1) from binary map rasters in each WDPA polygon. Then, we classified
230 each PA into 5 different suitability categories based on the percentage of suitable habitat in
231  the PA: low suitability (0 - 20%); low - medium suitability (>20 - 40%); medium suitability (>40
232 - 60%); high suitability (>60 - 80%) and very high suitability (280%), and selected only the PAs
233 that have the proportion of suitable area larger than species home range in the result. We
234 have provided the code for creating the models in a GitHub repository.

235 Results

236 We compiled 33,664 occurrence records. After filtering and spatial thinning, we used
237 3,708 points for modelling: 2,732 for gaur, 361 for banteng, 92 for wild water buffalo, 388 for
238 mainland serow, and 135 for Chinese goral. The majority of the thinning occurrences (77%)
239 were collected in Thailand, India and other countries in mainland SEA; see Table 1Error!
240 Reference source not found. for details on the data coverage by country and supplementary
241  materials Table S10 for details on the study sites.

242 We found that the PCA reduced the 28 environmental variables into 12 PCs that
243 explained 95% of the environmental variance in the variables for the LA models for all species.
244 The PCs for SSA models explained more than 96% of the total variance and the PC number
245  varied by species, comprising 13 PCs (wild water buffalo), 11 PCs (gaur, mainland serow), and
246 10 PCs (banteng, Chinese goral). The bioclimatic variables were important variables in all
247  species models. For LA models, the first two axes (PC1 and PC2) have high contributions from
248  the annual mean temperature (bio01), mean temperature of the coldest month (bio06), mean
249  temperature of the driest quarter (bio09) and mean temperature of the warmest quarter
250 (biol0). The first two axes of SSA models showed high positive contributions from mean
251  temperature of the coldest month (gaur), minimum temperature of coldest month (banteng,
252  mainland serow), annual mean temperature (wild water buffalo, mainland serow), and
253  precipitation of the wettest quarter (Chinese goral). We also found that NDVI, elevation, slope
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254  and human population density have less effect on explaining the variability for the first two
255  PCs for all species. The correlations between PCs and individual environmental variables, PC
256  biplots and percentage of explained variance are summarised in supplementary materials,
257  Table S6 and Figure S2.

258  Ecological niche models

259 Overall, all ensemble models showed high performance both for TSS and the area
260 under the curve (AUC) with the highest performing models over 0.8 for all species (Table 2).
261  Models with species-specific accessible areas were not always the best performing models,
262  but most ensemble models performed above 0.7 TSS. The habitat suitability prediction maps
263  using the best model ensembles are in supplementary materials, Figure S3 (SSA) Figure S4
264  (LA), Figure S5 (selected the best model of SSA and LA) and the binary maps which were used
265  for calculating the suitable area in Figure S6. The performance of spatially restricted
266  ensembles was higher in comparison with the No MSDM models, as the TSS was improved
267  for banteng, Chinese goral and wild water buffalo. The lowest performing model for wild
268  water buffalo was the No MSDM-SSA (TSS = 0.57). The best model for gaur was No MSDM-
269 LA, banteng and Chinese goral is MSDM-LA, wild water buffalo is MSDM-SSA, and mainland
270  serow is No MSDM-SSA. We found that all species have small predicted suitable habitats.
271  Moreover, all species models predicted less than 50% of the suitable areas inside PAs.

272  Table 2 True Skill Statistics (TSS) and Area Under the Curve (AUC) values of the weighted
273  average ensemble, and the threshold values for binary maps for five species classified by

274  accessible area type and MSDM method.Best performing models for each accessible area by
275  TSS are shown in Boldface.

Large accessible area Species specific accessible area
No MSDM? MSDM (OBR)® No MSDM? MSDM (OBR)®

TSS AUC TSS AUC TSS AUC TSS AUC
Species Score Threshold Score  Score Threshold Score Score Threshold Score  Score Threshold Score
Gaur
Bos gaurus 0.92 0.49 0.99 0.92 0.44 0.99 0.88 0.39 0.98 0.88 0.41 0.98
Banteng
Bos javanicus 0.93 0.55 0.99 0.94 0.41 1 0.85 0.33 0.96 0.83 0.42 0.97
Wild water
buffalo
Bubalus arnee 0.67 0.47 0.88 0.72 0.6 0.9 0.57 0.58 0.83 0.85 0.44 0.95
Mainland serow
Capricornis
sumatraensis 0.87 0.55 0.97 0.76 0.47 0.94 0.93 0.57 0.98 0.93 0.52 0.98
Chinese goral
Naemorhedus
griseus 0.91 0.29 0.98 0.91 0.59 0.98 0.87 0.47 0.96 0.9 0.39 0.97

276 a spatially restricted ENM
277 b occurrences-based threshold
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278  Figure 2 Total of the suitable area in km? for each species and countries. Blue is the species-
279  specific accessible area (SSA) and grey is the large accessible area models (LA) (see details in
280 the supplementary Table S7).

281 The total of the suitable areas in km? for each species and country are shown in Figure
282 2 and Suitable areas calculated from the best model are in supplementary materials Table S8
283  and the IUCN protected areas for all types of models are in Figure S7.

284 Our model’s out-of-sample predictions with new species occurrences demonstrated a
285  higher prediction accuracy within Thailand than the entire distribution, and this was further
286  improved by including 5 km buffer zones, with the exception of Chinese goral, which exhibited
287  poor accuracy across all scales (Table 3 and Figure 3). Implementing a buffer zone improves
288  the accuracy of all four remaining species. For large herbivore species gaur, banteng and wild
289  water buffalo, the model cropped to Thailand showed a higher accuracy (>80%) compared to
290 the entire distribution (~60-80%). We selected only model predictions with a high accuracy
291  percentage, greater than 80%, for further analyses. As a result, three species, including gaur,
292  banteng, and wild water buffalo, were retained, while two species, mainland serow and
293  Chinese goral, were excluded from the rest of the study. Furthermore, we cropped the entire
294  distribution to focus only on the result within Thailand as the number of data collection and
295 model predictions is higher compared to the entire species distribution. The result of the
296  entire distribution for all species can be found in the supplementary material, Figure S3 and
297  Figure S4.

298
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299 Table 3 Comparison of the accuracy of the selected best models? in predicting out-of-sample

300 data for the entire accessible areas range and Thailand.

No buffer Buffer
Entire accessible areas Total Unsuitable Suitable  Accuracy % Unsuitable  Suitable  Buffer 5km  Accuracy %
B. gaurus (Gaur) 221 85 136 62 23 136 62 90
B. javanicus (Banteng) 12 4 8 67 2 8 2 83
B. arnee (Buffalo) 35 4 31 89 0 31 4 100
C. sumatraensis (Mainland serow) 21 17 4 19 7 4 10 67
N. griseus (Chinese goral) 10 9 1 10 7 1 2 30
No buffer Buffer
Thailand Total Unsuitable Suitable  Accuracy % Unsuitable  Suitable  Buffer 5km  Accuracy %
B. gaurus (Gaur) 52 8 44 85 2 44 6 96
B. javanicus (Banteng) 10 2 8 80 0 8 2 100
B. arnee (Wild water buffalo) 1 0 1 100 0 1 1 100
C. sumatraensis (Mainland serow) 14 9 5 36 2 4 8 86
N. griseus (Chinese goral) 2 2 0 0 2 0 0 0

301 3 The best models for gaur is No MSDM-LA, banteng is MSDM-LA, wild water buffalo and Chinese goral is
302 MSDM-SSA and mainland serow is No MSDM-SSA.

303  Nearest distance from out of sample points to suitable area

Distance (km)

Species point Min Mean Max
Gaur 52 0.0047 1.54 224
Banteng 10 0.0323 4.72 39.9
Wild water buffalo 1 0.811 0.811 0.811
Mainland Serow 14 0.00668 6.07 38.1

Chinese goral 2 0.147 1.54 2.93


https://doi.org/10.1101/2023.08.25.554763
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.25.554763; this version posted April 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

304
305
306
307
308
309

made available under aCC-BY 4.0 International license.

A) Bos gaurus B) Bos javanicus C) Bubalus arnee

= X
L .
w
e 0 51015 km
[
D) Capriconis sumatraensis E) Naemoerhedus griseus

..-ﬁwr &

® Occurrence for model fitting
e New Occurrence from GBIF
Suitable
M Buffer 5 sq.km
Unsuitable
IUCN range

0 51015 km
gy

Figure 3 Model prediction testing for five bovid species (A-E) by calculating the percentage of
the out of sample points that fall inside the model predicted suitable areas (blue). The model
fitting datasets (red) were mainly within the suitable areas compared to the new occurrence
dataset (green). IUCN ranges show greater areas than the predictions for mainland serow and
Chinese goral. Some of the occurrence data were distributed outside both the model
predicted suitable area and IUCN range.
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310
311  Figure 4 Habitat suitability prediction maps of three wild bovids species in Thailand: gaur (B.

312  gaurus), banteng (B. javanicus) and wild water buffalo (B. arnee) species (A-C) using the best
313  model from the weighted average ensemble. The value ranges from 0-1: yellow represents
314 low suitability and dark brown represents high suitability. Interactive maps are provided in
315 the online supplementary material (link).

316 Identifying priority areas for conservation

317 Most suitable habitats in protected areas are located in IUCN category la (Strict nature
318 reserve), Ib (Wilderness area) and Il (National Park) areas for the best TSS models for all
319  species, while IUCN category V (Protected landscape or seascape) has the least. Overall, more
320 than half of the species' suitable habitat is not under any form of protection defined by the
321  WDPA (supplementary materials, Table S8, Figure S8). The proportion of the suitable area in
322 each WDPA of the best models from SSA and LA for each species are presented in
323  supplementary materials, Figure S9 and Figure 10.

324 In Thailand, we identified a high percentage (280%) of suitable area of Thailand for
325 gaur in 122 PAs (74,268 km?; 15% of Thailand), banteng in 102 PAs (59,528 km?; 12% of
326  Thailand), and wild water buffalo in 3 PAs (559 km?; 0.1 % of Thailand). A high proportion of
327  the suitable area for gaur and banteng is in Thungyai Naresuan, Kaengkrachan and Huai Kha
328 Khaeng, and for wild water buffalo in Phu Wua WS and Dong Yai WS in eastern DPKY-FC
329  (Figure 4 and Figure 5). The hotspots for five species can be found in supplementary materials,
330 Figure S11.

331  Proportions range from 0 (all unsuitable) to 1 (all suitable), with suitability determined by
332 thresholds from species best performing models. (A) gaur (Bos gaurus), (B) banteng (Bos
333 javanicus), (C) wild water buffalo (Bubalus arnee).
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Figure 5 Estimated species richness of three wild bovids in Thailand. The species are gaur,
banteng, and wild water buffalo. Frames A-C focus on (A) Western Forest Complex
(WEFCOM), (B) Dong Phayayen-Khao Yai Forest Complex (DPKY-FC) and (C) Eastern Forest
Complex, where the overlapping suitable areas of all species (n=3). Western, Dong Phayayen-
Khao Yai and Eastern forests have suitable areas for gaur, banteng and wild water buffalo for
both inside PAs and also in the surrounding areas.

We found that the highest percentage of suitable area was comprised of mixed
deciduous forest for all species, followed by evergreen forest for gaur and banteng, and dry
dipterocarp forest for wild water buffalo. We found a percentage of non-forest areas
identified from the total suitable for all species: wild water buffalo (71%), banteng (33%), and
gaur (24%). For more details of forest types by suitable areas, see Table 4 and Figure S12.
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Gaur Banteng Wild water buffalo Mainland serow  Chinese goral
(Bos gaurus) (Bos javanicus) (Bubalus arnee) (Capricornis (Naemorhedus
sumatraensis) griseus)

Forest types km? % km? % km? % km? % km? %
Bamboo Forest 390 0.22 348 0.19 178 0.13 250 0.37 2 0.02
Beach Forest 3 - 8 - 26 0.02 1 - - -
Dry Dipterocarp Forest 11,119 6.26 12,876 7.13 7,365 5.43 1,415  2.07 3,546 2391
Dry Evergreen Forest 20,730 11.68 19,209 10.63 5,944 4.38 13,893 203 1,027 6.93
Freshwater Swamp Forest 66 0.04 134 0.07 24 0.02 - - - -
Mangrove Forest 609 0.34 1,072 0.59 1,028 0.76 121 0.18 - -
Mixed Deciduous Forest 66,132 37.25 59,211 32.77 18,837 13.88 25,243 36.88 7,347 49.54
Moist Evergreen Forest 14,802 8.34 15,729 8.7 1,975 1.46 12,213 17.84 - -
Montane Forest 16,693 9.4 8,497 4.7 812 0.6 7,532 11 1,878  12.66
Peat Swamp Forest 49 0.03 2 - 201 0.15 - - - -
Pine Forest 634 0.36 185 0.1 87 0.06 78 0.11 15 0.1
Savanna 548 0.31 348 0.19 108 0.08 312 0.46 7 0.05
Secondary Forest 2,017 1.14 1,856 1.03 1,189 0.88 602 0.88 153 1.03
Teak Plantation 846 0.48 1,045 0.58 919 0.68 60 0.09 12 0.08
Vegetation on Pen Rock
Platform 201 0.11 208 0.11 118 0.09 90 0.13 2 0.01
Other Plantations 37 0.02 42 0.02 29 0.02 9 0.01 - -
Non-forest Area 42,649 24.02 59,923 33.16 96,883 7138 6,631 9.69 842 5.68
Total 177,526 100 180,693 100 135,725 100 68,452 100 14,831 100
Discussion

We modelled the potential distribution for the five threatened wild bovid species,
distributed in East, South and Southeast Asia. Our aim was to build predictive models to
identify conservation areas, and potential species richness maps in their entire geographical
distribution. However, the model predictions were better for Thailand, where most data were
from for all but Chinese goal (Table 3), therefore we were focus on Thailand. We found our
models were able to predict the presence of out of sample observations well for three species,
gaur, banteng, and wild water buffalo throughout the entire distribution (262%), but not
mainland serow or Chinese goral (£19%). We identified that suitable areas were fragmented
and often (50%) located outside PAs. Those suitable areas outside PAs could possibly be
managed as corridors or buffer zones to connect currently fragmented bovid populations,
thereby enhancing long-term wild bovid conservation success (Karanth, 2016; Penjor et al.,
2021) which requires further investigations. For example, a corridor was built within DPKY-FC
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361 and showed the possibilities of connecting the western forest complex and Kaengkrachan NP
362 toconserve the endangered tiger population (Sukmasuang et al., 2020; Suttidate et al., 2021).

363 Our study found that most suitable areas for gaur were similar to IUCN range
364 assessments (Duckworth et al., 2016) and consistent with studies that have confirmed species
365 presences, such as in Thailand’s PAs (Prayoon et al., 2021), Myanmar (Hein et al., 2020) and
366  Western Ghats in southwestern India and Manas WS in the Himalayan foothills (Choudhury,
367 2002). However, there are differences. Our study predicted larger gaur suitable habitats in
368 Thailand inside (~82,400 km?) and outside (95,000 km?) PAs than Prayoon et al. (2021), who
369 predicted 39,508 km? of total suitable habitat. Choudhury (2002) predicted their distributions
370 in Western Ghats, Central and North-eastern India which included larger than our predictions.
371  Our predictions used NDVI and land coverage fractions (Table S3) for predicting greenness,
372  which may be useful for predicting the vegetation quality and availability for ungulates
373  (Borowik et al., 2013). However, NDVI is difficult to differentiate vegetation variations (Didan
374 et al, 2015; Martinez & Labib, 2023), such as between specific agricultural areas, grassland,
375 and dense forest canopy. This may include other vegetation types other than the species'
376  habitatin suitable areas and estimated larger suitable areas predicted in non-forest areas and
377 non-PAs to be identified in our study, compared to Prayoon et al’s study. Other studies
378  suggest that gaur does use crop plantations or man-made grasslands, which may increase the
379 suitable areas in our prediction, even if these are not their natural habitats and lead to conflict
380 between humans and gaur (Chaiyarat et al., 2021).

381 Our best model predicted larger suitable areas (446,075 km?) for banteng than the
382  IUCN-SSC report released in 2010 (~ 209,000 km?) (IUCN-SSC AWCS Group, 2010). We found
383  a high percentage of predicted suitable areas in Eastern Plains Landscape (ELP) and Chhaeb
384 WS in Cambodia; the former supports the likely largest banteng population globally (Gray et
385 al., 2012). However, our results showed low habitat suitability in Sundaic Southeast Asia, with
386  just 2% of the total suitable area in Indonesia (mainly in Alas Purwo NP, Java) and 2% of the
387  total suitable area in Malaysia. Banteng populations and habitats in Southeast Asian islands
388 (Borneo, Java, and Bali) are threatened due to hunting for horn and meat consumption and
389 habitat loss (Dewi et al., 2020). In Thailand, we found high suitability similar to previous
390 studies in Eastern (Menkham et al., 2019) and Western forest complexes (Jornburom et al.,
391  2020), including reintroduction areas in Salak Pra WS (Chaiyarat et al., 2019) and where recent
392 recolonisation by natural population movement has occurred in Mae Wong NP (Phoonjampa
393 etal., 2021).

394 Wild water buffalo has been domesticated and bred as livestock, making it hard to
395 distinguish between the free-grazing domestic buffalo and wild water buffalo as
396 domesticated animals may replace wild animals in suitable habitats and cause the high
397 suitable area prediction outside PAs, especially in overlapping habitats (Zhang et al., 2020).
398 We estimate the highest percentages of suitable areas at Kaziranga NP in India, currently with
399 the largest population of wild water buffalo (Kaul et al., 2019). Grasslands and flood plain
400 areas of Manas NP (500 km?) and Kaziranga NP (>850 km?) in India contain the most suitable
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401 habitat and are the main population strongholds for wild water buffalo (Choudhury, 2014). In
402  Thailand, this type of habitat can be found in many places, but it is not often represented in
403  protected areas. Wild water buffalo are only found in Huai Kha Kheang WS parts of the
404  Western Forest Complex. Our model predicts that only 43% of Huai Kha Kheang Wildlife
405  Sanctuary is suitable for this species, primarily because the floodplains are mainly situated
406 close to the mainstream in the middle of the PA. Additionally, the population has remained
407  constant for decades, which could be attributed to a single population group or constraints
408  within suitable habitats.

409 The three selected species showed overlapping suitable areas in the Western Forest
410 Complex, Eastern Forest Complex, and Dong Phayayen-Khao Yai Forest Complexes (DPKY-FC).
411 These forest complexes encompass extensive areas of high wildlife biodiversity and diverse
412  forest types, including several contiguous protected areas (PAs) situated at the borders of
413  Cambodia and Myanmar. The Western Forest Complex is the largest conservation area in
414  Thailand where these wild bovids still exist, while the DPKY-FC maintains a higher population
415  of gaur as they are mainly covered by evergreen forest. The Eastern Forest Complex sustains
416  alarge population of banteng because most of the main vegetation consists of deciduous and
417  dipterocarp forest. Gaur uses a diversity of types of habitats and prefers denser canopy at
418  higher elevation than banteng, which tends to inhabit in dry and open habitats such as dry
419  dipterocarp and deciduous forests (Gray & Phan, 2011; Steinmetz, 2004). Wild water buffalo
420 also shares overlapping areas with these two species, despite its distribution being found
421  exclusively in Huai Kha Khaeng Wildlife Sanctuary. We recommend protecting these
422  important suitable habitats to ensure the protection of wild bovids. This may involve
423  implementing active patrolling to reduce illegal intrusions, snare removal and habitat
424  management based on their diet diversity (McShea et al., 2019). Additionally, one option to
425  maintain wild water buffalo populations is to reintroduce them into their historical range,
426  from which they have been extirpated. This method could be evaluated by combining
427  predicted suitable areas with several important factors such as vegetation types, forage
428  biomass, carrying capacity and hunting pressure (Bora et al., 2024).

429 In this study, we included all subspecies data points in our model ensembles as we aim
430 toextrapolate and predict the entire range of species’ habitat suitability, but this may increase
431  uncertainty (Dormann, 2007). These five bovids have multiple subspecies, including 3
432  subspecies of gaur (Duckworth et al., 2016), banteng (Gardner et al., 2016) wild water buffalo
433  (Kaul et al., 2019) and mainland serow (Mori et al., 2019), and 2 subspecies of Chinese goral
434  (Duckworth et al., 2008). Subspecies may vary in niche, climate and biological interactions
435  that could affect the model predictions. The low habitat suitability of our study in Borneo for
436  banteng could be because climatic and geographic conditions differ for B.j. lowi compared to
437  those in mainland Asia, affecting model transferability across different regions (Zhu et al.,
438  2021). Equally, Mori et al. (2019) suggest that Chinese goral (N. griseus) should be reclassified
439  within Brown goral (N. goral) together and Burmese goral (N. evansi) that together with N.
440  griseus should be split to become an individual species. Future analyses must consider these
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441  taxonomic reclassifications. However, we modelled species level habitat suitability, rather
442  than the subspecies, as we assume that there is less likely to be habitat and environmental
443  condition variation at the subspecies level for these bovids (Smith et al., 2019).

444 We found that using the MSDM OBR technique showed a better predicted suitable
445  area of the ecological niche, closer to the real distribution for species with more restricted
446  ranges like banteng, wild water buffalo and Chinese goral, with higher performance TSS values
447  compared to No MSDM models. We recommend restricting the accessible area for predicting
448  wild water buffalo potential habitat to reduce overprediction caused by overlapping areas
449  with domestic water buffalo.

450 We also used ensemble approaches, to obtain better predictive performance than
451  from any single model type, but further analyses could also look at individual model results
452  using different parameters, such as differing pseudo-absence background point ratios. The
453  equal ratio of presence to pseudo-absence (1:1 ratio) has been used in several types of model
454  like general linear models, artificial neural networks, and Maxent models, and it is also
455 recommended for use in ensemble models when dealing with small sample sizes (Liu et al.,
456  2019).

457 Limitations

458 We acknowledge sampling deficiencies across the regions. We had fewer occurrences
459  in Vietnam, Laos, Myanmar and Indonesia compared to Thailand, from which a large number
460 of our data points came (30,512 points in Thailand, 3,152 points outside Thailand, Error!
461 Reference source not found.). Occurrence data based on data accessibility may have
462  sampling bias, particularly with clustered points for gaur, banteng, and mainland serow. We
463 minimised these biases through spatial thinning (Aiello-Lammens et al., 2015). Since we found
464  large amounts of suitable areas outside of Thailand, we suggest that future studies should
465  focus on monitoring bovid populations in other countries, especially in India and Myanmar.
466  However, because of this and the model performance, we focused on Thailand.

467 Missing data data has impacted some results. The model TSS values for endangered
468 banteng and Chinese goral are over 0.8, yet our models predict unsuitable areas in part of
469 Indonesia (east and central Kalimantan; Dewi et al. 2020) for banteng and China (e.g. Beijing
470  and northeast Inner Mongolia; (Yang et al., 2019) for Chinese goral from which these species
471  have been reported. This would likely be improved if more spatial data were available for
472  these species.

473 We used a new dataset of species occurrences to assess our model's performance with
474 a5 km buffer zone, aiming to enhance modelling accuracy. Given these species have quite
475 large home ranges and daily movements, adding a buffer to represent this movement
476  unsurprisingly lead to better model predictions for all species, but most notably for mainland
477  serow, changing the out of sample prediction from 19% to 67% for the entire region and 36%
478  to 86% for Thailand. The buffer zone may indicate the utilisation of unsuitable areas of the
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479  species near forested regions, such as secondary forests, agricultural areas, or water
480 resources, which possibly extend these buffer areas from the protected aeras to enhance the
481  wildlife protection.

482 The spatial restriction method, OBR, can be sensitive to the distribution of occurrence
483  data, because it keeps predicted suitable areas close to the occurrence locations. This may
484  lead to the exclusion of potential suitable areas driven by a lack of occurrence data in those
485  areas. For example, the wild water buffalo No MSDM predicted potentially suitable habitat
486 around the Sre Pok Wildlife Sanctuary in Cambodia where the species is distributed (Gray et
487  al., 2012), but after the MSDM, this potential habitat was excluded as we lack occurrence data
488  in Cambodia. Although our study showed slightly different TSS values between two different
489 accessible area extents, we encourage testing the different accessible areas as it affects the
490 model results (Anderson & Raza, 2010). Moreover, model performance varied with accessible
491  area sizes and spatial restrictions, emphasising the need for careful accessible area definition
492  inecological modelling (Barve et al., 2011). Further, future analyses may try to better account
493  for the current presence of species by accounting for factors such as hunting using other
494  proxies, such as other human-disturbance metrics like distance from roads (Lim et al., 2021).

495 Conclusion

496 Our study provided an overview of the suitable remaining habitat for threatened bovid
497  species at a regional scale using high-resolution environmental variables and species
498  occurrence data from multiple observation methods. Our predictions showed that the
499  suitable areas are small and fragmented for all species, and more than 50% of suitable areas
500 are outside of protected areas. Those suitable areas outside PAs could possibly become
501 efficient conservation areas, such as forest corridors or buffer zones to connect fragmented
502  bovid populations and enhance long-term habitat conservation. Our predictions may inform
503  conservation actions to avoid further defaunation of wild bovidae such as the management
504  of human-wildlife conflicts and habitat quality for long-term species survival.
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