

1 **Tribbles1 and Cop1 cooperate to protect the host during *in vivo* mycobacterial
2 infection**

3

4 Ffion R Hammond¹, Amy Lewis¹, Gabriele Pollara², Gillian S Tomlinson², Mahdad
5 Noursadeghi², Endre Kiss-Toth^{1*} and Philip M Elks^{1*}

6

7 ¹ The Bateson Centre, School of Medicine and Population Health, University of Sheffield
8 Medical School, Beech Hill Road, Sheffield S10 2RX, UK.

9 ² Division of Infection & Immunity, University College London, Gower Street, London WC1E
10 6BT, UK.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 ***Corresponding Authors:**

27 Philip M. Elks (p.elks@sheffield.ac.uk)

28 Endre Kiss-Toth (e.kiss-toth@sheffield.ac.uk)

29 **Abstract**

30 Tuberculosis is a major global health problem and is one of the top 10 causes of death
31 worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic
32 resistance. *Mycobacterium tuberculosis* parasitises macrophages, reprogramming them to
33 establish a niche in which to proliferate, therefore macrophage manipulation is a potential
34 host-directed therapy if druggable molecular targets could be identified. The pseudokinase
35 Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles
36 making it a potential drug target in infections. Trib1 controls macrophage function, cytokine
37 production and macrophage polarisation. Despite wide-ranging effects on leukocyte biology,
38 data exploring the roles of Tribbles in infection *in vivo* are limited. Here, we identify that
39 human Tribbles 1 is expressed in monocytes and is upregulated at the transcript level after
40 stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the
41 host response to mycobacteria *in vivo*, we used a zebrafish *Mycobacterium marinum* (Mm)
42 infection tuberculosis model. Zebrafish Tribbles family members were characterised and
43 shown to have substantial mRNA and protein sequence homology to their human
44 orthologues. *trib1* overexpression was host-protective against Mm infection, reducing burden
45 by approximately 50%. Conversely, *trib1* knockdown exhibited increased infection.
46 Mechanistically, *trib1* overexpression significantly increased the levels of pro-inflammatory
47 factors *il-16* and nitric oxide. The host-protective effect of *trib1* was found to be dependent
48 on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1
49 as immune regulators during infection *in vivo* and suggest that enhancing macrophage
50 TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection
51 outcomes in tuberculosis.

52

53 **Introduction**

54 With the rise of anti-microbial resistance (AMR), bacterial infections are a major
55 threat to global public health. Tuberculosis, caused by the human pathogen *Mycobacterium*
56 *tuberculosis*, is a case in point, with 1.6 million deaths worldwide (WHO 2022), many of

57 which are resistant to first- and second-line antibiotic treatments (Allué-Guardia et al. 2021;
58 Hameed et al. 2018; Migliori et al. 2013). To successfully combat AMR there is a pressing
59 and urgent need for alternative treatment strategies to failing antimicrobials. One such
60 approach is offered by the development of host derived therapies (HDT), which target
61 systems in the host rather than the pathogen, circumventing AMR (Kaufmann et al. 2018;
62 Kilinç et al. 2021).

63 One primary immune defence against *Mycobacterium tuberculosis* (*Mtb*) is
64 macrophages. Macrophages have a spectrum of phenotypes ranging from proinflammatory
65 to anti-inflammatory, determined in a process known as macrophage polarisation. *Mtb* is
66 expert at manipulation of macrophage polarisation to its advantage (Ahmad et al. 2022) and
67 can inhibit the polarisation of proinflammatory macrophages, subverting killing mechanisms
68 to promote intracellular survival of the bacteria and subsequent granuloma formation
69 (Hackett et al. 2020). Reprogramming macrophages to better kill *Mtb* is a potential HDT
70 strategy that may be particularly effective against intracellular pathogens (Sheedy and
71 Divangahi 2021).

72 Tribbles genes encode for a family of pseudokinases (TRIB1, TRIB2 and TRIB3
73 (Kiss-Toth et al. 2004)), involved in the regulation of core cellular processes, ranging from
74 cell cycle to glucose metabolism (Grosshans and Wieschaus 2000; Mata et al. 2000; Seher
75 and Leptin 2000). The TRIB1 isoform has been strongly associated with macrophage roles
76 in inflammation and innate immunity (Johnston et al. 2015; Niespolo et al. 2020)). TRIB1
77 regulates multiple important macrophage regulatory factors, especially controlling the
78 proinflammatory response, such as tumour necrosis factor alpha (TNF- α), interleukin-1beta
79 (IL-1 β) and nitric oxide (NO) (Arndt et al. 2018; Liu et al. 2013). *Trib1*^{-/-} mice have decreased
80 expression levels of inflammation related genes such as *IL-6*, *IL-1b* and *Nos2* (encodes for
81 inducible nitric oxide synthase, iNOS), and murine *Trib1*^{-/-} bone marrow derived macrophages
82 have defective inflammatory, phagocytic, migratory and NO responses *in vitro* (Arndt et al.
83 2018; Liu et al. 2013).

84 TRIB1 influences inflammatory and immune processes via multiple mechanisms. The
85 best described is via recruitment and binding of the E3 ubiquitin ligase constitutive
86 photomorphogenic 1 (COP1). The TRIB1 protein possesses two functional binding sites in
87 its C-terminal, one for constitutive photomorphogenic 1 (COP1) and the second for Mitogen-
88 activated protein kinase kinase (MEK) binding. TRIB1 can act as a protein scaffold, binding
89 a substrate to its pseudokinase domain, as well as binding in the functional C terminus to
90 create a regulatory complex. Binding of TRIB1 to the E3 ubiquitin ligase COP1 causes a
91 conformational change, enhancing COP1 binding and bringing COP1 into proximity with the
92 substrate allowing ubiquitination and subsequent degradation (Jamieson et al. 2018; Kung
93 and Jura 2019; Murphy et al. 2015; Zahid et al. 2022). The TRIB1/COP1 complex is
94 responsible for the regulation of multiple targets such as transcription factors, including the
95 tumour suppressor CCAAT/enhancer-binding protein (C/EBP α), which regulates
96 macrophage migration and TNF- α production (Liu et al. 2013; Yoshida et al. 2013).

97 While TRIB1 has been shown to regulate several inflammatory and innate immune
98 functions *in vitro*, its role in infection is much less characterised, especially in an *in vivo*
99 setting. *TRIB1* is a predicted target of microRNA-gene interactions that differentiate active
100 and latent TB patients (Wu et al. 2014) and is an overabundant transcript in highly pro-
101 inflammatory tuberculosis-immune reconstitution inflammatory syndrome (TB-IRIS) patients
102 (Lai et al. 2015). However, despite these reported potential links between Tribbles and TB,
103 interrogation of *TRIB* isoform transcripts in human mycobacterial datasets had not been
104 performed.

105 Over the last two decades, the zebrafish has proved a powerful model for
106 understanding host-pathogen interactions, due to its high-fecundity, transparency of larvae
107 and availability of transgenic reporter lines. A human disease-relevant and tractable infection
108 model is the zebrafish model of tuberculosis, utilising the injection of the natural fish
109 pathogen *Mycobacterium marinum* (*Mm*), a close genetic relative of *Mtb*, (Davis et al. 2002;
110 van der Sar et al. 2009). This model has shed light on numerous immune pathways involved

111 in host defence, for example Hypoxia Inducible Factor (HIF) signalling (Elks et al. 2013;
112 Ogryzko et al. 2019; Schild et al. 2020).

113 Here, we show that Tribbles 1 is expressed in human primary monocytes and its
114 expression is increased at the site of a human *in vivo* mycobacterial antigen challenge,
115 indicative of a role in TB responses. To substantiate the importance of *TRIB1* in TB
116 pathogenesis, we report a new, protective role for *trib1* in infection defence using an *in vivo*
117 zebrafish *Mycobacterium marinum* (Mm) infection model. Overexpression of *trib1*
118 significantly reduced Mm burden and increased production of the pro-inflammatory cytokine
119 *il1b* and NO. The antimicrobial effect of *trib1* overexpression was found to be dependent on
120 *cop1*. Our findings uncover a role for *trib1* in mycobacterial infection defence *in vivo*,
121 highlighting Trib1 as a potential therapeutic target for manipulation to improve bacterial
122 infection outcomes.

123

124 **Materials and Methods**

125 *Human transcriptomic dataset analysis*

126 Expression of TRIB1 in human CD14+ monocytes and the site of a tuberculin skin
127 test (TST) was derived from publicly available transcriptomic data deposited in EBI
128 ArrayExpress repository (datasets E-MTAB-8162 & E-MTAB-6816 respectively -
129 <https://www.ebi.ac.uk/biostudies/arrayexpress>) (Pollara et al. 2021).

130

131 *Zebrafish*

132 Zebrafish were raised in The Biological Services Aquarium (University of Sheffield,
133 UK) and maintained according to standard protocols (zfin.org) in Home Office approved
134 facilities. All procedures were performed on embryos pre 5.2 days post fertilisation (dpf)
135 which were therefore outside of the Animals (Scientific Procedures) Act, to standards set by
136 the UK Home Office. Adult fish were maintained at 28°C with a 14/10-hour light/dark cycle.
137 Nacre zebrafish were used as a wildtype. Transgenic zebrafish lines used are detailed below
138 in Table 1.

139

Zebrafish line	Allele number	Labels	Reference
<i>TgBAC(il-1β:GFP)</i>	sh445	<i>il-1β</i> expressing cells	(Ogryzko et al. 2019)
<i>Tg(mpeg:nlsClover)</i>	sh436	Macrophages (nuclei marker)	(Bernut et al. 2019)
<i>Tg(mpeg1:mCherryCAAX)</i>	sh378	Macrophages (membrane bound marker)	(Bojarczuk et al. 2016)
<i>Tg(mp\times:GFP)</i>	i114	Neutrophils	(Renshaw et al. 2006)
<i>Tg(lyz:nfsB.mCherry)</i>	sh260	Neutrophils	(Buchan et al. 2019)
<i>Tg(phd3:GFP)</i>	i144	<i>phd3</i> gene expression	(Santhakumar et al. 2012)

140 **Table 1: Transgenic zebrafish lines**

141

142 *CRISPR-Cas9 guide design and CRISPRant generation*

143 Transcript details for *trib1* (current Ensembl entry code is ENSDARG00000110963,
144 but previously coded as ENSDARG00000076142 which is the identifier code used in
145 RNAseq datasets), *trib2* (ENSDARG00000068179) and *trib3* (ENSDARG00000016200)
146 were obtained from Ensembl genome browser (www.ensembl.org). Only one transcript was
147 identified per gene which was used for CRISPR-Cas9 guide design. The web tool
148 ChopChop (<https://chopchop.cbu.uib.no>) was used to design guideRNAs and primers. A
149 summary of all guideRNAs (Sigma-Aldrich) and primer oligos (IDT) designed is described in
150 Table 2 below.

151 To genotype first genomic DNA was extracted from 2-4dpf larvae via incubation at 95°C in
152 100µl of 50mM NaOH for 20 minutes followed by the addition of 10µl 1M Tris-HCl (pH8).
153 PCR was then performed on genomic DNA with relevant primer pair and enzyme (NEB) (see
154 materials and methods chapter for PCR programme). Digests were run on a 2% (w/v)
155 agarose gel (Appleton Woods) at 100v. Samples that were positive for CRISPR mutation
156 were not digested by the restriction enzyme due to destruction of the restriction enzyme
157 recognition site.

158

Gene	guideRNA (5'-3')	F primer (5'-3')	R primer (5'-3')	Enzyme
<i>trib1</i>	AGCCCGTGAGCAG ATGTCCGCGG	TACGGGCATTCA CTTTCGG	GTGAGGATCCCAGG AGACC	SacII
<i>trib3</i>	TCAACTCGCTTCAG TCGCAGTGG	ACCTGTTCAATCT TGTTGTCACA	GGAAGGAGGCTGAC TGAGTC	MwoI
<i>cop1</i>	CGAGCTGCTCCG TTCTGAGCGG	TTCAATTATGTCA AGCACTCGG	CAAGGGTCTTTCCCT GCTTAAA	Hyp188I

159 **Table 2: Summary of CRISPR-Cas9 guideRNAs, relevant primers and restriction
160 enzymes used for genotyping.**

161

162 All guideRNAs (Sigma/Merck) were microinjected in the following injection mix: 1µl
163 20mM guideRNA, 1µl 20mM Tracr RNA (Sigma/Merck), 1µl Cas9 (diluted 1:3 in diluent B,
164 NEB), 1µl water (water was replaced with 100ng/µl *trib1* RNA for *cop1* experiments). A
165 tyrosinase guideRNA (Sigma/Merck) control that has negligible effects on innate immunity
166 was used as a negative CRISPR (Isles et al. 2019). Embryos were microinjected with 1nl
167 guideRNA mix at the single cell stage to generate F0 CRISPants.

168

169 *Cloning and whole mount in situ hybridisation of trib 1, 2 and 3*

170 RNA probes for zebrafish *trib1* (ENSDARG00000110963), *trib2*
171 (ENSDARG00000068179) and *trib3* (ENSDARG00000016200) were designed and
172 synthesised after cloning the full-length genes into the pCR™Blunt II-TOPO® vector
173 according to manufacturer's instructions (ThermoFisher Scientific). Plasmid was linearised
174 with the relevant restriction enzyme (Table 3), NEB Biolabs) and probes were synthesised
175 according to DIG RNA Labelling Kit (SP6/T7, Roche). Zebrafish larvae were anaesthetised
176 in 0.168mg/ml Tricaine (MS-222, Sigma-Aldrich) in E3 media, which was removed and
177 replaced with 4% (v/v in PBS) paraformaldehyde solution (PFA, ThermoFisher Scientific)
178 overnight at 4°C to fix. Whole mount *in situ* hybridisation was performed as previously
179 described (Thisse and Thisse 2008).

180

Gene	F primer sequence (5'-3')	R primer sequence (5'-3')	Restriction enzyme
<i>trib1</i>	TACGGGCATTCACTTCGG	CAGTCCTAACCCGACACG	HindIII
<i>trib2</i>	CACCATGAACATACAGAGATCCAG	TTGCTACATCACTAACGCC	BsrGI
<i>trib3</i>	CAACTAAGTGCGCCTGTAGT	TGCCCTGAACCTGCATAC	BsrGI

181 **Table 3: Primers used for tribbles PCR for TOPO transformation and relevant**
182 **restriction enzymes used for linearisation**

183

184 *RNA injections for trib overexpression experiments*

185 Forward inserts of *trib1*, *trib2* and *trib3* were cut from the pCR™Blunt II-TOPO®
186 constructs using a double restriction digest with BamHI and XbaI at 37°C for 1.5 hours. The
187 expression vector pCS2+ (Addgene) was digested using the same restriction enzyme pair
188 and all digests were gel extracted using QIAquick Gel Extraction Kit (Qiagen). Gel extracts
189 of vector and *trib* digests were ligated into pCS2+ via overnight incubation at room
190 temperature with T4 DNA ligase according to manufacturer's instructions (NEB). Constructs
191 were confirmed using sequencing performed by the University of Sheffield's Genomics core

192 facility. RNA of each *trib* isoform was transcribed using mMessageMachine kit (Ambion,
193 Invitrogen) and diluted to 100ng/µl in phenol red (PR, diluted 1:10 in RNase free water) for
194 microinjection. Embryos were microinjected with 1nl of 100ng/µl RNA (measured using a
195 10mm graticule) at the single cell stage as previously described (Elks et al. 2011). RNA of
196 dominant active (DA) and negative (DN) *hif-1ab* variants (ZFIN: hif1ab) were used for
197 controls (Elks et al. 2013; Elks et al. 2011).

198

199 *Mycobacterium marinum culture and injection*

200 Bacterial infection experiments were performed using *Mycobacterium marinum* strain
201 M (ATCC #BAA-535), containing the pSMT3-mCherry vector. Liquid cultures were prepared
202 from bacterial plates before washing in PBS and diluting in 2% (w/v) polyvinylpyrrolidone40
203 (PVP40, Sigma-Aldrich) for injection as described previously (Benard et al. 2012). Injection
204 inoculum was prepared to 100 colony forming units (cfu)/nl for all burden experiments,
205 loaded into borosilicate glass microcapillary injection needles (WPI, pulled using a
206 micropipette puller device, WPI) before microinjection into the circulation of 30hpf zebrafish
207 larvae via the caudal vein.

208 Prior to injection, zebrafish were anaesthetised in 0.168 mg/ml Tricaine (MS-222,
209 Sigma-Aldrich) in E3 media and were transferred onto 1% agarose in E3+methylene blue
210 plates, removing excess media. All pathogens were injected using a microinjection rig (WPI)
211 attached to a dissecting microscope. A 10mm graticule was used to measure 1nl droplets of
212 injection volume, and for consistency, droplets were tested every 5-10 fish and the needle
213 recalibrated if necessary. After injection, zebrafish were transferred to fresh E3 media for
214 recovery and maintained at 28°C.

215

216 *Anti-nitrotyrosine immunostaining*

217 Larvae were fixed in 4% (v/v) paraformaldehyde in PBS overnight at 4°C, and
218 nitrotyrosine levels were immune labelled using immunostaining with a rabbit polyclonal anti-
219 nitrotyrosine antibody (06-284; Merck Millipore) and detected using an Alexa Fluor-

220 conjugated secondary antibody (Invitrogen Life Technologies) as previously described (Elks
221 et al. 2014; Elks et al. 2013).

222

223 *Confocal microscopy*

224 *TgBAC(il-1 β :GFP)sh445* larvae and larvae immune-stained for nitrotyrosine were
225 imaged using a Leica DMi8 SPE-TCS microscope using a HCX PL APO 40x/1,10 water
226 immersion lens. Larvae were anaesthetised in 0.168 mg/ml Tricaine and mounted in 1%
227 (w/v) low melting agarose (Sigma) containing 0.168 mg/ml tricaine (Sigma) in 15 μ -Slide 4
228 well glass bottom slides (Ibidi).

229

230 *Stereo microscopy*

231 Zebrafish larvae were anaesthetised in 0.168 mg/ml Tricaine and transferred to a
232 50mm glass bottomed FluoroDishTM (Ibidi). Zebrafish were imaged using a Leica DMi8 SPE-
233 TCS microscope fitted with a Hamamatsu ORCA Flash 4.0 camera attachment using a HC
234 FL PLAN 2.5x/0.07 dry lens. Whole mount *in situ* staining was imaged using a Leica MZ10F
235 stereo 14 microscope fitted with a GXCAM-U3 series 5MP camera (GT Vision).

236

237 *Image analysis*

238 To calculate bacterial burden, fluorescent pixel count was measured using dedicated
239 pixel count software (Stoop et al. 2011). For confocal imaging of anti-nitrotyrosine staining or
240 transgenic lines, ImageJ (Schindelin et al. 2012) was used to quantify corrected total cell
241 fluorescence (CTCF) (Elks et al. 2014; Elks et al. 2013).

242

243 *Statistical analysis*

244 Statistical significance was calculated and determined using Graphpad Prism 9.0.
245 Quantified data figures display all datapoints, with error bars depicting standard error of the
246 mean (SEM) unless stated otherwise in the figure legend. Statistical significance was
247 determined using one-way ANOVA with Bonferroni's multiple comparisons post hoc

248 test/Kruskal Wallis for experiments with three or more experimental groups, or
249 paired/unpaired T test/Wilcoxon matched pairs signed rank test for experiments with two
250 experimental groups, unless stated otherwise in figure legend. P values shown are: * $P < .05$,
251 ** $P < .01$, and *** $P < .001$.
252

253 **Results**

254 ***TRIB1* is expressed in human monocytes and is upregulated after *in vivo*
255 mycobacterial antigen stimulation.**

256 To explore whether Tribble pseudokinase expression is modulated by mycobacterial
257 antigen exposure in humans, we initially focused on CD14+ monocytes stimulated *in vitro*
258 with *Mtb* protein derivative (PPD). This revealed that mycobacterial antigen exposure
259 induced the expression of TRIB1 isoform transcripts but not TRIB2, which had the lowest
260 baseline expression, nor TRIB3, observations consistent across monocytes from either
261 active or latent TB individuals (Figure 1A-C). To determine whether Tribbles play a role in
262 human responses *in vivo*, we turned to the transcriptomic profiles of biopsies from the site of
263 a tuberculin skin test (TST), a routine clinical investigation repurposed into a mycobacterial
264 antigen challenge model (Bell et al. 2016). This revealed baseline expression of TRIB 1 in
265 control saline injected tissue samples (Figure 1E). Exposure to tuberculin induced robust
266 induction of TRIB1 expression in TST reactions for both active and latent TB individuals
267 (Figure 1E). A more modest increase was seen for TRIB2 (Figure 1F) but not for TRIB3
268 (Figure 1G) (Pollara et al. 2021).

269 Together these data reveal that TRIB1, and to a lesser extent TRIB2, expression is
270 increased in response to both *in vitro* and *in vivo* mycobacterial antigen exposure in humans,
271 independent of clinical TB disease grouping. We interpret these data as signifying a potential
272 functional role for these pseudokinase in regulation of mycobacterial infections *in vivo*, but
273 indicating the need for a tractable *in vivo* model of mycobacterial infection to study this
274 further.

275

276 **Zebrafish Tribbles isoforms share homology with their human and mouse
277 counterparts and are expressed in immune cell populations**

278 To explore the functional role *in vivo* for Tribbles in the control of mycobacterial
279 infections *in vivo*, we developed a zebrafish model of *Mycobacterium marinum* infection and
280 *tribbles* manipulation.

281 Zebrafish have a single orthologue of each mammalian tribbles isoforms, with
282 *tribbles1* (ENSDARG00000110963/Previously ENSDARG00000076142), *tribbles2*
283 (ENSDARG00000068179) and *tribbles3* (ENSDARG00000016200) genes. The exon
284 organisation of Tribbles genes is conserved between human and zebrafish *trib* isoforms.
285 Zebrafish *trib1* has 3 exons like murine *Trib1* and human *TRIB1* (Figure 2A). Human *TRIB2*
286 and mouse *Trib2* also share this exon structure but are larger than the *TRIB1* isoforms
287 (Figure 2A). Zebrafish *trib2* is smaller than human *TRIB2* and mouse *Trib2* at 18.84kb and
288 only possesses two coding exons (Figure 2A). Human *TRIB3*, mouse *Trib3* and zebrafish
289 *trib3* share a similar exon organisation with a small non-coding first exon, followed by three
290 coding exons (Figure 2A). Homology between Tribbles isoforms across species is not only
291 observed at the genetic level, but also at the protein level (Hegedus et al. 2006). Tribbles
292 have three key protein domains: an N terminal PEST domain, a pseudokinase domain and a
293 functional C terminal (Hegedus et al. 2007). The pseudokinase contains a substrate binding
294 site within its catalytic loop, and the functional C terminus contains two binding sites for
295 either MEK or COP enzymes (Qi et al. 2006; Yokoyama et al. 2010). These three binding
296 sites were compared across human, mice and zebrafish using the NCBI BLAST Global align
297 online tool (Figure 2B). The pseudokinase catalytic loops in all three Tribbles family proteins
298 (*TRIB1-3*), are found in human, mouse and zebrafish. In the case of *TRIB1* and *TRIB2* there
299 is no variation in the amino acid sequence of the pseudokinase catalytic loop across the
300 three species (Figure 2B). The pseudokinase catalytic loop of both mouse *TRIB3* and
301 zebrafish *Trib3* differ slightly from Human *TRIB3* with two amino acids that are different in
302 mouse *TRIB3* and one amino acid difference is observed in zebrafish *Trib3*. The amino acid
303 sequences of human and zebrafish Tribbles were compared using the NCBI global align
304 tool. Zebrafish *Trib1* had the highest percentage identity when compared with human *TRIB1*
305 (52%), but also shared sequence homology with human *TRIB2* with the highest identities
306 match (66%) (Figure 2C). Zebrafish *Trib2* shared the highest percentage identity with human
307 *TRIB2* (47% and 54% respectively). Zebrafish *Trib3* had high identity matches for both
308 human *TRIB2* and *TRIB3* (68% and 64% respectively) (Figure 2C). The overall size of

309 Tribbles proteins remains consistent between human and mouse isoforms, with both human
310 and mice TRIB1 sized at 372 amino acids (aa), human and mouse TRIB2 sized at 343aa.
311 Mouse TRIB3 is 4aa shorter than human TRIB3 (354aa compared to 358aa). The zebrafish
312 Tribbles isoforms are generally smaller proteins compared to the human and mouse
313 Tribbles, with zebrafish Trib1 23aa smaller (at 349aa), Trib2 136aa smaller (at 207aa) and
314 Trib3 10aa (at 348aa) compared to the human TRIB isoforms (Figure 2D).

315 To characterise the localisation of *trib* expression across the zebrafish larvae, whole
316 mount *in situ* hybridisation probes were developed for each zebrafish *trib* isoform. All *tribbles*
317 isoforms showed highest expression in the brain of the developing zebrafish larvae at 3dpf
318 compared to sense probe controls (Figure S1). Expression of *trib* isoforms in immune cells
319 was not detected by whole-mount *in situ* hybridisation of unchallenged larvae, compared to
320 the expression of the highly expressed immune gene *I-plastin* (Figure S1). However, this
321 does not negate low, sub-threshold, levels of *tribbles* isoforms in immune cells. *trib* levels in
322 blood cell lineages were assessed using the Zebrafish Blood Atlas web tool ((Athanasiadis
323 et al. 2017) https://scrnaseq.shinyapps.io/scRNAseq_blood_atlas/), based on scRNASeq of
324 adult zebrafish leukocytes. All *trib* isoforms were expressed in subpopulations of neutrophils,
325 monocytes and thrombocytes. *trib3* was expressed more abundantly and in a larger number
326 of single cell RNASeq samples than other *trib* isoforms, and was found in macrophages,
327 neutrophils and thrombocytes (Figure 1E-G).

328 In summary, zebrafish, mouse and human Tribbles share sequence similarity and
329 have similar gene organisation and conserved catalytic binding sites, making zebrafish a
330 viable model to explore a physiological role for human Tribbles in mycobacterial infections.
331 Zebrafish express *trib* isoforms in immune cell subpopulations in resting conditions,
332 suggestive of roles in regulating innate immunity.

333

334 **Overexpression of *trib1* is host-protective in a zebrafish mycobacteria infection model**

335 To better understand how Tribbles can influence innate immunity and infection,
336 genetic tools were generated to manipulate expression of zebrafish *trib* isoforms.

337 Overexpression of zebrafish *tribbles* isoforms was achieved by injection of RNA at the one-
338 cell stage. Injection of either *trib1*, *trib2* or *trib3* RNA did not grossly affect larval
339 development, with embryos developing with no obvious adverse effects (Figure S2A-B). To
340 determine outcomes in infection, a zebrafish *Mycobacterium marinum* (*Mm*) larval model
341 was used, in which *trib* RNAs were injected at the one-cell stage, leading to ubiquitous
342 overexpression. Overexpression of *trib1* significantly decreased bacterial burden of *Mm* by
343 approximately 50% (p< 0.001) compared to the vehicle control, phenol red (PR) (Figure 3A-
344 B). Dominant active *hif-1α* (DA1, an RNA shown to significantly reduce *Mm* burden by ~50%
345 (Elks et al. 2013) was used as a positive RNA control with dominant negative *hif-1α* (DN1,
346 an RNA shown to have no significant effect on *M. marinum* burden) used as a negative RNA
347 control (Elks et al. 2013). Overexpression of *trib2* also significantly reduced bacterial burden
348 compared to the PR control, but not to the same extent as the positive DA *hif-1α* control nor
349 *trib1* overexpression (Figure 3A-B). In contrast, overexpression of *trib3* had no significant
350 effect on the levels of bacterial burden compared to the vehicle PR control (Figure 3A-B).
351 Together, these data demonstrate that overexpression of *trib1* has the strongest host-
352 protective effect compared to overexpression of other *trib* isoforms, reducing *M. marinum*
353 burden by approximately 50%.

354 *trib* knockdown tools were developed using CRISPR-Cas9 technology. Guide-RNAs
355 for each *trib* isoform were designed targeting the first coding exon of each *trib* gene and
356 were injected into one-cell stage embryos, with *tyrosinase* (a control CRISP-ant which has
357 negligible effects on innate immunity (Isles et al. 2019)) CRISP-ant as a negative control.
358 CRISP-ant efficiency was tested using PCR and restriction enzyme digest, with successful
359 CRISP-ants disrupting the restriction site. Efficient guide-RNAs were developed for both
360 *trib1* and *trib3* (Figure S3), however guide-RNAs for *trib2* did not cause efficient knockdown.
361 *Trib1* CRISP-ants had a higher burden of *Mm* compared to *tyrosinase* and *trib3* CRISP-ants
362 (Figure 2C-D).
363

364 ***trib1* overexpression increases production of pro-inflammatory factors**

365 TRIB1 has previously been shown to affect immune cell differentiation, with full-body
366 *Trib1* deficient mice possessing a greater number of neutrophils and a reduced number of
367 anti-inflammatory macrophages compared to wild-type (Satoh et al. 2013). Zebrafish *trib1*
368 manipulation had the most profound effect on host pathogen interaction, with overexpression
369 reducing Mm bacterial burden and CRISP-ant knockdown increasing burden. We therefore
370 investigated the roles of *trib1* manipulation on the innate immune system.

371 Zebrafish *trib* isoforms were manipulated in neutrophil and macrophage transgenic
372 reporter lines *Tg(mpx:GFP)i114* and *Tg(mpeg:nlsclover)sh436* and whole-body fluorescent
373 cell counts were performed to assess whether *trib* manipulation influenced zebrafish
374 leukocyte number. Neither *trib* overexpression nor CRISP-ant grossly affected neutrophil or
375 macrophage numbers (Figure S4), suggesting that the host-protective effect of *trib1*
376 overexpression is not due to an increase in number of innate immune cells. To investigate
377 whether *trib1* influenced the inflammatory profiles of zebrafish leukocytes, production of the
378 pro-inflammatory factors, *interleukin-1β* (*il-1β*) and nitric oxide (NO) were measured using a
379 combination of transgenic reporter lines and immunostaining. Overexpression of *trib1*
380 increased the levels of *il1β:GFP* (in a *Tg(il-1β:GFP)sh445* reporter line), to similar levels as
381 the positive control DA Hif-1 α , compared to phenol-red (PR) injected controls (Figure 4A-B).
382 *trib3* overexpression did not increase levels of *il1β:GFP* and levels were similar to the
383 negative controls DN Hif-1 α and PR (Figure 4A-B). Similarly, *trib1* overexpression increased
384 the levels of anti-nitrotyrosine staining, a proxy for immune cell antimicrobial nitric oxide
385 production (Forlenza et al. 2008), to similar levels of DA Hif-1 α (Elks et al. 2014; Elks et al.
386 2013) (Figure 4C-D). *trib3* overexpression did not increase levels of proinflammatory
387 nitrotyrosine (Figure 4C-D).

388

389 ***Trib1* overexpression does not activate Hif signalling**

390 Due to the protective effect of *trib1* overexpression closely mimicking that of DA-
391 Hif1 α a potential mechanistic link between the *hif-1 α* and *trib1* pathways was investigated.

392 *trib1* and *trib3* were overexpressed in a Hif- α transgenic reporter line, *Tg(phd3:GFP)i144*
393 (*phd3* is a downstream target of Hif- α signalling) (Santhakumar et al. 2012). Neither *trib1* nor
394 *trib3* overexpression activated the *phd3:GFP* line to detectable levels, indicating that *trib1*
395 overexpression is not substantially increasing Hif-1 α signalling to mediate *Mm* control
396 (Figure 5). These data suggesting that the protective effects of *trib1* act via a different
397 mechanism than Hif-1 α activation.

398

399 **The host protective effect of *trib1* is dependent on *cop1***

400 An important binding partner of the TRIB1 protein is the E3 ubiquitin ligase, COP1
401 (Jamieson et al. 2018; Kung and Jura 2019; Murphy et al. 2015). To investigate whether the
402 host-protective effects of *trib1* overexpression in *Mm* infection were *cop1*-mediated, a *cop1*
403 CRISPrant was generated.

404 The zebrafish *cop1* gene (ENSDARG00000079329) is located on the forward strand
405 of chromosome 2 and has 20 exons, all of which are coding (Figure S4). It has a single
406 coding transcript, producing a Cop1 protein of 694 amino acids. The zebrafish *cop1* gene
407 shares synteny and conserved sequence with both the human COP1 and murine Cop1
408 (determined using the ZFIN database (<https://zfin.org/>)).

409 In order to investigate whether the protective effect of *trib1* overexpression is *cop1*-
410 mediated, *trib1* overexpression was combined with *cop1* CRISPrants in *Mm* infected larvae.
411 As previously observed, overexpression of *trib1* significantly reduced bacterial burden
412 compared to phenol red controls when co-injected with tyrosinase guide (Figure 5A-B). The
413 bacterial burden of *cop1* CRISPrants, was not significantly different to the tyrosinase control
414 group nor the tyrosinase control with *trib1* overexpression group. When *trib1* was
415 overexpressed in *cop1* CRISPrants, there was no significant decrease in burden, with the
416 protective effect of *trib1* lost (Figure 6B) indicating that the protective effect of *trib1*
417 overexpression is dependent on *cop1*.

418 The effect of *cop1* knockdown on the production of antimicrobial NO production was
419 investigated using the anti-nitrotyrosine antibody. Overexpression of *trib1* significantly
420 increased neutrophil anti-nitrotyrosine fluorescence levels compared to the PR control in the
421 tyrosinase controls (Figure 6C-D). The *cop1* CRISPants group possessed comparable anti-
422 nitrotyrosine levels to both the PR and tyrosinase control groups. *trib1* overexpression in the
423 *cop1* CRISPants did not increase anti-nitrotyrosine levels and instead was comparable with
424 the *cop1* CRISPants alone and both PR and tyrosinase controls (Figure 6D).

425 Together these data show that when *cop1* is knocked down the antimicrobial and
426 host protective effects of *trib1* overexpression are lost, indicating a dependency of the *trib1*
427 effect on *cop1*.

428

429 **Discussion**

430 TRIB1 has previously been shown to be a key regulator of multiple inflammatory
431 factors and inflammatory cell function, influencing pathologies with an inflammatory
432 component including cancer and atherosclerosis (Johnston et al. 2015). Innate immunity and
433 production of inflammatory factors are key defence mechanisms against invading
434 pathogens, yet the role of Tribbles in the immune response to infection is poorly understood.
435 We provide evidence that mycobacterial antigen stimulation both *in vitro* and *in vivo* induces
436 human TRIB1 and TRIB2 expression independent of TB disease status. We used the
437 zebrafish TB model to show that this expression has key and newly appreciated functional
438 roles. *trib1* is required to control Mm infection *in vivo*, associated with increase production of
439 antimicrobial factors, such as *il-1β* and NO. We also show a role for *cop1*, a key binding
440 partner of TRIB1, which is required for the host-protective effects of *trib1* overexpression.
441 The novel *in vivo* tools developed to investigate the immune roles of tribbles in zebrafish,
442 create new opportunities to further investigate Tribbles 1 as a potential therapeutic target,
443 not only in infection, but in a wider range of disease contexts that have an innate immunity
444 component.

445 For the first time we have identified that Tribbles 1 is an important isoform in the host
446 response to mycobacterial infection, with *TRIB1* being upregulated in human monocytes
447 after mycobacterial antigen challenge and early overexpression of *trib1* being host-protective
448 in a zebrafish TB model. This is in line with literature showing that TRIB1 has a key role in
449 the regulation of pro-inflammatory profiles (Arndt et al. 2018; Niespolo et al. 2020; Ostertag
450 et al. 2010). If inflammatory signals are initiated early in infection, this can improve infection
451 outcomes and reduce bacterial burden, whereas later induction of these signals could be
452 harmful to the host. An example of this is control of inflammatory response with HIF-1 α
453 signalling, where early stabilisation and activation of HIF-1 α signalling is beneficial (Elks et
454 al. 2013; Lewis and Elks 2019; Ogryzko et al. 2019), but late activation, or excessive HIF-1 α
455 is hyper-inflammatory and can increase bacterial burden in animal models (Braverman and
456 Stanley 2017; Domingo-Gonzalez et al. 2017).

457 TRIB1 is a well-known regulator of innate immune cells and functions. *Trib1*-/- mice
458 have a defective inflammatory response, with reduced pro-inflammatory gene expression
459 (including Nos2 and IL-1 β compared to controls) resulting in a defective pro-inflammatory
460 macrophage response, with BMDMs producing less NO and defective phagocytosis (Arndt
461 et al. 2018). In zebrafish, *trib1* overexpression increased production of pro-inflammatory
462 factors, indicating this control of inflammatory factors NO and IL-1 β via TRIB1 is conserved in
463 fish. The NO response generated by TRIB1 may be produced through JAK/STAT signalling,
464 which TRIB1 regulates to influence macrophage polarisation phenotypes via STAT3 and
465 STAT6 (Arndt et al. 2018). Polarised macrophage subsets have also been identified in the
466 zebrafish model, with heterogeneity observed in the macrophage population with
467 inflammatory markers (Hammond et al. 2023; Nguyen-Chi et al. 2015). It is unclear whether
468 zebrafish *trib1* could regulate macrophage inflammatory profiles via STAT3 and STAT6 as in
469 the murine model. However, as zebrafish Stat3 has roles in macrophage efferocytosis,
470 survival and cytokine secretion (Campana et al. 2018) and Stat6 has roles in type 2 immune
471 signalling (Cronan et al. 2021) this could be conserved and a potential mechanism of *trib1*
472 regulation of inflammatory phenotypes.

473 TRIB1 has been associated with inflammation and immune response, whereas
474 TRIB3 is strongly associated with metabolic function, including the regulation of glucose
475 homeostasis (Angyal and Kiss-Toth 2012; Prudente et al. 2012; Zhang et al. 2013) which
476 also has regulatory roles in innate immune cells such as macrophages (Steverson et al.
477 2016; Wang et al. 2012). There are robust links between glucose metabolism and innate
478 immune responses, such as the glycolytic switch which is closely related to macrophage
479 polarisation (Zhu et al. 2015). Both glucose and lipid metabolism have roles in infection
480 defence when utilised by immune cells. In *Mtb* infection, lipid droplets produced by
481 macrophages can be used as an antimicrobial mechanism (Knight et al. 2018), or a source
482 of lipids for *Mtb* to utilise (Daniel et al. 2011) as a method to potentially manipulate host
483 macrophage defence (Menon et al. 2019). This process could potentially be influenced by
484 Tribbles. In murine atheroma models, *Trib1* increased the lipid accumulation in
485 macrophages leading to the formation of foam-cells (Johnston et al. 2019). In *Drosophila*
486 *melanogaster*, *trbl* knockdown increased circulating triglyceride levels (Das et al. 2014) and
487 in mice where TRIB3 knockdown in a murine adipose cell line (3T3-L1) increased
488 intracellular triglycerides (Takahashi et al. 2008) and targeted deletion of murine TRIB3
489 resulted in elevated triglyceride levels in the liver (Örd et al. 2018).

490 It is interesting to note that overexpression of *trib* genes did not affect macrophage
491 and neutrophil numbers in the zebrafish larvae, unlike in *Trib1* deficient mice, where the
492 number of neutrophils is increased due to dysregulated C/EBP α (Satoh et al. 2013). Similar to
493 mammalian neutrophil differentiation, zebrafish neutrophil differentiation is partly regulated via
494 C/EBP transcription factors including *Cebp α* (Dai et al. 2016), *Cebp1* (the functional homolog
495 of mammalian C/EBP ϵ , (Kim et al. 2016)) and *Cebp β* (Wei et al. 2020). It is therefore unclear
496 why *trib1* manipulation did not affect neutrophil differentiation in the zebrafish and highlights
497 potential differences between the function of zebrafish *trib1* compared to murine TRIB1.

498 The host protective effect of *trib1* overexpression closely mimicked the effects of Hif-
499 1 α stabilisation, with an increase in the production of anti-microbial factors NO and IL-1 β and a
500 decrease in *Mm* infection burden (Elks et al. 2013). HIF transcription factors respond to

501 oxygen tension and are stabilised under hypoxic conditions. TRIB3 has been associated with
502 HIF-1 α in renal cell carcinoma patients and HIF-1 α binds to multiple regions in the TRIB3
503 promoter, with HIF-1 α overexpression resulting in upregulation of TRIB3 expression (Hong et
504 al. 2019). In lung adenocarcinoma cells, TRIB3 knockdown decreased levels of HIF-1 α (Xing
505 et al. 2020), indicating a feedback loop between TRIB3 and HIF-1 α , where one can regulate
506 the other and vice-versa. In common with TRIB3, a potential link between TRIB2 and HIF-1 α
507 has been reported, as depletion of TRIB2 significantly decreased the effect of TNF α on HIF-
508 1 α stability and accumulation in multiple cancer cell lines (Schoolmeesters et al. 2012).
509 However, there is no current link identified between TRIB1 and HIF-1 α and this was reflected
510 in our data showing that *trib1* overexpression did not lead to an increase in a well-validated
511 Hif- α reporter line (Santhakumar et al. 2012).

512 Many of the reported regulatory functions of TRIB1 are dependent on COP1. As the
513 protective effect of *trib1* overexpression was reduced when *cop1* was depleted, it appears
514 there is some dependency on *cop1* expression to produce the protective effect of improving
515 the host response to infection. Interestingly, *cop1* CRISPRants possess slightly reduced
516 burden compared to controls without the overexpression of *trib1*, suggesting that *cop1*
517 depletion alone may offer a small level of protection. In cancer cell lines infected with
518 *Mycobacterium bovis* Bacillus Calmette-Guérin (BCG), BCG induced Sonic Hedgehog
519 signalling increasing COP1 expression, leading to the inhibition of apoptosis in the cell line
520 (Holla et al. 2014), indicating there may be a COP1 response to mycobacterial infection.

521 Together our findings show a potential therapeutic application of targeting Trib1 to
522 improve infection outcomes. It appears to control multiple pathways, we have demonstrated
523 here *il-1b* and NO control, therefore it may be more effective than targeting one of these
524 alone. Due to its potential functions in multiple pathways, any targeting of Trib1 must be
525 carefully controlled. For example, overexpression of TRIB1 in chronic mycobacterial
526 infections may be beneficial against infection, but could trigger immunopathology. The
527 concept of host immunomodulation is an emerging therapeutic avenue for infectious
528 disease, especially with the continually increasing problem of anti-microbial resistance in

529 multiple pathogens, and could potentially be used alongside anti-microbial drug treatment.
530 To aid the efficiency of host immunomodulation, and to help avoid off-target effects, specific
531 targeting methods can be used. Polymersomes have been shown to be a promising avenue
532 for drug delivery to immune cells and could be utilised for the delivery of host
533 immunomodulatory compounds and factors (Fenaroli et al. 2020). Therefore, with targeted
534 delivery methods and transient manipulation of TRIB1 through pharmacological or genetic
535 approaches, this could potentially improve infection outcome of mycobacterial infection and
536 pave the way for further research into TRIB1 as a target for host-derived therapies.

537

538 **Figure Legends**

539

540 **Figure 1: Expression of *TRIB1* in human monocytes and tissues is elevated after**
541 **mycobacterial antigen stimulation.**

542 (A-C) Expression of *TRIB1*, *TRIB2* and *TRIB3* transcripts in human CD14+ monocytes in
543 patients with active or latent TB before and after 4 hours of *Mtb* protein derivative (PPD)
544 stimulation *in vitro*. Each paired data point represents one individual, with active or latent TB
545 (n = 9 and n = 7 respectively). Statistical significance determined by paired Wilcoxon tests P
546 values shown are: *P < .05, **P < .01, ***P < .001 and ****P < .0001.

547 (D-F) Expression of *TRIB1*, *TRIB2* and *TRIB3* within in saline injected human skin and from
548 biopsies of the site of a tuberculin skin test (TST) in patients with active or latent TB. Each
549 point represents one individual with bars for each group representing mean gene
550 expression. n = 48 and 191 individuals with active or latent TB respectively. Statistical
551 significance determined via Kruskal-Wallis with multiple comparisons. P values shown are:
552 *P < .05, **P < .01, ***P < .001 and ****P < .0001.

553

554 **Figure 2: Zebrafish Tribbles share homology with their human and mice counterparts**
555 **and are expressed in immune cell subpopulations.**

556 (A) The gene organisation of human (orange) TRIB1, mouse (blue) Trib1 and zebrafish
557 (red). Exon maps produced from Ensembl database. Chromosome number location (chr)
558 and transcript sizes in kilobases (kb) are shown.
559 (B) Comparison of the three catalytic domains of Tribbles; the pseudokinase catalytic loop
560 and MEK / COP1 bind sites, reveals high homology between species.
561 (C) NCBI BLAST Global align revealed a high amino acid (AA) homology between zebrafish
562 (zf) and human Tribbles protein sequences. Values described are positives / identities.
563 (D) Protein sizes of the first and largest protein coding transcript of each gene are depicted
564 in the number of AA, values obtained from Ensembl and Uniprot databases.
565 (E-G) Gene expression of adult zebrafish leukocytes determined using the Zebrafish Blood
566 Atlas (Athanasiadis et al. 2017). Each point represents a separate scRNAseq sample (cell);
567 replicates performed across multiple zebrafish wildtype and transgenic strains. Each arm of
568 schematic indicates A separate blood cell population (labelled). Deeper colour indicates
569 higher expression (log10 Scale bars described for each gene).
570

571 **Figure 3: *trib1* overexpression is host protective against *Mm* infection**

572 (A) Stereo-fluorescence micrographs of *Mm* mCherry infected 4dpi larvae after injection at
573 the single-cell stage with DA Hif-1 α (DA1), DN Hif-1 α (DN1), and *trib1*, 2 and 3 using phenol
574 red (control) as a negative vehicle control. DA1 and DN1 are RNA controls with DA1 having
575 previously been shown to reduce infection levels.
576 (B) Bacterial burden of larvae shown in (A). Data shown are mean \pm SEM, n=76-77 in *trib1*
577 experiment, n=86-89 in *trib2* experiments and n=43-95 in *trib3* experiment, accumulated
578 from 3 independent experiments for each *trib* gene. Statistical significance determined via
579 one-way ANOVA with Bonferroni's multiple comparisons. P values stated on graphs.
580 (C) Stereo-fluorescence micrographs of *Mm* mCherry infected 4dpi larvae after injection with
581 *tyrosinase* (control), *trib1* and *trib3* CRISPR guides (CRISPPants).
582 (D) Bacterial burden of larvae shown in (C). Data shown are mean \pm SEM, n=87-90 fish
583 accumulated from 3 independent experiments. Statistical significance determined via one-

584 way ANOVA with Bonferroni's multiple comparisons. P values shown are: * $P < .05$, ** $P <$
585 .01, *** $P < .001$ and **** $P < .0001$.

586

587 **Figure 4: *trib1* overexpression increases production of proinflammatory *il-1 β* and**

588 nitrotyrosine in the absence of infection.

589 (A) Fluorescent confocal micrographs of 2dpf caudal vein region of *TgBAC(il-*
590 *1 β :eGFP)sh445* transgenic larvae. *il-1 β :GFP* expression was detected by GFP levels.
591 Larvae were injected at the 1 cell stage with dominant negative (DN) or dominant active
592 (DA) Hif-1 α or phenol red (PR) controls and *trib1* and *trib3* test RNAs. Scale bars = 25 μ m.

593 (B) Corrected fluorescence intensity levels of *il-1 β :GFP* confocal z-stacks in uninfected
594 larvae at 2dpf of data shown in (A). Dominant active Hif-1 α (DA1) controls and *trib1* fish had
595 significantly increased *il-1 β :GFP* levels in the absence of Mm bacterial challenge compared
596 to phenol red (PR) and dominant negative Hif-1 α (DN1) injected controls and *trib3* RNA
597 injected embryos. Data shown are mean \pm SEM, n=108 cells from 18 embryos accumulated
598 from 3 independent experiments. Statistical significance was determined using one-way
599 ANOVA with Bonferroni's multiple comparisons post hoc test. P values shown are: * $P < .05$,
600 ** $P < .01$, *** $P < .001$ and **** $P < .0001$.

601 (C) Fluorescence confocal z-stacks of the caudal vein region of 2dpf *mpx:GFP* larvae
602 (neutrophils) immune-labelled with anti-nitrotyrosine (cyan) in the absence of Mm infection.
603 Larvae were injected at the 1 cell stage with dominant negative (DN) or dominant active
604 (DA) Hif-1 α or phenol red (PR) controls and *trib1* and *trib3* test RNAs. Scale bars = 25 μ m.

605 (D) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-stacks
606 shown in (C). Data shown are mean \pm SEM, n=108 cells from 18 embryos accumulated from
607 3 independent experiments. Statistical significance was determined using one-way ANOVA
608 with Bonferroni's multiple comparisons post hoc test. P values shown are: * $P < .05$, ** $P <$
609 .01, *** $P < .001$ and **** $P < .0001$.

610

611 **Figure 5: *trib1* and *trib3* overexpression do not induce expression of the Hif reporter**

612 ***phd3:GFP*.**

613 (A) Stereo-fluorescence micrographs of 2dpf *phd3:GFP* larvae injected with phenol red (PR),

614 DA Hif-1 α and DN Hif-1 α controls alongside *trib1* (T1) and *trib3* (T3) RNA.

615 (B) Corrected fluorescence intensity levels of *phd3:GFP* larvae shown in (A). Only the DA

616 Hif-1 α injection led to increased Hif reporter levels compared to negative controls (PR and

617 DN1) with *trib1* and *trib3* RNAs having no effect on *phd3:GFP* levels. Data shown is from 3

618 independent experiments, total 30 fish per group. Error bars depict SEM. Statistical

619 significance determined through one-way ANOVA with multiple comparisons. P values

620 shown are: * $P < .05$, ** $P < .01$, *** $P < .001$ and **** $P < .0001$.

621

622 **Figure 6: The host protective effect of *trib1* overexpression requires *cop1***

623 (A) Stereo-fluorescence micrographs of Mm mCherry infected 4dpi larvae after injection with

624 *trib1* RNA (overexpression, OE) and *cop1* guide RNA (CRISPs, cpr) using phenol red

625 (vehicle) and tyrosinase (unrelated guide RNA) CRISPs as negative controls.

626 (B) Bacterial burden of larvae shown in (A). Data shown are mean \pm SEM, n=71-76

627 accumulated from 3 independent experiments. Statistical significance determined via one-

628 way ANOVA with Bonferroni's multiple comparisons. P values shown are: * $P < .05$, ** $P <$

629 .01, *** $P < .001$ and **** $P < .0001$.

630 (C) Fluorescence confocal z-stacks of the caudal vein region of 2dpf *mpx:GFP* larvae

631 (neutrophils) immune-labelled with anti-nitrotyrosine (cyan) in the absence of Mm infection.

632 Larvae were injected at the 1 cell stage with *trib1* RNA (overexpression, OE) and *cop1* guide

633 RNA (CRISPs, cpr) using phenol red (vehicle) and tyrosinase (unrelated guide RNA)

634 CRISPs as negative controls.

635 Scale bars = 25 μ m.

636 (D) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-stacks

637 shown in (C). Data shown are mean \pm SEM, n=108 cells from 18 embryos accumulated from

638 3 independent experiments. Statistical significance was determined using one-way ANOVA
639 with Bonferroni's multiple comparisons post hoc test. * $P < .05$, ** $P < .01$, *** $P < .001$ and
640 **** $P < .0001$.

641

642 **Acknowledgements**

643 The authors would like to thank Dr Heba Ismail, The University of Sheffield, for her expertise
644 and helpful advice on E3 ubiquitin ligases. Thanks also to The Biological Services Aquarium
645 Team at the University of Sheffield for their expert assistance with zebrafish husbandry.

646

647 **Competing Interests**

648 The authors declare no conflict of interest.

649

650 **Funding Information**

651 This work was supported by a University of Sheffield PhD scholarship awarded to F.R.H.
652 P.M.E. and A.L. are funded by a Sir Henry Dale Fellowship jointly funded by the Wellcome
653 Trust and the Royal Society (Grant Number 105570/Z/14/Z/A). M.N. was funded by the
654 Wellcome Trust (WT101766/Z/13/Z to G.P. and 207511/Z/17/Z to M.N.), Medical Research
655 Council (MR_N007727_1 to G.S.T.), Academy of Medical Sciences (SGL021\1045) to G.P.
656 and National Institute for Health Research Biomedical Research Centre at University
657 College London Hospitals funding.

658

659 **References**

660 Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, et al. Macrophage: A Cell With Many Faces and
661 Functions in Tuberculosis. *Front Immunol.* 2022;13:747799.

662 Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic
663 Agents against Drug-Resistant Tuberculosis. *Int J Mol Sci.* 2021 Jan 13;22(2):E735.

664 Angyal A, Kiss-Toth E. The tribbles gene family and lipoprotein metabolism. *Curr Opin Lipidol.* 2012
665 Apr;23(2):122–6.

666 Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, et al. Tribbles homolog 1 deficiency
667 modulates function and polarization of murine bone marrow-derived macrophages. *J Biol Chem.* 2018 Jul 20;293(29):11527–36.

669 Athanasiadis EI, Botthof JG, Andres H, Ferreira L, Lio P, Cvejic A. Single-cell RNA-sequencing uncovers
670 transcriptional states and fate decisions in haematopoiesis. *Nature Communications.* Nature
671 Publishing Group; 2017 Dec 11;8(1):2045.

672 Bell LCK, Pollara G, Pascoe M, Tomlinson GS, Lehloenya RJ, Roe J, et al. In Vivo Molecular Dissection
673 of the Effects of HIV-1 in Active Tuberculosis. *PLoS Pathog.* 2016 Mar;12(3):e1005469.

674 Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH. Infection of zebrafish
675 embryos with intracellular bacterial pathogens. *J Vis Exp.* 2012 Mar 15;(61).

676 Bernut A, Dupont C, Ogryzko NV, Neyret A, Herrmann J-L, Floto RA, et al. CFTR Protects against
677 *Mycobacterium abscessus* Infection by Fine-Tuning Host Oxidative Defenses. *Cell Rep.* 2019 Feb
678 12;26(7):1828–1840.e4.

679 Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko NV, Kamuyango AA, et al. *Cryptococcus*
680 *neoformans* Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of
681 Infection. *Sci Rep.* 2016 Feb 18;6:21489.

682 Braverman J, Stanley SA. Nitric Oxide Modulates Macrophage Responses to *Mycobacterium*
683 tuberculosis Infection through Activation of HIF-1 α and Repression of NF- κ B. *J Immunol.* 2017 Sep
684 1;199(5):1805–16.

685 Buchan KD, Prajsnar TK, Ogryzko NV, de Jong NWM, van Gent M, Kolata J, et al. A transgenic
686 zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. *PLoS ONE.* 2019;14(4):e0215592.

688 Campana L, Starkey Lewis PJ, Pellicoro A, Aucott RL, Man J, O'Duibhir E, et al. The STAT3-IL-10-IL-6
689 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile
690 Liver Injury. *J Immunol.* 2018 Feb 1;200(3):1169–87.

691 Cronan MR, Hughes EJ, Brewer WJ, Viswanathan G, Hunt EG, Singh B, et al. A non-canonical type 2
692 immune response coordinates tuberculous granuloma formation and epithelialization. *Cell.* 2021 Apr
693 1;184(7):1757–1774.e14.

694 Dai X, Ding Y, Liu Z, Zhang W, Zou M-H. Phosphorylation of CHOP (C/EBP Homologous Protein) by the
695 AMP-Activated Protein Kinase Alpha 1 in Macrophages Promotes CHOP Degradation and Reduces
696 Injury-Induced Neointimal Disruption In Vivo. *Circ Res.* 2016 Oct 28;119(10):1089–100.

697 Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. *Mycobacterium tuberculosis* uses host
698 triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded
699 macrophages. *PLoS Pathog.* 2011 Jun;7(6):e1002093.

700 Das R, Sebo Z, Pence L, Dobens LL. *Drosophila tribbles* antagonizes insulin signaling-mediated growth
701 and metabolism via interactions with Akt kinase. *PLoS One.* 2014;9(10):e109530.

702 Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of
703 mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish
704 embryos. *Immunity.* 2002 Dec;17(6):693–702.

705 Domingo-Gonzalez R, Das S, Griffiths KL, Ahmed M, Bambouskova M, Gopal R, et al. Interleukin-17
706 limits hypoxia-inducible factor 1 α and development of hypoxic granulomas during tuberculosis. *JCI Insight*. 2017 Oct 5;2(19):92973.

708 Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia inducible
709 factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent
710 mechanism. *PLoS Pathog*. 2013;9(12):e1003789.

711 Elks PM, Loynes CA, Renshaw SA. Measuring inflammatory cell migration in the zebrafish. *Methods Mol. Biol.* 2011;769:261–75.

713 Elks PM, van der Vaart M, van Hensbergen V, Schutz E, Redd MJ, Murayama E, et al. Mycobacteria
714 counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model. *PLoS One*.
715 2014;9(6):e100928.

716 Fenaroli F, Robertson JD, Scarpa E, Gouveia VM, Di Guglielmo C, De Pace C, et al. Polymersomes
717 Eradicating Intracellular Bacteria. *ACS Nano*. 2020 Jun 19;

718 Forlenza M, Scharsack JP, Kachamakova NM, Taverne-Thiele AJ, Rombout JHWM, Wiegertjes GF.
719 Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a
720 host-parasite animal model. *Mol Immunol*. 2008 Jun;45(11):3178–89.

721 Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation
722 of the ventral furrow in *Drosophila*. *Cell*. 2000 May 26;101(5):523–31.

723 Hameed S, Mahmood N, Chaudhry MN, Ahmad SR, Rahman MA. Molecular detection of mutations
724 in isolates of multidrug resistant tuberculosis and tuberculosis suspects by multiplex allele specific
725 PCR. *Pak J Pharm Sci*. 2018 Nov;31(6 (Supplementary)):2661–6.

726 Hammond FR, Lewis A, Speirs ZC, Anderson HE, Sipka T, Williams LG, et al. An arginase 2 promoter
727 transgenic line illuminates immune cell polarisation in zebrafish. *Dis Model Mech*. 2023 Jun
728 1;16(6):dmm049966.

729 Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: novel regulators of cell function; evolutionary aspects.
730 *Cell Mol Life Sci*. 2006 Jul;63(14):1632–41.

731 Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: a family of kinase-like proteins with potent signalling
732 regulatory function. *Cell Signal*. 2007 Feb;19(2):238–50.

733 Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN. *Mycobacterium bovis* BCG promotes tumor cell
734 survival from tumor necrosis factor- α -induced apoptosis. *Mol Cancer*. 2014 Sep 11;13:210.

735 Hong B, Zhou J, Ma K, Zhang J, Xie H, Zhang K, et al. TRIB3 Promotes the Proliferation and Invasion of
736 Renal Cell Carcinoma Cells via Activating MAPK Signaling Pathway. *Int J Biol Sci*. 2019;15(3):587–97.

737 Isles HM, Herman KD, Robertson AL, Loynes CA, Prince LR, Elks PM, et al. The CXCL12/CXCR4
738 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. *Front Immunol*. 2019;10:1784.

739 Jamieson SA, Ruan Z, Burgess AE, Curry JR, McMillan HD, Brewster JL, et al. Substrate binding
740 allosterically relieves autoinhibition of the pseudokinase TRIB1. *Sci Signal*. 2018 Sep
741 25;11(549):eaau0597.

742 Johnston J, Basatvat S, Ilyas Z, Francis S, Kiss-Toth E. Tribbles in inflammation. *Biochem Soc Trans.*
743 2015 Oct;43(5):1069–74.

744 Johnston JM, Angyal A, Bauer RC, Hamby S, Suvarna SK, Baidžajevas K, et al. Myeloid Tribbles 1
745 induces early atherosclerosis via enhanced foam cell expansion. *Sci Adv.* 2019 Oct;5(10):eaax9183.

746 Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, Pacis A, et al. BCG Educates Hematopoietic Stem
747 Cells to Generate Protective Innate Immunity against Tuberculosis. *Cell.* 2018 Jan 11;172(1–2):176–
748 190.e19.

749 Kılıç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial
750 infections. *Immunol Rev.* 2021 May;301(1):62–83.

751 Kim KW, Thakur N, Piggott CA, Omi S, Polanowska J, Jin Y, et al. Coordinated inhibition of C/EBP by
752 Tribbles in multiple tissues is essential for *Caenorhabditis elegans* development. *BMC Biol.* 2016 Dec
753 7;14(1):104.

754 Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, et al. Human tribbles, a protein
755 family controlling mitogen-activated protein kinase cascades. *J Biol Chem.* 2004 Oct
756 8;279(41):42703–8.

757 Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in *Mycobacterium*
758 tuberculosis infected macrophages requires IFN- γ /HIF-1 α signaling and supports host defense. *PLoS*
759 *Pathog.* 2018 Jan;14(1):e1006874.

760 Kung JE, Jura N. The pseudokinase TRIB1 toggles an intramolecular switch to regulate COP1 nuclear
761 export. *EMBO J.* 2019 Feb 15;38(4):e99708.

762 Lai RPJ, Meintjes G, Wilkinson KA, Graham CM, Marais S, Van der Plas H, et al. HIV–tuberculosis-
763 associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and
764 inflammasome signalling. *Nat Commun.* Nature Publishing Group; 2015 Sep 24;6(1):8451.

765 Lewis A, Elks PM. Hypoxia Induces Macrophage tnf α Expression via Cyclooxygenase and
766 Prostaglandin E2 in vivo. *Front Immunol.* 2019;10:2321.

767 Liu Y-H, Tan KAL, Morrison IW, Lamb JR, Argyle DJ. Macrophage migration is controlled by Tribbles 1
768 through the interaction between C/EBP β and TNF- α . *Vet Immunol Immunopathol.* 2013 Sep
769 1;155(1–2):67–75.

770 Mata J, Curado S, Ephrussi A, Rørth P. Tribbles coordinates mitosis and morphogenesis in *Drosophila*
771 by regulating string/CDC25 proteolysis. *Cell.* 2000 May 26;101(5):511–22.

772 Menon D, Singh K, Pinto SM, Nandy A, Jaisingham N, Kutum R, et al. Quantitative Lipid Droplet
773 Proteomics Reveals *Mycobacterium tuberculosis* Induced Alterations in Macrophage Response to
774 Infection. *ACS Infect Dis.* 2019 Apr 12;5(4):559–69.

775 Migliori GB, Centis R, D'Ambrosio L. A case of resistance beyond extensively drug-resistant
776 tuberculosis in Japan. *Eur Respir J.* 2013 Sep;42(3):872–3.

777 Murphy JM, Nakatani Y, Jamieson SA, Dai W, Lucet IS, Mace PD. Molecular Mechanism of CCAAT-
778 Enhancer Binding Protein Recruitment by the TRIB1 Pseudokinase. *Structure.* 2015 Nov
779 3;23(11):2111–21.

780 Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al.
781 Identification of polarized macrophage subsets in zebrafish. *Elife*. 2015 Jul 8;4:e07288.

782 Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, et al. Tribbles-1 Expression
783 and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by
784 miRNAs in Macrophages and Prostate Cancer Cells. *Front Immunol*. 2020;11:574046.

785 Ogryzko NV, Lewis A, Wilson HL, Meijer AH, Renshaw SA, Elks PM. Hif-1 α -Induced Expression of IL-1 β
786 Protects against Mycobacterial Infection in Zebrafish. *J. Immunol*. 2019 15;202(2):494–502.

787 Örd T, Örd D, Örd T. TRIB3 limits FGF21 induction during in vitro and in vivo nutrient deficiencies by
788 inhibiting C/EBP-ATF response elements in the Fgf21 promoter. *Biochim Biophys Acta Gene Regul
789 Mech*. 2018 Mar;1861(3):271–81.

790 Ostertag A, Jones A, Rose AJ, Liebert M, Kleinsorg S, Reimann A, et al. Control of adipose tissue
791 inflammation through TRB1. *Diabetes*. 2010 Aug;59(8):1991–2000.

792 Pollara G, Turner CT, Rosenheim J, Chandran A, Bell LCK, Khan A, et al. Exaggerated IL-17A activity in
793 human in vivo recall responses discriminates active tuberculosis from latent infection and cured
794 disease. *Sci Transl Med*. United States; 2021 May 5;13(592).

795 Prudente S, Sesti G, Pandolfi A, Andreozzi F, Consoli A, Trischitta V. The mammalian tribbles homolog
796 TRIB3, glucose homeostasis, and cardiovascular diseases. *Endocr Rev*. 2012 Aug;33(4):526–46.

797 Qi L, Heredia JE, Altarejos JY, Scretton R, Goebel N, Niessen S, et al. TRB3 links the E3 ubiquitin ligase
798 COP1 to lipid metabolism. *Science*. 2006 Jun 23;312(5781):1763–6.

799 Renshaw SA, Loynes CA, Trushell DMI, Elworthy S, Ingham PW, Whyte MKB. A transgenic zebrafish
800 model of neutrophilic inflammation. *Blood*. 2006 Dec 15;108(13):3976–8.

801 Santhakumar K, Judson EC, Elks PM, McKee S, Elworthy S, van Rooijen E, et al. A zebrafish model to
802 study and therapeutically manipulate hypoxia signaling in tumorigenesis. *Cancer Res*. 2012 Aug
803 15;72(16):4017–27.

804 van der Sar AM, Spaink HP, Zakrzewska A, Bitter W, Meijer AH. Specificity of the zebrafish host
805 transcriptome response to acute and chronic mycobacterial infection and the role of innate and
806 adaptive immune components. *Mol. Immunol*. 2009 Jul;46(11–12):2317–32.

807 Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, et al. Critical role of Trib1 in
808 differentiation of tissue-resident M2-like macrophages. *Nature*. 2013 Mar 28;495(7442):524–8.

809 Schild Y, Mohamed A, Wootton EJ, Lewis A, Elks PM. Hif-1 α stabilisation is protective against
810 infection in zebrafish comorbid models. *FEBS J*. 2020 Jun 2;

811 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
812 platform for biological-image analysis. *Nat Methods*. 2012 Jun 28;9(7):676–82.

813 Schoolmeesters A, Brown DD, Fedorov Y. Kinome-wide functional genomics screen reveals a novel
814 mechanism of TNF α -induced nuclear accumulation of the HIF-1 α transcription factor in cancer cells.
815 *PLoS One*. 2012;7(2):e31270.

816 Seher TC, Leptin M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis
817 during Drosophila gastrulation. *Curr Biol*. 2000 Jun 1;10(11):623–9.

818 Sheedy FJ, Divangahi M. Targeting immunometabolism in host defence against *Mycobacterium*
819 tuberculosis. *Immunology*. 2021 Feb;162(2):145–59.

820 Stevenson D, Tian L, Fu Y, Zhang W, Ma E, Garvey WT. Tribbles Homolog 3 Promotes Foam Cell
821 Formation Associated with Decreased Proinflammatory Cytokine Production in Macrophages:
822 Evidence for Reciprocal Regulation of Cholesterol Uptake and Inflammation. *Metab Syndr Relat
823 Disord*. 2016 Feb;14(1):7–15.

824 Stoop EJM, Schipper T, Rosendahl Huber SK, Nezhinsky AE, Verbeek FJ, Gurcha SS, et al. Zebrafish
825 embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a
826 newly identified ESX-1 component. *Dis Model Mech*. 2011 Jul;4(4):526–36.

827 Takahashi Y, Ohoka N, Hayashi H, Sato R. TRB3 suppresses adipocyte differentiation by negatively
828 regulating PPARgamma transcriptional activity. *J Lipid Res*. 2008 Apr;49(4):880–92.

829 Thisse C, Thisse B. High-resolution *in situ* hybridization to whole-mount zebrafish embryos. *Nat
830 Protoc*. 2008;3(1):59–69.

831 Wang Z, Shang Y, Zhang S, Zhong M, Wang X, Deng J, et al. Silence of TRIB3 suppresses
832 atherosclerosis and stabilizes plaques in diabetic ApoE-/-/LDL receptor-/- mice. *Diabetes*. 2012
833 Feb;61(2):463–73.

834 Wei K, Luo J, Cao J, Peng L, Ren L, Zhang F. Adiponectin Protects Obese Rats from Aggravated Acute
835 Lung Injury via Suppression of Endoplasmic Reticulum Stress. *Diabetes Metab Syndr Obes*.
836 2020;13:4179–90.

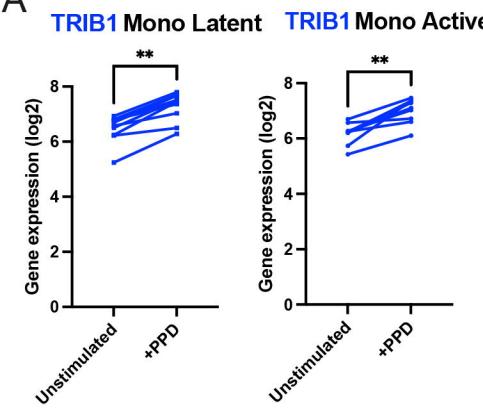
837 Wu LS-H, Lee S-W, Huang K-Y, Lee T-Y, Hsu PW-C, Weng JT-Y. Systematic expression profiling analysis
838 identifies specific microRNA-gene interactions that may differentiate between active and latent
839 tuberculosis infection. *Biomed Res Int*. 2014;2014:895179.

840 Xing Y, Luo P, Hu R, Wang D, Zhou G, Jiang J. TRIB3 Promotes Lung Adenocarcinoma Progression via
841 an Enhanced Warburg Effect. *Cancer Manag Res*. 2020;12:13195–206.

842 Yokoyama T, Kanno Y, Yamazaki Y, Takahara T, Miyata S, Nakamura T. Trib1 links the MEK1/ERK
843 pathway in myeloid leukemogenesis. *Blood*. 2010 Oct 14;116(15):2768–75.

844 Yoshida A, Kato J-Y, Nakamae I, Yoneda-Kato N. COP1 targets C/EBP α for degradation and induces
845 acute myeloid leukemia via Trib1. *Blood*. 2013 Sep 5;122(10):1750–60.

846 Zahid S, Basharat S, Fakhar M, Rashid S. Molecular dynamics and structural analysis of the binding of
847 COP1 E3 ubiquitin ligase to β -catenin and TRIB pseudokinases. *Proteins*. 2022 Apr;90(4):993–1004.


848 Zhang W, Liu J, Tian L, Liu Q, Fu Y, Garvey WT. TRIB3 mediates glucose-induced insulin resistance via
849 a mechanism that requires the hexosamine biosynthetic pathway. *Diabetes*. 2013 Dec;62(12):4192–
850 200.

851 Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization.
852 *Int Rev Immunol*. 2015 Jan;34(1):82–100.

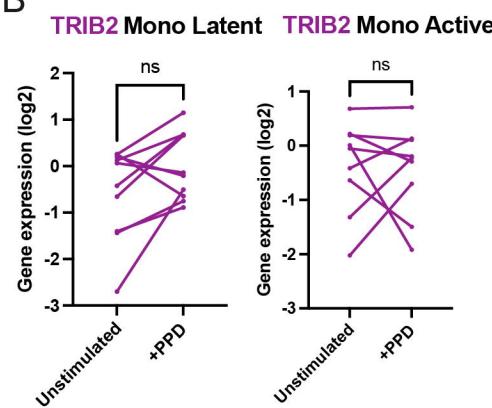
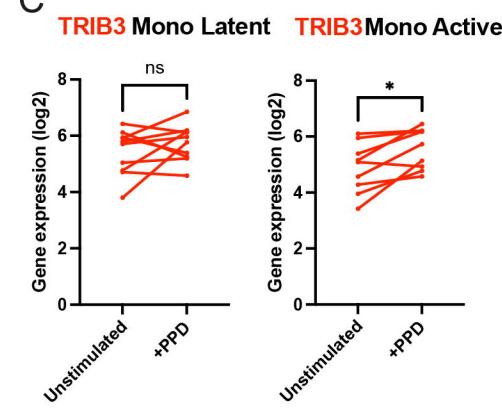
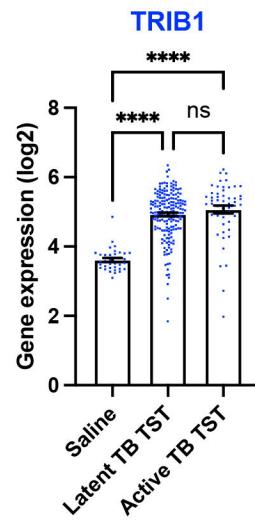
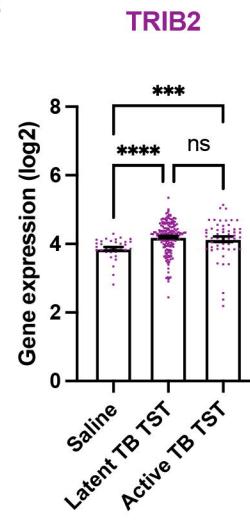

853

Figure 1


A


B


C

D

E

F

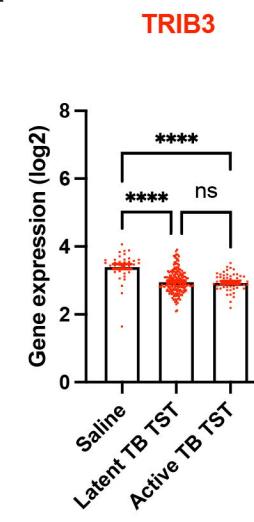
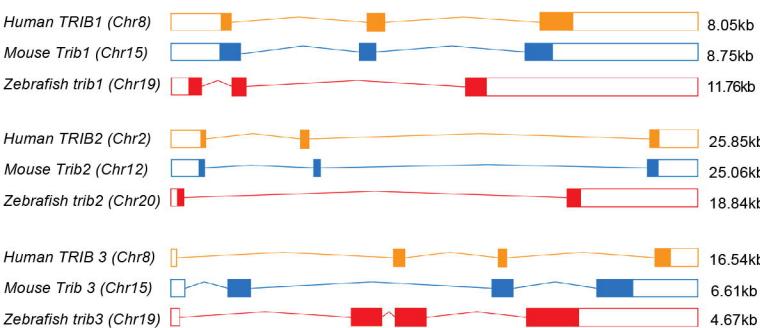
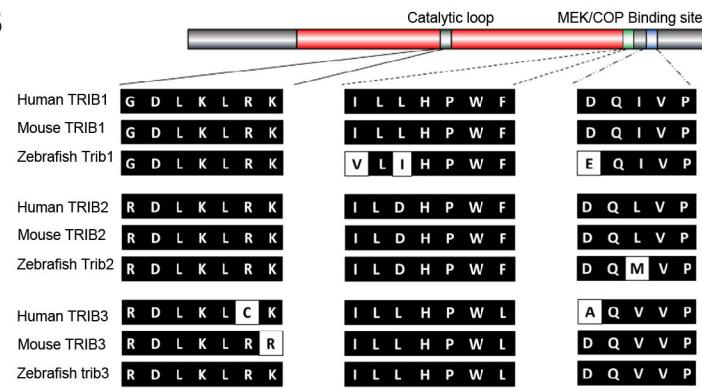
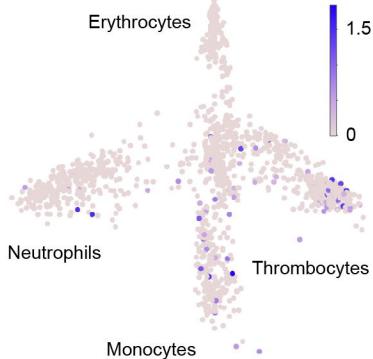




Figure 2

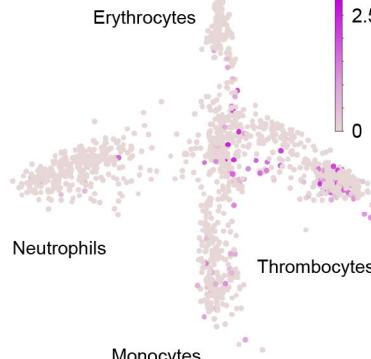
A

B

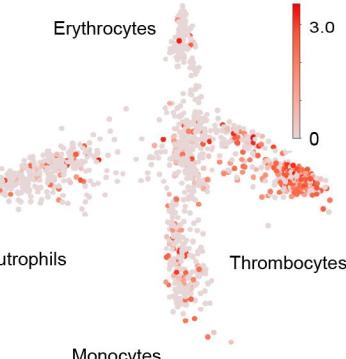
C

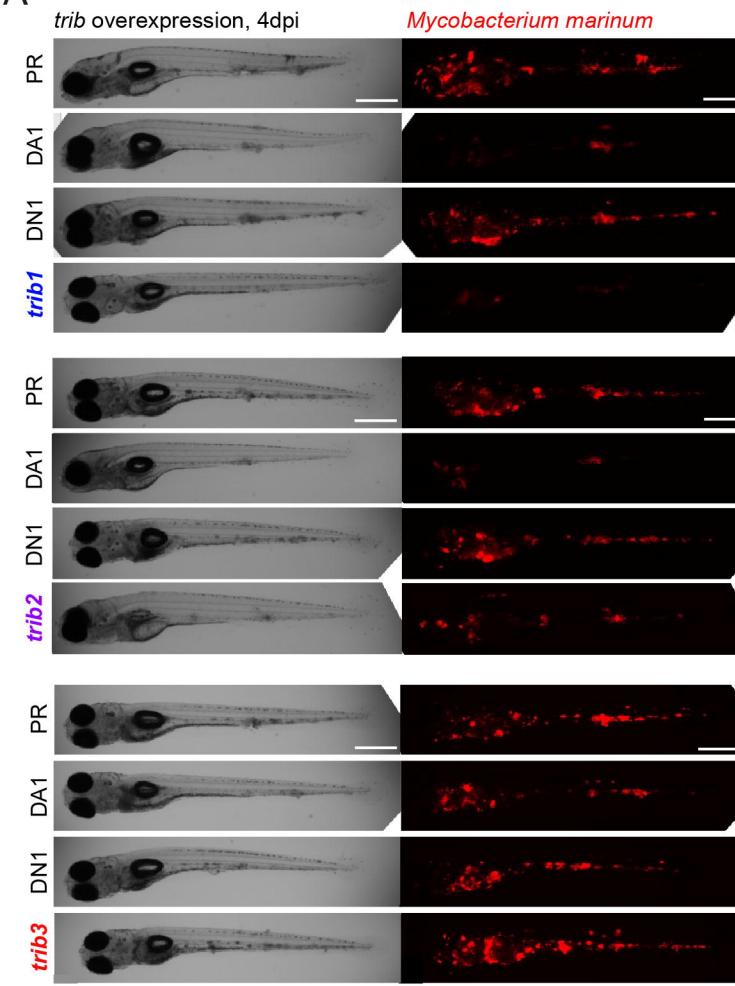
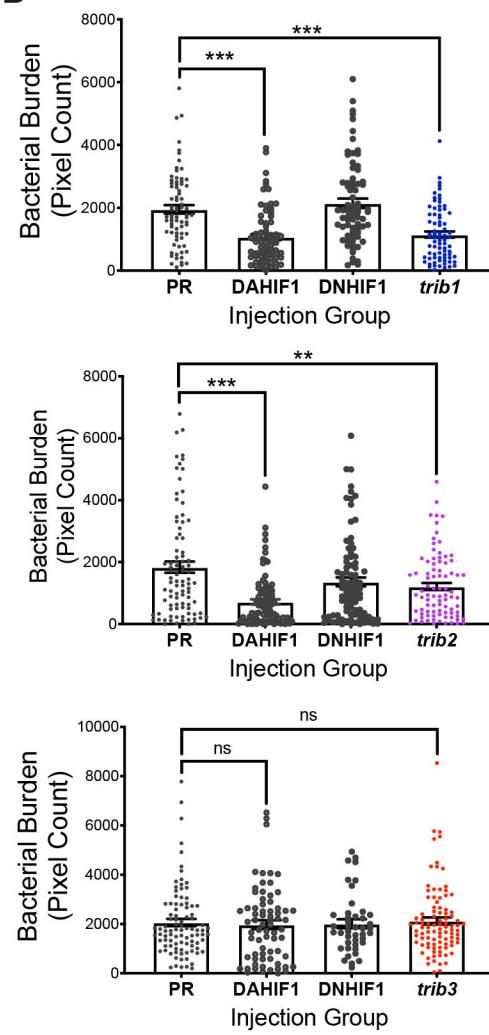
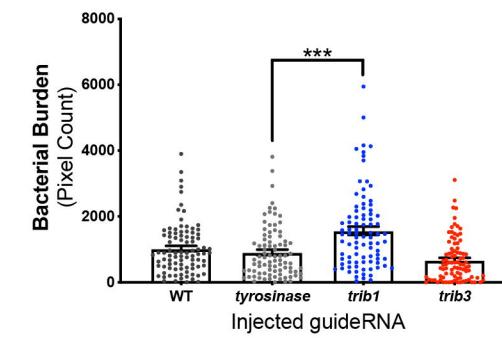
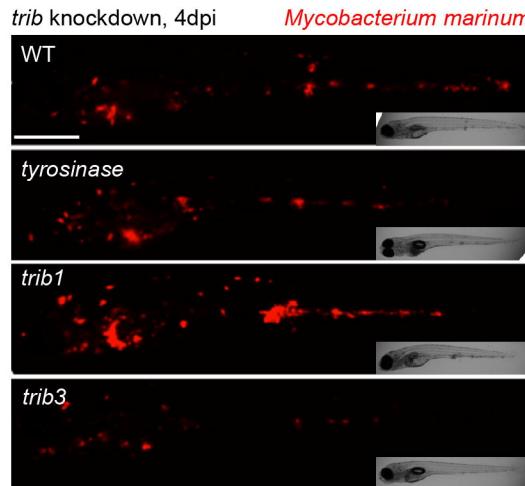

AA Homology	H TRIB1	H TRIB2	H TRIB3
zf Trib1	52 / 66%	49 / 67%	39 / 53%
zf Trib2	38 / 45%	47 / 54%	32 / 40%
zf Trib3	47 / 61%	53 / 68%	53 / 64%

D


Protein size (AA)	TRIB1	TRIB2	TRIB3
Human	372	343	358
Mouse	372	343	354
Zebrafish	349	207	348

E


trib1

F

G

Figure 3**A****B****D****C**

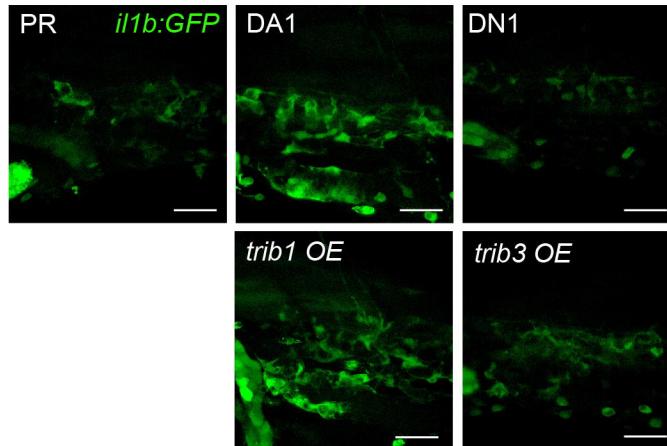
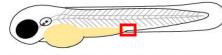
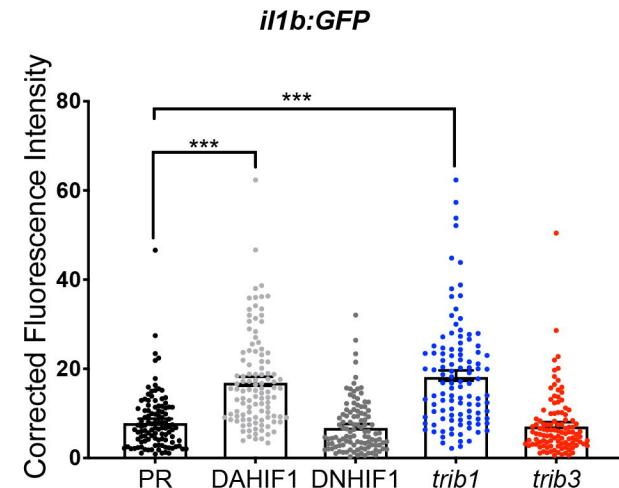
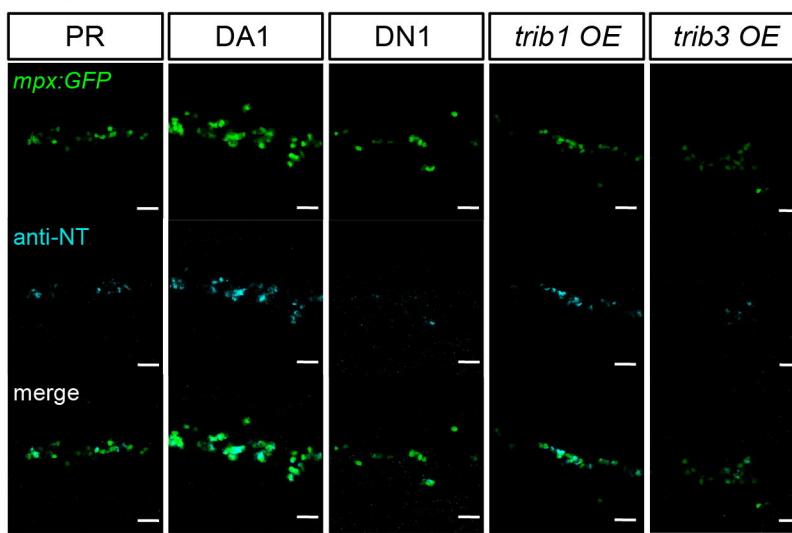
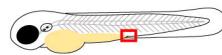
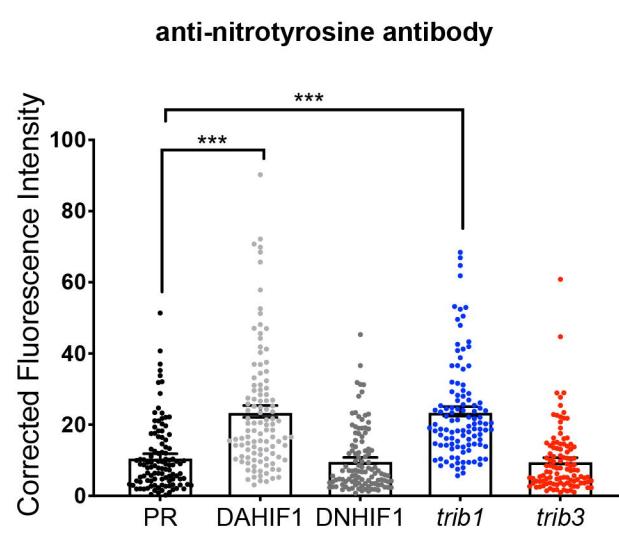
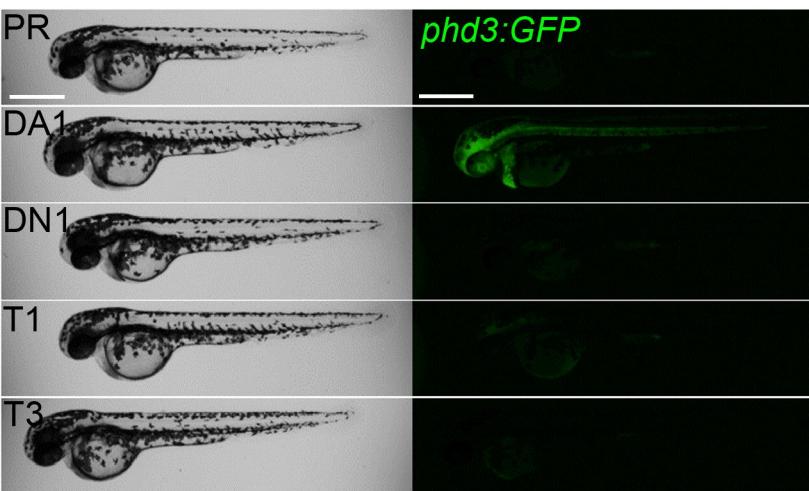







Figure 4**A** *tg(il1b:GFP)sh445***B****C** *tg(mpz:GFP)i114/anti-nitrotyrosine antibody***D**

Figure 5

A

B

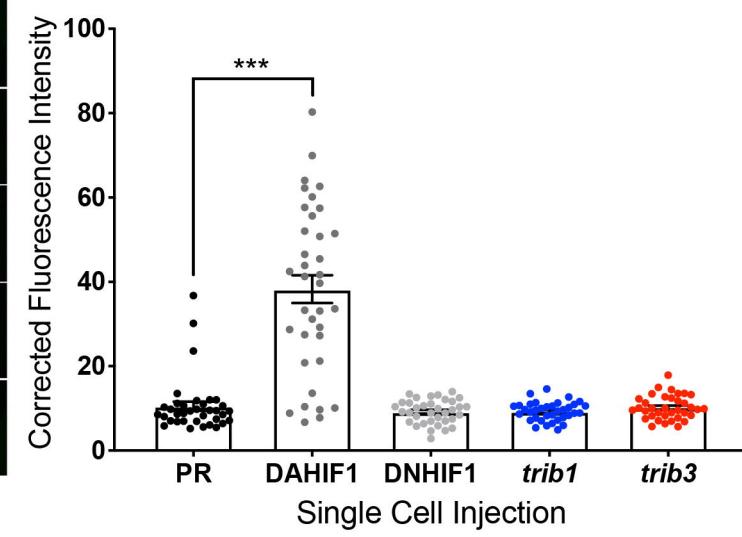
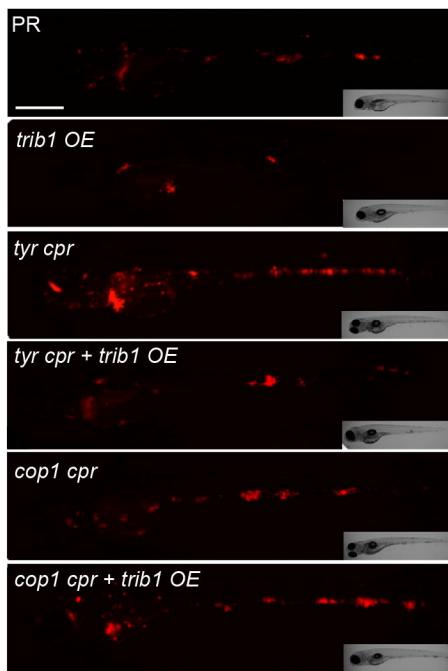
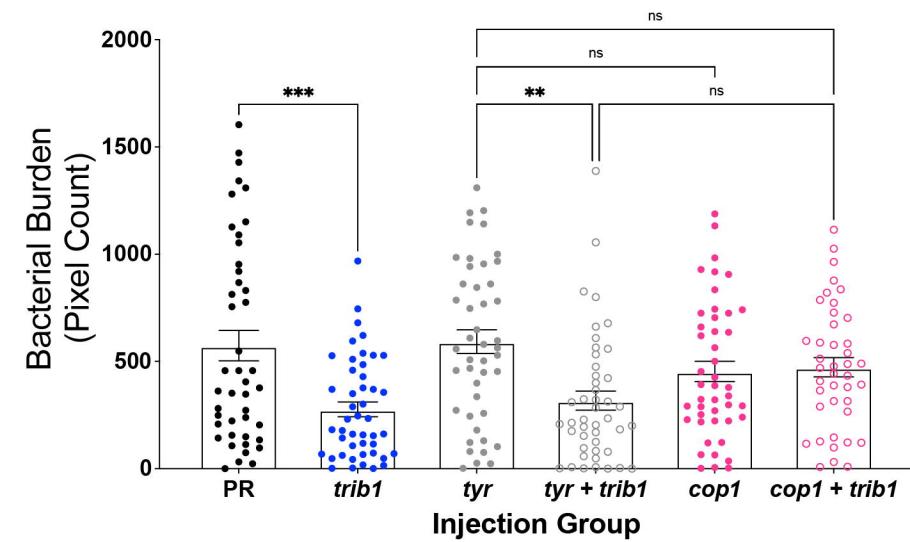
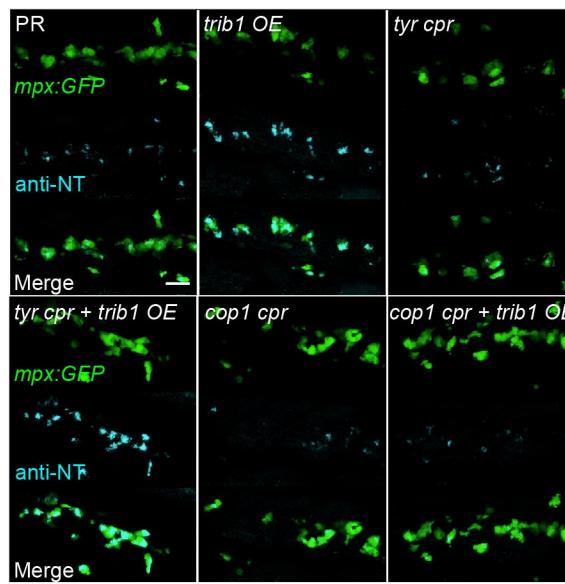
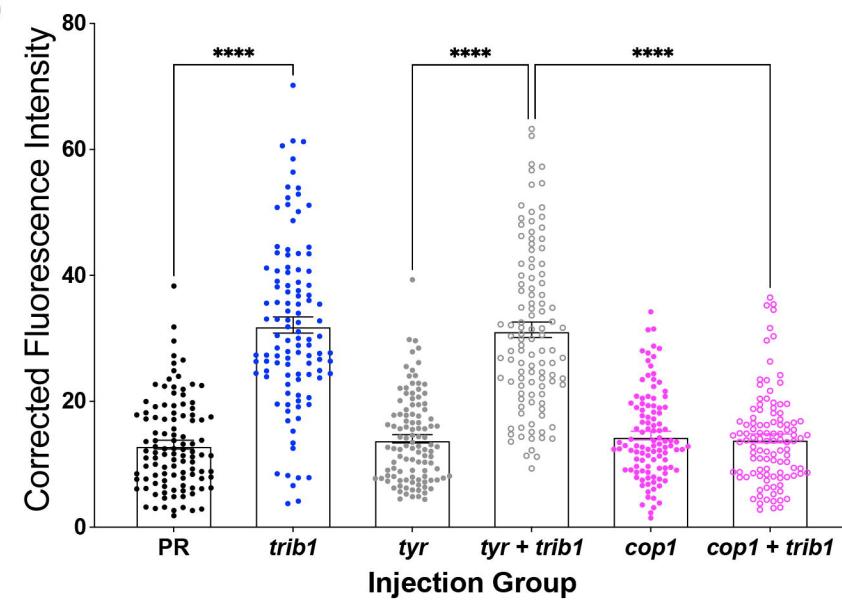




Figure 6


A


B

C

D

