

1 Consequences of daily rhythm disruption on host- 2 parasite malaria infection dynamics

4 **Authors:** Jacob G. Holland^{1*}, Kimberley F. Prior¹, Aidan J. O'Donnell¹ & Sarah E. Reece^{1,2}

6 **Contact:** ¹Institute of Ecology and Evolution & ²Institute of Immunology and Infection Research,
7 University of Edinburgh, Edinburgh, UK

8 *Corresponding author: jacob.holland@ed.ac.uk

11 **Abstract:**

12 Undertaking certain activities at the time of day that maximises fitness is assumed to explain the
13 evolution of circadian clocks. Organisms often use daily environmental cues such as light and
14 food availability to set the timing of their clocks. These cues may be the environmental rhythms
15 that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or
16 are used simply to maintain internal synchrony. While many pathogens/parasites undertake
17 rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly
18 understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to
19 interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb
20 several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic
21 replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light,
22 food, or both, and assessed the fitness implications for parasites, and the consequences for
23 hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found
24 that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In
25 contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but
26 only when the host possess a functional canonical circadian clock. Because parasites in clock-
27 disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit,
28 our results suggest cue(s) from host food act as a proxy rather than being a key selective driver
29 of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it
30 promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms
31 of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting
32 the proxies or the selective factors driving them without impacting host health.

34 **Keywords:** Circadian rhythm, Plasmodium, intra-erythrocytic development cycle, fitness,
35 virulence, transmission.

37 **1. INTRODUCTION**

38 Biological clocks allow organisms to adaptively respond to predictable rhythmic changes in their
39 environments (Yerushalmi & Green, 2009). The environment provides many potential rhythmic
40 cues across the day, such as light, temperature, humidity, tides, and the rhythms of other
41 organisms (Helm et al., 2017) which can act as inputs to clocks ('Zeitgebers'). These time cues
42 may themselves directly impact fitness or else provide information about correlated cyclical
43 opportunities and risks that impact fitness, or may simply facilitate beneficial synchronisation of
44 processes within the organism regardless of the consequences of environmental alignment
45 ('intrinsic advantage', Krittika & Yadav, 2020). Thus, an organism can schedule a rhythmic
46 activity to align with an environmental rhythm because the environmental oscillation directly
47 impacts on the organisms' fitness, provides convenient timing information, or both.
48 Understanding how environmental rhythms shape activities therefore requires disentangling their
49 role as time cues from their roles as selective forces that drive the evolution and maintenance of
50 rhythms (Hut & Beersma, 2011). Assuming an organism's rhythms are adaptive (i.e., enhance

51 fitness), this can be achieved by perturbing the alignment of an organism's rhythms to various
52 environmental rhythms to ascertain which perturbations have detrimental fitness implications.
53 However, this is challenging because the links between environmental inputs, endogenous
54 clocks, clock-controlled outputs, and fitness returns are often unknown. Moreover, organisms
55 often utilise multiple Zeitgebers (Harder & Oster, 2020), many of which interact, producing an
56 array of rhythmic outputs which themselves may be regulated by multiple inputs, increasing the
57 challenges of disentangling the fitness impacts of following particular environmental rhythms.

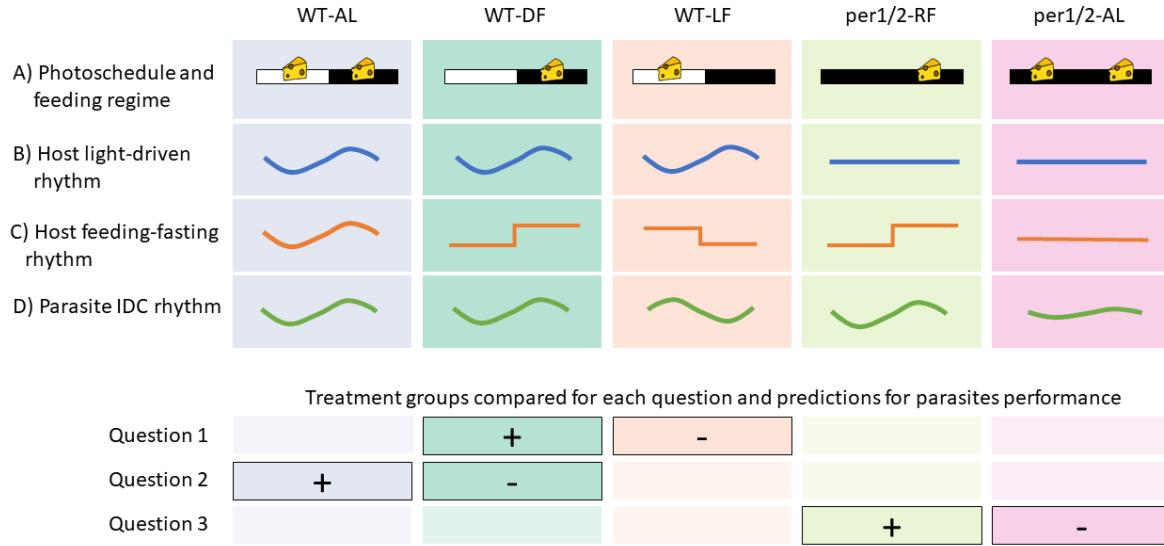
58 The use of cues to determine biological processes has long been studied in the context of
59 phenotypic plasticity (reviewed in Schneider, 2022; Snell-Rood & Ehlman, 2021), leading to the
60 distinction between cues which are the 'selective drivers' of evolution, i.e., environmental
61 changes with direct fitness impacts, and cues which are 'proxies', i.e., correlated with the
62 selective driver but not of fitness significance *per se*. Importantly, proxies act as less reliable
63 cues because they may not always perfectly reflect the state of selective drivers, but may be
64 more convenient to measure; for example, various prey animals use light or temperature as a
65 correlate for predation risk (Miehls, McAdam, Bourdeau, & Peacor, 2013; Orrock, Danielson, &
66 Brinkerhoff, 2004; Suppa et al., 2021). Likewise, in a circadian context, the cues causing
67 ('effecting') rhythmicity may be either the ultimate factors driving the evolution of rhythmicity or
68 just correlative proxies. For example, the diel light cycle (day and night), which acts as a primary
69 Zeitgeber for the circadian clocks of many organisms, may directly impact fitness (e.g. via
70 photosynthetic potential, visual acuity or desiccation risk), but also correlates with changes in the
71 activity of other organisms, generating the potential for a wide range of social or exploitative
72 interactions (positive and negative). Time cues can also help to temporally separate mutually
73 interfering processes (e.g. Chen, Odstrcil, Tu, & McKnight, 2007) or to maintain homeostasis by
74 synchronising different rhythmic processes across levels of biological organisation (Vaze &
75 Sharma, 2013). In this context, the time of day processes are undertaken does not directly
76 impact fitness but following a time cue is a convenient way to ensure separation or
77 synchronisation of processes.

78 Ascertaining to what extent the proximate cues that effect rhythmic activities are also ultimate
79 drivers offers a novel approach to managing and manipulating interactions between organisms.
80 For example, rhythms in the activities of parasites (including pathogens) underpin their virulence
81 and transmission, whereas rhythms in host immune responses and feeding patterns can
82 determine the severity and outcome of infections. Understanding the links between responses to
83 cues and fitness consequences in rhythmic parasite activities, and in host defences, are
84 fundamental steps towards reducing the benefits parasites garner from their rhythms and/or
85 harnessing host rhythms to control infections (Hunter, Butler, & Gibbs, 2022; Westwood et al.,
86 2019). For example, *Trypanosoma brucei*, which causes sleeping sickness, uses host body
87 temperature to entrain its circadian clock which, in turn, coordinates the expression of its
88 metabolism-related genes (Rijo-Ferreira, Pinto-Neves, Barbosa-Morais, Takahashi, & Figueiredo,
89 2017). Intuition suggests this allows the parasite to coordinate its own feeding with that of its
90 host, but whether the host's feeding-fasting rhythms are the ultimate driver remains untested.
91 Rhythmic replication by malaria parasites also aligns with the host's feeding-fasting rhythms.
92 Malaria (*Plasmodium*) parasites are famously rhythmic; completing cycles of replication with the
93 host's red blood cells (RBCs) at 24, 48, or 72 hours, depending on the species (Dos Santos,
94 Pereira, & Garcia, 2021; Garcia, Markus, & Madeira, 2001; Mideo, Reece, Smith, & Metcalf,
95 2013). Each cycle – termed the intraerythrocytic developmental cycle (IDC) – culminates in
96 synchronous bursting to release progeny that initiate the subsequent round of RBC invasions,
97 causing the periodic fever that characterises malaria infection (Gazzinelli, Kalantari, Fitzgerald, &
98 Golenbock, 2014). In the rodent malaria model *P. chabaudi*, the timing of transitions between
99 IDC stages aligns to host rhythms associated with feeding-fasting, even when the host's light-
100 dark cycle is in an opposing phase or when the host's canonical circadian clock machinery
101 (transcription-translation feedback loop; TTFL) is disrupted (Hirako et al., 2018; O'Donnell, Prior,
102 & Reece, 2020; O'Donnell, Greischar, & Reece, 2022; Prior et al., 2018). IDC completion occurs
103 towards the end of the feeding window, which is night-time for nocturnally active rodent hosts.
104 The IDC rhythm is at least in part under the control of parasite genes (Prior et al., 2020; Rijo-
105 Ferreira et al., 2020; Subudhi et al., 2020), and if its timing is perturbed, the IDC speeds up by 2-
106 3 hours per cycle until realigned to host rhythms (O'Donnell et al., 2022). The IDC rhythm is

107 important for parasite fitness; it maximises within-host replication, results in transmission stages
108 (gametocytes) being at their most infectious during the night time when mosquito vectors forage
109 for blood, and confers tolerance to antimalarial drugs (O'Donnell, Greischar, & Reece, 2022;
110 O'Donnell, Schneider, McWatters, & Reece, 2011; Owolabi, Reece, & Schneider, 2021; Pigeault,
111 Caudron, Nicot, Rivero, & Gandon, 2018; Schneider et al., 2018).

112 It is not known whether aligning with rhythms effected by the host's feeding-fasting schedule
113 provides a direct fitness benefit to parasites and/or simply provides a convenient cue (or series of
114 cues) for the timing of other host/vector rhythms that impact parasite fitness, or whether there are
115 intrinsic benefits of rhythmic replication. For example, a variety of rhythmic host processes are
116 entrained by light, as well as feeding, and these can be mediated in different tissues by the TTFL
117 clock machinery (Astiz, Heyde, & Oster, 2019; S. Zhang et al., 2020). Rhythms in immune
118 responses are often correlated with the timing of feeding-fasting, although immune defences are
119 unlikely to impose the IDC rhythm by killing mis-timed parasites (Cabral, Tekade, Stegeman,
120 Olivier, & Cermakian, 2022; Hunter et al., 2022; Prior et al., 2020). Aligning with feeding-fasting
121 rhythms could directly impact on parasite replication because the host's digestion of food
122 regulates when parasites have access to essential nutrients they cannot scavenge from
123 haemoglobin. These resources include vitamins B1 and B5, folate, purines, and the amino acid
124 isoleucine (which is absent from human haemoglobin and uniquely rare in murine haemoglobin),
125 that are required by later IDC stages for biogenesis (Skene et al., 2018). Indeed, recent work
126 reveals that as well as being an essential rhythmically available resource, blood isoleucine
127 concentration also fulfils criteria of a time cue used by *P. chabaudi* to set its IDC schedule (Prior
128 et al., 2021). This suggests that isoleucine could be both a proximate cue and an ultimate driver;
129 parasites respond to isoleucine rhythms because isoleucine availability regulates replication, and
130 the isoleucine rhythm is in phase with other nutrients that are most easily acquired from the
131 host's food. Whether it is also beneficial to align gametocyte development with rhythmic nutrients
132 is not known, and feeding-fasting rhythms may alternatively, or additionally, be a proxy for vector
133 activity rhythms (i.e. because both are correlated with the day-night cycle). According to the
134 intrinsic benefits hypothesis, synchrony of the IDC might be beneficial *per se*, irrespective of
135 external rhythms, and parasites might use time cues to simply synchronise development or
136 coordinate life history decisions (e.g. cell-cell communication involved in reproductive investment
137 decisions (Schneider & Reece, 2021). However, theory also predicts that if too tightly
138 synchronised, parasites inadvertently compete with each other for resources (Grieschar, Read, &
139 Bjornstad, 2014), which is supported by the observation that *P. chabaudi* performs better when
140 desynchronised (Owolabi et al., 2021). Thus, both the timing and synchrony of the IDC could
141 independently impact fitness.

142 Here, we investigate to what extent the host's light-driven and feeding-fasting rhythms are
143 ultimate drivers of the IDC rhythm by comparing parasite performance in hosts in which: 1) the
144 timing of feeding-fasting rhythms is matched or mismatched (12h out of phase) to light-dark
145 rhythms; 2) feeding is restricted to 12h windows or available throughout the day; and 3) TTFL
146 clocks are disrupted and feeding rhythms are either naturally attenuated or experimentally
147 imposed. We also investigated whether the severity of disease symptoms experienced by hosts
148 depends on how their parasites perform, their own rhythms, and their access to food. We found
149 that aligning with the host's light-dark rhythms is not an ultimate driver of parasite rhythms, and
150 that any fitness benefits of aligning with the host's feeding-fasting rhythms requires feeding
151 rhythms to be naturally spread-out and accompanied by a functional TTFL clock. Determining the
152 fitness consequences of rhythms for parasites and hosts is timely and important given that
153 plasticity in the IDC schedule helps parasites tolerate antimalarial drugs (Teuscher et al., 2010),
154 and that the temporal selective landscape of malaria parasites is changing because malaria-
155 vectoring mosquitoes are evading bed nets by altering the time of day they forage for blood
156 (Thomsen et al., 2017). Furthermore, beyond malaria, understanding why the timing and
157 synchrony of parasite replication are ultimately connected to the daily rhythms of hosts may
158 make drug treatment more effective and less toxic to patients.
159


160 **2. METHODS**

161 **2.1 Hosts and parasites**

162 We used both C57BL/6 J (WT) wildtype and *per1/2*-null clock-disrupted mice backcrossed onto a
163 C57BL/6 J background for over 10 generations (O'Donnell et al., 2020). All experimental mice
164 were females, approximately 11 weeks-old at the start of the experiment and had been group
165 housed at ~ 20 °C, 60% RH, with a 12:12 Light: Dark regime (lights on 0800-2000; all times in
166 UCT+1), *ad libitum* access to food (RM3 pellets, 801700, SDS, UK) and unrestricted access to
167 drinking water supplemented with 0.05 % para-aminobenzoic acid (Jacobs, 1964). Two weeks
168 before infection, we singly housed mice and randomly allocated them to treatment groups (n = 5
169 per group) to begin their experimental photoschedules and feeding treatments, which we
170 maintained for the duration of the experiment. All wildtype mice remained in LD 12:12, in which
171 they exhibit nocturnal activity and foraging via the mammalian circadian system; the TTFL clock
172 oscillates in cells throughout the body and keeps time via entrainment to light (Finger & Kramer,
173 2021; Partch, Green, & Takahashi, 2014). In contrast, *per1/2*-null mice were transferred to
174 constant darkness in which they are behaviourally arrhythmic because null versions of the *Per1*
175 and *Per2* clock genes disrupt the canonical TTFL machinery, and no light-dark cues are available
176 to invoke direct ('masking') responses (Bae et al., 2001; Maywood, Chesham, Smyllie, &
177 Hastings, 2014; O'Donnell, Prior, & Reece, 2020). All mice received an intravenous infection of
178 10⁵ red blood cells infected with *P. chabaudi* (genotype DK) at the ring stage, an early stage in
179 the IDC. DK parasites cause relatively mild infections, which minimises off-target effects of
180 sickness on host rhythms and parasite performance (Prior et al., 2019).

181 **2.2 Experimental design**

182 We used five treatment groups to compare parasite and host performance metrics within pairs of
183 groups that enabled three questions to be addressed (Figure 1). Our approach aimed to
184 decouple the time cues available to parasites from different host rhythms in manners that
185 minimise confounding impacts of forcing parasites to alter IDC schedule which would occur if
186 treatments involved misaligning parasites to feeding-fasting rhythms. The treatments were: (i)
187 "WT-AL" (Wild Type - *ad libitum*), wild type hosts in LD with food constantly available. The
188 feeding-fasting and light-entrained rhythms of these mice are aligned because they follow their
189 natural patterns of nocturnal behaviour and undertake the bulk of their foraging in the dark; (ii)
190 "WT-DF" (Wild Type – Dark Fed), wild type hosts in LD with time-restricted feeding in which food
191 was only available during the dark period of each circadian cycle. The feeding-fasting and light-
192 entrained TTFL rhythms of these mice are aligned and they differ from the WT-AL group because
193 they cannot eat between dawn and dusk. Mice experiencing TRF consume approximately the
194 same amount of food per day (after an initial adjustment period) as *ad libitum* fed mice, even
195 when the window available for feeding is restricted to a few hours (e.g. Froy, Chapnik, & Miskin,
196 2006; Hatori et al., 2012), including when infected with malaria (O'Donnell et al., 2020). (iii) "WT-
197 LF" (Wild Type – Light Fed), wild type hosts in LD with time-restricted feeding in which food was
198 only available during the light period of each circadian cycle. By inverting the timing of food
199 availability relative to the light-dark schedule, the parasite's IDC continues to be aligned to the
200 host's feeding-fasting rhythms but becomes misaligned to the host's light-entrained rhythms. (iv)
201 "*per1/2*-RF" (*per1/2*-null - Restricted Fed), *per1/2*-null hosts in DD with time-restricted feeding in
202 which food was only available during a 12-hour window each day (2000-0800). These hosts
203 exhibit experimentally imposed rhythmicity in some processes related to the digestion of food,
204 metabolism, and fasting, but with no influence of TTFL-driven clocks. (v) "*per1/2*-AL" (*per1/2*-null
205 *ad libitum*), *per1/2*-null hosts in DD with food constantly available. These mice are essentially
206 arrhythmic, exhibiting short and frequent bouts lasting minutes of feeding (O'Donnell et al.,
207 2020), and thus offer no rhythmic time cues to parasites. To ensure that all infections were
208 initiated with parasites aligned with the feeding-fasting schedule of their recipient host, we
209 harvested parasites from donor hosts housed in two different LD 12:12 photoschedules.
210 Specifically, parasites were harvested from the end of the respective donor dark periods at 0830
211 to infect the WT-AL, WT-DF, *per1/2*-RF and *per1/2*-AL treatments, and at 2030 on the same day
212 to infect the WT-LF treatment. We checked food twice daily to ensure a constant supply to *ad*
213 *libitum* fed mice (WT-AL, *per1/2*-AL), and swept cages for stray pellets when food was removed
214 from TRF mice (*per1/2*-RF, WT-DF, WT-LF).

215
216 **FIGURE 1. Characteristics of treatment groups and rationale for study design.** The upper four rows
217 show: (A) Photoschedule; either light-dark cycles (LD12:12, white and black bars) or constant darkness
218 (DD, black bars). Feeding regime; time restricted feeding limited to 12 hours per day (RF, 1 cheese) or *ad*
219 *libitum* (AL, 2 cheeses). How the treatment groups differ in terms of the typical pattern and timing of: (B)
220 light-driven TTFL rhythms governed by the SCN, illustrated by locomotor activity, (C) feeding-fasting and
221 downstream peripheral rhythms, illustrated by feeding, and (D) the parasite's IDC schedule, illustrated by
222 the timing of bursting to release progeny. The IDC rhythm can be decoupled from rhythms entrained by the
223 host's light-dark cycle, but consistently reschedules to the host's feeding-fasting rhythm, precluding direct
224 assessment of the fitness impacts of feeding-fasting associated rhythms. The lower four rows show the
225 pairwise comparisons between treatments (solid boxes) used to test each of the following key questions,
226 where -/+ denote the treatments in which parasites are expected to perform worse/better within each pair,
227 respectively: **(Q1) Do parasites derive ultimate fitness benefits from aligning to host rhythms**
228 **entrained by the light-dark cycle?** If feeding-fasting cues are used as a proxy for light-entrained rhythms
229 that impact on parasite fitness, parasites will perform worse when aligned to feeding-fasting rhythms that
230 are decoupled from light-entrained rhythms (WT-LF). **(Q2) Do parasites derive greater fitness benefits**
231 **when rhythmic hosts have typically rhythmic feeding-fasting?** *Ad lib* fed hosts spread their food intake
232 around a peak in the dark phase (O'Donnell et al., 2020), thus, feeding cues may peak at similar times in
233 WT-AL and WT-DF hosts but *ad lib* hosts take in food over a longer window that includes dusk and dawn. If
234 the IDC rhythm represents a balance between the benefits of timing to align with nutrient availability versus
235 the costs of extreme synchrony causing competition, this constraint will be ameliorated in WT-AL hosts who
236 can spread their feeding out and so we predict that parasites will perform better in WT-AL hosts. **(Q3) Do**
237 **parasites benefit from specifically aligning to feeding-fasting rhythms in TTFL-disrupted hosts with**
238 **no other discernible rhythms?** Parasites align to feeding-fasting rhythms even in clock disrupted hosts
239 (via TRF). If parasites benefit from non-TTFL mediated aspects of rhythmic host feeding (Greenwell et al.,
240 2019; O'Donnell et al., 2020) or from intrinsic benefits of synchrony, and these benefits outweigh potential
241 costs, parasites will also perform better in *per1/2-RF* than *per1/2-AL* hosts. Finally, we also predicted that in
242 groups in which parasites performed better, hosts will experience more severe infection symptoms, but that
243 hosts with constant access to food (WT-AL and *per1/2-AL*) can cope better with infection.

244

245 2.3 Sampling and data collection

246 Previous studies have attempted to assess fitness impacts from only a few IDCs at the start of
247 infections (e.g. O'Donnell, Mideo, & Reece, 2013), but the selective advantage of the IDC may
248 vary throughout infection (Prior et al., 2020). To overcome this limitation, we monitored infections
249 throughout the acute phase which includes recovery from the peak of infections and captures the
250 bulk of gametocyte production to assess transmission potential. Specifically, we assessed
251 parasite performance in terms of overall parasite and gametocyte dynamics, and infection
252 severity in terms of anaemia and weight loss. We sampled mice daily from day 3 to day 17 post

253 infection (PI) at 0830 for the *per1/2*-RF, *per1/2*-AL, WT-AL and WT-DF treatments, and at 2030
254 for the WT-LF treatment, to ensure the age of infection (in hours) was consistent across
255 treatments. Four mice were euthanised due to reaching the humane endpoints of infection in the
256 following treatments (at days PI): WT-DF (10), *per1/2*-RF (8), *per1/2*-AL (9, 9). At each sampling
257 point, we weighed the mice and collected blood samples (2 μ l for RBC density, 5 μ l for total
258 parasite density, and 10 μ l for gametocyte density).

259 We measured RBC density using a particle counter (Beckman Coulter Z2). For total parasite
260 density, we mixed 5 μ l blood samples with 150 μ l citrate saline upon collection and (after
261 centrifuging and discarding the plasma supernatant) extracted DNA for qPCR. For gametocyte
262 density, we mixed 10 μ l blood samples with 20 μ l RNAlater® upon collection, and extracted RNA
263 for RT-qPCR. We followed extraction and qPCR protocols targeting the CG2 gene
264 (PCHAS_0620900) as detailed elsewhere (Owolabi et al., 2021; Petra Schneider et al., 2015).
265 Notably, since the CG2 gene is expressed only in gametocytes (Wargo, De Roode, Huijben,
266 Drew, & Read, 2007), CG2 cDNA quantifies the number of gametocytes, whereas CG2 DNA
267 quantifies the total number of asexually replicating stages and gametocytes.

268 **2.4 Data analysis**

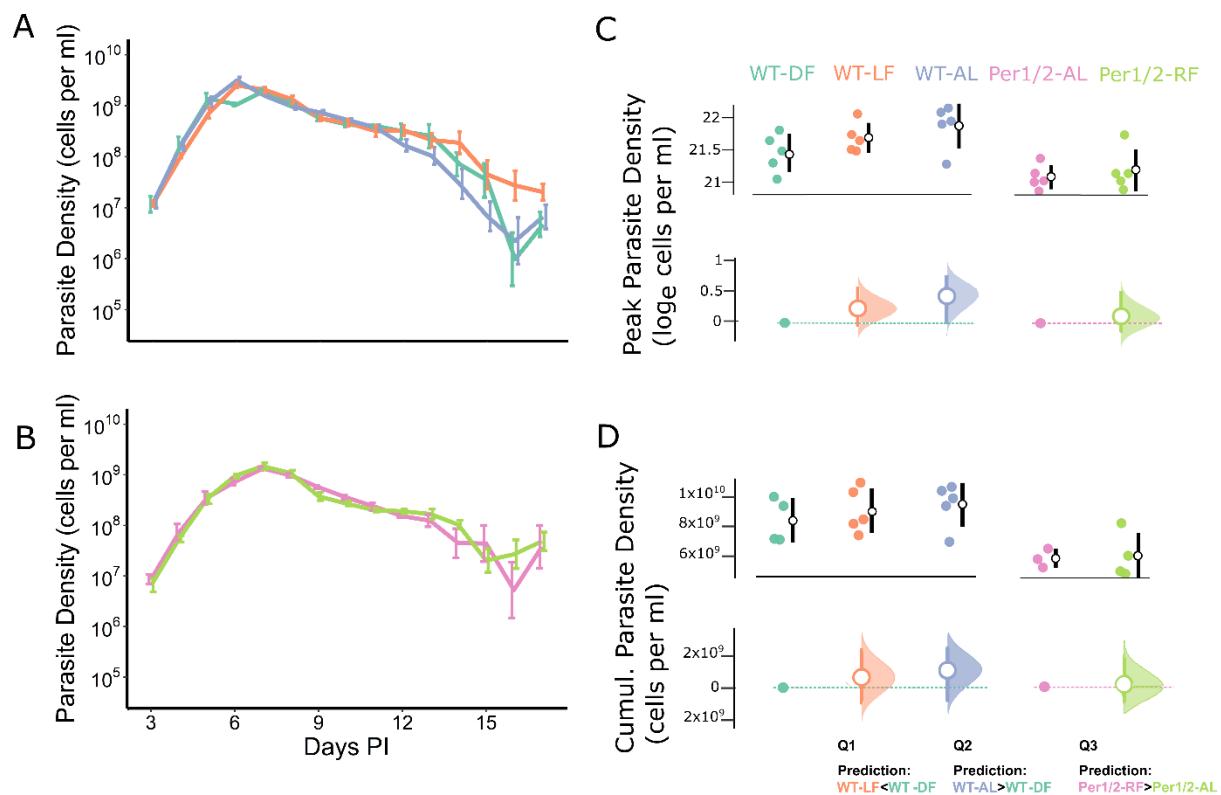
269 We quantified metrics for parasite fitness using parasite density as a measure of in-host survival,
270 and gametocyte density as a measure of transmission potential. For each of these density
271 metrics we analysed: i) the dynamics of log-transformed density throughout the infection, using
272 day PI as a factor (since density is non-linear) and random intercepts for each mouse ID; ii) peak
273 density, defined as the highest log-transformed density observed for each infection (or each
274 infection wave for gametocytes); and iii) overall density, defined as the cumulative number of
275 parasites observed throughout infection and calculated only from mice that survived the entire
276 experiment. For parasite density, two samples were defective and excluded. For gametocytes,
277 the peak density was analysed separately for the 'early' and 'late' waves of each infection (before
278 or after day 10PI), because *P. chabaudi* exhibits two peaks of gametocytes. We excluded *per1/2*-
279 RF infections from all gametocyte analyses due to loss of the RNA samples for this group,
280 meaning it was not possible to test Q3 in relation to transmission potential. We quantified weight
281 loss and anaemia as the difference between weights and RBC densities on day 3PI and at their
282 respective troughs.

283 All analyses were conducted using R version 4.0.0 or later (R core development team 2020). We
284 took a two-stage approach to the analysis of each metric. First, we produced a separate linear
285 model or linear mixed model (using the lme4 package v 1.1.32; Bates, Machler, Bolker, &
286 Walker, 2015) set for each metric as a response variable and checked assumptions using the
287 DHARMA package (v 0.3.3.0; Hartig, 2020). We then compared whether each of these models
288 were more parsimonious (lower AICc) than the respective null models (i.e. with no treatment
289 term). Second, for those models where metrics varied detectably between treatments (without
290 interaction), we conducted pairwise comparisons corresponding to our three main questions
291 (Figure 1). We configured the models with the reference group (model intercept) as the WT-DF
292 treatment for contrasts with WT-LF (Q1) and WT-AL (Q2), and with the reference group as the
293 *per1/2*-AL treatment for contrast with *per1/2*-RF (Q3), and examined individual contrasts between
294 these levels. For linear mixed models, we estimated p-values via Satterthwaite's degrees of
295 freedom method using the 'lmerTest' package (v 3.1.3; Kuznetsova, Brockhoff, & Christensen,
296 2017). We estimated effect sizes and confidence intervals for figures using nonparametric
297 bootstrap resampling via the dabestr package (v 0.3.0; Ho, Tumkaya, Aryal, Choi, & Claridge-
298 Chang, 2019).

299

300 **3. RESULTS**

301 **3.1 Parasite density**


302 For the dynamics of parasite density, the most parsimonious model only included treatment and
303 day PI (model weight = 0.80, delta AICc of all other models > 3.08, see Table S1), implying that
304 the dynamics of all groups followed a similar trajectory over time but varied in magnitude (Figure
305 2A, B). Pairwise comparisons within this model only revealed a difference in the comparison for

306 Q1, but in the opposite direction to the prediction. Specifically, relative to WT-DF infections, the
 307 density was 43% higher in WT-LF infections (Q1; $t = 2.4$, $df = 341$, $p = 0.016$, coefficient of log
 308 density = 0.36, 95% CI 0.21-0.51), but did not differ in WT-AL infections (Q2; $t = -0.94$, $p = 0.35$),
 309 and relative to *per1/2*-AL infections, *per1/2*-RF infections did not differ (Q3; $t = 0.66$, $p = 0.51$).
 310 The second most supported model also included a treatment x day PI interaction term (model
 311 weight 0.17) which we investigate further by comparing peak and cumulative densities.

312 The mean (\pm SE) peak parasite density across treatments was 2.24×10^9 ($\pm 1.83 \times 10^8$) cells per
 313 ml of blood. The most parsimonious model explaining peak density included a treatment term
 314 (model weight = 0.99, delta AICc of null model = 9.4; Table S1). Pairwise comparisons within this
 315 model only revealed a difference in the comparison for Q2 (Figure 2C). Specifically, relative to
 316 WT-DF infections, the peak did not differ in WT-LF infections (Q1; $t = 1.3$, $p = 0.22$), but was
 317 51.4% higher in WT-AL infections (Q2; $t = 2.3$, $p = 0.032$; coefficient of log density = 0.41, 95%
 318 CI = 0.04-0.79), and relative to *per1/2*-AL infections, the peak was not different in *per1/2*-RF
 319 infections (Q3; $t = 0.59$, $p = 0.56$).

320 The mean (\pm SE) cumulative parasite density across treatments was 7.98×10^9 ($\pm 4.34 \times 10^8$) cells per
 321 ml of blood. The most parsimonious model explaining cumulative density included a
 322 treatment term (model weight = 0.93, delta AICc of null model = 5.1; Table S1). However, only
 323 non-focal comparisons (e.g. between WT-DF and *per1/2*-AL) had significant effects, with no
 324 significant differences in the pairwise comparisons used to ask Q1, Q2 or Q3 (Figure 2D).
 325 Specifically, relative to WT-DF infections, total parasite densities did not differ in WT-LF
 326 infections (Q1; $t = 0.672$, $p = 0.511$), nor WT-AL infections (Q2; $t = 1.112$, $p = 0.283$). Relative to
 327 *per1/2*-AL treatment, parasite densities did not differ in the *per1/2*-RF infections (Q3; $t = 0.146$, p
 328 = 0.886).

329

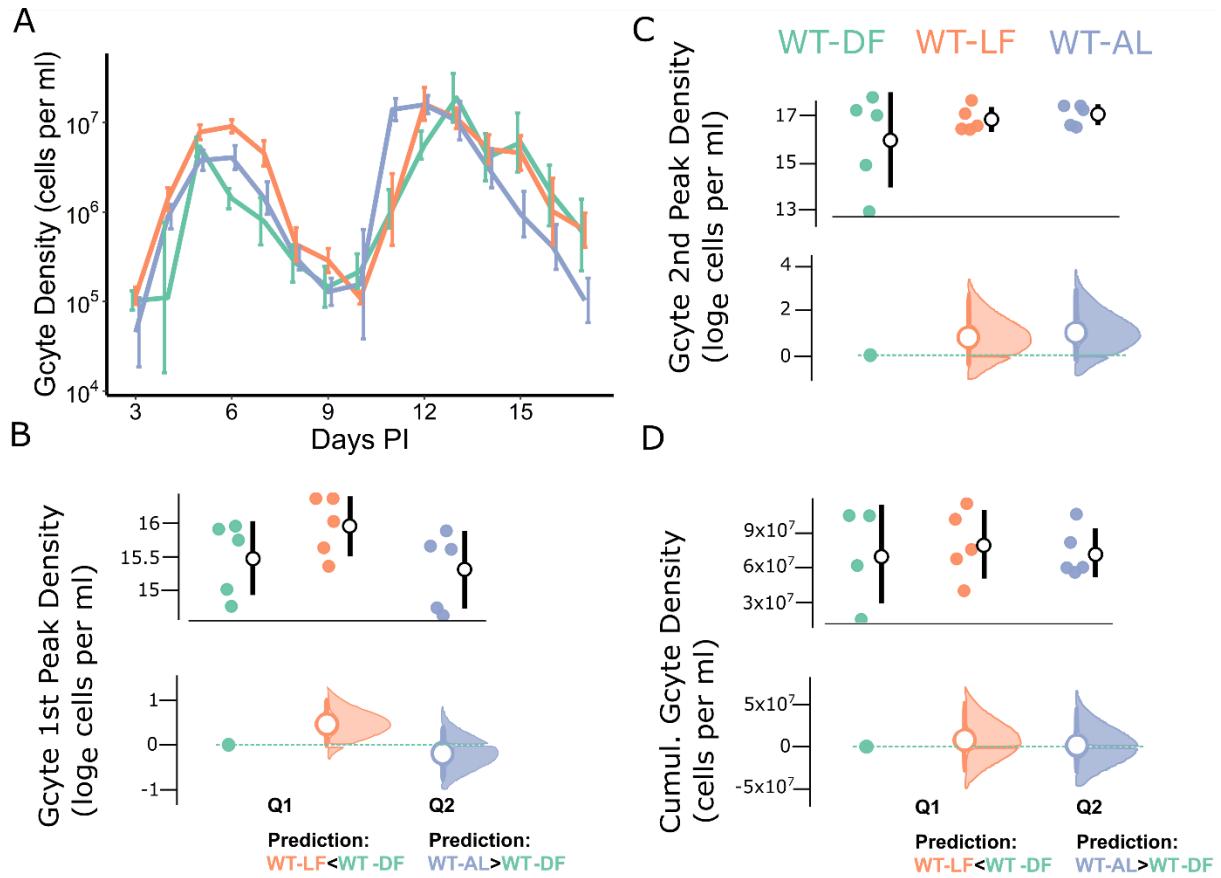
330

331 **FIGURE 2. Parasite density metrics.** Density dynamics (means \pm SE) for (A) infections of wildtype hosts
 332 and (B) infections of *per1/2*-null hosts from 3 to 17 days post infection (PI), in which the colours in C
 333 correspond to the groups in all figures. Peak parasite densities (C) and cumulative densities (D) by
 334 treatment (upper subplot within each panel), along with effect sizes (lower subplot within each panel).
 335 Specifically, upper subplots depict (log) peak or cumulative parasite densities per host (coloured points)
 336 along with mean \pm SE per treatment (white dots and black error bars). Lower subplots depict the effect
 337 sizes (mean \pm 95% CI difference; white circles and error bars coloured by treatment) of each focal

338 between-treatment comparison (defined by the key questions) of (log) peak or cumulative parasite density.
339 For each comparison, the reference treatment is shown as a point and dotted line (Q1&2, WT-DF, teal; Q3,
340 *per1/2-AL*, pink), and the CIs are derived from nonparametric bootstrap resampling (distribution depicted
341 alongside each error bar). The prediction for each key question is shown below panel D.

342

343 3.2 Gametocyte density

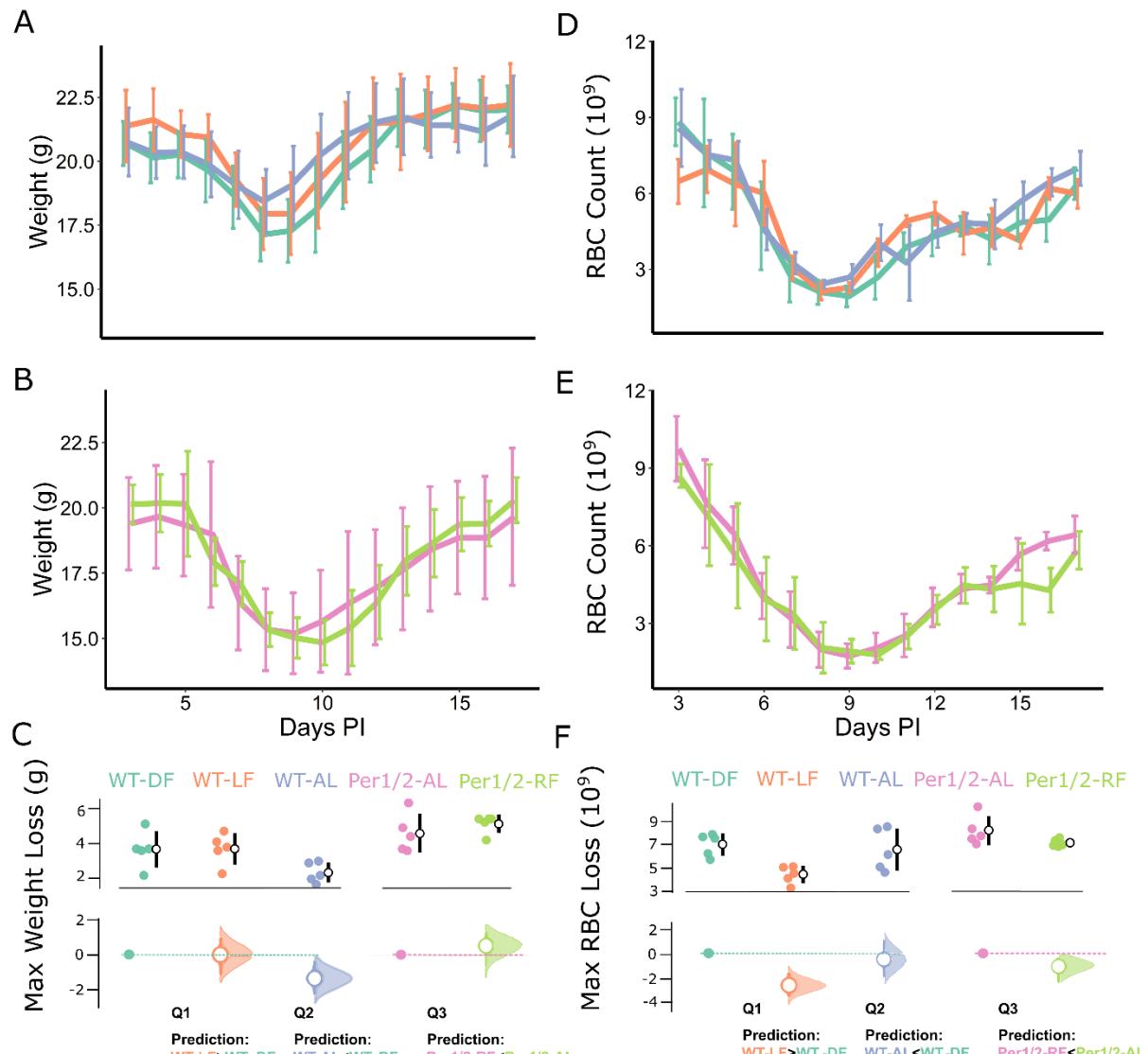

344 For gametocyte density dynamics, the most parsimonious model included treatment, day PI, and
345 a treatment x day PI interaction (model weight > 0.99, delta AICc of all other models > 34; see
346 Table S2). Gametocyte density dynamics followed similar qualitative patterns across the
347 treatment groups (Figure 3 A, B), with WT-LF infections sustaining higher densities over the first
348 wave (pre 10 days PI), but generally lower in the second wave (post 10 days PI), relative to
349 parasites in WT-DF hosts (Q1, see Table S3), while WT-AL infections were more similar to WT-
350 DF infections throughout (Q2).

351 The mean (\pm SE) peak gametocyte density was 5.8×10^6 ($\pm 8.0 \times 10^5$) cells per ml blood for the
352 first wave and 2.4×10^7 ($\pm 3.6 \times 10^6$) cells per ml blood for the second wave. For peak
353 gametocyte density of the first wave, the most parsimonious model included treatment, but only
354 marginally so (model weight = 0.52, delta AICc of null model = 0.18; Figure 3C). However, only
355 non-focal comparisons had significant effects, specifically, relative to WT-DF infections, the early
356 peak was not higher in either WT-LF infections (Q1; $t = 0.96$, $p = 0.35$) or WT-AL infections (Q2; t
357 = 0.35, $p = 0.73$). The most parsimonious model for the peak of the second gametocyte wave did
358 not include treatment (null model weight = 0.98, delta AICc of model with treatment = 7.45).

359 The mean total (cumulative) gametocyte density across treatments was 6.78×10^7 ($\pm 7.16 \times 10^6$)
360 cells per ml blood. The most parsimonious model explaining cumulative density did not include
361 treatment (null model weight = 0.98, delta AICc of model with treatment = 8.38; Figure 3D).

362

363


366 **FIGURE 3. Gametocyte density metrics.** Density dynamics (means \pm SE) for (A) infections of wildtype
367 hosts from 3 to 17 days post infection (PI), in which the colours in C correspond to the groups in all figures.
368 Peak gametocyte densities of the first (B) and second (C) waves, and cumulative densities (D) by treatment
369 (upper subplot within each panel), along with effect sizes (lower subplot within each panel). Specifically,
370 upper subplots depict (log) peak or cumulative gametocyte densities per host (coloured points) along with
371 mean \pm SE per treatment (white dots and black error bars). Lower subplots depict the effect sizes (mean \pm
372 95% CI difference; white circles and error bars coloured by treatment) of each focal between-treatment
373 comparison (defined by the key questions) of (log) peak or cumulative parasite density. For each
374 comparison, the reference treatment, WT-DF, is shown as a teal point and dotted line, and the CIs are
375 derived from nonparametric bootstrap resampling (distribution depicted alongside each error bar). The
376 prediction for each key question is shown below panels B & D.

377

378 **3.3 Virulence to hosts**

379 For weight loss, the most parsimonious model included only treatment (model weight = 1.00,
380 delta AICc of null model = 10.96; Figure 4A, B). Pairwise comparisons revealed differences only
381 between the groups used to ask Q2 (Figure 4C). Specifically, compared to WT-DF mice, weight
382 loss did not differ in WT-LF mice (Q1; $t = 0.074$, $p = 0.94$), but WT-AL mice lost 35.5% less
383 weight (Q2; $t = 2.4$, $p = 0.026$, coefficient = -1.3, 95% CI = -1.84--0.76), and compared to *per1/2-*
384 *AL* hosts, *per1/2-RF* mice did not differ (Q3; $t = 1.0$, $p = 0.32$).

385 Finally, for RBC loss, the most parsimonious model did not include treatment (null model weight
386 = 0.93, delta AICc of model with treatment = 5.31; Figure 4D, E, F).

387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

FIGURE 4. Parasite virulence metrics. Host weight dynamics (means \pm SE) for (A) infections of wildtype hosts and (B) infections of *per1/2*-null hosts from 3 to 17 days post infection (PI), in which the colours in C correspond to the groups in all figures. Maximum weight loss per mouse (weight at Day 3 PI minus lowest weight) is shown by treatment (C upper subplot), along with effect sizes (C lower subplot). Host red blood cell (RBC) count dynamics (\pm SE) for (D) infections of wildtype hosts and (E) infections of *per1/2*-null hosts from 3 to 17 days PI. Maximum RBC loss (in 10^9 cells per ml) per mouse (RBC count at Day 3 PI minus lowest RBC count) is shown by treatment (F upper subplot), along with effect sizes (F lower subplot). Specifically, upper subplots in C and F depict weight or RBC loss respectively per host (coloured points) along with mean \pm SE per treatment (white dots and black error bars). Lower subplots depict the effect sizes (mean \pm 95% CI difference; white circles and error bars coloured by treatment) of each focal between-treatment comparison (defined by the key questions) of weight or RBC loss respectively. For each comparison, the relevant reference treatment is shown as a point and dotted line (Q1&2, WT-DF, teal; Q3, *per1/2*-AL, pink), and the CIs are derived from nonparametric bootstrap resampling (distribution depicted alongside each error bar). The prediction for each key question is shown below panels C & F.

404

4. DISCUSSION

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

We investigated which host rhythms are the ultimate drivers of the rhythmic replication of malaria parasites, by assessing the impacts of different combinations of host rhythms on within-host survival and transmission potential. In addition, we also tested how perturbations to host rhythms affected the severity of infections. Few focal group comparisons revealed significant differences even though we detected differences between treatments groups for most metrics (6 of 9 model sets), suggesting the analyses had sufficient power to answer our questions. Overall, we reveal more treatment group differences in total parasite than gametocyte density, and that body weight is more sensitive to host rhythm perturbations than anaemia. Specifically, total parasite dynamics followed the same qualitative patterns across treatments, but parasites in WT-LF hosts were able to maintain higher post peak densities than those in WT-DF hosts (Q1) and WT-AL parasites achieved a higher peak than those in WT-DF hosts (Q2). Likewise, gametocyte density dynamics followed qualitatively similar patterns across treatment groups, but with trends for parasites in WT-DF hosts to have a lower first peak than WT-LF infections (Q1) and later second peak than WT-AL infections (Q2), and gametocyte density dropped faster after the second peak in WT-DF than WT-AL infections (Q2). Finally, while red blood cell loss did not differ between the treatment groups, hosts that had the most access to food (WT-AL) lost the least weight (Q2), but internal desynchrony (of light- and food-driven rhythms) did not exacerbate virulence (Q1). Taken together, our results imply that: (Q1) the ultimate driver(s) of parasite rhythms are unlikely to be based on within-host processes driven directly by the light-dark cycle, since parasites (whose IDC rhythm follows host feeding-fasting) did not perform better in any fitness metric when matching the host's light-driven rhythms; (Q2) parasites benefit when the host feeds in a spread-out-but-rhythmic pattern, since peak parasite density was higher in hosts with a more widely distributed feeding window than hosts with extrinsically-imposed feeding restricted to the night time; and (Q3) whilst imposing rhythmic feeding on clock disrupted hosts is sufficient to generate the IDC rhythm (O'Donnell et al., 2020), this has no apparent ultimate benefit in the absence of the host's TTFL clock machinery, since parasites did not differ in any metric between clock-disrupted hosts with or without rhythmic feeding.

432
433
434
435
436
437
438
439
440
441

If light-entrained rhythms are an important ultimate driver of the IDC rhythm, we predicted that parasites would suffer when the IDC is misaligned to light-entrained rhythms (WT-LF). This was not the case, and WT-LF parasites may even perform slightly better at some points during infections. The outputs of light-entrained host clocks usually include the sleep-wake cycle, which is involved in the deployment of T-cells (Bessedovsky, Lange, & Born, 2012), some components of innate and adaptive immunity (Carvalho Cabral, Tekade, Stegeman, Olivier, & Cermakian, 2022), and some metabolic and homeostatic processes (e.g. Huang, Ramsey, Marcheva, & Bass, 2011), suggesting these processes have little impact on parasite fitness. Instead, the most parsimonious (but non-mutually exclusive) conclusions of the result of Q1 are that parasites follow host feeding-fasting rhythms to derive benefits from aligning their development with: (i)

442 rhythmicity in blood nutrients derived from food digestion (Skene et al., 2018), (ii) rhythms that
443 more closely follow the phase of host feeding than light cues, including blood oxygen tension
444 (Zhang et al., 2021), body temperature (in small mammals; Abrams & Hammel, 1964), and some
445 immune rhythms (Chen et al., 2022); or (iii) vector activity rhythms, which correlate with nocturnal
446 host feeding-fasting. Aligning with vector rhythms benefits diverse *Plasmodium* species (Pigeault
447 et al., 2018; Schneider et al., 2018), but the fitness consequences of other within-host
448 physiological rhythms remain untested. Alternatively, there may be (iv) no benefits of aligning
449 with environmental rhythms and parasites follow host feeding-fasting simply to ensure an optimal
450 level of synchrony in the IDC. Previous studies suggest that innate immune rhythms do not
451 impose the IDC rhythm by preferentially killing misaligned parasites, though immune cell
452 metabolism may exacerbate the need for the IDC to be aligned with blood nutrient rhythms
453 (Cabral et al., 2022; Hirako et al., 2018; Hunter et al., 2022; Prior et al., 2020). Theory predicts
454 that the optimal level of IDC synchrony is a trade-off between the benefits of being synchronous
455 enough to exploit time-dependent nutrients from the host's food and the costs of extreme
456 synchrony causing inadvertent competition between parasite cells that are close kin (Greischar et
457 al., 2014; Owolabi, 2023). It is unlikely that WT-LF hosts were less effective at controlling
458 parasites because their health metrics did not differ to WT-DF hosts whose rhythms were not
459 disrupted. Further teasing apart scenarios i-iv and ascertaining their relative importance is
460 empirically very challenging. Confronting parasites with different kinds of rhythms is possible
461 thanks to the tools available for lab mouse models (including conditional clock disruptions).
462 However, experiments must avoid confounding experimental treatments with the costs incurred
463 by parasites altering the IDC rhythm if their alignment to feeding-fasting rhythms is also
464 perturbed.

465 Given the reliance of parasites on host resources and the potential for high synchrony to be
466 costly, we predicted that parasites derive greater fitness benefits when hosts have access to food
467 throughout the day, compared to hosts whose feeding was restricted to the 12 hour dark phase
468 (albeit with a similar peak feeding time (Q2)). This prediction was supported by parasites in WT-
469 AL hosts achieving a 50% higher peak density. TRF does not typically reduce the amount of food
470 that mice consume per day, even when the window of food availability is much shorter than in
471 our experiment (e.g. 3h; Froy et al., 2006), suggesting that the duration of the feeding window is
472 the key difference between these groups. Furthermore, TRF has broad metabolic impacts,
473 including altering nutrient absorption and temporal expression patterns of various metabolic
474 genes compared to *ad libitum* fed mice (Gallop, Tobin, & Chaix, 2023), suggesting parasites
475 experience significantly better conditions in WT-AL hosts. Spreading out foraging benefited hosts
476 too, ameliorating weight loss despite higher parasite densities. In contrast, WT-DF and WT-AL
477 hosts experience the same degree of anaemia which is surprising since weight loss and anaemia
478 are usually correlated (Timms, Colegrave, Chan, & Read, 2001). This suggests that WT-DF
479 hosts experience a specific difficulty in dealing with malaria-induced appetite reduction when
480 food availability is already limited. This is intriguing, since rodent feeding rhythms plastically
481 respond to environmental and seasonal changes (Caravaggi et al., 2018; Cohen, Smale, &
482 Kronfeld-Schor, 2009; Tachinardi, Tøien, Valentiniuzzi, Buck, & Oda, 2015) and wild house mice
483 have very varied diets (Singleton & Krebs, 2007). Thus, whether WT-DF or WT-AL feeding
484 rhythms – and the costs of infection - better reflect those of wild rodent hosts is likely to depend
485 on the relative consumption of stored food (Singleton & Krebs, 2007) and rhythmically available
486 forage (e.g. due to ambient temperatures and energetic efficiency; Hut, Pilorz, Boerema,
487 Strijkstra, & Daan, 2011) in their evolutionary history.
488

489 Our third question (Q3) specifically considered whether feeding-fasting rhythms act as an
490 ultimate driver (as well as a proximate cue) for the IDC rhythm (Prior et al., 2021). Directly testing
491 this hypothesis requires misaligning parasites to host feeding-fasting rhythms and quantifying the
492 fitness consequences. Unfortunately, it is not possible to prevent parasites from rescheduling the
493 IDC to realign to feeding-fasting rhythms (which can occur within 5 cycles, O'Donnell et al., 2022;
494 O'Donnell et al., 2020; O'Donnell et al., 2011). Thus, our finding that parasite performance did
495 not differ between infections in clock-disrupted hosts, regardless of whether a feeding rhythm
496 was imposed via TRF (i.e. *per1/2-AL* vs *per1/2-RF*) has several possible (non-mutually
497 exclusive) interpretations. First, host feeding-fasting rhythms are a proximate but not ultimate

498 driver of the IDC rhythm, allowing parasites to align to other (typically correlated) rhythms or to
499 achieve the optimal level of synchrony (discussed in Q1, above). However, we propose that the
500 intrinsic benefits hypothesis is least likely to explain the IDC rhythm because it predicts that
501 synchrony is adaptive regardless of resource availability (i.e. *per1/2-RF* parasites should have
502 outperformed *per1/2-AL* parasites, which they did not). Second, there are benefits of aligning
503 specifically with feeding-fasting rhythms but these are offset by other costs. For example,
504 parasites in *per1/2-RF* hosts may benefit from aligning IDC stages with the availability of the
505 nutrients they need but the TRF window might have increased synchrony to a costly level
506 (analogous to why parasites in WT-AL hosts may perform better than those in WT-DF hosts).
507 Alternatively, parasites in *per1/2-AL* hosts may not experience nutrient limitation but may suffer
508 from a loss of intrinsic benefits (if synchrony alone is adaptive). These different costs and
509 benefits may coincidentally result in no net differences between treatment groups. Third, the
510 ultimate driver of the IDC rhythm may be a host rhythm that requires input from both feeding-
511 fasting rhythms and the TTFL clock, which was not experienced by parasites in *per1/2-RF* hosts.
512 This scenario suggests that only a TTFL-mediated component of feeding-fasting rhythms acts as
513 an ultimate driver for IDC rhythms and that time cue(s) such as isoleucine (which can be
514 rhythmic in the absence of the TTFL) function as a proxy. Mechanistically, this fits with recent
515 models of peripheral rhythms in mammals, whereby feeding drives some downstream
516 physiological outputs directly, but others are mediated by TTFL clocks in the liver and other
517 peripheral organs, as well as the central pacemaker in the SCN (Zhang et al., 2020). For
518 example, both rhythmic feeding and a functioning TTFL clock are needed to generate rhythmic
519 gene expression of some metabolic genes involved in lipogenesis and glycogenesis in the liver
520 (Greenwell et al., 2019; Vollmers et al., 2009), and so these or similar metabolites may be
521 candidate ultimate drivers of parasite rhythmicity.
522

523 **Conclusions**

524 Our study complements the increasing body of work focussing on 'how' *Plasmodium* parasites
525 set the schedule of the IDC rhythm by asking 'why' this rhythm is adaptive. Identifying selective
526 drivers is a challenge for a trait that does not have the benefit of, for example, the well-
527 established theoretical literature on adaptation that the field of life history evolution benefits from.
528 Nonetheless, our results eliminate purely light-driven rhythmic host processes as being the
529 selective, ultimate, driver of parasite rhythmicity. Further work is required to explore the new
530 hypothesis we propose; that feeding-fasting rhythms are a selective driver but only when
531 mediated by TTFL clocks. Testing this, along with the ultimate roles of other rhythms, such as
532 oxygen tension and vector activity, would be facilitated by knowing the molecular mechanism(s)
533 that underpin the timing and synchrony of the IDC. For example, blocking parasites' ability to
534 sense time or alter the IDC schedule would stabilise misalignment to host feeding-fasting
535 rhythms, enabling fitness consequences to be directly assessed. While our experimental design
536 improves on previous studies of fitness consequences by considering whole infections rather
537 than a few IDCs, the adaptive value of rhythms in other taxa have been most clearly
538 demonstrated in stressful conditions such as competition (Dodd et al., 2005; Fleury, Allemand,
539 Vavre, Fouillet, & Bouletreau, 2000; Ouyang, Andersson, Kondo, Golden, & Johnson, 1998).
540 Within-host competition is frequently experienced by *Plasmodium* species and experimentally
541 tractable, as is manipulating overall resource availability via the diet of hosts. Overall, the
542 relatively modest impacts of host rhythm manipulations on within-host parasite fitness metrics
543 emphasises the role of rhythmic transmission opportunities as a putative ultimate driver, as
544 proposed to explain rhythms in other parasite taxa (e.g. *Wuchereria*, Hawking, 1967; *Schistosoma*,
545 Mouahid et al., 2012; and *Isospora*, Martinaud, Billaudelle, & Moreau, 2009). Finally, if human
546 malaria parasites use proximate time cues to align with other rhythms (that ultimately select for
547 the IDC rhythm), this opens up the potential to develop interventions that act as ecological traps
548 by coercing parasites into adopting a sub optimal IDC schedule that reduces transmission and
549 dampens virulence.
550

551 **STATEMENTS**

552 The authors declare no conflicts of interest. All procedures were carried out in accordance with
553 the UK Home Office regulations (Animals Scientific Procedures Act 1986; SI 2012/3039) and

554 approved by the ethical review panel at the University of Edinburgh. Data for this study are
555 available at [to be completed after manuscript is accepted for publication].

556

557 ACKNOWLEDGEMENTS

558 We thank Ronnie Mooney, Aliz Owolabi, Petra Schneider, and Mary Westwood for assistance,
559 and Giles K P Barra for technical advice. Funding was provided by Wellcome (202769/Z/16/Z)
560 and the Royal Society (URF\RR180020).

561

562 LITERATURE CITED

563

564 Abrams, R., & Hammel, H. (1964). Hypothalamic temperature in unanesthetized albino rats during
565 feeding and sleeping. *American Journal of Physiology-Legacy Content*, 206(3), 641-646.

566 Astiz, M., Heyde, I., & Oster, H. (2019). Mechanisms of Communication in the Mammalian Circadian
567 Timing System. *International Journal of Molecular Sciences*, 20(2), 343.

568 Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., & Weaver, D. R. (2001). Differential
569 functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. *Neuron*, 30(2), 525-536.

570 Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear Mixed-Effects Models
571 Using lme4. *Journal of Statistical Software*, 67(1), 1-48.

572 Besedovsky, L., Lange, T., & Born, J. (2012). Sleep and immune function. *Pflugers Archiv-European
573 Journal of Physiology*, 463(1), 121-137. doi:10.1007/s00424-011-1044-0

574 Cabral, P. C., Tekade, K., Stegeman, S. K., Olivier, M., & Cermakian, N. (2022). The involvement of
575 host circadian clocks in the regulation of the immune response to parasitic infections in
576 mammals. *Parasite Immunology*, 44(3). doi:10.1111/pim.12903

577 Caravaggi, A., Gatta, M., Vallely, M.-C., Hogg, K., Freeman, M., Fadaei, E., . . . Tosh, D. G. (2018).
578 Seasonal and predator-prey effects on circadian activity of free-ranging mammals revealed by
579 camera traps. *PeerJ*, 6, e5827.

580 Carvalho Cabral, P., Tekade, K., Stegeman, S. K., Olivier, M., & Cermakian, N. (2022). The
581 involvement of host circadian clocks in the regulation of the immune response to parasitic
582 infections in mammals. *Parasite Immunology*, 44(3), e12903.

583 Chen, Y., Wu, X., Lai, J., Liu, Y., Song, M., Li, F., & Gong, Q. (2022). Comprehensive transcriptome
584 analysis reveals the effect of feeding rhythm on the immunity and metabolism of *Acipenser
585 dabryanus*. *Fish & Shellfish Immunology*, 122, 276-287.
586 doi:<https://doi.org/10.1016/j.fsi.2022.02.023>

587 Chen, Z., Odstrcil, E. A., Tu, B. P., & McKnight, S. L. (2007). Restriction of DNA replication to the
588 reductive phase of the metabolic cycle protects genome integrity. *Science*, 316(5833), 1916-
589 1919.

590 Cohen, R., Smale, L., & Kronfeld-Schor, N. (2009). Plasticity of circadian activity and body
591 temperature rhythms in golden spiny mice. *Chronobiology International*, 26(3), 430-446.

592 Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., . . . Webb, A. A. (2005). Plant
593 circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
594 *Science*, 309(5734), 630-633.

595 Dos Santos, B. M., Pereira, P. H., & Garcia, C. R. (2021). Molecular basis of synchronous replication
596 of malaria parasites in the blood stage. *Current opinion in microbiology*, 63, 210-215.

597 Finger, A. M., & Kramer, A. (2021). Mammalian circadian systems: Organization and modern life
598 challenges. *Acta Physiologica*, 231(3), e13548.

599 Fleury, F., Allemand, R., Vavre, F., Fouillet, P., & Bouletrau, M. (2000). Adaptive significance of a
600 circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in
601 *Drosophila* parasitoids. *Proceedings of the Royal Society of London. Series B: Biological
602 Sciences*, 267(1447), 1005-1010.

603 Froy, O., Chapnik, N., & Miskin, R. (2006). Long-lived aMUPA transgenic mice exhibit pronounced
604 circadian rhythms. *American Journal of Physiology-Endocrinology and Metabolism*, 291(5),
605 E1017-E1024.

606 Gallop, M. R., Tobin, S. Y., & Chaix, A. (2023). Finding balance: understanding the energetics of time-
607 restricted feeding in mice. *Obesity*, 31, 22-39. doi:10.1002/oby.23607

608 Garcia, C. R., Markus, R. P., & Madeira, L. (2001). Tertian and quartan fevers: temporal regulation in
609 malarial infection. *Journal Of Biological Rhythms*, 16(5), 436-443.

610 Gazzinelli, R. T., Kalantari, P., Fitzgerald, K. A., & Golenbock, D. T. (2014). Innate sensing of malaria
611 parasites. *Nature Reviews Immunology*, 14(11), 744-757. doi:10.1038/nri3742

612 Greenwell, B. J., Trott, A. J., Beytebiere, J. R., Pao, S., Bosley, A., Beach, E., . . . Menet, J. S. (2019).
613 Rhythmic food intake drives rhythmic gene expression more potently than the hepatic
614 circadian clock in mice. *Cell Reports*, 27(3), 649-657. e645.

615 Greischar, M. A., Read, A. F., & Bjornstad, O. N. (2014). Synchrony in Malaria Infections: How
616 Intensifying Within-Host Competition Can Be Adaptive. *American Naturalist*, 183(2), E36-E49.
617 doi:10.1086/674357

618 Harder, L., & Oster, H. (2020). The Tissue Clock Network: Driver and gatekeeper of circadian
619 physiology: circadian rhythms are integrated outputs of central and peripheral tissue clocks
620 interacting in a complex manner—from drivers to gatekeepers. *Bioessays*, 42(5), 1900158.

621 Hartig, F. (2020). DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression
622 Models (Version R package version 0.3.3.0). Retrieved from <https://CRAN.R-project.org/package=DHARMA>

623 Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., . . . Panda, S. (2012).
624 Time-Restricted Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in
625 Mice Fed a High-Fat Diet. *Cell Metabolism*, 15(6), 848-860. doi:10.1016/j.cmet.2012.04.019

626 Hawking, F. (1967). The 24-hour periodicity of microfilariae: biological mechanisms responsible for its
627 production and control. *Proceedings of the Royal Society of London. Series B. Biological
628 Sciences*, 169(1014), 59-76.

629 Helm, B., Visser, M. E., Schwartz, W., Kronfeld-Schor, N., Gerkema, M., Piersma, T., & Bloch, G.
630 (2017). Two sides of a coin: ecological and chronobiological perspectives of timing in the wild.
631 *Philosophical Transactions Of The Royal Society B-Biological Sciences*, 372(1734), 20.
632 doi:10.1098/rstb.2016.0246

633 Hirako, I. C., Assis, P. A., Hojo-Souza, N. S., Reed, G., Nakaya, H., Golenbock, D. T., . . . Gazzinelli,
634 R. T. (2018). Daily rhythms of TNF α expression and food intake regulate synchrony of
635 Plasmodium stages with the host circadian cycle. *Cell Host & Microbe*, 23(6), 796-808. e796.

636 Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge-Chang, A. (2019). Moving beyond P values:
637 Everyday data analysis with estimation plots. *Nature Methods*, 2019, 1548-1710.
638 doi:10.1038/s41592-019-0470-3

639 Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and
640 metabolism. *The Journal of clinical investigation*, 121(6), 2133-2141.

641 Hunter, F. K., Butler, T. D., & Gibbs, J. E. (2022). Circadian rhythms in immunity and host-parasite
642 interactions. *Parasite Immunology*, 44(3), e12904.

643 Hut, R. A., & Beersma, D. G. (2011). Evolution of time-keeping mechanisms: early emergence and
644 adaptation to photoperiod. *Philosophical Transactions of the Royal Society B: Biological
645 Sciences*, 366(1574), 2141-2154.

646 Hut, R. A., Pilorz, V., Boerema, A. S., Strijkstra, A. M., & Daan, S. (2011). Working for Food Shifts
647 Nocturnal Mouse Activity into the Day. *Plos One*, 6(3), e17527.
648 doi:10.1371/journal.pone.0017527

649 Jacobs, R. L. (1964). Role of p-aminobenzoic acid in Plasmodium berghei infection in the mouse.
650 *Experimental parasitology*, 15(3), 213-225.

651 Krittika, S., & Yadav, P. (2020). Circadian clocks: an overview on its adaptive significance. *Biological
652 Rhythm Research*, 51(7), 1109-1132. doi:10.1080/09291016.2019.1581480

653 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest Package: Tests in Linear
654 Mixed Effects Models. *Journal of Statistical Software*, 82(13), 1-26. doi:10.18637/jss.v082.i13

655 Martinaud, G., Billaudelle, M., & Moreau, J. (2009). Circadian variation in shedding of the oocysts of
656 *Isospora turdi* (Apicomplexa) in blackbirds (*Turdus merula*): An adaptative trait against
657 desiccation and ultraviolet radiation. *International Journal for Parasitology*, 39(6), 735-739.

658 Maywood, E., Chesham, J., Smyllie, N., & Hastings, M. (2014). The Tau mutation of casein kinase 1 ϵ
659 sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock
660 proteins. *Journal Of Biological Rhythms*, 29(2), 110-118.

661 Mideo, N., Reece, S. E., Smith, A. L., & Metcalf, C. J. E. (2013). The Cinderella syndrome: why do
662 malaria-infected cells burst at midnight? *Trends in Parasitology*, 29(1), 10-16.
663 doi:10.1016/j.pt.2012.10.006

664 Miehls, A. L., McAdam, A. G., Bourdeau, P. E., & Peacor, S. D. (2013). Plastic response to a proxy
665 cue of predation risk when direct cues are unreliable. *Ecology*, 94(10), 2237-2248.

666 Mouahid, G., Idris, M. A., Verneau, O., Théron, A., Shaban, M. M., & Moné, H. (2012). A new
667 chronotype of *Schistosoma mansoni*: adaptive significance. *Tropical Medicine & International
668 Health*, 17(6), 727-732.

669

670 O'Donnell, A. J., Greischar, M. A., & Reece, S. E. (2022). Mistimed malaria parasites re-synchronize
671 with host feeding-fasting rhythms by shortening the duration of intra-erythrocytic development.
672 *Parasite Immunology*, 44(3), 14. doi:10.1111/pim.12898

673 O'Donnell, A. J., Mideo, N., & Reece, S. E. (2013). Disrupting rhythms in *Plasmodium chabaudi*: costs
674 accrue quickly and independently of how infections are initiated. *Malaria Journal*, 12, 9.
675 doi:10.1186/1475-2875-12-372

676 O'Donnell, A. J., Prior, K. F., & Reece, S. E. (2020). Host circadian clocks do not set the schedule for
677 the within-host replication of malaria parasites. *Proceedings Of The Royal Society B-Biological
678 Sciences*, 287(1932), 9. doi:10.1098/rspb.2020.0347

679 O'Donnell, A. J., Schneider, P., McWatters, H. G., & Reece, S. E. (2011). Fitness costs of disrupting
680 circadian rhythms in malaria parasites. *Proceedings Of The Royal Society B-Biological
681 Sciences*, 278(1717), 2429-2436. doi:10.1098/rspb.2010.2457

682 Orrock, J. L., Danielson, B. J., & Brinkerhoff, R. J. (2004). Rodent foraging is affected by indirect, but
683 not by direct, cues of predation risk. *Behavioral Ecology*, 15(3), 433-437.

684 Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S., & Johnson, C. H. (1998). Resonating
685 circadian clocks enhance fitness in cyanobacteria. *Proceedings of the National Academy of
686 Sciences*, 95(15), 8660-8664.

687 Owolabi, A. T. Y. (2023). *The evolutionary ecology of daily rhythms in malaria parasites*. (PhD), The
688 University of Edinburgh,

689 Owolabi, A. T. Y., Reece, S. E., & Schneider, P. (2021). Daily rhythms of both host and parasite affect
690 antimarial drug efficacy. *Evolution, Medicine, and Public Health*, 9(1), 208-219.
691 doi:10.1093/emph/eoab013

692 Partch, C. L., Green, C. B., & Takahashi, J. S. (2014). Molecular architecture of the mammalian
693 circadian clock. *Trends in cell biology*, 24(2), 90-99.

694 Pigeault, R., Caudron, Q., Nicot, A., Rivero, A., & Gandon, S. (2018). Timing malaria transmission
695 with mosquito fluctuations. *Evolution Letters*, 2(4), 378-389. doi:10.1002/evl3.61

696 Prior, K. F., Middleton, B., Owolabi, A. T., Westwood, M. L., Holland, J., O'Donnell, A. J., . . . Reece,
697 S. E. (2021). Synchrony between daily rhythms of malaria parasites and hosts is driven by an
698 essential amino acid. *Wellcome Open Research*, 6.

699 Prior, K. F., O'Donnell, A. J., Rund, S. S. C., Savill, N. J., van der Veen, D. R., & Reece, S. E. (2019).
700 Host circadian rhythms are disrupted during malaria infection in parasite genotype-specific
701 manners. *Scientific Reports*, 9, 12. doi:10.1038/s41598-019-47191-8

702 Prior, K. F., Rijo-Ferreira, F., Assis, P. A., Hirako, I. C., Weaver, D. R., Gazzinelli, R. T., & Reece, S.
703 E. (2020). Periodic Parasites and Daily Host Rhythms. *Cell Host & Microbe*, 27(2), 176-187.
704 doi:<https://doi.org/10.1016/j.chom.2020.01.005>

705 Prior, K. F., van der Veen, D. R., O'Donnell, A. J., Cumnock, K., Schneider, D., Pain, A., . . . Savill, N.
706 J. (2018). Timing of host feeding drives rhythms in parasite replication. *Plos Pathogens*,
707 14(2), e1006900.

708 Rijo-Ferreira, F., Acosta-Rodriguez, V. A., Abel, J. H., Kornblum, I., Bento, I., Kilaru, G., . . .
709 Takahashi, J. S. (2020). The malaria parasite has an intrinsic clock. *Science*, 368(6492), 746-
710 753.

711 Rijo-Ferreira, F., Pinto-Neves, D., Barbosa-Morais, N. L., Takahashi, J. S., & Figueiredo, L. M. (2017).
712 Trypanosoma brucei metabolism is under circadian control. *Nature microbiology*, 2(6), 1-10.

713 Schneider, H. M. (2022). Characterization, costs, cues and future perspectives of phenotypic
714 plasticity. *Annals of Botany*, 130(2), 131-148.

715 Schneider, P., & Reece, S. E. (2021). The private life of malaria parasites: Strategies for sexual
716 reproduction. *Molecular and Biochemical Parasitology*, 244, 111375.

717 Schneider, P., Reece, S. E., van Schaijk, B. C. L., Bousema, T., Lanke, K. H. W., Meaden, C. S. J., . . .
718 Babiker, H. A. (2015). Quantification of female and male *Plasmodium falciparum*
719 gametocytes by reverse transcriptase quantitative PCR. *Molecular and Biochemical
720 Parasitology*, 199(1), 29-33. doi:<https://doi.org/10.1016/j.molbiopara.2015.03.006>

721 Schneider, P., Rund, S. S. C., Smith, N. L., Prior, K. F., O'Donnell, A. J., & Reece, S. E. (2018).
722 Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. *Proceedings Of
723 The Royal Society B-Biological Sciences*, 285(1888), 9. doi:10.1098/rspb.2018.1876

724 Singleton, G. R., & Krebs, C. J. (2007). The secret world of wild mice. *The mouse in biomedical
725 research*, 25-51.

726 Skene, D. J., Skornyakov, E., Chowdhury, N. R., Gajula, R. P., Middleton, B., Satterfield, B. C., . . .
727 Gaddameedhi, S. (2018). Separation of circadian-and behavior-driven metabolite rhythms in
728 humans provides a window on peripheral oscillators and metabolism. *Proceedings of the
729 National Academy of Sciences*, 115(30), 7825-7830.

730 Snell-Rood, E. C., & Ehlman, S. M. (2021). Ecology and evolution of plasticity. *Phenotypic plasticity &*
731 *evolution*, 139-160.

732 Subudhi, A. K., O'Donnell, A. J., Ramaprasad, A., Abkallo, H. M., Kaushik, A., Ansari, H. R., . . . Pain,
733 A. (2020). Malaria parasites regulate intra-erythrocytic development duration via serpentine
734 receptor 10 to coordinate with host rhythms. *Nature Communications*, 11(1), 15.
735 doi:10.1038/s41467-020-16593-y

736 Suppa, A., Caleffi, S., Gorbi, G., Markova, S., Kotlik, P., & Rossi, V. (2021). Environmental conditions
737 as proximate cues of predation risk inducing defensive response in *Daphnia pulex*. *Biologia*,
738 76, 623-632.

739 Tachinardi, P., Tøien, Ø., Valentiniuzzi, V. S., Buck, C. L., & Oda, G. A. (2015). Nocturnal to diurnal
740 switches with spontaneous suppression of wheel-running behavior in a subterranean rodent.
741 *Plos One*, 10(10), e0140500.

742 Teuscher, F., Gatton, M. L., Chen, N., Peters, J., Kyle, D. E., & Cheng, Q. (2010). Artemisinin-induced
743 dormancy in *Plasmodium falciparum*: duration, recovery rates, and implications in treatment
744 failure. *The Journal of infectious diseases*, 202(9), 1362-1368.

745 Thomsen, E. K., Koimbu, G., Pulford, J., Jamea-Maiasa, S., Ura, Y., Keven, J. B., . . . Reimer, L. J.
746 (2017). Mosquito behavior change after distribution of bednets results in decreased protection
747 against malaria exposure. *The Journal of infectious diseases*, 215(5), 790-797.

748 Timms, R., Colegrave, N., Chan, B., & Read, A. (2001). The effect of parasite dose on disease
749 severity in the rodent malaria *Plasmodium chabaudi*. *Parasitology*, 123(1), 1-11.

750 Vaze, K. M., & Sharma, V. K. (2013). On the adaptive significance of circadian clocks for their owners.
751 *Chronobiology International*, 30(4), 413-433.

752 Vollmers, C., Gill, S., DiTacchio, L., Pulivarthy, S. R., Le, H. D., & Panda, S. (2009). Time of feeding
753 and the intrinsic circadian clock drive rhythms in hepatic gene expression. *Proceedings of the
754 National Academy of Sciences*, 106(50), 21453-21458.

755 Wargo, A. R., De Roode, J. C., Huijben, S., Drew, D. R., & Read, A. F. (2007). Transmission stage
756 investment of malaria parasites in response to in-host competition. *Proceedings Of The Royal
757 Society B-Biological Sciences*, 274(1625), 2629-2638. doi:10.1098/rspb.2007.0873

758 Westwood, M. L., O'Donnell, A. J., de Bekker, C., Lively, C. M., Zuk, M., & Reece, S. E. (2019). The
759 evolutionary ecology of circadian rhythms in infection. *Nature Ecology & Evolution*, 3(4), 552-
760 560.

761 Yerushalmi, S., & Green, R. M. (2009). Evidence for the adaptive significance of circadian rhythms.
762 *Ecology Letters*, 12(9), 970-981. doi:10.1111/j.1461-0248.2009.01343.x

763 Zhang, D., Colson, J. C., Jin, C., Becker, B. K., Rhoads, M. K., Pati, P., . . . Tao, B. (2021). Timing of
764 food intake drives the circadian rhythm of blood pressure. *Function*, 2(1), zqaa034.

765 Zhang, S., Dai, M., Wang, X., Jiang, S.-H., Hu, L.-P., Zhang, X.-L., & Zhang, Z.-G. (2020). Signalling
766 entrains the peripheral circadian clock. *Cellular signalling*, 69, 109433.

767

768 **Consequences of daily rhythms in host-parasite interactions during**
769 **malaria infection – supplementary material**

770
771 **Table S1** - Parasite density models. The three table sections show model selection for, respectively,
772 Log(parasite density), Log(parasite peak density) or Cumulative parasite density as response variables,
773 with Treatment as a fixed factor. Day PI (Day, as a fixed factor), Day x Treatment interaction, and Mouse ID
774 (as random intercepts) were also included in the full parasite density model. Degrees of freedom (Df), log
775 likelihood (Log lik), ΔAIC_c (the most parsimonious model is indicated with 0 in bold), and model weight
776 (weight) are shown for each analysis. The coefficient (coef) and standard error of the mean (SE) for the
777 three key questions are given for the most parsimonious model, with significant differences in bold.
778 Specifically, the coefficients are as follows: Q1 = WT-LF treatment, using WT-DF as reference level; Q2 =
779 WT-AL treatment, using WT-DF as reference level; Q3 = Per1/2-RF treatment, using Per1/2-AL as
780 reference level.

Model	Df	Log lik	ΔAIC_c	weight	Q1 coef ±SE	Q2 coef ±SE	Q3 coef ±SE
Log(Density) ~ Day + Treatment + (1 MouseID)	21	-441.60	0	0.796	0.36 ± 0.15	-0.14 ± 0.15	0.11 ± 0.16
Log(Density) ~ Day + Treatment + Day x Treat + (1 MouseID)	77	-364.75	3.08	0.170			
Log(Density) ~ Day + (1 MouseID)	17	-449.27	6.36	0.033			
Log(Density) ~ Treatment + (1 MouseID)	7	-482.82	51.90	0			
Log(Density) ~ 1 + (1 MouseID) (null)	3	-490.13	58.24	0			
Log(Peak Height) ~ Treatment	6	-1.27	0	0.991	0.23 ± 0.18	0.41 ± 0.18	0.11 ± 0.18
Log(Peak Height) ~ 1 (null)	2	-12.01	9.36	0.009			
Cumul. Density ~ Treatment	6	-496.73	0	0.927	$(6.5 \pm 9.6) \times 10^8$	$(10.7 \pm 9.6) \times 10^8$	$(-1.6 \pm 11.0) \times 10^8$
Cumul. Density ~ 1 (null)	2	-478.94	5.07	0.073			

781
782

783 **Table S2** - Gametocyte density models. The four table sections show model selection for, Log(gametocyte
 784 density), Log(gametocyte peak density for the 1st wave), Log(gametocyte peak density for the 2nd wave), or
 785 Cumulative gametocyte density as response variables, with Treatment as a fixed factor. Day PI (Day, as a
 786 fixed factor), Day x Treatment interaction, and Mouse ID (as random intercepts) were also included in the
 787 full gametocyte density model. Degrees of freedom (Df), log likelihood (Log lik), ΔAICc (the most
 788 parsimonious model is indicated with 0 in bold), and model weight (weight) are shown for each analysis..
 789 For the peak and cumulative density models, the coefficient (coef) and standard error of the mean (SE) for
 790 two of the key questions are given for the most parsimonious model. Specifically, the coefficients given are
 791 as follows: Q1 = WT-LF treatment, using WT-DF as reference level; Q2 = WT-AL treatment, using WT-DF
 792 as reference level.

Model	Df	Log lik	ΔAICc	weight	Q1 coef $\pm\text{SE}$	Q2 coef $\pm\text{SE}$
Log(Density) ~ Day + Treatment	62	-418.66	0	1	See Table S3	
Log(Density) ~ Day + Treatment + Day x Treat	20	-494.59	34.64	0		
Log(Density) ~ Day	17	-498.90	36.34	0		
Log(Density) ~ Treatment	6	-596.94	208.4	0		
Log(Density) ~ 1 (null)	3	-602.56	213.4	0		
Log(1st Peak Height) ~ Treatment	5	-4.63	0	0.523	0.21 ± 0.22	-0.08 ± 0.22
Log(1 st Peak Height) ~ 1 (null)	2	-9.51	0.18	0.477		
Log(2nd Peak Height) ~ 1 (null)	2	-12.48	0	0.976	NA	NA
Log(2 nd Peak Height) ~ Treatment	5	-11.10	7.45	0.024		
Cumul. Density ~ 1 (null)	2	-315.83	0	0.927	NA	NA
Cumul. Density ~ Treatment	5	-314.72	8.38	0.015		

793
 794
 795
 796
 797
 798
 799

Table S3 - Gametocyte density dynamics from the most parsimonious model of parasite density, including a Day x Treatment interaction term. Coefficients and standard errors corresponding to two of the key questions; i.e. the WT-LF (Q1) and WT-AL (Q2) groups, relative to the reference group WT-DF. The intercept (Day 3 for WT-DF) is given.

Day	Reference coef $\pm\text{SE}$ (WT-DF)	Q1 coef $\pm\text{SE}$	Q2 coef $\pm\text{SE}$
3	11.54 ± 0.61 (intercept)	0.12 ± 0.87	-0.82 ± 0.87
4	0.08 ± 0.83	2.41 ± 1.17	2.90 ± 1.17
5	3.96 ± 0.83	0.25 ± 1.17	0.47 ± 1.17
6	2.63 ± 0.83	1.73 ± 1.17	1.87 ± 1.17
7	2.03 ± 0.83	1.63 ± 1.17	1.42 ± 1.17
8	0.95 ± 0.83	0.37 ± 1.17	0.95 ± 1.17
9	0.36 ± 0.83	0.55 ± 1.17	0.69 ± 1.17
10	0.76 ± 0.83	-0.81 ± 1.17	0.48 ± 1.17
11	2.41 ± 0.88	-0.19 ± 1.21	3.33 ± 1.21
12	4.05 ± 0.88	0.89 ± 1.21	1.81 ± 1.21
13	5.27 ± 0.88	-0.70 ± 1.21	0.18 ± 1.21
14	3.74 ± 0.88	0.03 ± 1.21	0.48 ± 1.21
15	4.11 ± 0.88	-0.44 ± 1.21	-1.07 ± 1.21
16	2.75 ± 0.88	-0.58 ± 1.21	-0.56 ± 1.21
17	1.73 ± 0.88	-0.04 ± 1.21	-0.91 ± 1.21

800
 801
 802

803 Table S4 Host virulence models. The two table sections show model selection for, Weight Loss or RBC
804 loss as response variables, with Treatment as a fixed factorDegrees of freedom (Df), log likelihood (Log
805 lik), ΔAIC_c (with most parsimonious model shown with 0 in bold), and model weight (weight) are shown.
806 The coefficient (coef) and standard error of the mean (SE) for two of the key questions are given for the
807 most parsimonious model, with significant differences in bold. Specifically, the coefficients given are as
808 follows: Q1 = WT-LF treatment, using WT-DF as reference level; Q2 = WT-AL treatment, using WT-DF as
809 reference level.

Model	Df	Log lik	ΔAIC_c	weight	Q1 coef $\pm\text{SE}$	Q2 coef $\pm\text{SE}$	Q3 coef $\pm\text{SE}$
Weight loss ~ Treatment	6	-28.72	0	0.996	0.04 ± 0.54	-1.3 ± 0.54	0.54 ± 0.54
Weight loss ~ 1 (null)	2	-40.26	10.96	0.004			
RBC loss ~ 1 (null)	2	-14.27	0	0.934	NA	NA	NA
RBC loss ~ Treatment	6	-10.86	5.31	0.066			

810
811
812
813