

1

2

3 Improved dual-color GRAB sensors for monitoring dopaminergic activity *in vivo*

4

5

6

7 Yizhou Zhuo^{1,2,11}, Bin Luo^{1,2,3,11}, Xinyang Yi^{1,2}, Hui Dong^{1,2,3}, Jinxia Wan^{1,2,3}, Ruyi Cai^{1,2}, John T. Williams⁴, Tongrui Qian^{1,2},
8 Malcolm G. Campbell⁵, Xiaolei Miao^{1,6}, Bozhi Li^{1,7}, Yu Wei^{1,2}, Guochuan Li^{1,2}, Huan Wang^{1,2}, Yu Zheng^{1,2}, Mitsuko
9 Watabe-Uchida⁵ and Yulong Li^{1,2,3,8,9,10*}

10

11

12

13

14 ¹State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China

15 ²PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China

16 ³Peking-Tsinghua Center for Life Sciences, Beijing 100871, China

17 ⁴Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA

18 ⁵Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue,
19 Cambridge, MA 02138, USA

20 ⁶Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.

21 ⁷Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District,
22 Beijing 100853, China

23 ⁸Chinese Institute for Brain Research, Beijing 102206, China

24 ⁹Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China

25 ¹⁰National Biomedical Imaging Center, Peking University, Beijing 100871, China

26 ¹¹These authors contributed equally

27

28 *e-mail: yulongli@pku.edu.cn (Y.L.)

29

30

Abstract

31

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRAB_{DA}) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRAB_{DA} sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.

41

42

Main

43

Dopamine (DA) is a physiologically essential monoamine neuromodulator released by dopaminergic neurons that project throughout the central nervous system. Interestingly, high spatial heterogeneity in terms of dopaminergic innervation—and therefore DA release—has been reported in various brain regions¹⁻³. The DA system is known for its roles in reward and reinforcement learning, motor function^{3,4}, memory consolidation^{5,6}, and emotional control⁷. These processes are mediated by dopaminergic circuits originating from the midbrain projecting to the striatum and nucleus accumbens (NAc), with the dorsal striatum and NAc receiving dense dopaminergic innervation. In contrast, the medial prefrontal cortex (mPFC) and amygdala receive relatively sparse dopaminergic innervation that regulates a wide range of brain functions important in mediating cognitive function^{8,9}, social interactions¹⁰, and aversive sensing^{11,12}. However, due to limitations in our ability to detect DA with high sensitivity and resolution, the spatiotemporal dynamics of dopaminergic transmission in these sparsely innervated brain regions remain largely unknown, particularly under various *in vivo* conditions. The ability to directly visualize and compare the dynamics of DA release in both densely and sparsely innervated regions under behaviorally relevant conditions will therefore provide valuable information regarding the spatiotemporal regulation of dopaminergic activity in the brain. However, measuring DA with high sensitivity in order to understand how dopaminergic signaling is affected by neuronal activity and/or other neuromodulators requires multiplexed DA imaging combined with optogenetics and the simultaneous imaging of other neurochemical processes.

59

Recent advances in the development of genetically encoded fluorescent sensors for detecting DA have led to robust tools that can measure dopaminergic signals at high spatial and temporal resolution. By combining a G protein-coupled receptor (GPCR) with circularly permuted fluorescent protein (cpFPs), our group and Tian's group developed a series of genetically encoded green and red fluorescent DA sensors called GRAB_{DA} and dLight¹³⁻¹⁶, which can be used to measure DA release under physiological and pathological conditions with high spatiotemporal resolution. These early generation of sensors enabled us to expand the knowledge of spatiotemporal dynamics of DA transmission in reward, learning and movement¹⁷⁻²⁰, in strongly innervated regions such as striatum where dopamine levels are high. However, tracking slight changes in DA levels *in vivo*, including tonic DA release and fluctuations in sparsely innervated regions, was less possible because of limitations in sensitivity, especially with bulk measurements like photometry. In addition, even in dense areas, better sensors with improved sensitivity and signal-to-noise ratio are required for DA imaging with higher spatiotemporal precision. Moreover, the performance of previously developed red-shifted DA sensors is relatively poor compared to green fluorescent sensors, greatly limiting their use. To overcome these issues, we performed large-scale rational mutagenesis and cell-based screening in order to develop a next-generation series of red and green fluorescent GRAB_{DA} sensors with extremely high sensitivity, a high signal-to-noise ratio, and a wider concentration detection range for measuring DA release in a wide range of brain regions.

75

RESULTS

76 **Engineering and characterization of DA sensors in cultured cells.** To obtain next-generation DA sensors with
77 improved sensitivity, selectivity, and distinct pharmacology profiles, we used various DA receptor subtypes cloned
78 from several species as the sensor scaffold and replaced each receptor's third intracellular loop (ICL3) with the ICL3
79 previously used in existing GRAB sensors^{13,15,16,21}. We identified several chimera prototypes with promising
80 performances in the initial screening by transplanting the ICL3 of existing sensors to different sites dopamine
81 receptors, for example, transplanting the ICL3 of rGRAB_{DA} to *Solenopsis invicta* dopamine D2-like receptor (hereafter
82 termed red fire ant D₂R) and the ICL3 of GRAB_{NE} to bovine D₁R. Interestingly, we also obtained good candidates
83 when re-engineering the ICL3s of dLight1.3b¹³ and RdLight1¹⁵ to their original GPCR backbone, i.e., the human D₁R
84 (Fig. 1a; Extended Data Figs. 1 and 2). We then systematically optimized the length and amino acid composition of
85 the linker sequences, key residues in the cpFP that affect protein folding and/or fluorescence intensity²²⁻²⁷, and sites
86 in the GPCR that affect ligand binding and/or structural coupling²⁸⁻³¹, and screened a total of 5000 variants
87 (Extended Data Figs. 1 and 2). Using maximum brightness and the DA-induced change in fluorescence as our
88 selection criteria, our screening yielded a series of top-performing DA sensors with various DA receptor backbones,
89 including the green fluorescent gDA3m (based on human D₁R) and gDA3h (based on bovine D₁R) sensors, the red-
90 shifted rDA2m and rDA2h (based on red fire ant D₂R) sensors, and the red-shifted rDA3m and rDA3h (based on
91 human D₁R) sensors (Fig. 1b and 1c; Extended Data Fig. 4a), with "m" and "h" referring to medium and high DA
92 affinity, respectively. We also generated DA-insensitive versions of these sensors by introducing mutations in the
93 ligand-binding pocket of the corresponding GPCRs, yielding gDA3mut, rDA2mut, and rDA3mut for use as negative
94 controls (Extended Data Figs. 1-3).

95 All six of our newly generated GRAB_{DA} sensors localized well to the cell membrane when expressed in HEK293T
96 cells and exhibited a large increase in fluorescence in response to bath application of 100 μ M DA (Fig. 1d); moreover,
97 the mutant versions were expressed at the cell surface but failed to respond to DA application (Extended Data Fig.
98 3). The sensors' affinities were within physiological DA levels and ranged from nanomolar to submicromolar
99 concentrations, with EC₅₀ values of 22 nM and 86 nM for gDA3h and gDA3m, respectively, and 9 nM, 180 nM, 20
100 nM, and 130 nM for rDA2h, rDA2m, rDA3h, and rDA3m, respectively (Fig. 1e and Supplementary Table 1). We also
101 compared these new sensors' performance with previously reported GRAB_{DA} (gDA2m and rDA1m) and dLight
102 (dLight1.3b and RdLight1) sensors¹³⁻¹⁶ in cultured cells. With respect to the green fluorescent sensors, both gDA3m
103 and gDA3h had a >2-fold larger increase in fluorescence (with peak $\Delta F/F_0$ values of ~1000%) and a higher signal-to-
104 noise ratio (SNR) compared to gDA2m and dLight1.3b (Fig. 1f-h and Supplementary Table 1). With respect to the
105 red-shifted sensors, relative to rDA1m the basal fluorescence intensity values were 152%, 282%, 30%, 33%, and 16%
106 for rDA2m, rDA2h, rDA3m, rDA3h, and RdLight1, respectively; moreover, rDA2m and rDA2h had the largest dynamic
107 range (with peak $\Delta F/F_0$ values of ~560% and ~240%, respectively) among the D₂R-based red-shifted sensors (Fig. 1f-
108 h and Supplementary Table 1). Finally, rDA3m and rDA3h had significantly higher brightness levels, fluorescence
109 responses (with $\Delta F/F_0$ values of ~1000%), and SNR compared to RdLight1 (Fig. 1f-h). These results suggest that these
110 next-generation GRAB_{DA} sensors might be useful for imaging DA release *in vivo* both in DA-abundant conditions and
111 in brain regions with sparse dopaminergic innervation.

112 Next, we examined the properties of our new sensors when expressed in cultured neurons. Consistent with our
113 results obtained using HEK293T cells, we found that the sensors localized well to the neuronal membrane (both at
114 the cell body and in the surrounding neurites) and responded strongly to DA application (Fig. 2a-d), with DA affinity
115 similar to what we measured in HEK293T cells. In addition, we obtained the same rank order in terms of the peak
116 response to DA measured in cultured neurons and HEK293T cells. Moreover, the next-generation GRAB_{DA} sensors
117 had higher SNR values compared to previous sensors when expressed in neurons (Fig. 2c and 2d and Supplementary
118 Table 1).

119 Importantly, our new sensors also retained the pharmacological specificity of their respective parent receptors.
120 For example, application of the D₁R-specific and D₂R-specific antagonists SCH-23390 (SCH) and eticlopride (Etic),

121 respectively, eliminated the corresponding sensors' response to DA (Fig. 2e and Extended Data Fig. 5); interestingly,
122 however, both the D₁R-specific and D₂R-specific antagonists inhibited the red fire ant D₂R-based rDA2m and rDA2h
123 sensors (Fig. 2e and Extended Data Fig. 5b-d), possibly due to low sequence homology between red fire ant D₂R and
124 human D₂R. Moreover, these new sensors had only a negligible response to a variety of other neurochemicals and
125 transmitters, including glutamate, GABA, levodopa, acetylcholine, serotonin, histamine, octopamine, and tyramine.
126 Importantly, despite the structural similarity between the transmitters DA and norepinephrine (NE) our optimized
127 sensors were approximately 20-80-fold more sensitive to DA than NE (Fig. 2f and Extended Data Fig. 5), indicating
128 their extremely high specificity for DA.

129 Next, we measured the kinetics of our DA sensors using rapid line-scanning confocal microscopy. We locally
130 applied DA and then measured the time constant of the signal rise (τ_{on}) and the time constant of the signal decay
131 following application of the corresponding antagonist (τ_{off}). Our analysis revealed τ_{on} values of approximately 80 ms
132 for all DA sensors, and τ_{off} values ranging from 0.6-3 s based on differences in each sensor's affinity (Extended Data
133 Fig. 6 and Supplementary Table 1).

134 We then tested whether our red-shifted cpmApple-based DA sensors are photoactivated by blue light, as shown
135 previously for the cpmApple-based red calcium indicator jRGECO1a^{25,32}. Interestingly, unlike most mApple-based
136 sensors, we found that bursts of 488-nm blue light had no significant effect on the fluorescence of the rDA1m and
137 rDA2 sensors (Fig. 2g and Extended Data Fig. 4c and 4d and Supplementary Table 1), promising an optimal
138 compatibility with blue-light-activated optogenetic actuators. However, though undesired, RdLight1 and rDA3
139 sensors were found to exhibit photoactivation when illuminated with blue light (similar as jRGECO1a), causing a
140 transient increase in fluorescence (Fig. 2g and Extended Data Fig. 4c and 4d and Supplementary Table 1). In addition,
141 the DA-induced increase in fluorescence was stable for up to 2 h in the continuous presence of 100 μ M DA when
142 expressed in cultured neurons, with minimal arrestin-mediated internalization or desensitization (Fig. 2h and
143 Extended Data Fig. 4e-h). Thus, these sensors are suitable for long-term monitoring of dopaminergic activity.

144 To examine whether the DA sensors couple to intracellular signaling pathways, we used the luciferase
145 complementation assay³³ and the Tango assay³⁴ to measure G protein-mediated signaling and β -arrestin signaling,
146 respectively. We found that wild-type receptors showed robust coupling in both assays, whereas all of the DA
147 sensors tested failed to engage either of these GPCR-mediated downstream pathways (Fig. 2i and 2j). We therefore
148 conclude that expressing these receptors likely does not affect cellular physiology.

149

150 **Imaging DA dynamics in acute brain slices.** Next, we used two-photon imaging to measure the sensitivity of the
151 gDA3m and rDA3m sensors for reporting the triggered release of endogenous DA in acute brain slices. We injected
152 the nucleus accumbens (NAc)—which receives dense innervation from midbrain dopaminergic neurons (DANs)—
153 with adeno-associated virus (AAV) expressing either gDA3m or rDA3m and then prepared acute brain slices two
154 weeks after injection (Fig. 3a and 3b). Electrical stimuli applied at NAc at 20 Hz induced robust transient increases
155 in fluorescence, with the magnitude of the peak response increasing with increasing numbers of stimuli. Moreover,
156 application of the D₁R-selective antagonist SCH (10 μ M) eliminated the stimulus-evoked response, confirming that
157 the response is due to DA binding to the sensors. Consistent with our results obtained with cultured cells, we found
158 that both the gDA3m and rDA3m sensors had significantly improved sensitivities and responses compared to the
159 corresponding previous-generation sensors (i.e., gDA2m and rDA1m, respectively) (Fig. 3c-e).

160 Because the fluorescence of the D₁R-based gDA3m sensor is not affected by D₂R-specific compounds such as the
161 D₂R-specific agonist quinpirole or the D₂R-specific antagonist sulpiride (Fig. 3f), we examined the effect of D₂
162 autoreceptor activity on DA release in slices expressing the D₁R-based gDA3m sensor. Activation of endogenous
163 D₂Rs by the D₂-specific agonist quinpirole decreased the stimulus-evoked change in gDA3m fluorescence (Fig. 3g
164 and 3h), reflecting presynaptic inhibition via D₂ autoreceptors; this decrease was reversed by the addition of
165 sulpiride, and adding the D₁R-specific antagonist SCH abolished the stimulation-evoked response (Fig. 3g and 3h).

166 To measure DA release in both the cell body and terminals of midbrain DA neurons, we injected AAV expressing
167 gDA3m into the substantia nigra pars compacta (SNc), driving expression in both the SNc cell bodies and dopaminergic
168 terminals; we then prepared acute brain slices (Fig. 3i). We found that low-frequency stimulation (0.33 Hz) elicited
169 time-locked transient increases in fluorescence in both the striatum and SNc, while a 40-Hz train of 5 pulses induced
170 a large transient increase in fluorescence, with the signal decay following a slower time course in the SNc compared
171 to the striatum (Fig. 3k). To measure the kinetics of these transients, we performed line-scan microscopy (2 ms/line).
172 Our analysis revealed that the increase in fluorescence upon high-frequency (40 Hz) stimulation had a half-rise time
173 (rise $t_{1/2}$) of 20 ± 10 ms and 22 ± 9 ms in the striatum and SNc, respectively; in contrast, the fluorescence signal
174 decayed to baseline significantly slower in the SNc (decay $t_{1/2}$) compared to the striatum, with decay $\tau_{1/2}$ values of
175 209 ± 49 ms and 125 ± 32 ms, respectively (Fig. 3l). This difference in the time course of DA levels may be
176 attributed—at least in part—to differences in dopamine transporter (DAT) expression between the dorsal striatum
177 and midbrain³⁵.

178

179 **Validation of our next-generation DA sensors *in vivo*.** Next, we examined whether the increased sensitivity of our
180 DA sensors might be suitable for recording *in vivo* DA release in the medial prefrontal cortex (mPFC), which receives
181 relatively sparse dopaminergic innervation from the ventral tegmental area (VTA). We therefore virally expressed
182 the optogenetic tool ChrimsonR (ref. ³⁶) in the VTA and either gDA3h or dLight1.3b in the mPFC; we then optically
183 stimulated the VTA and used fiber photometry to measure the signal in the mPFC (Extended Data Fig. 7). We found
184 that activating VTA neurons elicited robust, transient increases in fluorescence in the gDA3h-expressing mPFC, and
185 this increase was blocked by the D₁R-antagonist SCH (Extended Data Fig. 7b and 7c). In contrast, activating VTA
186 neurons had virtually no effect on dLight1.3b (Extended Data Fig. 7d), indicating that this previous-generation DA
187 sensor lacks the sensitivity to detect *in vivo* DA release in the mPFC. We also found that the gDA3h sensor had
188 discrete, pulse-dependent responses to optogenetic stimulation, and with just one light pulse sufficient to induce a
189 response; in contrast, the less sensitive DA sensor dLight1.3b did not respond in a light pulse number-dependent
190 manner (Extended Data Fig. 7e-g).

191 To measure the *in vivo* performance of our new red-shifted GRAB_{DA} sensors, we expressed either rDA3m or
192 rDA3mut in the central amygdala (CeA)—a target of dopaminergic projections from the VTA^{37,38}—and the light-
193 activated channel Channelrhodopsin-2 (ChR2, ref. ³⁹) in the VTA. We found that activating VTA neurons induced
194 robust, transient increases in rDA3m fluorescence in response to 1-s, 5-s, and 10-s light pulses, with the amplitude
195 of the response increasing incrementally with pulse duration. These responses were virtually eliminated by SCH
196 administration and were absent in mice expressing the DA-insensitive rDA3mut sensor (Extended Data Fig. 8b-d).
197 We also expressed either rDA2m or rDA2mut in both the mPFC and the NAc to measure DA release in these regions
198 in response to VTA activation (Extended Data Fig. 8e); for these experiments, the mice were lightly anesthetized to
199 reduce the tonic activity of dopaminergic neurons. Under these conditions, activating ChR2-expressing VTA neurons
200 reliably induce pulse number-dependent increases in rDA2m fluorescence in both the densely innervated NAc and
201 the sparsely innervated mPFC, with larger signals induced in the NAc compared to the mPFC; moreover, no signal
202 was detected when we expressed the DA-insensitive rDA2mut sensor (Extended Data Fig. 8f-h). Collectively, these
203 results provide compelling evidence that our next-generation DA sensors can be used *in vivo* to report DA dynamics
204 in several brain regions in real time with high temporal resolution.

205 To compare the performance of the next-generation DA sensors with the reported GRAB variants, we measured
206 the DA dynamics in the NAc of water-restricted mice when receiving water rewards (Extended Data Fig. 9a and 9b).
207 We found that unpredicted water delivery induced a much larger fluorescence increase of both gDA3m and rDA3m
208 in the NAc compared to gDA2m and rDA1m, respectively (Extended Data Fig. 9c-h). With improved SNR, the gDA3m
209 and rDA3m could readily represent the reward value as the fluorescence response increase with the size of water-
210 drop accordingly. We next compared the performance of rDA3m and RdLight1 by expressing these sensors in
211 opposite sides of the NAc core, and performed bilateral fiber photometry recording (Extended Data Fig. 9i and 9j).

212 The rDA3m sensor had a substantially higher fluorescence change than RdLight1 across all water-rewarded sessions
213 (Extended Data Fig. 9k and 9l). Taken together, the new DA probes enable DA detection with improved sensitivity
214 and precision *in vivo*.

215

216 **Simultaneous *in vivo* imaging of DA and either intracellular cAMP or endocannabinoid signaling during natural**
217 **behavior.** Next, we capitalized on the spectral compatibility between our red-shifted DA sensors and green
218 fluorescent sensors in order to monitor multiple signaling events simultaneously in the same location. The NAc plays
219 a key role in reward processing. Therefore, we measured extracellular DA while also measuring intracellular cyclic
220 AMP (cAMP), the downstream messenger activated by DA receptors and a point of convergence for GPCR
221 signaling^{40,41}. We expressed both rDA3m and the green fluorescent cAMP indicator G-Flamp1 (ref. ⁴²) in the NAc of
222 male mice and measured both signals during mating, a naturally rewarding condition⁴³ (Fig. 4a and 4b). We found
223 that the fluorescence of rDA3m and G-Flamp1 measured in the NAc increased while the male was sniffing the female,
224 mounting the female, during intromission, and during ejaculation (Fig. 4c), with a similar half-rise time of 616 ± 40
225 ms and 698 ± 53 ms, respectively. Interestingly, however, we found that during all four mating stages the rDA3m
226 signal preceded the G-Flamp1 signal by approximately 200 ms (Fig. 4d and 4f). Moreover, a session-wide cross-
227 correlation analysis revealed that the intracellular cAMP levels measured using G-Flamp1 were closely correlated
228 with the DA signal (Fig. 4e and 4f).

229 We next examined the extracellular crosstalk between dopaminergic activity and other neurotransmitters. In the
230 brain, the basolateral amygdala (BLA) plays an important role in mediating the fear response and processing aversive
231 memories⁴⁴, and previous studies have shown that both DA signaling and the endocannabinoid (eCB) system in the
232 BLA participate in anxiety and fear formation⁴⁵. However, the relative timing of DA and eCB signals under stress
233 conditions remains unknown, particularly at high temporal resolution. We therefore expressed both rDA2m and the
234 green fluorescent eCB indicator eCB2.0 (ref. ⁴⁶) in the BLA in one hemisphere and measured both signals while
235 applying mild foot shocks to induce stress; as a control, we also expressed and measured rDA1m and eCB2.0 in the
236 other hemisphere (Fig. 4g and 4h). We found that rDA2m and eCB2.0 had reproducible, time-locked transient
237 increases in fluorescence upon delivery of a 2-s foot shock; moreover, although the signal produced by eCB2.0 was
238 similar between hemispheres, the signal produced by rDA2m was approximately twice as large as the signal
239 produced by rDA1m (Fig. 4i-l). We also examined the kinetics of the DA and eCB signals and found that although the
240 τ_{off} rates were similar for DA and eCB (on a order of 4-5 s), the τ_{on} rate was significantly faster for DA (~ 0.8 s)
241 compared to eCB (~ 2.2 s), with no significant difference between rDA2m and rDA1m (Fig. 4m). This difference
242 between the relatively rapid DA signal and the slower eCB signal is in consistent with the known signaling
243 mechanism of small-molecule transmitters such as DA and lipid neurotransmitters such as eCBs^{47,48}.

244

245 **Simultaneously measuring DA and ACh release *in vivo* during an auditory Pavlovian conditioning task.**
246 Dopaminergic signaling plays a key role in reinforcing learning and memory through the mesocorticolimbic system⁴⁹⁻
247 ⁵¹. External rewards such as food also elicit characteristic changes in acetylcholine (ACh) levels that promote
248 learning and motivate action⁵². However, the relationship between DA release and ACh release—as well as the
249 dynamics of their release in the mesocorticolimbic system during reinforcement learning—are poorly understood.
250 We therefore measured the release of both DA and ACh during auditory Pavlovian conditioning tasks by co-
251 expressing rDA3m and the green fluorescent ACh sensor ACh3.0 (ref. ⁵³) in both the NAc and the mPFC. Mice were
252 head-fixed, water-restricted, and trained to associate a specific auditory cue with either a water reward (associated
253 with tone A) or a punitive mild puff of air applied to the eye (associated with tone B) (Fig. 5a and 5b). Initially, rDA3m
254 mainly responded to the reward, while ACh3.0 responded both to the reward and the punishment, with minimal
255 response to the auditory cues (Fig. 5c). After five days of training, however, the mice selectively associated the
256 stimulus-predicted cue (tone A or tone B) with the subsequent delivery of reward or punishment (i.e., water or air
257 puff, respectively). The rDA3m and ACh3.0 signals in the NAc of these trained mice increased in response to the

258 water-predicted tone, but decreased in response to the punishment-related tone, whereas their responses to actual
259 reward or punishment were remained in the current paradigm (Fig. 5c and 5e-f). The development of excitatory
260 responses to the reward cue and inhibitory responses to the punishment cue is consistent with the so-called reward-
261 prediction-error theory⁵¹. Interestingly, rDA3m and ACh3.0 signals in the mPFC increased in response to both
262 stimulus-predictive cues and the actual outcomes of both valences in naive mice. After training sessions, unlike
263 what is usually seen in reward prediction error patterns, there was no signal shift (Fig. 5d-f). Furthermore, within
264 brain areas (NAc or mPFC), DA and ACh signals were positively correlated with each other during reward and
265 punishment trials (Fig. 5c and 5d), indicating that a similar upstream process regulates DA and ACh release in these
266 two brain regions or a local neuromodulatory effect that one enhances the other²⁰. However, these signals were not
267 correlated between brain areas (NAc and mPFC; Fig. 5g), suggesting a heterogeneity of neurotransmission in the
268 mesocorticolimbic system. As a control, we found that systemic administration of the D₁R blocker SCH significantly
269 reduced the rDA3m signal but did not affect the ACh3.0 signal (Extended Data Fig. 10).

270
271 **Spatially resolved imaging of cortical DA release.** Dopaminergic signaling also plays a key role in modulating several
272 physiological processes, including motor control and reward perception. The cortex receives dopaminergic
273 innervation from both the SNC and VTA, which send distinct dopaminergic signals^{7,54-56}. To test whether our high-
274 affinity gDA3h sensor can be used to monitor behavior-related changes in cortical DA levels with high
275 spatiotemporal resolution, we expressed gDA3h in the M1/M2 motor cortex (Fig. 6a) and performed head-fixed *in*
276 *vivo* two-photon imaging (Fig. 6b). As DA is thought to be a key regulator of locomotion and aversive events^{4,57,58},
277 during imaging, the mouse was placed on a treadmill and gDA3h fluorescence was measured in response to a 70-s
278 bout of forced running (Fig. 6c), an electrical tail shock (Fig. 6d), or an auditory stimulus (Fig. 6e). Interestingly, we
279 observed a robust, rapid, reproducible increase in gDA3h fluorescence aligned to the onset of forced running and
280 tail shock, but not in response to the auditory stimulus (Fig. 6c-g). Similar results were obtained when we expressed
281 gDA3m, whereas dLight1.3b was not sufficiently sensitive to capture these relatively mild changes in DA (Extended
282 Data Fig. 11). As a negative control, no response was measured in mice expressing membrane-targeted EGFP (Fig.
283 6c and 6g; Extended Data Fig. 10). We then examined the spatial patterns of DA release during forced running and
284 foot shock on a trial-by-trial basis; interestingly, using select regions of interest (ROIs) we observed distinct patterns
285 during running and shock (Fig. 6c-e). Consistent with this observation, we identified four distinct categories of cell-
286 sized ROIs by performing hierarchical cluster analysis to analyze the average response of individual ROIs (Fig. 6h-j).
287 All four categories were observed in all animals tested (Fig. 6k-m). Although most areas had no response, a small
288 subset of responsive regions (representing 0.7% of the entire area) had increases in DA levels during both running
289 and shock, while 3.61% and 3.68% of the entire area were associated exclusively with running or shock, respectively
290 (Fig. 6n-o). Taken together, these results show that our gDA3h sensor can be used to map spatially and functionally
291 heterogeneous patterns of DA release in the motor cortex at subsecond resolution.

292
293 **DISCUSSION**

294 Here we used rational design to develop a third-generation series of highly sensitive and highly selective DA
295 sensors suitable for use in *in vivo* multiplex imaging. Our improved red fluorescent DA sensors performed as well as
296 their corresponding green fluorescent counterparts in terms of their sensitivity at detecting DA signals, thereby
297 narrowing the performance gap between red and green fluorescent DA sensors. Moreover, the features of these
298 optimized sensors are compatible with other recently developed optical sensors (e.g., cAMP, eCB, and ACh sensors)
299 for use in monitoring signaling events in the central nervous system in real time.

300 Although several fluorescent DA sensors have been developed using the GPCR-based strategy, the sensors
301 reported to date lack the sensitivity needed to monitor DA release in brain regions with relatively sparse
302 dopaminergic innervation or individual release events, yielding only to the small changes in fluorescence; our highly

303 sensitive series of new DA sensors overcomes this limitation. Moreover, our new series of GRAB_{DA} sensors can be
304 used to monitor DA dynamics *in vivo* in several brain regions such as the NAc, amygdala, and cortex. Importantly,
305 our simultaneous recordings of localized DA release in the NAc and mPFC revealed a lack of synchronized DA release
306 from distinct axonal termini. Specifically, in the context of Pavlovian conditioning the well-known theory of
307 prediction-error was observed in the NAc, but not in the mPFC; in the mPFC, the DA signals were consistent with
308 the reported cortical dopaminergic activity in the context of stimulus discrimination⁵⁹. This difference in DA
309 dynamics between these two brain regions suggests functional heterogeneity within VTA dopamine neurons, as has
310 been indicated by unique intrinsic properties of cortex-projecting dopamine neurons⁶⁰. In addition, even in a given
311 brain region such as the motor cortex, our two-photon imaging of gDA3h revealed behaviorally related, spatially
312 resolved heterogeneity in cortical dopaminergic signaling.

313 Our medium-affinity DA sensors (gDA3m, rDA2m, and rDA3m) are particularly well suited for imaging DA
314 dynamics in brain regions that contain moderate or high DA levels and for monitoring rapidly changing events that
315 require a rapid off rate. In contrast, our high-affinity sensors (gDA3h, rDA2h, and rDA3h) can be used to monitor
316 small changes in DA levels, for example in sparsely innervated brain regions. The improved signal-to-noise ratio and
317 sensitivity of these sensors have the potential to facilitate the detection of individual release events, thereby greatly
318 enhancing our understanding of the biophysical characteristics of DA release. In addition, the distinct
319 pharmacological profiles of these receptor subtype-based sensors allow for DA imaging while manipulating the
320 activity of specific receptors. These properties are also valuable for studying DA pharmaceutical agents and for
321 screening compounds that target specific DA receptor subtypes.

322 In combination with multicolor fluorescence imaging of other signaling events, our new series of DA sensors can
323 be used to functionally map neurochemical activity. Moreover, this robust set of GRAB_{DA} sensors will help pave the
324 way to a deeper understanding of the complexity of the dopaminergic system.

325

326

METHODS

327

Animals. All procedures for animal surgery and experimentation were performed in accordance and approved by the laboratory animal care and use committees of Peking University, the Institutional Animal Care and Use Committee at Oregon Health and Science University, the National Institutes of Health Guide for the Care and Use of Laboratory Animals and Harvard Animal Care and Use Committee. Both male and female postnatal day 0 (P0) Sprague-Dawley rats were used to prepare cultured cortical neurons; P48-P90 wild-type C57BL/6N mice (Beijing Vital River Laboratory), wild-type C57BL/6J mice (Beijing Vital River Laboratory), TH-Cre mice (The Jackson Laboratory; B6. Cg-7630403G23Rik^{Tg(Th-cre)1Tmd}/J) and DAT-Cre mice (The Jackson Laboratory; B6.SJL-*Slc6a3*^{tm1.1(cre)Bkmn}/J) were used in this study. All animals were housed at 18–23°C in 40–60% humidity under a normal 12-h light–dark cycle with food and water available *ad libitum*.

336

337

AAV expression. AAV2/9-hSyn-gDA3m (2.8×10^{13} viral genomes (vg) per ml), AAV2/9-hSyn-gDA3h (8.43×10^{13} vg/ml), AAV2/9-hSyn-gDA3mut (6.21×10^{13} vg/ml), AAV2/9-hSyn-gDA2m (5.72×10^{13} vg/ml), AAV2/9-hSyn-dLight1.3b (6.49×10^{13} vg/ml), AAV2/9-DIO-hSyn-gDA3m (6.2×10^{13} vg/ml), AAV2/9-EGFP-CAAX (3.5×10^{13} vg/ml), AAV2/9-hSyn-ACh3.0 (8.0×10^{13} vg/ml), and AAV2/9-hSyn-eCB2.0 (9.2×10^{13} vg/ml), AAV2/9-hSyn-GFlamp1 (7.29×10^{13} vg/ml) were packaged at Vigene Biosciences. AAV2/9-hSyn-rDA1m (1.04×10^{13} vg/ml), AAV2/9-hSyn-rDA2m (6.04×10^{12} vg/ml), AAV2/9-hSyn-rDA2h (5.31×10^{12} vg/ml), AAV2/9-hSyn-rDA2mut (5.09×10^{12} vg/ml), AAV2/9-hSyn-rDA3m (3.29×10^{12} vg/ml), AAV2/9-hSyn-rDA3h (6.36×10^{12} vg/ml), AAV2/9-hSyn-rDA3mut (6.16×10^{12} vg/ml), AAV2/9-hSyn-RdLight1 (6.12×10^{12} vg/ml), AAV2/9-hSyn-hChR2(H134R)-eYFP (5.49×10^{12} vg/ml), and AAV2/9-hSyn-ChrimsonR-tdTomato (2.52×10^{12} vg/ml) were packaged at BrainVTA. Where indicated, the AAVs were either used to infect cultured neurons or were injected *in vivo* into specific brain regions.

347

348

Molecular biology. cDNAs encoding the various DA receptors were cloned from the respective human (hORFeome database 8.1), bovine, sheep, waterbear, bat, cat, monkey, zebrafinch and red fire ant genes (Shanghai Generay Biotech). DNA fragments were PCR-amplified using specific primers (Tsingke Biological Technology) with 25-30-bp overlap. Plasmids were generated using Gibson assembly⁶¹, and all plasmid sequences were verified using Sanger sequencing. For screening and characterization in HEK293T cells, the green and red fluorescent DA sensors were cloned into the pDisplay vector (Invitrogen). The IRES-mCherry-CAAX cassette (for expressing green fluorescent sensors) or IRES-EGFP-CAAX cassette (for expressing red fluorescent sensors) was inserted downstream of the sensor gene to serve as a cell membrane marker and to calibrate the sensor's fluorescence. Site-directed mutagenesis was performed using primers containing randomized NNB codons (48-51 codons in total, encoding all 20 amino acids; Tsingke Biological Technology) or defined codons. For characterization in cultured neurons, the sensor gene was cloned into a pAAV vector under the control of the human synapsin (*SYN1*) promoter (*pAAV-hSyn*). For luciferase complementation assay, the receptor-SmBit or sensor-SmBit was generated from β_2 AR-SmBit³³. For the Tango assay, genes encoding the wild-type receptors or the indicated sensors were cloned into the pTango vector³⁴.

362

363

Cell culture. HEK293T cells were cultured at 37°C in humidified air containing 5% CO₂ in DMEM (Biological Industries) supplemented with 10% (vol/vol) FBS (Gibco) and 1% penicillin-streptomycin (Gibco). For experiments, the cells were seeded in 96-well plates or on 12-mm glass coverslips in 24-well plates. At 60-70% confluence, the cells were transfected with a mixture of polyethylenimine (PEI) and plasmid DNA at a 3:1 (w/w) ratio; the culture medium was replaced with fresh medium 6-8 h after transfection, and imaging was performed 24-48 h after transfection. Rat cortical neurons were prepared from P0 Sprague-Dawley rats. In brief, cortical neurons were dissociated from the dissected rat cerebral cortex by digestion in 0.25% trypsin-EDTA (Biological Industries) and then plated on poly-D-

370 lysine-coated (Sigma-Aldrich) 12-mm glass coverslips in 24-well plates. The neurons were cultured in Neurobasal
371 medium (Gibco) containing 2% B-27 supplement (Gibco), 1% GlutaMAX (Gibco), and 1% penicillin-streptomycin
372 (Gibco) at 37°C in humidified air containing 5% CO₂. The cultured neurons were transfected with AAVs expressing
373 the indicated sensors at 3-5 days *in vitro* (DIV3-5) and imaged at DIV11-14.

374

375 **Fluorescence imaging of cultured cells.** Before imaging, the culture medium was replaced with Tyrode's solutions
376 containing (in mM): 150 NaCl, 4 KCl, 2MgCl₂, 10 HEPES, and 10 glucose (pH adjusted to 7.35-7.45 with NaOH). The
377 cells then were imaged in a custom-made chamber using an inverted Ti-E A1 confocal microscope (Nikon) and an
378 Opera Phenix high-content screening system (PerkinElmer). The confocal microscope was equipped with a 10x/0.45
379 number aperture (NA) objective, a 20x/0.75 NA objective, a 40x/1.35 NA oil-immersion objective, a 488-nm laser,
380 and a 561-nm laser. Green fluorescence was collected using a 525/50-nm filter, and red fluorescence was collected
381 using a 595-50nm filter. During imaging, the following compounds were applied via bath application or via a custom-
382 made perfusion system at the indicated concentrations: DA (Sigma-Aldrich), SCH (Tocris), Etic (Tocris), SKF (Tocris),
383 Quin (Tocris), Glu (Sigma-Aldrich), GABA (Tocris), L-Dopa (Abcam), ACh (Solarbio), 5-HT (Tocris), HA (Tocris), OA
384 (Tocris), NE (Tocris), and Sulp (MedChemExpress). To measure the kinetics of the GRAB_{DA} sensors, the confocal line-
385 scanning mode (2,600 Hz) was used to record the fluorescence response when the cells were locally puffed with DA
386 via a pipette positioned at the cells. Similarly, the decay kinetics were measured by locally puffing cells with the
387 respective antagonist in the presence of saturating DA concentration. The Opera Phenix system was equipped with
388 a 20x/1.0 NA, a 40x/0.6 NA objective, a 40x/1.15 NA water-immersion objective, a 488-nm laser, and a 561-nm laser.
389 Green fluorescence was collected using a 525/50-nm emission filter, and red fluorescence was collected using a
390 600/30-nm emission filter, and the fluorescence intensity of the red and green fluorescent sensors was calibrated
391 using EGFP and mCherry, respectively.

392

393 **Spectra and photoactivation measurements.** Plasmids expressing the GRAB_{DA} sensors were transfected into
394 HEK293T cells in six-well plates (for 1-photon spectra) or on 12-mm coverslips (for 2-photon spectra). For measuring
395 the 1P spectra, the cells were harvested 24-30 h after transfection and transferred to 384-well plates in the absence
396 or presence of 100 μM DA. The excitation and emission spectra were then measured at 5-nm increments using a
397 Safire2 multi-mode plate reader (Tecan). The fluorescence measured in non-transfected cells was subtracted as
398 background. The 2P spectra of gDA3m were measured at 10-nm increments ranging from 700-1050 nm using an
399 Ultima Investigator 2-photon microscope (Bruker) equipped with a 20x/1.00 NA water-immersion objective
400 (Olympus) and an InSight X3 tunable laser (Spectra-Physics). The 2P spectra of rDA3m were measured at 10-nm
401 increments ranging from 820-1300 nm using an A1R MP+ multiphoton microscope (Nikon) equipped with a 25x/1.10
402 NA objective (Nikon) and a Chameleon Discovery tunable laser (Coherent). Laser power was calibrated according to
403 the output power of the tunable 2P laser with various wavelengths. Bursts of 488-nm laser light (1 s duration, 210
404 μW, ~0.4 W cm⁻² intensity) were applied to induce blue light-mediated photoactivation.

405

406 **Luciferase complementation assay.** At 50-60% confluence, HEK293T cells were co-transfected with the indicated
407 wild-type receptor or sensor together with the respective LgBit-mG construct. Approximately 24-36 h after
408 transfection, the cells were dissociated using a cell scraper, resuspended in PBS, and transferred to 96-well plates.
409 DA at concentrations ranging from 0.01 nM to 100 μM and 5 μM furimazine (NanoLuc Luciferase Assay, Promega)
410 were then bath-applied to the cells. After a 10-min reaction in the dark at room temperature, luminescence was
411 measured using a VICTOR X5 multi-label plate reader (PerkinElmer).

412

413 **Tango assay.** The Tango assay was perform as previously described³⁴ using HTLA cells (a gift from Bryan L. Roth)

414 seeded in 6-well plates and transfected with plasmids expressing the indicated receptors or sensors. Twenty-four
415 hours after transfection, the cells were collected using trypsin digestion, plated in 96-well plates, and DA was added
416 to the media at concentrations ranging from 0.01 nM to 10 μ M. The cells were then cultured for an additional 12 h
417 for luciferase expression; 5 μ M Bright-Glo (Fluc Luciferase Assay System, Promega) was then added to the wells, and
418 luminescence was measured using a VICTOR X5 multi-label plate reader (PerkinElmer).

419

420 **Two-photon imaging in the NAc in acute mouse brain slices.** Adult (6-8 weeks of age) C57BL/6N of both sexes were
421 anesthetized with an intraperitoneal injection of 2,2,2-tribromoethanol (Avertin, 500 mg/kg body weight; Sigma-
422 Aldrich), and AAVs were injected (300 nL per injection site at a rate of 40 nL/min) into the NAc using the following
423 coordinates: AP: +1.4 mm relative to Bregma; ML: \pm 1.2 mm relative to Bregma; and DV: -4.0 mm from the dura. Two
424 weeks after virus injection, the mice were deeply anesthetized, and the heart was perfused with slicing buffer
425 containing (in mM): 110 choline chloride, 2.5 KCl, 1.25 NaH₂PO₄, 25 NaHCO₃, 7 MgCl₂, 25 glucose, and 0.5 CaCl₂. The
426 mice were then decapitated and the brains were immediately removed and placed in cold oxygenated slicing buffer.
427 The brains were sectioned into 300- μ m-thick coronal slices using a VT1200 vibratome (Leica), and the slices were
428 incubated at 34°C for at least 40 min in oxygenated artificial cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl,
429 2.5 KCl, 1 NaH₂PO₄, 25 NaHCO₃, 1.3 MgCl₂, 25 glucose, and 2 CaCl₂. Two-photon imaging was performed using either
430 an FV1000MPE 2P microscope (Olympus) equipped with a 25x/1.05 NA water-immersion objective and a mode-
431 locked Mai Tai Ti:Sapphire laser (Spectra-Physics) or an Ultima Investigator 2P microscope (Bruker) equipped with a
432 20x/1.00 NA objective (Olympus) and an InSight X3 tunable laser (Spectra-Physics). A 920-nm laser was used to
433 excite the gDA3m sensor, and fluorescence was collected using a 495-540-nm filter (for the FV1000MPE microscope)
434 or 490-560-nm filter (for the Ultima Investigator microscope); a 950-nm laser was used to excite the rDA3m sensor,
435 and fluorescence was collected using a 575-630-nm filter (for the FV1000MPE microscope) or a 570-620-nm filter
436 (for the Ultima Investigator microscope). For electrical stimulation, a bipolar electrode (model WE30031.0A3,
437 MicroProbes) was positioned near the NAc core under fluorescence guidance, and imaging and stimulation were
438 synchronized using an Arduino board with custom-written software. The stimulation voltage was set at 4-6 V. Where
439 indicated, compounds were added by perfusion at a flow rate of 4 ml/min.

440

441 **Two-photon imaging in the striatum and SNc in acute mouse brain slices.** Adult TH-Cre and wild-type mice of both
442 sexes were anesthetized with isoflurane, and the indicated AAVs were injected into the SNc region at the following
443 coordinates: AP: -2.3 mm relative to Bregma; ML: \pm 1.3 mm relative to Bregma; and DV: -4.5 mm from the dura.
444 After 2-3 weeks, the mice were anesthetized with isoflurane, decapitated, and the brain was removed and placed
445 in warm (32-35°C) extracellular solution containing (in mM): 126 NaCl, 2.5 KCl, 1.2 MgCl₂, 2.4 CaCl₂, 1.4 NaH₂PO₄,
446 25 NaHCO₃, and 11 dextrose; the solution also contained MK-801 (10 μ M) to prevent NMDA-mediated excitotoxic
447 damage. Horizontal slices (222- μ m thickness) containing the midbrain and striatum were cut using a vibratome in
448 warm extracellular solution and recovered at 30°C for \geq 30 min before experiments. Two-photon imaging of the
449 striatal and SNc slices was performed using a custom-built 2-photon microscope with ScanImage software⁶². Full-
450 frame images (128x128 pixels) were captured at a rate of 4 Hz. Line scans through areas of interest were taken at
451 2 ms/line. Images were analyzed using ImageJ (National Institutes of Health) and custom software written using
452 MATLAB.

453

454 **In vivo fiber photometry recording in mice.** Adult mice were anesthetized with isoflurane, and the indicated AAVs
455 were injected (300 nL total volume) were injected as follows. The NAc was targeted using the following coordinates:
456 AP: +1.4 mm relative to Bregma; ML: \pm 1.2 mm relative to Bregma; and DV: -4.0 mm from the dura. The mPFC was
457 targeted using the following coordinates: AP: +1.98 mm relative to Bregma; ML: \pm 0.3 mm relative to Bregma; and
458 DV: -1.8 from the dura. Finally, the BLA was targeted using the following coordinates: AP: -1.4mm relative to Bregma;

459 ML: ± 3 mm relative to Bregma; and DV: -4.5 mm from the dura. Optical fibers (200 μm diameter, 0.37 NA; Inper)
460 were implanted using the AAV injection site and secured with resin cement (3M). Two weeks after injections,
461 photometry and animal behaviors were recorded using an FPS-410/470/561 photometry system (Inper). In brief, a
462 10-Hz (with 20-ms pulse duration) 470/5-nm filtered light-emitting diode (LED) at 20-30 μW was used to excite the
463 green fluorescent sensors, and a 10-Hz (20-ms pulse duration) 561/5-nm filtered LED at 20-30 μW was used to excite the
464 red fluorescent sensors. Alternating excitation wavelengths were delivered, and the fluorescence signals were
465 collected using a CMOS camera during dual-color imaging. To minimize autofluorescence of the optical fiber, the
466 recording fiber was photobleached using a high-power LED before recording. The photometry data were analyzed
467 using a custom-written MATLAB (MATLAB R2022a, MathWorks) program, and background autofluorescence was
468 subtracted from the recorded signals.

469 *Unpredicted water reward.* Adult female (8-9 weeks in age) C57BL/6J mice were prepared for this experiment. AAV-
470 hsyn-rDA3m or AAV-hsyn-RdLight1 virus (300nl for each virus) was bilaterally injected into the NAc. Intraoral cheek
471 fistula implanted and water-restricted mice freely received water delivery (around 10 μl per trial; 25 trials per
472 session; inter-reward-interval = 20 s). To calculate $\Delta F/F_0$, baseline was chosen as the average fluorescence signal
473 during 4.5-5.0 s ahead of water delivery.

474 *Mating behaviors.* Adult (8-9 weeks of age) male C57BL/6N mice were used for these experiments. A mixture of
475 AAV-hsyn-rDA3m (300 nl) and AAV-hsyn-Gflamp1 (300 nl) was injected into the NAc as described above. Experienced
476 adult (8-9 weeks in age) ovariectomized (OVX) female C57BL/6N mice were also used to measure the male's mating
477 behaviors. Three days before recording, the OVX female mice received intraperitoneal injections of estrogen (50 μl ,
478 0.2 mg/ml on day 1 and 50 μl , 0.1 mg/ml on day 2) or progesterone (50 μl , 1 mg/ml on day 3). The various sexual
479 behaviors were defined as previously described¹⁶. To calculate $\Delta F/F_0$, the baseline was defined as the average
480 fluorescence measured 1-5 min before introducing the female.

481 *Foot shock.* Adult (8-9 weeks of age) male C57BL/6N mice were used for these experiments. A mixture of AAV-hsyn-
482 eCB2.0 (300 nl) and either AAV-hsyn-rDA2m or AAV-hsyn-rDA1m (300 nl each) was bilaterally injected into the BLA
483 as described above. The mouse was placed in a shock box, and 5 2-s pulses of electricity at an intensity of 0.7 mA
484 were delivered with an interval of 90-120 s between trials. To calculate $\Delta F/F_0$, the baseline values was defined as
485 the average fluorescence measured during a 2-s window prior to the first shock trial.

486 *Pavlovian auditory conditioning task.* Adult (8-9 weeks of age) female C57BL/6J mice were used for these
487 experiments. A mixture of AAV-hsyn-gACh3.0 (300 nl) and AAV-hsyn-rDA3m (300 nl) was injected into the NAc and
488 mPFC as described above. A stainless-steel head holder was attached to the skull using resin cement in order to
489 restrain head-fix the animal. For water delivery, an intraoral cheek fistula was implanted in each mouse as previously
490 described¹⁴. In brief, incisions were made in the cheek and the scalp at the back of the neck. A short, soft silastic
491 tube (inner diameter: 0.3 mm, outer diameter: 0.46 mm) connected via an L-shaped stainless-steel tube was then
492 inserted into the cheek incision site. The steel tube was inserted into the scalp incision, and the opposite end was
493 inserted into the oral cavity. The head-fixed mice were habituated to the treadmill apparatus for 2 days (1 h per day)
494 before the experiments to minimize potential stress. On the day of the experiment, the Pavlovian auditory
495 conditioning task was performed using two pairs of auditory cues and outcomes, with tone A (2.5k Hz, 70 dB, 2 s
496 duration) paired with delivery of 10 μl of 5% sucrose water and tone B (15k Hz, 70 dB, 2 sec duration) paired with
497 deliver of an air puff to the eye. These two pairs were randomly delivered with a 15-20 s randomized inter-trial
498 interval. The water and air puff delivery were precision-controlled using a stepper motor pump and a solenoid valve,
499 respectively. A custom Arduino code was used to control the timing of the pump and solenoid valve and to
500 synchronize the training devices with the photometry recording system. To calculate $\Delta F/F_0$, the baseline was defined
501 as the average fluorescence signals measured 4.5-5.0 s prior to the first auditory cue.

502

503 **Fiber photometry recording of optogenetically induced DA release in mice.** Adult (8-9 weeks of age) male

504 C57BL/6N mice were used for these experiments. The mice were anesthetized with isoflurane, and AAV-hsyn-gDA3h
505 (300 nl) or AAV-hsyn-dLight1.3b (300 nl) was injected into the mPFC as described above. AAV-hsyn-ChrimsonR-
506 tdTomato (300 nl) was also injected into the VTA using the following coordinates: AP: -2.9 mm relative to Bregma;
507 ML: ± 0.65 mm relative to Bregma; and DV: -4.1 mm from the dura. Optical fibers (200- μ m diameter, 0.37 NA; Inper)
508 were implanted in the same injection sites and secured with resin cement (3M). Two weeks after virus injection,
509 photometry recording was performed using a commercially available photometry system (Thinker Tech, Nanjing,
510 China).

511 A 470/25-nm bandpass-filtered (model 65-144; Edmund Optics) LED light (Cree LED) was used to excite the green
512 fluorescent sensors. The emitted fluorescence was bandpass filtered (525/25 nm, model 86-354; Edmund Optics)
513 and collected using a photomultiplier tube (model H10721-210; Hamamatsu). An amplifier (model C7319;
514 Hamamatsu) was used to convert the current output from the photomultiplier tube to a voltage signal that was
515 passed through a low-pass filter. The analog voltage signals were then digitized using an acquisition card (National
516 Instruments). To minimize autofluorescence of the optical fiber, the recording fiber was photobleached using a high-
517 power LED before recording. The excitation light power at the tip of the optical fiber was 20-30 μ W and was
518 delivered at 100 Hz with 5-ms pulse duration. Background autofluorescence was subtracted from the recorded
519 signals in the subsequent analysis. A 635-nm laser (1-300 mW; LL-Laser, China) was used for optogenetic stimulation
520 with the light power at the tip of the fiber set at 10 mW. Optical stimulation was delivered at 20 Hz (20-ms pulse
521 duration) with a total of 1-20 pulses simultaneously with photometry recording. Where indicated, the mice received
522 an intraperitoneal injection of SCH-23390 (2 mg/kg body weight).

523 When using the red-shifted GRAB_{DA} sensors, AAV-hsyn-rDA3m (300 nl) or AAV-hsyn-rDA3mut (300 nl) was
524 injected into the CeA using the following coordinates: AP: -1 mm relative to Bregma; ML: ± 2.5 mm relative to Bregma;
525 and DV: -4.3 mm from the dura. In addition, AAV-hsyn-rDA2m (300 nl) or AAV-hsyn-rDA2mut (300 nl) was injected
526 in the mPFC and NAc as described above, and AAV-hsyn-ChR2-YFP (300 nl) was injected into the VTA as described
527 above. Two weeks after injection, photometry recording (FPS-410/470/561; Inper) was performed was described
528 above. A 488-nm laser (1-160 mW, LL-Laser, China) was used for optogenetic stimulation, with the light power at
529 the tip of the fiber set at 10 mW. Optical stimulation was delivered at 20 Hz (1, 5, or 10 s duration) simultaneously
530 with photometry recording. Where indicated, the mice received an intraperitoneal injection of SCH-23390 (6 mg/kg
531 body weight).

532

533 **Fiber photometry recording of DA signals in mice receiving water rewards.** AAVs carrying GRABDA dopamine
534 sensors were injected into the NAc of DAT-Cre mice (300 nL, unilateral injection; gGRAB_{DA2m}: AAV9-hsyn-gDA2m,
535 titer = 2.3×10^{13} vg ml $^{-1}$; gGRAB_{DA3m}: AAV9-hsyn-gDA3m, titer = 1.3×10^{13} vg ml $^{-1}$). For red GRAB_{DA} sensors, we injected
536 a mixture of AAVs carrying rGRAB_{DA} and GFP (3:1 mixture, 300nL total volume; GFP: AAV8-CAG-GFP, titer = 6.7×10^{12}
537 vg ml $^{-1}$; rGRAB_{DA1m}: AAV9-hsyn-rDA1m, titer = 2.5×10^{13} vg ml $^{-1}$; rGRAB_{DA3m}: AAV9-hsyn-rDA3m, titer = 6×10^{12} vg ml $^{-1}$).
538 NAc coordinates were, from bregma: AP 1.5 mm, ML 1.7 mm, DV 4.0 mm, angled 4 degrees forward. Mice 1,2,5-10
539 also received injections of AAV8-hSyn-FLEX-ChrimsonR-tdTomato (titer = 3.9×10^{12} vg ml $^{-1}$) in VTA and SNC (300 nL
540 each, unilateral; coordinates, from bregma: VTA = AP -3.0 mm, ML 0.6 mm, DV 4.3 mm; SNC = AP -3.0 mm, ML 1.6
541 mm, DV 4.2 mm). Mice 3,4 received injections of AAV5-CAG-flex-tdTomato (titer = 4.8×10^{12}) in VTA and SNC (300 nL
542 each, unilateral). An optic fiber was implanted targeting NAc (400 μ m diameter, NA = 0.48, Doric lenses).

543 At least 2 weeks after surgery, mice were water restricted (to 85% of initial body weight) and trained to receive
544 water rewards while head-fixed. After mice consistently licked to water delivery (typically requiring 3 days of
545 training), we recorded dopamine sensor responses to unpredicted delivery of water droplets of various sizes (1, 2,
546 4, or 8 μ L; inter-reward interval = 8-20 seconds, uniformly distributed; 60 trials per session, 15 trials per reward size,
547 randomly interleaved; in some sessions, only 2 or 8 μ L of water was given). Photometry signals were collected with
548 a bundle-imaging fiber photometry system (Doric lenses). For green dopamine sensors, we used a blue LED (460-
549 490 nm, 75 μ W measured at tip of patch cord) to excite the sensor and the isosbestic wavelength as a control signal

550 (410-420 nm LED, 60 μ W). For red dopamine sensors, we used a yellow LED (555-570 nm, 110 μ W) to excite the
551 sensor and GFP signals as a control (460-490 nm LED, 75 μ W). Imaging was performed at 20 Hz. Photometry data
552 was processed offline as follows. $\Delta F/F_0 = (F-F_0)/F_0$ was computed by defining F_0 as the 10th percentile of each signal
553 within a sliding 30 second window (excluding reward responses, defined as the 5 seconds following reward). Then,
554 linear regression was performed between the sensor signal and the control signal (either isosbestic wavelength or
555 GFP) in ITI periods (5 seconds following reward delivery excluded). The resulting predicted signal was subtracted
556 from the sensor signal to produce the final de-noised signal.

557

558 **Two-photon *in vivo* imaging in mice.** Adult (7-8 weeks of age) female C57BL/6N mice were used for these
559 experiments. The mice were anesthetized with isoflurane (3% induction, followed by 1-1.5% maintenance), the skin
560 and skull above the motor cortex were removed, and a metal recording chamber was affixed to the head. AAV
561 expressing either gDA3m, gDA3h, dLight1.3b, or mEGFP (200 nl each, full titer) was then injected into the motor
562 cortex using the following coordinates: AP: +1.0 mm relative to Bregma; ML: ± 1.5 mm relative to Bregma; and DV: -
563 0.5 mm from the dura). A 4 mm x 4 mm square glass coverslip was then used to cover the opening in the skull. A
564 stainless-steel head holder was attached to the skull to head-fix the animal's head and reduce motion-induced
565 artifacts during imaging. Two weeks after virus injection, the mice were habituated for approximately 10 min on the
566 treadmill imaging apparatus to minimize stress. The motor cortex was imaged at a depth of 100-200 μ m below the
567 pial surface using Prairie View 5.5.64.100 software with an Ultima Investigator 2-photon microscope (Bruker)
568 equipped with a 16x/0.80 NA water-immersion objective (Olympus) and an InSight X3 tunable laser (Spectra-
569 Physics). A 920-nm laser was used for excitation, and a 525/70-nm emission filter was used to collect the
570 fluorescence signal at a sampling rate of 1.5 Hz. For the forced running paradigm, running speed was set at 15 cm/s;
571 for the tail shock paradigm, a 3-s electrical shock (0.7 mA) was delivered. For audio stimulation, a 1-s pulse of white
572 noise (80 dB) was delivered. For image analysis, motion-related artifacts were corrected using the EZcalcium motion
573 correction algorithm as described previously⁶³. Fluorescence intensity measures at the ROIs was measured using
574 ImageJ software. The fluorescent responses were calculated as $[(F_{\text{raw}} - F_{\text{baseline}})/F_{\text{baseline}}]$, in which F_{baseline} was defined
575 as the average fluorescence signal measured for 10 s prior to the behavior onset. The peak response during a
576 behavior was calculated as the maximum $\Delta F/F_0$ measured for 0-5 s after the behavior onset. The brain area was
577 deemed responsive if the average response in a 5-s window surrounding the peak exceeded the sum of the baseline
578 average and the baseline standard deviation. Hierarchical clustering was performed on the average of the
579 fluorescence signals (forced running and shock) for each ROI. Euclidean distance and the Ward linkage metric were
580 used after comparing multiple linkage metrics and clustering algorithms. Variations among individuals were
581 minimized by normalizing the response to the maximum $\Delta F/F_0$ across ROIs in a given mouse. The hierarchical
582 method was used to reduce bias due to predetermining the cluster number.

583

584 **Quantification and statistical analysis.** Except where indicated otherwise, all summary data are presented as the
585 mean \pm SEM. Imaging data were processed using ImageJ (1.53c) or MATLAB software (matlab R2020a) and plotted
586 using OriginPro 2020b (OriginLab), GraphPad Prism 8.0.2, or Adobe Illustrator CC. The change in fluorescence ($\Delta F/F_0$)
587 was calculated using the formula $[(F-F_0)/F_0]$, in which F_0 is the baseline fluorescence signal. The SNR was calculated
588 as the peak response divided by the standard deviation of the baseline fluorescence. Group differences were
589 analyzed using a one-way analysis of variance (ANOVA) with Tukey's multiple comparisons test, a one-way ANOVA
590 with Dunnett's multiple comparison test, a two-way ANOVA with Sidak's multiple comparison test, or a two-tailed
591 Student's *t*-test (GraphPad Prism 8.0.2). Differences were considered significant at $p<0.05$; * $p<0.05$, ** $p<0.01$,
592 *** $p<0.001$, **** $p<0.0001$, and n.s., not significant ($p>0.05$). For all representative images and traces, similar
593 results were obtained for >3 independent experiments.

594

595 **Data availability**

596 The plasmids and sequences used to express the sensors in this study are available from Addgene. Source data will
597 be provided upon reasonable request to the corresponding author.

598

599 **Code availability**

600 The custom MATLAB codes, Arduino program, and ImageJ programs will be provided upon request to the
601 corresponding author.

602

603 **Acknowledgments**

604 The research was supported by the National Natural Science Foundation of China (grant nos. 31925017 and
605 31871087) and the NIH BRAIN Initiative (grant nos. 1U01NS113358 and 1U01NS120824); and by grants from the
606 Feng Foundation of Biomedical Research, the Clement and Xinxin Foundation, the Peking-Tsinghua Center for Life
607 Sciences, and the State Key Laboratory of Membrane Biology at Peking University School of Life Sciences to Y.L.; the
608 NIH (grant no. R01DA004523) to J.T.W.; the NIH (grant no. R01MH125162) to M.W.-U.; the NIH (grant no.
609 5F32MH126505-02) to M.G.C. We thank I. Green and I. Tsutsui-Kimura for assistance for animal surgery. We thank
610 X. Lei at PKU-CLS and the National Center for Protein Sciences at Peking University in Beijing, China, for support and
611 assistance with the Opera Phenix high-content screening system and imaging platform.

612

613 **Author contributions**

614 Y.L. supervised the study. Y. Zhuo. and Y.L. designed the study. Y. Zhuo., X.Y., Y.W., G.L., H.W. and Y. Zheng performed
615 the experiments related to the development, optimization, and characterizing of the sensors in cultured HEK293T
616 cells and in neurons. Y. Zhuo., R.C., and T.Q. performed the surgery and two-photon imaging experiments related to
617 the validation of the sensors in acute brain slices. J.T.W. performed the characterization in acute brain slices
618 containing the striatum or SNc. H.D., J.W., B. Li., and X.M. performed the *in vivo* fiber photometry recording during
619 optogenetic stimulation. M.G.C. performed the fiber photometry recording in the mouse NAc for the independent
620 validation of *in vivo* sensor comparison under the supervision of M.W.-U. Y. Zhuo and B. Luo performed the *in vivo*
621 fiber photometry recording in the NAc during mating behavior. B. Luo performed the *in vivo* fiber photometry
622 recording during foot shock and the Pavlovian conditioning task with help from H.D. Y. Zhuo performed the *in vivo*
623 two-photon imaging of the motor cortex. All authors contributed to the interpretation and analysis of the data. Y.
624 Zhuo and Y.L. wrote the manuscript with contributions from all authors.

625

626 **Competing interests**

627 None to declare.

628

References

1. Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. *Front. Neuroanat.* **9**, (2015).
2. Slaney, T. R., Mabrouk, O. S., Porter-Stransky, K. A., Aragona, B. J. & Kennedy, R. T. Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo. *ACS Chem. Neurosci.* **4**, 321–329 (2013).
3. Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. *Trends Neurosci.* **30**, 194–202 (2007).
4. Klaus, A., Alves da Silva, J. & Costa, R. M. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. *Annu. Rev. Neurosci.* **42**, 459–483 (2019).
5. Wise, R. A. Dopamine, learning and motivation. *Nat. Rev. Neurosci.* **5**, 483–494 (2004).
6. Costa, R. M. Plastic Corticostriatal Circuits for Action Learning. *Ann. N. Y. Acad. Sci.* **1104**, 172–191 (2007).
7. Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. *Trends Neurosci.* **30**, 194–202 (2007).
8. Ott, T. & Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. *Trends Cogn. Sci.* **23**, 213–234 (2019).
9. Goldman-Rakic, P. S. The cortical dopamine system: role in memory and cognition. *Adv. Pharmacol. San Diego Calif* **42**, 707–711 (1998).
10. Matthews, G. A. *et al.* Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. *Cell* (2016).
11. Vander Weele, C. M. *et al.* Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. *Nature* **563**, 397–401 (2018).
12. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. *Neuron* **68**, 815–834 (2010).
13. Patriarchi, T. *et al.* Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. *Science* **360**, (2018).
14. Sun, F. *et al.* A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. *Cell* **174**, 481-496.e19 (2018).
15. Patriarchi, T. *et al.* An expanded palette of dopamine sensors for multiplex imaging in vivo. *Nat. Methods* **17**, 1147–1155 (2020).
16. Sun, F. *et al.* Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. *Nat. Methods* **17**, 1156–1166 (2020).
17. Hamid, A. A., Frank, M. J. & Moore, C. I. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. *Cell* (2021) doi:10.1016/j.cell.2021.03.046.
18. Lee, S. J. *et al.* Cell-type-specific asynchronous modulation of PKA by dopamine in learning. *Nature* 1–6 (2020) doi:10.1038/s41586-020-03050-5.
19. Kim, H. R. *et al.* A Unified Framework for Dopamine Signals across Timescales. *Cell* **183**, 1600-1616.e25 (2020).
20. Liu, C. *et al.* An action potential initiation mechanism in distal axons for the control of dopamine release. *Science* **375**, 1378–1385 (2022).
21. Feng, J. *et al.* A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. *Neuron* **102**, 745-761.e8 (2019).
22. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 11241–11246 (1999).
23. Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. *Nat. Biotechnol.* **24**, 79–88 (2006).
24. Zhao, Y. *et al.* An expanded palette of genetically encoded Ca^{2+} indicators. *Science* **333**, 1888–1891 (2011).
25. Dana, H. *et al.* Sensitive red protein calcium indicators for imaging neural activity. *eLife* **5**, e12727 (2016).
26. Bindels, D. S. *et al.* mScarlet: a bright monomeric red fluorescent protein for cellular imaging. *Nat. Methods* **14**, 53–56 (2017).
27. Feng, S. *et al.* Improved split fluorescent proteins for endogenous protein labeling. *Nat. Commun.* **8**, 370 (2017).
28. Chien, E. Y. T. *et al.* Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.

676 *Science* **330**, 1091–1095 (2010).

677 29. Yin, J. *et al.* Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. *Nature* **584**, 125–129 (2020).

678 30. Sun, B. *et al.* Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. *Nat. Commun.* **12**, 3305 (2021).

681 31. Zhuang, Y. *et al.* Structural insights into the human D1 and D2 dopamine receptor signaling complexes. *Cell* **184**, 931–942.e18 (2021).

682 32. Wu, J. *et al.* Improved orange and red Ca^{2+} indicators and photophysical considerations for optogenetic applications. *ACS Chem. Neurosci.* **4**, 963–972 (2013).

685 33. Wan, Q. *et al.* Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. *J. Biol. Chem.* **293**, 7466–7473 (2018).

687 34. Kroeze, W. K. *et al.* PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRM. *Nat. Struct. Mol. Biol.* **22**, 362–369 (2015).

689 35. Li, S. *et al.* Multiregional profiling of the brain transmembrane proteome uncovers novel regulators of depression. *Sci. Adv.* **7**, eabf0634 (2021).

691 36. Klapoetke, N. C. *et al.* Independent optical excitation of distinct neural populations. *Nat. Methods* **11**, 338–346 (2014).

693 37. Mingote, S. *et al.* Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions. *J. Neurosci.* **35**, 16259–16271 (2015).

695 38. Leshan, R. L. *et al.* Ventral Tegmental Area Leptin Receptor Neurons Specifically Project to and Regulate Cocaine- and Amphetamine-Regulated Transcript Neurons of the Extended Central Amygdala. *J. Neurosci.* **30**, 5713–5723 (2010).

698 39. Nagel, G. *et al.* Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. *Proc. Natl. Acad. Sci.* **100**, 13940–13945 (2003).

700 40. Greengard, P. The Neurobiology of Slow Synaptic Transmission. *Science* **294**, 1024–1030 (2001).

701 41. Chen, Y. *et al.* Endogenous $\text{G}\alpha_q$ -Coupled Neuromodulator Receptors Activate Protein Kinase A. *Neuron* **96**, 1070–1083.e5 (2017).

703 42. Wang, L. *et al.* A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. *Nat. Commun.* **13**, 5363 (2022).

705 43. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? *Brain Res. Rev.* **28**, 309–369 (1998).

707 44. Gale, G. D. *et al.* Role of the Basolateral Amygdala in the Storage of Fear Memories across the Adult Lifetime of Rats. *J. Neurosci.* **24**, 3810–3815 (2004).

709 45. Ney, L. J. *et al.* Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **105**, 110118 (2021).

711 46. Dong, A. *et al.* A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. *Nat. Biotechnol.* 1–12 (2021) doi:10.1038/s41587-021-01074-4.

713 47. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. *Nature* **406**, 889–893 (2000).

715 48. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. *Nature* **410**, 588–592 (2001).

717 49. Pan, W.-X., Schmidt, R., Wickens, J. R. & Hyland, B. I. Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network. *J. Neurosci.* **25**, 6235–6242 (2005).

720 50. Day, J. J., Roitman, M. F., Wightman, R. M. & Carelli, R. M. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. *Nat. Neurosci.* **10**, 1020–1028 (2007).

722 51. Schultz, W., Dayan, P. & Montague, P. R. A Neural Substrate of Prediction and Reward. *Science* **275**, 1593–1599 (1997).

724 52. Hasselmo, M. E. The role of acetylcholine in learning and memory. *Curr. Opin. Neurobiol.* **16**, 710–715 (2006).

725 53. Jing, M. *et al.* An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. *Nat. Methods* **17**,
726 1139–1146 (2020).

727 54. Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward.
728 *Nature* **535**, 505–510 (2016).

729 55. Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic Projections from Midbrain to Primary
730 Motor Cortex Mediate Motor Skill Learning. *J. Neurosci.* **31**, 2481–2487 (2011).

731 56. da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron activity before action initiation gates
732 and invigorates future movements. *Nature* **554**, 244–248 (2018).

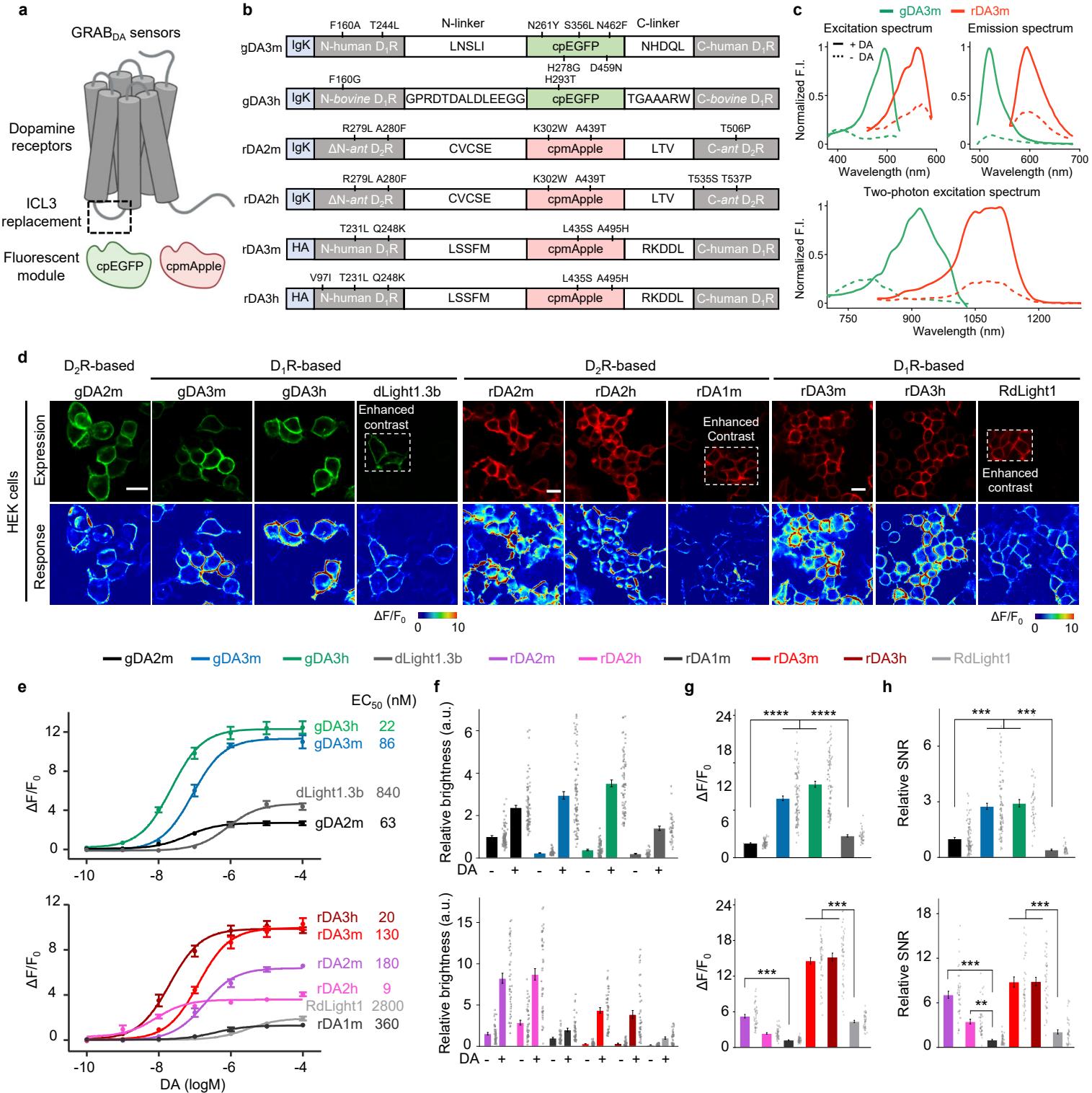
733 57. Thierry, A. M., Tassin, J. P., Blanc, G. & Glowinski, J. Selective activation of the mesocortical DA system by stress.
734 *Nature* **263**, 242–244 (1976).

735 58. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S. & Zigmond, M. J. Differential Effect of Stress on In Vivo
736 Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex. *J. Neurochem.* **52**, 1655–1658
737 (1989).

738 59. Popescu, A. T., Zhou, M. R. & Poo, M. Phasic dopamine release in the medial prefrontal cortex enhances stimulus
739 discrimination. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E3169–E3176 (2016).

740 60. Lammel, S. *et al.* Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine
741 System. *Neuron* **57**, 760–773 (2008).

742 61. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* **6**,
743 343–345 (2009).


744 62. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: Flexible software for operating laser scanning
745 microscopes. *Biomed. Eng. OnLine* **2**, 13 (2003).

746 63. Cantu, D. A. *et al.* EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data. *Front. Neural Circuits*
747 **14**, (2020).

748

749

Fig. 1 | Development and performance of improved dual-color GRAB_{DA} sensors

750 **Fig. 1 | Development and performance of improved dual-color GRAB_{DA} sensors**

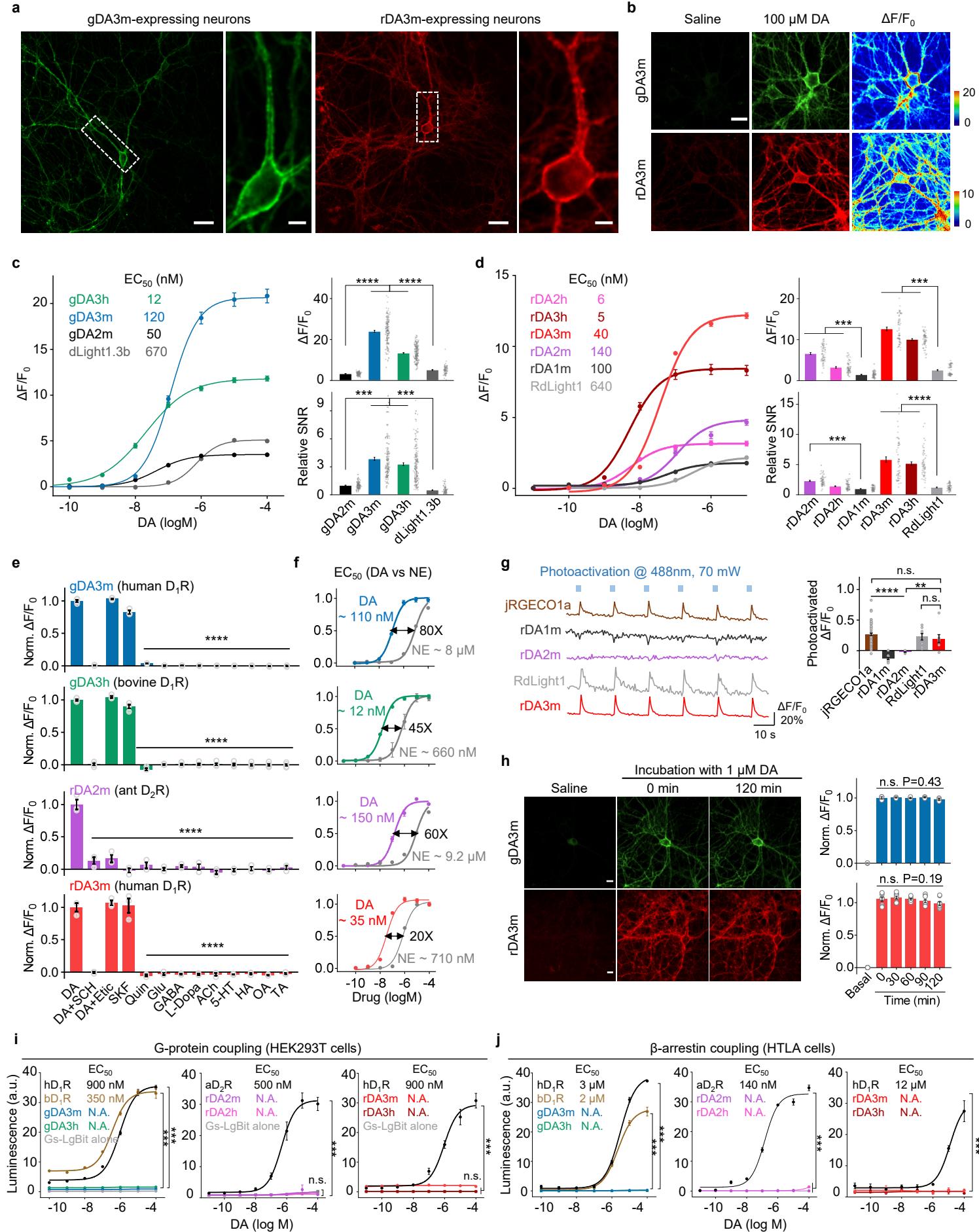
751 **a**, Schematic illustration showing the principle of next-generation green and red fluorescent dopamine sensors.

752 **b**, Schematics of improved dual-color GRAB_{DA} sensors. Mutations are indicated with respect to wild-type receptors
753 and fluorescent proteins. Igk or HA, N terminus leader sequence.

754 **c**, Spectral profiles of GRAB_{DA} sensors. One-photon excitation (top-left), emission (top-right) and two-photon
755 excitation (bottom) spectra of indicated sensors in the absence (dashed lines) or presence (continuous lines) DA are
756 shown.

757 **d**, Representative images showing sensor expression (top) and fluorescence response to 100 μ M DA (bottom) of
758 indicated sensor variants. Scale bar, 20 μ m.

759 **e**, Titration DA curves of indicated sensors on HEK293T cells. Apparent affinity values (apparent EC₅₀) are defined as
760 the concentration of half-maximal fluorescence changes (max $\Delta F/F_0$). Data are shown as mean \pm SEM. $n=4$ wells with
761 400-500 cells per well for gDA3m, 7 for gDA3h, 10 for gDA2m, 8 for dLight1.3b, 7 for rDA2m, 7 for rDA2h, 6 for
762 rDA1m, 12 for rDA3m, 12 for rDA3h, 12 for RdLight1.


763 **f**, Group summary of relative brightness of indicated sensors before and after 100 μ M DA addition. The brightness
764 of green and red sensors was relative to DA2m and rDA1m, respectively. a.u., arbitrary unit. $n=90$ cells from 5
765 separate experiments (hereafter denoted as 90/5) for gDA3m, 82/5 for gDA3h, 88/5 for gDA2m, 37/3 for dLight1.3b,
766 45/3 for rDA2m, 45/3 for rDA2h, 45/3 for rDA1m, 45/3 for rDA3m, 45/3 for rDA3h, 38/3 for RdLight1. One-way
767 ANOVA, post hoc Tukey's test was performed.

768 **g**, Group summary of maximal $\Delta F/F_0$ of indicated sensors in response to 100 μ M DA. $n=130/7$ for gDA3m, 173/8 for
769 gDA3h, 200/10 for gDA2m, 80/4 for dLight1.3b, 45/3 for rDA2m, 45/3 for rDA2h, 45/3 for rDA1m, 45/3 for rDA3m,
770 45/3 for rDA3h, 38/3 for RdLight1. One-way ANOVA, post hoc Tukey's test was performed. n.s. $p=0.2820$ between
771 rDA2h and rDA1m.

772 **h**, Group summary of signal-to-noise ratio (SNR) of indicated sensors. SNR was calculated based on the response to
773 100 μ M DA and was relative to DA2m (green) and rDA1m (red), respectively. $n=95/5$ for gDA3m, 40/3 for gDA3h,
774 96/5 for DA2m, 31/3 for dLight1.3b, 45/3 for rDA2m, 45/3 for rDA2h, 45/3 for rDA1m, 45/3 for rDA3m, 45/3 for
775 rDA3h, 38/3 for RdLight1. One-way ANOVA, post hoc Tukey's test was performed. $p=0.0016$ between rDA2h and
776 rDA1m.

777

Fig. 2 | Characterization of new GRAB_{DA} sensors in cultured cells

778 **Fig. 2 | Characterization of new GRAB_{DA} sensors in cultured cells**

779 **a**, Representative images of gDA3m or rDA3m expressing-primary cultured rat cortical neurons showing cell
780 membrane localization. Scale bar, 100 μ m (left) and 20 μ m (right).

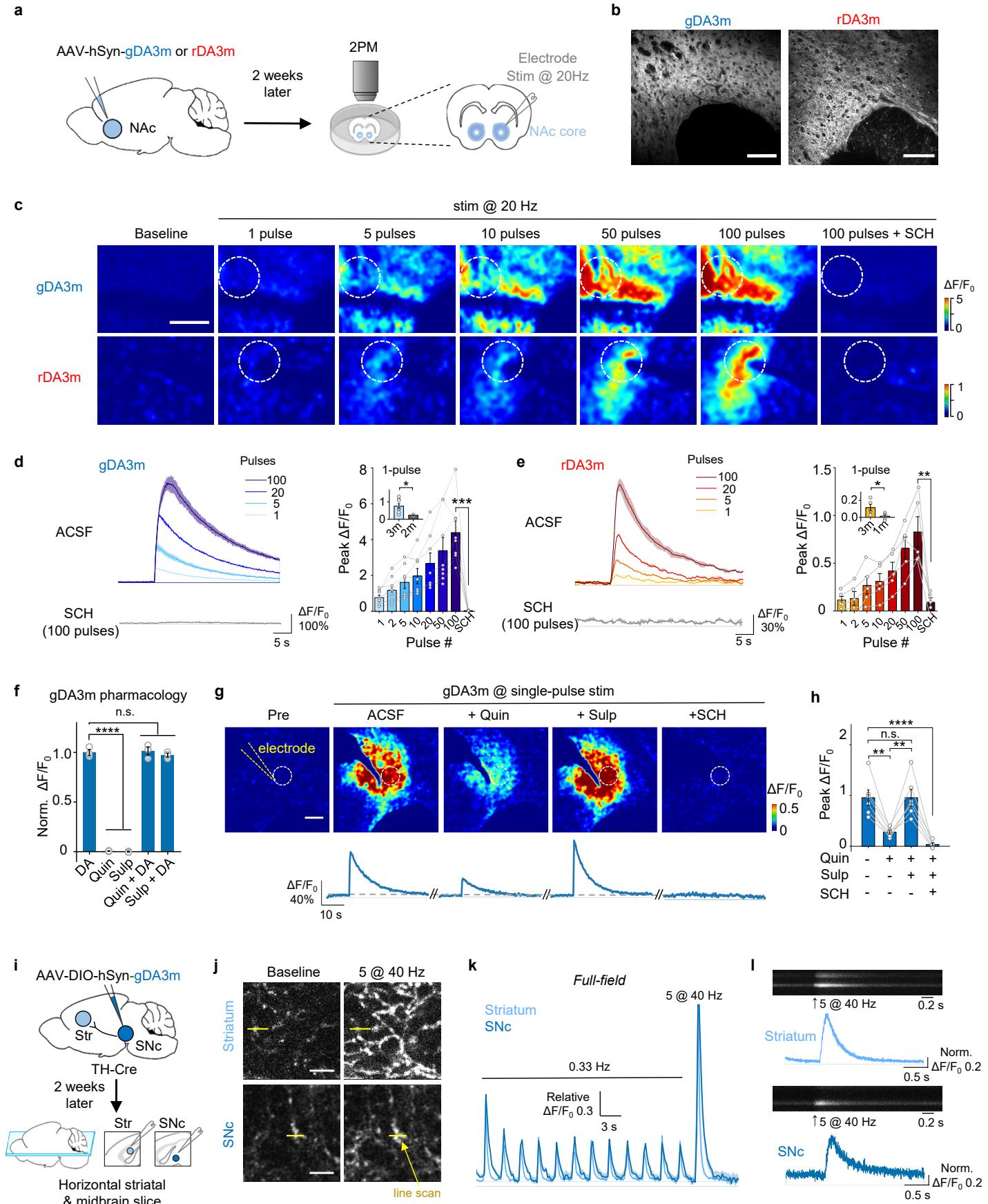
781 **b**, Representative images showing expression and fluorescence response of gDA3m and of rDA3m in dissociated
782 cortical neurons. Scale bar, 50 μ m. Similar results were observed more than 30 cells.

783 **c**, Titration DA curves (left) and group summary of peak response (top-right) and relative SNR (bottom-right) of
784 indicated green dopamine sensors on cultured neurons. Left, $n=60, 60, 120, 60$ neurons for gDA2m, gDA3m, gDA3h
785 and dLight1.3b. Right, $n=130, 175, 200, 80$ neurons respectively. One-way ANOVA, post hoc Tukey's test was
786 performed.

787 **d**, Titration DA curves (left) and group summary of peak response (top-right) and relative SNR (bottom-right) of
788 indicated red dopamine sensors on cultured neurons. Left, $n=30$ neurons for all sensors. Right, $n=60$ neurons for all
789 sensor variants. One-way ANOVA, post hoc Tukey's test was performed. For SNR, n.s. $p=0.7632$ between rDA2h and
790 rDA1m. *** $p=0.005$ between rDA2m and rDA1m.

791 **e**, Pharmacological specificity of gDA3m, gDA3h, rDA2m and rDA3m in neurons. SCH-23390 (SCH), D₁R antagonist;
792 eticlopride (Etic), D₂R antagonist; SKF-81297 (SKF), D₁R agonist; quinpirole (Quin), D₂R agonist; glutamate (Glu);
793 gamma-aminobutyric acid (GABA); levodopa (L-Dopa); acetylcholine (ACh); serotonin (5-HT); histamine (HA);
794 octopamine (OA); tyramine (TA). Antagonists were applied at 10 μ M, others at 1 μ M. $n=4$ wells for gDA3m, $n=5$ wells
795 for gDA3h, $n=3$ wells for rDA2m and rDA3m. Each well contains 100-200 neurons. One-way Anova, post hoc
796 Dunnett's test was performed. gDA3m, n.s. $p=0.0987$ between DA and DA+Etic. gDA3h, n.s. $p=0.2032$ between DA
797 and DA+Etic. rDA3m, n.s. $p=0.8251, 0.9993$ between DA and DA+Etic, or SKF.

798 **f**, Titration curves of indicated sensors for the response to DA or NE in cultured neurons. Data are shown as
799 mean \pm SEM. $n=60$ neurons from 3 experiments.


800 **g**, Representative traces (left) and group summary of $\Delta F/F_0$ (right) of indicated sensors upon blue-light illumination.
801 $n=70, 13, 17, 8, 8$ cells for jRGECO1a, rDA1m, rDA2m, RdLight1 and rDA3m, respectively. One-way ANOVA, post hoc
802 Tukey's test was performed. n.s. $p=0.7180$ between jRGECO1a and rDA3m, $p=0.9927$ between rDA3m and RdLight1,
803 ** $p=0.0083$ between rDA2m and rDA3m.

804 **h**, Representative images (left) and quantification (right) of the change in sensor fluorescence in response to 2-h
805 application of 100 μ M DA. Scale bar, 20 μ m. $n=3, 9$ cultures for gDA3m and rDA3m. One-way ANOVA test was
806 performed for DA-containing groups. n.s. $p=0.4375, 0.1895$ for gDA3m, rDA3m.

807 **i**, G-protein coupling was measured using luciferase complementation assay in cells expressing wild-type receptor,
808 sensor or no receptor (G_{s/i}-LgBit alone, ctrl). Data are shown as mean \pm SEM. $n=3$ cultures.

809 **j**, β -arrestin coupling was measured with Tango assay in cells expressing receptor or sensor. Data are shown as
810 mean \pm SEM. $n=3$ cultures. N.A., not applicable.

Fig. 3 | GRAB_{DA} sensors enable endogenous DA detection in mouse acute brain slices

811 **Fig. 3 | GRAB_{DA} sensors enable endogenous DA detection in mouse acute brain slices**

812 **a**, Schematic illustration depicting the experimental design for panel **b-e**.

813 **b**, Representative fluorescence images showing gDA3m or rDA3m expression in the NAc region. Scale bar, 100 μ m.

814 **c**, Example fluorescence response to indicated electrical stimulation measured in the sensor-expressing brain slices.

815 The dashed circles indicate the ROI used to analyze the responses. Scale bar, 100 μ m.

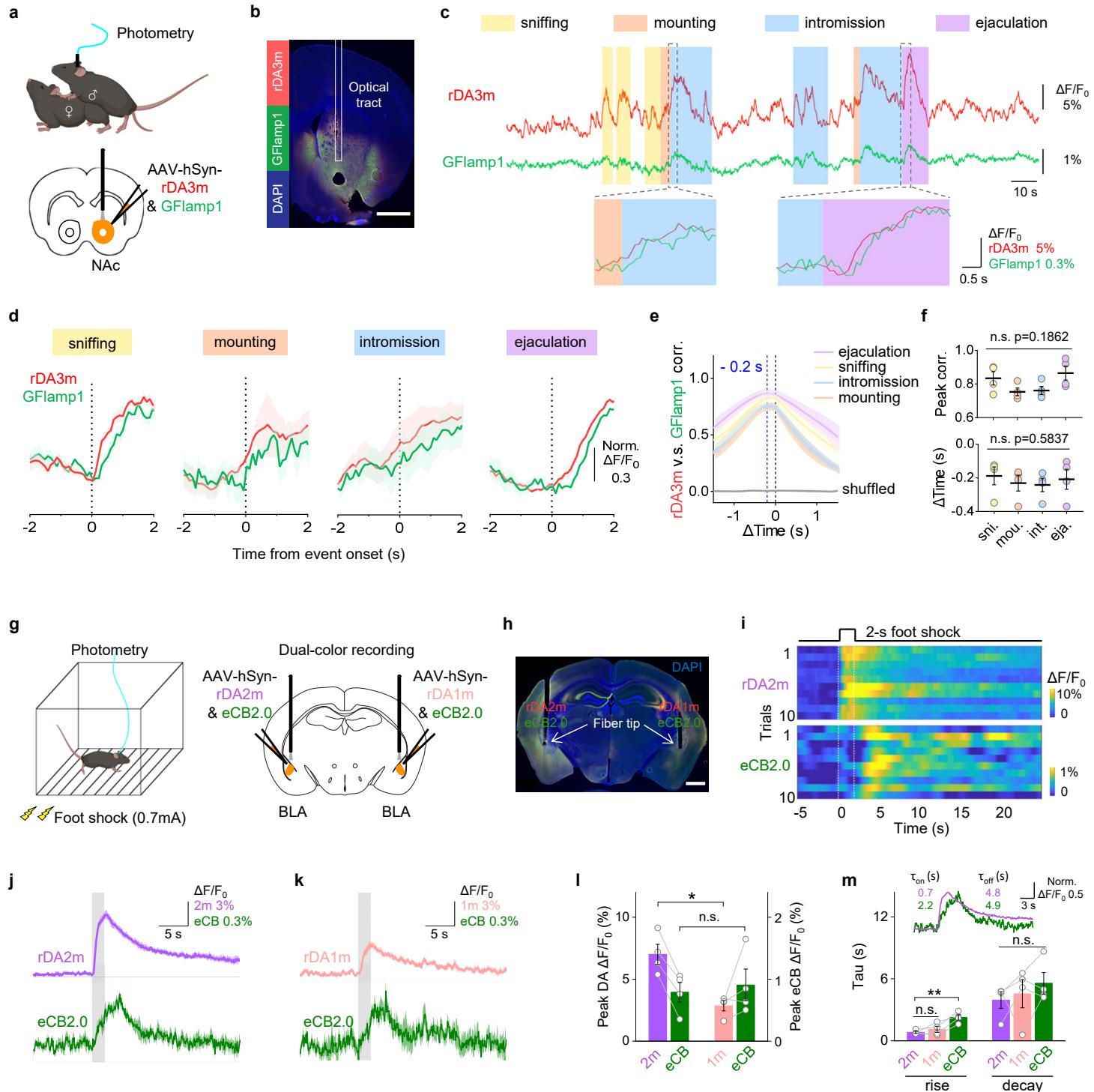
816 **d-e**, Representative traces (left) and group summary (right) of the change in sensor fluorescence in response to
817 electrical stimulation (1 ms per pulse). $n=8$ slices from 5 mice (8/5) for gDA3m and $n=5/4$ for rDA3m. The insets
818 show quantification of the $\Delta F/F_0$ of indicated sensors in response to 1 pulse stimulation. Data replotted from
819 previous results of DA2m and rDA1m¹⁶. Two-tailed Student's t-test was performed. $p=0.0429$ and 0.0138 for gDA3m
820 and rDA3m, $p=0.0076$ between gDA3m and gDA2m, $p=0.0008$ between rDA3m and rDA1m.

821 **f**, Normalized fluorescence change in gDA3m to the indicated compounds (each at 1 μ M). Sulpiride (Sulp), D₂R
822 antagonist. $n=3$ wells with 500-600 cells per well. One-way Anova, post hoc Dunnett's test was performed. $p=0.9813$,
823 0.8848 between DA and DA+Quin, or DA+Sulp.

824 **g**, Representative pseudocolored images (top) and traces (bottom) of the fluorescence response of gDA3m to
825 electrical stimuli (5V, 3ms) in ACSF and following drug treatments (each at 1 μ M). The yellow dashed line indicates
826 the electrode placement. The dashed circles indicate the ROI used to analyze the responses. Scale bar, 100 μ m.

827 **h**, Group summary of fluorescence response of gDA3m to electrical stimulation in either ACSF or the indicated drugs.
828 $n= 6$ slices from 5 mice. One-way ANOVA, post hoc Tukey's test was performed. $p=0.00233$, $p>0.99$, $p<0.0001$
829 between ACSF and Quin, Sulp or SCH; $p=0.00231$ between Quin and Sulp.

830 **i**, Schematic illustration depicting the experiment design of panel **j-l**.


831 **j**, Representative fluorescence images showing gDA3m expression in the striatum (top) and SNC (bottom) in control
832 condition (left) and when delivering 5-pulse stimulation at 40 Hz (right). Scale bar, 5 μ m. The yellow lines indicate
833 the hotspot for line-scanning.

834 **k**, Full-frame fluorescence response in response to a series of indicated electrical stimulation (0.5 ms per pulse). The
835 signals were relative to the peak of the first stimulation. Data are shown as mean \pm SEM. $n = 6$ slices for striatum, n
836 = 9 slices for SNC.

837 **l**, Representative line-scan (500 Hz) image in the striatum (top) and the SNC (bottom) and averaged normalized
838 fluorescence traces in response to multi-pulses 40 Hz stimulus. Data are shown as mean \pm SEM. $n = 6$ areas for
839 striatum and SNC, respectively.

840

Fig. 4 | Multiplexed measurements of DA and other neurochemical signals during natural behaviors

841 **Fig. 4 | Multiplexed measurements of DA and other neurochemical signals during natural behaviors**

842 **a**, Schematic illustration depicting the experimental design for panel **b-f**.

843 **b**, Histological verification of rDA3m and GFlamp1 expression in NAc. DAPI, 4,6-diamidino-2-phenylindole. Scale bar,
844 1 mm.

845 **c**, Example traces (top) and zoom-in traces of rDA3m (red) and GFlamp1 (green) signals ($\Delta F/F_0$) simultaneously
846 measured during the indicated stages of mating.

847 **d**, Group-averaged rDA3m and GFlamp1 fluorescence aligned to event onset for all mice. The signals were
848 normalized to respective maxima and minimum. $n=4$ mice.

849 **e**, Cross-correlation between simultaneously recorded rDA3m and GFlamp1 signals during indicated stages and of
850 shuffle group. $n = 4$ mice.

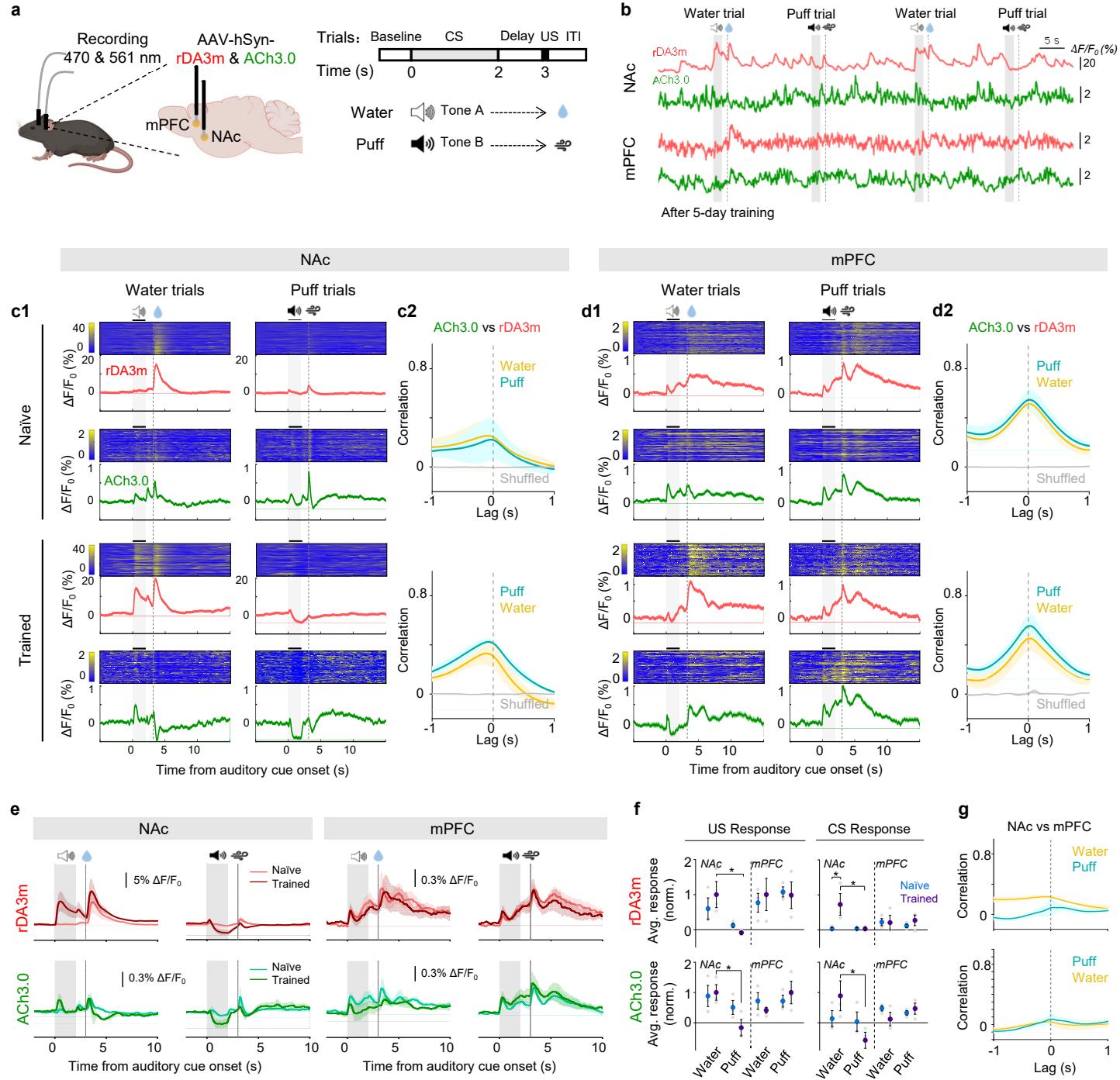
851 **f**, Group summary of peak correlation coefficient (top) and time lag of cross-correlation peak (bottom) between
852 rDA3m and GFlamp1 signals across mating stages. The black lines indicate mean \pm SEM. $n = 4$ mice. One-way ANOVA,
853 post hoc Tukey's test was performed.

854 **g**, Schematic illustration depicting the experimental design for panel **g-k**.

855 **h**, Histological verification of rDA2m and eCB2.0 expression (left side), and rDA1m and eCB2.0 expression (right side)
856 in BLA. Scale bar, 1mm.

857 **i**, Pseudocolored fluorescence responses of rDA2m and eCB2.0 simultaneously measured in the BLA to ten
858 consecutive 2-s foot shock at 0.7 mA.

859 **j**, Average traces of the change in rDA2m (top) and eCB2.0 (bottom) fluorescence from a mouse. The grey shaded
860 area indicates the application of electrical foot shock. Data are shown as mean \pm SD.


861 **k**, Same as **(h)** with simultaneously recorded contralateral rDA1m and eCB2.0 signals.

862 **l**, Group summary of the peak change in fluorescence of indicated sensors to 2-s foot shock. Peak responses were
863 calculated as the maxima during 0-5 s after foot shock initiation. $n=4$ mice. Paired two-tailed Student's t-test was
864 performed. * $p=0.0390$ between rDA2m and rDA1m; $p=0.7019$ between eCB2.0 groups.

865 **m**, Summary of rise and decay time constants measured for the fluorescence change of indicated sensors in
866 response to foot shock. The inset shows the example average trace of rDA2m and eCB2.0 signals that were
867 normalized to respective maxima and minimum. $n=4$ mice. One-way ANOVA, post hoc Dunnett's test was performed.
868 Rise time, $p=0.5742$ and 0.0087 between rDA2m and rDA1m, or eCB2.0. Decay time, $p=0.2180$ for all groups.

869

Fig. 5 | DA and ACh signals in mouse NAc and mPFC during an auditory Pavlovian conditioning task

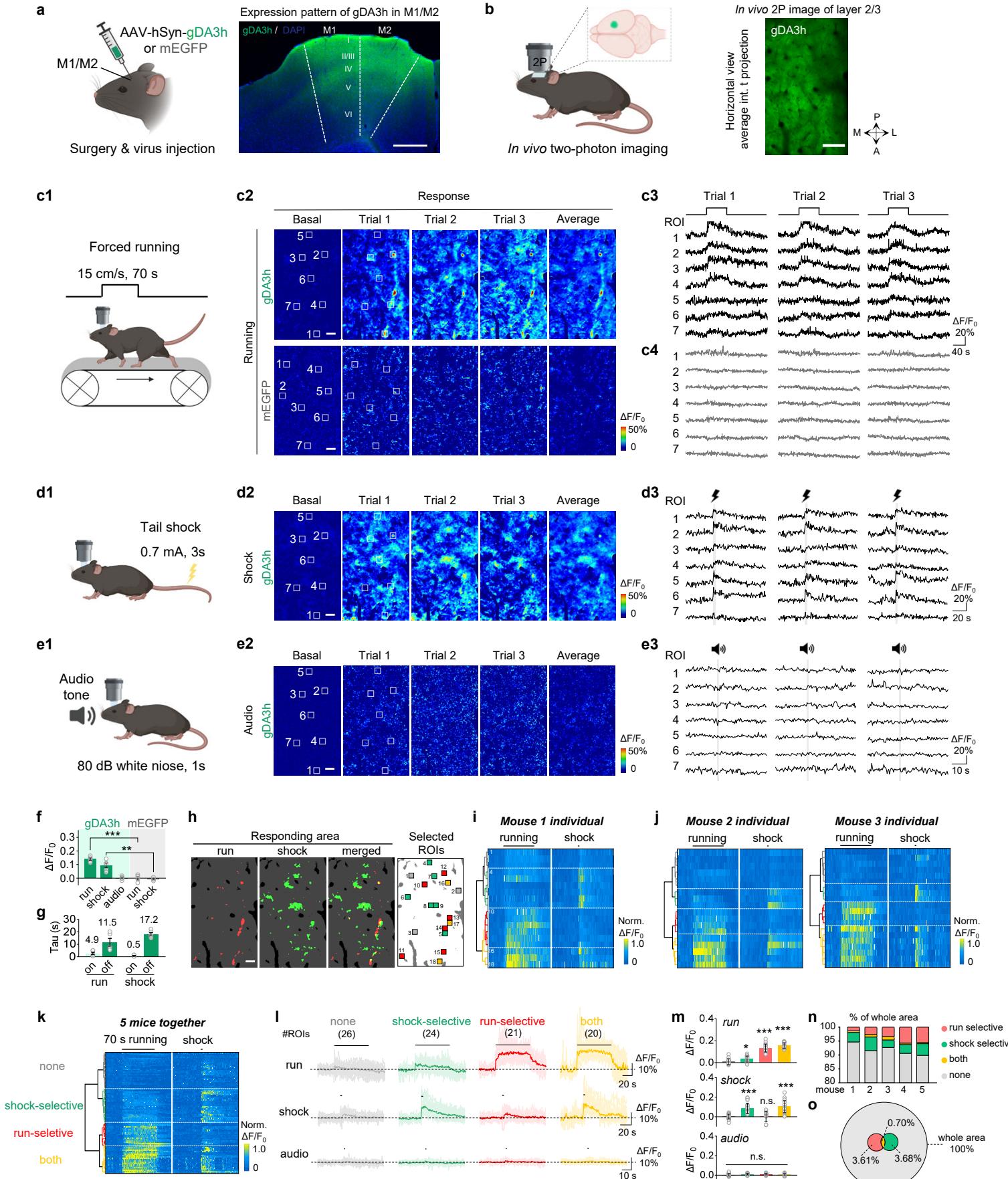
870 **Fig. 5 | DA and ACh signals in mouse NAc and mPFC during an auditory Pavlovian conditioning task**

871 **a**, Schematic illustration depicting experimental design for panel **b-g**.

872 **b**, Example traces of rDA3m (red) and ACh3.0 (green) signals ($\Delta F/F_0$) simultaneously measured in the NAc (top) and
873 mPFC (bottom) from a trained mouse during four consecutive trials. The audio, water and puff delivery are indicated
874 above.

875 **c**, Representative time-aligned pseudocolored images and averaged traces of rDA3m and ACh3.0 fluorescence from
876 a mouse in naïve (top) and trained (bottom) state (**c1**). Shown are 100 consecutive trials (mean \pm SD) in one mouse.
877 The grey shaded area indicates the application of audio. The dashed line indicates the delivery of water or puff.
878 Session-wide correlation between rDA3m and ACh3.0 signals across naïve (top) and trained sessions (bottom) (**c2**).
879 $n=3$ mice.

880 **d**, same as (**c**) with simultaneously recorded rDA3m and ACh3.0 signals in the mPFC.


881 **e**, Group-averaged rDA3m (top) and ACh3.0 (bottom) fluorescence in the NAc (left) and mPFC (right) for all mice
882 under naïve and trained state. Water or puff sessions are indicated above. $n=3$ mice.

883 **f**, Group analysis of the normalized average change of rDA3m (top) and ACh3.0 (bottom) signals to US (left) and CS
884 (right) in different sessions. The average response was calculated as the average $\Delta F/F_0$ in the 1 s after the behavior
885 onset. The grey points indicate data from individual animal; Average and SEM are shown by data points with state-
886 represented color. $n=3$ mice. Two-way ANOVA, post hoc Sidak's test was performed between water and puff sessions
887 and between naïve and trained state. Responses in the trained mice NAc, $p=0.0145$ (rDA3m-US), 0.0287 (rDA3m-
888 CS), 0.0371 (ACh3.0-US), 0.0356 (ACh3.0-CS) between water and puff trial; rDA3m water trial CS response in the
889 NAc, $p=0.0290$ between naïve and trained.

890 **g**, Session-wide cross-correlation between rDA3m (top) or ACh (bottom) signals recorded in the NAc and mPFC. $n=3$
891 mice.

892

Fig. 6 | Spatially resolved heterogeneous cortical DA dynamics in mice

893 **Fig. 6 | Spatially resolved heterogeneous cortical DA dynamics in mice**

894 **a-b**, Schematic illustration depicting the strategy for virus injection and head-fix two-photon imaging in the mouse
895 motor cortex. Example fluorescence image showing gDA3h expression in the M1/M2 region in a coronal brain slice
896 (**a**). Scale bar, 500 μ m. Representative *in vivo* 2P image of the layer 2/3 in the M1/M2 cortex showing gDA3h
897 fluorescence (**b**). Scale bar, 100 μ m.

898 **c**, Schematic cartoon illustrating the forced running experiments (**c1**), representative pseudocolored response
899 images (**c2**) and traces measured at indicated ROIs during three consecutive trials (**c3**) in the head-fix mice
900 expressing gDA3h (top) or membrane-targeted EGFP (mEGFP, bottom). The white squares indicate ROI to analyze
901 signals. Scale bar, 50 μ m.

902 **d-e**, Similar to (**c**) except mice were subjected to 3-s tail shock, 0.7mA (**d**) or 1-s audio stimulation (**e**). Two-photon
903 imaging was performed in the same region across different behaviors.

904 **f**, Group summary of the peak fluorescence change measured in the motor cortex in mice expressing gDA3h or
905 mEGFP in response to indicated stimulus. $n=5$ mice for gDA3h and 4 mice for mEGFP. Two-tailed Student's t-test was
906 performed. $p<0.0001$ between gDA3h and mEGFP for running and $p=0.0017$ for shock.

907 **g**, Group summary of the rise and decay time constant of the gDA3h signals in response to forced running and tail
908 shock. $n=5$ mice.

909 **h**, Example image showing the spatial responding pattern to forced running, tail shock, merge and ROI selection.
910 The responding area was defined according to fluorescence signals during indicated behaviors. ROIs (30 μ m x 30
911 μ m) were randomly selected inside and outside of responding area and colored according to the type of
912 fluorescence responses.

913 **i**, Hierarchical clustering of ROI-specific responses to running and shock from a mouse. ROIs were indicated in (**h**).

914 **j**, Same to (**h**) with data collected from another two mice.

915 **k**, Population data showing hierarchical clustering of ROI-specific response. $n=91$ ROIs from 5 mice.


916 **l-m**, Average (bold lines) and individual (thin lines) traces (**l**) and quantifications of response amplitudes (**m**) from
917 ROIs within each cluster in (**k**) during different behaviors. The black lines indicate the application of indicated
918 stimulus. $n=26, 24, 21$ and 20 ROIs from 5 mice for each cluster. One-way ANOVA, post hoc Tukey's test was
919 performed. Forced running, $p=0.0128$ between *none* and *shock*; $p=0.0585$ between *running* and *both*. Tail shock,
920 $p=0.9989$ between *none* and *running*; $p=0.6474$ between *shock* and *both*. Audio, n.s. $p=0.0766$ for all clusters.

921 **n**, Percentage of area that was responsive to the indicated stimulus as in (**h**).

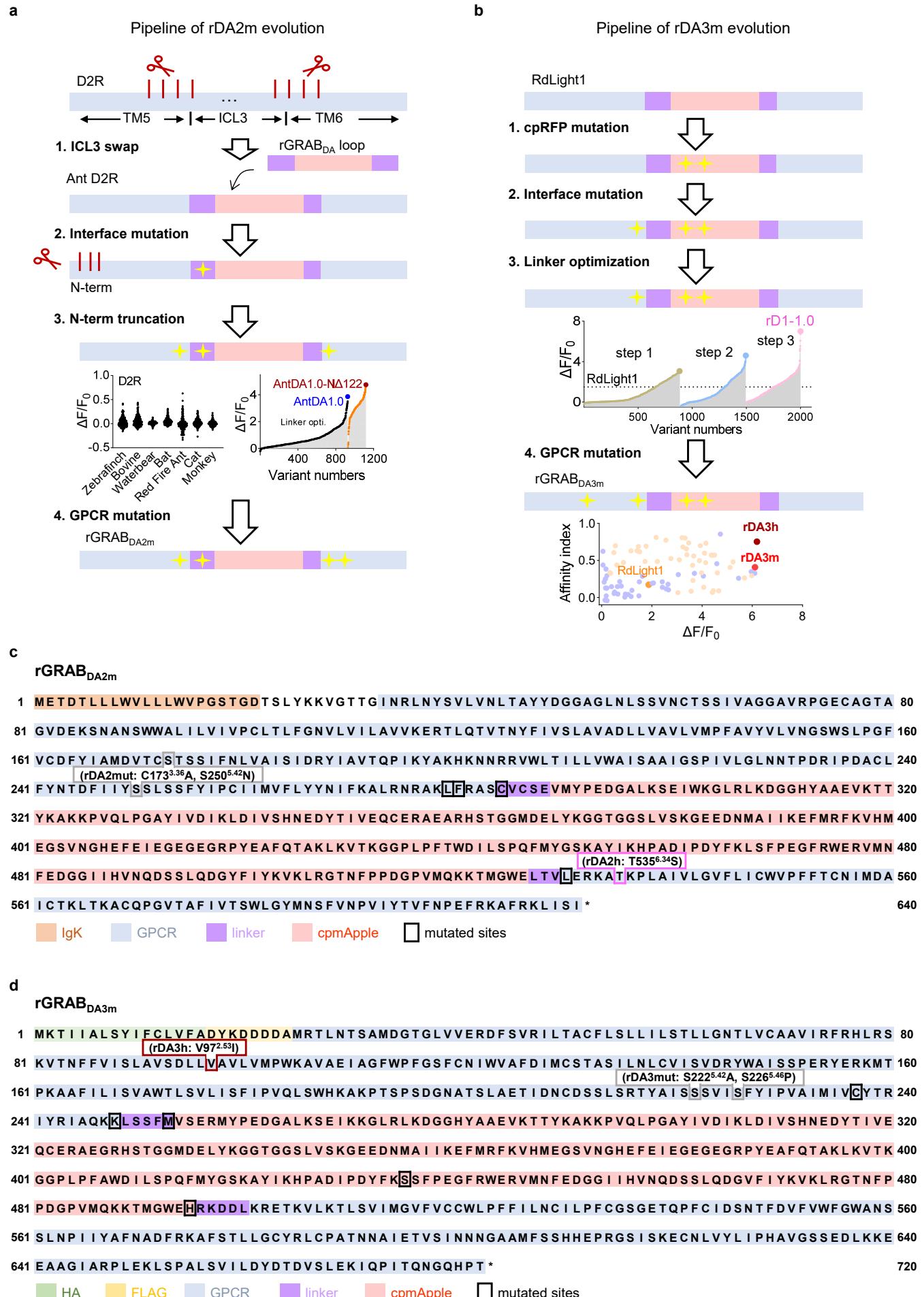
922 **o**, Venn diagram of the imaged motor cortex area that was responsive to the indicated stimulus. Data collected from
923 5 mice.

924

Extended Data Fig. 1 | Strategy for optimizing and screening the green GRAB_{DA} sensors.

925 **Extended Data Fig. 1 | Strategy for optimizing and screening the green GRAB_{DA} sensors.**

926 **a**, A flowchart showing the development process (top) and screening (bottom) of the gDA3m sensor. $\Delta F/F_0$
927 represents the fluorescence change of sensor variants in response to 100 μM DA. The ICL3 domain of human D₁R
928 was replaced by the entire ICL3 (including linker and cpGFP) derived from several existing GPCR-based sensors
929 (GRAB_{DA2m}, GRAB_{NE} and dLight1.3b). Newly generated candidate with highest $\Delta F/F_0$ after ICL3 replacement (ICL3
930 from dLight1.3b) was then selected for further cpEGFP optimization, linker optimization and GPCR engineering.


931 **b**, A flowchart showing the development process and screening of the gDA3h sensor. The ICL3 domains of dopamine
932 D1 receptors from diverse species were replaced by the entire ICL3 from GRAB_{NE} sensor. Further optimization on
933 the best chimera candidate (with bovine D₁R backbone) includes ICL3 truncation for an optimal length, cpGFP
934 mutation for improved brightness and response, as well as GPCR engineering for affinity tuning.

935 **c**, Amino acids sequence of the gDA3m sensor. The mutations adopted in the gDA3m sensor are indicated by the
936 black box. The serine residue at position 229^{5.42} in the human D₁R was mutated to an alanine to generate the gDA3-
937 mut sensor (indicated by the gray box).

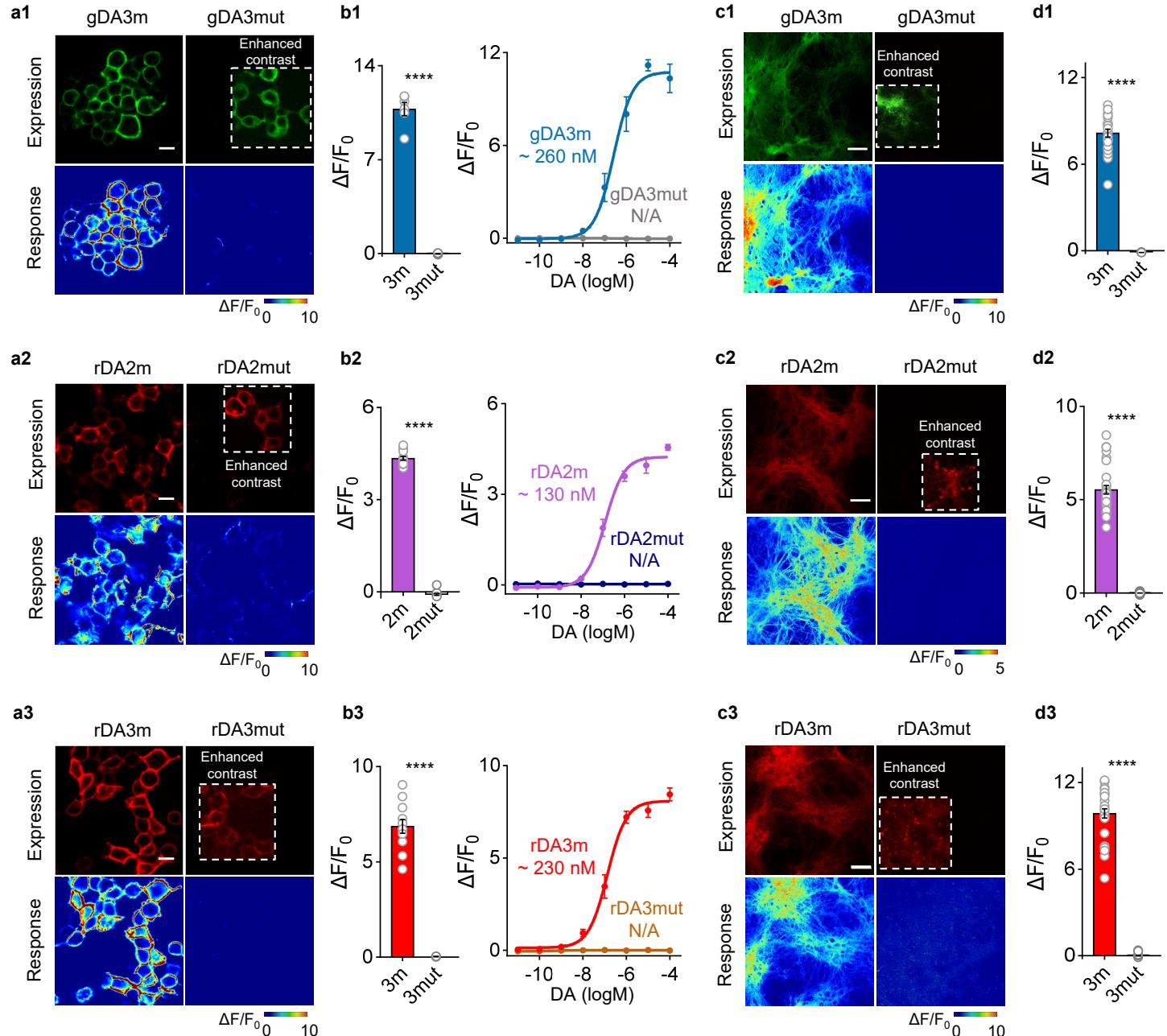
938 **d**, Amino acids sequence of the gDA3h sensor. The mutations adopted in the gDA3h sensor are indicated by the
939 black box.

940

Extended Data Fig. 2 | Strategy for optimizing and screening the red GRAB_{DA} sensors.

941 **Extended Data Fig. 2 | Strategy for optimizing and screening the green GRAB_{DA} sensors.**

942 **a**, A flowchart showing the development process and screening of the rDA2m sensor. The ICL3 domains of dopamine
943 D2 receptors from diverse species were replaced by the entire ICL3 from rGRAB_{DA} sensor. Further optimization on
944 the best chimera candidate (with ant D₂R backbone) includes interface mutation (loop adjacent sites on the TM5
945 and TM6 of GPCR), receptor N-terminus truncation and GPCR mutation.


946 **b**, A flowchart showing the development process and screening of the rDA3m and rDA3h sensor. The cpRFP module,
947 RFP-GPCR interface, linker region and GPCR backbone of previously reported red dopamine sensor RdLight1 were
948 systematically optimized.

949 **c**, Amino acids sequence of the rDA2m sensor. The mutations adopted in the rDA2m sensor are indicated by the
950 black box. The tyrosine residue at position 535^{6,34} in the ant D₂R was mutated to serine to generate the high affinity
951 rDA2h sensor (indicated by the magenta box). The cysteine to alanine mutation at position 173^{3,36} and serine to
952 asparagine at position 250^{5,42} were adopted to generate the rDA2-mut sensor (indicated by the gray box).

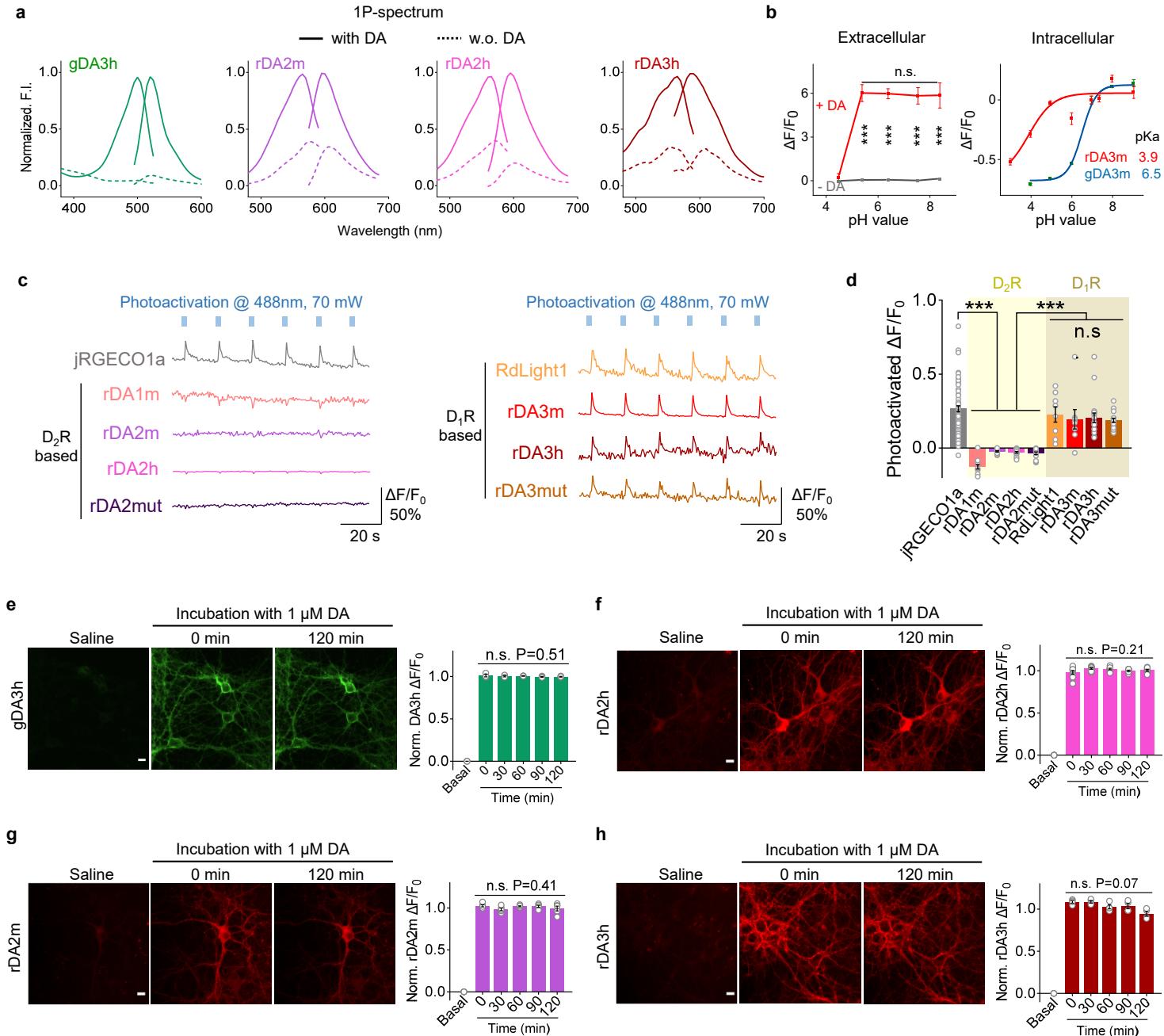
953 **d**, Amino acids sequence of the rDA3m sensor. The mutations adopted in the rDA3m are indicated by the black box.
954 The valine residue at position 97^{2,53} in the human D₁R was mutated to isoleucine to generate the high affinity rDA3h
955 sensor (indicated by the dark red box). The serine to alanine mutation at position 222^{5,42} and serine to proline at
956 position 226^{5,46} were adopted to generate the rDA3-mut sensor (indicated by the gray box).

957

Extended Data Fig. 3 | Performance of DA-insensitive mutant sensors.

958
959
960
961
962
963
964
965
966
967
968
969

Extended Data Fig. 3 | Performance of DA-insensitive mutant sensors.


a, Representative images showing sensor expression (top) in HEK293T cells and fluorescence response to 100 μ M DA (bottom) of indicated sensor variants. Scale bar, 20 μ m.

b, Group summary of maximal $\Delta F/F_0$ in response to 100 μ M DA (left) and titration DA curves (right) of indicated sensors in HEK293T cells. Left, $n=6, 6, 15, 15, 12, 3$ wells for gDA3m, gDA3mut, rDA2m, rDA2mut, rDA3m and rDA3mut. Each well contains 400-500 cells. Two-tailed Student's t-test was performed. Right, $n=3$ wells (with 400-500 cells per well) for each group.

c, Representative images showing sensor expression (top) in cultured neurons and fluorescence response to 100 μ M DA (bottom) of indicated sensor variants. Scale bar, 50 μ m.

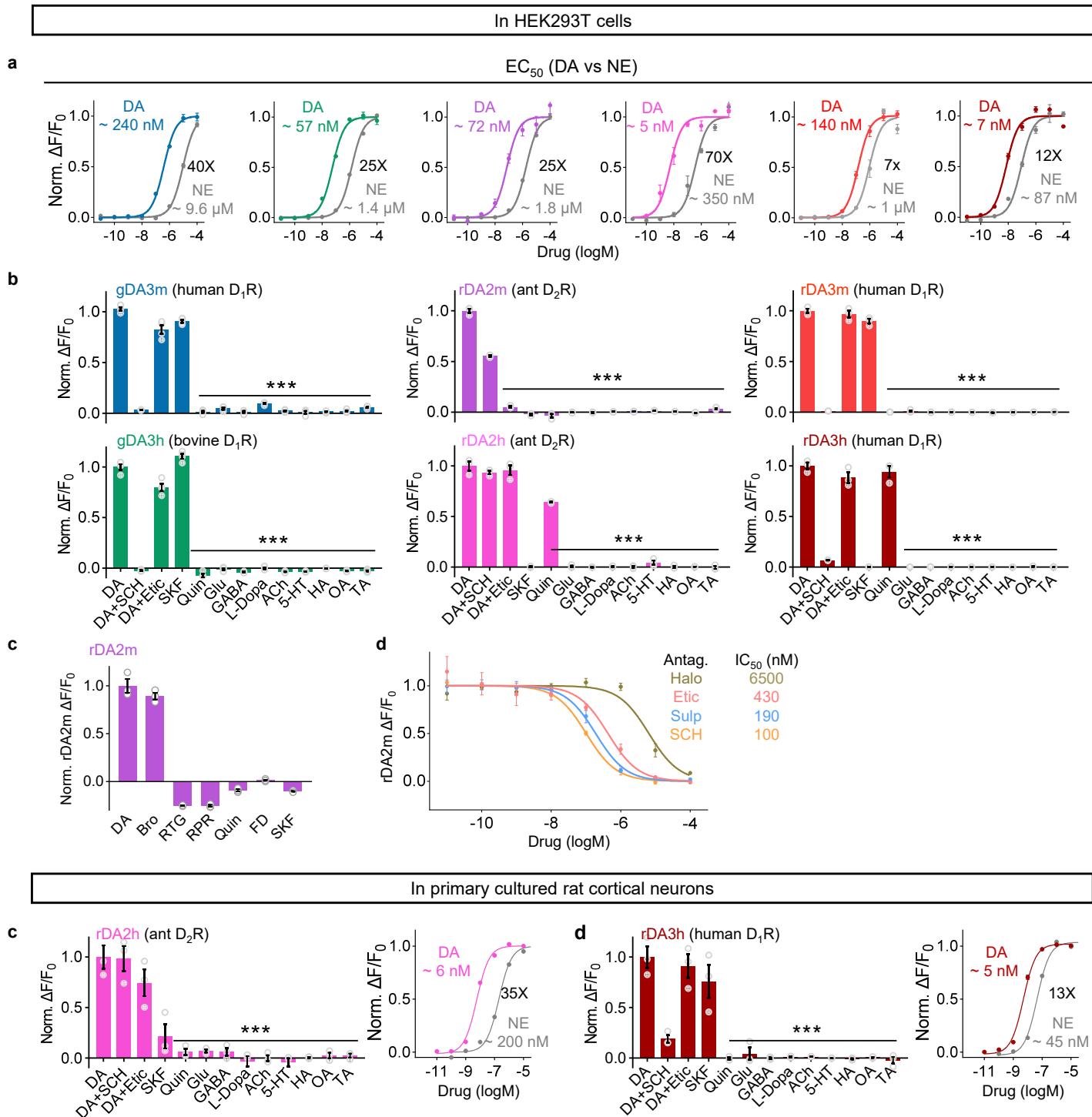
d, Group summary of maximal $\Delta F/F_0$ of indicated sensors in response to 100 μ M DA in cultured neurons. $n=60$ neurons from 4 cultures for rDA2mut, $n=30/2$ for others. Two-tailed Student's t-test was performed.

Extended Data Fig. 4 | Characterization of GRAB_{DA} sensors in HEK393T cells and cultured neurons.

970 **Extended Data Fig. 4 | Characterization of GRAB_{DA} sensors in HEK393T cells and cultured neurons.**

971 **a**, Excitation and emission spectra for the indicated sensors in the absence and presence of DA.

972 **b**, The effect of pH on GRAB_{DA} signals. Left, quantification for DA- or buffer-induced fluorescence responses of
973 indicated sensors under different extracellular pH conditions. n=3 wells with 400-500 cells per well. Right,
974 quantification for the relative buffer-induced fluorescence response of indicated sensors. The sensor-expressing
975 HEK293T cells were gently permeabilized by detergent Triton-X100 (0.3% for ~ 5 minutes). The fluorescence
976 intensity of pH 6.95 was set as F_0 and the relative fluorescence changes in each pH value were plotted. n=3 wells
977 (with ~2 x 10⁵ cells per well).


978 **c-d**, Representative traces (**c**) and group summary of $\Delta F/F_0$ (**d**) of indicated sensors upon blue-light illumination. n=

979 18, 14, 18, 16 cells for rDA2h, rDA2mut, rDA3h and rDA3mut; other data replotted from Fig. 2g.

980 **e-h**, Representative images (left) and quantification (right) of the change in sensor fluorescence in response to 2-h
981 application of 100 μ M DA. Scale bar, 20 μ m. n=3, 8, 5, 4 cultures for gDA3h, rDA2h, rDA2m and rDA3h. One-way
982 ANOVA test was performed for DA-application groups. n.s. p=0.5104, 0.2183, 0.4101, 0.0652 for gDA3h, rDA2h,
983 rDA2m and rDA3h.

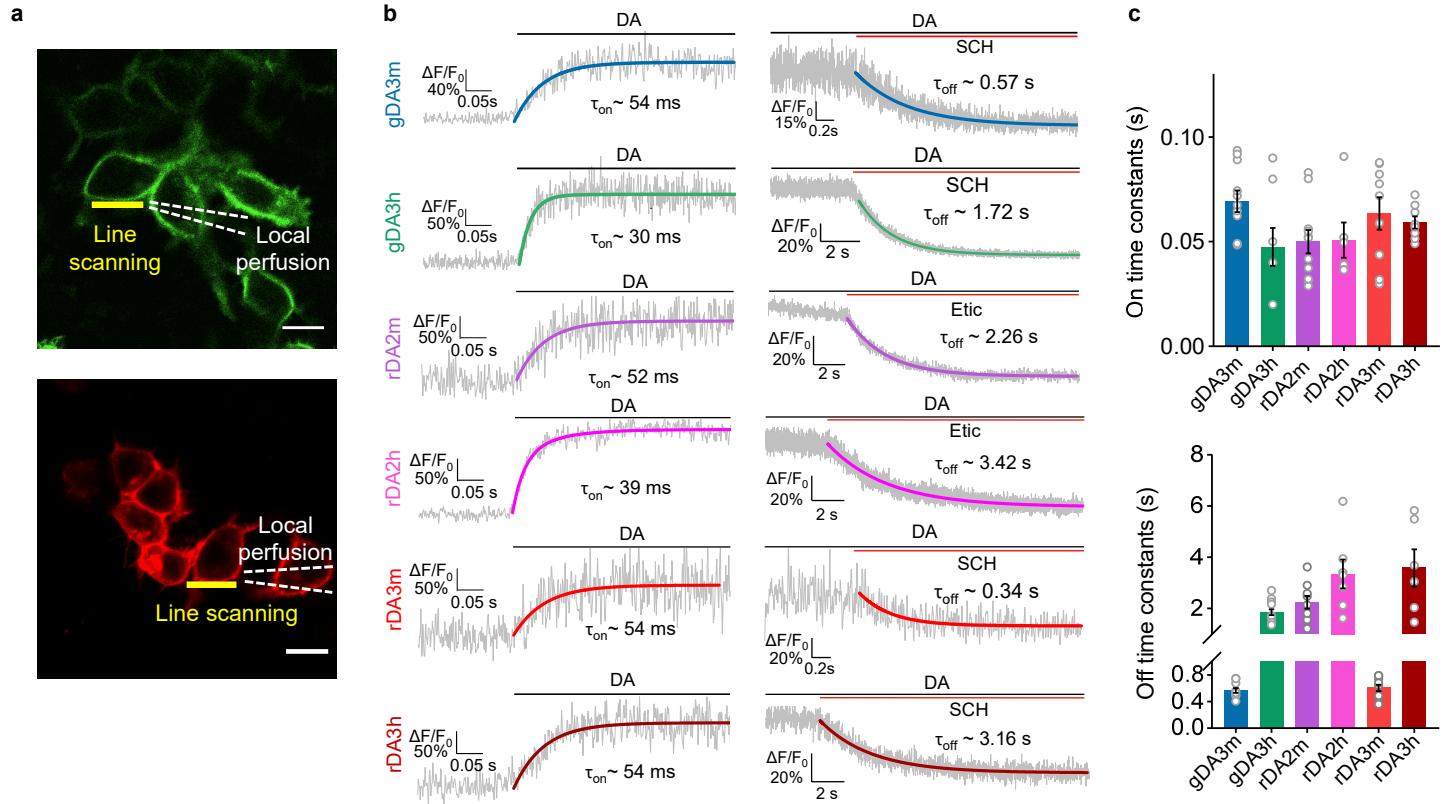
984

Extended Data Fig. 5 | Pharmacological profiles of new GRAB_{DA} sensors measured in cultured cells.

985 **Extended Data Fig. 5 | Pharmacological profiles of new GRAB_{DA} sensors measured in cultured cells.**

986 **a**, Titration curves of indicated sensors for the response to DA or NE in HEK293T cells. $n=3$ cells with 400-500 cells
987 per well.

988 **b**, The normalized $\Delta F/F_0$ in sensor-expressing HEK293T cells in response to the indicated compounds. Antagonists
989 were applied at 10 μ M, others at 1 μ M. $n=4$ wells for gDA3m and gDA3h, $n=3$ wells for others.


990 **c**, The normalized $\Delta F/F_0$ in rDA2m-expressing HEK293T cells in response to indicated DA agonists. Bromocriptine
991 (Bro), Rotigotine (RTG), D₂R/D₁R agonists; Ropinirole (RPR), Quin, D₂R-specific agonists; Fenodopam (FD), SKF, D₁R-
992 specific agonist. All chemicals were bath-applied in 100 μ M. One-way Anova, post hoc Dunnett's test was performed.
993 n.s. $p=0.1074$ between DA and Bro.

994 **d**, Titration curves of indicated dopamine receptor antagonists. The fluorescence intensity in the presence with 10
995 μ M DA was set as F_0 and the relative fluorescence changes under indicated compound concentration were plotted.

996 **e-f**, Pharmacological specificity (left) and titration curves of indicated sensors for the response to DA or NE (right)
997 in cultured neurons. Left, antagonists were applied at 10 μ M, others at 1 μ M. $n=3$ wells. One-way Anova, post hoc
998 Dunnett's test was performed. rDA2h, n.s. $p=0.9998$, 0.1458 between DA and DA+SCH, or DA+Etic; rDA3m, n.s.
999 $p=0.9591$, 0.1309 between DA and DA+Etic, or SKF.

1000

Extended Data Fig. 6 | Kinetics measurement of new GRAB_{DA} sensors in HEK293T cells.

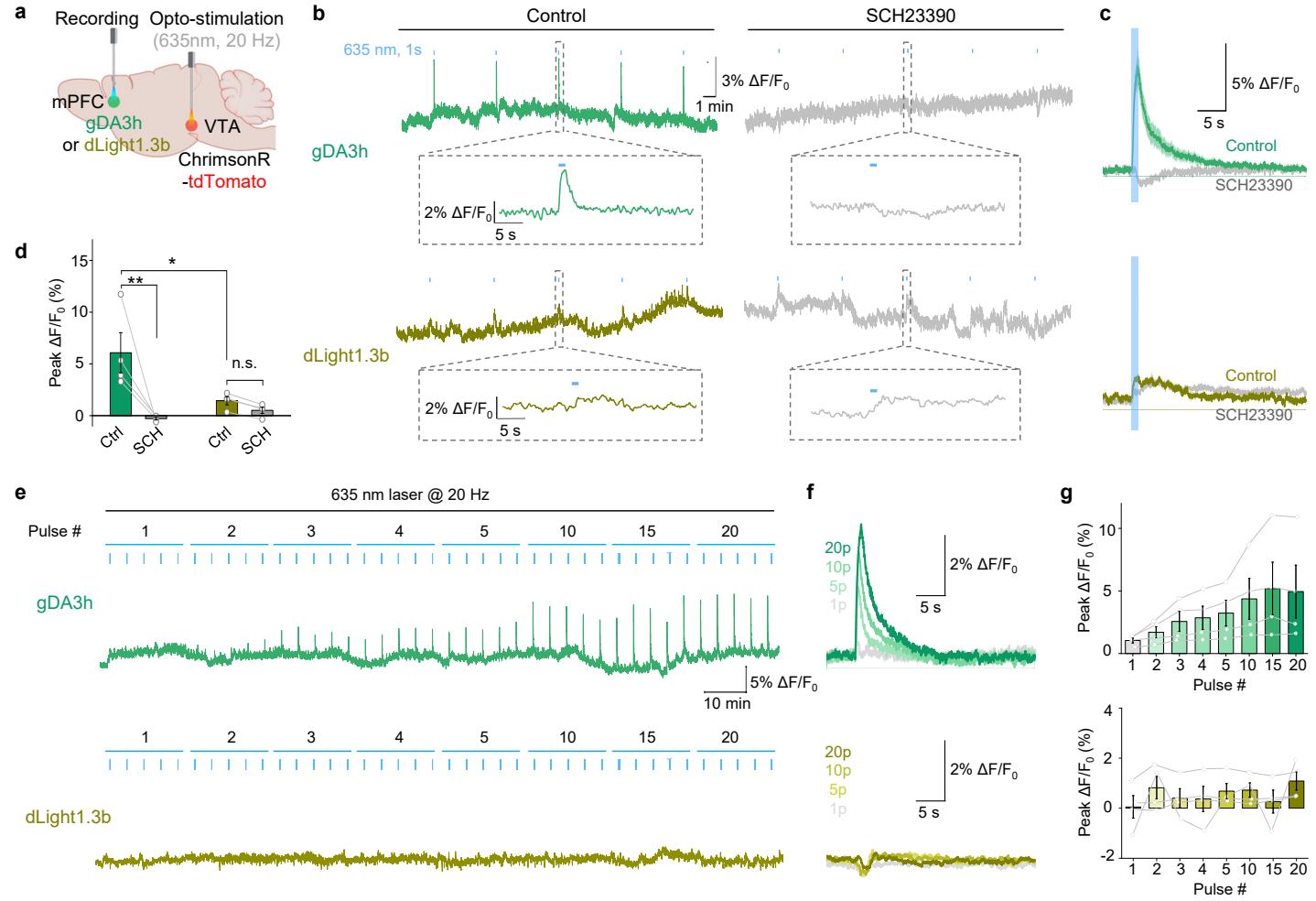
1001 **Extended Data Fig. 6 | Kinetics measurement of new GRAB_{DA} sensors in HEK293T cells.**

1002 **a**, Schematic illustration showing the local perfusion system using a glass pipette containing 100 μ M DA and/or
1003 receptor-specific antagonist positioned above the sensor-expressing cell. The yellow line indicates the area for line
1004 scanning. The dash lines indicate the pipette. Scale bar, 20 μ m.

1005 **b**, Representative traces showing the response measured using line-scanning; when indicated, DA and receptor-
1006 specific antagonist were puffed onto the cell. The trace were the average of 3 different ROIs on the scanning line.
1007 Data are shown as mean \pm SD. Each trace was fitted with a single-exponential function to determine the τ_{on} (left) and
1008 τ_{off} (right).

1009 **c**, Group summary of τ_{on} and τ_{off} . τ_{on} , $n= 11, 8, 11, 6, 9, 8$ cells for gDA3m, gDA3h, rDA2m, rDA2h, rDA3m, rDA3h. τ_{off} ,
1010 $n=10, 14, 9, 7, 10, 6$ cells for gDA3m, gDA3h, rDA2m, rDA2h, rDA3m, rDA3h.

1011


Supplementary Table 1: Properties of genetically encoded GPCR-based dopamine sensors

Sensor	Color	GPCR backbone	Maximal brightness	Response (maximum $\Delta F/F_0$)	Apparent affinity (EC ₅₀ , nM)	On kinetics (tau, ms)	Off kinetics (tau, s)	1-photon Ex./Em. (nm)	Blue-light photoactivated $\Delta F/F_0$	Source
gDA2m	G	D ₂ R (human)	2.4 ^{a,c}	2.4 ^a 3.3 ^b	60 ^a 45 ^b	60*	0.71*	ND	-	ref. ¹⁶
dLight1.3b	G	D ₁ R (human)	1.4 ^{a,c}	3.7 ^a 5.2 ^b	870 ^a 690 ^b	ND	ND	ND	-	ref. ¹³
gDA3m	G	D ₁ R (human)	3.0 ^{a,c}	10.0 ^a 24.0 ^b	89 ^a 120 ^b	69	0.56	495/520	-	this paper
gDA3h	G	D ₁ R (bovine)	3.5 ^{a,c}	12.4 ^a 13.4 ^b	22 ^a 12 ^b	48	1.85	500/520	-	this paper
rDA1m	R	D ₂ R (human)	2.0 ^{a,d}	1.2 ^a 1.5 ^b	370 ^a 100 ^b	80*	0.77*	565/595*	-0.12	ref. ¹⁶
rDA2m	R	D ₂ R (red fire ant)	8.2 ^{a,d}	5.3 ^a 6.6 ^b	210 ^a 140 ^b	50	2.24	565/595	-0.02	this paper
rDA2h	R	D ₂ R (red fire ant)	8.7 ^{a,d}	2.4 ^a 3.3 ^b	9.8 ^a 6.0 ^b	50	3.35	565/595	-0.03	this paper
RdLight1	R	D ₁ R (human)	1.0 ^{a,d}	4.4 ^a 2.6 ^b	2700 ^a 310 ^b	ND	ND	560/588*	0.23	ref. ¹⁵
rDA3m	R	D ₁ R (human)	4.3 ^{a,d}	14.6 ^a 12.6 ^b	140 ^a 40 ^b	64	0.61	560/595	0.19	this paper
rDA3h	R	D ₁ R (human)	3.8 ^{a,d}	14.2 ^a 10.1 ^b	22 ^a 5.5 ^b	60	3.60	565/585	0.20	this paper

G: green; R: red; Ex: excitation wavelength; Em: emission wavelength; ND: not determined; ^a determined in HEK293T cells; ^b determined in cultured neurons; ^c relative to basal brightness of gDA2m; ^d relative to basal brightness of rDA1m; * previously reported results; kinetics was estimated in HEK293T cells to puff ligand application; photoactivation was estimated in HEK293T cells with 488-nm illumination in ligand-free condition.

Note: All data were collected in this paper unless indicated.

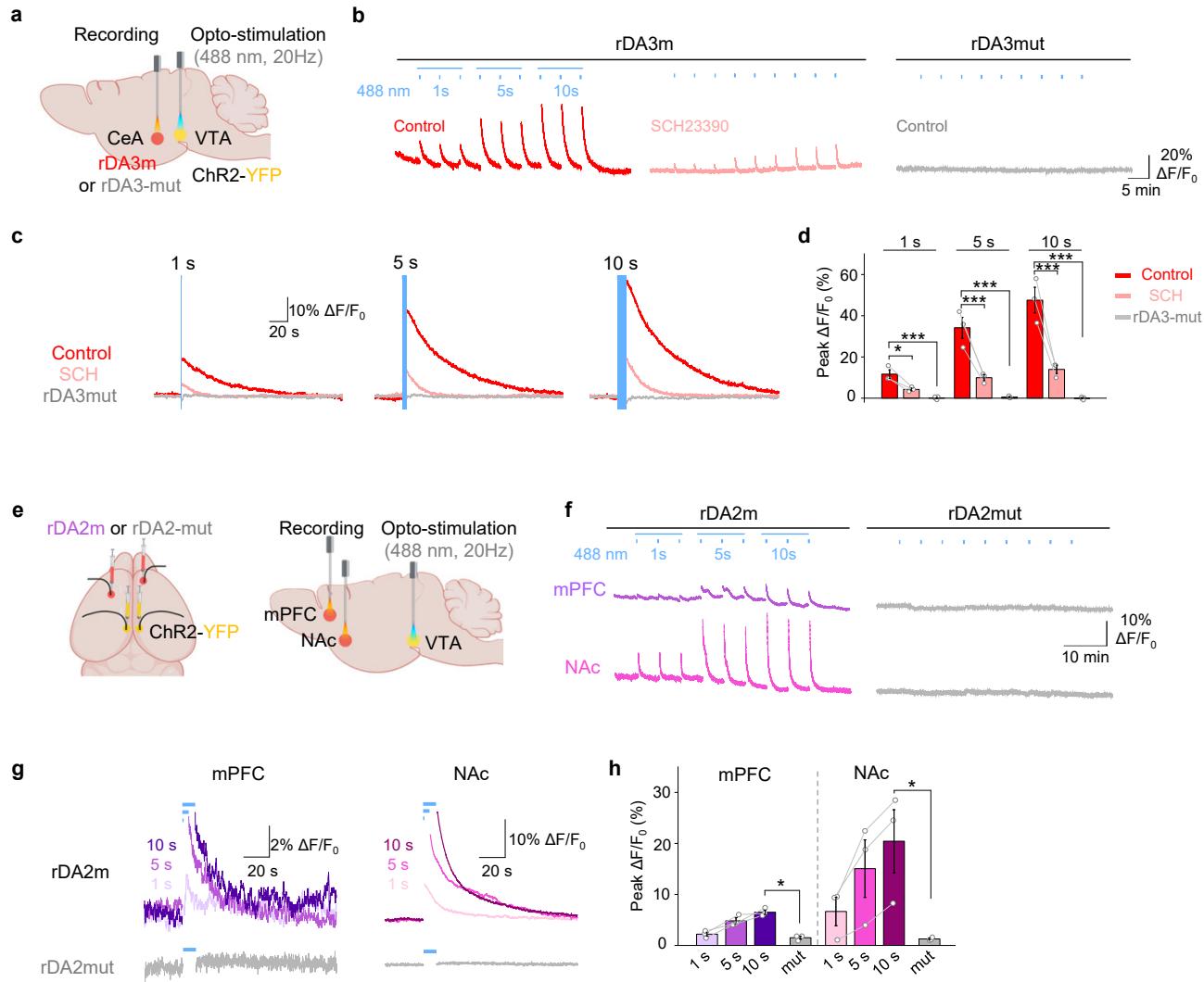
Extended Data Fig. 7 | gGRAB_{DA3h} sensors report optogenetically-elicited DA release in the mouse mPFC

1012 **Extended Data Fig. 7 | gGRAB_{DA3h} sensors report optogenetically-elicited DA release in the mouse mPFC**

1013 **a**, Schematic illustration depicting the experimental design for panel **b-g**.

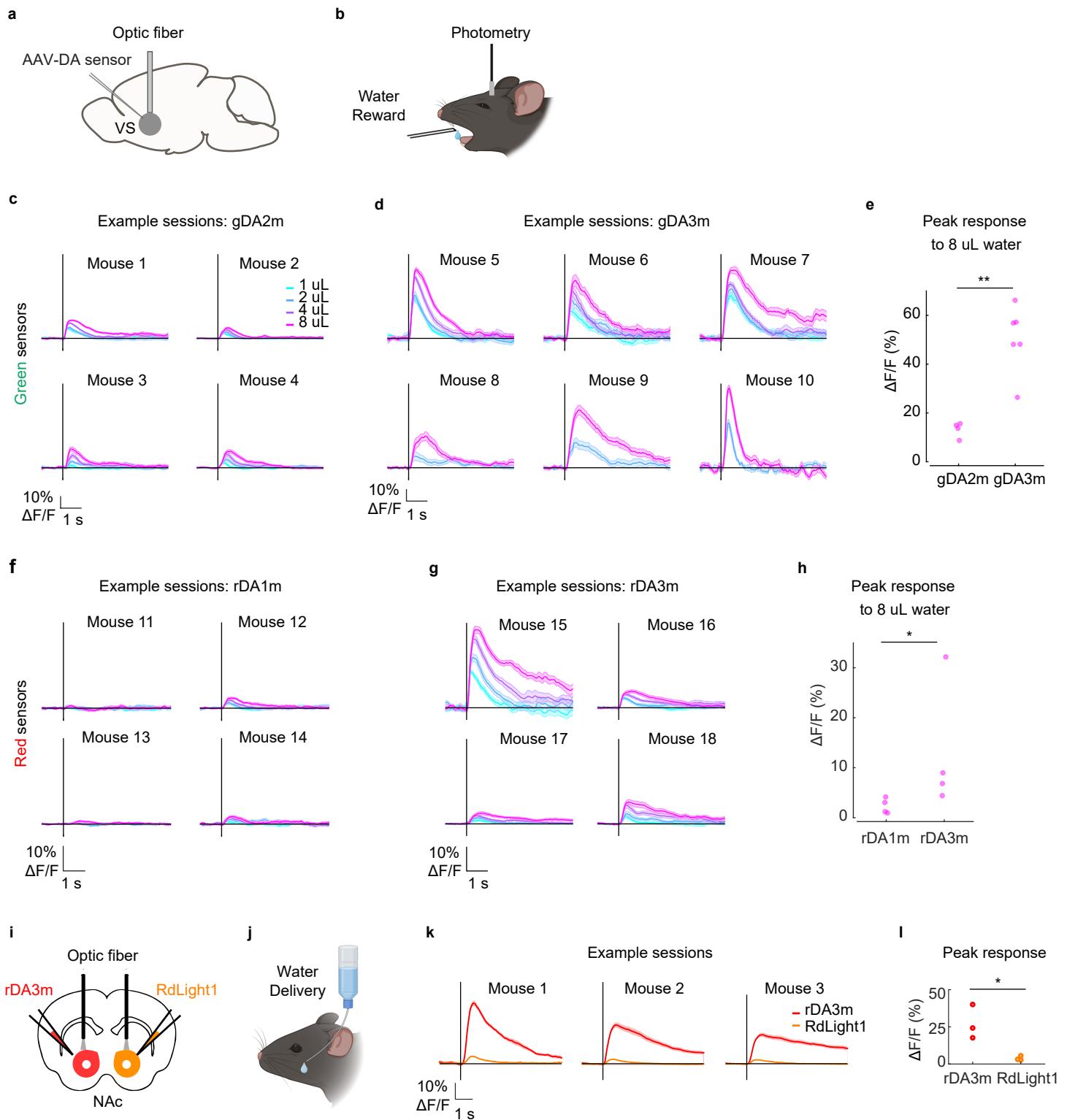
1014 **b**, Representative fluorescence changes and zoom-in view (indicated by dashed box) of indicated sensors during
1015 optogenetic stimulations under control condition or in the presence of SCH-23390 (SCH).

1016 **c**, Average traces of the change in gDA3h (top) or dLight1.3b (bottom) fluorescence from a mouse. Data are shown
1017 as mean \pm SD.


1018 **d**, Group summary of $\Delta F/F_0$ for the indicated sensors. $n=4$ mice for gDA3h and dLight1.3b, respectively. One-way
1019 ANOVA, post hoc Tukey's test was performed. ** $p=0.0035$ for gDA3h; n.s. $p=0.9122$ for dLight1.3b; * $p=0.0295$
1020 between gDA3h and dLight1.3b.

1021 **e-f**, Example fluorescence response (**e**) and corresponding average traces (**f**) of gDA3h (top) or dLight1.3b (bottom)
1022 to indicated optogenetic stimulation. The average traces are shown as mean \pm SD.

1023 **g**, Group summary of peak $\Delta F/F_0$ of gDA3h or dLight1.3b in response to indicated optogenetic stimulation. $n=4$ mice
1024 for gDA3h and dLight1.3b.


1025

Extended Data Fig. 8 | rGRAB sensors report optogenetically-elicited DA release in multiple brain regions *in vivo*

1026 **Extended Data Fig. 8 | rGRAB sensors report optogenetically-elicited DA release in multiple brain regions *in vivo***
1027 **a**, Schematic illustration depicting the experimental design for panel **b-d**.
1028 **b**, Representative traces of rDA3m or rDA3mut signals during optogenetic stimulations. rDA3m signals were
1029 measured before and after SCH-23390 (SCH) administration.
1030 **c**, Average traces of the change in sensor fluorescence to 1-, 5- or 10-s opto-stimulation from a mouse. Data are
1031 shown as mean \pm SD. The blue shaded area indicates the application of opto-stimulation.
1032 **d**, Group summary of peak response of rDA3m or rDA3mut to indicated optogenetic stimulation. $n=3$ mice for
1033 rDA3m and $n=5$ for rDA3mut. Two-tailed Student's t-test was performed. $p=0.0278, 0.0101, 0.0068$ between control
1034 and SCH to 1-, 5-, 10-s opto-stimulation. $p=0.0003, 0.0001, <0.0001$ between rDA3m and rDA3mut to 1-, 5-, 10-s
1035 opto-stimulation.
1036 **e**, Schematic illustration depicting the experimental design for panel **e-h**.
1037 **f**, Representative traces of sensor signals simultaneously recorded in the mPFC (top) and NAc (bottom) during
1038 optogenetic stimulations.
1039 **g**, Average traces of the change in sensor fluorescence in the mPFC (left) and NAc (right) to indicated optogenetic
1040 stimulation from a mouse. Data are shown as mean \pm SD. The length of blue lines indicates the duration of opto-
1041 stimulation.
1042 **h**, Group summary of peak response of rDA2m or rDA2mut to indicated optogenetic stimulation. $n=3$ mice for
1043 rDA2m and rDA2mut. Two-tailed Student's t-test was performed between rDA3m and rDA3mut response upon 10-
1044 s opto-stimulation. $p=0.0007$ for mPFC, $p=0.0364$ for NAc.
1045

Extended data Fig. 9 | *In vivo* comparison of the third-generation DA sensors versus previous variants in water-restricted mice receiving water rewards.

1046 **Extended data Fig. 9 | In vivo comparison of the third-generation DA sensors versus previous variants in water-
1047 restricted mice receiving water rewards**

1048 **a**, Diagram of mouse surgical procedure. AAVs carrying gGRAB_{DA2m}, gGRAB_{DA3m}, rGRAB_{DA1m}, or rGRAB_{DA3m} were
1049 injected unilaterally into NAc. An optic fiber was implanted above the injection site.

1050 **b**, Illustration of behavioral experiment.

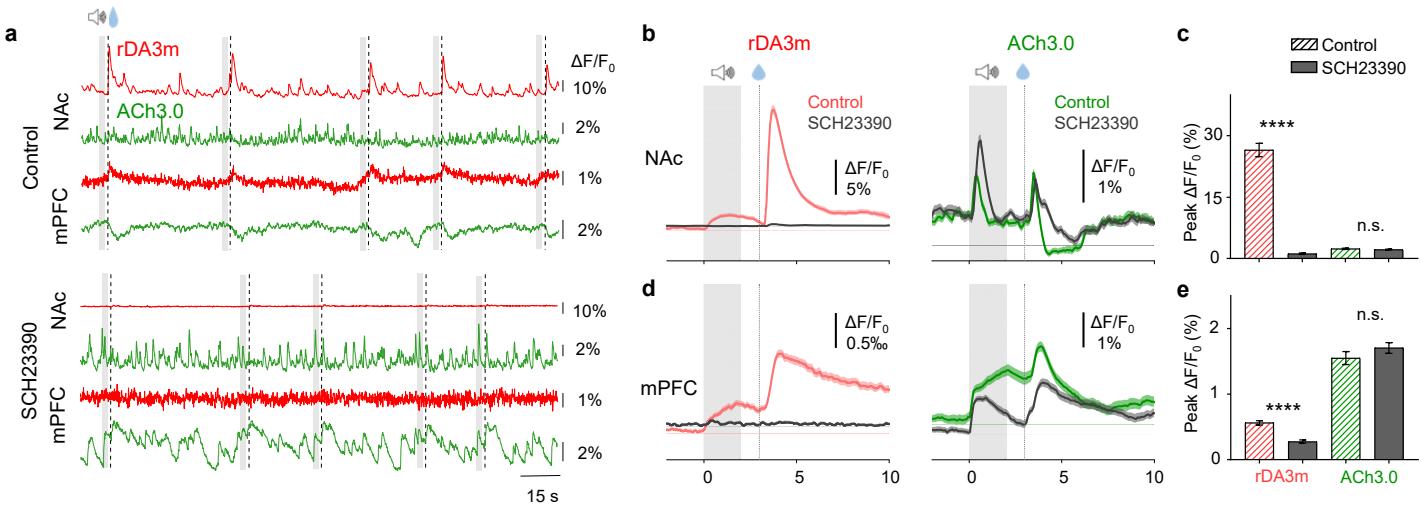
1051 **c**, Recording sessions from gDA2m mice. Vertical black bars indicate water delivery. Colors indicate water volume.

1052 **d**, Recording sessions from gDA3m mice.

1053 **e**, Peak response to 8 μ L water for the sessions shown in **c** and **d**. ** p = 0.0095, Mann-Whitney U test.

1054 **f**, Recording sessions from rDA1m mice.

1055 **g**, Recording sessions from rDA3m mice.


1056 **h**, Peak response to 8 μ L water for the sessions shown in **f** and **g**. ** p = 0.0286, Mann-Whitney U test.

1057 **i-j**, Schematic illustration depicting the mouse surgical procedure and the experimental design for panel **k-l**.

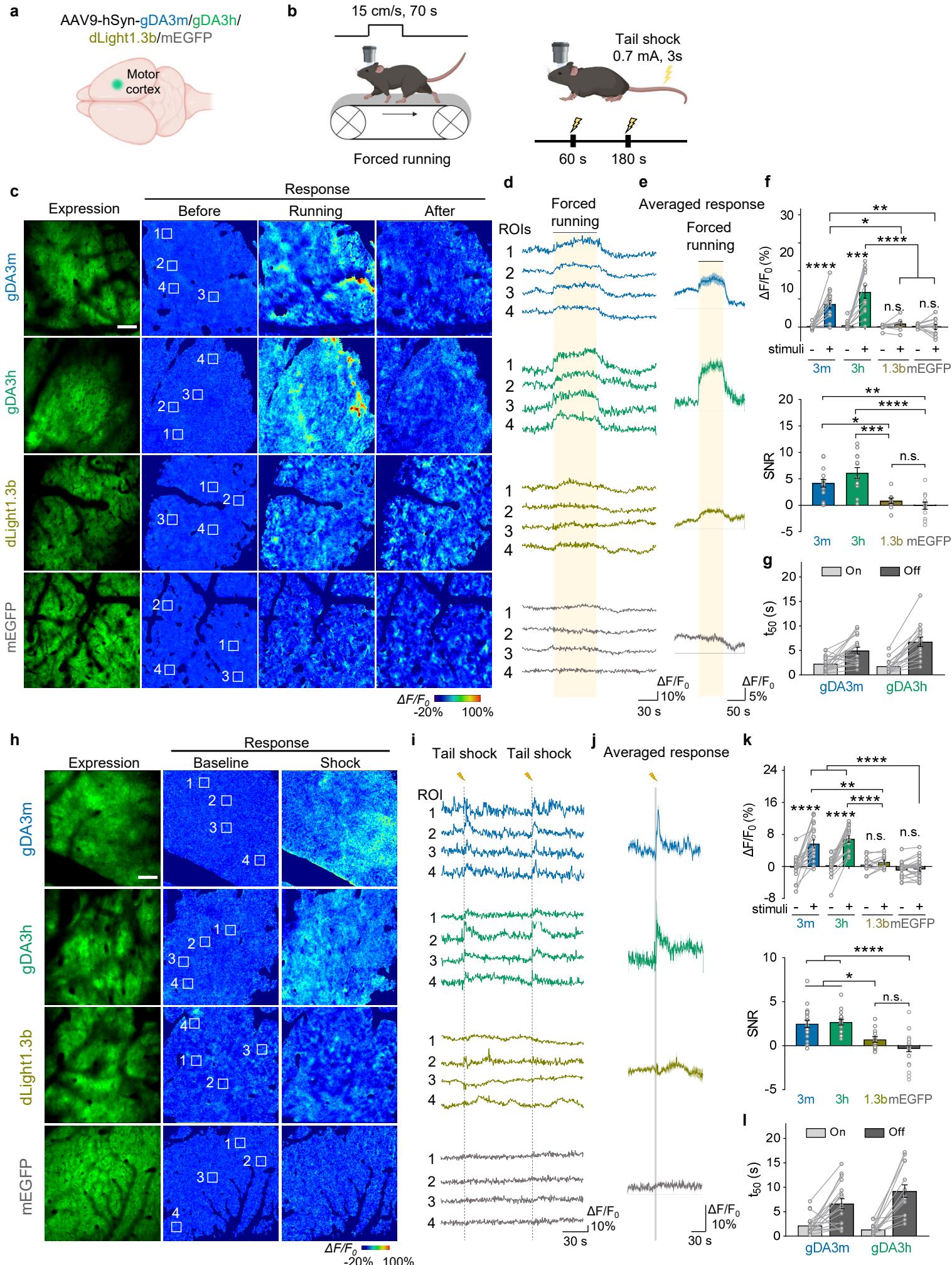
1058 **k**, Recording sessions from 3 mice. Vertical black bars indicate water delivery. Colors indicate sensor version.

1059 **l**, Peak response of rDA3m and RdLight1 for the sessions shown in **k**. * p = 0.0249, Two-tailed Student's t-test.

Extended data Fig. 10 | The signals in the mouse NAc and mPFC during Pavlovian conditioning

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

Extended data Fig. 10 | The signals in the mouse NAc and mPFC during Pavlovian conditioning


a, Representative fluorescence signals recorded during consecutive water trials pre (top, control) and post SCH-23390 (bottom, SCH-23390) treatment. The audio and water delivery are indicated above.

b, Averaged traces of rDA3m (left) and ACh3.0 (right) fluorescence measured in the NAc from a mouse under control condition or in the presence of SCH-23390. Shown are more than 50 consecutive trials (mean \pm SD) in one mouse. The grey shaded area indicates the application of audio. The dashed line indicates the delivery of water.

c, Group summary of the peak fluorescence change of rDA3m and ACh3.0 signals in the NAc under the indicated condition. $n= 155$ trials from 3 mice for each group. Two-tailed Student's t-test was performed between control and SCH-23390 group. $p=0.2624$ for ACh3.0.

d-e, same as (b-c) with simultaneously recorded rDA3m and ACh3.0 signals in the mPFC. Two-tailed Student's t-test was performed between control and SCH-23390 group. $p=0.2274$ for ACh3.0.

Extended data Fig. 11 | *In vivo* two-photon imaging of cortical DA dynamics in mice

1072 **Extended data Fig. 11 | *In vivo* two-photon imaging of cortical DA dynamics in mice**

1073 **a-b**, Schematic illustration depicting the experimental design for panel **c-j**.

1074 **c-e**, Representative expression and pseudocolored response images (**c**), representative traces measured at the
1075 indicated ROIs (**d**), and average traces per forced running (**e**) measured in the head-fixed mice expressing gDA3m,
1076 gDA3h, dLight1.3b or mEGFP. Scale bar, 100 μ m.

1077 **f**, Group summary of the peak fluorescence response (top) and SNR (bottom) measured during forced running in
1078 the motor cortex of mice expressing gDA3m, gDA3h, dLight1.3b and mEGFP. n=14 trials from 4 mice (15/4) for
1079 gDA3m, 13/4 for gDA3h, 9/3 for dLight1.3b, 12/4 for mEGFP. Paired two-tailed Student's t-test was performed within
1080 group. One-way ANOVA, post hoc Tukey's test was performed across sensor groups. Response, p<0.0001 for gDA3m;
1081 p=0.0002, 0.0683, 0.6275 for gDA3h, dLight1.3b, mEGFP; p<0.0001 between gDA3h and dLight1.3b, or EGFP;
1082 p=0.0214 between gDA3m and dLight1.3b; p=0.0022 between gDA3m and mEGFP; p=0.1611 between gDA3m and
1083 gDA3h; p=0.9577 between dLight1.3b and mEGFP. SNR, p<0.0001 between gDA3h and mEGFP; p=0.0004 between
1084 gDA3h and dLight1.3b; p=0.0016 between gDA3m and mEGFP; p=0.0337 between gDA3m and dLight1.3b; p=0.8812
1085 between dLight1.3b and mEGFP.

1086 **g**, Summary of the rise and decay t_{50} values (where applicable) of the gDA3m and gDA3h signals in response to
1087 forced running.

1088 **h-j**, Same as (**c-e**) except mice were subjected to tail shock.

1089 **k**, Group summary of the peak fluorescence response (top) and SNR (bottom) measured upon tail shock in the motor
1090 cortex of mice expressing gDA3m, gDA3h, dLight1.3b and mEGFP. n=19/4 for gDA3m, 16/4 for gDA3h, 12/3 for
1091 dLight1.3b, 26/4 for mEGFP. Paired two-tailed Student's t-test was performed within group. One-way ANOVA, post
1092 hoc Tukey's test was performed across sensor groups. Response, p<0.0001 for gDA3m and gDA3h; p=0.1774, 0.2524
1093 for dLight1.3b, mEGFP; p<0.0001 between mEGFP and gDA3m, or gDA3h; p<0.0001 between gDA3h and dLight1.3b;
1094 p=0.0013 between gDA3m and dLight1.3b; p=0.7169 between gDA3m and gDA3h; p=0.3714 between dLight1.3b
1095 and mEGFP. SNR, p<0.0001 between mEGFP and gDA3m, or gDA3h; p=0.0186, 0.0104 between dLight1.3b and
1096 gDA3m, or gDA3h; p=0.2607 between dLight1.3b and mEGFP.

1097 **l**, Summary of the rise and decay t_{50} values of the gDA3m and gDA3h signals in response to tail shock. mEGFP data
1098 replotted from Fig. 6f.